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Abstract

When pathogen strains differing in virulence compete for hosts, spatial structuring of
disease transmission can govern both evolved levels of virulence and patterns in strain
coexistence. We develop a spatially detailed model of superinfection, a form of contest
competition between pathogen strains; the probability of superinfection depends explicitly on the
difference in levels of virulence. We apply methods of adaptive dynamics to address the
interplay of spatial dynamics and evolution. The mean-field approximation predicts evolution to
criticality; any small increase in virulence capable of dynamical persistence is favored. Both pair
approximation and simulation of the detailed model indicate that spatial structure constrains
disease virulence. Increased spatial clustering reduces the maximal virulence capable of single-
strain persistence and, more importantly, reduces the convergent-stable virulence level under
strain competition. The spatially detailed model predicts that increasing the probability of
superinfection, for given difference in virulence, increases the likelihood of between-strain
coexistence. When strains differing in virulence can coexist ecologically, our results may
suggest policies for managing diseases with localized transmission. Comparing equilibrium
densities from the pair approximation, we find that introducing a more virulent strain into a host
population infected by a less virulent strain can sometimes reduce total host mortality and

increase global host density.
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1. Introduction

When increased disease virulence accelerates transmission of infectious propagules
between hosts, but simultaneously reduces the longevity of infection within hosts, changes in
virulence can alter host-pathogen dynamics significantly (Bull, 1994; Ewald, 1994; Frank, 1996;
Day, 2002; Holt and Hochberg, 2002). Population dynamics, in turn, sets the framework for the
evolution of virulence (Castillo-Chavez and Velasco-Hernandez, 1998; van Baalen and Sabelis,
1995). In particular, spatially structured disease transmission can govern virulence evolution
through effects on infection dynamics; locally structured infection generally favors virulence
lower than predicted by homogeneous mixing of susceptible and infectious hosts (Haraguchi and
Sasaki, 2000; van Baalen, 2002a). We present results on the evolution of virulence, defined here
as the increase in host mortality due to disease. We model spatially structured superinfection, a
form of contest competition between pathogen strains differing in virulence. To address the
interaction of host-pathogen spatial processes and virulence evolution, we apply methods of
adaptive dynamics (Geriet al, 1998; Pugliese, 2002a; Magetial,, 2005).

Section 2 summarizes the hypothesis that pathogen-strain competition drives virulence
evolution. Section 3 presents a spatially detailed model for pairwise strain competition; we
assume asymmetric superinfection (Levin and Pimentel, 1981) where the chance of competitive
displacement varies with the difference in virulence between strains. Section 4 summarizes a
mean-field approximation to the spatial model, and Section 5 develops a pair approximation
(Matsudeet al, 1992; Hiebeler, 2000). Section 6 applies adaptive dynamics to both the pair
approximation and simulations of the detailed model. The Discussion collects predictions, offers
a simple perspective on virulence management, and comments on broader definitions of disease

virulence (Antiaet al, 1994; O’Keefe and Antonovics, 2002; van Baalen, 2002b).



2. Pathogen-strain competition

Properties of transmission between hosts and resource exploitation within infected hosts
define the mode of pathogen-strain competition. If infection of a host individual by one strain
prevents infection of the same individual by a second strain (Bremermann and Thieme, 1989),
competition is preemptive. Pathogen strains compete between hosts, and there is no within-host
competition. If infectives and susceptibles mix homogeneously, preemptive strain competition
may favor maximization dRy, a strain’s basic reproduction number (expected number of new
infections per infection in a population of susceptibles). Maximigngrecludes coexistence;
an optimally virulent strain reduces susceptible density so low that no other level of virulence
can advance when rare (Bremermann and Thieme, 1989; van Baalen, 2002a).

Pathogen strains compete both between and within hosts under coinfection and
superinfection. Coinfection assumes that different strains can infect, and concurrently be
transmitted from, the same host individual (Bremermann and Pickering, 1983). van Baalen and
Sabelis’ (1995) assume that each of two strains exploiting the same host individual is transmitted
less efficiently than when exploiting a host solitarily, so that coinfection resembles scramble
competition. Superinfection implies contest competition. A more virulent strain can infect a
host already infected by a less virulent strain, and then displace the less virulent strain (Levin and
Pimentel, 1981; Castillo-Chavez and Velasco-Hernandez, 1998). Some models of the process
permit two-way superinfection, but maintain a virulence-based competitive asymmetry (Gandon
et al, 2002; Pugliese, 2002a). Mania#tyal (1998) generalize strain competition by
decoupling superinfection from a virulence-based advantage in transmission rate.

Coinfection and superinfection may permit coexistence of pathogen strains under

homogeneous mixing (Nowak and May, 1994; May and Nowak, 1995; Mosquera and Adler,



1998; see Saldar@ al, 2003). For superinfection, Adler and Mosquera (2000) caution that
multi-strain coexistence can result from assuming a discontinuous superinfection function, where
a minimal increase in virulence implies a strong, deterministic advantage in contest competition.
Smoothing the superinfection function, so that competitive advantage varies continuously with
the difference in virulence levels, eliminates much of the multi-strain coexistence (Adler and
Mosquera, 2000). Another consequence of discontinuous superinfection is that no resident strain
will be evolutionarily stable, but for smoothed superinfection, Pugliese (2002a) finds conditions
yielding a monomorphic, evolutionarily stable strategy (ESS) for virulence.

When selection acts on coinfecting or superinfecting pathogens, within-host competition
diminishes an avirulent strain’s benefit of an extended infectious period. A strain exploiting a
host solitarily “anticipates” sharing host resources with a coinfecting strain, or losing the host
entirely to a superinfecting strain. Either case can favor greater virulence, to exploit more host
resources before a competitor arrives. A broad implication of these models is that different
modes of strain competition generate different host-pathogen dynamics, and differences in the
dynamics can have important effects on the evolution of virulence.

Spatial structuring of disease transmission can alter consequences of pathogen strain
competition. If infectious contacts are spatially localized, disease ordinarily advances more
slowly than under global mixing, and the difference depends on neighborhood size @araco
al., 1998; Duryeat al, 1999; Keeling, 1999; van Baalen, 2000). Local structuring of infection
should then reduce evolved levels of virulence, compared to homogeneous mixing (Herre, 1993;
van Baalen, 2002a). A more virulent strain infects nearby susceptibles faster, but the greater rate
of host mortality generates spatial heterogeneity in the host population’s density. Clusters of

diseased hosts can become isolated from susceptibles, and the infection may fail to advance



(Satoet al, 1994; Ranebt al, 1995). A less virulent strain, with an extended infectious period,
might not outpace the local dynamics of its host, and so be able to advance globally.

Randet al (1995) and Haraguchi and Sasaki (2000), under different assumptions,
demonstrate that spatially structured infection can favor reduced virulence (or lower
transmission) when strains compete preemptively. Claessen and de Roos (1995) simulate
coinfection with transmission limited to nearest neighbors, and find that evolutionarily stable
virulence with global mixing may fail to predict results of a spatial model. Our study
complements these analyses. We analyze disease virulence for spatially structured
superinfection by applying adaptive dynamics (Kisdi and Meszéna, 1993; &eaaitz1998;
Pugliese, 2002a) to our model and its deterministic approximations.
3. Spatially detailed model of superinfection

Each dynamically equivalent site on a rectangular lattice,Jukal sites, can be
occupied by at most one host individual. Any site’s local state belongs to the SeRA{0f.
We represent an empty site by Bidentifies a site occupied by a susceptible hdstepresents
a site occupied by a host infected with a less virulent pathogen strain; for convenience we term
this avirulent infection.V represents a site with a host infected by a more virulent pathogen,
termed virulent infection.

Timet advances discretely, and we order events as follows. Reproduction is independent
of infection status; offspring produced at titrjein the host population as susceptibles at 1).
Pathogens attack available hosts while the latter reproduce; new infections apped)at (
Next, all hosts alive at timeare subject to mortality; a host’s survival depends on its infection
status at the beginning of the period. At time () combined effects of birth, infection of

susceptibles, superinfection, and mortality are realized. Infected hosts do not recover.



