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Summary. Complex biological, social, and technological systems lmauiwften modeled by
weighted networks. The network topology, together withdrstribution of available link or
node capacity (represented by weights) and subject to crsttraints, strongly affect the
dynamics or performance of the networks. Here, we inveigigptimization in fundamental
synchronization and flow problems where the weights aregutimmal to(k; kj)/3 with ki and

kj being the degrees of the nodes connected by the edge. Intikextof synchronization,
these weights represent the allocation of limited resaufceupling strength), while in the
associated random walk and current flow problems, they cbttite extent of hub avoidance,
relevant in routing and search. In this Chapter, we reviemd&mental connections between
stochastic synchronization, random walks, and current i we discuss optimization prob-
lems for these processes in the above weighted networks.

1 Introduction

Synchronization [1-6] and transport [7—11] phenomena arggsive in natural and engi-
neered complex interconnected systems with applicateomgimg from neurobiology and pop-
ulation dynamics to social, communication, and informati@tworks. In the recent wave of
research on complex networks [12—18], the focus has sHifdea structure to various dynam-
ical and stochastic processes on networks [19, 20], syn&tation and transport are being
one of them. The common question addressed by most studigia tieir specific context is
how the collective response of locally-coupled entitigsfisienced by the underlying network
topology.

Here, by network synchronization, we refer to the generablam where individuals or
agents attempt to locally coordinate their actions withirthetwork neighbors or within some
spatial neighborhood, in an attempt to improve global perémce or reach global agree-
ment [6, 21]. In the broader context, these problems arerafsored to as consensus prob-
lems [6, 22, 23]. In this Chapter, we will use the terms syonlmation and coordination syn-
onymously. Classic examples for coordination phenomeaaaamal flocking [24—26] and
cooperative control of vehicle formation [27], where indival animals or units are adjusting
their position, speed, and headings (the relevant loctd s#aiables) based on the state of their
neighborhood, potentially leading to tight formationsnBamental synchronization problems
have also numerous applications to neurobiology [28—38ufation dynamics [33, 34], and
load balancing and task allocation problems in distribuuputing [21, 35-39].
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Research on flow optimization in networks has been aroure sitleast the first data sets
on transportation networks became available (for a brigtbhical review, see Refs. [11, 40]).
Perhaps, among the first ones was a study on transportationipg on the Soviet railway
network, as early as in 1930 [41], followed by others in thé0[42—-44]. Flow optimization
and network interdiction problems also attracted signifidaterest during the Cold War years
[45, 46] and have been a main thrust in operations reseanch [, 47, 48].

The increasing availability of data on real-life complexlbgical, information, social,
and infrastructure networks, and the emerging novel typeetfork structures have triggered
a recent wave on fundamental research on transport and floatworks [49—83]. Connec-
tions between random walks and resistor networks have bisensded in detail in several
works [84-86]. Furthermore, we have recently explored &umental connections and rela-
tions (governed by the same underlying network Laplaciatyvben stochastic synchroniza-
tion problems and resistor networks, current flow, and remdalks [10, 87]. In this Chapter,
in parallel with reviewing synchronization phenomena irisgcenvironments, we will dis-
cuss some natural and fundamental connections with igehtiansport and flow problems
on complex networks, in particular, connections with soimgf#ified local and global routing
and search schemes [67, 68, 72].

The ultimate challenge in network optimization (of synafiration and flow) is when
both the network structure and the link qualities (represbivy weighted links) can change
or evolve [8, 67], subject to cost constraints. Here, weawvand discuss a simpler set of
problems, where the network structure is fixed but the linkghis (or coupling strengths)
can be allocated. In particular, we consider a specific antrsstric form of the weights on
uncorrelated scale-free (SF) networks, being proportitmék; kj)ﬁ wherek; andk; are the
degrees of the nodes connected by the link [10, 88-91]. Theeageneral form has been
suggested by empirical studies of metabolic [50] and a@ransportation networks [51]. We
discuss the effects of such a weighting scheme in our synaation and flow problems.
Then the task becomes maximizing the synchronization effayi, throughput, or robustness
as a function of3.

The setup of this Chapter is as follows. In Sec. 2 we reviewnapation of synchroniza-
tion in a noisy environment [10]. In Sec. 3 and 4, we preselts for optimization of resistor
networks and random walks, respectively, together witlereing fundamental connections
between the relevant observables in synchronizationstoesnetworks, and random walks.
In Sec. 5 we discuss current-flow betweenness and optimizafi throughput in weighted
complex networks [92]. In Sec. 6 we present results on siop@th betweenness, cascading
failures, and cascade control in weighted complex networks

2 Synchronization in a Noisy Environment in Weighted Netwoks

A large number of studies investigated the Kuramoto modedceipled oscillators [4, 93],
naturally generalized to complex networks [94—96]. The ommn feature of the findings is
the spontaneous emergence of order (synchronous phasejnmiex networks, qualitatively
similar to that observed on fully-connected networks (aéferred to as complete graphs), in
contrast to regular networks in low dimensions. Anothegéagroup of studies addressed syn-
chronization in coupled nonlinear dynamical systems (elpotic oscillators) [3] on small-
world (SW) [97] and scale-free (SF) [88, 98-101] networkise Binalysis of synchronization
in the latter models can be carried out by linearization allo& synchronous state and us-
ing the framework of the master stability function [102].tln, the technical challenge of
the problem is reduced to the diagonalization of the Laplaon the respective network, and
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calculating or estimating the eigenratio [97] (the ratidgtaf largest and the smallest non-zero
eigenvalue of the network Laplacian), a characteristicsaeaof synchronizability (smaller
eigenratios imply better synchronizability). Along thdises, a number of recent studies con-
sidered not only complex, possibly heterogeneous, intieratopologies between the nodes,
but also weighted (heterogeneities in the strength of theplaegs) [49, 88, 99, 100] and di-
rected networks [103-105].

In a more general setting of synchronization problems, tikective behavior/response
of the system is obviously strongly influenced by the noriitées, the coupling/interaction
topology, the weights/strength of the (possibly direclé®s, and the presence and the type
of noise [3,101]. Here, we study synchronization in weightemplex networks with linear
coupling in the presence of delta-correlated white noisesie its simple formulation, this
problem captures the essential features of fundamentiastic synchronization, consensus,
and coordination problems with application ranging fronorclination and load balancing
causally-constrained queuing networks [106, 107] to ernemae-based services facilitated
by interconnected servers [108], and certain distribe@uputing schemes on computer net-
works [21, 36—39]. This simplified problem is the Edwarddiivison (EW) process [109] on
the respective network [10,87,110-115], and is descrilyetidoLangevin equation

N
ahi =y Cijthi—hy)+mi(t), )
=1

wherehj(t) is the general stochastic field variable on a node (such asidltions in the task-
completion landscape in certain distributed parallel sat® on computer networks [21, 111,
112]) andn; (t) is a delta-correlated noise with zero mean and variénde)n;(t')) =25 3 (t —
t'). Here,Gij=C;ji>0 is the symmetric coupling strength between the nodew j (C;j=0).
Note that without the noise term, the above equation is @&fned to as the consensus prob-
lem [6, 22, 23] on the respective network (in the sense of odtad agents trying to reach
an agreement, balance, or coordination regarding a ceftaintity of interest). Defining the
network Laplacian,

hij = ;G -G , )
whereC; = 5, G, we can rewrite Eq. (1)

N
thi = — % Tijhj+ni(t) . 3)
=1

For the steady-state equal-time two-point correlatiorcfiam one finds

_ N-1 ¢

Gij = ((h —h)(hj—h) =" = kzl P @)

whereh= (1/N) 3N , hj and(...) denotes an ensemble average over the noise in Eq. (3). Here,
"~ denotes the inverse 6Fin the space orthogonal to the zero mode. A{sm}{il andAy,
k=0,1,...,N—1, denote théth normalized eigenvectors and the corresponding eigeesal
respectively. Thd = 0 index is reserved for the zero mode of the Laplacian on theark:
all components of this eigenvector are identical dgd= 0. The last form in Eq. (4) (the
spectral decomposition ¢f~1) can be used to directly employ the results of exact numierica
diagonalization.

