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Summary. Complex biological, social, and technological systems canbe often modeled by
weighted networks. The network topology, together with thedistribution of available link or
node capacity (represented by weights) and subject to cost constraints, strongly affect the
dynamics or performance of the networks. Here, we investigate optimization in fundamental
synchronization and flow problems where the weights are proportional to(kik j )

β with ki and
k j being the degrees of the nodes connected by the edge. In the context of synchronization,
these weights represent the allocation of limited resources (coupling strength), while in the
associated random walk and current flow problems, they control the extent of hub avoidance,
relevant in routing and search. In this Chapter, we review fundamental connections between
stochastic synchronization, random walks, and current flow, and we discuss optimization prob-
lems for these processes in the above weighted networks.

1 Introduction

Synchronization [1–6] and transport [7–11] phenomena are pervasive in natural and engi-
neered complex interconnected systems with applications ranging from neurobiology and pop-
ulation dynamics to social, communication, and information networks. In the recent wave of
research on complex networks [12–18], the focus has shiftedfrom structure to various dynam-
ical and stochastic processes on networks [19, 20], synchronization and transport are being
one of them. The common question addressed by most studies within their specific context is
how the collective response of locally-coupled entities isinfluenced by the underlying network
topology.

Here, by network synchronization, we refer to the generic problem where individuals or
agents attempt to locally coordinate their actions with their network neighbors or within some
spatial neighborhood, in an attempt to improve global performance or reach global agree-
ment [6, 21]. In the broader context, these problems are alsoreferred to as consensus prob-
lems [6, 22, 23]. In this Chapter, we will use the terms synchronization and coordination syn-
onymously. Classic examples for coordination phenomena are animal flocking [24–26] and
cooperative control of vehicle formation [27], where individual animals or units are adjusting
their position, speed, and headings (the relevant local state variables) based on the state of their
neighborhood, potentially leading to tight formations. Fundamental synchronization problems
have also numerous applications to neurobiology [28–32], population dynamics [33, 34], and
load balancing and task allocation problems in distributedcomputing [21,35–39].
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Research on flow optimization in networks has been around since at least the first data sets
on transportation networks became available (for a brief historical review, see Refs. [11,40]).
Perhaps, among the first ones was a study on transportation planning on the Soviet railway
network, as early as in 1930 [41], followed by others in the 1940s [42–44]. Flow optimization
and network interdiction problems also attracted significant interest during the Cold War years
[45,46] and have been a main thrust in operations research since [7,47,48].

The increasing availability of data on real-life complex biological, information, social,
and infrastructure networks, and the emerging novel type ofnetwork structures have triggered
a recent wave on fundamental research on transport and flow innetworks [49–83]. Connec-
tions between random walks and resistor networks have been discussed in detail in several
works [84–86]. Furthermore, we have recently explored fundamental connections and rela-
tions (governed by the same underlying network Laplacian) between stochastic synchroniza-
tion problems and resistor networks, current flow, and random walks [10,87]. In this Chapter,
in parallel with reviewing synchronization phenomena in noisy environments, we will dis-
cuss some natural and fundamental connections with idealized transport and flow problems
on complex networks, in particular, connections with some simplified local and global routing
and search schemes [67,68,72].

The ultimate challenge in network optimization (of synchronization and flow) is when
both the network structure and the link qualities (represented by weighted links) can change
or evolve [8, 67], subject to cost constraints. Here, we review and discuss a simpler set of
problems, where the network structure is fixed but the link weights (or coupling strengths)
can be allocated. In particular, we consider a specific and symmetric form of the weights on
uncorrelated scale-free (SF) networks, being proportional to (kik j)

β whereki andk j are the
degrees of the nodes connected by the link [10, 88–91]. The above general form has been
suggested by empirical studies of metabolic [50] and airline transportation networks [51]. We
discuss the effects of such a weighting scheme in our synchronization and flow problems.
Then the task becomes maximizing the synchronization efficiency, throughput, or robustness
as a function ofβ .

The setup of this Chapter is as follows. In Sec. 2 we review optimization of synchroniza-
tion in a noisy environment [10]. In Sec. 3 and 4, we present results for optimization of resistor
networks and random walks, respectively, together with reviewing fundamental connections
between the relevant observables in synchronization, resistor networks, and random walks.
In Sec. 5 we discuss current-flow betweenness and optimization of throughput in weighted
complex networks [92]. In Sec. 6 we present results on shortest-path betweenness, cascading
failures, and cascade control in weighted complex networks.

2 Synchronization in a Noisy Environment in Weighted Networks

A large number of studies investigated the Kuramoto model ofcoupled oscillators [4, 93],
naturally generalized to complex networks [94–96]. The common feature of the findings is
the spontaneous emergence of order (synchronous phase) on complex networks, qualitatively
similar to that observed on fully-connected networks (alsoreferred to as complete graphs), in
contrast to regular networks in low dimensions. Another large group of studies addressed syn-
chronization in coupled nonlinear dynamical systems (e.g., chaotic oscillators) [3] on small-
world (SW) [97] and scale-free (SF) [88, 98–101] networks. The analysis of synchronization
in the latter models can be carried out by linearization about the synchronous state and us-
ing the framework of the master stability function [102]. Inturn, the technical challenge of
the problem is reduced to the diagonalization of the Laplacian on the respective network, and
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calculating or estimating the eigenratio [97] (the ratio ofthe largest and the smallest non-zero
eigenvalue of the network Laplacian), a characteristic measure of synchronizability (smaller
eigenratios imply better synchronizability). Along theselines, a number of recent studies con-
sidered not only complex, possibly heterogeneous, interaction topologies between the nodes,
but also weighted (heterogeneities in the strength of the couplings) [49, 88, 99, 100] and di-
rected networks [103–105].

In a more general setting of synchronization problems, the collective behavior/response
of the system is obviously strongly influenced by the nonlinearities, the coupling/interaction
topology, the weights/strength of the (possibly directed)links, and the presence and the type
of noise [3, 101]. Here, we study synchronization in weighted complex networks with linear
coupling in the presence of delta-correlated white noise. Despite its simple formulation, this
problem captures the essential features of fundamental stochastic synchronization, consensus,
and coordination problems with application ranging from coordination and load balancing
causally-constrained queuing networks [106, 107] to e-commerce-based services facilitated
by interconnected servers [108], and certain distributed-computing schemes on computer net-
works [21,36–39]. This simplified problem is the Edwards-Wilkinson (EW) process [109] on
the respective network [10,87,110–115], and is described by the Langevin equation

∂thi = −
N

∑
j=1

Ci j (hi −h j )+ηi(t) , (1)

wherehi(t) is the general stochastic field variable on a node (such as fluctuations in the task-
completion landscape in certain distributed parallel schemes on computer networks [21, 111,
112]) andηi(t) is a delta-correlated noise with zero mean and variance〈ηi(t)η j(t ′)〉=2δi j δ (t−
t ′). Here,Ci j =Cji >0 is the symmetric coupling strength between the nodesi and j (Cii≡0).
Note that without the noise term, the above equation is also referred to as the consensus prob-
lem [6, 22, 23] on the respective network (in the sense of networked agents trying to reach
an agreement, balance, or coordination regarding a certainquantity of interest). Defining the
network Laplacian,

Γi j ≡ δi jCi −Ci j , (2)

whereCi ≡ ∑l Cil , we can rewrite Eq. (1)

∂thi = −
N

∑
j=1

Γi j h j +ηi(t) . (3)

For the steady-state equal-time two-point correlation function one finds

Gi j ≡ 〈(hi − h̄)(h j − h̄)〉 = Γ̂ −1
i j =

N−1

∑
k=1

1
λk

ψkiψk j , (4)

whereh̄= (1/N)∑N
i=1 hi and〈. . .〉 denotes an ensemble average over the noise in Eq. (3). Here,

Γ̂ −1 denotes the inverse ofΓ in the space orthogonal to the zero mode. Also,{ψki}
N
i=1 andλk,

k = 0,1, . . . ,N−1, denote thekth normalized eigenvectors and the corresponding eigenvalues,
respectively. Thek = 0 index is reserved for the zero mode of the Laplacian on the network:
all components of this eigenvector are identical andλ0 = 0. The last form in Eq. (4) (the
spectral decomposition of̂Γ −1) can be used to directly employ the results of exact numerical
diagonalization.