3.1. Parameters of the spatial model

Contact structure governs details of epidemiological invasion (Keeling, 1999; Korniss
and Caraco, 2005). We assume nearest-neighbor interaction in both host dispersal and infection
transmission. Hence an empty site may be colonized only by propagules dispersed from
surrounding siteso.(k) represents the colonization neighborhood aboukgke: 1, 2, ...,J).
The number of sites in the neighborhoodldg(k)[1= N. If sitek is empty, each host an(k)
independently places an offspring at the open site with probdbilibe birth probability. Host
reproductive effort remains constant as the size of the colonization neighborhood varies, so the
per-site birth probabilityp declines withN. Letb =B/N < 1, whereB represents a host’s
reproductive expenditure.

op(K) represents the infection neighborhood aboutksitgfectious contacts are spatially
structured. For simplicity, leti(k) = oc(k), so that colonization and infection neighborhoods
become the same sethearest neighbors. If a susceptible occupiekséach avirulently
infected host owp(k) independently transmits that strain to &iteith probability3a. By is the
virulent infection probability. If a susceptible or avirulently infected host occupiels sigeh
host onoy(K) infected by the virulent strain independently transmits that pathogen strain to the
sitek with probability3,. The total infectious propagules emanating from a host remains
constant as the size of the transmission neighborhood varigs,)86™; i = A, V. Since the host
and pathogens disperse on the same neighborhood, wed{laye oy(k) = oi.

Discrete-time dynamics allows both strains to be transmitted to the same susceptible
during a single time interval. Transmission of the virulent strain to an avirulently infected host
produces a similar situation. Each of these events generates contest competition, which is

resolved viay, the superinfection probability. If both strains attack the same susceptible, or



when the virulent strain attempts to superinfect an avirulently infectedytisshe probability
that the host, should it survive, develops a virulent infection. The virulent strain has an
advantage in contest competition,\s® %2; see sectio8.2

Following host and pathogen dispersal, each host independently dies or survives to the
next time interval. Mortality probabilities depend on infection statigss the probability that a
susceptible, alive dt is dead at timet ¢+ 1). The mortality probability for an avirulently infected
host isua, andpy is the mortality probability for a virulently infected host. Given our definition
of virulence,us < ta < L.

Figure 1 diagrams feasible transitions for a single site. Table 1 lists symbols for the
spatially detailed model. In Appendix A we derive expressions for the detailed model’s
transition probabilities.

3.2. Functional dependence of transmission and virulence

Details of transmission-virulence interactions remain unknown (Bryant and Behm, 1989;
Antia et al, 1994; Powelet al, 2000; Ganusov and Antia, 2003). We consider two possibilities.
First, suppose tha increases in a strictly monotonic, concave manngy mereases:
Bilw)=u'/N;0<a < Li=AV. (1A)

The virulent strain has the greater per-infection probability of infecting a susceptible neighbor,
but imposes an increased host-mortality probabil@j.i the ratio of transmission to virulence,

is the product of the transmission probability (per unit time) and the expected duration of the
infection-transmission period. Since @< 1, the transmission to virulence ratio declines as

virulence increases. Therefore, any greater capacity for interference competition (superinfection)

implies a reduced capacity for “colonization” of susceptible hosts.



Secondly, we can suppose that the transmission probability reaches a maximum at

intermediate virulence:
a - .
,Bi(ui)=fw;a>0,f>0;i:A,V. (1B)

At low virulence levels, the infection-transmission probability increases with virulence, and then
declines at sufficiently high virulence. The transmission to virulencefSaticalso can reach a
maximum at intermediate virulence, implying that the best colonizers no longer are the least
virulent strains (Nowak and May, 1994; Claessen and de Roos, 1995; Pugliese, 2002b). The
constanf in Eq. (1B) lets us equafé/u;) du; for the two transmission functions, simplifying
comparisons of our computational results; note that we relax the constraint on the waine of
Eq (1B). Figure 2 shows the two transmission-probability functions of virulence, plotted with
parameter values we use in analyses reported below.

The superinfection process is discontinuous in that only the virulent strain can exclude its
competitor. But for any > ua, the superinfection probabilgydepends continuously on the

difference in host mortality probabilities, according to:

y(/JVJJA):I_l'I'(/JV ‘HA)WJ/Z; Y >0. (2)
If <1, asmall difference in virulence gives the virulent strain a strong competitive advantage
through superinfection. I > 1, a larger difference in virulence is required for the same
competitive advantage; gsgrows largey - Y.
4. Mean-field approximation

We relegate details of the mean-field analysis to Appendix B and present the results here.

Table 2 lists symbols introduced in this section.



pi(t) represents the global density of sites in stateimet; as abovei, [1 {0, S, A, V.
For brevity, we restrict the mean-field analysis to disease-transmission probabilities that increase
strictly monotonically with virulence, Eq. (1A). Mean-field approximation leads to a mass-

action formulation for densities of susceptible, avirulently infected and virulently infected hosts:
pst+1)=B (o5 +pa+ v ) B0 + pslt) [1- 1 palt) | [1- 14§ £ 0)] (1- 1ss), (3)
palt+1)=palt) |G pst) (1-ps )+ (1- )| [1-y 1 o, ()] (4)

s B psl) (1- s [1- (1-y )t pa)]E
pV(t 1) pV(t)% +yﬂ\7PA(t)(1_NA)+(1_NV) E

(5)
The density of open sitegg(t), follows fromZ; pi(t) = 1. We can express total host density as
p(t) = 1 - po(t).

In the absence of infection, the host population advances to a positive disease-free

equilibrium where the global density of susceptiblgs,is 1 - Hs B with us <B. Given a host

population at the disease-free equilibrium, consider invasion by a single pathogen strain which
induces a host-mortality probability > ps. Pathogen invasion requires that the strain’s growth

rate when rare exceed unity. Under homogeneous mixing this requirement reduces to:

- Ho (- pe)> e ©

A high density of susceptibles promotes a single strain’s initial advance, as does a large
transmission to virulence ratio. That is, both low pathogen virulence (long infectious period),

and high transmission of infectioor ot too great) increase the rare pathogen’s growth.
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Assuming that the pathogen invades, infection advances to its single-strain endemic
equilibrium, where the susceptible density becopies u%® /(1- ug). The corresponding
density of infected hosts is:

B-up L1

5 tom [(B-MA)2 +4Bpg (Ua -us)]“ - ps, (7)

PaA=P —Ps=
at the positive, single-strain equilibrium. Susceptible density declines, and the equilibrium
density of infected hosts increases, as the transmission to virulence ratio incprageseases

asB increases, and declines as eitheor L increases; greater virulence decreases the
equilibrium density of infected hosts.

Given the single-strain endemic equilibrium, we turn to the mean-field’s pairwise
invasion criteria. Consider an avirulent and a virulent strain with (respective) host-mortality
probabilitiesua < py. First, assume the avirulent strain is resident with density given by Eq. (7).
The virulent strain invades if its increase when rare through infecting susceptibles and through

superinfection exceeds losses through host mortality; invasion by the virulent strain requires:
P> (e = 5 Yy -pa), (8)
where the superinfection probabilipdepends on the differencegyf — ).

Now assume the virulent strain is resident; global susceptible density is given
by ps = u¥® /(1- us), and infective density is given by Eq. (7) withreplacingiia, andpy

replacingpa. The avirulent strain invades if its increase when rare through transmission to
susceptibles exceeds its losses through contest competition and host mortality; successful

avirulent invasion requires:

1-a

o Uy — o . @)
yug (1+ 18 e - p,)
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If both (8) and (9) hold, the two strains can coexist ecologicallpga Were great enough for (8)

to hold, ua cannot be too large. t, were small enough for (9) to holdy cannot be too small.
Virulence levels of the two strains must differ sufficiently for coexistence in the mean-field
model. When the strains coexist, the avirulent type persists by finding enough susceptibles to
infect, and the virulent strain maintains itself through interference competition.

