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Abstract  

When pathogen strains differing in virulence compete for hosts, spatial structuring of 

disease transmission can govern both evolved levels of virulence and patterns in strain 

coexistence.  We develop a spatially detailed model of superinfection, a form of contest 

competition between pathogen strains; the probability of superinfection depends explicitly on the 

difference in levels of virulence.  We apply methods of adaptive dynamics to address the 

interplay of spatial dynamics and evolution.  The mean-field approximation predicts evolution to 

criticality; any small increase in virulence capable of dynamical persistence is favored.  Both pair 

approximation and simulation of the detailed model indicate that spatial structure constrains 

disease virulence.  Increased spatial clustering reduces the maximal virulence capable of single-

strain persistence and, more importantly, reduces the convergent-stable virulence level under 

strain competition.  The spatially detailed model predicts that increasing the probability of 

superinfection, for given difference in virulence, increases the likelihood of between-strain 

coexistence.  When strains differing in virulence can coexist ecologically, our results may 

suggest policies for managing diseases with localized transmission.  Comparing equilibrium 

densities from the pair approximation, we find that introducing a more virulent strain into a host 

population infected by a less virulent strain can sometimes reduce total host mortality and 

increase global host density. 

 

Keywords:  Adaptive dynamics, Spatial process, Superinfection, Virulence evolution 
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1. Introduction 

 When increased disease virulence accelerates transmission of infectious propagules 

between hosts, but simultaneously reduces the longevity of infection within hosts, changes in 

virulence can alter host-pathogen dynamics significantly (Bull, 1994; Ewald, 1994; Frank, 1996; 

Day, 2002; Holt and Hochberg, 2002).  Population dynamics, in turn, sets the framework for the 

evolution of virulence (Castillo-Chavez and Velasco-Hernandez, 1998; van Baalen and Sabelis, 

1995).  In particular, spatially structured disease transmission can govern virulence evolution 

through effects on infection dynamics; locally structured infection generally favors virulence 

lower than predicted by homogeneous mixing of susceptible and infectious hosts (Haraguchi and 

Sasaki, 2000; van Baalen, 2002a).  We present results on the evolution of virulence, defined here 

as the increase in host mortality due to disease.  We model spatially structured superinfection, a 

form of contest competition between pathogen strains differing in virulence.  To address the 

interaction of host-pathogen spatial processes and virulence evolution, we apply methods of 

adaptive dynamics (Geritz et al., 1998; Pugliese, 2002a; Mágori et al., 2005). 

 Section 2 summarizes the hypothesis that pathogen-strain competition drives virulence 

evolution.  Section 3 presents a spatially detailed model for pairwise strain competition; we 

assume asymmetric superinfection (Levin and Pimentel, 1981) where the chance of competitive 

displacement varies with the difference in virulence between strains.  Section 4 summarizes a 

mean-field approximation to the spatial model, and Section 5 develops a pair approximation 

(Matsuda et al., 1992; Hiebeler, 2000).  Section 6 applies adaptive dynamics to both the pair 

approximation and simulations of the detailed model.  The Discussion collects predictions, offers 

a simple perspective on virulence management, and comments on broader definitions of disease 

virulence (Antia et al., 1994; O’Keefe and Antonovics, 2002; van Baalen, 2002b). 
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2.  Pathogen-strain competition 

 Properties of transmission between hosts and resource exploitation within infected hosts 

define the mode of pathogen-strain competition.  If infection of a host individual by one strain 

prevents infection of the same individual by a second strain (Bremermann and Thieme, 1989), 

competition is preemptive.  Pathogen strains compete between hosts, and there is no within-host 

competition.  If infectives and susceptibles mix homogeneously, preemptive strain competition 

may favor maximization of R0, a strain’s basic reproduction number (expected number of new 

infections per infection in a population of susceptibles).  Maximizing R0 precludes coexistence; 

an optimally virulent strain reduces susceptible density so low that no other level of virulence 

can advance when rare (Bremermann and Thieme, 1989; van Baalen, 2002a). 

 Pathogen strains compete both between and within hosts under coinfection and 

superinfection.  Coinfection assumes that different strains can infect, and concurrently be 

transmitted from, the same host individual (Bremermann and Pickering, 1983).  van Baalen and 

Sabelis’ (1995) assume that each of two strains exploiting the same host individual is transmitted 

less efficiently than when exploiting a host solitarily, so that coinfection resembles scramble 

competition.  Superinfection implies contest competition.  A more virulent strain can infect a 

host already infected by a less virulent strain, and then displace the less virulent strain (Levin and 

Pimentel, 1981; Castillo-Chavez and Velasco-Hernandez, 1998).  Some models of the process 

permit two-way superinfection, but maintain a virulence-based competitive asymmetry (Gandon 

et al., 2002; Pugliese, 2002a).  Maniatty et al. (1998) generalize strain competition by 

decoupling superinfection from a virulence-based advantage in transmission rate. 

 Coinfection and superinfection may permit coexistence of pathogen strains under 

homogeneous mixing (Nowak and May, 1994; May and Nowak, 1995; Mosquera and Adler, 
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1998; see Saldaña et al., 2003).  For superinfection, Adler and Mosquera (2000) caution that 

multi-strain coexistence can result from assuming a discontinuous superinfection function, where 

a minimal increase in virulence implies a strong, deterministic advantage in contest competition.  

Smoothing the superinfection function, so that competitive advantage varies continuously with 

the difference in virulence levels, eliminates much of the multi-strain coexistence (Adler and 

Mosquera, 2000).  Another consequence of discontinuous superinfection is that no resident strain 

will be evolutionarily stable, but for smoothed superinfection, Pugliese (2002a) finds conditions 

yielding a monomorphic, evolutionarily stable strategy (ESS) for virulence. 

When selection acts on coinfecting or superinfecting pathogens, within-host competition 

diminishes an avirulent strain’s benefit of an extended infectious period.  A strain exploiting a 

host solitarily “anticipates” sharing host resources with a coinfecting strain, or losing the host 

entirely to a superinfecting strain.  Either case can favor greater virulence, to exploit more host 

resources before a competitor arrives.  A broad implication of these models is that different 

modes of strain competition generate different host-pathogen dynamics, and differences in the 

dynamics can have important effects on the evolution of virulence. 

 Spatial structuring of disease transmission can alter consequences of pathogen strain 

competition.  If infectious contacts are spatially localized, disease ordinarily advances more 

slowly than under global mixing, and the difference depends on neighborhood size (Caraco et 

al., 1998; Duryea et al., 1999; Keeling, 1999; van Baalen, 2000).  Local structuring of infection 

should then reduce evolved levels of virulence, compared to homogeneous mixing (Herre, 1993; 

van Baalen, 2002a).  A more virulent strain infects nearby susceptibles faster, but the greater rate 

of host mortality generates spatial heterogeneity in the host population’s density.  Clusters of 

diseased hosts can become isolated from susceptibles, and the infection may fail to advance 
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(Sato et al., 1994; Rand et al., 1995).  A less virulent strain, with an extended infectious period, 

might not outpace the local dynamics of its host, and so be able to advance globally. 

Rand et al. (1995) and Haraguchi and Sasaki (2000), under different assumptions, 

demonstrate that spatially structured infection can favor reduced virulence (or lower 

transmission) when strains compete preemptively.  Claessen and de Roos (1995) simulate 

coinfection with transmission limited to nearest neighbors, and find that evolutionarily stable 

virulence with global mixing may fail to predict results of a spatial model.  Our study 

complements these analyses.  We analyze disease virulence for spatially structured 

superinfection by applying adaptive dynamics (Kisdi and Meszéna, 1993; Geritz et al., 1998; 

Pugliese, 2002a) to our model and its deterministic approximations. 

3.  Spatially detailed model of superinfection 

 Each dynamically equivalent site on a rectangular lattice, with J total sites, can be 

occupied by at most one host individual.  Any site’s local state belongs to the set {0, S, A, V}.  

We represent an empty site by 0.  S identifies a site occupied by a susceptible host.  A represents 

a site occupied by a host infected with a less virulent pathogen strain; for convenience we term 

this avirulent infection.  V represents a site with a host infected by a more virulent pathogen, 

termed virulent infection.  

Time t advances discretely, and we order events as follows.  Reproduction is independent 

of infection status; offspring produced at time t join the host population as susceptibles at (t + 1).  

