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Target tracking is a typical and important cooperative sensing application of wireless sensor net-
works. We study it in its most basic form, assuming a binary sensing model in which each sensor
returns only 1-bit information regarding target’s presence or absence within its sensing range. A

novel, real-time and distributed target tracking algorithm is introduced. The algorithm is energy
efficient and fault tolerant. It estimates the target location, velocity and trajectory in a dis-

tributed and asynchronous manner. The accuracy of the algorithm is analytically derived under

ideal binary sensing model and extensive simulations of ideal, imperfect and faulty sensing models
show that the algorithm achieves good performance. It outperforms other published algorithms
by yielding highly accurate estimates of the target’s location, velocity and trajectory.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—Distributed networks; C.2.2 [Computer-Communication Net-
works]: Network Protocols; C.2.4 [Computer-Communication Networks]: Distributed Sys-

tems—Distributed applications

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Target tracking, binary sensor networks, energy efficient,

distributed algorithms

1. INTRODUCTION

Wireless sensor networks composed of miniature devices that integrate physical
sensing, data processing and communication capabilities present great opportuni-
ties for a wide range of applications [Chong and Kumar 2003]. Among them, target
tracking is a representative and important application that usually requires a co-

This research was sponsored by US Army Research Laboratory and the UK Ministry of Defence

and was accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of the US Army Research Laboratory, the U.S.
Government, the UK Ministry of Defence, or the UK Government. The US and UK Governments

are authorized to reproduce and distribute reprints for Government purposes notwithstanding any

copyright notation hereon.
Authors addresses: Zijian Wang, Eyuphan Bulut and Boleslaw K. Szymanski, Rensselaer Poly-

technic Institute, Department of Computer Science and Center for Pervasive Computing and

Networking, Troy, NY 12180 USA; email: {wangz, bulute, szymansk}@cs.rpi.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 0000-0000/2009/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, October 2009, Pages 1–32.

admin
Text Box
ACM Transaction On Sensor Networks, 6(4), July 2010, paper 32



2 · Zijian Wang et al.

Rout

Rin

R

Fig. 1. Binary sensing models: (i) ideal, and (ii) imperfect

operative processing to achieve good results [Zhao et al. 2002], [R.R.Brooks et al.
2003], [Li et al. 2002], [Rahman et al. 2007], [Lin et al. 2006]. One of the fundamen-
tal studies of target tracking focuses on networks composed of sensor nodes capable
of the most elementary binary sensing that provides just one bit of information
about the target: whether it is present within the sensing range or not. These
so-called binary sensor networks constitute the simplest type of sensor networks
capable of target tracking [Arora et al. 2004] [Aslam et al. 2003].

There are two kinds of binary sensing models for binary sensor networks: ideal
binary sensing model and imperfect binary sensing model. In ideal binary sensing
model, each node can detect exactly when the target falls into its sensing range R
(as shown in Figure 1(i)). In real world, detection ranges often vary depending on
the environmental conditions, such as the relative orientation of the target and the
sensor. These factors make target detection near the boundary of the sensing range
much less predictable. The above observations give rise to an imperfect binary
sensing model in which the target is always detected within an inner disk of radius
Rin but it is detected only with certain nonzero probability in an annulus between
the inner disk and an outer disk of radius Rout. Targets outside the outer disk are
never detected (as shown in Figure 1(ii)).

Although there are many papers about target tracking for wireless sensor net-
works, only a handful of research results on target tracking using binary sensor
networks have been reported in recent years. The algorithms presented in [Djuric
et al. 2004] [Jing et al. 2007] first route the binary information to a central node
and then the central node applies particle filters on information gathered from all
sensors to update the target’s track. Yet, particle filters are expensive to compute
and transmitting data from each node to a central one is very costly in terms of the
energy needed for communication for any non-trivial size network. In [Mechitov
et al. 2003], each point on the target’s path is estimated by the weighted average
of the detecting sensors’ locations. Then, a line that fits best this point and the
points on the trajectory established in the recent past are used as the target tra-
jectory. Kim et al. [Kim et al. 2005] improve the weight calculation for each sensor
node that detected the target and use the estimated velocity to get the estimated
target location. However, the last two methods require time synchronization of the
entire network and assume that the target moves at a constant velocity on a linear
trajectory. Furthermore, they only use positions of the sensor nodes that detected
the target. Actually, the absence of detection can also provide information useful
for improving tracking accuracy. In [Shrivastava et al. 2006], both the presence and
ACM Journal Name, Vol. V, No. N, October 2009.
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absence of the target within the node’s sensing range are used to define local regions
that the target had to pass. These regions are bounded by the intersecting arcs of
the circles defined by the sensing ranges of the relevant nodes. The trajectory is
estimated as a piecewise linear path with the fewest linear segments that traverses
all the regions in the order in which the target passed them. However, the algo-
rithm is centralized and complex to compute. It also requires a designated node to
fuse data. Additionally, this designated node has to accumulate information from
tracking sensors to form all regions needed to compute the estimated trajectory,
which means that the tracking is not real-time but delayed.

In this paper, we introduce a novel distributed, energy efficient and fault tolerant
target tracking algorithm using binary sensor networks that applies to both ideal
and imperfect binary sensing models. Each active node computes the target’s
location, velocity and trajectory locally, but uses cooperation to collect the sensing
bits of its neighbors. Furthermore, the algorithm tracks the target in real-time,
does not require time synchronization between sensor nodes and can be applied
to targets moving in random directions and with varied velocities. Moreover, the
algorithm is tolerant to sensing faults, when a sensor either fails to detect a target
within its range or reports a “phantom” target, as well as to information loss caused
by packet collisions.

The remainder of the paper is organized as follows. We describe the network
model and our assumptions in Section 2. In Section 3, we introduce our target
tracking algorithm in detail and describe its properties. In Section 4, we analytically
derive the fundamental performance limits of our algorithm under the ideal binary
sensing model. Section 5 presents the simulation results for both ideal and imperfect
sensing models as well as for scenarios with faulty sensing and communications
distorted by packet collisions. The conclusions are drawn in Section 6.

2. NETWORK MODEL AND ASSUMPTIONS

The sensor network comprises N nodes randomly uniformly distributed over a finite,
two-dimensional planar region to be monitored. Each node has a unique identifier
and the union of sensing regions of all network nodes guarantees redundant coverage
of the monitored region. For simplicity, we assume that each node in the network
has the same sensing range R under ideal binary sensing or the same radii Rin and
Rout under imperfect binary sensing model. However, our algorithm also applies
when these ranges vary from node to node. Each node generates one bit of informa-
tion (“1” for target’s presence and “0” for its absence) only at the moment at which
there is a change in the presence or absence status of the target. Otherwise, we get
no other information about the location, velocity, or other attributes of the target.
To save energy and bandwidth, a node that has not detected change in the absence
or presence of the target within its sensing range remains silent. Each time a new
bit of information is generated, the node communicates it to its neighbors that are
defined as nodes whose sensing ranges intersect its sensing range (depending on
the relation of the sensing range to communication range, exchanging information
with so defined neighbors may require one-hop or multi-hop communication). We
assume static (immobile) nodes. There are many practical examples of Unattended
Ground Sensors (UGS) used in the military and security applications to make this
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case worthy of study on its own.
We also assume that each node knows its own location. This assumption can

be satisfied by using some low power GPS device or localization techniques (e.g.,
[Savvides et al. 2001]). It should be noted that each sensors estimates position of the
target relative to its own location and sensing range. Hence, to report those results,
sensors do not need to be aware of their geographical positions. Moreover, speed
computation requires only the knowledge of the positions of the neighbors relative
to each other, which can be established via triangulation. Hence, establishing
the geographical location of each node, although helpful, is not necessary for the
proposed algorithm to work correctly. It is needed though for creating a central
trajectory of the sensed target. Establishing location of neighbors by triangulation
and then finding each node geographical position based on some of those neighbors
having GPS is a fairly standard procedure [Gentile 2007] that can be done at the
network deployment, so it is not discussed here.