For the EW process on any network, the natural observable is the steady-state width or
spread of the synchronization landscape [87,111,112,115–117]
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〈w2〉 ≡

〈

1
N

N

∑
i=1

(hi − h̄)2

〉

=
1
N

N

∑
i=1

Gii =
1
N

N−1

∑
k=1

1
λk

. (5)

The above observable is typically self-averaging (confirmed by numerics), i.e., the width〈w2〉
for a sufficiently large, single network realization approaches the width averaged over the
network ensemble. A network is said to be synchronizable if the width has a finite steady-
state value; the smaller the width, the better the synchronization. Finite and connected (single
component) networks are always synchronizable. In the limit of infinite network size, however,
network ensembles with a vanishing (Laplacian) spectral gap may become unsynchronizable,
depending on the details of the small-λ behavior of the density of eigenvalues [5,21].

The focus of this section is to optimize synchronization (i.e., minimize the width) on (i)
weighted uncorrelated networks with SF degree distribution, (ii ) subject to a fixed cost. In the
context of this work, we define the total costCtot simply to equal to the sum of weights over
all edges in the network

∑
i< j

Ci j =
1
2 ∑

i, j
Ci j = Ctot . (6)

The elements of the coupling matrixCi j can be expressed in terms of the network’s adjacency
matrix Ai j and the assigned weightsWi j connecting nodei and j asCi j = Wi j Ai j . Here, we
consider networks where the weights are symmetric and proportional to a power of the degrees
of the two nodes connected by the link,Wi j ∝ (kik j )

β . We choose our cost constraint to be such
that it is equal to that of the unweighted network, where eachlink is of unit strength.

∑
i, j

Ci j = 2Ctot = ∑
i, j

Ai j = Nk , (7)

wherek = ∑i ki/N = ∑i, j Ai j /N is the mean degree of the graph, i.e., the average cost per edge
is fixed. Thus, the question we ask, is how to allocate the strength of the links in networks with
heterogeneous degree distributions with a fixed total cost in order to optimize synchronization.
That is, the task is to determine the value ofβ which minimizes the width Eq. (5), subject to
the constraint Eq. (7).

Combining the form of the weights,Wi j ∝ (kik j)
β , and the constraint Eq. (7) one can

immediately write for the coupling strength between nodesi and j

Ci j = Nk
Ai j (kik j)

β

∑l ,nAln(kl kn)β (8)

From the above it is clear that the distribution of the weights is controlled by a single parameter
β , while the total cost is fixed,Ctot = Nk/2.

Before tackling the above optimization problem for the restricted set of heterogeneous
networks and the specific form of weights, it is useful to determine the minimum attainable
value of the width of the EW synchronization problem in any network with symmetric cou-
plings. This value will serve as a “baseline” reference for our problem. In Appendix 1 we
show that this absolute minimum value of the width is

〈w2〉min =
(N−1)2

2NCtot
(9)

and can be realized by the fully connected network.
If one now considers the synchronization problem on any network with N nodes, with

average degreek and with total costCtot = Nk/2 to be optimized in some fashion [e.g., with
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respect to a single parameterβ , Eq. (8)], the above result provides an absolute lower bound
for the optimal width

〈w2(β )〉min ≥
(N−1)2

N2
1

k
≃

1

k
. (10)

2.1 Mean-field approximation on uncorrelated SF networks

First, we approximate the equations of motion [Eq. (1)] by replacing the local weighted aver-
age field(1/Ci)∑ j Ci j h j with the global averageh (the mean–height)

∂thi = −
N

∑
j=1

Ci j (hi −h j )+ηi(t) = −Ci

(

hi −
∑ j Ci j h j

Ci

)

+ηi(t)

≈ −Ci
(

hi −h
)

+ηi(t) . (11)

Note thatCi ≡ ∑ j Ci j is the weighted degree. As can be directly seen by summing up Eq. (1)
over all nodes, the mean heighth performs a simple random walk with noise intensityO(1/N).
Thus, in the mean-field (MF) approximation (see details in Appendix 2), in the asymptotic
large-N limit, fluctuationsabout the meandecouple and reach a stationary distribution with
variance

〈

(hi − h̄)2
〉

≈ 1/Ci , (12)

yielding

〈w2〉 =
1
N

N

∑
i=1

〈

(hi − h̄)2
〉

≈
1
N ∑

i

1
Ci

. (13)

Now we consider uncorrelated weighted SF networks, with a degree distribution

P(k) = (γ −1)mγ−1k−γ , (14)

wherem is the minimum degree in the network and 2< γ ≤ 3. The average and the min-
imum degree are related through〈k〉 = m(γ − 1)/(γ − 2). Using the approximation for the
weighted degreeC(k) of a node with degreek in uncorrelated (UC) weighted SF graphs (see
Appendix 3),

C(k) ≈
γ −2−β

γ −2
kβ+1

mβ , (15)

and assuming self-averaging for large enough networks, oneobtains for the width of the syn-
chronization landscape

〈w2(β )〉 ≈
1
N ∑

i

1
Ci

≈
∫ ∞

m
dkP(k)

1
C(k)

=
1
〈k〉

(γ −1)2

(γ −2−β )(γ +β )
, (16)

where using infinity as the upper limit is justified forγ + β > 0. Elementary analysis yields
the main features of the above expression for the average width:

1. 〈w2(β )〉 is minimum atβ = β ∗ = −1, independentof the value ofγ .
2. 〈w2〉min = 〈w2(β ∗)〉 = 1/〈k〉

The above approximate result is consistent with using infinity as the upper limit in all integrals,
in that the optimal valueβ ∗ = −1 falls inside the interval−γ < β < γ − 2 for 2 < γ ≤ 3.
Interestingly, one can also observe, that, in this approximation, the minimal value of the width
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is equal to that of the global optimum [Eq. (10)], realized bythe fully-connected network of
the same costN〈k〉/2, i.e. with identical links of strength〈k〉/(N−1).

We emphasize that in obtaining the above result [Eq. (16)] weemployed two very strong
and distinct assumptions/approximations: (i) for the dynamics on the network, we neglected
correlations (in a MF fashion) between the local field variables and approximated the local
height fluctuations by Eq. (12); (ii ) we assumed that the network has no degree-degree cor-
relations between nodes which are connected (UC), so that the “weighted degree” of a node
with degreek, C(k) can be approximated with Eq. (15) for networks withm≫1.

2.2 Numerical results

For comparison with the above mean-field results, we considered Barabási-Albert (BA) SF
networks [13, 14], “grown” toN nodes1,whereP(k) = 2m2/k3, i.e., γ = 3. While grow-
ing networks, in general, are not uncorrelated, degree-degree correlations are anomalously
(marginally) weak for the BA network [18,118].

We have performed exact numerical diagonalization and employed Eq. (4) to find the local
height fluctuations and Eq. (5) to obtain the width for a givennetwork realization. We carried
out the above procedure for 10–100 independent network realizations. Finite-size effects (ex-
cept for them=1 BA tree network) are very weak for−2 < β < 0; the width essentially
becomes independent of the system size in this interval. Figure 1 displays result for the local
height fluctuations as a function of the degree of the node. Weshow both the fluctuations aver-
aged over all nodes with degreek and the scattered data for individual nodes. One can observe
that our approximate results for the scaling with the degree[combining Eqs. (12) and (58)],
〈

(hi − h̄)2
〉

≈ 1/Ci ∼ k−(β+1)
i , work very well, except for very low degrees. The special case

β=0, is exceptionally good, since hereCi = ∑ j Ai j = ki exactly, and the only approximation
is Eq. (12).