Pathogens attack available hosts while the latter reproduce; new infections appear at (t + 1).  

Next, all hosts alive at time t are subject to mortality; a host’s survival depends on its infection 

status at the beginning of the period.  At time (t + 1) combined effects of birth, infection of 

susceptibles, superinfection, and mortality are realized.  Infected hosts do not recover. 
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3.1.  Parameters of the spatial model 

 Contact structure governs details of epidemiological invasion (Keeling, 1999; Korniss 

and Caraco, 2005).  We assume nearest-neighbor interaction in both host dispersal and infection 

transmission.  Hence an empty site may be colonized only by propagules dispersed from 

surrounding sites.  σc(k) represents the colonization neighborhood about site k (k = 1, 2, …, J).  

The number of sites in the neighborhood is σc(k) = N.  If site k is empty, each host on σc(k) 

independently places an offspring at the open site with probability b, the birth probability.  Host 

reproductive effort remains constant as the size of the colonization neighborhood varies, so the 

per-site birth probability b declines with N.  Let b = B/N  < 1, where B represents a host’s 

reproductive expenditure. 

 σp(k) represents the infection neighborhood about site k; infectious contacts are spatially 

structured.  For simplicity, let σp(k) = σc(k), so that colonization and infection neighborhoods 

become the same set of N nearest neighbors.  If a susceptible occupies site k, each avirulently 

infected host on σp(k) independently transmits that strain to site k with probability βA.  βV is the 

virulent infection probability.  If a susceptible or avirulently infected host occupies site k, each 

host on σp(k) infected by the virulent strain independently transmits that pathogen strain to the 

site k with probability βV.  The total infectious propagules emanating from a host remains 

constant as the size of the transmission neighborhood varies, so βi ∼ N -1; i = A, V.  Since the host 

and pathogens disperse on the same neighborhood, we have σc(k ) = σp(k) = σk.  

Discrete-time dynamics allows both strains to be transmitted to the same susceptible 

during a single time interval.  Transmission of the virulent strain to an avirulently infected host 

produces a similar situation.  Each of these events generates contest competition, which is 

resolved via γ, the superinfection probability.  If both strains attack the same susceptible, or 
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when the virulent strain attempts to superinfect an avirulently infected host, γ is the probability 

that the host, should it survive, develops a virulent infection.  The virulent strain has an 

advantage in contest competition, so γ ≥ ½; see section 3.2. 

Following host and pathogen dispersal, each host independently dies or survives to the 

next time interval.  Mortality probabilities depend on infection status.  µS is the probability that a 

susceptible, alive at t, is dead at time (t + 1).  The mortality probability for an avirulently infected 

host is µA, and µV is the mortality probability for a virulently infected host.  Given our definition 

of virulence, µS < µA < µV. 

 Figure 1 diagrams feasible transitions for a single site.  Table 1 lists symbols for the 

spatially detailed model.  In Appendix A we derive expressions for the detailed model’s 

transition probabilities. 

3.2.  Functional dependence of transmission and virulence 

Details of transmission-virulence interactions remain unknown (Bryant and Behm, 1989; 

Antia et al., 1994; Powell et al., 2000; Ganusov and Antia, 2003).  We consider two possibilities.  

First, suppose that βi increases in a strictly monotonic, concave manner as µi increases: 

( ) .,;10; VAiNiii =<<= αµµβ α                   (1A) 

The virulent strain has the greater per-infection probability of infecting a susceptible neighbor, 

but imposes an increased host-mortality probability.  βi/µi, the ratio of transmission to virulence, 

is the product of the transmission probability (per unit time) and the expected duration of the 

infection-transmission period.  Since 0 < α < 1, the transmission to virulence ratio declines as 

virulence increases. Therefore, any greater capacity for interference competition (superinfection) 

implies a reduced capacity for “colonization” of susceptible hosts. 
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Secondly, we can suppose that the transmission probability reaches a maximum at 

intermediate virulence: 

( ) ( )
.,;0,0;

1
VAif

N
f ii

ii =>>
−

= αµµµβ
α

      (1B) 

At low virulence levels, the infection-transmission probability increases with virulence, and then 

declines at sufficiently high virulence.  The transmission to virulence ratio βi/µi also can reach a 

maximum at intermediate virulence, implying that the best colonizers no longer are the least 

virulent strains (Nowak and May, 1994; Claessen and de Roos, 1995; Pugliese, 2002b).  The 

constant f in Eq. (1B) lets us equate ∫ (βi/µi) dµi for the two transmission functions, simplifying 

comparisons of our computational results; note that we relax the constraint on the value of α in 

Eq (1B).  Figure 2 shows the two transmission-probability functions of virulence, plotted with 

parameter values we use in analyses reported below. 

The superinfection process is discontinuous in that only the virulent strain can exclude its 

competitor.  But for any µV > µA, the superinfection probabilityγ depends continuously on the 

difference in host mortality probabilities, according to: 

( ) ( )[ ] .0;21, >−+= ψµµµµγ ψ
AVAV        (2) 

If ψ < 1, a small difference in virulence gives the virulent strain a strong competitive advantage 

through superinfection.  If ψ  > 1, a larger difference in virulence is required for the same 

competitive advantage; as ψ grows large, γ → ½. 

4.  Mean-field approximation 

 We relegate details of the mean-field analysis to Appendix B and present the results here.  

Table 2 lists symbols introduced in this section. 
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ρi(t) represents the global density of sites in state i at time t; as above, i ∈ {0, S, A, V}.  

For brevity, we restrict the mean-field analysis to disease-transmission probabilities that increase 

strictly monotonically with virulence, Eq. (1A).  Mean-field approximation leads to a mass-

action formulation for densities of susceptible, avirulently infected and virulently infected hosts: 

( ) ( ) ( ) ( )[ ] ( )[ ] ( ),1111 0 SVVAASVASS tttBt µρµρµρρρρρρ αα −−−+++=+          (3) 

( ) ( ) ( ) ( ) ( )[ ] ( )[ ],1111 tttt VVASSAAA ρµγµµρµρρ αα −−+−=+                  (4) 

( ) ( ) ( ) ( ) ( ) ( )[ ]
( )( ) ( )

.
11

111
1













−+−+

−−−
=+

VAAV

AASSV
VV

t

tt
tt

µµρµγ

ρµγµρµ
ρρ

α

αα

                (5) 

The density of open sites, ρ0(t), follows from Σi ρi(t) = 1.  We can express total host density as 

ρ(t) = 1 − ρ0(t). 

In the absence of infection, the host population advances to a positive disease-free 

equilibrium where the global density of susceptibles is B
S

S
µρ −= 1* , with µS < B.  Given a host 

population at the disease-free equilibrium, consider invasion by a single pathogen strain which 

induces a host-mortality probability µA > µS.  Pathogen invasion requires that the strain’s growth 

rate when rare exceed unity.  Under homogeneous mixing this requirement reduces to: 

( ) .11 1 αµµµ −>−


 − AS
S

B                 (6) 

A high density of susceptibles promotes a single strain’s initial advance, as does a large 

transmission to virulence ratio.  That is, both low pathogen virulence (long infectious period), 

and high transmission of infection (α not too great) increase the rare pathogen’s growth. 
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 Assuming that the pathogen invades, infection advances to its single-strain endemic 

equilibrium, where the susceptible density becomes ( )SAS µµρ α −= − 11* .  The corresponding 

density of infected hosts is: 

( ) ( )[ ] ,4
2

1

2
*2/1*2***
SSASA

A
SA BB

BB

B ρµµρµµρρρ −−+−+−=−=          (7) 

at the positive, single-strain equilibrium.  Susceptible density declines, and the equilibrium 

density of infected hosts increases, as the transmission to virulence ratio increases.  ρA
* increases 

as B increases, and declines as either µS or µA increases; greater virulence decreases the 

equilibrium density of infected hosts. 

 Given the single-strain endemic equilibrium, we turn to the mean-field’s pairwise 

invasion criteria.  Consider an avirulent and a virulent strain with (respective) host-mortality 

probabilities µA < µV.  First, assume the avirulent strain is resident with density given by Eq. (7).  

The virulent strain invades if its increase when rare through infecting susceptibles and through 

superinfection exceeds losses through host mortality; invasion by the virulent strain requires: 

( ) ( ),11*
AAVA µγµµρ αα −−> −−             (8) 

where the superinfection probability γ depends on the difference ( AV µµ − ). 