For the EW process on any network, the natural observableeisteady-state width or
spread of the synchronization landscape [87,111, 112 111A—
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N—1

I A P W 1N
(W) = N'Zl(hi -h))= N';Gii =N kzl

The above observable is typically self-averaging (confittmg numerics), i.e., the widtw?)
for a sufficiently large, single network realization approes the width averaged over the
network ensemble. A network is said to be synchronizableefwidth has a finite steady-
state value; the smaller the width, the better the synchaioin. Finite and connected (single
component) networks are always synchronizable. In the tfinfinite network size, however,
network ensembles with a vanishing (Laplacian) spectrialrgay become unsynchronizable,
depending on the details of the smalbehavior of the density of eigenvalues [5, 21].

The focus of this section is to optimize synchronizatios.(iminimize the width) oni)
weighted uncorrelated networks with SF degree distriloiio) subject to a fixed cost. In the
context of this work, we define the total c&&tt simply to equal to the sum of weights over
all edges in the network

1
R ®)

1
iZJCij :Eng:Ctot- (6)
The elements of the coupling matfy; can be expressed in terms of the network’s adjacency
matrix Ajj and the assigned weight¥j connecting nodé and j asCj; = W Aj;. Here, we
consider networks where the weights are symmetric and ptiopal to a power of the degrees
of the two nodes connected by the lill; O (kikj)#. We choose our cost constraint to be such
that it is equal to that of the unweighted network, where dimthis of unit strength.

ZCijZZCtot:zAij:NR7 (7)
] ]

wherek = y;ki/N = ¥i.jAij /N is the mean degree of the graph, i.e., the average cost per edg
is fixed. Thus, the question we ask, is how to allocate thagtheof the links in networks with
heterogeneous degree distributions with a fixed total comtder to optimize synchronization.
That is, the task is to determine the valueBoivhich minimizes the width Eq. (5), subject to
the constraint Eq. (7).

Combining the form of the weight&\; O (k;kj)ﬁ, and the constraint Eq. (7) one can
immediately write for the coupling strength between nadasd j

Ajj (kikj)P
ZI.nAln(kI kn)l3

From the above it is clear that the distribution of the wesghicontrolled by a single parameter
B, while the total cost is fixed ior = NK/2.

Before tackling the above optimization problem for the nietdd set of heterogeneous
networks and the specific form of weights, it is useful to deiae the minimum attainable
value of the width of the EW synchronization problem in anywwek with symmetric cou-
plings. This value will serve as a “baseline” reference for problem. In Appendix 1 we
show that this absolute minimum value of the width is

N-—1)?
W) i = (N D 9
< >m|n ZNCtot ( )
and can be realized by the fully connected network.

If one now considers the synchronization problem on any odtwith N nodes, with
average degreleand with total cos€Ciot = NK/2 to be optimized in some fashion [e.g., with

Gij = Nk (8)
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respect to a single paramei@y Eq. (8)], the above result provides an absolute lower bound
for the optimal width

1 1
—~ 10
b (10)

2.1 Mean-field approximation on uncorrelated SF networks

First, we approximate the equations of motion [Eq. (1)] hylaeing the local weighted aver-
age field(1/G) 5 ; Gj hj with the global averagh (the mean-height)

N Ch
ohy = — zlcij(hi —hj)+ni(t) = -G (hi — Lg]h]) +1ni(t)
i= (
~ =G (hi—h)+ni(t) . (11)

Note thatC; = 3 ; Cjj is the weighted degree. As can be directly seen by summinguli
over all nodes, the mean heidhperforms a simple random walk with noise intengity1/N).
Thus, in the mean-field (MF) approximation (see details ipéqdix 2), in the asymptotic
largeN limit, fluctuationsabout the meamlecouple and reach a stationary distribution with
variance

<(hi - H)2> ~1/G (12)
yielding

1N o 11
W)= 3 (-7~ G (13)
Now we consider uncorrelated weighted SF networks, withgaieedistribution
P(k) = (y—pm' kY, (14)

wherem is the minimum degree in the network and?2y < 3. The average and the min-
imum degree are related througkh = m(y — 1)/(y — 2). Using the approximation for the
weighted degre€(k) of a node with degrek in uncorrelated (UC) weighted SF graphs (see
Appendix 3),

+1

y—2 mb

and assuming self-averaging for large enough networkspbtegns for the width of the syn-
chronization landscape

(15)

Ll e 1 1 (y—1)2
W T C = WMo W myre

where using infinity as the upper limit is justified fgr- 8 > 0. Elementary analysis yields
the main features of the above expression for the averagé:wid

1. (wW2(B)) is minimum atB = B* = —1, independenof the value ofy.
2. (WP)min = (W2(B*)) = 1/(k)

The above approximate result is consistent with using ityfas the upper limitin all integrals,
in that the optimal valugs* = —1 falls inside the intervaly < B <y—2for 2< y < 3.
Interestingly, one can also observe, that, in this appration, the minimal value of the width
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is equal to that of the global optimum [Eqg. (10)], realizedtbg fully-connected network of
the same costi(k)/2, i.e. with identical links of strengttk) /(N — 1).

We emphasize that in obtaining the above result [Eq. (16)¢mployed two very strong
and distinct assumptions/approximation3:f¢r the dynamics on the network, we neglected
correlations (in a MF fashion) between the local field vdgatand approximated the local
height fluctuations by Eq. (12)iif we assumed that the network has no degree-degree cor-
relations between nodes which are connected (UC), so thdinbighted degree” of a node
with degreek, C(k) can be approximated with Eg. (15) for networks writiy-1.

2.2 Numerical results

For comparison with the above mean-field results, we corsitiBarabasi-Albert (BA) SF
networks [13, 14], “grown” toN node$,whereP(k) = 2m2/k3, i.e., y = 3. While grow-
ing networks, in general, are not uncorrelated, degreeedegorrelations are anomalously
(marginally) weak for the BA network [18, 118].

We have performed exact numerical diagonalization and eyepl Eq. (4) to find the local
height fluctuations and Eq. (5) to obtain the width for a gimetwork realization. We carried
out the above procedure for 10-100 independent networlkzagiahs. Finite-size effects (ex-
cept for them=1 BA tree network) are very weak for2 < 3 < 0; the width essentially
becomes independent of the system size in this intervalir€igy displays result for the local
height fluctuations as a function of the degree of the nodesiier both the fluctuations aver-
aged over all nodes with degrkand the scattered data for individual nodes. One can observe
that our approximate results for the scaling with the defeembining Egs. (12) and (58)],
((hi — h)2> ~1/C ~ kif(BH), work very well, except for very low degrees. The speciakcas
B=0, is exceptionally good, since he@e= 3 ; Ajj = k; exactly, and the only approximation
is Eq. (12).