In Fig. 2, we show our numerical results for the width and compare it with the approxi-
mate (MF+UC) results Eq. (16). The divergence of the approximate result Eq. (16) atβ= −3
andβ= 1 is the artifact of using infinity as the upper limit in the integrals performed in our ap-
proximations. The results for the width clearly indicate the existence of a minimum at a value
of β ∗ somewhat greater than−1. Further analysis reveals [10] that as the minimum degreem
is increased, the optimalβ approaches−1 from above. This is not surprising, since in the limit
of m≫ 1 (large minimum degree), both the MF and the UC part of our approximations are
expected to work progressively better. Forβ=0, our approximation [Eq. (16)] is within 8%,
4%, and 1% of the results extracted from exact numerical diagonalization through Eq. (5), for
m=10,m=20, andm=100, respectively [10]. Forβ=−1, it is within 15%, 7%, and 3% of the
numerical results form=10, m=20, andm=100, respectively [10]. Thus, our approximation
works reasonably well for large uncorrelated SF networks with sufficiently large minimum
(and consequently, average) degree, i.e., in the 1≪m≪N limit. Although for sparse networks
with small average degree the MF+UC approximation fails to locate the minimum and the
value of the width precisely, nevertheless it provides insight for an efficient optimization of
the global performance of weighted heterogeneous networkswith a single parameterβ , as op-
posed to a computationally prohibitive exhaustive search.For a detailed quantitative analysis
of the error of the MF+UC approximation in the context of the closely related random walks
on weighted SF networks (Sec. 4) see Ref. [91].

1 For the BA scale-free model [13] (growth and preferential attachment), each new node is
connected to the network withm links, resulting in〈k〉 ≃ 2m in the large-N limit. Here, we
employed a fully-connected initial cluster ofm+1 nodes.
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Fig. 1. Height fluctuations as a function of the degree of the nodes for N=1000,〈k〉 = 20,
and forβ=−2.00, β=−1.00, andβ=0.00 (from top to bootom). Data, represented by filled
symbols, are averaged over all nodes with degreek. Scatter plot (dots) for individual nodes
is also shown from ten network realizations. Solid lines correspond to the MF+UC scaling
〈(∆h)2〉k ∼ k−(β+1).

The above optimal link-strength allocation at around the valueβ ∗≈−1 seems to be present
in all random networks where the degree distribution is different from a delta-function. For
example, in SW networks2,although the degree distribution has an exponential tail,〈w2〉 also
exhibits a minimum, but the effect is much weaker, as shown inFig. 2. Further, a point worth-
while to mention, a SW network with the same number of nodes and the same average degree
(corresponding to the same cost) always “outperforms” its SF counterpart (in terms of mini-
mizing the width). The difference between their performance is smallest around the optimal
value, where both are very close to that of the lowest possible value, realized by the FC net-
work of the same cost.

3 Weighted Resistor Networks

Resistor networks have been widely studied since the 70’s asmodels for conductivity problems
and classical transport in disordered media [121,122]. Amidst the emerging research on com-
plex networks, resistor networks have been employed to study and explore community struc-
tures in social networks [123–126] and centrality measuresin information networks [127].

2 Here we constructed SW networks byadding random links [111, 119, 120] on top of a
regular ring with two nearest neighbors. The density of random links per node isp, resulting
in an average degree〈k〉=2+ p.
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Fig. 2.Steady-state width of the EW synchronization landscape as afunction of the weighting
parameterβ for the BA networks withm=10 (〈k〉≃2m=20) for various network sizes. The
solid curve is the approximate (MF+UC) result [Eq. (16)]. For comparison, numerical results
for a SW networks withN=1000 and with the same degree is also shown. The horizontal
dashed line indicates the absolute lower bound Eq. (10), as achieved by the fully connected
network with the same costN〈k〉/2.

Also, electrical networks with directed links (corresponding to diodes) have been used to pro-
pose novel page-ranking methods for search engines on the World-Wide-Web [128].

Most recently, simple resistor networks were utilized to study transport efficiency in SF
[79,80] and SW networks [87]. The work by López et al. [80] revealed that in SF networks [13,
14] anomalous transport properties can emerge, displayed by the power-law tail of distribution
of the network conductance. Now, we consider weighted resistor networks subject to a fixed
total cost (the cost of each link is associated with its conductance). As we have shown [10,87]
the relevant observables in the EW synchronization problemand in (Ohmic) resistor networks
are inherently related through the spectrum of the network Laplacian. Consider an arbitrary
(connected) network whereCi j is the conductance of the link between nodei and j , with a
currentI entering (leaving) the network at nodes (t). Kirchhoff’s and Ohm’s laws provide the
relationships between the stationary currents and voltages [87,129]

∑
j

Ci j (Vi −Vj ) = I(δis−δit ) , (17)

or equivalently,

∑
j

Γi jVj = I(δis−δit ) , (18)

whereΓi j is the network Laplacian, as defined in the context of the EW process [Eq. (2)]. Intro-
ducing the voltages measured from the mean at each node,V̂i =Vi −V̄, whereV̄=(1/N)∑N

i=1Vi ,
one obtains [87]
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V̂i = I(Gis−Git ) . (19)

Here,G is the same network propagator discussed in the context of the EW process, i.e. the
inverse [Eq. (4)] of the network Laplacian [Eq. (2)] in the space orthogonal to the zero mode.
Applying Eq. (19) to nodessandt, where the voltage drop between these nodes isVst = V̂s−V̂t ,
one immediately obtains the effective two-point resistance of the network between nodessand
t [87,129],

Rst ≡
Vst

I
= Gss+Gtt −2Gst =

N−1

∑
k=1

1
λk

(ψ2
ks+ψ2

kt −2ψksψkt) . (20)

The spectral decomposition in Eq. (20) is, again, useful to employ the results of exact numer-
ical diagonalization. Comparing Eqs. (4) and (20), one can see that the two-point resistance
of a network between nodesandt is the same as the steady-stateheight-differencecorrelation
function of the EW process on the network [87],

〈(hs−ht)
2〉 = 〈[(hs−h)− (ht −h)]2〉 = Gss+Gtt −2Gst = Rst . (21)

For example, using the above relationship and then employing the MF+UC approximation3one
can immediately obtain the scaling of the typical value of the effective two-point resistance in
weighted resistance networks, between two nodes with degreesks andkt ,

Rst ≃ Gss+Gtt ∼ [k−(1+β )
s +k−(1+β )

t ] =
k1+β

s +k1+β
t

(kskt)1+β . (22)

A global observable, measuring transport efficiency, analogous to the width of the syn-
chronization landscape, is the average two-point resistance [80,87] (averaged over all pairs of
nodes, for a given network realization). Using Eq. (21) and exploiting the basic properties of
the Green’s function, one finds

R̄≡
2

N(N−1) ∑
s<t

Rst =
1

N(N−1) ∑
s6=t

Rst =
N

N−1
2〈w2〉 ≃ 2〈w2〉 , (23)

i.e., in the asymptotic large system-size limit the averagesystem resistance of a given network
is twice the steady-state width of the EW process on the same network. Note that the above
relationships, Eqs. (21) and (23), are exact and valid for any graph.

The corresponding optimization problem for resistor networks then reads as follows: For a
fixed total cost,Ctot = ∑i< j Ci j = N〈k〉/2, where the link conductances are weighted according
to Eq. (8), what is the value ofβ which minimizes the average system resistanceR(β )? Based
on the above relationship between the average system resistance and the steady-state width of
the EW process on the same graph [Eq. (23)], the answer is the same as was discussed in Sec. 2
[Eq. (16)]:β ∗=−1 andRmin = 2N/[(N−1)〈k〉] ≃ 2/〈k〉 in the mean-field approximation on
uncorrelated random SF networks. Numerical results forR(β ) are also provided for “free” as
R̄(β ) ≃ 2〈w2(β )〉, by virtue of the connection Eq. (23) [Fig. 2].

3 In the context of resistor networks, while there are no “fields”, we carry over the termi-
nology “mean-field” (MF) from the associated EW synchronization problem. In terms of
the network propagator, the assumptions of the MF approximation can be summarized as
Gst≪Gss for all s6=t, andGss≃1/Cs.



10 G. Korniss, R. Huang, S. Sreenivasan, and B.K. Szymanski

−3 −2 −1 0 1 2 3 4
β

0

5

10

15

20

25

g−

ρ=0.00 BA
ρ=1.00 BA
ρ=1.25 BA
ρ=1.50 BA
ρ=0.00 SW
ρ=1.00 SW

Fig. 3.System conductance vs the edge weight parameterβ for different source/target distribu-
tions controlled byρ for BA networks withm=10 (〈k〉≃2m=20) andN=400 (solid symbols).
For comparison, numerical results for a SW networks with thesame network size and average
degree is also shown for twoρ values (open symbols).