 Now assume the virulent strain is resident; global susceptible density is given 

by ( )SVS µµρ α −= − 11* , and infective density is given by Eq. (7) with µV replacing µA, and ρV 

replacing ρA.  The avirulent strain invades if its increase when rare through transmission to 

susceptibles exceeds its losses through contest competition and host mortality; successful 

avirulent invasion requires: 

( ).1 1

1
*

AVAV

AVA
V µµµµγ

µµµρ ααα

αα

−+
−< −

−

           (9) 
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If both (8) and (9) hold, the two strains can coexist ecologically.  If ρA were great enough for (8) 

to hold, µA cannot be too large.  If ρV were small enough for (9) to hold, µV cannot be too small.  

Virulence levels of the two strains must differ sufficiently for coexistence in the mean-field 

model.  When the strains coexist, the avirulent type persists by finding enough susceptibles to 

infect, and the virulent strain maintains itself through interference competition. 

 To address virulence evolution in the mean-field model, suppose that mutants arise at the 

single-strain endemic equilibrium, and that host-mortality probabilities of the resident and 

mutant differ by a small amount ε.  A virulent mutant invades a resident µA if expression (8) 

holds with µV = µA + ε.  An avirulent mutant invades a resident µV if expression (9) holds with µA 

= µV - ε.  As ε → 0, the right-hand side of both (8) and (9) approaches 0.  Hence, a virulent 

mutant invades successfully, but an avirulent mutant is repelled.  Under the mean-field model, 

assuming mutations in virulence are small, virulence “evolves to criticality” (cf. Rand et al., 

1995).  That is, virulence increases, as each more virulent mutant invades, until host mortality 

approaches ( )
( )α

µµ
−





 −


 −

11

11 S
S

B .  Beyond this point, despite the increase in susceptible 

density with virulence, the rate of mortality among infected hosts becomes too great to sustain 

the pathogen (R0 falls below unity; see Appendix B). 

 Figure 3 plots pairwise invasibility results for the mean-field model.  If the difference in 

virulence between strains is small, the more virulent invader (resident) always invades and 

excludes (repels) the less virulent strain.  Some strain combinations can coexist, if the difference 

in virulence is large enough.  No monomorphic ESS is possible, and sequentially monomorphic 

populations (Geritz et al., 1998) evolve to criticality.  Note that R0 declines and susceptible 
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density increases as virulence evolves, the outcome opposite that predicted for preemptive strain 

competition under homogeneous mixing (Bremermann and Thieme, 1989). 

5.  Pair approximation 

Pair approximation models combinations of states at paired, neighboring sites (Matsuda 

et al., 1992; Hiebeler, 2000).  Dynamics of the pair-block frequencies reflects a degree of local 

spatial correlation, and consequently approximates most spatial processes better than mean-field 

models (Nakamuru et al., 1997; Ives et al., 1998; Caraco et al., 2001).  Specifically, pair 

approximation assumes that the correlation between states of two neighboring does not depend 

on the state of any other, randomly selected neighbor of the focal pair.  This assumption closes 

the pair approximation’s system of equations, but ignores the more extensive spatial correlations 

that can affect the dynamics.  For more extensive methods, see Rand (1999), Sato and Iwasa 

(2000) or van Baalen (2000).  Symbols introduced in this section are listed in Table 3. 

5.1.  Block probabilities 

 The block probability Pt[ij ] is the chance that the state at site k, sk(t), is i and the state at a 

randomly chosen nearest neighbor is j.  Summed block probabilities give frequencies of the 

elementary states; [ ] [ ],∑= j tt ijPiP where Pt[i] is the global density of sites with state i at time t.  

Pt[i] need not equal the mean field’s ρi(t), since the two models have different structure and, 

hence, different dynamics.  We assume spatial symmetry (P[ij ] = P[ji ]), leaving 10 distinct block 

probabilities.  Therefore, the pair-approximation requires nine equations. 

5.2.  Pair-block transitions 

 Following Hiebeler (2000), we represent pair-block transitions as: 

( ) ( )[ ] ( ) ( )[ ] .11 krkrk rtstststs σ∈++→        (14) 
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First, consider host birth.  Suppose site k is open at time t, so the left side of (14) is a [0 j] pair 

block.  Since we know j, we know the probability that an offspring is dispersed from site r to site 

k.  If a host occupies site r, the probability is b.  The transition of a [0 j] pair block via birth also 

depends on the other (N - 1) sites on σk whose states are unknown.  For a randomly chosen site q 

on σk, other than site r, the conditional probability site q is occupied, given that sk(t) = 0, 

is [ ] [ ];00 tt PhP .},,{ VASh ∈   Each of these (N - 1) sites on σk attempts to colonize with 

probability b times the chance a host occupies the site: 

[ ]
[ ]{ }

[ ]( ) [ ] [ ]( ).0000
0

0

,,
ttt

VASh t

t PPPb
P

hP
b −=∑

∈
       (15) 

Then the probability, per site of unknown state, of an attempt to colonize an open site k is: 

[ ]
[ ] .
0

00
1)( 





−=

t

t

P

P
btλ                 (16) 

 Next, consider avirulent infection in an [Sj] pair block.  The probability a susceptible at k 

is exposed to the avirulent strain at site r is βa if j = A, and 0 otherwise.  The conditional 

probability of an avirulent infection at site q, given a susceptible at k, is Pt [SA]/Pt[S].  Then the 

probability a susceptible at site k is exposed to the avirulent strain from a site q on σk is: 

( ) [ ] [ ].SPSAPt ttAA βθ =                   (17) 

Similarly, the probability that a susceptible is exposed to the virulent strain via contact from site 

q on σk, where the elementary state is unknown, is: 

( ) [ ] [ ].SPSVPt ttVV βθ =                 (18) 

Given an [AV] pair block, the probability that the avirulently infected host at k is exposed 

to the virulent strain via the known neighbor is βv.  For each of the (N - 1) sites on σk whose 

states are unknown, the probability of exposure to the virulent strain is: 
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( ) [ ] [ ].APAVPt ttVsi βθ =          (19) 

5.3.  Pair-block dynamics 

 Here we develop two of the pair approximation’s equations.  Appendix C presents the 

remaining equations; they use the same transitions explained here, but in different combinations. 

First, consider the pair block [0S], where site k is empty and site r is occupied by a 

susceptible.  Eight different [ij ] block pairs can become a [0s] pair block in a single period; they 

have i ∈ {0, S, A, V} and j ∈ {0, S}.  Then: 

[ ] [ ] ( )[ ] ( )[ ]( )

( ) ( )[ ]( ) [ ] [ ] [ ]( )

[ ] ( ) ( )[ ] ( ) ( )[ ] ( )[ ]

( )[ ] ( )[ ] ( ) [ ] [ ] [ ]( ).111

111110

000111

111000

11

111

1

11
1

VSPASPSSPtt

tttbSP

VPAPSPtb

ttPSP

tVtAtSS
N

V
N

A

N
V

N
AS

N
t

tVtAtS
N

NN
tt

µµµµθθ

θθµλ

µµµλ

λλ

++−−−+

−−−−−+

++−−−+

−−−=

−−

−−−

−

−−
+

       (20) 

In the first line of Eq. (20), sites k and r are open.  No birth occurs at k, and a birth occurs at r.  In 

the second line k is occupied, and r is open.  Mortality occurs at k; the probability depends on 

infection status.  Birth occurs at r; the host at k may have dispersed a propagule to r before its 

death.  In the third line k is open, and a susceptible occupies r.  No birth occurs at k.  The 

susceptible is not infected by either strain, and survives.  In the fourth line k is occupied, and r is 

occupied by a susceptible.  Mortality at k depends on infection status; the susceptible at r avoids 

infection, and survives.  In calculating Eq. (20), Pt[S0] = Pt[0S] by spatial symmetry.   