Nodes exchange their location information through communication at the net-
work deployment stage. Each node has its own local timer and can time stamp sent
or received messages. Additionally, we assume that the target moves with velocity
that is low relative to the node’s sensing frequency. Consequently, time of discovery
of the change in the target’s presence within the node’s sensing range differs little
from the time at which the target moves within or out of this range under ideal
binary sensing model.

3. TRACKING ALGORITHM

3.1 Basic Idea

To illustrate our basic idea, we use an example in Figure 2, which shows a target
moving through an area covered by three nodes. Initially, the target is outside of
the sensing ranges of all three nodes. Later, it moves within the sensing range of
node Nx at time t1, and then sensing ranges of nodes Ny at time t2 and Nz at time
t3. Finally, it leaves sensing ranges of nodes Nx, Ny and Nz, in that sequence, at
times t4, t5, t6, respectively.

According to the model described in the previous section, each node will generate
a bit at the time of a change of the status of the target versus the sensor. It will
generate bit “1” at the time of initial detection of the target’s presence, and later
bit “0” at the time of initial detection of its absence. Hence, the messages are
generated at the times at which the target enters and then exits sensing range of
the node. Thanks to the timing of this messages, corresponding events are timed
at each neighbor using its local clock, so the time differences between the events
are correct even if the local clocks are skewed in terms of their measurements of
the absolute time.

Clearly, at the transition time tj , the target must be on arc Aj which is a part of
the border circle of the sensing range of the node reporting the bit information. This
arc can be determined cooperatively from presence and absence bits of neighbors
of that node. Let us consider arc A2 defined at time t2 as an example. At time t2,
node Ny senses the target presence within its sensing range for the first time, so the
arc is a part of the sensing range border circle of node Ny. At that time, node Ny

knows that the target is within the sensing range of node Nx, so the target must be
ACM Journal Name, Vol. V, No. N, October 2009.
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Fig. 2. An illustration of the basic idea behind the algorithm

on arc “abc”. Node Ny knows also that the target is not within the sensing range
of node Nz, so the target can not be on arc “bcd”. Hence, node Ny concludes
that the target must be on arc A2. An important observation is that, by using
this method, the two-dimensional uncertainty of the target’s location on the plane
is reduced to a one-dimensional uncertainty within the circle section. The shorter
this circle section is, the smaller the uncertainty becomes.

3.2 Tracking Algorithm under Ideal Binary Sensing Model

The initial idea of the tracking algorithm under the ideal binary sensing model
was presented in [Wang et al. 2008a] and it can be summarized as follows. At the
network deployment stage, each node initializes the list of statuses of its neighbors
to “0”s. Each time a node receives one-bit information from a neighbor, it updates
its status on the list. At the moment at which the node discovers the change in the
target’s presence within its sensing range, it identifies the arc of its sensing range
border circle that the target is crossing. The target location is estimated as the
middle point of the corresponding arc and broadcasted to neighbors. Two relatively
accurate estimates of target location combined with the difference of local times
at which those estimates were made are used for distributed computation of the
target velocity. A weighted line fitting method is used to find a line, approximating
a fragment of the target trajectory, that best fits the estimated target locations.

3.2.1 Initialization and Information Update. In the initialization procedure, each
node establishes a list of its neighbors. Each element of the list stores the follow-
ing information: neighbor node identifier, intersection points of the sensing circles
of the node and its neighbor, an angle corresponding to the arc defined by these
intersection points and one-bit information generated by the neighbor, initialized
to “0”. Upon receiving one-bit information from a neighbor, the node updates the
corresponding entry in the list.

3.2.2 Location Estimate. We combine all angles corresponding to arcs defined
by the neighbor list to determine the arc that the target is crossing. The four
instances of this process are shown in Figure 3. If the neighbors both generated
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Fig. 3. Instances of angle combinations

bits equal to “1”, the corresponding central angles are combined by “&” operation
that returns the intersection of these two angles. As shown in Figure 3(i), the
common angle of 6 1o3 and 6 2o4 is 6 2o3, so the node Ny estimates the target
location as the middle point of arc “23” when it senses that the target just moved
within its sensing range. One special instance is shown in Figure 3(ii), where the
common angle is just one of the two angles.

If one neighbor status is set to “1” while the other is set to “0”, the corresponding
central angles are combined with “-” operation that returns the angle formed from
the first angle by excluding the second angle from it. For example, in Figure 3(iii)
6 1o3 − 6 2o4 is equal to 6 1o2. In a special case shown in Figure 3(iv), the result
may consist of two angles, 6 1o2 and 6 3o4. The correct angle in this case is chosen
by considering the recent estimate of the target location.

Let FA be the sought arc’s central angle initialized to 2π (the entire circle of the
sensing border of a node). Let IN be the set of neighbor nodes with status set to
“1” and let OUT be the set of neighbor nodes with status set to “0”. Then, the
final angle whose corresponding arc is the one that the target is crossing can be
expressed as:

FA = FA &
i∈IN

anglei −
j∈OUT

anglej (1)

where anglei is the central angle corresponding to neighbor i.

3.2.3 Velocity Estimate. We use a distributed, asynchronous algorithm to esti-
mate the target velocity. As shown in Figure 4, three nodes Nx, Ny and Nz work
asynchronously. At time tNy1 on node Ny’s local clock, node Ny senses target’s
presence within its sensing range for the first time and generates bit “1” message.
The estimated location of the target is also included in this message to save energy
and bandwidth. Since the elapsed time of radio transmission is negligible, node Nz

receives this message at time tNz1 on its local clock. Node Nz will also receive the
message from node Nx at time tNz2. Then, node Nz can use the time difference
tNz2 − tNz1 and the difference of locations reported in these two messages to esti-
mate the target velocity. To estimate velocity accurately, only location estimates
ACM Journal Name, Vol. V, No. N, October 2009.
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Fig. 4. Velocity estimation

with relatively high accuracy are used, those are locations at the middle points of
the short arcs.

3.2.4 Trajectory Estimate. A weighted line fitting method is used to get the
target trajectory and the weight of each estimate is defined as:

w =
|circle|
|arc| (2)

where |arc| is the length of corresponding arc whose middle point is the estimated
target location and |circle| is the length of the sensing range border circle. Each
node finds the line that best fits these weighted estimated locations. This line,
when expressed as y = a · x + b, minimizes the metric Q defined as:

Q =
∑

i∈E

wi(yi − a · xi − b)2 (3)

where E = [(y0, x0), ...(yi, xi), ...(yk, xk)] is the list of the estimated target lo-
cations to which the line is fitted. Hence, this is the weighted least square error
line.