To address virulence evolution in the mean-field model, suppose that mutants arise at the
single-strain endemic equilibrium, and that host-mortality probabilities of the resident and
mutant differ by a small amoust A virulent mutant invades a residentif expression (8)
holds withiy = ua + €. An avirulent mutant invades a residemtif expression (9) holds witha
= v - & Ase - 0, the right-hand side of both (8) and (9) approaches 0. Hence, a virulent
mutant invades successfully, but an avirulent mutant is repelled. Under the mean-field model,
assuming mutations in virulence are small, virulence “evolves to criticatityRéndet al,

1995). That is, virulence increases, as each more virulent mutant invades, until host mortality

(t-a)
approache% - “% gl—us)g . Beyond this point, despite the increase in susceptible

density with virulence, the rate of mortality among infected hosts becomes too great to sustain
the pathogenR; falls below unity; see Appendix B).

Figure 3 plots pairwise invasibility results for the mean-field model. If the difference in
virulence between strains is small, the more virulent invader (resident) always invades and
excludes (repels) the less virulent strain. Some strain combinations can coexist, if the difference
in virulence is large enough. No monomorphic ESS is possible, and sequentially monomorphic

populations (Geritet al, 1998) evolve to criticality. Note thRp declines and susceptible
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density increases as virulence evolves, the outcome opposite that predicted for preemptive strain
competition under homogeneous mixing (Bremermann and Thieme, 1989).
5. Pair approximation

Pair approximation models combinations of states at paired, neighboring sites (Matsuda
et al, 1992; Hiebeler, 2000). Dynamics of the pair-block frequencies reflects a degree of local
spatial correlation, and consequently approximates most spatial processes better than mean-field
models (Nakamuret al, 1997; lveset al, 1998; Caracet al, 2001). Specifically, pair
approximation assumes that the correlation between states of two neighboring does not depend
on the state of any other, randomly selected neighbor of the focal pair. This assumption closes
the pair approximation’s system of equations, but ignores the more extensive spatial correlations
that can affect the dynamics. For more extensive methods, see Rand (1999), Sato and lwasa
(2000) or van Baalen (2000). Symbols introduced in this section are listed in Table 3.
5.1. Block probabilities

The block probabilityP{ij] is the chance that the state at kjtg(t), isi and the state at a
randomly chosen nearest neighbgr iISummed block probabilities give frequencies of the

elementary state®[i]= 3, R[ij], whereP{i] is the global density of sites with statat timet.

P{i] need not equal the mean fielggt), since the two models have different structure and,
hence, different dynamics. We assume spatial symnitify € P[ji]), leaving 10 distinct block
probabilities. Therefore, the pair-approximation requires nine equations.

5.2. Pair-block transitions

Following Hiebeler (2000), we represent pair-block transitions as:

[s.(t)s@)] - [st+1)s(+2)] rOo,. (14)

13



First, consider host birth. Suppose &iie open at timé, so the left side of (14) is a [Ppair

block. Since we knowy we know the probability that an offspring is dispersed fronr gesite

k. If a host occupies sitg the probability id. The transition of a [§] pair blockvia birth also
depends on the otha € 1) sites orox whose states are unknown. For a randomly choseg site
on o, other than site, the conditional probability sitg is occupied, given thak(t) = 0,

isk[oh]/R[0]; h O{S,AV}. Each of theseN - 1) sites orv attempts to colonize with

probabilityb times the chance a host occupies the site:

hD{;A‘V}%}%}]:(b/a[o])(a[o]-a[oo]). s

Then the probability, per site of unknown state, of an attempt to colonize an opeis:site

A(t):b%—%[%?] (16)

Next, consider avirulent infection in agjJ pair block. The probability a susceptiblekat
is exposed to the avirulent strain at siie 3, if ] = A, and 0 otherwise. The conditional
probability of an avirulent infection at sikg given a susceptible &t is P [SA/P[S. Then the
probability a susceptible at sikas exposed to the avirulent strain from a giten o is:
6A(t) = Ba Pt[SA]/Pt[S] (17)
Similarly, the probability that a susceptible is exposed to the virulent strain via contact from site
g on ok, where the elementary state is unknown, is:
6 t) = By RISVI/R[s] (18)

Given an AV] pair block, the probability that the avirulently infected hodt iatexposed
to the virulent strain via the known neighbogjs For each of theN - 1) sites orox whose

states are unknown, the probability of exposure to the virulent strain is:
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65(t)= B, RIAV]/R[A] (19)
5.3. Pair-block dynamics
Here we develop two of the pair approximation’s equations. Appendix C presents the
remaining equations; they use the same transitions explained here, but in different combinations.
First, consider the pair blockf) where sitek is empty and site is occupied by a
susceptible. Eight differenij ] block pairs can become as|(air block in a single period; they

havei 0 {0, S, A, ¥andj O0{0, S. Then:
R..[0s]= R[od] fi- A Q)] " - - A Q")
+ (1- (1-6)[1- A (€] ) (us R[S0+ 11, R[] + 1, PV O])

+R [OS] (1_ b) [1_ A (t)] " (1_ /Js) [1_ GA(t)] " [1_ o, (t)] "

(20)

+[1-0,0)]" [1-6,(0]"7 (1~ 1) (us RIS + 1 R[AS] + 1, RVS]).

In the first line of Eq. (20), sitdsandr are open. No birth occurslgtand a birth occurs at In
the second lin& is occupied, andis open. Mortality occurs &t the probability depends on
infection status. Birth occurs gtthe host ak may have dispersed a propagule before its
death. In the third link is open, and a susceptible occupie®No birth occurs dt. The
susceptible is not infected by either strain, and survives. In the fourthi$ireccupied, andis
occupied by a susceptible. Mortalitykalepends on infection status; the susceptibteasbids
infection, and survives. In calculating Eq. (F8)0] = P[0 by spatial symmetry.

Next, consider theAV] block pair. Six {j] block pairs can become afY] in a single
interval; they have 0 {S, A andj O {S, A, \l. The difference equation for the probability of a

[AV] block pair is:
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Ralav] = [[1-8,0)]"+ (1-v) (1-[2-, ()]"**)]
Rlsq (1w (B0, ) o-[a-0, (1) [1-0,00 + (- [2-0,0] )]
B nlsA ) -1 b--5.)[1-0,01") v (1-[1-0.0)]")
+RIsV] (- 41) (- 1) -B-0,01)[ - 8, -0, 1 + (- - - 8, ) -, )]
+ [[1-0,0]" + a-y) (1-[a-0,00")]
1ad - 1) )~ B-0,01) [ @ B.)B-0,01 + (- - B) - 0,0]™)]
+R[Ad 0~ v (1-[1-6,6)]™)

+RIAV] (- 1,) (- 1) [6- 8,) [1-0.01" + (-v) (1- G- 5,) [1-0.0)] ") |

I o

OO I:II:IJ,EI

(21)
The first pair-block transition in Eq. (21) IS§ - [AV]. The susceptible &must be exposed
to avirulent infection; it may avoid exposure to the virulent strain, or may be exposed to both
strains with the avirulent winning. The susceptible must be exposed to virulent infection.
The host at might avoid exposure to avirulent infection, or might be exposed to both strains
simultaneously with the virulent strain winning the host. Then both hosts must survive.

The second block-pair transition in Eq. (21)3#Y - [AV]. The susceptible &must be
exposed to avirulent infection. The same hog&tratght avoid virulent infection, or the avirulent
strain may win if the host is exposed to both strains. The avirulently infected hostisit
acquire the virulent strain via superinfection. Finally, both hosts must survive. The four other

transitions in Eqg. (21) are justified similarly.
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6. Spatial superinfection: pairwise invasion analysis

We conducted pairwise invasion analyses of both the individual-based, stochastic model
and the deterministic pair approximation. Each analysis began with a resident strain at
monomorphic, endemic equilibrium. We computed single-strain equilibria for the spatial
simulation and pair-approximation models separately. To introduce a competing strain (whether
more or less virulent than the resident), we reduced the global density of susceptibles by 0.075.
We then converted the corresponding sites (simulation) or pair-block frequencies (pair
approximation) to hosts infected by the introduced strain. Hence the initial global density of the
invader was held constant across different single-strain equilibria. We recorded invasion of the
resident strain whenever the introduced strain’s global density exceedlad tiffiet = 1000;
otherwise, we recorded that the resident repelled the introduced strain.