Next, consider the [AV] block pair.  Six [ij ] block pairs can become an [AV] in a single 

interval; they have i ∈ {S, A} and j ∈ {S, A, V}.  The difference equation for the probability of a 

[AV] block pair is: 
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[ ] ( )[ ] ( ) ( )[ ]( )[ ]

[ ] ( ) ( )[ ]( ) ( )[ ]( ) ( )[ ] ( )[ ]( )[ ]

[ ] ( ) ( ) ( ) ( )[ ]( ) ( )[ ]( )

[ ] ( ) ( ) ( )[ ]( ) ( ) ( )[ ] ( ) ( ) ( )[ ]( )[ ]

( )[ ] ( ) ( )[ ]( )[ ]

[ ] ( )( ) ( )[ ]( ) ( ) ( )[ ] ( ) ( )[ ]( )[ ]

[ ] ( ) ( )[ ]( )

[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]( )[ ].11111111

111

111111111

1111

1111111111

1111111

11111111

1111

11

12

111

11

111

11

11112

11
1

−−

−

−−−

−−

−−−

−−

−−−−

−−
+

−−−−+−−−−+

















−−−+

−−−+−−−−−−
×

−−−+−+

−−−−+−−−−−−+

















−−−−−−−+

−−+−−−−−−
×

−−−+−=

N
siV

N
siVVAt

N
siAt

N
AA

N
AA

N
VSAt

N
si

N
si

N
VV

N
VV

N
AVSt

N
si

N
AAASt

N
A

N
A

N
V

N
ASt

N
V

N
Vt

ttAVP

tAAP

tttASP

tt

tttSVP

ttSAP

ttttSSP

ttAVP

θβγθβµµ

θγµ

θβγθβθµµ

θγθ

θβγθβθµµ

θγθβµµ

θγθθθµ

θγθ

 

(21) 

The first pair-block transition in Eq. (21) is [SS] → [AV].  The susceptible at k must be exposed 

to avirulent infection; it may avoid exposure to the virulent strain, or may be exposed to both 

strains with the avirulent winning.  The susceptible at r must be exposed to virulent infection. 

The host at r might avoid exposure to avirulent infection, or might be exposed to both strains 

simultaneously with the virulent strain winning the host.  Then both hosts must survive. 

The second block-pair transition in Eq. (21) is [SA] → [AV].  The susceptible at k must be 

exposed to avirulent infection.  The same host at k might avoid virulent infection, or the avirulent 

strain may win if the host is exposed to both strains.  The avirulently infected host at r must 

acquire the virulent strain via superinfection.  Finally, both hosts must survive.  The four other 

transitions in Eq. (21) are justified similarly. 



 17 

6.  Spatial superinfection: pairwise invasion analysis 

 We conducted pairwise invasion analyses of both the individual-based, stochastic model 

and the deterministic pair approximation.  Each analysis began with a resident strain at 

monomorphic, endemic equilibrium.  We computed single-strain equilibria for the spatial 

simulation and pair-approximation models separately.  To introduce a competing strain (whether 

more or less virulent than the resident), we reduced the global density of susceptibles by 0.075.  

We then converted the corresponding sites (simulation) or pair-block frequencies (pair 

approximation) to hosts infected by the introduced strain.  Hence the initial global density of the 

invader was held constant across different single-strain equilibria.  We recorded invasion of the 

resident strain whenever the introduced strain’s global density exceeded 10-3 at time t = 1000; 

otherwise, we recorded that the resident repelled the introduced strain. 

The invasion analyses identified any monomorphic singular strategies (Geritz et al., 

1998), which we classify according to convergence stability and evolutionary stability.  

Convergence stability implies that a monomorphic population near a singular strategy can be 

invaded and excluded by a mutant closer to the singular strategy.  Evolutionary stability implies 

that a singular virulence strategy repels invaders.  Following Pugliese (2002a), we term an ESS 

local if it repels any mutant in a neighborhood around the singular strategy, and global if the ESS 

repels any feasible mutant.  Convergence stability does not guarantee evolutionary stability; 

neither stability property need imply the other (Geritz et al., 1998).  This section divides results 

according to the two forms assumed for the transmission-virulence ratio, Eqq. (1A) and (1B). 

6.1. Transmission/virulence declines as virulence increases 

If β(µi) = µi
α/N for α < 1, increased virulence reduces the ratio of transmission to host-

mortality probability.  Hence an avirulent strain always has the greater β /µ, implying a potential 
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“colonization” advantage.  A virulent strain has the greater transmission probability, though 

lower β /µ, and the competitive advantage of superinfection.  For this case we report results for 

two forms of the superinfection function (two values for ψ).   We present four invasion analyses 

and then address quantitative effects of virulence on host densities and mortality frequencies. 

6.1.1.  Pairwise invasion: strong competitive asymmetry 

 First we set ψ = 0.2, implying a strong competitive asymmetry for given difference in 

virulence.   That is, superinfection occurs relatively frequently for given ( AV µµ − ).  Figure 4a 

shows results for the invasion analysis of the spatially detailed, stochastic model with 

neighborhood size N = 48.  Restricting attention to results along the diagonal, we envision 

evolution via sequential replacement of monomorphic populations (Geritz et al., 1998).  

Selection via spatially structured competition in the spatially detailed does not predict evolution 

to the maximal virulence capable of dynamic persistence, as the mean-field model does.  In fact, 

the pattern indicated a convergent stable, local ESS at the singular strategy µ* (Fig 4a). 

A band of strain coexistence separates strains that invade and exclude the resident from 

those repelled by the resident.  Coexistence implied that each of two strains invaded the other, 

and the dynamics proceeded to a fixed-point equilibrium. 

 Figure 4b shows the pairwise invasion plot for this parameter combination’s pair 

approximation.  A convergent stable, local ESS occurred at the singular strategy µ*, which repels 

any larger virulence, but can be invaded by sufficiently less virulent mutants (which can then be 

invaded by a strategy closer to µ*).  Both models indicated that a monomorphic singular strategy 

may be an evolutionary attractor and exhibit local evolutionary stability, although the pair 

approximation predicts an ESS virulence exceeding the spatial model’s prediction.  Compared to 

the spatial simulations, the pair approximation predicted that a considerably larger set of paired 
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strains can coexist.  More importantly, a comparison of Figs. 4a and 4b shows clearly that the 

maximal virulence capable of dynamic, single-strain persistence is smaller for the spatially 

detailed model than for the pair approximation.  The individual-based model appreciates the full 

impact of spatial clustering of infectives on the dynamics, while the pair approximation relaxes 

spatial correlations beyond nearest neighbors.  These results imply that stronger spatial 

structuring of the dynamics reduces the maximal virulence capable of persistence and also 

reduces the evolutionarily stable level of virulence.  

6.1.2.  Pairwise invasion: weaker competitive asymmetry 

Setting ψ = 1.2 implies a weaker competitive asymmetry between strains.  The 

individual-based model’s pairwise-invasion plot, Fig. 5a, suggested a convergent stable, local 

ESS level of virulence, near the value indicated by simulations with strong competitive 

asymmetry.  Decreasing the advantage of superinfection reduced the extent of strain coexistence 

in the simulations.  Resident strains with low virulence now repelled high-virulence invaders 

with which they could coexist under greater competitive asymmetry.   

The pair approximation’s invasion analysis, Fig. 5b, also predicted a convergent and 

evolutionarily stable level of virulence.  The local ESS occurred at a lower virulence, compared 

to the pair approximation under strong competitive asymmetry.  However, the extent of 

coexistence remained similar.  Comparing Figs. 5a and 5b reveals two effects noted under strong 

competitive asymmetry.   Stronger spatial structuring of the dynamics (individual-based model, 

Fig. 5a) reduces the maximal virulence capable of persisting alone, and reduces the predicted 

EES level of virulence under pairwise competition. 

 For parameter values we present, both strong and weak competitive asymmetry predict a 

monomorphic virulence-strategy exhibiting both convergence stability and local evolutionary 
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stability.  Comparing the levels of competitive asymmetry predicts that increasing the frequency 

of superinfection (strong asymmetry) may lead to a greater local ESS level of virulence, and may 

permit increased coexistence of competing strains.  Increased competitive asymmetry implies 

that opportunities for colonization-competition distinctions between avirulent and virulent strains 

increase.  Comparing degrees of spatial structure (simulation vs. pair approximation) within 

either level of competitive asymmetry predicts that increased spatial clustering of infections 

reduces the locally stable level of virulence.  

6.1.3.  Host densities and mortality frequency 

 Here we evaluate effects of virulence on host densities.  For simplicity, we separate 

results based competitive exclusion from results on pairwise coexistence.  To characterize 

disease clustering, we plot a local contagion ratio for pathogen infection: the frequency of 

infected hosts among sites neighboring an infected host divided by the square of the global 

frequency of infected hosts.  In terms of the pair approximation’s state variables, the contagion 

ratio is P[ii ]/(P[i])2, where i is an infected-host state (i = A or V).  In the absence of local spatial 

correlation, the ratio will be unity by independence; clustering of infectives yields values 

exceeding unity (Tainaka and Araki, 1999).  We recognize that these are equilibrium values, and 

the impact of clustering on dynamics may occur soon after the invader’s introduction (van 

Baalen and Rand, 1998). 