Each node will cache k (an adjustable parameter) estimated locations received
from neighbor nodes. The node will divide these estimated locations into groups of
size n (another adjustable parameter, a divisor of k + 1) from the beginning of the
cache and use weight line fit method on the first group of estimated locations to get
a line segment with slope k1. Then the node will get new line segment with slope
k′1 using next group of estimated locations. If the difference between the slopes is
less than ε (the third adjustable parameter), we assume that there is no turn in the
trajectory and a new slope of line segment will be calculated using the next group
of estimated locations. Otherwise, the node will select the current group as an new
start to get a new line segment with slope k2. This procedure will continue to the
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end of the cached locations. The specific values of the three parameters k, n, ε used
in our simulations are given in subsection 5.5.

3.3 Tracking Algorithm under Imperfect Binary Sensing Model

To make our algorithm robust, as in [Shrivastava et al. 2006], we take a worst-case
approach to the information provided by the imperfect binary sensing model: if a
sensor output is “1”, then we assume that the target is somewhere inside the large
disk of radius Rout; if a sensor output is “0”, then we assume that the target is
somewhere outside the small disk of radius Rin.

The initial investigation of this case was given in [Wang et al. 2008b] and it showed
that the main influence of the imperfect binary sensing model is that the algorithm
no longer could identify circular arcs that the target crosses (as was possible in
the ideal binary sensing model) when there the status of the target sensed by a
node changes. Instead, we can only identify that the target must be within the
ring determined by Rin and Rout. However, we can use a thin ring section which
is determined by the neighbor output to approximate the circular arcs and then
estimate the position of the target. Although this will make the one-dimensional
uncertainty of the target’s location expand to a two-dimensional uncertainty, if the
resulting ring section is short and thin, the error still will be small.

3.3.1 Initialization. In the initialize procedure, each node establishes a list of
its neighbors and calculates the exact angle corresponding to a neighbor depending
on the output and the relative position of that neighbor.

The three instances for neighbor (node Ny) that outputs bit “1” are shown in
Figure 5. As described previously, if node Ny outputs bit “1”, we can only be
sure that the target is within sensing range Rout. When node Nx senses there is
a change in the status of the target, it knows that the target is within the ring
determined by Rin and Rout. Depending on the relative position of node Ny to
node Nx, there would be up to two angles corresponding to node Ny resulting from
the intersection of Rin and Rout circle of node Nx and Rout circle of node Ny. If
two angles exist for node Ny, we choose the angle that ensures that the target must
fall in this angle, for example we choose 6 b1ob2 and 6 a1oa2 in Figure 5(i) and (ii)
as the angle corresponding to neighbor Ny. If only one angle exists for node Ny,
then it is chosen as the corresponding angle, as shown in Figure 5(iii).

The three instances for neighbor (node Ny) that outputs bit “0” are shown in
Figure 6. As described previously, if node Ny outputs bit “0”, we can only know
that the target is outside sensing range Rin. Depending on the relative position of
node Ny to node Nx, there would be up to two angles corresponding to node Ny

resulting from the intersection of Rin and Rout circle of node Nx and Rin circle of
node Ny. If there are two existing angles for node Ny, we choose the angle that
ensures that the target must fall out of this angle, for example we choose 6 a1oa2

and 6 b1ob2 in Figure 6(i) and (ii) as the corresponding angle to neighbor Ny. For
the instance shown in Figure 6(iii), we can not determine that the target is outside
6 a1oa2 because the target could be within 6 a1oa2 no matter what node Nx outputs.
So, if node Ny outputs bit “0”, it will be considered as a neighbor of node Nx only
if its Rin circle intersects with the Rin circle of node Nx.
ACM Journal Name, Vol. V, No. N, October 2009.
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Fig. 5. Determination of an angle corresponding to neighbor’s output “1”

Fig. 6. Determination of an angle corresponding to neighbor’s output “0”

3.3.2 Location Estimate. At the moment at which the node discovers the change
in the target’s presence, it calculates the final angle corresponding to the ring section
that the target is crossing using the same angle combination method as in the ideal
binary sensing model. Then, the thickness of the ring section is recalculated to
make the estimation of target position more accurate.

We calculate the intersection points of each pair of node Nx’s neighbor that
output bit “1”. The intersection point that falls into the final angle and is furthest
away from the center of node Nx determines one of the boundaries of the ring
section, which will make the ring section as thin as possible. A new thinner ring
section is determined by this intersection point, Rout circle and final angle. For
case shown in Figure 7(i), this is ring section “abcd”. Interestingly, the neighbor

ACM Journal Name, Vol. V, No. N, October 2009.
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Fig. 7. Ring section thickness calculation

node that outputs bit “0” contributes only to the angle combination but not to the
thickness calculation. As shown in Figure 7(ii), the recalculated ring section may
exclude some area into which the target may fall, although with small probability
because this area is near Rout circle of node Nx. Moreover, when the final angle is
small, this area will be negligible in size. The target position is estimated as the
center point of this ring section.

3.3.3 Velocity Estimate. We use the same method as under the ideal binary
sensing model to estimate the target velocity. At the time of sending out the
message that contains the estimate position, the target may not be exactly at the
boundary of sensing circle, as was the case under the ideal binary sensing model
shown in Figure 4. Hence, to estimate velocity accurately, only location estimates
with relatively high accuracy are used for which the ring sections are short and
thin.

3.3.4 Trajectory Estimate. We use the same method as under the ideal binary
sensing model to estimate the target trajectory but re-define the weight of each
estimate as:

w =
|ring|

|ring section| (4)

where |ring section| is the area of corresponding ring section whose middle point
is the estimated target location and |ring| is the area of the ring determined by
circles Rin and Rout.

3.4 Properties of Our Tracking Algorithm

The most prominent feature of our algorithm is its energy efficiency supported by
its four inherent properties. The first such property is the use of binary sensing
that often reduces sensing energy requirements. For many types of sensors, a bi-
nary detection uses either a simple threshold mode or on-board signal processing,
ACM Journal Name, Vol. V, No. N, October 2009.
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both of which reduce power consumption significantly. As an example, for acous-
tic sensing (e.g., the KnowlesEA-21842 sensor) and magnetometer sensing (e.g.,
the Honeywell HMC1002 sensor), using binary mode reduces power consumption
five-fold compared to what a classification mode requires [Singh et al. 2007].

The second property is that each node executing our algorithm generates a mes-
sage only when there is a change in the target status. Only two relatively short
messages are generated over the entire period during which the target resides within
the sensing range of a node.

The third property is processing the target information in a distributed manner
without routing the target information from each node back to the central node
which would consume considerable amount of energy. Finally, as we will show in
Section 5.3.2, our tracking algorithm achieves higher accuracy with smaller average
number of neighbors than other binary sensing target tracking algorithms. Having
fewer active nodes saves a lot of energy and prolongs the network lifetime.

Another interesting property of our algorithm is that the reporting and not re-
porting presence of the target in the sensing range by the neighboring nodes can
be verified for consistency against the known topology of the neighbor graph. In
case of perfect binary sensing, all neighbors reporting presence of the target must
have non-empty intersection of their sensing ranges. Moreover, none of the sensors
not reporting presence of the target can have such intersection entirely within its
sensing range. We used this property to provide a level of tolerance to reporting
faults in our algorithm. The details of the modification and measurements of the
resulting fault tolerance are described in section 5.6. This is important because
there are many reason for which a node may fail to report the target presences
within its sensing range, or conversely to report target that is absent from its
sensing range. Both kinds of errors will influence the target position estimation.
Typical reason for such errors is environment noise that may affect sensing device
of a sensor [Liu et al. 2007]. Also any failure of communication (e.g., a collision of
packets carrying the reports) will result in the new target status not being updated.
Hence, fault tolerance to reporting faults improves the algorithm performance in
real applications.