In Fig. 2, we show our numerical results for the width and caragt with the approxi-
mate (MF+UC) results Eq. (16). The divergence of the appnaé result Eq. (16) 8= —3
andB= 1 s the artifact of using infinity as the upper limit in theggtals performed in our ap-
proximations. The results for the width clearly indicate #xistence of a minimum at a value
of B* somewhat greater thanl. Further analysis reveals [10] that as the minimum degree
is increased, the optimfl approaches-1 from above. This is not surprising, since in the limit
of m> 1 (large minimum degree), both the MF and the UC part of our@pmations are
expected to work progressively better. FB£0, our approximation [Eq. (16)] is within 8%,
4%, and 1% of the results extracted from exact numericalothialization through Eq. (5), for
m=10, m=20, andm=100, respectively [10]. FgB=—1, it is within 15%, 7%, and 3% of the
numerical results fom=10, m=20, andm=100, respectively [10]. Thus, our approximation
works reasonably well for large uncorrelated SF networkth wufficiently large minimum
(and consequently, average) degree, i.e., in thendN limit. Although for sparse networks
with small average degree the MF+UC approximation failsomate the minimum and the
value of the width precisely, nevertheless it providesghsfor an efficient optimization of
the global performance of weighted heterogeneous netwdaths single parameteg, as op-
posed to a computationally prohibitive exhaustive sedfon.a detailed quantitative analysis
of the error of the MF+UC approximation in the context of thesely related random walks
on weighted SF networks (Sec. 4) see Ref. [91].

1 For the BA scale-free model [13] (growth and preferentigetiment), each new node is
connected to the network with links, resulting in(k) ~ 2min the largeN limit. Here, we
employed a fully-connected initial cluster of+ 1 nodes.
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Fig. 1. Height fluctuations as a function of the degree of the nodefNf1000, (k) = 20,
and for3=-2.00, 3=-1.00, andB=0.00 (from top to bootom). Data, represented by filled
symbols, are averaged over all nodes with dedge®catter plot (dots) for individual nodes
is also shown from ten network realizations. Solid linesregpond to the MF+UC scaling
(A2 ~ k- (B+D),

The above optimal link-strength allocation at around tHee/8*~—1 seems to be present
in all random networks where the degree distribution isedéht from a delta-function. For
example, in SW networksalthough the degree distribution has an exponential(iafly also
exhibits a minimum, but the effect is much weaker, as showfidn2. Further, a point worth-
while to mention, a SW network with the same number of nodestla same average degree
(corresponding to the same cost) always “outperforms” ks8unterpart (in terms of mini-
mizing the width). The difference between their performaiscsmallest around the optimal
value, where both are very close to that of the lowest passiblue, realized by the FC net-
work of the same cost.

3 Weighted Resistor Networks

Resistor networks have been widely studied since the 7@'sdels for conductivity problems
and classical transport in disordered media [121, 122].d5itrthe emerging research on com-
plex networks, resistor networks have been employed to/stnd explore community struc-
tures in social networks [123—-126] and centrality measuraaformation networks [127].

2 Here we constructed SW networks bgding random links [111, 119, 120] on top of a
regular ring with two nearest neighbors. The density of candinks per node ig, resulting
in an average degre@&) =2+ p.
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Fig. 2. Steady-state width of the EW synchronization landscapdascion of the weighting
parameteiB for the BA networks withm=10 ((k)~2m=20) for various network sizes. The
solid curve is the approximate (MF+UC) result [Eq. (16)]r Eomparison, numerical results
for a SW networks witiN=1000 and with the same degree is also shown. The horizontal
dashed line indicates the absolute lower bound Eg. (10)clis\aed by the fully connected
network with the same cost(k) /2.

Also, electrical networks with directed links (correspmudto diodes) have been used to pro-
pose novel page-ranking methods for search engines on tHd-Wide-Web [128].

Most recently, simple resistor networks were utilized tadgttransport efficiency in SF
[79,80] and SW networks [87]. The work by Lopez et al. [8Qjealed that in SF networks [13,
14] anomalous transport properties can emerge, displayttelpower-law tail of distribution
of the network conductance. Now, we consider weighted tasigetworks subject to a fixed
total cost (the cost of each link is associated with its catahce). As we have shown [10, 87]
the relevant observables in the EW synchronization prolaedin (Ohmic) resistor networks
are inherently related through the spectrum of the netwagldcian. Consider an arbitrary
(connected) network whef@; is the conductance of the link between nadend j, with a
currentl entering (leaving) the network at nodé). Kirchhoff's and Ohm’s laws provide the
relationships between the stationary currents and vaitfig 129]

D Gij(Vi—V)) =1(ds— ), 17)
]

or equivalently,

S V) =1(8s— &) . (18)
J

whereflj; is the network Laplacian, as defined in the context of the Ed¢gss [Eq. (2)]. Intro-
ducing the voltages measured from the mean at each og®; —V, whereV=(1/N) s N, V4,
one obtains [87]
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Vi =1(Gis—Git) - (19)
Here,G is the same network propagator discussed in the contexiedEW process, i.e. the
inverse [Eq. (4)] of the network Laplacian [Eq. (2)] in theasp orthogonal to the zero mode.
Applying Eq. (19) to nodesandt, where the voltage drop between these nodes is Vs —\4,

one immediately obtains the effective two-point resistanithe network between nodsand
t [87,129],

V. N-1g
Rst = TSt = Ggs+ Gyt — 2Gst = Z )Tk (‘M%ﬁ‘ L/-’Et - zwkswkt) . (20)
k=1

The spectral decomposition in Eq. (20) is, again, usefuhtpley the results of exact numer-
ical diagonalization. Comparing Egs. (4) and (20), one @mthat the two-point resistance
of a network between nodeandt is the same as the steady-stagéght-differenceorrelation
function of the EW process on the network [87],

((hs—ht)?) = ([(hs—h) — (ht —)]) = Gss+ Gt — 2Gst = Ryt (21)

For example, using the above relationship and then emgjdimMF+UC approximatiotone
can immediately obtain the scaling of the typical value ef¢fffective two-point resistance in
weighted resistance networks, between two nodes with dekgandk;,

k%ﬂ? +kt1+[3
(keke) 1A

A global observable, measuring transport efficiency, agals to the width of the syn-
chronization landscape, is the average two-point resistf80, 87] (averaged over all pairs of
nodes, for a given network realization). Using Eq. (21) axul@ting the basic properties of
the Green’s function, one finds

2 N
N(N—1) SZ‘RS‘_ N(N—l)S;RSt_ N_12

Rst >~ Gss+ Git ~ [kg(l+ﬁ> + kt7(1+ﬁ>} = (22)

R= W2) ~ 2(WP) | (23)
i.e., in the asymptotic large system-size limit the avergtem resistance of a given network
is twice the steady-state width of the EW process on the satweork. Note that the above
relationships, Egs. (21) and (23), are exact and valid fgrggaph.

The corresponding optimization problem for resistor neksahen reads as follows: For a
fixed total costCiot = ¥ Cij = N(k) /2, where the link conductances are weighted according
to Eg. (8), what is the value ¢f which minimizes the average system resistarg®)? Based
on the above relationship between the average systemamssand the steady-state width of
the EW process on the same graph [Eq. (23)], the answer iathe as was discussed in Sec. 2
[Eg. (16)]: B*=—1 andRyjn = 2N/[(N — 1)(k)] ~ 2/(k) in the mean-field approximation on
uncorrelated random SF networks. Numerical result&{g#) are also provided for “free” as
R(B) ~ 2(w?(B)), by virtue of the connection Eq. (23) [Fig. 2].

3 In the context of resistor networks, while there are no “B&ldve carry over the termi-
nology “mean-field” (MF) from the associated EW synchrotiara problem. In terms of
the network propagator, the assumptions of the MF apprdiom&an be summarized as
Gst< Gss for all s#£t, andGsg~1/Cs.
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Fig. 3. System conductance vs the edge weight paranei@r different source/target distribu-
tions controlled by for BA networks withm=10 ((k)~2m=20) andN=400 (solid symbols).
For comparison, numerical results for a SW networks withstimae network size and average
degree is also shown for twmvalues (open symbols).