 Figure 6a shows global densities of infected hosts at single-strain equilibrium as a 

function of virulence.  The equilibria were computed for a small neighborhood (N = 8) and 

strong competitive asymmetry (ψ = 0.2); densities are plotted for both the spatially detailed 

model and pair approximation.  The same figure also shows the local contagion ratios.  Under 
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both models the density of infected hosts declined as virulence increased; the decline in 

infectives was accompanied by an increase in the global density of susceptibles (not shown). 

For the combination of a small neighborhood and strong competitive asymmetry, global 

density of infection in the pair approximation always exceeded the simulation’s density for the 

same virulence (although the numerical difference was small at very low virulence).  This 

difference parallels the observation that the spatially detailed dynamics sent the pathogen to 

extinction at a much lower virulence level than does the pair approximation (Figs 4a and 4b).  

We anticipated these results qualitatively, since pair approximation underestimates clumping of 

infection when neighborhoods are small.  Figure 6a shows that local contagion ratios uniformly 

exceeded unity and increased with virulence in both models, and that pair approximation’s 

overestimation of the global density of infection follows from underestimation of the local 

clustering of infection.  For small neighborhoods, pair approximation can miss the degree to 

which an invading strain’s clustering impacts its dynamics (Sato and Iwasa, 2000; Korniss and 

Caraco, 2005).  Although susceptible hosts became more common as virulence increased, the 

combination of lower infectious-host density and increased relative clumping of infectives 

strongly constrained the maximal feasible virulence in the spatially detailed model. 

  Figure 6b plots single-strain, endemic equilibria for a larger neighborhood (N = 48, as in 

the pairwise invasion plots).  Comparing the spatial model and its pair approximation, global 

densities of infected hosts declined similarly as virulence increased.  Pair approximation also 

mimicked the spatial model’s local contagion ratios much better at the larger neighborhood size.  

More importantly, the larger neighborhood increased the maximal dynamically persistent 

virulence in both models, and slightly increased the equilibrium density of infected hosts for 

given virulence.  Increased neighborhood size diminishes the likelihood that a pathogen kills its 
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host before finding another to infect (Caraco et al., 1998), and increases the likelihood that a host 

will find an open site and reproduce before dieing.  Although clustering of diseased hosts 

occurred, the larger neighborhood size diminished the extinction penalty for relatively virulent 

pathogens.  The resulting increase in the maximal feasible virulence, in turn, made coexistence 

with minimally virulent strains more likely. 

 We end this section by examining host densities for virulence pairs capable of 

coexistence.  We compare host populations infected by coexisting pathogens to each of the two 

single-strain equilibria.  Neighborhood size is N = 48, and competitive asymmetry is strong (ψ = 

0.2).  These values commonly produced coexistence in both the spatially detailed simulations 

and pair approximation, and the associated invasion plots are similar.  As a convenience, we use 

the results from pair approximation, since boundaries of the coexistence regions are exact. 

 Total host density sums susceptibles, avirulent infections and virulent infections.  If we 

represent total host density at coexistence equilibrium as P*(µa, µv) = PS
c + PA

c + PV
c, then the 

total number of deaths per time interval is proportional to (µS PS
c + µA PA

c + µV PV
c).  Densities 

and mortality count for the two single-strain equilibria are defined similarly. 

 Given that pathogen strains with virulence levels µA and µV can coexist, global host 

density most often was greatest in populations infected by the virulent strain alone; see Fig. 7a.  

The virulent single-strain equilibrium always maximized the density of susceptible hosts, most 

often minimized density of infected hosts, and the former effect usually dominated.  Infection by 

the avirulent strain alone most often minimized total host density. 

 The avirulent strain alone almost always maximized the density of infected hosts; as we 

just noted, the virulent strain alone almost always minimized the global density of infection.  

These differences affect the global mortality count.  Figure 7b shows the equilibrium population 
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experiencing the greatest number of deaths per time interval, given the three alternatives defined 

by a coexistence pair.  When the difference ( AV µµ − ) is relatively large, the mortality density is 

greatest in a population infected by only the virulent strain.  Here, introducing the avirulent strain 

(taking the system to the fixed point, coexistence equilibrium) would decrease the mortality per 

time interval, but would also decrease the total host density (from Fig. 7a). When the difference 

( AV µµ − ) is relatively small, the mortality density is greatest in a population infected by only the 

avirulent strain.  Here, introducing the virulent strain (leading to coexistence) both increased 

total host density and decreased the global mortality at equilibrium. 

 The preceding hypothesis assumes that a disease cannot be eliminated from a host 

population, and that a more virulent infection can displace a less virulent infection within 

individual hosts. Given our assumptions, introducing a more virulent strain of that disease could 

sometimes increase total host density, increase the global density of susceptible (healthy) hosts, 

and decrease the number of deaths per time interval.  These results further can depend on our 

assumption that disease affects only mortality (not fecundity), and on the model’s birth-first 

order of events (Maniatty et al., 1998; Koella and Doebeli, 1999; see Discussion). 

6.2.  Transmission/virulence maximal at intermediate virulence 

 If β(µi) ∝ µi
α (1- µi)/N, Eq. (1B), the ratio of transmission probability to virulence can 

reach a maximum at intermediate host mortality, hence, at intermediate duration of the infectious 

period.  For the lowest-virulence strains, an increase in virulence promotes both colonization 

capacity and strength as an interference competitor.  Highly virulent strains, of course, have low 

transmission rates and must rely more on superinfection to persist competitively. 
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 In this section we set α = 1.6, and restrict attention to strong competitive asymmetry (ψ = 

0.2).  In the associated computations the transmission probability β reached a maximum near µi 

= 0.6, and the transmission-virulence ratio attained a maximum near µi = 0.35. 

6.2.1.  Pairwise invasion 

Using the “peaked” form of the infection-transmission function, we conducted pairwise 

invasion analyses with N = 48.  Figure 8a shows the invasion plot for the individual-based 

model, and Fig. 8b shows pair-approximation’s results.  Both models produced a convergent 

stable, singular strategy; the deterministic pair approximation exhibited a local ESS.  Neither 

model mimicked the mean-field’s evolution to criticality.  As noted above, the inherent 

difference between the individual-based model’s and pair approximation’s appreciation of spatial 

clustering affected the results.  Both the singular strategy and the maximal virulence capable of 

single-strain persistence took smaller values in the spatially exact simulations. 

  Strain coexistence occurred only rarely in simulation.  Pair approximation admitted a set 

of coexisting strategy pairs.  The latter invasion plot indicated that dynamical coexistence was 

largely limited to pairings between strains with large transmission-virulence ratios and the 

maximally virulent strains.  That is, coexistence under pair approximation tended to link the best 

colonizers and the strongest interference competitors.  Examination of the associated pair-block 

frequencies revealed that that key to coexistence was that the strongest interference competitors 

(most virulent strains) remained at low global density (due to spatial aggregation), permitting the 

avirulent strain’s persistence through colonization of susceptibles.  This qualitatively parallels 

results for the first infection-transmission function we studied. 

6.2.2.  Infected host densities 
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 Figure 9a shows global densities of infected hosts at single-strain equilibrium, as a 

function of virulence, for a small neighborhood (N = 8).  Densities are plotted for both the 

spatially detailed model and pair approximation; the figure also shows local contagion ratios for 

both models.  Infected host density peaks at intermediate virulence for each model, 

approximating the dependence of transmission on virulence.  Infectives aggregated spatially, 

more so in simulation than in the pair approximation’s results.  Consequently, pair 

approximation overestimated densities of infected hosts, when compared to the detailed model’s 

results.  Figure 9b shows densities of infected hosts and contagion ratios for a larger 

neighborhood, N = 48.  The larger neighborhood reduces the degree of clustering and, not 

surprisingly, the pair approximation better predicts behavior of the spatially detailed model. 