3.1 Transport optimization for heterogeneous source/target frequencies

As suggested by Lopez et al. [80], the effective (electrical) conductance provides a powerful
measure to characterize transport in complex networks. This observable, strongly influenced
by the number of disjoint (and possibly weighted) paths between a source and a target, is
also closely related to the max-flow problem in networks [7,11,40,63,81]. The effective two-
point conductance is the inverse of the effective two point resistance [Eq. (20)],gst=1/Rst.
If each node is equally likely to be a target or a source, a simple average over all source and
target pairs provides the average system conductance, ¯g = ∑s6=t gst/N(N−1). In real systems,
however, nodes are not created equal; their relative frequency to be a source or target can
greatly vary. In the simplest phenomenological model, we assume that nodes are sources or
targets with a frequency proportionalkρ

i (ρ≥0) [65, 80]. Also, as previously, we allow the
edges (conductivities) to be weighted, controlled by the parameterβ according to Eq. (8),
subject to a fixed total edge cost Eq. (7). Then, naturally, the relevant global measure is the
appropriately weighted system conductance

ḡ(β ) =
∑s6=t(kskt)

ρgst(β )

∑s6=t(kskt)ρ . (24)

Then, we consideroptimizing the allocation limited resourcesin the above simplified transport
problem. That is, for a given source/target distribution controlled byρ, what is the value ofβ
which minimizes the system conductance ¯g(β )?

In Fig. 3 we show numerical results for BA scale-free networks. When the source/target
profile is uniform (ρ=0), the system conductance exhibits a maximum at aroundβ≈−1 (in
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synch with the system resistance exhibiting a minimum around the sameβ , Fig. 2). For in-
creasing positive values ofρ, the optimal value ofβ shifts to the right; the location of the
maximum of the ¯g(β ) curve for a givenρ quantifies the extent to which resources should be
allocated around hubs (or away from hubs) for optimal globalperformance.

Figure 3 also indicates that the conductance curves for allρ intersect at aroundβ≈−1.
Indeed, our previous approximation [Eq. (22)] predicts that at this point the effective two-point
conductancegst=1/Rst becomes independent of the degree of the source and target nodes,
hence the system conductance Eq. (24) becomeρ-invariant.

In Fig. 3 we also plot the same system conductance cure for SW networks with the same
network size and average degree for two values ofρ. Forρ=0 (uniform source/target profile),
a SW graph (with a close-to-homogeneous degree distribution) outperforms its BA SF coun-
terpart (with heterogeneous degree distribution) of the same cost for everyβ . For strongly
heterogeneous source/target frequencies (ρ=1) the performance of a SW network is better for
β < −1 andβ > 2, while the BA SF network performs better in the−1<β<2 interval.

4 Random Walks in Weighted Networks

Investigating random walks (RW) on networks, and resistor networks can provide invaluable
insights into fundamental properties and characteristicsof transport and flow on networks [10,
54–56,80,84,87,91,130,131]. In these models, with directapplication to search, routing, and
information retrieval on networks [132, 133], the connection between network structure and
function becomes explicit, so one can address the problems of designing network structures
to minimize delivery times, or for a fixed structure, allocating resources (queuing capacity) to
minimize load and delays [10,70,90].

Here, we consider weights{Ci j } employed in the previous sections and define a discrete-
time random walk (RW) with the transition probabilities [84]

Pi j ≡
Ci j

Ci
(25)

(recall thatCi = ∑l Cil is the weighted degree).Pi j is the probability that the walker currently
at nodei will hop to node j in the next step. Note that because of the construction of the
transition probabilities (being a normalized ratio), the issue of cost constraint disappears from
the problem. That is, any normalization prefactor associated with the conserved cost [as in
Eq. (8)] cancels out, and the only relevant information isCi j ∝ Ai j (kik j )

β , yielding

Pi j =
Ci j

Ci
=

Ai j (kik j )
β

∑l Ail (kikl )β =
Ai j k

β
j

∑l Ail k
β
l

. (26)

Then the results are invariant for any normalization/constraint, so for convenience, one can use
the normalized form of theCi j coefficients as given in Eq. (8). As is clear from the above RW
transition probabilities, the parameterβ controls to what extent “hubs” should be avoided.

Having a random walker starting at an arbitrary source nodes, tasked to arrive at an
arbitrary target nodet, the above weighted RW model can be associated with a simplelo-
cal routing or search scheme [67] where packets are independently forwarded to a nearest
neighbor, chosen according to the transition probabilities Eq. (26), until the target is reached.
These probabilities contain only limited local information, namely the degree of all neigh-
boring nodes. By construction, the associated local (stochastic) routing problem (Sec. III.B.3)
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does not concern link strength (bandwidth) limitations butrather the processing/queuing ca-
pabilities of the nodes, so the cost constraint, associatedwith the links, disappears form the
problem.

4.1 Node betweenness for weighted RWs

In network-based transport or flow problems, the appropriate betweenness measure is defined
to capture the amount of traffic or information passing through a node or a link, i.e., the load
of a node or a link [15, 18, 52–54, 126, 134, 135]. Here, our observable of interest is thenode
betweenness Bi for a given routing scheme [67] (here, purely local and characterized by a
single parameterβ ): the expected number of visitsto nodei for a random walker originating
at nodes (the source) before reaching nodet (the target)Es,t

i , summed over all source-target
pairs. For a general RW, as was shown by Doyle and Snell [84],Es,t

i can be obtained using the
framework of the equivalent resistor-network problem (discussed in Sec. 3). More specifically,

Es,t
i = Ci(Vi −Vt ) , (27)

while aunit current is injected (removed) at the source (target) node. Utilizing again the net-
work propagator and Eq. (19), one obtains

Es,t
i = Ci(Vi −Vt) = Ci(V̂i −V̂t) = Ci(Gis−Git −Gts+Gtt) . (28)

For the node betweenness, one then obtains

Bi = ∑
s6=t

Es,t
i =

1
2 ∑

s6=t

(Es,t
i +Et,s

i ) =
1
2 ∑

s6=t

Ci(Gss+Gtt −2Gts)

=
Ci

2 ∑
s6=t

Rst =
Ci

2
N(N−1)R . (29)

Note that the above expression is valid for any graph and for an arbitrary weighted RW defined
by the transition probabilities Eq. (25). As can be seen fromEq. (29), the node betweenness
is proportional to the product of a local topological measure, the weighted degreeCi , and a
global flow measure, the average system resistanceR. As a specific case, for the unweighted
RW (β=0) Ci = ∑l Ail = ki , thus, the node betweenness is exactly proportional to the degree
of the node,Bi = kiN(N−1)R/2.

Using our earlier approximations and results for uncorrelated SF graphs Eq. (58) and
(16), and the relationship between the width and the averagesystem resistance Eq. (23), for
weighted RW, controlled by the exponentβ , we find

Bi(β ) =
Ci

2
N(N−1)R= CiN

2〈w2〉 ≈ N2 γ −1
γ +β

k1+β
i

m1+β . (30)

First, we consider the average “load” of the network

B =
1
N ∑

i
Bi =

∑i Ci

2
(N−1)R . (31)

Similar to Eq. (29), the above expression establishes an exact relationship between the average
node betweenness of an arbitrary RW [given by Eq. (25)] and the observables of the associated
resistor network, the total edge cost and the average systemresistance. For example, for the
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β=0 case,B= kN(N−1)R/2. As noted earlier, for calculation purposes one is free to consider
the set ofCi j coefficients given by Eq. (8), which also leads us to the following statement:
For a RW defined by the transition probabilities Eq. (25), theaverage RW betweenness is
minimal when the average system resistance of the associated resistor network with fixed total
edge cost (and the width of the associated noisy synchronization network) is minimal.

Utilizing again our earlier approximations and results foruncorrelated SF graphs and the
relationship between the width and the average system resistance, we find

B(β ) =
∑i Ci

2
(N−1)R=

(

∑
i

Ci

)

N〈w2〉 ≈ N2 (γ −1)2

(γ −2−β )(γ +β )
. (32)

The average node betweenness is minimal forβ = β ∗ = −1, for all γ .