4. FUNDAMENTAL PERFORMANCE LIMITS UNDER IDEAL BINARY SENSING
MODEL

Assume that we have a domain of area Ad in which there are total of N sensors, each
with a uniform sensing range (to simplify the analysis, we set this sensing range to
be one unit, R = 1). Let us consider the specific time instance at which the target
T has been just sensed by node X whose center is at point C0. All neighbor sensors
that also sense the target are within a circle centered at T with radius of R2 = 1
unit, as shown in Figure 8. According to the algorithm introduced in Section 3,
the accuracy of our algorithm under the ideal binary sensing model is just half of
the length of the arc resulting from the angle combination procedure, which is the
length of the average shortest arc from target T to the intersection point resulting
from the intersection between sensing circle of neighbor node and sensing circle
of the node X. First, we analyze the accuracy of our algorithm considering only
the output from neighbor nodes that also sense the target. Then, we extend this

ACM Journal Name, Vol. V, No. N, October 2009.
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Fig. 8. A configuration for performance analysis

analysis to the case in which the output from neighbor nodes that do not sense the
target is also considered.

The probability Pk that there are k (0 ≤ k < N) neighbors that also sense the
target within their sensing ranges is:

Pk =
(

N − 1
k

)(
π

Ad

)k (
1− π

Ad

)N−k−1

(5)

A practical way to compute this probability is to start with the most probable
number of neighbors, which is

kmost =
⌈
(N − 1)

π

Ad

⌉
(6)

Then, starting with kmost − 1, kmost + 1, the probabilities for other k’s can be
calculated by the following formulas.

Pk+1 =
(N − k − 1)π

(k + 1)(Ad − π)
Pk; Pk−1 =

k(Ad − π)
(N − k)π

Pk (7)

Once the values of Pk+1 become very small, the computation of the subsequent
Pk probabilities stops.

All k intersecting arcs will have one point on one side of the target and another on
the other side. So the resulting average shortest length of the arc of all intersections
will be the double of the length of the distance of the target from the closest
intersection point on the either side of the target. Then, the accuracy of our
algorithm will be just half of the average shortest length of the arc. Based on this
insight, we introduce the method of calculating the distribution of the length of the
shared arc, as shown in Figure 9. Node X with sensing range of one unit centered
at point C0 (we refer to this circle as circle C0) just senses the target T. Node Y
centered at point N0 is one of the neighbors of node X that also senses the target
within the sensing range of one unit (we refer to this circle as circle N0). These
two sensing circles intersect at points P and P ′. We chose the notation so that
ACM Journal Name, Vol. V, No. N, October 2009.



Distributed Energy Efficient Target Tracking with Binary Sensor Networks · 13

0

0

Fig. 9. A configuration for calculating the shared arc length distribution

P is the closest of the two intersection points to the target and its distance may
determine the accuracy of the target position measurement. All the neighbors of
node X that also sense the target must fall in the circle centered at point T with
radius of one unit (we mark this circle as circle T ). It is important to note that any
node whose sensing circle also intersects with circle C0 at point P must be on the
circle centered at point P with radius of one unit (we refer to this circle as circle P ).
Consequently, any node that also senses the target but has an intersection point
with circle C0 closer to target T than point P must fall in the shadowed area that
we denote as A. If x denotes 6 PC0T size in radians, then the length of arc PT is
1 × x = x. The probability P (x) that the length of arc PT is less than or equal
to x is ‖area A‖ / ‖circle T‖, where ‖...‖ returns the area of its argument, sector
QTC0 is in circle T and sector QPC0 is in circle P .

||area A|| = ||sector QTC0|| − ||sector QPC0||+ ||QTC0P ||
= π ×R2 × (2π − (π − x))/2π − π ×R2 × (π − x)/2π
+2× 1/2× (2×R2 × cos(x/2))× sin(x/2)= (x + sin(x))×R2

(8)

Hence, P (x) = x+sin(x)/π and the probability Ps(x) for the shortest arc created
by k neighbor nodes sensing the target being shorter than x is defined as [Feddema
et al. 1999]:

Ps(x) = 1− Prob(ys ≥ x)= 1−
k∏

i=1

Prob(yi ≥ x)= 1− (1− P (x))k (9)

Hence, the average length of the shortest arc is:
ACM Journal Name, Vol. V, No. N, October 2009.
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Fig. 10. Illustrations of contributions of the nodes that sense no target and distribution of the cut
off arc length

δ =
∑

k

Pk

π∫

x=0

xd(1− (1− P (x))k) ≈
kmax∑

k=0

Pkδk (10)

where

δk =

π∫

x=0

−xd(1− P (x))k =

π∫

x=0

(
1− x + sin(x)

π

)k

dx. (11)

We select kmax in such a way that Pkmax+1 < 0.1% ≤ Pkmax .
In the above procedure, we only consider nodes that sense the target. Yet, nodes

that do not sense the target also contribute to the accuracy of the algorithm. Let
AB denote the average shortest arc with length of 2L centered at point T obtained
through the above procedure and shown in Figure 10. All nodes that intersect with
circle C0 must fall within interior of the circle centered at point C0 with radius of
two units. Among all of these nodes, the ones that do not sense the target but also
have one intersection points on arc AT must fall in the shadowed area which we will
refer to as W and which is formed by the circles of unit radius centered at points
A and T . The nodes within area W also contribute to the accuracy of estimation
of the target position by cutting the feasible arc shorter.

Similar to the above analysis, if one node falling in area W intersects with arc
AT at point P , then any node that does not sense the target but has an intersection
point Q closer to point A than P must fall in the shadowed area shown in the right
hand side of Figure 10 that we will denote as Z.

Let ksensing denote the number of sensors that sense the target at the given
time instance. We assume that this number includes the node that just observed
the target in its sensing range and its neighbors who also have the target in their
ACM Journal Name, Vol. V, No. N, October 2009.
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sensing ranges. Then the probability P ′k that there are k (0 ≤ k ≤ N − ksensing)
neighbors that do not sense the target within their sensing ranges but contribute
to the accuracy is:

P ′k =
(
N−ksensing

k

) (
||area W ||

Ad−π

)k (
1− ||area W ||

Ad−π

)N−k−ksensing

=
(
N−ksensing

k

) (
L+sin(L)

Ad−π

)k (
1− L+sin(L)

Ad−π

)N−k−ksensing
(12)

A practical way to compute this probability is to start with the most probable
number of neighbors, which is

k′most =
⌈
(N − ksensing)

L + sin(L)
Ad − π

⌉
(13)

Then, the probability for other k’s can be calculated by

P ′k+1 =
(N − k − ksensing)(L + sin(L))
(k + 1)(Ad − L− sin(L)− π)

P ′k (14)

P ′k−1 =
k(Ad − L− sin(L)− π)

(N − k + 1− ksensing)(L + sin(L))
P ′k (15)

Once the values of P ′k+1 become very small, the computation of the subsequent
P ′k probabilities stops.