7.  Discussion 
 
 Superinfection models diseases where individual hosts may contact more than one strain 

of a pathogen, and properties of the more (or most) virulent strain acquired govern the 

consequences of infection.  Martcheva and Thieme (2003) suggest that in humans, superinfection 

seldom plays a role in the dynamics of micro-parasitic disease (cf. Donnenberg and Whittam, 

2001), but occurs commonly in macro-parasitic disease. 

Our model introduced spatial structure to superinfection dynamics and asked how 

pathogen virulence might evolve under strain competition.  The model’s results predict that 

increased limitation on host-pathogen spatial dispersal increases extinction of highly virulent 

strains, and reduces the stationary level of virulence that evolves in response to strain 

competition.  The results associate increased spatial clustering of infected hosts with reduced 

convergent-stable levels of virulence.  The model predicts that coexistence of competing strains 

becomes more likely when one strain has a high transmission to virulence ratio, but is a poor 
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interference competitor, and the other strain has a low ratio of transmission to virulence, but has 

an advantage through interference competition. 

When pathogen strains compete both between and within hosts, the dynamics of the host-

pathogen interaction defines the context for virulence evolution (Ebert and Mangin, 1997; 

Castillo-Chavez and Velasco-Hernandez, 1998); the outcome of strain competition depends on 

details of the population dynamics.  Models for the superinfection process may assume density-

independent host growth in the absence of disease (Levin and Pimentel, 1981), may fix the host 

population’s total density (Nowak and May, 1994; Claessen and DeRoos, 1995), or may include 

logistic self-regulation in the host dynamics (Pugliese, 2002b).  Our model assumes a host 

population subject to intraspecific competition; a finite number of sites and local clustering 

combine to produce self-regulation.  When the number of hosts (suscpetibles plus infectives) is 

fixed, so that total mortality is always balanced by birth or immigration, the mean-field 

superinfection dynamics becomes equivalent to models where different species compete 

implicitly for space, and higher ranked species displace weaker within-patch competitors 

(Tilman, 1994; Stone, 1995; Kinzig et al., 1999; Adler and Mosquera, 2000). 

The combination of spatially structured disease transmission and virulence-dependent 

superinfection probabilities distinguishes our model.  The mean-field approximation allows 

virulence to evolve to its critical upper bound, but the introduction of spatial structure predicts 

lower levels of virulence.  At a general level, this result agrees with predictions of other disease-

transmission models with spatial structure (Claessen and DeRoos, 1995; Haraguchi and Sasaki, 

2000; van Baalen, 2002a).  At a more detailed level, we found significant effects of spatial 

structure in both the pair approximation and simulation model.  Our results indicate that spatial 
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structure, and the consequent clustering, constrained the maximal virulence capable of dynamical 

persistence and reduced the convergent-stable level of virulence. 

Recall that the model’s neighborhoods are restricted to nearest neighbors, so that 

infection occurs on a regular network.  If we held the number of neighbors per site constant, but 

randomly selected the interaction neighbors, the contact network would change.  Local clustering 

would diminish, model behavior should move toward mean-field dynamics, and we would 

predict higher levels of virulence (Boots and Sasaki, 1999; van Baalen, 2002a). 

 Virulence management usually refers to purposeful modification of infection-

transmission rates, so that low-virulence strains might be selectively favored over more virulent 

pathogens (Ewald, 1994; Dieckmann et al., 2002).  Our results point out that ecological 

management of a diseased host population can, in some situations, take advantage of more 

virulent strains to reduce mortality and increase global host density.  Suppose that disease cannot 

be cured (our model admits no recovery) in a population at endemic equilibrium, and that we 

want to reduce total mortality.   Management options are limited to introducing a strain that will 

invade and exclude the resident, or introducing a strain that will coexist with the resident 

pathogen (Elliot et al., 2002).  Given a strictly monotonic increase in transmission with 

virulence, introducing a strain slightly more virulent than the resident usually will exclude the 

latter; mortality consequently declines and global host density increases.  Similarly, introducing a 

virulent strain that will coexist with a less virulent resident sometimes can reduce total mortality.  

For given strain pairs capable of coexistence, the monomorphic avirulent strain almost always 

minimized total host density.  Hence, if the host is a “pest,” introducing low-virulence disease 

may reduce pest density more effectively than would a high-virulence alternative.  These patterns 

in our results depend on model details.  In particular, differences in virulence affect only disease 
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transmission and host mortality; host reproduction does not depend on infection status.  If 

infection alters fecundity, other patterns will likely arise.  Furthermore, our discrete-time model 

must order events for concurrent updating of lattice sites; we allow host reproduction and 

pathogen transmission to precede mortality.  For some models, the difference between discrete 

and continuous time simulations can be significant (Huberman and Glance, 1993). 

 Disease virulence can affect fecundity in addition to, or instead of, host mortality 

(Gandon et al., 2002).  Haraguchi and Sasaki (2000) assume that infection sterilizes hosts and 

also increases their mortality.  O’Keefe and Antonovics (2002) let infection reduce fecundity 

without an impact on mortality.  Both models predict that spatial structuring of transmission can 

reduce virulence, compared to results for homogeneous mixing.  A virulent pathogen might 

reduce host reproduction so low that clustered infectives would not find enough neighboring 

susceptibles to persist dynamically, an effect paralleling that of diseased-induced mortality. 

 Ewald (1994) defines virulence as increased host mortality caused by infection, and 

argues that vector-borne diseases are likely to evolve greater virulence than will directly 

transmitted diseases.  The hypothesis supposes that illness renders a host inactive, so that the rate 

of direct contact with susceptibles will decline as virulence increases.  However, the rate of 

contact with vectors such as flying insects need not decline with virulence.  So, direct 

transmission might constrain virulence evolution through loss of contacts, and vectors could 

relax this constraint (Day, 2002).  In our model’s terms, vector-borne transmission could 

effectively increase neighborhood size (Caraco et al., 2001) or randomize the contact network, 

both of which could increase the competitive advantage of virulent pathogen strains. 

 Antia et al. (1994) suppose that more virulent infections generate greater concentrations 

of parasites within a host’s tissues.  Increased within-host parasite density increases the between-
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host transmission rate of disease, and may also increase the rate at which the host’s immune 

system produces antigen-specific cells.  An increased immune response accelerates the host’s 

recovery, leading to a virulence-modulated tradeoff between transmission rate and duration of 

the infectious period.  If the host’s nutritional status is good, an immune response need not tax 

the host sufficiently to exact a fecundity or survival cost (Roberts et al., 1995).  But energetic 

stress associated with reproduction (Oppliger et al., 1996) or development (Whitaker and Fair, 

2002) can result in antagonism between defense against disease and other elements of fitness. 

 Our analyses assumed the pathogen could evolve through pairwise competition, but held 

the host constant.  Host resistance to infection will sometimes co-evolve with transmission-

virulence properties of pathogens (Bowers and Hodgkinson, 2001; Gandon et al., 2002; Holt and 

Hochberg, 2002).  Interactions between horizontal and vertical transmission may also affect 

virulence evolution (Kover and Clay, 1998; Koella and Doebeli, 1999).  Finally, Thomas et al. 

(2000) argue that costs of disease to a host may sometimes be compensated by indirect benefits 

of parasitism, including avoidance by predators, and (once recovered) demonstration of disease 

resistance to potential mates. 

 

Appendix A.  Transition probabilities for the detailed model 

   This appendix specifies transition probabilities between a site’s elementary states.  sk(t) 

identifies the elementary state of site k at time t; sk(t) ∈ {0, S, A, V}.  The number of sites on the 

interaction neighborhood, for both host propagation and infection transmission, is σk = N, i.e., 

the N nearest neighbors of k.  n(s) counts the respective elementary states on σk at time t.  0 ≤ 

n(s) ≤ N, and Σs n(s) = N. 
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Suppose that site k is open at time t.  Then sk(t + 1)∈ {0, S}; no change occurs, or a newly 

produced susceptible occupies the empty site.   The probability of a birth at site k is: 

1 – (1 - b)N- n(0).                    (A.1)  

The complement of (A1) is the probability of no change at an open site. 