The invasion analyses identified any monomorphic singular strategies (Gexiitz
1998), which we classify according to convergence stability and evolutionary stability.
Convergence stability implies that a monomorphic population near a singular strategy can be
invaded and excluded by a mutant closer to the singular strategy. Evolutionary stability implies
that a singular virulence strategy repels invaders. Following Pugliese (2002a), we term an ESS
local if it repels any mutant in a neighborhood around the singular strategy, and global if the ESS
repels any feasible mutant. Convergence stability does not guarantee evolutionary stability;
neither stability property need imply the other (Gegital, 1998). This section divides results
according to the two forms assumed for the transmission-virulence ratio, Eqqg. (1A) and (1B).
6.1. Transmission/virulence declines as virulence increases

If B(s) = wi°/N for a < 1, increased virulence reduces the ratio of transmission to host-

mortality probability. Hence an avirulent strain always has the gr@ateimplying a potential
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“colonization” advantage. A virulent strain has the greater transmission probability, though
lower B/u, and the competitive advantage of superinfection. For this case we report results for
two forms of the superinfection function (two values¢gr We present four invasion analyses
and then address quantitative effects of virulence on host densities and mortality frequencies.
6.1.1. Pairwise invasion: strong competitive asymmetry

First we sety = 0.2, implying a strong competitive asymmetry for given difference in
virulence. That is, superinfection occurs relatively frequently for giygn-(u,). Figure 4a
shows results for the invasion analysis of the spatially detailed, stochastic model with
neighborhood sizbl = 48. Restricting attention to results along the diagonal, we envision
evolutionvia sequential replacement of monomorphic populations (Getriiz, 1998).

Selectionvia spatially structured competition in the spatially detailed does not predict evolution
to the maximal virulence capable of dynamic persistence, as the mean-field model does. In fact,
the pattern indicated a convergent stable, local ESS at the singular strateigy4a).

A band of strain coexistence separates strains that invade and exclude the resident from
those repelled by the resident. Coexistence implied that each of two strains invaded the other,
and the dynamics proceeded to a fixed-point equilibrium.

Figure 4b shows the pairwise invasion plot for this parameter combination’s pair
approximation. A convergent stable, local ESS occurred at the singular spratedpch repels
any larger virulence, but can be invaded by sufficiently less virulent mutants (which can then be
invaded by a strategy closerfig. Both models indicated that a monomorphic singular strategy
may be an evolutionary attractor and exhibit local evolutionary stability, although the pair
approximation predicts an ESS virulence exceeding the spatial model's prediction. Compared to

the spatial simulations, the pair approximation predicted that a considerably larger set of paired
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strains can coexist. More importantly, a comparison of Figs. 4a and 4b shows clearly that the
maximal virulence capable of dynamic, single-strain persistence is smaller for the spatially
detailed model than for the pair approximation. The individual-based model appreciates the full
impact of spatial clustering of infectives on the dynamics, while the pair approximation relaxes
spatial correlations beyond nearest neighbors. These results imply that stronger spatial
structuring of the dynamics reduces the maximal virulence capable of persistence and also
reduces the evolutionarily stable level of virulence.

6.1.2. Pairwise invasion: weaker competitive asymmetry

Settingy = 1.2 implies a weaker competitive asymmetry between strains. The
individual-based model's pairwise-invasion plot, Fig. 5a, suggested a convergent stable, local
ESS level of virulence, near the value indicated by simulations with strong competitive
asymmetry. Decreasing the advantage of superinfection reduced the extent of strain coexistence
in the simulations. Resident strains with low virulence now repelled high-virulence invaders
with which they could coexist under greater competitive asymmetry.

The pair approximation’s invasion analysis, Fig. 5b, also predicted a convergent and
evolutionarily stable level of virulence. The local ESS occurred at a lower virulence, compared
to the pair approximation under strong competitive asymmetry. However, the extent of
coexistence remained similar. Comparing Figs. 5a and 5b reveals two effects noted under strong
competitive asymmetry. Stronger spatial structuring of the dynamics (individual-based model,
Fig. 5a) reduces the maximal virulence capable of persisting alone, and reduces the predicted
EES level of virulence under pairwise competition.

For parameter values we present, both strong and weak competitive asymmetry predict a

monomorphic virulence-strategy exhibiting both convergence stability and local evolutionary
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stability. Comparing the levels of competitive asymmetry predicts that increasing the frequency
of superinfection (strong asymmetry) may lead to a greater local ESS level of virulence, and may
permit increased coexistence of competing strains. Increased competitive asymmetry implies
that opportunities for colonization-competition distinctions between avirulent and virulent strains
increase. Comparing degrees of spatial structure (simulatipair approximation) within
either level of competitive asymmetry predicts that increased spatial clustering of infections
reduces the locally stable level of virulence.
6.1.3. Host densities and mortality frequency

Here we evaluate effects of virulence on host densities. For simplicity, we separate
results based competitive exclusion from results on pairwise coexistence. To characterize
disease clustering, we plot a local contagion ratio for pathogen infection: the frequency of
infected hosts among sites neighboring an infected host divided by the square of the global
frequency of infected hosts. Interms of the pair approximation’s state variables, the contagion
ratio isPY[ii]/(P[i])? wherei is an infected-host state£ A or V). In the absence of local spatial
correlation, the ratio will be unity by independence; clustering of infectives yields values
exceeding unity (Tainaka and Araki, 1999). We recognize that these are equilibrium values, and
the impact of clustering on dynamics may occur soon after the invader’s introduction (van
Baalen and Rand, 1998).

Figure 6a shows global densities of infected hosts at single-strain equilibrium as a
function of virulence. The equilibria were computed for a small neighborided] and
strong competitive asymmetryE 0.2); densities are plotted for both the spatially detailed

model and pair approximation. The same figure also shows the local contagion ratios. Under
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both models the density of infected hosts declined as virulence increased; the decline in
infectives was accompanied by an increase in the global density of susceptibles (not shown).

For the combination of a small neighborhood and strong competitive asymmetry, global
density of infection in the pair approximation always exceeded the simulation’s density for the
same virulence (although the numerical difference was small at very low virulence). This
difference parallels the observation that the spatially detailed dynamics sent the pathogen to
extinction at a much lower virulence level than does the pair approximation (Figs 4a and 4b).
We anticipated these results qualitatively, since pair approximation underestimates clumping of
infection when neighborhoods are small. Figure 6a shows that local contagion ratios uniformly
exceeded unity and increased with virulence in both models, and that pair approximation’s
overestimation of the global density of infection follows from underestimation of the local
clustering of infection. For small neighborhoods, pair approximation can miss the degree to
which an invading strain’s clustering impacts its dynamics (Sato and Iwasa, 2000; Korniss and
Caraco, 2005). Although susceptible hosts became more common as virulence increased, the
combination of lower infectious-host density and increased relative clumping of infectives
strongly constrained the maximal feasible virulence in the spatially detailed model.

Figure 6b plots single-strain, endemic equilibria for a larger neighborhbed8, as in
the pairwise invasion plots). Comparing the spatial model and its pair approximation, global
densities of infected hosts declined similarly as virulence increased. Pair approximation also
mimicked the spatial model’s local contagion ratios much better at the larger neighborhood size.
More importantly, the larger neighborhood increased the maximal dynamically persistent
virulence in both models, and slightly increased the equilibrium density of infected hosts for

given virulence. Increased neighborhood size diminishes the likelihood that a pathogen kills its
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host before finding another to infect (Caratal, 1998), and increases the likelihood that a host
will find an open site and reproduce before dieing. Although clustering of diseased hosts
occurred, the larger neighborhood size diminished the extinction penalty for relatively virulent
pathogens. The resulting increase in the maximal feasible virulence, in turn, made coexistence
with minimally virulent strains more likely.