If we denote 6 PC0A as t in radian, then length of arc PA is 1 × t = t. The
probability P ′(t) that the length of arc PA is less than or equal to t is:

P ′(t) = ||area Z||/||area W || = (t + sin(t))/(L + sin(L)) (16)

The probability P ′l (t) that the longest arc created by k neighbors not sensing the
target is shorter than t is defined as:

P ′l (t) = Prob(yl ≤ t) =
k∏

i=1

Prob(yi ≤ t) = P ′(t)k (17)

Hence, the average length of the longest arc is:

δ′(L) =
∑

j

P ′j

L∫

t=0

tdP ′(t)j = L−
∑

j

P ′jδ
′
j , (18)

where

δ′j(L) =

L∫
t=0

(t + sin(t))jdt

(L + sin(L))j
(19)

We select k′max in such a way that P ′k′max+1 < 0.1% ≤ P ′k′max
. With this notation,
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Fig. 11. Analysis of the algorithm’s error for nearly uniform sensor distribution

the accuracy of our algorithm is

ε =
∑

k

Pkδ′(δk) ≈
k=kmax∑

k=0

Pk

j=k′max∑

j=0

P ′j
(δk + sin(δk))j

δk∫

t=0

(t + sin(t))jdt (20)

Let us consider now the nearly uniform distribution of sensors with the density
ρn measured as the average number of sensors in the unit square when the sensing
range R = 1. Consider a node whose sensing boundary is crossed. With the above
notation, on average there are k = πR2ρn−1 = πρn−1 other sensor nodes that sense
the target at that time. Since we assume nearly uniform distribution of sensors,
then, with probability one, we will have k nodes sensing the target and the entire
Equation 10 becomes just δk =

∫ π

x=0
(1 − (x + sin(x))/π)kdx. Setting y = π − x

transforms π − x − sin(x) into y − sin(y) and then δk =
∫ π

y=0
(y − sin(y))kdy/πk.

From Figure 11, we get
∫ π

y=0

(y − sin(y))kdy >

∫ π

y=π/2

(2y − π)kdy =
πk+1

2(k + 1)
(21)

hence the error in radians is larger than π
2(k+1) .

On the other hand, for line y2, coordinates of point Q are ( 2π
2+π , 2π

2+π ) so the area
above sin(x) over the interval [0, π/2] is:

2
(

π

2 + π

)2

+
(

π

2 + π
+

1
2

)(
π

2
− 2π

2 + π

)
− 1 ≈ 0.134163549 (22)

But, the area above y2 and below sin(x) over the interval [π/2, π] is 1 − π
4 ≈

0.2146018365, so we have:
∫ π

y=0

(y − sin(y))kdy <

∫ π

y=2π/(2+π)

((2 + π)y/π − 2)kdy =
πk+2

(2 + π)(k + 1)
. (23)
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In short, we proved that the error in distance units is c
ρn

, where 1
2 < c < π

2+π .
Hence, the error is inversely proportional to ρn. If the sensing range is R > 1, and
the sensor density (the average number of sensors in the distance unit square) is
ρ, it is easy to see that the error is expressed by the formula c

ρR , so the error is
inversely proportional to the density and to the sensing range.

To assess the impact of non-sensing nodes for the error, we notice that L measured
in radians satisfies L ≥ 1

2R2ρn
= 1

2ρn
and therefore the area over which the non-

sensing nodes contributing to error estimate are located is about R2(L + sin(L)) ≥
1

ρn
. Hence, on average there is one node there. Under assumption of nearly uniform

distribution, only j=1 in Equation 19 will have non-zero probability, so P ′1 = 1 and
P ′j,j 6=1 = 0. Hence, the summation in Equation 19 collapses to a single element,
which is

L∫
t=0

(t + sin(t))dt

L + sin(L)
=

1 + L2/2− cos(L)
L + sin(L)

≈ L

2
(24)

From that, we conclude that for medium and large densities (for which L is a
fraction, so approximation sin(L) ≈ L is tight), the improvement from using non-
sensing nodes tends to 50%.

To verify our accuracy analysis, we also obtained the accuracy from simulation
of 800 sensor nodes with sensing range of one unit that were randomly deployed
over an area of 20 by 20 units. Hence, Ad = 400, N = 800. Using Equation 10, we
get that the average accuracy from just nodes that sense the target is δ = 0.261 in
radians. Considering ksensing values ranging from 1 to 16, we get from Equation 20
that the final accuracy with contributions from neighbor sensors that do not sense
target is ε = 0.155 in radians. On the other hand, the average combination angle
from simulation is 0.270, so the accuracy from simulation is 0.270/2 = 0.135, the
difference between the analytical and simulation results is only 0.02 or below 13%,
showing an excellent agreement between the two. Another interesting observation
is that the use of sensor that do not sense the target in the algorithm improves the
accuracy of localization by about 40%, so very significantly. Since for this example
ρn = 2 then using middle of the interval for c we get L = 0.278 in radians. Hence,
the accuracy predicted by Equation 24 is 0.139, just within a few percent of the
actual accuracy measured in simulation that was 0.135.

5. SIMULATION

5.1 Simulator

We have designed a QT (a cross-platform application framework) based simulator
and used data exchange between multi-threads to simulate wireless communication
between sensor nodes. The communication range of each sensor node is twice of its
sensing range. In the basic simulations for ideal and imperfect binary sensing model,
we assume that there is some MAC (Media Access Control) protocol supporting
ideal wireless communication, so simulations have not modeled collisions or dropped
packets. To investigate fault tolerant properties of our tracking algorithm, we added
packet collisions to the wireless communication as well as environmental noise to
the sensing model for a set of simulations based on ideal (in terms of detecting the
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Fig. 12. Illustrations for packet collision and abandoning transmission

target at exactly the sensing range) binary sensing model.
In our tracking algorithm, a sensor node only broadcasts message when the tar-

get enters or leaves its sensing range, so the only chance that there will be a packet
collision is when the target passes over sensing range boundary circles in a quick
succession. We assume that the packet collision arises when a passage of the sub-
sequent sensing range boundary happens after the previous one in less than the
collision time gap, defined as follows. The collision time gap is the smallest time
between the transmissions of two neighboring nodes after which one node will sense
the other’s transmission and cancel its own broadcast to avoid collision. Otherwise,
there will be packet collision and none of the messages broadcast by these two nodes
will be received by their joint communication neighbors. A report point is defined
as a position of the target on the boundary of the sensing range of a node, which
starts transmitting the report of crossing. As shown in Figure 12 (i), only if two
subsequent report points (circle spots) are within a circle (the dashed line circle)
centered at the previous one with the radius of collision gap*target velocity, then
the corresponding two reports may collide and none of them will be received by the
joint communication neighbors of the transmitting nodes. As shown in 12 (ii), only
if only one of two subsequent report points (circle spots) is within the collision circle
(the dashed line circle) but both are within a circle (the dashed dotted line circle)
centered at the previous one with radius of transmission time*target velocity, the
later reporting node may sense the transmission of the previous one and abandon
its report.

The environmental noise will also affect the target detection. Sensor node may
report wrong target status caused by the false sensing. We randomly select certain
percentage of the nodes in the simulation to report only wrong target status when
sensing the target.