Next suppose site k is occupied by a susceptible.  If sk(t) = S, sk(t + 1)∈ {0, S, A, V}.  A 

susceptible host may acquire an avirulent infection and survive, may acquire a virulent infection 

and survive, may die, or may avoid infection and survive (no change).  The probability that the 

susceptible is infected by the avirulent strain and survives to (t + 1) is: 

[1 – (1 - βA)n(A)]  [(1 - βV)
n(V) + [1 - (1 - βV)

n(V)] (1 - γ)] (1 - µS).             (A.2) 

The probability that a susceptible is virulently infected and survives is: 

[1 – (1 - βV)
n(V)]  [(1 - βA)n(A) + [1 - (1 - βA)n(A)] γ ] (1 - µS).                       (A.3) 

A susceptible’s mortality probability is µS.  The probability of no change when sk(t) = S 

complements the sum of these three probabilities. 

Now suppose that an avirulently infected host occupies site k at time t.  If sk(t) = A, then 

sk(t + 1)∈ {0, A, V}.  An avirulently infected host may acquire the virulent strain and survive, 

may die, or may avoid superinfection and survive.  The probability that the virulent strain 

displaces the avirulent (via superinfection), and the host survives is: 

[1 – (1 - βV)
n(V)] γ (1- µA).                       (A.4) 

The mortality probability is µA.  The probability of no change (i.e., avoiding superinfection and 

surviving) is the complement of these two probabilities. 

Finally, suppose that a virulently infected host occupies site k.  If sk(t) = V, then sk(t + 1)∈ 

{0, V}.  The site becomes open through mortality with probability µV.  The probability of no 

change is (1 - µV), completing the model’s transition probabilities. 
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Appendix B.  Mean-field approximation 

 The global density of susceptibles at time (t + 1) sums densitie of births at open sites plus 

susceptibles at time t that avoid both avirulent and virulent infection and then survive.  Hence: 

( ) ( ) ( ) ( )[ ] ( )[ ] ( ).1111 0 SVVAASVASS tttBt µρµρµρρρρρρ αα −−−+++=+         (B.1) 

 The global density of avirulently infected hosts at time (t + 1) has four sources.  The 

avirulent strain, and not the virulent, is transmitted to some susceptibles that survive.  Second, 

both strains are transmitted to some susceptibles, the avirulent strain wins, and the hosts survive.  

Third, some avirulently infected hosts avoid contacting the virulent strain and survive.  Finally, 

the virulent strain is transmitted to some avirulently infected hosts, but superinfection fails and 

the hosts survive.  Then: 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( )[ ] ( ).111

1111

AVVVVA

SVVVVAASA

ttt

ttttt

µρµγρµρ

µρµγρµρµρρ

αα

ααα

−−+−+

−−+−=+
           (B.2) 

The global density of virulently infected hosts at time (t + 1) has four sources.  The 

virulent strain, and not the avirulent, is transmitted to some susceptibles that survive.  Second, 

both strains are transmitted to some susceptibles, the virulent strain wins, and the hosts survive.  

Third, the virulent strain displaces the avirulent strain via superinfection in some hosts that 

survive; finally, some virulently infected hosts survive.  Then: 

( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( ) ( ).11

111

VVAVVA

SAAAAVVSV

ttt

ttttt

µρµρµγρ

µρµγρµρµρρ

α

ααα

−+−+

−+−=+
      (B.3) 

After simplification, expressions (B.1) – (B.3) become Eqq. (3) – (5) in the text. 

 In the absence of disease, ( ) ( ) .0== tt VA ρρ  At positive, disease-free equilibrium: 
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( ) ( ) ( )[ ]( ),1 SSSS tBtt µρρρ −−=∆   so that B
S

S
µρ −=1* , for BS <µ . 

If a single pathogen strain, with host-mortality probability µA > µS, invades the disease-

free equilibrium, the strain’s growth rate when rare must exceed unity, requiring: 

( )
( ) ( ) ( ) .1111 * >−+=+

SAS
A

A
t

t µµρρ
ρ α                  (B.4) 

Substituting for ρS
* in the absence of disease and then simplifying yields expression (6) in the 

text.  The same condition results by requiring that the pathogen’s reproduction number, R0, 

exceed unity for invasion.  Since the mean-field model assumes homogeneous mixing, we have: 

( ) ( ) .11
1

*
0 >





−=

−

A

A
SSAR µ

µµρµ
α

          (B.5) 

Since 0 < α < 1, ∂R0/∂µA < 0; for homogeneous mixing, growth when rare declines with any 

increase in virulence.  Expression (B.5) shows that for any positive density of susceptibles, there 

is a transmission to virulence ratio large enough for successful pathogen invasion. 

 If a single pathogen strain invades the host population and advances to endemic 

equilibrium, the growth rate in (B.4) falls to unity, and the equilibrium density of susceptible 

hosts becomes ( )SAS µµρ α −= − 11* .  At the single-strain endemic equilibrium the total density of 

hosts is ***
AS ρρρ += .  Host birth and survival balances mortality, and ρ* satisfies: 

( ) ( ).1
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−         (B.6) 

Substituting and simplifying yields: 

( ) ( ) ( ) .0*
1

*2* =−−−+ SAA BB µµρρµρ             (B.7) 
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The root of the quadratic on (0, 1) has the form shown in eq (7) of the text, where ***
SA ρρρ −=  

at single-strain endemic equilibrium. 

 Given the single-strain equilibrium, we ask if a second strain can invade. Consider a pair 

of strains with host-mortality probabilities µA < µV.  Suppose the avirulent strain is resident; then 

the equilibrium is given by ( )SAS µµρ α −= − 11*  and by Eq. (7) in the text.  The virulent strain 

advances when rare if its increase through infecting susceptibles and through superinfection 

exceeds the loss through host mortality; successful invasion by the virulent strain requires: 

[ ]( ) ( ) ( ) ,1111 ***
VAAVSAASV µµρµγµγρµρµ ααα >−+−−−     (B.8) 

where γ increases with (µV - µA).  After simplification, we obtain expression (8) in the text. 

 Now assume the virulent strain is resident; the endemic equilibrium is described in the 

text.  The avirulent strain advances when rare when: 

( )[ ] ( )[ ] .11111 *** >−+−−+− VVVVASSA ρµγρµµµρµ ααα             (B.9) 

Simplification yields expression (9) in the text. 

 

Appendix C.  Pair approximation dynamics 

 Equations for Pt[0S] and Pt[AV] appear in the text; we present the remaining seven 

difference equations here.  We begin with the [00] block pair.  Generating a pair block with two 

empty sites requires an already empty pair block and no births, no birth and a death on a block 

with exactly one site occupied, or two deaths on a pair block with both sites occupied.  So: 
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(C.1)  

 Next consider the [0A] block pair.  No [i0] block becomes a [0A] block in one time 

interval, since hosts are born susceptible.  No [iV] block becomes an [iA] in a single period, since 

the avirulent strain cannot displace the virulent.  Eight different pair blocks can produce a [0A] 

block.  Any transition of an [iS] to [0A] requires avirulent infection at site r.  Any transition of a 

[iA] block to [0A] requires that the host at site r avoid superinfection.  So: 
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(C.2) 
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The first transition in (C.2) is [0S] → [0A].  Site k is empty, and no birth occurs there.  The 

susceptible host at site r must be exposed to avirulent infection, and not be infected by the 

virulent strain.  Then the host at r must survive.  The three other [iS] → [0A] transitions require 

mortality, rather than birth, at k.  Note that in the four [iA] → [0A] transitions, the avirulently 

infected host at site r must avoid superinfection. 

 Next consider a block with two susceptibles.  No block pair that includes an infected host 

can become an [SS] in a single period, since hosts do not recover.  Empty sites require a birth, 

and susceptibles must avoid infection.  So: 
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The 2 in the last term of (C.3) indicates that transitions from a [0S] pair block or from an [S0] block to a 

[SS] pair block occur with the same probability. 

 Now consider the [SA] block pair.  Since infected hosts do not recover, neither [Aj] nor 

[Vj] pair blocks become an [SA] block in a single period.  The avirulent strain cannot displace the 

virulent hosts, so no [iV] block becomes an [SA] block in a single period.  That leaves four [ij ] 

block pairs, with i ∈ {0, S} and j ∈ {S, A} in the equation for the [SA] block pair: 
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(C.4) 

The [iS] blocks must avoid virulent infection, and the [iA] blocks must avoid superinfection to 

generate the [SA] block pair. 

Next consider [SV] block pairs.  Since hosts are born susceptible and do not recover once 

infected, no [i0], [Aj], nor [Vj] block pair can become an [SV] block in a single time period.  Six 

different block pairs are included in the equation for the [SV] block: 
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The [0j] blocks with r occupied require a birth at site k; [0A] also requires superinfection at site r. 