We end this section by examining host densities for virulence pairs capable of
coexistence. We compare host populations infected by coexisting pathogens to each of the two
single-strain equilibria. Neighborhood sizeNis 48, and competitive asymmetry is strogig<
0.2). These values commonly produced coexistence in both the spatially detailed simulations
and pair approximation, and the associated invasion plots are similar. As a convenience, we use
the results from pair approximation, since boundaries of the coexistence regions are exact.

Total host density sums susceptibles, avirulent infections and virulent infections. If we
represent total host density at coexistence equilibriuB(@g, () = PS + Pa° + P\S, then the
total number of deaths per time interval is proportional&®§ + s Pa’ + v PVY). Densities
and mortality count for the two single-strain equilibria are defined similarly.

Given that pathogen strains with virulence leyels&nduy can coexist, global host
density most often was greatest in populations infected by the virulent strain alone; see Fig. 7a.
The virulent single-strain equilibrium always maximized the density of susceptible hosts, most
often minimized density of infected hosts, and the former effect usually dominated. Infection by
the avirulent strain alone most often minimized total host density.

The avirulent strain alone almost always maximized the density of infected hosts; as we
just noted, the virulent strain alone almost always minimized the global density of infection.

These differences affect the global mortality count. Figure 7b shows the equilibrium population
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experiencing the greatest number of deaths per time interval, given the three alternatives defined

by a coexistence pair. When the differenge € p1,,) is relatively large, the mortality density is

greatest in a population infected by only the virulent strain. Here, introducing the avirulent strain
(taking the system to the fixed point, coexistence equilibrium) would decrease the mortality per
time interval, but would also decrease the total host density (from Fig. 7a). When the difference

(u, — ) is relatively small, the mortality density is greatest in a population infected by only the

avirulent strain. Here, introducing the virulent strain (leading to coexistence) both increased
total host density and decreased the global mortality at equilibrium.

The preceding hypothesis assumes that a disease cannot be eliminated from a host
population, and that a more virulent infection can displace a less virulent infection within
individual hosts. Given our assumptions, introducing a more virulent strain of that disease could
sometimes increase total host density, increase the global density of susceptible (healthy) hosts,
and decrease the number of deaths per time interval. These results further can depend on our
assumption that disease affects only mortality (not fecundity), and on the model's birth-first
order of events (Maniattgt al, 1998; Koella and Doebeli, 1999; see Discussion).

6.2. Transmission/virulence maximal at intermediate virulence

If B() O * (1- w)IN, Eg. (1B), the ratio of transmission probability to virulence can
reach a maximum at intermediate host mortality, hence, at intermediate duration of the infectious
period. For the lowest-virulence strains, an increase in virulence promotes both colonization
capacity and strength as an interference competitor. Highly virulent strains, of course, have low

transmission rates and must rely more on superinfection to persist competitively.
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In this section we set = 1.6, and restrict attention to strong competitive asymmeitry (
0.2). In the associated computations the transmission probghiéached a maximum negar
= 0.6, and the transmission-virulence ratio attained a maximununedy.35.
6.2.1. Pairwise invasion

Using the “peaked” form of the infection-transmission function, we conducted pairwise
invasion analyses witN = 48. Figure 8a shows the invasion plot for the individual-based
model, and Fig. 8b shows pair-approximation’s results. Both models produced a convergent
stable, singular strategy; the deterministic pair approximation exhibited a local ESS. Neither
model mimicked the mean-field’s evolution to criticality. As noted above, the inherent
difference between the individual-based model's and pair approximation’s appreciation of spatial
clustering affected the results. Both the singular strategy and the maximal virulence capable of
single-strain persistence took smaller values in the spatially exact simulations.

Strain coexistence occurred only rarely in simulation. Pair approximation admitted a set
of coexisting strategy pairs. The latter invasion plot indicated that dynamical coexistence was
largely limited to pairings between strains with large transmission-virulence ratios and the
maximally virulent strains. That is, coexistence under pair approximation tended to link the best
colonizers and the strongest interference competitors. Examination of the associated pair-block
frequencies revealed that that key to coexistence was that the strongest interference competitors
(most virulent strains) remained at low global density (due to spatial aggregation), permitting the
avirulent strain’s persistence through colonization of susceptibles. This qualitatively parallels
results for the first infection-transmission function we studied.

6.2.2. Infected host densities
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Figure 9a shows global densities of infected hosts at single-strain equilibrium, as a
function of virulence, for a small neighborhoddi£ 8). Densities are plotted for both the
spatially detailed model and pair approximation; the figure also shows local contagion ratios for
both models. Infected host density peaks at intermediate virulence for each model,
approximating the dependence of transmission on virulence. Infectives aggregated spatially,
more so in simulation than in the pair approximation’s results. Consequently, pair
approximation overestimated densities of infected hosts, when compared to the detailed model's
results. Figure 9b shows densities of infected hosts and contagion ratios for a larger
neighborhoodN = 48. The larger neighborhood reduces the degree of clustering and, not
surprisingly, the pair approximation better predicts behavior of the spatially detailed model.

7. Discussion

Superinfection models diseases where individual hosts may contact more than one strain
of a pathogen, and properties of the more (or most) virulent strain acquired govern the
consequences of infection. Martcheva and Thieme (2003) suggest that in humans, superinfection
seldom plays a role in the dynamics of micro-parasitic diseadednnenberg and Whittam,

2001), but occurs commonly in macro-parasitic disease.

Our model introduced spatial structure to superinfection dynamics and asked how
pathogen virulence might evolve under strain competition. The model’s results predict that
increased limitation on host-pathogen spatial dispersal increases extinction of highly virulent
strains, and reduces the stationary level of virulence that evolves in response to strain
competition. The results associate increased spatial clustering of infected hosts with reduced
convergent-stable levels of virulence. The model predicts that coexistence of competing strains

becomes more likely when one strain has a high transmission to virulence ratio, but is a poor
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interference competitor, and the other strain has a low ratio of transmission to virulence, but has
an advantage through interference competition.

When pathogen strains compete both between and within hosts, the dynamics of the host-
pathogen interaction defines the context for virulence evolution (Ebert and Mangin, 1997;
Castillo-Chavez and Velasco-Hernandez, 1998); the outcome of strain competition depends on
details of the population dynamics. Models for the superinfection process may assume density-
independent host growth in the absence of disease (Levin and Pimentel, 1981), may fix the host
population’s total density (Nowak and May, 1994; Claessen and DeRoos, 1995), or may include
logistic self-regulation in the host dynamics (Pugliese, 2002b). Our model assumes a host
population subject to intraspecific competition; a finite number of sites and local clustering
combine to produce self-regulation. When the number of hosts (suscpetibles plus infectives) is
fixed, so that total mortality is always balanced by birth or immigration, the mean-field
superinfection dynamics becomes equivalent to models where different species compete
implicitly for space, and higher ranked species displace weaker within-patch competitors
(Tilman, 1994; Stone, 1995; Kinze al, 1999; Adler and Mosquera, 2000).

The combination of spatially structured disease transmission and virulence-dependent
superinfection probabilities distinguishes our model. The mean-field approximation allows
virulence to evolve to its critical upper bound, but the introduction of spatial structure predicts
lower levels of virulence. At a general level, this result agrees with predictions of other disease-
transmission models with spatial structure (Claessen and DeRoos, 1995; Haraguchi and Sasaki,
2000; van Baalen, 2002a). At a more detailed level, we found significant effects of spatial

structure in both the pair approximation and simulation model. Our results indicate that spatial
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structure, and the consequent clustering, constrained the maximal virulence capable of dynamical
persistence and reduced the convergent-stable level of virulence.