3.1 Transport optimization for heterogeneous source/targt frequencies

As suggested by Lopez et al. [80], the effective (electyicahductance provides a powerful
measure to characterize transport in complex networks diservable, strongly influenced
by the number of disjoint (and possibly weighted) paths ketwa source and a target, is
also closely related to the max-flow problem in networks {740, 63, 81]. The effective two-
point conductance is the inverse of the effective two poisistance [Eq. (20)Bst=1/Rst.

If each node is equally likely to be a target or a source, a lgraperage over all source and
target pairs provides the average system conductanes, s gst/N(N — 1). In real systems,
however, nodes are not created equal; their relative fremyuto be a source or target can
greatly vary. In the simplest phenomenological model, waiae that nodes are sources or
targets with a frequency proportiona‘r (p>0) [65, 80]. Also, as previously, we allow the
edges (conductivities) to be weighted, controlled by theapeterf3 according to Eq. (8),
subject to a fixed total edge cost Eq. (7). Then, naturally,rédevant global measure is the
appropriately weighted system conductance

¥ s/t (kski)Pgst(B)
¥ szt (Kske )P

Then, we considesptimizing the allocation limited resourcésthe above simplified transport
problem. That is, for a given source/target distributiontcolled byp, what is the value o
which minimizes the system conductargt@)?

In Fig. 3 we show numerical results for BA scale-free netwgoil’hen the source/target
profile is uniform p=0), the system conductance exhibits a maximum at ar@smd 1 (in

9(B) = (24)
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synch with the system resistance exhibiting a minimum adahe sameB, Fig. 2). For in-
creasing positive values @, the optimal value of3 shifts to the right; the location of the
maximum of theg(B) curve for a giverp quantifies the extent to which resources should be
allocated around hubs (or away from hubs) for optimal gl@esformance.

Figure 3 also indicates that the conductance curves fgo aitersect at arounf@~—1.
Indeed, our previous approximation [Eq. (22)] predicts #iahis point the effective two-point
conductancegst=1/Rst becomes independent of the degree of the source and tardes$,no
hence the system conductance Eq. (24) becosmwariant.

In Fig. 3 we also plot the same system conductance cure for &Wornks with the same
network size and average degree for two valugs. &for p=0 (uniform source/target profile),
a SW graph (with a close-to-homogeneous degree distriutiotperforms its BA SF coun-
terpart (with heterogeneous degree distribution) of thmesaost for evenf. For strongly
heterogeneous source/target frequengiesl( the performance of a SW network is better for
B < —1andp > 2, while the BA SF network performs better in the<3<2 interval.

4 Random Walks in Weighted Networks

Investigating random walks (RW) on networks, and resiseaworks can provide invaluable
insights into fundamental properties and characteristitsansport and flow on networks [10,
54-56,80,84,87,91,130,131]. In these models, with dapptication to search, routing, and
information retrieval on networks [132, 133], the connectbetween network structure and
function becomes explicit, so one can address the problémesigning network structures

to minimize delivery times, or for a fixed structure, alldngtresources (queuing capacity) to
minimize load and delays [10, 70, 90].

Here, we consider weight<Cjj } employed in the previous sections and define a discrete-

time random walk (RW) with the transition probabilities [84

_Gi

R C

(25)
(recall thatC; = 3, C; is the weighted degreeff; is the probability that the walker currently
at nodei will hop to nodej in the next step. Note that because of the construction of the
transition probabilities (being a normalized ratio), thsuie of cost constraint disappears from
the problem. That is, any normalization prefactor assediatith the conserved cost [as in
Eq. (8)] cancels out, and the only relevant informatio@;js Ajj (kiK; )/3, yielding

G Ajkk)P  AK
TG siAu(kik)P sIAKE

Then the results are invariant for any normalization/a@iist, so for convenience, one can use
the normalized form of th€;; coefficients as given in Eq. (8). As is clear from the above RW
transition probabilities, the paramef@rcontrols to what extent “hubs” should be avoided.
Having a random walker starting at an arbitrary source rpdasked to arrive at an
arbitrary target node, the above weighted RW model can be associated with a silople
cal routing or search scheme [67] where packets are indepdndenvarded to a nearest
neighbor, chosen according to the transition probatslikg. (26), until the target is reached.
These probabilities contain only limited local informatjimamely the degree of all neigh-
boring nodes. By construction, the associated local (ststat) routing problem (Sec. I11.B.3)

(26)
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does not concern link strength (bandwidth) limitations taiher the processing/queuing ca-
pabilities of the nodes, so the cost constraint, associaitdthe links, disappears form the
problem.

4.1 Node betweenness for weighted RWs

In network-based transport or flow problems, the approptigtweenness measure is defined
to capture the amount of traffic or information passing tigloa node or a link, i.e., the load
of a node or a link [15, 18, 52-54, 126, 134, 135]. Here, ouenlable of interest is theode
betweenness;Bor a given routing scheme [67] (here, purely local and cttarized by a
single parametef): the expected number of vistts nodei for a random walker originating
at nodes (the source) before reaching nadghe target)EiS’t, summed over all source-target
pairs. For a general RW, as was shown by Doyle and Snell ﬁ?ﬁ]can be obtained using the
framework of the equivalent resistor-network problemddssed in Sec. 3). More specifically,

ES =Gi(Vi—W) . (27)

while aunit current is injected (removed) at the source (target) nodiéizidg again the net-
work propagator and Eq. (19), one obtains

ES' = Ci(Vi —Wt) = Ci (Vi —Vk) = Ci(Gis — Git — Gis+ G - (28)

For the node betweenness, one then obtains

1
2E5t > z (BN +E®) = E;q(GSﬁanZGts)
1
;Rst—* (N-1R. 9

Note that the above expression is valid for any graph andfarhitrary weighted RW defined
by the transition probabilities Eq. (25). As can be seen fEn (29), the node betweenness
is proportional to the product of a local topological measihe weighted degre@, and a
global flow measure, the average system resistBhées a specific case, for the unweighted
RW (8=0) Ci = 5, Ay = ki, thus, the node betweenness is exactly proportional toehece
of the nodeB; = kN(N — 1)R/2.

Using our earlier approximations and results for uncoteelaéSF graphs Eg. (58) and
(16), and the relationship between the width and the avesgstem resistance Eq. (23), for
weighted RW, controlled by the expongBitwe find

1+B
ay G _N\B_CN2 2Y— 1k|
Bi(B) = 5 N(N-1)R=CiN*W?) =N Vi BB (30)
First, we consider the average “load” of the network
= 1 DY Ci B
B_NIZB._ 5 (N-1R. (31)

Similar to Eq. (29), the above expression establishes att extationship between the average
node betweenness of an arbitrary RW [given by Eq. (25)] aeadtservables of the associated
resistor network, the total edge cost and the average systgistance. For example, for the
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B=0caseB=kN(N—1)R/2. As noted earlier, for calculation purposes one is fre@tsicler
the set ofGj; coefficients given by Eq. (8), which also leads us to the fuilhg statement:
For a RW defined by the transition probabilities Eq. (25), &werage RW betweenness is
minimal when the average system resistance of the assdceesistor network with fixed total
edge cost (and the width of the associated noisy synchtimizaetwork) is minimal.

Utilizing again our earlier approximations and resultsdocorrelated SF graphs and the
relationship between the width and the average systentarssis we find

C: _1)2
B(B) = %(N _1)R= (zq) N(W?) ~ NZ—(V—Z(KSEV-FB) . (32)

The average node betweenness is minimapfer §* = —1, for all y.

4.2 Commute times and hitting times for weighted RWs

The hitting (or first passage) tinm; is the expected number of steps for the random walker
originating at nodes to reach node for the first time. Note that using Doyle and Snell’s
result [84] for the expected number of visits [Eq. (27)], egsed in term of the network
propagator [Eq. (28)], one can immediately obtain an exgioesfor the expected first passage
time (see Appendix 4). The commute time is the expected nuoftseps for a “round trip”
between nodes andt, 15+ Tts. Relationships between the commute time and the effective
two-point resistance have been explored and discussedhiihideseveral works [85,130,131].