5.2 Simulation Setup

It is obvious that the results of our tracking algorithm become more accurate with
the increasing number of neighbors reporting the status of the target. To evaluate
the impact of the neighbor node count on the performance of target tracking, we
used the following simulation environment. We kept the number of nodes fixed at
800 over the area of 800 units by 800 units and varied their sensing range R (Rout

for imperfect binary sensing model) from 40 to 150 units. With the same topology,
the effect of change of the sensing range is that the average number of (sensing)
neighbors increases with the sensing range. Another interpretation is that if we fix
ACM Journal Name, Vol. V, No. N, October 2009.
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the sensing range as a constant, say 40m, then changing the range from 40 to 150 in
terms of simulation units corresponds to shrinking the area over which 800 nodes is
deployed from 800m by 800m to just 213.3m by 213.3m. In both cases the average
number of neighbors of each node changes, but in the second case also the spatial
density of sensors per square meter increases. The advantage of this approach is
that we can estimate the influence of neighbor node count or sensor spatial density
on our tracking algorithm excluding other factors, such as the placement of the
sensor nodes in relation to each other, which remains constant in our setting. For
the same reasons, the velocity of the target is also adjusted proportionally to the
sensing range, making it constant if measured in sensing range units.

For imperfect binary model, two kinds of detection probabilities are used. The
first one is a constant distribution as defined in Equation 25, where d is the distance
between the sensing node and the target.

Pdetect1(d) =





Rout−d
Rout−Rin

Rin ≤ d ≤ Rout

1 d ≤ Rin

0 Rout ≤ d

(25)

The second one is an exponential distribution defined in Equation 26 [Dhillon
and Chakrabarty 2003], where α is its exponent parameter. In order to make
the detection probability approximately 0 when d = Rout, we let e−α(Rout−Rin) =
0.01%, yielding α = ln(0.01%)

Rin−Rout
.

Pdetect2(d) =





e−α(d−Rin) Rin ≤ d ≤ Rout

1 d ≤ Rin

0 Rout ≤ d
(26)

Finally, three types of trajectories have been considered, which are linear, circu-
lar, and a piece-wise linear with random turns trajectories. To exclude the bound-
ary effect, all the trajectories are confined within the square area with length of
800−Rmax located in the middle of the simulated region, where Rmax is the max-
imum sensing range (150 units) in the simulation. For the random turn trajectory,
the length of each linear piece of the trajectory is random but proportional to
the sensing range. As in [Mechitov et al. 2003], we set Rmin = 0.9 × Rout under
imperfect binary sensing model.

5.3 Location Estimate

The first metric that we consider is the location estimation error, measured as the
ratio of the distance between the estimated and real target locations to the sensing
range R (Rout for imperfect binary sensing model).

5.3.1 Algorithms to be Compared. We compare our algorithm with the following
four other algorithms introduced in [Mechitov et al. 2003] and [Kim et al. 2005]:

(1) Equal weight: target’s position is estimated as the average of the detecting
sensors’ positions.

(2) Distance weight: target’s position is estimated as the weighted average of the
detecting sensors’ positions. The weight for each node is set at 4/

√
4R2

out − v2t2,
where v is the target velocity and t is the time expired since the target has been
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detected.
(3) Duration weight: target’s position is estimated as the weighted average of

the detecting sensors’ positions. Given the time t that expired since the node has
detected the target, the weight of this node is ln(1 + t).

(4) Line fit: the initial estimate of the target position is made using distance
weight algorithm (2), and then a line that fits the history target position point
is found and the current target position is refined using this line and the target
velocity.

Algorithms (2) (3) and (4) have been designed for a linear trajectory with con-
stant velocity, so we compare our algorithm with them only for the linear trajectory.

5.3.2 Simulation Results and Discussion. We ran each simulation ten times and
computed the average and confidence interval of the results under confidence level
of 95%. Figure 14 and Figure 15 show the location estimate accuracy results under
both ideal and imperfect binary sensing models.

As evidenced by the plots in these figures, in all cases our algorithm’s results
were better than the results of all four other algorithms. For ideal sensing case,
the ratio of accuracy of our algorithm to the best accuracy of others grows from
nearly 3 for important case of networks with medium neighbor density (sensing
range of 40 units) to slightly below 7 for dense networks. For imperfect sensing
case, this ratio is always above 2, with the biggest value of above 3 for networks of
medium neighbor density, matching in this case the ratio for ideal sensing. As a
result, even for the networks with sensing range Rout = 40 (i.e. the the network in
which a node has only five neighbors on average) and with imperfect binary sensing
model, the algorithm performs very well. Interestingly, for all algorithms there is
no significant difference in the results between ideal and imperfect sensing models
when the neighbor density is low and medium. However, in networks with higher
neighbor node counts, the ideal case yields much better accuracy.

It should also be noted that the location estimate accuracies for all the three
trajectory types in case of our algorithm are nearly the same, showing that our
algorithm works well for all kinds of trajectories. There is a slight decrease in
accuracy of the algorithm (1), the only one of the comparison algorithm applicable
to non-linear trajectories, for more complicated trajectories.

Another important property of our tracking algorithm is that it achieves the
given desired location estimate accuracy using fewer neighbor nodes, that is less
dense networks, than needed by the other algorithms discussed above. For example,
the accuracy achieved by our tracking algorithm using sensing range of 40 units (so
for a network in which a n node has 5 neighbors on average) is nearly the same as
the accuracy achieved by algorithm (1) using sensing range of 150 units (hence for
the network in which a node has 87 neighbors on average) under the ideal binary
sensing model. This advantage may be explored in two different ways by deploying
the number of nodes higher than necessary for our algorithm but equal to the num-
ber of nodes that one of the other algorithms needs to achieve the given location
estimate accuracy. First, we can use all the deployed nodes and add certain robust-
ness to node failures to our algorithm. Indeed, if some of the redundant sensors
fail (which often happens in the real deployments for multitude of reasons, such as
energy drainage, accidental damage, or random deployment behind obstacles) our
ACM Journal Name, Vol. V, No. N, October 2009.
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Fig. 13. Analysis of the number of messages generated

algorithm will still provide accurate location estimate results. Second, we can also
integrate our tracking algorithm efficiently with the node sleep scheduling mech-
anism by turning off a portion of neighbor nodes to save energy. In the example
mentioned above, our tracking algorithm achieves the same location estimate accu-
racy as algorithm (1) even when up to 95% of neighbor nodes are turned off. This
will save a lot of energy and prolong the network lifetime significantly.

We also analyzed the number of message exchanged and their corresponding
energy cost. Let the target move from point O1 to point O2 with velocity v(t) over
time dt as shown in Figure 13. Let α = 6 X1X2O2, then v(t)dt = 2R sin(α) ≈ 2Rα.
Area R0 contains sensors that will broadcast bit ”0” when the target moves from O1

to O2, and equal size area R1 contains sensors that would transmit bit ”1”. Hence,
the total number of messages generated by the the target moving from O1 to O2

will be 2Aρ, where A is the size of area R0, ρ is the sensor density per unit square.
A can be computed from Equation 8, yielding A = (2α + sin(2α))R2 ≈ 4R2α.
Thus, the total number of messages generated is 4Rρv(t)dt. If over time tr, the
target moves distance D, then the number of messages produced is

∫ tr

t=0

4Rρv(t)dt = 4RρD. (27)

So the total number of messages exchanged is proportional to the sensing range R,
the sensor density ρ per unit square, and the distance traveled by the target D.

To verify this analysis, we performed two groups of simulations over an area of
size 800 by 800 covered by 800 sensor nodes (so the same density ρ per unit square
in each group). We set the sensing range R to be 40 units in one group and 150
units in another. In both groups of simulations, the target moves along a random
trajectory (the same for each group) with a constant velocity and over the same
distance. We ran the simulation 20 times for each group changing the topology of
the network in each run. The exchanged messages were counted. The total number
of messages exchanged is 474 when R = 40 units and 1759 when R = 150 units.
The ratio is 1759/474 = 3.71 which is very close to the ratio of sensing ranges
150/40 = 3.75.