Now consider the [AA] block pair.  Pair blocks including either an open site or a 

virulently infected host cannot become a [AA] block in a single interval.  For the [AA] block:  

 (C.6) 

The 2 associated with the [SA] pair block in (C.6) indicates that both an [SA] block and an [AS] 

block are changed to [AA] by the same transitions. 

 Finally, consider the [VV] pair block.  Any block without an open site can become a [VV] 

block pair in a single time period.  So: 
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(C.7)  

Eqq. (20) and (21) and Eqq. (C.1) through (C.7) complete the pair-approximation model. 
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Figure Legends 

FIG. 1.  Feasible transitions between a site’s elementary states.   

State 0 represents an empty site, state S represents a susceptible host, state A represents avirulent 

infection, and state V represents virulent infection.  Infected hosts do not recover the susceptible 

state; the transition from state A to state V represents superinfection; the more virulent strain 

displaces the avirulent strain.  Transitions into state 0 represent mortality. 

FIG. 2.  Pathogen-transmission probabilities. 

Plots of βi(µi); thick curve is Eq (1A), and thin curve is Eq (1B).  Ordinate is probability 

pathogen transmitted from given infected host to nearest-neighboring site.  Parameter values for 

Eq (1A) are α = 0.5 and N = 48.  Parameter values for Eq (1B) are α = 1.6, z = 6.245, and N = 

48. 

FIG. 3.  Pairwise invasion analysis of mean-field approximation. 

Abscissa is host mortality probability of the resident pathogen at single-strain equilibrium.  

Ordinate is host mortality due to infection by introduced strain.  Below the diagonal, the 

introduced strain is less virulent than the resident; above the diagonal, the introduced strain is 

more virulent than the resident.  Black indicates that invader advanced and excluded the resident.  

White indicates that resident repelled invader; latter went extinct.  Gray indicates coexistence; 

invasion succeeded and both strains remained extant.  Parameter values are α = 0.5, ψ = 0.2 

(strong competitive asymmetry), and µS = 0.05.  All entries jut above the diagonal are black; 

hence any resident can be invaded and excluded by a slightly more virulent invader, until 

virulence reaches the critical upper bound for persistence.  Coexistence is largely limited to 

pairing of strains with virulence less than 0.25 and strains with virulence exceeding 0.5. 
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FIG. 4.  Pairwise invasion analysis: N = 48, strong competitive asymmetry.  

Transmission/virulence declines monotonically with virulence.  Colors defined in legend for Fig. 

3.  Parameter values are α = 0.5, ψ = 0.2, and µS = 0.05. (a) Spatially detailed model.  Each entry 

is the result of a single simulation.  (b) Pair approximation.  Stationary virulence strategy µ* 

located by considering results along diagonal.  Below µ* we have black over white, so small 

increase in virulence favored in strain competition.   Above µ* we have white over black, so 

strain competition favors slightly less virulent strain.  Convergent stable stationary point µ*, with 

virulence close to 0.6, is a local ESS.   

FIG. 5.  Pairwise invasion analysis: N = 48, weak competitive asymmetry. 

 Transmission/virulence declines monotonically with virulence.  Colors defined in legend for 

Fig. 3.  Parameter values are the same as in Fig. 4, but here ψ = 0.2.  (a) Spatially detailed model.  

Each entry is the result of a single simulation.  Probability of superinfection reduced in 

comparison to Fig. 4a; extent of coexistence lower than in Fig. 4a.  (b) Pair approximation.  

Frequency of superinfection reduced in comparison to Fig. 4b.  Stationary point µ*, with 

virulence close to 0.56, is convergent stable and a local ESS. 

FIG. 6.  Infected host density at single-strain equilibrium: strong asymmetry, 

transmission/virulence declines monotonically with virulence. 

Global infection shows density of infected hosts as function of host mortality probability; results 

of both spatially detailed model (open triangles) and pair approximation (closed squares) plotted.  

Equilibrium density of infection declines as virulence increases.  Local contagion ratio exceeds 

unity when infected hosts are aggregated spatially; results of both spatially detailed model 

(closed circles) and pair approximation (open circles) plotted.  Parameter values are α = 0.5, ψ = 

0.2, and µS = 0.05.  (a) Small interaction neighborhood, N = 8.  (b) Large interaction 
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neighborhood, N = 48.  Note improvement of pair approximation with respect to global density 

of infection. 

FIG. 7.  Maximal host density and maximal host mortality. 

Results from pair approximation with N =48, strong competitive asymmetry, and 

transmission/virulence declining strictly monotonically in virulence.  That is, parameter values 

are α = 0.5, ψ = 0.2, and µS = 0.05.  (a) Pathogen strain(s) maximizing total host density at 

endemic equilibrium.  Given that two strains can coexist, A indicates maximal host density when 

only avirulent strain infects hosts.  V indicates maximal host density when only virulent strain 

infects hosts, and C indicates maximal host density when both strains occur together.  (b) 

Pathogen strain(s) maximizing host mortality at endemic equilibrium.  Given that two strains can 

coexist, A indicates maximal host mortality when only avirulent strain infects hosts.  V indicates 

maximal host mortality when only virulent strain infects hosts, and C indicates maximal host 

mortality when both strains occur together.  

FIG. 8.  Pairwise invasion analysis: N = 48, strong competitive asymmetry, 

transmission/virulence peaks at intermediate virulence. 

Colors defined in legend for Fig. 3.  Parameter values are α = 1.6, f = 6.254, ψ = 0.2, and µS = 

0.05. (a) Spatially detailed model.  Each entry is the result of a single simulation.  (b) Pair 

approximation.  Convergent stable stationary point µ*, near 0.76, is a local ESS. 

FIG.  9.  Infected host density at single-strain equilibrium: strong asymmetry, 

transmission/virulence peaks at intermediate virulence. 

Symbols defined in legend for Fig. 6.  Parameter values are α = 1.6, f = 6.254, ψ = 0.2, and µS = 

0.05.  Global infection shows density of infected hosts as function of host mortality probability; 

results of both spatially detailed model and pair approximation plotted.  Equilibrium density of 
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infection varies nonlinearly with virulence.  Local contagion ratio exceeds unity when infected 

hosts are aggregated spatially; results of both spatially detailed model and pair approximation 

plotted.  (a) N = 8.  (b) N = 48.  Pair approximation better predicts infected host density with 

larger neighborhood.  Note difference of scale for contagion ratio.
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Table 1.  Symbols used in spatially detailed model. 

 

Symbol 

R0 

J 

sk(t) 

σk 

N 

B 

b 

βA 

βV 

γ 

n(s) 

µS 

µA 

µV 

α 

f 

 

ψ 

 

Meaning (Numerical value) 

Basic reproduction number of pathogen strain 

Total number of lattice sites in spatial model 

Elementary state of site k at time t 

Interaction neighborhood around lattice site k 

Neighborhood size (N = 8, 48) 

Host reproductive-effort probability (B = 1) 

Per-site probability host attempts propagation    

Avirulent strain infection probability 

Virulent strain infection probability 

Superinfection probability 

Number of sites on σk with state s 

Susceptible host’s mortality probability (0.05) 

Mortality probability with avirulent infection 

Mortality probability with virulent infection 

Shapes infection-transmission function 

Weight equalizing total infectiousness for 

different transmission-virulence functions 

Sets concavity/convexity of superinfection 

probability (ψ = 0.2, 1.2) 
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Table 2.  Symbols introduced in mean-field model. 

Symbol 

ρ0(t) 

ρS(t) 

ρA(t), ρV(t) 

 ρ(t) 

ε 

Meaning 

Global density of open sites with state s, time t 

Global susceptible density 

Global density of avirulent, virulent infection 

Global density of hosts at time t 

Virulence mutation, resident-invader difference 

 

 

Table 3.  Symbols introduced in pair approximation. 

Symbol 

P[ij ] 

Pt[i] 

λ(t) 

 

θA(t) 

 

θV(t) 

 

θsi(t) 

 

Meaning 

Block probability, states i and j 

Global density, sites with state i 

Probability site, state unknown, attempts to 

colonize open site 

Probability susceptible contacts avirulent 

infection at site with state unknown 

Probability susceptible contacts virulent 

infection at site with state unknown 

Probability avirulently infected host contacts 

virulent infection at site with state unknown 

 

 