4.2 Commute times and hitting times for weighted RWs

The hitting (or first passage) timeτst is the expected number of steps for the random walker
originating at nodes to reach nodet for the first time. Note that using Doyle and Snell’s
result [84] for the expected number of visits [Eq. (27)], expressed in term of the network
propagator [Eq. (28)], one can immediately obtain an expression for the expected first passage
time (see Appendix 4). The commute time is the expected number of steps for a “round trip”
between nodess andt, τst + τts. Relationships between the commute time and the effective
two-point resistance have been explored and discussed in detail in several works [85,130,131].
In its most general form, applicable to weighted networks, it was shown by Chandra et al. [130]
(see also Appendix 4) that

τst + τts =

(

∑
i

Ci

)

Rst . (33)

For the average hitting (or first passage) time, averaged over all pairs of nodes, one then obtains

τ ≡
1

N(N−1) ∑
s6=t

τs,t =
1

2N(N−1) ∑
s6=t

(τs,t + τt,s)

=
∑i Ci

2N(N−1) ∑
s6=t

Rst =
∑i Ci

2
R . (34)

Comparing Eq. (31) and (34), the average hitting time (the average travel time for packets to
reach their destinations) then can be written asτ = B/(N−1). Note that this relationship is
just a specific realization of Little’s law [136, 137], in thecontext of general communication
networks, stating that the average time needed for a packet to reach its destination is propor-
tional to the total load of the network. Thus, the average hitting time and the average node
betweenness (only differing by a factor ofN-1) are minimizedsimultaneouslyfor the same
graph (as a function ofβ , in our specific problem).

4.3 Network congestion due to queuing limitations

Consider the simplest local “routing” or search problem [67, 70, 72] in which packets are
generated atidenticalrateφ at each node. Targets for each newly generated packet are chosen
uniformly at random from the remainingN−1 nodes. Packets perform independent, weighted
RWs, using the transition probabilities Eq. (25), until they reach their targets. Further, the
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queuing/processing capabilities of the nodes are limited and are identical, e.g. (without loss
of generality) each node can send out one packet per unit time. From the above it follows that
the network is congestion-free as long as

φ
Bi

N−1
< 1 , (35)

for everynodei [10,66,67,70,71,73]. As the packet creation rateφ (network throughput per
node) is increased, congestion emerges at a critical valueφc when the inequality in Eq. (35)
is first violated. Up to that point, the simple model of independent random walkers (discussed
in the previous subsections), can self-consistently describe the average load landscape in the
network. Clearly, network throughput is limited by the mostcongested node (the one with the
maximum betweenness), thus

φc =
N−1
Bmax

, (36)

a standard measure to characterize the efficiency of communication networks [10, 66, 67, 70,
71,73].

To enhance or optimize network throughput (limited by the onset of congestion at the
nodes), one may scale up the processing capabilities of the nodes [70], optimize the un-
derlying network topology [67], or optimize routing by finding pathways which minimize
congestion [10, 71–73]. The above RW routing, with the weighting parameterβ controlling
“hub avoidance”, is an example for the latter, where the taskis to maximize global network
throughput by locally directing traffic. In general, congestion can also be strongly influenced
by “bandwidth” limitations (or collisions of packets), which are related to the edge between-
ness, and not considered here.

According to Eq. (36), the network throughput is governed and limited by the largest
betweenness in the network. Further, the RW betweenness of the nodes is proportional to the
weighted degree, which approximately scales as a power law with the degree in SF networks
Eq. (30). Employing the known scaling behavior of the degreecut-off (the scaling of the
largest degree) in uncorrelated SF networks [15, 118, 138],one can show that the maximum
RW betweenness and network throughput exhibit a minimum anda maximum, respectively, at
aroundβ ∗=−1 [10]. Here we show numerical results for the RW betweennessand the network
throughput in BA SF networks. Figure 4 demonstrates that theRW betweenness is strongly
correlated with the degree in SF networks. In particular, except for nodes with very small

degrees,B(ki) ∼ kβ+1
i [Eq. (30)]. Forβ≈−1, the load (RW betweenness) becomes balanced

[Fig. 4] and the network throughput exhibits a maximum [Fig.5]. Thus, RW weights with
β≈−1 correspond to the optimal hub avoiding weighting scheme.

In a recent, more realistic network traffic simulation studyof a congestion-aware routing
scheme, Danila et al. [72] found a qualitatively very similar behavior to what we have observed
here. In their network traffic simulation model, packets areforwarded to a neighbor with a
probability proportional to a powerβ of the instantaneous queue lengthof the neighbor. They
found that there is an optimal value of the exponentβ , close to−1.

We also show numerical results for the network throughput for SW networks with the
same degree [Fig. 5(a)]. In particular, an optimally weighted SW network always outperforms
its BA scale-free counterpart with the same degree. Qualitatively similar results have been
obtained in actual traffic simulation for networks with exponential degree distribution [72].

To summarize, the above simple weighted RW model for local routing on SF networks
indicates that the routing scheme is optimal around the valueβ ∗≈−1. At this point, the load is
balanced [Eq. (30) and Fig. 4(b)], both the average load and the average packet delivery time
are minimum, and the network throughput is maximum [Fig. 5].
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Fig. 4. Normalized RW node betweenness on BA networks withm=3 as a function of the
degree of the nodes for four system sizes [N= 200 (dotted), 400 (dashed), 1000 (long-dashed),
2000 (solid)] and for three differentβ values,β=0.00,β=−1.00, andβ=−2.00 (from top to
bottom). Data point represented by lines are averaged over all nodes with degreek. Data for
different system sizes are essentially indistinguishable. Scatter plot (dots) for the individual
nodes is also shown from ten network realizations forN=1000. Solid curves, corresponding
to the MF+UC scalingB(k) ∼ kβ+1 [Eq. (30)], are also shown.

From a viewpoint of network vulnerability [139–143], the above results for the weighted
RW routing scheme also implies the following. Network failures are often triggered by large
load fluctuations at a specific node, then subsequently cascading through the system [142].
Consider a “normal” operating scenario (i.e., failure isnotdue to intentional/targeted attacks),
where one gradually increases the packet creation rateφ and the overloaded nodes (ones with
the highest betweenness) gradually removed from the network [143]. For β > β ∗≈−1 (in-
cluding the unweighted RW withβ=0), these nodes are the ones with the highest degrees,
but uncorrelated SF networks are structurally vulnerable to removing the hubs. At the optimal
value ofβ , not only the network throughput is maximal, and the averagepacket delivery time
is minimal, but the load is balanced: overloads are essentially equally likely to occur at any
node and the underlying SF structure is rather resilient to random node removal [139, 140].
Thus, at the optimal value ofβ , the local weighted RW routing simultaneously optimizes net-
work performance and makes the network less vulnerable against inherent system failures due
to congestions at the processing nodes.

5 Current Flow in Weighted Networks

Current flow in resistor networks provides the simplest distributed flow model in complex
networks [92]. This flow is directed and distributed, as the current flows from the highest
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Fig. 5. Network throughput per node as a function of the weighting parameterβ for BA
networks (solid symbols) for various system size for (a)m=3 and for (b)m=10 (〈k〉 ≃ 2m).
Figure (a) also shows the same observable for SW networks with the same average degree for
the same system sizes (the same respective open symbols).

potential node (source) to the lowest potential node (target). While current can run along
all (possibly weighted) paths between the source and targetnodes, more current is carried
along shorter paths (with smaller resistance). Further, hanging dead ends (i.e., nodes which
does not lie on a path between the source and target) will carry zero current. Thus, currents
running through the nodes or the links, averaged over all source-target pairs (referred to as the
current-flow betweenness), provide a good measure for information centrality, also referred to
as current-flow betweenness [126,127].