Recall that the model's neighborhoods are restricted to nearest neighbors, so that
infection occurs on a regular network. If we held the number of neighbors per site constant, but
randomly selected the interaction neighbors, the contact network would change. Local clustering
would diminish, model behavior should move toward mean-field dynamics, and we would
predict higher levels of virulence (Boots and Sasaki, 1999; van Baalen, 2002a).

Virulence management usually refers to purposeful modification of infection-
transmission rates, so that low-virulence strains might be selectively favored over more virulent
pathogens (Ewald, 1994; Dieckmaginal, 2002). Our results point out that ecological
management of a diseased host population can, in some situations, take advantage of more
virulent strains to reduce mortality and increase global host density. Suppose that disease cannot
be cured (our model admits no recovery) in a population at endemic equilibrium, and that we
want to reduce total mortality. Management options are limited to introducing a strain that will
invade and exclude the resident, or introducing a strain that will coexist with the resident
pathogen (Ellioet al, 2002). Given a strictly monotonic increase in transmission with
virulence, introducing a strain slightly more virulent than the resident usually will exclude the
latter; mortality consequently declines and global host density increases. Similarly, introducing a
virulent strain that will coexist with a less virulent resident sometimes can reduce total mortality.
For given strain pairs capable of coexistence, the monomorphic avirulent strain almost always
minimized total host density. Hence, if the host is a “pest,” introducing low-virulence disease
may reduce pest density more effectively than would a high-virulence alternative. These patterns

in our results depend on model details. In particular, differences in virulence affect only disease
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transmission and host mortality; host reproduction does not depend on infection status. If
infection alters fecundity, other patterns will likely arise. Furthermore, our discrete-time model
must order events for concurrent updating of lattice sites; we allow host reproduction and
pathogen transmission to precede mortality. For some models, the difference between discrete
and continuous time simulations can be significant (Huberman and Glance, 1993).

Disease virulence can affect fecundity in addition to, or instead of, host mortality
(Gandoret al.,2002). Haraguchi and Sasaki (2000) assume that infectigizetehosts and
also increases their mortality. O’Keefe and Antonovics (2002) let infection reduce fecundity
without an impact on mortality. Both models predict that spatial structuring of transmission can
reduce virulence, compared to results for homogeneous mixing. A virulent pathogen might
reduce host reproduction so low that clustered infectives would not find enough neighboring
susceptibles to persist dynamically, an effect paralleling that of diseased-induced mortality.

Ewald (1994) defines virulence as increased host mortality caused by infection, and
argues that vector-borne diseases are likely to evolve greater virulence than will directly
transmitted diseases. The hypothesis supposes that iliness renders a host inactive, so that the rate
of direct contact with susceptibles will decline as virulence increases. However, the rate of
contact with vectors such as flying insects need not decline with virulence. So, direct
transmission might constrain virulence evolution through loss of contacts, and vectors could
relax this constraint (Day, 2002). In our model’s terms, vector-borne transmission could
effectively increase neighborhood size (Caretal, 2001) or randomize the contact network,
both of which could increase the competitive advantage of virulent pathogen strains.

Antia et al (1994) suppose that more virulent infections generate greater concentrations

of parasites within a host’s tissues. Increased within-host parasite density increases the between-
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host transmission rate of disease, and may also increase the rate at which the host’s immune
system produces antigen-specific cells. An increased immune resjpoeserates the host’s
recovery, leading to a virulence-modulated tradeoff between transmission rate and duration of
the infectious period. If the host’s nutritional status is good, an immune response need not tax
the host sufficiently to exact a fecundity or survival cost (Roletra$, 1995). But energetic
stress associated with reproduction (Opplefeal, 1996) or development (Whitaker and Fair,
2002) can result in antagonism between defense against disease and other elements of fitness.
Our analyses assumed the pathogen could evolve through pairwise competition, but held
the host constant. Host resistance to infection will sometimes co-evolve with transmission-
virulence properties of pathogens (Bowers and Hodgkinson, 2001; Gandir2002; Holt and
Hochberg, 2002). Interactions between horizontal and vertical transmission may also affect
virulence evolution (Kover and Clay, 1998; Koella and Doebeli, 1999). Finally, Thomas et al.
(2000) argue that costs of disease to a host may sometimes be compensated by indirect benefits
of parasitism, including avoidance by predators, and (once recovered) demonstration of disease

resistance to potential mates.

Appendix A. Transition probabilities for the detailed model

This appendix specifies transition probabilities between a site’s elementary siles.
identifies the elementary state of ditat timet; s(t) 0 {0, S, A, \¥. The number of sites on the
interaction neighborhood, for both host propagation and infection transmissi@pJis N, i.e.,
theN nearest neighbors &f n(s) counts the respective elementary stategiat timet. 0<

n(s) <N, andZsn(s) = N.
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Suppose that sitleis open at timé. Thens(t + 1)1 {0, §}; no change occurs, or a newly
produced susceptible occupies the empty site. The probability of a birthkassite
1-(1-bN"O), (A1)
The complement of (Al) is the probability of no change at an open site.

Next suppose sitieis occupied by a susceptible.sift) =S s(t + 1)1 {0, S, A, V. A
susceptible host may acquire an avirulent infection and survive, may acquire a virulent infection
and survive, may die, or may avoid infection and survive (no change). The probability that the
susceptible is infected by the avirulent strain and survivastdis:

[1- (A" [@-B)™ +[1-(1-B)" ] (L- )] (L -po). (A.2)
The probability that a susceptible is virulently infected and survives is:

[1—(1-B)"] [(1-B)" +[1-(1-B)"P] y](L-ps). (A.3)
A susceptible’s mortality probability j3s. The probability of no change wheift) =S
complements the sum of these three probabilities.

Now suppose that an avirulently infected host occupie& sitéimet. If s(t) =A, then
st + 1)1 {0, A, V}. An avirulently infected host may acquire the virulent strain and survive,
may die, or may avoid superinfection and survive. The probability that the virulent strain
displaces the avirulent (via superinfection), and the host survives is:

[1-(1-B)"™ y(1- ). (A.4)
The mortality probability igia. The probability of no changed., avoiding superinfection and
surviving) is the complement of these two probabilities.

Finally, suppose that a virulently infected host occupieksités(t) =V, thens(t + 1)
{0, V}. The site becomes open through mortality with probahjility The probability of no

change is (1 tv), completing the model’s transition probabilities.
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Appendix B. Mean-field approximation
The global density of susceptibles at tirne () sums densitie of births at open sites plus

susceptibles at timethat avoid both avirulent and virulent infection and then survive. Hence:

pst+1)=B (o5 +pa+ 0, ) Py + ps(t) [1- 115 4 0)] |1- 1 o ()] (1- 11s). (B.1)

The global density of avirulently infected hosts at titne {) has four sources. The
avirulent strain, and not the virulent, is transmitted to some susceptibles that survive. Second,
both strains are transmitted to some susceptibles, the avirulent strain wins, and the hosts survive.
Third, some avirulently infected hosts avoid contacting the virulent strain and survive. Finally,
the virulent strain is transmitted to some avirulently infected hosts, but superinfection fails and

the hosts survive. Then:

Palt+1)= pst) 1S pal) [1- 18 oy () + (1-v)ug oy €) ] (1- 1)
(B.2)

+0a0) [1-18 oy ) + @-v) 16 0, )] (- 11).
The global density of virulently infected hosts at time () has four sources. The
virulent strain, and not the avirulent, is transmitted to some susceptibles that survive. Second,
both strains are transmitted to some susceptibles, the virulent strain wins, and the hosts survive.
Third, the virulent strain displaces the avirulent stwg@nsuperinfection in some hosts that

survive; finally, some virulently infected hosts survive. Then:

Py (t "'1): Ps(t) Ly Py (t) ll-uf\ PA(t) +y Uy PA(t)J (1_Ns )
(B.3)

"'PA(t) Y iy Py (t) (1_ UA) + pv(t) (1_Nv )
After simplification, expressions (B.1) — (B.3) become Eqg. (3) — (5) in the text.