In its most general form, applicable to weighted networtksais shown by Chandra et al. [130]
(see also Appendix 4) that

Tst+ Tts = (ZCI> Rst - (33)

For the average hitting (or first passage) time, averagedadieairs of nodes, one then obtains

- 1 _ 1 S
T= N(N — 1) S;t TS,I - m#t(rﬁt i Tt"S)
_ 3G ~3iGig
TAN-DLET T o

Comparing Eq. (31) and (34), the average hitting time (treaye travel time for packets to
reach their destinations) then can be writtertras B/(N — 1). Note that this relationship is
just a specific realization of Little’s law [136, 137], in tlkentext of general communication
networks, stating that the average time needed for a pagkefth its destination is propor-
tional to the total load of the network. Thus, the averaggngttime and the average node
betweenness (only differing by a factor Wf1) are minimizedsimultaneouslyfor the same
graph (as a function g8, in our specific problem).

4.3 Network congestion due to queuing limitations

Consider the simplest local “routing” or search problem, [B7, 72] in which packets are
generated atlenticalrate at each node. Targets for each newly generated packet asercho
uniformly at random from the remainifg— 1 nodes. Packets perform independent, weighted
RWs, using the transition probabilities Eq. (25), untilytireach their targets. Further, the
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queuing/processing capabilities of the nodes are limitetlare identical, e.g. (without loss
of generality) each node can send out one packet per unit Eroen the above it follows that
the network is congestion-free as long as

B

N-1

0] <1, (35)
for everynodei [10, 66, 67,70, 71, 73]. As the packet creation mat@etwork throughput per
node) is increased, congestion emerges at a critical valuenen the inequality in Eq. (35)
is first violated. Up to that point, the simple model of indegent random walkers (discussed
in the previous subsections), can self-consistently dest¢he average load landscape in the
network. Clearly, network throughput is limited by the moshgested node (the one with the
maximum betweenness), thus

~N-1

Bmax

a standard measure to characterize the efficiency of conuaiom networks [10, 66, 67, 70,
71,73].

To enhance or optimize network throughput (limited by theedrof congestion at the
nodes), one may scale up the processing capabilities of ddesn[70], optimize the un-
derlying network topology [67], or optimize routing by fimgdj pathways which minimize
congestion [10, 71-73]. The above RW routing, with the wiighparamete3 controlling
“hub avoidance”, is an example for the latter, where the tagk maximize global network
throughput by locally directing traffic. In general, conti@s can also be strongly influenced
by “bandwidth” limitations (or collisions of packets), wdti are related to the edge between-
ness, and not considered here.

According to Eq. (36), the network throughput is governed &mited by the largest
betweenness in the network. Further, the RW betweennebg aidides is proportional to the
weighted degree, which approximately scales as a power itwthe degree in SF networks
Eqg. (30). Employing the known scaling behavior of the degreeoff (the scaling of the
largest degree) in uncorrelated SF networks [15, 118, 188],can show that the maximum
RW betweenness and network throughput exhibit a minimumeandximum, respectively, at
aroundB*=—1[10]. Here we show numerical results for the RW betweenaerdshe network
throughput in BA SF networks. Figure 4 demonstrates thaRWebetweenness is strongly
correlated with the degree in SF networks. In particulaceex for nodes with very small

degreesB(k;) ~ kf”l [Eqg. (30)]. ForB~—1, the load (RW betweenness) becomes balanced
[Fig. 4] and the network throughput exhibits a maximum [FBg. Thus, RW weights with
B~—1 correspond to the optimal hub avoiding weighting scheme.

In a recent, more realistic network traffic simulation stwdiya congestion-aware routing
scheme, Danila et al. [72] found a qualitatively very simidahavior to what we have observed
here. In their network traffic simulation model, packets favarded to a neighbor with a
probability proportional to a powgs of theinstantaneous queue lengththe neighbor. They
found that there is an optimal value of the expon@ntlose to—1.

We also show numerical results for the network throughputS/ networks with the
same degree [Fig. 5(a)]. In particular, an optimally wedghBW network always outperforms
its BA scale-free counterpart with the same degree. Qtigbts similar results have been
obtained in actual traffic simulation for networks with erpatial degree distribution [72].

To summarize, the above simple weighted RW model for localing on SF networks
indicates that the routing scheme is optimal around thea@ia=—1. At this point, the load is
balanced [Eq. (30) and Fig. 4(b)], both the average load b@dterage packet delivery time
are minimum, and the network throughput is maximum [Fig. 5].

; (36)
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Fig. 4. Normalized RW node betweenness on BA networks with3 as a function of the
degree of the nodes for four system sizds-[200 (dotted), 400 (dashed), 1000 (long-dashed),
2000 (solid)] and for three differeift values,=0.00, 3=—1.00, and3=—2.00 (from top to
bottom). Data point represented by lines are averaged diveodes with degred&. Data for
different system sizes are essentially indistinguisha®tatter plot (dots) for the individual
nodes is also shown from ten network realizationsNe¢1000. Solid curves, corresponding
to the MF+UC scalind(k) ~ kB+1[Eq. (30)], are also shown.

From a viewpoint of network vulnerability [139—-143], thecale results for the weighted
RW routing scheme also implies the following. Network fadls are often triggered by large
load fluctuations at a specific node, then subsequently dmgréhrough the system [142].
Consider a “normal” operating scenario (i.e., failure@ due to intentional/targeted attacks),
where one gradually increases the packet creationgrated the overloaded nodes (ones with
the highest betweenness) gradually removed from the nktj#d3]. For3 > B*~—1 (in-
cluding the unweighted RW wit{8=0), these nodes are the ones with the highest degrees,
but uncorrelated SF networks are structurally vulnerabtemoving the hubs. At the optimal
value of3, not only the network throughput is maximal, and the avegeet delivery time
is minimal, but the load is balanced: overloads are esdnéiqually likely to occur at any
node and the underlying SF structure is rather resilienaitmlom node removal [139, 140].
Thus, at the optimal value @, the local weighted RW routing simultaneously optimizes ne
work performance and makes the network less vulnerabl@sigaherent system failures due
to congestions at the processing nodes.

5 Current Flow in Weighted Networks

Current flow in resistor networks provides the simplestritiated flow model in complex
networks [92]. This flow is directed and distributed, as therent flows from the highest
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Fig. 5. Network throughput per node as a function of the weightinpppeeter3 for BA
networks (solid symbols) for various system size forrg)3 and for (b)m=10 ((k) ~ 2m).
Figure (a) also shows the same observable for SW networkstiétsame average degree for
the same system sizes (the same respective open symbols).

potential node (source) to the lowest potential node (tard€hile current can run along
all (possibly weighted) paths between the source and taagg¢s, more current is carried
along shorter paths (with smaller resistance). Furtherging dead ends (i.e., nodes which
does not lie on a path between the source and target) wily eano current. Thus, currents
running through the nodes or the links, averaged over attsotarget pairs (referred to as the
current-flow betweenness), provide a good measure fomrdtion centrality, also referred to
as current-flow betweenness [126, 127].