Using the same resistor network model as in Sec. 3 where an edge between nodesi and
j has conductivityCi j , for a given source (s) and target (t) pair, we can write the potential
difference between nodesi and j as

Vi −Vj = V̂i −V̂j = I(Gis−Git −G js +G jt ) . (37)

Here,Gi j is the propagator (or pseudo inverse, operating in the spaceorthogonal to the zero
mode) of the network Laplacian. If nodesi and j are connected by an edge in the network, and
assuming unit current (I=1) entering and leaving the network, then the current through this
edge can be expressed as

Ist
i j = Ci j (Vi −Vj ) = Ci j (Gis−Git −G js +G jt ) . (38)

Thus, exploiting the conservation of currents, the net current running through nodei for a
given source-target pair, can be written as

Ist
i =

1
2 ∑

j
|Ist

i j | =
1
2 ∑

j
Ci j |Gis−Git −G js +G jt | . (39)

Finally, considering all source-target pairs (where all nodes can simultaneously be sources and
send one unit of current per unit time to a randomly chosen target), one finds the current-flow
betweenness or information centrality [126,127],



Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 17

0 5 10 15 20
l

0

0.2

0.4

0.6

P
(l
)

β=−2
β=−1
β=0

10
0

10
110

−4

10
−3

10
−2

10
−1

10
0

(b)

Fig. 6. (a) Scatter plot for the load (current-flow betweenness) vs the degree for BA networks
with N=100 and〈k〉≃10 for three differentβ values. Horizontal lines indicate the average
load. (b) Load distribution of BA networks with the same parameters. The inset shows the
same distributions on log-log scales.

l i =
1

N−1 ∑
s,t

Ist
i =

1
2(N−1) ∑

j
∑
s,t

Ci j |Gis−Git −G js +G jt | . (40)

Despite the similarities between Eqs. (28) and (38), here the summation over source and target
pairs does not yield internal cancelations and simplifications, and the result for the current-flow
betweenness is not amenable to simple analytic (mean-field-like) approximations. Therefore,
we present only numerical results for the resulting currentflow betweenness (the local load
for unit input currents)l i . Our numerical scheme was based on the exact numerical diagonal-
ization [144] of the network Laplacian and constructing thepseudo inverse (propagator)Gi j
using straightforward spectral decomposition. In addition to the local loads at the nodesl i , and
average system load

〈l〉 =
1
N ∑

i
l i =

1
2N(N−1) ∑

i, j
∑
s,t

Ci j |Gis−Git −G js +G jt | , (41)

we also measured the largest current flow betweennesslmax = maxi=1,N{l i} in a given net-
work, and then averaged over many network realizations within the same random network
ensemble.

We analyzed the above observables for weighted random networks with Ci j ∝ (k jk j )
β .

Figure 6(a) shows that the loads (current-flow betweenness)at the nodes are strongly corre-
lated with their degree in BA scale-free networks forβ=0, while they become much more
balanced forβ=−1. Also, for β=0 (unweighted network) the load distribution exhibits fat
tails, while it decays faster than any power law forβ=−1 [Fig. 6(b)]; consequently, the largest
load is significantly reduced forβ=−1. This balanced load forβ=−1, however, is achieved
at the expense of a somewhat increased average load [Figure 6(a)]. In general, we observe that
reducingβ leads to an increasing average load [Fig. 7(a)]. Nevertheless, the largest load in a
network, potentially triggering cascading load-based failures, exhibits a minimum at around
β≈−1 [Fig. 7(b)]. In turn, the network throughput, assuming identical source-target rates and
unit processing capabilities at each node [analogously to Eq. (36)]
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Fig. 7. (a) Average load and (b) maximum load in BA and ER networks with 〈k〉≃10 for
various network sizes as a function ofβ . The inset in (b) shows the network throughput vsβ .

φc =
1

lmax
(42)

exhibits a maximum at aroundβ≈−1 [Fig. 7(b) inset]. Thus, with the simple weighting
schemeCi j ∝ (kik j)

β one can optimize current flow such that the network throughput is max-
imum (β ∗≈−1).

Finally we note that a homogeneous random network [Erdős-Rényi (ER) random graph
[14, 145]] exhibits qualitatively similar characteristicin the throughput and load profile as a
function of the weighting parameterβ [Fig. 7]. Further, as can be seen from Fig. 7(b), the
network throughput of an ER network outperforms that of a heterogeneous BA network of the
same average degree and network size for anyβ . Interestingly, the average load is lower for
BA (ER) networks forβ>0 (β<0) [Fig. 7(a)].

5.1 Current flow optimization for heterogeneous source/target frequencies

Analogously to the question addressed in Sec 3.1, one can askwhat is the optimal weighting
of link conductivities to maximize throughput for heterogeneous source/target frequencies.
Note that there the task was to maximize global average network conductance with a fixed
edge cost. Here, the task is to minimize current-flow betweenness (maximize throughput) sub-
ject to identical unit node processing capabilities for a given heterogeneous “boundary condi-
tion” (source/target rates). Here, we consider source/target rates proportional to(kskt)

ρ , such
that the global source/target flow rate per node isφ . Then, using Eq. (39), the appropriately
weighted current-flow betweenness becomes

l i =
N

∑s,t(kskt)ρ ∑
s,t

(kskt)
ρ Ist

i . (43)

In Fig. 8 we show results forρ=1.00 on BA networks. Similar to homogeneous source/target
profiles, the average current-flow betweenness is a monotonically decreasing function ofβ .
The maximum current-flow betweennesslmax = maxi=1,N{l i}, however, exhibit a minimum,
at aroundβ=−1.50. In turn, the network throughputφc = 1/lmax shows a maximum at the
same point.
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Fig. 8. (a) Average load and (b) maximum load for heterogeneous source/target frequencies
with ρ=1.00 in BA networks with〈k〉≃10 for various network sizes as a function ofβ . The
inset in (b) shows the network throughput vsβ .

The behavior of theρ=0 [Fig. 7] andρ=1.00 [Fig. 8] are qualitatively very similar. The
main quantitative difference is that the location of the optimal weightingβ somewhat de-
creases (β ∗≈−1.00 for ρ=0 andβ ∗≈−1.50 for ρ=1.00). Since the traffic entering and leav-
ing the network places extra burden on the hubs, the negativeoptimal value ofβ with a larger
magnitude necessitates a relatively stronger hub avoidance.

6 Shortest Path Betweenness in Weighted Networks

In the simplest and most commonly considered models of routing, every source nodes sends
packets to a given destination nodet through the path of least total weight connectings andt.
This path is called theweighted shortest pathor theoptimal pathbetween the given source-
destination pair. The concept of betweenness previously defined in Sec. 4 can be adapted to
the present context as follows: theshortest path betweennessof a node (edge) in a weighted
network is defined as the number of shortest paths passing through that node (edge) [134]. The
characteristics of a variant of the shortest path betweenness defined here - referred to as be-
tweenness centrality - have been studied extensively on unweighted networks (or equivalently,
for β = 0) [52,53,146]. Specifically, for scale-free networks withdegree exponent 2≤ γ ≤ 3,
the distribution of betweenness centrality is known to be heavy tailed, i.e.,P(B)∼B−δ , where
δ has been reported to be universal (δ ≈ 2.2) [52] or varying slowly [146].

As pointed out in Sec. 4, the throughput of the network (assuming identical unit processing
capabilities for each node) is given byφ = (N−1)/Bmax whereBmax is the maximal between-
ness of the network [10,66,67,70,71,73]. Thus, the throughput can be increased by reducing
the maximal betweenness of the network. While the question of a lower bound (optimum) on
the scaling of the maximal betweennessBmax has been previously studied [71], in the present
article we focus on edge weighting schemes that can optimizethroughput on the network.
We restrict our study to the case where the edge weight connecting to nodesi, j is given by
wi j = (kik j )

−β whereki ,k j are the degree of nodesi, j respectively. The edge weights con-
sidered here can be interpreted as: (1) explicit parameterslike latency (time taken to traverse
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Fig. 9. Scatter plot showing the correlation between degree and betweenness from 10 real-
izations of weighted scale-free networks withN=1024 and degree exponentγ=2.5 using the
configuration model [147]. For an unweighted networkβ = 0, betweennness is clearly corre-
lated with the degree. Asβ is decreased below zero, atβ = −0.5, the betweenness appears to
be uncorrelated with the degree, while atβ = −1 betweenness is biased towards lower degree
nodes.

an edge) or (2) virtual weights assigned to edges to facilitate the assignment of paths with
certain properties likehub avoidance. Here, for our numerical investigations, we employed
the configuration model [147] with a structural degree cutoff ∼ N1/2 to generate uncorrelated
scale-free graphs [118,138], with degree exponentγ=2.5 and with minimum degreem=2.