First, let us consider only transmitting energy cost here. According to the energy
consumption model for packet transmission, the energy cost for transmitting a
packet to distance d is Etx = kd2, where k is a constant. In the discussed algorithms,
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Fig. 14. Location estimate accuracy for ideal binary sensing model

each node broadcasts to all its neighbors, so over the distance of the double sensing
range, thus d = 2R. Hence, the total energy cost is 4RρD ∗ k(2R)2 = 16R3kρD.
From Figure 14, it is clear that our algorithm achieves nearly the same location
estimate accuracy using sensing range R = 40 units as the algorithm (1) (the best
one among all the algorithms compared) using sensing range R = 150 units. This
means that our algorithm needs to send only 40/150 = 27% messages using only
(40/150)3 = 2% energy when compared to the algorithm (1).

Considering the receiving energy cost, we noticed that each message is received
by (150/40)2 = 14 times fewer nodes in our algorithm than in case of algorithm
(1), so the receiving energy expended by our algorithm is only 7% of the receiving
energy needed by the algorithm (1).

5.4 Velocity Estimate

We tested the performance of velocity estimation in two scenarios in which the
target moves along a linear trajectory. In the first scenario, the target moves at a
constant velocity which is R/15 unit/second. In the second scenario, the velocity
of the target changes suddenly, several times during simulation, to a random value
that is a multiple of R/15 unit/second. For the ideal binary sensing model, we
use the configuration of 800 nodes with R = 40 unit (on the average there are
five neighbors of each node). For the imperfect binary sensing model, we use the
configuration of 800 nodes with Rout = 40 unit and Rin = 0.9 × Rout unit under
the first detection probability.

Figure 16 and Figure 17 show the estimated versus real velocities as a function of
time in these two scenarios. Clearly, the estimated velocity is very close to the real
ACM Journal Name, Vol. V, No. N, October 2009.
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Fig. 15. Location estimate accuracy for imperfect binary sensing model

velocity in the first scenario for both of the binary sensing models. These two also
agree well in the second scenario, although there is some delay before the change
of real velocity is reflected in its estimate so there are some large deviations in the
brief moments immediately after the velocity change.

For the ideal binary sensing model, the average and maximum differences between
estimated and real target velocities in the first scenario are 0.0764 unit/second
(a few percent of the speed of the target) and 0.2842 unit/second (around 10%
of the target’s speed). The average and maximum differences between estimated
and real target velocity in the second scenario are 2.6295 unit/second and 6.8021
unit/second.

For the imperfect binary sensing model, the average and maximum differences be-
tween estimated and real target velocity in the first scenario are 0.1210 unit/second
and 0.3713 unit/second, so the average difference nearly doubled, while the maxi-
mum difference increased by 30%. The average and maximum differences between
estimated and real target velocity in the second scenario are 3.6283 unit/second (so
smaller, percentage-wise, then in case of ideal tracking) and 11.5240 unit/second
(so nearly 100% of the target’s speed). Hence, there is a significant increase in these
differences when the sensing model changes from ideal to imperfect.

We also performed simulations to obtain velocity estimates using algorithm (1)
under ideal binary sensing model. Figure 18 shows the estimated versus real veloc-
ities as a function of time in the same two scenarios. The average and maximum
differences between estimated and real target velocity in the first scenario are 1.1689
unit/second (around 44% of the speed of the target) and 3.4833 unit/second (around
130% of the target’s speed). The average and maximum differences between esti-
mated and real target velocity in the second scenario are 3.5160 unit/second and
9.0538 unit/second. These differences are much higher than the ones obtained with
our algorithm.
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Fig. 16. Velocity estimated for ideal binary sensing model
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Fig. 17. Velocity estimated for imperfect binary sensing model

5.5 Trajectory Estimate

Figure 19 shows the typical estimations for three trajectory types under the con-
figuration of 800 nodes with R = 40 units using ideal binary sensing model while
Figure 20 shows those for imperfect binary sensing model with Rout = 40 units and
Rin = 0.9×Rout using the first detection probability. The estimation of trajectory
uses the method described in subsection 3.2.4 with parameters k, n, ε set to k = 30,
n = 6, ε = 0.2.

We measure the accuracy of estimated trajectory using the average difference
between the estimated and real trajectories. It is calculated using the area of a
polygon formed by these two trajectories divided by the length of the real target
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Fig. 18. Velocity estimated using algorithm (1) for ideal binary sensing model

trajectory. The average accuracies are 0.187, 1.227 and 1.704 under ideal binary
sensing model, for linear, circular and piece-wise linear trajectories with random
turns, respectively. The average accuracies are 0.287, 1.811 and 2.873 under im-
perfect binary sensing model, for linear, circular and piece-wise linear trajectories
with random turns, respectively.

We simulated also trajectory estimation using algorithm (1) under ideal binary
sensing model. Figure 21 shows the typical estimations for three trajectories under
the same configuration. The average accuracies are 3.926, 4.385 and 5.167, many
times higher than the accuracies achieved by our algorithm..

5.6 Fault tolerance simulation

In this section, we evaluate the performance of our algorithm when a sensor occa-
sionally either receives a report with the wrong target status or does not receive a
report when the status of the target changes. Such faults arise because of environ-
mental noise distorting sensing or packet collisions disturbing communication with
neighbors. We start with the description of modifications to our algorithm that
make it tolerant to such faults. Then, we demonstrate the level of fault tolerance
achieved by our tracking algorithm through a set of simulations based on the ideal
(in terms of detecting the target at exactly sensing range distance) binary sensing
model.

To deal with incorrect target status, our tracking algorithm first combines all an-
gles corresponding to “1” bit reports, and then it combines all angles corresponding
to “0” bit reports. For each neighbor node that reports “1”, the algorithm checks
whether its angle intersects with the angles of all the other neighbor nodes report-
ing “1”. For each pair of nodes with angles that do not intersect, a counter of
each node will be increased by one and the neighbor node will be added to a list
of the partner. Upon completion of this procedure, each node will have its counter
and non-common angle neighbor node lists calculated. For example, the result for
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(i) Linear trajectory (ii) Circular trajectory

(iii) Random trajectory

Fig. 19. Trajectory estimation for ideal binary sensing model

the nodes shown in Figure 22(i) is: neighbor node Nw: counter: 2, list: Ny, Nz;
neighbor node Nz: counter: 1, list: Nw; neighbor node Ny: counter: 1, list: Nw.
Clearly, if all the neighbor nodes report “1” correctly, their counters will be all 0
and their lists will be empty because intersection of all their angles includes the
target.

Next, all the neighbor nodes will be put into a list sorted by their counters and
the neighbor node with the highest counter will be deleted first. When a neighbor
node is deleted, it is also deleted from the non-common angle neighbor node list of
the paired node and the counter for that node will be decreased by one. If multiple
nodes have the same and bigger than 0 counter, they are deleted at same time,
to make sure that no node with potentially wrong report survives. This deletion
continues until all the counters of the surviving nodes become 0. By then all the
error target status reports will be deleted. For example, after deleting node Nw

(which has the highest counter, equal to 2, at this point) from the list, we get:
neighbor node Nz: counter: 0, list: empty; neighbor node Ny: counter: 0, list:
empty. Another example is shown in Figure 22(ii): neighbor node Nz: counter: 1,
list: Nw; neighbor node Nw: counter: 1, list: Nz; neighbor node Ny: counter: 0,
ACM Journal Name, Vol. V, No. N, October 2009.
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(i) Linear trajectory (ii) Circular trajectory

(iii) Random trajectory

Fig. 20. Trajectory estimation for imperfect binary sensing model

list: empty. After nodes Nw and Nz with the highest counter equal to 1 are deleted
together, the list shrinks to just one node: neighbor node Ny: counter: 0, list:
empty. In this example, some correct target status reports are also deleted, but it
just affects the accuracy of the estimated target position a little (from the circle spot
to the square spot) without ever resulting in a quite far away misleading estimation
(the diamond spot, in case that node Nz is considered to report incorrectly alone,
causing node Nz count to drop to 0).