Using the same resistor network model as in Sec. 3 where anlestgreen nodesand
j has conductivityGij, for a given sourcesj and targett() pair, we can write the potential
difference between nodésindj as

Vi -V} =V -V} = (Gis — Git — Gjs +Gjt) . (37)

Here,Gj; is the propagator (or pseudo inverse, operating in the spaiegonal to the zero
mode) of the network Laplacian. If nodeandj are connected by an edge in the network, and
assuming unit current£1) entering and leaving the network, then the current thnathgs
edge can be expressed as

I = Gij (Vi —Vj) = Gij (Gis — Git — Gjs +Gjt) - (38)

Thus, exploiting the conservation of currents, the netentrrunning through nodefor a
given source-target pair, can be written as

1 1
t t e . . .
1 :E;“isj‘:EZCI]|GIS_GII_GJS+GJI‘- (39)
Finally, considering all source-target pairs (where allemcan simultaneously be sources and

send one unit of current per unit time to a randomly chosegetarone finds the current-flow
betweenness or information centrality [126, 127],
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Fig. 6. (a) Scatter plot for the load (current-flow betweennessheglegree for BA networks
with N=100 and(k)~10 for three differen{3 values. Horizontal lines indicate the average
load. (b) Load distribution of BA networks with the same paeters. The inset shows the
same distributions on log-log scales.

1 st_ 1 e A _
II_N—lgl' _z(N_l)ggCIHGls Git — Gjs +Git| - (40)

Despite the similarities between Egs. (28) and (38), hexrstimmation over source and target
pairs does not yield internal cancelations and simplificesj and the result for the current-flow
betweenness is not amenable to simple analytic (meanifieldapproximations. Therefore,
we present only numerical results for the resulting curflaw betweenness (the local load
for unit input currents);. Our numerical scheme was based on the exact numericalmdihgo
ization [144] of the network Laplacian and constructing piseudo inverse (propagatds)
using straightforward spectral decomposition. In additmthe local loads at the nodigsand
average system load

1 1
<I>:Nzlizmgs Cij|GiS*Git*st+Gjt‘v (41)

we also measured the largest current flow betweenliggs= max—1n{li} in a given net-
work, and then averaged over many network realizationsinvitie same random network
ensemble.

We analyzed the above observables for weighted random rietwdth Cij O (kjk;j)P.
Figure 6(a) shows that the loads (current-flow betweenrass)e nodes are strongly corre-
lated with their degree in BA scale-free networks f£0, while they become much more
balanced fo3B=—1. Also, for =0 (unweighted network) the load distribution exhibits fat
tails, while it decays faster than any power law et —1 [Fig. 6(b)]; consequently, the largest
load is significantly reduced fg8=—1. This balanced load fg8=—1, however, is achieved
at the expense of a somewhat increased average load [Fi@)tel6 general, we observe that
reducing leads to an increasing average load [Fig. 7(a)]. Neversselbe largest load in a
network, potentially triggering cascading load-basetlifas, exhibits a minimum at around
B~—1 [Fig. 7(b)]. In turn, the network throughput, assumingniieal source-target rates and
unit processing capabilities at each node [analogouslygtd¥5)]
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Fig. 7. (a) Average load and (b) maximum load in BA and ER network$1wkh~10 for
various network sizes as a function®fThe inset in (b) shows the network throughputBss

= 1 (42)
|max
exhibits a maximum at arounfix~—1 [Fig. 7(b) inset]. Thus, with the simple weighting
schemeCij O (ki kj)ﬁ one can optimize current flow such that the network througgnax-
imum (B*~—1).

Finally we note that a homogeneous random network [Erd&syR(ER) random graph
[14, 145]] exhibits qualitatively similar characteristit the throughput and load profile as a
function of the weighting paramet@ [Fig. 7]. Further, as can be seen from Fig. 7(b), the
network throughput of an ER network outperforms that of @ fegfeneous BA network of the
same average degree and network size foraniynterestingly, the average load is lower for
BA (ER) networks for3>0 (8<0) [Fig. 7(a)].

5.1 Current flow optimization for heterogeneous source/taget frequencies

Analogously to the question addressed in Sec 3.1, one cantatkis the optimal weighting
of link conductivities to maximize throughput for heterogeus source/target frequencies.
Note that there the task was to maximize global average mkteanductance with a fixed
edge cost. Here, the task is to minimize current-flow betwess (maximize throughput) sub-
ject to identical unit node processing capabilities fonaegiheterogeneous “boundary condi-
tion” (source/target rates). Here, we consider sourgstaates proportional ttksk; )P, such
that the global source/target flow rate per node.ighen, using Eq. (39), the appropriately
weighted current-flow betweenness becomes

N
= 5 (keko)PIS. 43
ZSJ(kSkt)p &Z( kt) ( )

In Fig. 8 we show results fgg=1.00 on BA networks. Similar to homogeneous source/target
profiles, the average current-flow betweenness is a momatigndecreasing function gB.
The maximum current-flow betweenndgsx = max_1 n{li}, however, exhibit a minimum,
at aroundB=-1.50. In turn, the network throughpgt = 1/Imax shows a maximum at the
same point.
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Fig. 8. (a) Average load and (b) maximum load for heterogeneouscsftarget frequencies
with p=1.00 in BA networks with(k)~10 for various network sizes as a functionffThe
inset in (b) shows the network throughputf®s

The behavior of the=0 [Fig. 7] andp=1.00 [Fig. 8] are qualitatively very similar. The
main quantitative difference is that the location of theirpd weighting 3 somewhat de-
creasesf{*~—1.00 for p=0 andf*~—1.50 for p=1.00). Since the traffic entering and leav-
ing the network places extra burden on the hubs, the neggtiial value of3 with a larger
magnitude necessitates a relatively stronger hub avogdanc

6 Shortest Path Betweenness in Weighted Networks

In the simplest and most commonly considered models ofriguévery source nodesends
packets to a given destination nadiarough the path of least total weight connectsandt.
This path is called theveighted shortest patbr the optimal pathbetween the given source-
destination pair. The concept of betweenness previoudlpatein Sec. 4 can be adapted to
the present context as follows: tehortest path betweennessa node (edge) in a weighted
network is defined as the number of shortest paths passimgghthat node (edge) [134]. The
characteristics of a variant of the shortest path betwesndefined here - referred to as be-
tweenness centrality - have been studied extensively oeigited networks (or equivalently,
for B =0) [52,53, 146]. Specifically, for scale-free networks wdégree exponent2 y < 3,
the distribution of betweenness centrality is known to bevigeailed, i.e.P(B) ~ B~9, where

d has been reported to be universaké 2.2) [52] or varying slowly [146].

As pointed out in Sec. 4, the throughput of the network (agsgmdentical unit processing
capabilities for each node) is given Ipy= (N — 1) /Bmax WhereBmax is the maximal between-
ness of the network [10, 66,67, 70, 71, 73]. Thus, the thrpugban be increased by reducing
the maximal betweenness of the network. While the questial@wver bound (optimum) on
the scaling of the maximal betweenn&ggax has been previously studied [71], in the present
article we focus on edge weighting schemes that can optithizzighput on the network.
We restrict our study to the case where the edge weight ctingeo nodes, j is given by
wij = (ki kj)*ﬁ wherek;, kj are the degree of nodégj respectively. The edge weights con-
sidered here can be interpreted as: (1) explicit paramgkertatency (time taken to traverse
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Fig. 9. Scatter plot showing the correlation between degree andeeemness from 10 real-
izations of weighted scale-free networks witk=1024 and degree expongnrt2.5 using the
configuration model [147]. For an unweighted netw@rk= 0, betweennness is clearly corre-
lated with the degree. A8 is decreased below zero, A= —0.5, the betweenness appears to
be uncorrelated with the degree, whilgBat —1 betweenness is biased towards lower degree
nodes.

an edge) or (2) virtual weights assigned to edges to falite assignment of paths with
certain properties likdaub avoidanceHere, for our numerical investigations, we employed
the configuration model [147] with a structural degree dutoNY/2 to generate uncorrelated
scale-free graphs [118, 138], with degree exponei.5 and with minimum degrem=2.