In an unweighted network (β = 0), the betweenness of a node is known to be correlated
with its degree (see Fig. 9). This implies that analogous to the case of random walk routing
in Sec. 4, hubs in a scale-free network carry the highest load, and the distribution of be-
tweenness over the network is highly heterogeneous (intuitively, this is obvious since on an
unweighted network the shortest path between two nodes is the one with the smallest num-
ber of links; since hubs by definition are well connected to the rest of the network, there is
some hub that connects the source and destination through a very short path). This can be seen
from Fig. 10, where the straight line fit to a logarithmic plotof the betweenness distribution
has a slope of≈ −2.14. From the point of view of alleviating congestion, and minimizing
cascading failures (see Sec. 12), the ideal situation is onewhere the total betweenness in the
network is distributed homogeneously, while keeping the value of the maximal betweenness
as low as possible. Homogenizing the betweenness landscapecan be achieved by introducing
a small amount of hub avoidance as shown by the betweenness distribution forβ = −0.5 in
Fig. 10. The tail of the distribution is no longer fat (more appropriately it is exponential, not
shown), and the maximal betweenness is lower than forβ = 0 (Fig. 11). Also, betweenness
is now no longer correlated with degree (Fig 9). This homogenization of the betweenness
landscape comes at the expense of increasing the average betweenness on the network (see
inset, Fig. 10). Asβ is decreased from−0.5, rather than further homogenizing the between-
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Fig. 10. The distribution of betweenness on weighted scale-free networks with degree expo-
nentγ=2.5 and network sizeN = 1024. Blue, red and green circles correspond toβ = 0,−0.5
and−1 respectively. The black line is a straight line fit with slope−2.14. The inset shows the
average betweenness〈B〉 as a function ofβ . Results are obtained from 100 network realiza-
tions and networks are constructed using the configuration model [147].

ness landscape, the hub avoidance causes the shortest pathsto get longer, thus increasing the
total betweenness in the network. This increase causes boththe average and the maximal be-
tweenness to rise. Furthermore, the betweenness is now largely biased towards nodes of lower
degree (Fig. 9). Consequently, the optimal distribution ofbetweenness is obtained atβ =−0.5
where the throughput is highest. Note that the same observation for the homogenization of the
betweenness landscape and the minimization of the maximum betweenness was reported re-
cently by Yang et al. [90] for BA scale free networks (γ=3). Although there have been some
attempts at analytical estimations of the optimal value ofβ [90], no rigorous arguments are
known at present which explain this optimal value. A study ofthe optimal weight distribution
on weighted Erdős-Rényi graphs yields similar results. However, a point worth mentioning is
that for similar network size and average degree, the throughput for an Erdős-Rényi network
is consistently greater than that of a scale-free network asβ is varied (see Fig. 11).

6.1 Cascading Failures and Cascade Control in Weighted Networks

Infrastructure networks with complex interdependencies are known to be vulnerable tocas-
cading failures. A cascading failure is a domino effect which originates when the failure of
a given node triggers subsequent failures of one or several other nodes, which in turn trigger
their own failures. Examples of cascading failures are abundant in the real world, including
the ”Northeast Blackout of 2003” [148] and the current global economic crisis [149].

The first notable study of cascading failures on networks wasby Motter and Lai [150], and
the model they proposed is the one we pursue here. The model assumes that in the network
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Fig. 11. The average value of the maximal betweenness (over 100 realizations)〈Bmax〉on
weighted scale-free networks and weighted Erdős-Rényi networks of sizeN = 1024. The
scale-free networks considered here have degree exponentγ=2.5 and are constructed using
the configuration model [147]. Optimal values of〈Bmax〉 are obtained atβ = −0.5 for both
classes of networks.

under consideration each node is transmitting one unit of some quantity (energy, information
etc) to every other node through the shortest path between them. As a result, there is some
”load” or betweenness incurred on each node which is equal tothe number of shortest paths
passing through that node. It is assumed that each node is attributed acapacitywhich is the
maximum load that can be handled by the node. Since cost constraints prohibit indiscrimi-
nately increasing a node’s capacity, a natural assumption is that the capacity assigned to a
node is proportional to the load that it is expected to handle. Thus [150,151]

Cj = (1+α)B j (44)

whereα ≥ 0 is a tolerance parameter which quantifies the excess load that a given node can
handle. The failure of a node is simulated by the removal of the node and all links connected to
it. The functioning of the network after a node failure requires a recomputation of the shortest
paths that originally may have passed through the failed node. This redistribution of shortest
paths can radically alter the landscape of betweenness on the network. If the redistribution
causes certain nodes to have a load greater than their capacity, these nodes also fail. These
failures can in turn trigger more failures, thus leading to acascade. A natural quantity that
signifies the severity of a cascade is the ratio of the size of the giant connected component
G′ remaining after the cascade, to the size of the original giant component,G. Motter and
Lai [150] showed that for scale free networks that local failures originating at high degree or
high betweenness nodes results in cascades with a high degree of severity. In contrast, a ran-
dom node failure seldom initiates a cascade, and therefore leaves most of the giant connected
component intact.
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Fig. 12.Simulation results showing the relationship between the fraction of intentionally re-
moved nodesf and the fractional size of the surviving giant connected componentG′/G on
weighted scale-free networks. Results are for 10 network realizations of scale-free networks
with degree exponentλ=2.5 andN = 1000, constructed using the configuration model [147].
The parameterα which quantifies the excess capacity (Eq. 44) is set to 0.5 here. The inset
shows the relative size of the giant component of the surviving network vs the weighting pa-
rameterβ for the f=0 baseline scenario (no intentional node removal).

In a subsequent study [152], Motter demonstrated that cascades can be stopped through
the intentional removal of nodes after the initial failure has occurred but before the secondary
overload failures have begun. One such strategy is to removea certain fractionf of the nodes
with the lowest betweenness. Here we show the results of thisprocedure extended to weighted
networks. In our simulations, cascades are initiated by theremoval of the highest betweenness
node on a scale-free network withN=1000 nodes and withα = 0.5. Notice that the damage
caused on an unweighted networkβ = 0 by a cascade in the absence of any defense strategy
( f = 0) results in the giant component losing about 30% of its nodes (Fig. 12).

Intentional removals marginally improve the ratioG′/G until a certain optimal value of
f beyond which the damage to the network is primarily a result of the intentional removals
itself. Thus beyond the optimalf for a givenβ ,

G′

G
≈ 1− f .

Whenβ is decreased below zero the shortest paths avoid the hubs, thus alleviating the load
on the high degree nodes. For small negative values,β = −0.5,−1 since the total load on the
network is balanced more homogeneously among all the nodes in the network (see Figs. 9 and
10) than on the unweighted network, the size of the cascade dramatically reduces even without
any intentional removals i.e.G′/G ≈ 0.99 at f = 0 for both β = −0.5,1 (Fig. 12, inset).
Furthermore, intentional removals (f > 0) only cause further damage . Forβ = 1, shortest
paths are biased towards the hubs, thereby broadening the fat tail of the load distribution
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making it even more heterogeneous than for an unweighted network (not shown). As would
be expected, the severity of a cascade in this case is far greater than that in an unweighted
network, and consequently the gain arising from intentional removals is also extremely high.
At the optimal f , the size of the giant component is greater than half the original network size
as opposed to 3% without intentional removals. Thus, in summary for any weighted network
there exists an optimal fraction of intentionally removed nodes at which the damage caused
by the cascade is the least severe. Furthermore, this optimal removed fraction is very close to
zero for a weighted network withβ = −1, thus implying that for this value ofβ networks are
maximally resilient to cascading failures for the network parameters used here.

In the model addressed here, the loads and therefore the capacities result from the partic-
ular assignment of shortest paths on the network. Thus the loads and capacities are inherently
tied to the topology of the network. An alternative model proposed in [142] looked at similar
failure triggered cascades but where the loads on each node were drawn from an arbitrary dis-
tribution uncorrelated with the topology of the network. Further studies of cascading failures
on weighted networks subject to empirically observed formsof the load-capacity relation-
ship [153] can be found in [89, 90]. The closely related problem of attacking a network by
iteratively damaging the node with the highest betweennessand recalculating the between-
ness after each damage iteration has been studied in [143,154].