In the absence of disease, (t)= p, (t)= 0. At positive, disease-free equilibrium:

31



Bps(t)= ps(t) (B[1-ps(t)]-s), so thatpg =1-Hs g for us<B.

If a single pathogen strain, with host-mortality probablity> s, invades the disease-

free equilibrium, the strain’s growth rate when rare must exceed unity, requiring:
t+1 _ *
Pl %A(t)_ (1"' Ps NX) (1-ps) > 1. (B.4)

Substituting forps  in the absence of disease and then simplifying yields expression (6) in the
text. The same condition results by requiring that the pathogen’s reproduction niggnber,

exceed unity for invasion. Since the mean-field model assumes homogeneous mixing, we have:
1-a
Ro(a)= 03 (1- e ) A/ o1 (B.5)
U Al]

Since 0 <a < 1, dRy/dup < 0; for homogeneous mixing, growth when rare declines with any
increase in virulence. Expression (B.5) shows that for any positive density of susceptibles, there
is a transmission to virulence ratio large enough for successful pathogen invasion.

If a single pathogen strain invades the host population and advances to endemic

equilibrium, the growth rate in (B.4) falls to unity, and the equilibrium density of susceptible

hosts becomepy =% /(1- ug). At the single-strain endemic equilibrium the total density of

hosts isp” = pg + p,. Host birth and survival balances mortality, andgatisfies:

1-a

p =B (1-p7) ke + Ep* - lﬁi’*u El- Hy ). (B.6)
S

Substituting and simplifying yields:

B(o'f +(up-B)p - p;(ua—ps) = 0. (B.7)
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The root of the quadratic on (0, 1) has the form shown in eq (7) of the text, wher@ - pg
at single-strain endemic equilibrium.
Given the single-strain equilibrium, we ask if a second strain can invade. Consider a pair

of strains with host-mortality probabilitigs < 1. Suppose the avirulent strain is resident; then
the equilibrium is given by =% /(1- ug) and by Eq. (7) in the text. The virulent strain
advances when rare if its increase through infecting susceptibles and through superinfection
exceeds the loss through host mortality; successful invasion by the virulent strain requires:
w8 o5 (1- 8 oy [1-v]) @-ps) + v kG 0 - 11s) > By s (B.8)
whereyincreases withtfy - tp). After simplification, we obtain expression (8) in the text.

Now assume the virulent strain is resident; the endemic equilibrium is described in the
text. The avirulent strain advances when rare when:
s ps (1-ps) +1-pa| [1-1G oy +(@-v)gpy] > 1 (B.9)

Simplification yields expression (9) in the text.

Appendix C. Pair approximation dynamics

Equations foP [0S andP[AV] appear in the text; we present the remaining seven
difference equations here. We begin with the [00] block pair. Generating a pair block with two
empty sites requires an already empty pair block and no births, no birth and a death on a block

with exactly one site occupied, or two deaths on a pair block with both sites occupied. So:
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P..[0od =R [oq] [1- A ()"
+2 (Hs R[os] U, I:i[OA] + L, R[O\/]) (1_ b) [1—}\ (t)]N—l

+ s ? R[S+ u,” R[AA+ 1, RIW] + 2 (s pa RISA + pspy RISV]+ papy RIAV] ).
(C.1)
Next consider the W] block pair. No [0] block becomes a K] block in one time
interval, since hosts are born susceptible. iIMpllock becomes an4] in a single period, since
the avirulent strain cannot displace the virulent. Eight different pair blocks can prodje a [0
block. Any transition of an$] to [0A] requires avirulent infection at site Any transition of a

[IA] block to [QA] requires that the host at sit@void superinfection. So:

Pral0A]= (- pg) (1-[1-0,00") [ [1-, @ + (1-v) (1-[1-6, (0] )]
<((@-0)[1-26)" RloS] + s RIs)
+ RIAS (- 15) (1-(1- ) - 0,01 ) [ [2-6, €] + (1) (2-[2-6, ()"
+ RIvel i, (1 ps) (1-[1-0,0])
<[a-p) -6, 0] + (1-p) (- (2-5,) [2-8, 0]*)]
v (1-p) [[-0,60 + (1-v) (- [1-0, 01"
< ((1-b)B-A0)]"* RIOA] + usRISA + iy R[Ad))

e iy (- )R VA [ (1- B ) -0, 0] + (1-y) (1-(1- 5,) -6, €]"2) |

(C.2)
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The first transition in (C.2) is § — [0A]. Sitek is empty, and no birth occurs there. The
susceptible host at sitemust be exposed to avirulent infection, and not be infected by the
virulent strain. Then the hostramust survive. The three othé§|[ - [0A] transitions require
mortality, rather than birth, & Note that in the fouiA] - [OA] transitions, the avirulently
infected host at sitemust avoid superinfection.

Next consider a block with two susceptibles. No block pair that includes an infected host
can become argf in a single period, since hosts do not recover. Empty sites require a birth,

and susceptibles must avoid infection. So:

plsd=rlod (1-[1-2@1"F + (1-w) rlsd [1-6,6) 1 b-a, ()]

(C.3)
+ 2R[os] (1-4) (1-(1-0) [1-A O1") [1-0,0) ] [1-0,00 1"
The 2 in the last term of (C.3) indicates that transitions frongapf@r block or from an$0] block to a
[S§ pair block occur with the same probability.
Now consider the§A block pair. Since infected hosts do not recover, neithgmpr
[V]] pair blocks become ai®h block in a single period. The avirulent strain cannot displace the
virulent hosts, so na{] block becomes argf block in a single period. That leaves foijf [

block pairs, with 0 {0, §t andj I {S, A in the equation for theJA block pair:
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R[sA= (- us) Rlos] (1- (1-b)[1-2()]"7)
(1 [1-0,00" )-8, 01+ @) (2-12-0, ")
+ - 1) RIOA] (2-(1-b) [1-2 1) -0, 0" + @-y) - [2-6,01*)]
v (-usF RIsY [1-6,01" [1-6, @)™
< (1-[1-0,01") [[2-6, 01" + @) (1-[2-6,01")]
¢ (- 5)(1-p)RISA

< (1-8,) [1-0,01"* [1-6, 1" [[1-0, 00"+ (1-y) (1-[1-0.0]*7) ]
(C.4)
The [iS] blocks must avoid virulent infection, and tha][blocks must avoid superinfection to
generate thedA block pair.
Next consider $\] block pairs. Since hosts are born susceptible and do not recover once
infected, noip], [Aj], nor [Vj] block pair can become aB¥] block in a single time period. Six

different block pairs are included in the equation for & plock:
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plsvI=(1- (1-b)[1-2()]")
1- ue) Rlos] (2-[2-6, O]") [[1- 0,01 + v (2-[1-6,O)]*)]

X

A 0
O O
g +(@-u)rAly (1-[1-6,0)]")+ (1- ) RIov] ]
(C.5)

+ (1_ /Js) [1_ 9/-\('[)]’\1_1 [1_ 6, (t)]N_1

0(- ) Rlsq (- [1-0, 1) [[1-8. 01 +y (1-12-0,01)] 2

x [J O
g +(1-u)RlsA (1-8.)y (1-k-6,0)]"*)+ (1-)R[sV (:-8,) B

The [(] blocks withr occupied require a birth at ske[OA] also requires superinfection at site
Now consider the4A] block pair. Pair blocks including either an open site or a

Virulently infected host cannot becomeAd] block in a single interval. For the] block:
Rladl= (1- ) Rlsd (1-[1-0,01") [[1-8, 61" + (1-v) (1-[1-8,6]")]
+2(1-p15) (1-1,) RIsA (1- (1- 8,) [1-0,0]")
«[[1-0,00" + (1-y) (1-[1-0,01")] [[1-0.0]* + (1-y) (1-[1-0.0)]")]
+ (- Y rIAA [[1-0,01 + (1) (1-[1-0,0]*)]"

(C.6)
The 2 associated with th8A4 pair block in (C.6) indicates that both &¥ block and anAg
block are changed t&\R] by the same transitions.

