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Summary. Many machine learning methods just consider the quality of prediction
results as their final purpose. To make the prediction process transparent (reversible),
spline kernel based methods were proposed by Gunn. However, the original solution
method, termed SUpport vector Parsimonious ANOVA (SUPANOVA) was computa-
tionally very complex and demanding. In this paper, we propose a new heuristic to
compute the optimal sparse vector in SUPANOVA that replaces the original solver for
the convex quadratic problem of very high dimensionality. The resulting system is much
faster without the loss of precision, as demonstrated in this paper on two benchmarks:
the iris data set and the Boston housing market data benchmark.

1 Introduction

Kernel transformations are frequently used in machine learning methods to
transform the input domain into a feature domain so that linear methods can be
used to find an optimal solution to the learning problem. The most prominent
examples of such methods are Support Vector Machines (SVM [1]) and Partial
Least Square (PLS) approaches [2]. Despite their predictive power and efficient
implementations, they share a fundamental weakness with other machine learn-
ing techniques, namely that although they provide answers, they do not give
hints on how these answers were produced or on what basis they were reached.
To address this weakness, Gunn and Brown [3] and later Gunn and Kandola [4]
proposed to use spline kernels and combine them with a full combinatorial de-
composition of the feature set. These models explicitly identify feature subsets
that are used in producing the answers. Those subsets can then be used to discern
the reasons for predictions. The key element of this approach is a sparse solu-
tion to the fully decomposed spline kernel prediction function. Therefore, such
a sparse solution can be used for hypothesis forming [4]. However, SUPANOVA
is not without its challenges, which arise when an efficient and scalable imple-
mentation is desired. These challenges were addressed in our initial work on
application of SUPANOVA to machine learning for magnetocardiography [5].
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The rest of the paper is organized as follows. Section 2 describes the orig-
inal SUPANOVA approach published in the literature. Its implementation is
discussed in Section 3. Section 4 describes two benchmarks that we used to mea-
sure the performance of the implementation and Section 5 provides the results
of these measurements. Section 6 offers conclusion and outlines future work in
this area.

2 SUPANOVA

Before we discuss the models, we start with some basic definitions and notation.
In this paper, we assume that there are N training data points in the form of
vectors xi = [xi

1, x
i
2, . . . , x

i
n] ∈ Rn for i = 1, 2, . . . , N . Each vector represents

values of n features and has the corresponding output value, yi ∈ R. We will
denote the matrix containing these vectors (or training data points) as x and
the vector of the corresponding output values as y. We assume that the data
Mahalanobis scaled [6], that is that each feature has its average and standard
deviation computed and then each value is replaced by the difference of the
original and average values divided by the standard deviation.

We want to find a function f that is represented by these data points and
their values, such that for all training points, as well for any new data point
x0 = [x0

1, x
0
2, . . . , x

0
n] with the associated value y0, we have yi ≈ f(xi), i =

0, 1, 2, . . . , N . To reconstruct the function f from the training data points we
use the following basic kernel model:

f(x0) =
N∑

i=1

aiK(xi, x0) = K(x, x0) · a (1)

where a kernel function, K(xi, x0), yields the value that is a measure of similarity
between vectors xi and x0 and kernel vector:

K(x, x0) = [K(x1, x0), . . . , K(xN , x0)].

a ∈ RN is the usual weight of data point vector and · denotes the dot product.
The basic idea of the SUPANOVA method based on spline kernels is to repre-

sent the solution to a machine learning problem as a sum of kernels that decom-
pose functions of the order n into a sum of terms that are 1-ary, 2-ary,. . . ,n-ary
order functions of the original arguments. Each function higher than first order
uses a product of spline functions to represent its arguments.

This basic model (1) can be extended by replacing kernel function with a sum
of kernels Kj(xi, x0) with each one measuring similarity of vectors xi, x0 on a
subset of features, with M = 2n − 1 we get: f(x0) =

∑M
j=0 cjKj(x, x0) · a, where

cj ≥ 0. In this representation, a linear sum of kernels weighted by nonnegative
coefficients cj is used in which each kernel Kj yields the value Kj(xi, x0) that
defines the jth component of ANOVA decomposition [4] in which an order n
function g(u) over an n element vector u is represented as: g0 +

∑n
i=1 gi(ui) +∑

i<j gi,j(ui, uj) + . . . + g1,2,...,n(u1, u2, . . . , un). The appropriate multivariate
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ANOVA kernel of two vectors u, v is given by a tensor product of a univariate
kernel plus a bias term as follows:

KA(u, v) =
n∏

i=1

[1 + k(ui, vi)] = 1 +
n∑

i=1

k(ui, vi) . . . +
n∏

i=1

k(ui, vi).

As an operator, following Kandola [7], we will use a spline kernel in the form of a
piece-wise cubic polynomial: kspline(ui, vi) = uivi +

(ui+vi)min(ui,vi)
2 − min(ui,vi)3

6 .
The resulting kernel is used in a SUPANOVA technique first proposed by Gunn
and developed by Kandola [7].

Clearly, the number of potential terms in this representation is very large,
M = 2n − 1. However, vector c should be very sparse, so only a few terms in the
decomposition will be significant.

The loss function for this kind of representation consists of three (and not two
as is the case in traditional kernels) terms:

1. The error of modeling that measures the distance of the prediction from the
real results (equal to traditional kernels) and for a quadratic loss can be

expressed as
∣∣∣y −

∑M
j=0 cjKj · a

∣∣∣
2

2
.

2. The smoothness of the representation, defined by vector a as λa

∑M
j=0 cja

T ×
Kj · a. is again the same term as used in traditional kernels to maintain
generalizibility of the representation.