7 Summary and Outlook

In this Chapter, we considered a simple class of weighted networks in the context of synchro-
nization, flow, and robustness. In particular, we considered weighted edgesCi j ∝Ai j (kik j )

β ,
and investigated optimizing the relevant network observables, i.e., minimizing the width of
the synchronization landscape, maximizing the throughputin network flow, or maximizing
the size of the surviving giant component following cascading failures (triggered by local
overloads).

Our models and methods provided some insights into the challenging problem of optimiz-
ing the allocation of limited resources [153, 155] in weighted complex networks. Our results
for these fundamental models support that even with this simple one-parameter (β ) optimiza-
tion, one can significantly improve global network performance, as opposed to performing an
exhaustive and computationally prohibitive search for optimal weight allocations. It is also
important to note that in our optimization problems for RWs (Sec. 4) and flow (Sec. 5 and 6),
for simplicity, we considered processing or queuing limitations at the nodes. Within an identi-
cal framework, however, one should also consider and study edge-limited flows (motivated by
finite bandwidth) with weighted links [156, 157]. Our preliminary results indicate that while
optimization is possible, it naturally occurs at a different value of the weighting parameterβ .
This implies that one cannot optimize and balance traffic forboth queueing and bandwidth
limitation simultaneously, but instead, trade-offs have to be considered with the knowledge of
specific systems.

Real-life information, communication, and infrastructure networks are not only weighted
and heterogeneous, but are also spatially embedded [65,158,159] and can also exhibit degree
correlations [15, 18]. The corresponding metrics (Euclidean distance) strongly influences the
cost of the edges, and in turn, the optimal distribution of limited resources. We currently
explore and investigate these problems on weighted spatially-embedded complex networks.
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Appendix 1: Globally Optimal Network with Fixed Edge Cost

In this Appendix we determine the the minimum attainable width in the EW synchronization
problem for networks with a fixed edge cost. Further, we identify a network which realizes
this globally optimal synchronization efficiency. For the EW synchronization problem we can
express the total edge cost with the eigenvalues of the network Laplacian,

2Ctot = ∑
i, j

Ci j = ∑
i

Ci = ∑
i

Γii = Tr(Γ ) = ∑
l 6=0

λl . (45)

Thus, the global optimization problem can be cast as

〈w2〉 =
1
N

N−1

∑
l=1

1
λl

= minimum, (46)

with the constraint
N−1

∑
l=1

λl = 2Ctot = fixed . (47)

This elementary extremum problem, Eqs. (46) and (47), immediately yields a solution where
all N−1 non-zero eigenvalues are equal,

λl =
2Ctot

N−1
, l = 1,2, . . . ,N−1 , (48)

and the correspondingabsoluteminimum of the width is

〈w2〉min =
(N−1)2

2NCtot
. (49)

As one can easily see, the above set of identical eigenvaluescorresponds to a coupling matrix
and network structure where each node is connected to all others with identical strengthCi j =
2Ctot/[N(N−1)]. That is, for fixed cost, thefully-connected(FC) network is optimal, yielding
the absolute minimum width.

Appendix 2: The Mean-Field Approximation in Stochastic
Synchronization on Networks

Summing up the exact equations of motion Eq. (1) over all nodes and exploiting the symmetry
Ci j = Cji yields the stochastic equation for the mean

∂th = ξ (t) , (50)

whereξ (t) = 1
N ∑i ηi(t). From the properties of the individual noise terms in Eq. (1)it follows

that〈ξ (t)〉 = 0 and〈ξ (t)ξ (t ′)〉 = 2
N δ (t − t ′). Note that the above stochastic equation is exact
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for the meanh(t). In the mean-field (MF) approximation one replaces the localneighborhood
averages by the global meanh [Eq. (11)] (which is a crude approximation) yielding

∂thi ≈−Ci
(

hi −h
)

+ηi(t) . (51)

Since the time evolution of the mean is now explicit [Eq. (50)], from Eq. (51) we can obtain
the approximate equations of motion for the fluctuations with respect to the mean,∆i(t) ≡
hi(t)−h(t),

∂t∆i(t) ≈−Ci ∆i(t)+ η̃i(t) , (52)

whereη̃i(t)≡ ηi(t)−ξ (t) with 〈η̃i(t)〉 and〈η̃i(t)η̃ j(t ′)〉= 2(δi j −
1
N )δ (t− t ′). From elemen-

tary properties of the above linear stochastic differential equations [160] for the equal-time
steady-state fluctuations one finds

〈∆i(t)∆ j(t)〉 =
2

Ci +Cj
(δi j −

1
N

) . (53)

Thus, the steady-state fluctuations about the mean decouplein the asymptotic largeN limit,
while 〈(hi −h)2〉 = 〈∆ 2

i 〉 ≈ 1/Ci .

Appendix 3: The Weighted Degree for Uncorrelated SF Graphs

Here, we establish an approximate relationship between theweighted degreeCi and the degree
ki of nodei for uncorrelated(UC) weighted SF graphs. Note thatCi also becomes the effective
coupling to the mean in the mean-field approximation of the EWsynchronization problem.
Using the specific form of the weights as constructed in Eq. (8), we write

Ci = ∑
j

Ci j = Nk
∑ j Ai j (kik j )

β

∑l ,nAln(kl kn)β = Nk
kβ

i ∑ j Ai j k
β
j

∑l kβ
l ∑n Alnkβ

n

. (54)

For large minimum (and in turn, average) degree, expressions of the form∑ j Ai j k
β
j can be

approximated as

∑
j

Ai j k
β
j =

(

∑
j

Ai j

)

∑ j Ai j k
β
j

∑ j Ai j
= ki

∑ j Ai j k
β
j

∑ j Ai j
≈ ki

∫

dkP(k|ki)k
β , (55)

whereP(k|k′) is the probability that an edge from node with degreek′ connects to a node
with degreek. For uncorrelatedrandom graphs,P(k|k′) doesnot depend onk′, and one has
P(k|k′) = kP(k)/〈k〉 [15, 18], whereP(k) is the degree distribution and〈k〉 is the ensemble-
averaged degree. Thus, Eq. (54), for UC random networks, canbe approximated as

Ci ≈ N〈k〉
kβ+1

i

∫

dkP(k|ki)kβ

N
∫

dk′k′β+1P(k′)
∫

dkP(k|k′)kβ = 〈k〉
kβ+1

i
∫∞
m dk′k′β+1P(k′)

. (56)

Here, we consider SF degree distributions,

P(k) = (γ −1)mγ−1k−γ , (57)

wherem is the minimum degree in the network and 2< γ ≤ 3. The average and the mini-
mum degree are related through〈k〉 = m(γ − 1)/(γ − 2). No upper cutoff is needed for the
convergence of the integral in Eq. (56), provided that 2+β − γ < 0, and one finds
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Ci ≈
γ −2−β

γ −2

kβ+1
i

mβ . (58)

Thus, for uncorrelated random SF graphs with large minimum degree, the effective coupling
coefficientCi only depends on the degreeki of nodei, i.e., for a node with degreek

C(k) ≈
γ −2−β

γ −2
kβ+1

mβ . (59)

Appendix 4: RW Hitting Times and the Network Propagator

Employing Doyle and Snell’s result [84] for the expected number of visits [Eq. (27)], and
expressing the voltage difference of the associated resistor networks in terms of the network
propagator (or pseudo inverse of the network Laplacian) [Eq. (19)] one has

Es,t
i = Ci(Vi −Vt) = Ci(V̂i −V̂t) = Ci(Gis−Git −Gts+Gtt) . (60)

Then the hitting (or first passage) time, which is the expected number of steps in a RW which
starts at nodes and ends upon first reaching nodet, can be written as

τst = ∑
i

Es,t
i = ∑

i
Ci(Gis−Git −Gts+Gtt) . (61)

The expression for the symmetric commute time (expected number of steps for a “round-trip”
between nodessandt) simplifies significantly,

τst + τts = ∑
i
(Es,t

i +Et,s
i ) = ∑

i
Ci(Gss+Gtt −2Gts) =

(

∑
i

Ci

)

Rst , (62)

where we used the expression for the two-point resistance ofthe associated resistor network
[Eq. (20)].
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