In an unweighted network3(= 0), the betweenness of a node is known to be correlated
with its degree (see Fig. 9). This implies that analogouséodase of random walk routing
in Sec. 4, hubs in a scale-free network carry the highest, laad the distribution of be-
tweenness over the network is highly heterogeneous (ivetlyit this is obvious since on an
unweighted network the shortest path between two nodeisrik with the smallest num-
ber of links; since hubs by definition are well connected ® st of the network, there is
some hub that connects the source and destination througfy ahort path). This can be seen
from Fig. 10, where the straight line fit to a logarithmic ptiftthe betweenness distribution
has a slope ok —2.14. From the point of view of alleviating congestion, and imizing
cascading failures (see Sec. 12), the ideal situation isndmeze the total betweenness in the
network is distributed homogeneously, while keeping tHee/af the maximal betweenness
as low as possible. Homogenizing the betweenness landsaagse achieved by introducing
a small amount of hub avoidance as shown by the betweenrgsbution for = —0.5 in
Fig. 10. The tail of the distribution is no longer fat (morepegpriately it is exponential, not
shown), and the maximal betweenness is lower thaBfer0 (Fig. 11). Also, betweenness
is now no longer correlated with degree (Fig 9). This homag#ion of the betweenness
landscape comes at the expense of increasing the averageebeess on the network (see
inset, Fig. 10). A3 is decreased from-0.5, rather than further homogenizing the between-
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Fig. 10. The distribution of betweenness on weighted scale-frewarks with degree expo-
nenty=2.5 and network siz&él = 1024. Blue, red and green circles corresponfi t60, —0.5
and—1 respectively. The black line is a straight line fit with stop2.14. The inset shows the
average betweenne$B) as a function of3. Results are obtained from 100 network realiza-
tions and networks are constructed using the configuratiotei{147].

ness landscape, the hub avoidance causes the shortestopgéttdonger, thus increasing the
total betweenness in the network. This increase causeshmtverage and the maximal be-
tweenness to rise. Furthermore, the betweenness is nosldrigsed towards nodes of lower
degree (Fig. 9). Consequently, the optimal distributiobetfveenness is obtained@at —0.5
where the throughput is highest. Note that the same obgamfar the homogenization of the
betweenness landscape and the minimization of the maxinaiwelenness was reported re-
cently by Yang et al. [90] for BA scale free networks<3). Although there have been some
attempts at analytical estimations of the optimal valug ¢90], no rigorous arguments are
known at present which explain this optimal value. A studyhef optimal weight distribution
on weighted Erd8s-Rényi graphs yields similar resul@wilver, a point worth mentioning is
that for similar network size and average degree, the thmpuigfor an Erdés-Rényi network
is consistently greater than that of a scale-free netwofk iasvaried (see Fig. 11).

6.1 Cascading Failures and Cascade Control in Weighted Netwks

Infrastructure networks with complex interdependencieskaown to be vulnerable tocas-
cading failures A cascading failure is a domino effect which originates wiige failure of
a given node triggers subsequent failures of one or sevtrat aodes, which in turn trigger
their own failures. Examples of cascading failures are danhin the real world, including
the "Northeast Blackout of 2003” [148] and the current glax@onomic crisis [149].

The first notable study of cascading failures on networkshwyadotter and Lai [150], and
the model they proposed is the one we pursue here. The malehas that in the network
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Fig. 11. The average value of the maximal betweenness (over 10Ga#alis)(Bmaxon
weighted scale-free networks and weighted Erd6s-Réagivarks of sizeN = 1024. The
scale-free networks considered here have degree expga@® and are constructed using
the configuration model [147]. Optimal values @max) are obtained g8 = —0.5 for both
classes of networks.

under consideration each node is transmitting one unit mesquantity (energy, information
etc) to every other node through the shortest path betwesm.tAs a result, there is some
"load” or betweenness incurred on each node which is equiemumber of shortest paths
passing through that node. It is assumed that each nodeisisgtl acapacitywhich is the
maximum load that can be handled by the node. Since costraoristprohibit indiscrimi-
nately increasing a node’s capacity, a natural assumpsighait the capacity assigned to a
node is proportional to the load that it is expected to hanties [150, 151]

Cj=(1+a)B (44)

wherea > 0 is a tolerance parameter which quantifies the excess leadthiven node can
handle. The failure of a node is simulated by the removal@hitde and all links connected to
it. The functioning of the network after a node failure reggia recomputation of the shortest
paths that originally may have passed through the faile@&n®tis redistribution of shortest
paths can radically alter the landscape of betweennesseonetfwork. If the redistribution
causes certain nodes to have a load greater than their gapghese nodes also fail. These
failures can in turn trigger more failures, thus leading tcaacade. A natural quantity that
signifies the severity of a cascade is the ratio of the sizé@fgiant connected component
G’ remaining after the cascade, to the size of the originaltgiamponent,G. Motter and
Lai [150] showed that for scale free networks that localui@b originating at high degree or
high betweenness nodes results in cascades with a highedefgseverity. In contrast, a ran-
dom node failure seldom initiates a cascade, and therefaxe$ most of the giant connected
component intact.
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Fig. 12. Simulation results showing the relationship between thetion of intentionally re-
moved noded and the fractional size of the surviving giant connected pomentG’ /G on
weighted scale-free networks. Results are for 10 netwakzations of scale-free networks
with degree exponerit=2.5 andN = 1000, constructed using the configuration model [147].
The parametea which quantifies the excess capacity (Eq. 44) is setfoh@re. The inset
shows the relative size of the giant component of the surgivietwork vs the weighting pa-
rameter for the f =0 baseline scenario (no intentional node removal).

In a subsequent study [152], Motter demonstrated that dascean be stopped through
the intentional removal of nodes after the initial failugstoccurred but before the secondary
overload failures have begun. One such strategy is to remaeetain fractiorf of the nodes
with the lowest betweenness. Here we show the results ghtbcedure extended to weighted
networks. In our simulations, cascades are initiated byah®val of the highest betweenness
node on a scale-free network with=1000 nodes and withr = 0.5. Notice that the damage
caused on an unweighted netwgk= 0 by a cascade in the absence of any defense strategy
(f = 0) results in the giant component losing about 30% of its aqiey. 12).

Intentional removals marginally improve the ra@®/G until a certain optimal value of
f beyond which the damage to the network is primarily a resuthe intentional removals
itself. Thus beyond the optimdlfor a givenf,

/

G
6~1—f.

Whenp is decreased below zero the shortest paths avoid the hulssgltaviating the load
on the high degree nodes. For small negative val@es,—0.5, —1 since the total load on the
network is balanced more homogeneously among all the nadbe network (see Figs. 9 and
10) than on the unweighted network, the size of the cascadeatically reduces even without
any intentional removals i.65'/G ~ 0.99 at f = 0 for both 3 = —0.5,1 (Fig. 12, inset).
Furthermore, intentional removal$ & 0) only cause further damage . FBr= 1, shortest
paths are biased towards the hubs, thereby broadening tthailfaf the load distribution



24 G. Korniss, R. Huang, S. Sreenivasan, and B.K. Szymanski

making it even more heterogeneous than for an unweightedonetinot shown). As would
be expected, the severity of a cascade in this case is fategrban that in an unweighted
network, and consequently the gain arising from intentioamovals is also extremely high.
At the optimalf, the size of the giant component is greater than half thér@igetwork size
as opposed to 3% without intentional removals. Thus, in sargrfor any weighted network
there exists an optimal fraction of intentionally removexties at which the damage caused
by the cascade is the least severe. Furthermore, this dpttmaved fraction is very close to
zero for a weighted network witB = —1, thus implying that for this value ¢ networks are
maximally resilient to cascading failures for the netwodkgmeters used here.