Finally, consider the\{V] pair block. Any block without an open site can becomé\4 |

block pair in a single time period. So:
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Rv]=|[1-0,0)]"* + v (1-[1-6,0)]")]

{1-uoF Rlsd (1-[1-6,01"F [--0,00" + v (1-[1-0,01")]

X

0
=
0
0
g

OO

+2 (1-p5) (- ) RV 1~ (2- B, ) [1-6, O)]")
+2(1-p) (1- 1) R[SA (1-[1-8,()]*)

<[ [-0,00" + v (- (- B) [1-0,01" )]y (1-[1-0,0] ™)
+ (- RlAA [y (1-[1-6,0)]")]
+2R[AV] (- ) (-1 )y (- (- B,) [2-0,00]") + (-1, ¥ R

(C.7)

Eqg. (20) and (21) and Eqg. (C.1) through (C.7) complete the pair-approximation model.
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Figure Legends

FIG. 1. Feasible transitions between a site’s elementary states.

State 0 represents an empty site, skapresents a susceptible host, statepresents avirulent
infection, and stat¥ represents virulent infection. Infected hosts do not recover the susceptible
state; the transition from stafeto stateV represents superinfection; the more virulent strain
displaces the avirulent strain. Transitions into state O represent mortality.

FIG. 2. Pathogen-transmission probabilities.

Plots of3(1s); thick curve is Eq (1A), and thin curve is Eq (1B). Ordinate is probability
pathogen transmitted from given infected host to nearest-neighboring site. Parameter values for
Eq (1A) area = 0.5 and\ = 48. Parameter values for Eq (1B) are 1.6,z = 6.245, andN =

48.

FIG. 3. Pairwise invasion analysis of mean-field approximation.

Abscissa is host mortality probability of the resident pathogen at single-strain equilibrium.
Ordinate is host mortality due to infection by introduced strain. Below the diagonal, the
introduced strain is less virulent than the resident; above the diagonal, the introduced strain is
more virulent than the resident. Black indicates that invader advanced and excluded the resident.
White indicates that resident repelled invader; latter went extinct. Gray indicates coexistence;
invasion succeeded and both strains remained extant. Parameter vatueabey = 0.2

(strong competitive asymmetry), apgd= 0.05. All entries jut above the diagonal are black;
hence any resident can be invaded and excluded by a slightly more virulent invader, until
virulence reaches the critical upper bound for persistence. Coexistence is largely limited to

pairing of strains with virulence less than 0.25 and strains with virulence exceeding 0.5.
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FIG. 4. Pairwise invasion analysis:= 48, strong competitive asymmetry.
Transmission/virulence declines monotonically with virulence. Colors defined in legend for Fig.
3. Parameter values ame= 0.5, = 0.2, andus = 0.05. (a) Spatially detailed model. Each entry

is the result of a single simulation. (b) Pair approximation. Stationary virulence spategy
located by considering results along diagonal. Bglowe have black over white, so small
increase in virulence favored in strain competition. Ahovee have white over black, so

strain competition favors slightly less virulent strain. Convergent stable stationarypaiith
virulence close to 0.6, is a local ESS.

FIG. 5. Pairwise invasion analysis:= 48, weak competitive asymmetry.

Transmission/virulence declines monotonically with virulence. Colors defined in legend for
Fig. 3. Parameter values are the same as in Fig. 4, buphe@e2. (a) Spatially detailed model.
Each entry is the result of a single simulation. Probability of superinfection reduced in
comparison to Fig. 4a; extent of coexistence lower than in Fig. 4a. (b) Pair approximation.
Frequency of superinfection reduced in comparison to Fig. 4b. Stationarypairith

virulence close to 0.56, is convergent stable and a local ESS.

FIG. 6. Infected host density at single-strain equilibrium: strong asymmetry,
transmission/virulence declines monotonically with virulence.

Global infection shows density of infected hosts as function of host mortality probability; results
of both spatially detailed model (open triangles) and pair approximation (closed squares) plotted.
Equilibrium density of infection declines as virulence increases. Local contagion ratio exceeds
unity when infected hosts are aggregated spatially; results of both spatially detailed model
(closed circles) and pair approximation (open circles) plotted. Parameter valaes Qg () =

0.2, andus = 0.05. (a) Small interaction neighborhoblds 8. (b) Large interaction
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neighborhoodN = 48. Note improvement of pair approximation with respect to global density

of infection.

FIG. 7. Maximal host density and maximal host mortality.

Results from pair approximation with=48, strong competitive asymmetry, and
transmission/virulence declining strictly monotonically in virulence. That is, parameter values
area = 0.5, =0.2, andus = 0.05. (a) Pathogen strain(s) maximizing total host density at
endemic equilibrium. Given that two strains can coexist, A indicates maximal host density when
only avirulent strain infects hosts. V indicates maximal host density when only virulent strain
infects hosts, and C indicates maximal host density when both strains occur together. (b)
Pathogen strain(s) maximizing host mortality at endemic equilibrium. Given that two strains can
coexist, A indicates maximal host mortality when only avirulent strain infects hosts. V indicates
maximal host mortality when only virulent strain infects hosts, and C indicates maximal host
mortality when both strains occur together.

FIG. 8. Pairwise invasion analysis:= 48, strong competitive asymmetry,

transmission/virulence peaks at intermediate virulence.

Colors defined in legend for Fig. 3. Parameter valuesrarel.6,f = 6.254,¢ = 0.2, andus =

0.05. (a) Spatially detailed model. Each entry is the result of a single simulation. (b) Pair
approximation. Convergent stable stationary pginnear 0.76, is a local ESS.

FIG. 9. Infected host density at single-strain equilibrium: strong asymmetry,
transmission/virulence peaks at intermediate virulence.

Symbols defined in legend for Fig. 6. Parameter valuea aré&.6,f = 6.254,y= 0.2, angus =

0.05. Global infection shows density of infected hosts as function of host mortality probability;

results of both spatially detailed model and pair approximation plotted. Equilibrium density of
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infection varies nonlinearly with virulence. Local contagion ratio exceeds unity when infected
hosts are aggregated spatially; results of both spatially detailed model and pair approximation
plotted. (a)N =8. (b)N =48. Pair approximation better predicts infected host density with

larger neighborhood. Note difference of scale for contagion ratio.
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Fig. 4
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Fig. 5
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Fig. 6
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Fig. 7
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Fig. 8
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Fig. 9
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Table 1. Symbols used in spatially detailed model.

s(t)

Ok

n(s)
Us
Ha

Hv

Meaning(Numerical valug

Basic reproduction number of pathogen stra|
Total number of lattice sites in spatial model
Elementary state of siteat timet

Interaction neighborhood around lattice &ite
Neighborhood sizeN = 8, 48)

Host reproductive-effort probabilityd(= 1)
Per-site probability host attempts propagatiq
Avirulent strain infection probability
Virulent strain infection probability
Superinfection probability

Number of sites oy with states
Susceptible host’s mortality probability (0.05
Mortality probability with avirulent infection
Mortality probability with virulent infection
Shapes infection-transmission function
Weight equalizing total infectiousness for
different transmission-virulence functions
Sets concavity/convexity of superinfection

probability ( = 0.2, 1.2)

in

n
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Table 2. Symbols introduced in mean-field model.

Symbol

Polt)
ps(t)

Pa(D), (1)
p(t)

&

Meaning

Global density of open sites with stafgimet
Global susceptible density

Global density of avirulent, virulent infection
Global density of hosts at tinte

Virulence mutation, resident-invader differen

Table 3. Symbols introduced in pair approximation.

Symbol

Plij]

Pi]

A(t)

Oa(t)

(1)

Bsi(t)

Meaning

Block probability, statesand;j

Global density, sites with staie

Probability site, state unknown, attempts to
colonize open site

Probability susceptible contacts avirulent
infection at site with state unknown
Probability susceptible contacts virulent
infection at site with state unknown
Probability avirulently infected host contacts

virulent infection at site with state unknown
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