After all angles of nodes reporting “1” are combined, the algorithm combines all
angles of nodes reporting “0” bit. As shown in Figure 23(i), where 6 1o2 is the
angle resulting from combination of all angles of nodes reporting “1” bit, node Nx

will find out that there is a contradiction and it will conclude that there is a wrong
report included in combining angle 6 3o4 using “-” operation. For the instance
shown in Figure 23(ii), where 6 3o4 is caused by a wrong “0” report, the algorithm
cannot discover that and the target position will be estimated at the diamond spot.
However, if there are enough “1” reports, 6 1o2 will be small, thus the chance that
such situation happens is low. Even if it does happen, the accuracy will not be
affected very much because 6 1o2 is small.
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(i) Linear trajectory (ii) Circular trajectory

(iii) Random trajectory

Fig. 21. Trajectory estimation using algorithm (1) for ideal binary sensing model

Another example of fault tolerance is shown in Figure 6(iii). If the target falls
in angle 6 a1oa2, but node Nx receives bit “0” from node Ny due to the detection
failure or environmental factors (such as obstacle preventing target detection), our
algorithm can still get the correct target position estimate by excluding node Ny

from the neighbor list (described in the previous section) and using information
received from the remaining neighbor nodes.

Now, we will give the details of the simulation environment through which we
evaluate the fault tolerance of our algorithm. As in the previous simulations, we
kept the number of nodes fixed at 800 and varied the sensing range R from 40 to 150
units. A collision gap of the sensor network is defined as the minimum time between
two independent attempts to communicate by the neighbor nodes that would not
lead to a collision of their transmissions. This gap is determined by the time that
it takes for a radio to switch from listening to transmitting. It is usually very small
compared to the packet transmission time. We set the collision gap to be 0.0001
second and call the circle of radius 0.0001*target velocity a collision circle. Thus,
the simulation will enforce packet collision if a collision circle centered at the current
point of target crossing the sensing range of a node contains future or past crossing
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Fig. 23. Examples of fault tolerance in “-” operation

points (see Figure 12). It should be noted that the future crossing points are known
only in simulation. Moreover, the condition above is necessary but not sufficient (for
example for non-linear trajectories the predicted collisions may not happen when
the target changes the direction of movements), so this collision enforcing method
overestimates the number of collisions. We also set transmission time to be 0.01
second. In our algorithm, if a node wants to transmit a report and overhears that
another node is already transmitting, it will abandon the transmission and would
not report the change of status. This approach decreases accuracy of the method
but avoids cascading collisions, when the delayed node transmission would collide
with the later transmission by another node. The simulator uses the transmission
circle defined as a circle of radius 0.01*target velocity to detect such situations.
Indeed, it can arise only when the transmission circle centered at the current point
of target crossing a sensing range of a node contains any previous crossing points
(like in case of collisions, this method overestimates the number of abandoned
reports).

We set the probability that the sensor node reports wrong target status “0” even
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Sensing Range 40 60 80 100 120 150

ideal sensing 0.061681 0.027515 0.017458 0.011750 0.009465 0.007501

packet collision 0.061706 0.027889 0.017494 0.012447 0.010685 0.008139

wrong report 0.076377 0.036045 0.021637 0.014421 0.012025 0.009898

collision&wrong 0.077268 0.038050 0.022705 0.015861 0.013133 0.011186

Table I. Fault tolerant results for linear trajectory

Sensing Range 40 60 80 100 120 150

ideal sensing 0.068974 0.029909 0.016972 0.012357 0.009378 0.007449

packet collision 0.069416 0.030191 0.017090 0.012962 0.010335 0.008778

wrong report 0.080432 0.039182 0.022370 0.015434 0.012599 0.009409

collision&wrong 0.080896 0.037735 0.023686 0.016244 0.012954 0.011477

Table II. Fault tolerant results for circular trajectory

Sensing Range 40 60 80 100 120 150

ideal sensing 0.062041 0.029779 0.016823 0.011575 0.009336 0.007970

packet collision 0.064382 0.032705 0.017623 0.012588 0.010028 0.008748

wrong report 0.074263 0.034594 0.022625 0.015810 0.012005 0.010031

collision&wrong 0.080263 0.035148 0.023778 0.016603 0.012753 0.011027

Table III. Fault tolerant results for random trajectory

if the target is within its sensing range to be 5% and set the probability that the
sensor node reports wrong target status “1” even if the target is out of its sensing
range to be 1%. These settings reflect the fact that the chance for the wrong report
of the first kind (that is failing to detect that the target that is within the range of
the sensor) is higher than that of the second kind (that is detecting a “phantom”
target in the sensing range).

Tables I to III show the target position estimation accuracy for linear, circular
and random trajectories under ideal binary sensing model, packet collision model,
wrong report model as well as packet collision together with wrong report model,
respectively. Clearly, the accuracy decreases only a little when the packet collision
and wrong target status report are taken into consideration, which means that our
tracking algorithm has a good fault tolerant property.

6. CONCLUSIONS AND FUTURE WORK

Target tracking is a typical and important application of sensor network usually
relying on cooperation between sensor nodes. In this paper, we study the target
tracking problem under the simple and basic binary sensor network model. We
introduce a real-time distributed target tracking algorithm without time synchro-
nization for both the ideal and imperfect binary sensing models which is also energy
efficient and fault tolerant. We analyze the accuracy of our algorithm under ideal bi-
nary sensing model and demonstrate that it agrees well with the accuracy obtained
via simulations. The analysis also shows that for the configuration simulated, the
use of sensors that do not sense the target by the algorithm improves the accuracy
of localization by nearly of factor of 2 (decreasing the estimation error by 50%
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compared to using only sensors that do sense target), so very significantly. Results
of extensive simulations of this algorithm performed under different configurations
and scenarios are also reported and they confirmed the analysis. We observe that
the introduced algorithm outperforms algorithms reported elsewhere in terms of its
accuracy of estimating the target location, velocity and trajectory using the binary
sensor networks.

Our future work will further investigate energy efficiency in target tracking ap-
plications. Target tracking systems using sensor networks spend most of the energy
on sensing and communicating measurements between sensors. Since sleeping is
the most basic and effective way to conserve energy, non-tracking sensors should
sleep, while tracking sensors should spend minimum energy necessary to track the
mobile target. A sleep scheduling mechanism through which unnecessary sensor
nodes can be turned off and go to sleep effectively enhances the lifetime of the en-
tire system [Yang et al. 2006] [Xu et al. 2004] [Yeow et al. 2007] [A.Visvanathan and
V.V.Veeravalli 2005]. Therefore, integrating our algorithm with a sleep scheduling
protocol to reduce the energy consumption in the target tracking applications will
be the main subject of our future work.
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