In the model addressed here, the loads and therefore theitiepaesult from the partic-
ular assignment of shortest paths on the network. Thus #usland capacities are inherently
tied to the topology of the network. An alternative modelgmsed in [142] looked at similar
failure triggered cascades but where the loads on each nededrawn from an arbitrary dis-
tribution uncorrelated with the topology of the network rfher studies of cascading failures
on weighted networks subject to empirically observed foohshe load-capacity relation-
ship [153] can be found in [89, 90]. The closely related peablof attacking a network by
iteratively damaging the node with the highest betweenaessrecalculating the between-
ness after each damage iteration has been studied in [1443, 15

7 Summary and Outlook

In this Chapter, we considered a simple class of weighteslar&s in the context of synchro-
nization, flow, and robustness. In particular, we considiaveighted edge€;; LAj (kikj)ﬁ,
and investigated optimizing the relevant network obsdesli.e., minimizing the width of
the synchronization landscape, maximizing the througlputetwork flow, or maximizing
the size of the surviving giant component following casogdiailures (triggered by local
overloads).

Our models and methods provided some insights into theestgitig problem of optimiz-
ing the allocation of limited resources [153, 155] in weightomplex networks. Our results
for these fundamental models support that even with thipleimne-paramete3) optimiza-
tion, one can significantly improve global network perfornoe, as opposed to performing an
exhaustive and computationally prohibitive search foliropt weight allocations. It is also
important to note that in our optimization problems for RV8e¢. 4) and flow (Sec. 5 and 6),
for simplicity, we considered processing or queuing litiitas at the nodes. Within an identi-
cal framework, however, one should also consider and stdgg-émited flows (motivated by
finite bandwidth) with weighted links [156, 157]. Our prelmary results indicate that while
optimization is possible, it naturally occurs at a differealue of the weighting parametgr.
This implies that one cannot optimize and balance trafficofath queueing and bandwidth
limitation simultaneously, but instead, trade-offs havéé¢ considered with the knowledge of
specific systems.

Real-life information, communication, and infrastru&uretworks are not only weighted
and heterogeneous, but are also spatially embedded [63,3%8and can also exhibit degree
correlations [15, 18]. The corresponding metrics (Euciddistance) strongly influences the
cost of the edges, and in turn, the optimal distribution ofitéd resources. We currently
explore and investigate these problems on weighted slyatialbedded complex networks.
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Appendix 1: Globally Optimal Network with Fixed Edge Cost

In this Appendix we determine the the minimum attainabletivid the EW synchronization
problem for networks with a fixed edge cost. Further, we ifig@t network which realizes
this globally optimal synchronization efficiency. For thé&/ESynchronization problem we can
express the total edge cost with the eigenvalues of the nletvaplacian,

ZCtot:zCij:zQ:zﬁi:Tf(’_):%/\l- (45)
1] | [ |
Thus, the global optimization problem can be cast as
1Nt -

=N Z i = minimum, (46)
with the constraint N_1

> Al =2Ciot = fixed. (47)

=1

This elementary extremum problem, Eqgs. (46) and (47), iniately yields a solution where
all N—1 non-zero eigenvalues are equal,

2Ciot

Al:N*l7 |:1727"'7N_17 (48)
and the correspondingbsoluteminimum of the width is
N—1)?
Wi = D7 49
< >m|n 2thot ( )

As one can easily see, the above set of identical eigenvatressponds to a coupling matrix
and network structure where each node is connected to aitwith identical strengt@ij; =
2Ciot/[N(N—1)]. That s, for fixed cost, theully-connectedFC) network is optimal, yielding
the absolute minimum width.

Appendix 2: The Mean-Field Approximation in Stochastic
Synchronization on Networks

Summing up the exact equations of motion Eq. (1) over all s@ael exploiting the symmetry
Gij = Cji yields the stochastic equation for the mean

ah=¢&(t), (50)

whereé (t) = % ni(t). From the properties of the individual noise terms in Eqit(fjllows
that(&(t)) =0 and(&(t)E(t)) = ,ﬁé(t —1). Note that the above stochastic equation is exact
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for the mearh(t). In the mean-field (MF) approximation one replaces the laeghborhood
averages by the global mehijEq. (11)] (which is a crude approximation) yielding

ahi ~ —Ci (hi —h) +ni(t) . (51)

Since the time evolution of the mean is now explicit [Eq. {56pm Eq. (51) we can obtain
the approximate equations of motion for the fluctuationdwiispect to the meas; (t) =

hi(t) —h(t),

GAi(t) = —Ci Ai(t) +7i(t) (52)
wherefji (t) = n; (t) — & (t) with (i (t)) and(f}i (1)} (t')) = 2(&j — &)5(t —t'). From elemen-
tary properties of the above linear stochastic differémtéuations [160] for the equal-time
steady-state fluctuations one finds

BOK0) = 5 @~y (53)

Thus, the steady-state fluctuations about the mean decufiie asymptotic larg&l limit,
while ((h —h)?) = (4%) ~ 1/G.

Appendix 3: The Weighted Degree for Uncorrelated SF Graphs

Here, we establish an approximate relationship betweenwdighted degre€; and the degree
ki of nodei for uncorrelated(UC) weighted SF graphs. Note tiGtalso becomes the effective
coupling to the mean in the mean-field approximation of the &wWchronization problem.
Using the specific form of the weights as constructed in Eg.w@ write

LIl
StnAn(kikn)? s i s Ak

A (kiki B
G = ZCIJ — Nk ZIA'l(k'kJ)
J

(54)

For large minimum (and in turn, average) degree, expressiihe formszijkf can be
approximated as

SiAK Ak
..kp: . ] ke I~k [ dkP(k .kl3 55
S A (;m) A KA Tk ARKOL. 69

whereP(k|K') is the probability that an edge from node with degkéeonnects to a node
with degreek. For uncorrelatedrandom graphsP(k|k’) doesnot depend ork’, and one has
P(klK') = kP(k)/(k) [15, 18], whereP(k) is the degree distribution ang) is the ensemble-
averaged degree. Thus, Eq. (54), for UC random networksheapproximated as

G = N(K kP [ dkP(k|k; kB _® Kt _ (56)
N [ diKBT1P() [ dkP(kK)KE — " [ dKKBTLP(K)
Here, we consider SF degree distributions,
P(k) = (y—1m" kY, (57)

wherem is the minimum degree in the network and<2y < 3. The average and the mini-
mum degree are related througk) = m(y—1)/(y—2). No upper cutoff is needed for the
convergence of the integral in Eq. (56), provided that2— y < 0, and one finds
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1
o Y-2-BKT

Thus, for uncorrelated random SF graphs with large minimegrek, the effective coupling
coefficientC; only depends on the degr&eof nodei, i.e., for a node with degrde

(58)

_Yy-2-BKH

v ae= (59)

Appendix 4: RW Hitting Times and the Network Propagator

Employing Doyle and Snell's result [84] for the expected hemof visits [Eq. (27)], and
expressing the voltage difference of the associated oesistworks in terms of the network
propagator (or pseudo inverse of the network Laplacian) (EE8)] one has

ES' = Ci(Vi —Wt) = Ci (Vi —Vk) = Ci(Gis — Git — Gis+ G - (60)

Then the hitting (or first passage) time, which is the expkotember of steps in a RW which
starts at nods and ends upon first reaching nagean be written as

Ta= Y EX' = 3 Gi(Gis — Gi — Gis + Gu) (61)
] I

The expression for the symmetric commute time (expectecbeunf steps for a “round-trip”
between nodesandt) simplifies significantly,

Tst+ Tts = z(Eis’t +ES) = > Gi(Gss+Git — 2Gts) = (Zci) Rst, (62)

where we used the expression for the two-point resistantieecdissociated resistor network
[Eq. (20)].
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