3. The sparseness of the representation is specific to the spline kernels, and
is defined ideally by the number of non-zeros in vector c, that is by zero-
norm of the vector c as λc

∑M
j=0 |cj |0. Since the optimization with zero-norm

(that is not differentiable) is difficult, Gunn and Kandola [4] approximated
it with the first-norm and used the absolute value of the sum of all vector c
elements as a measure of sparseness. Even this first-norm metric leads to the
optimization problem that is difficult to solve because of very large numbers
of feature subsets that arise even for modest numbers of features. Indeed, for
a problem with n features, the corresponding optimization problem would
be of 2n dimensionality. Therefore even for relatively modest numbers of
features in the range of 30 to 50, the corresponding optimization problem
would have 109 to 1015 dimensions and would be expensive to solve.

Hence, for the quadratic loss for the entire training data set, the error function

is just the sum of the three defined above terms: Φ(a, c) =
∣∣∣y −

∑M
j=0 cjKj · a

∣∣∣
2

2
+

λa

∑M
j=0 cja

T × Kj · a + λc

∑M
j=0 |cj |0, cj ≥ 0. The sparseness and smoothness

terms are weighted by regularization parameters λa and λc, that have to be
identified heuristically as they strike the balance between the quality of the
predictions on the training data (that is the distance between the predicted and
real values for each training data point) and the model’s ability to generalize
to the testing or new data (that is the distance between the predicted and real
values for each testing or new data point).
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3 SUPANOVA Implementation

λa and λc are not initially known but need to be found. In an iterative search for
those values, both λa and λc should initially be set large and reduced gradually
(by 2-3 percentage points of the initial value per iteration). Based on Kandola’s
experience that subsequent iteration steps did not change the solution signifi-
cantly [7], we follow a solution procedure that consists of an initialization step
followed by the single iteration.

Initialize: c′ = 1 a′ = argmina(Φ(a, c′)). Single step: c∗ = argminc(Φ(a′, c)).

The single iteration step used in [4] included also recomputation of the optimal
smoothness vector a for the newly found sparseness vector c, but our experience
indicates that this additional step does not improve the solution, so we are not
executing it in our solution.

In the initialization step, regularization parameter λc is not used, so it does
not need to be determined in the respective optimization. λa is determined by
cross-validation (like [4], we use an automatic search procedure to locate a local
minimum of the validation error in 8-fold cross-validation runs). The difficult
part of the optimization of the loss function is determining the regularization
parameters in the single step that computes vector c. Following [4], we use a
method based on the best empirical performance. We set λa = 0 and select such
λc that the loss is equal to the loss of the validation error in the initialization
step. As the result, λc can be readily computed from the following equation.

λc =
λa

∑M
j=0 c′

ja′T ×Kj·a′
∑M

j=0 c′
j

= λa

M

∑M
j=0 a′T × Kj · a′. This leads to the following

revised procedure.
S0: c′ = 1
S1: a′ = argmina(Φ′(a)), where Φ′(a) =

∣∣∣y −
∑M

j=0 Kj · a
∣∣∣
2

2
+ λaaT ×

∑M
j=0 Kj · a, and λa is computed by minimizing (possibly locally) validation

error in 8-fold cross validation procedure (for problems in which N < 14, we use
N/2-fold cross validation procedure instead).

S2: c∗ = argminc(Φ′′(a′, c)), Φ′′(a, c) =
∣∣∣y −

∑M
j=0 cjKj · a

∣∣∣
2

2
+ λc

∑M
j=0 |cj |,

and λc set so the loss is the same as it is in the initialization step.
In step S1, by taking the partial derivatives for all elements of vector a,

we obtain a system of N linear equations with N unknowns that we represent
as d × a = f , where d is a matrix of coefficients for the unknown vector a
elements and f is a vector of free terms for those linear equations. Hence, fl =
2

∑M
j=0 c′j

∑N
i=1 yiKj(xi, xl) and each element of matrix d is defined as dl,p =

∑M
j=0 c′j [2

∑N
i=1 Kj(xi, xl)

∑M
q=0 c′qKq(xi, xp) +λa(Kj(xl, xp) + Kj(xp, xl))].

In step S2, Kandola in his Ph.D. thesis [7] replaced the sparseness term with
the sum of the elements of vector c (so effectively replaced the zero norm with the
first norm measure). This change allowed him to use a convex quadratic problem
solver, called BPMPD [8] based on a robust interior point solver technique. How-
ever, it is not scalable to a very large number of variables (in our case M = 2n−1
grows very rapidly with the number of features n). The size of the quadratic
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problem that we face for realistic data is prohibitively large (when n > 20, M =
2n−1 > 106) even for the most modern quadratic problem solvers and computers.

Fortunately, the minimization problem of step S2 is a very special case of a
quadratic problem in which the number of quadratic terms (N) is much smaller
than the number of linear terms (M). This fact guided our development of a
heuristic that uses a greedy selection of the non-zero entries in vector c, one-by-
one, and measures the corresponding error of the solution until this error cannot
be further minimized. Indeed, the difficult part of optimization needed in step
S2 is determining which elements of vector c should be non-zero. Once we know
that, finding their values is just a matter of solving a set of linear equations
of the order equal to the number of non-zero elements chosen. We also know
that this number is limited by the number of data points, that is N . To make
selection efficient, the heuristic assumes that the subvector of non-zero entries of
size k + 1 that minimizes the loss function in step S2 is simply the subvector of
non-zero entries of size k that minimizes the loss function plus one more non-zero
elements. This approach is often termed a “greedy” selection. The results that
we obtained from benchmarks confirmed that a vector selected in such a way is
close to the vector that minimizes the loss function in step S2.

The additional advantage of the heuristic is that it allows us to use exact
value of the sparseness term in the loss function, that is zero norm of the vector
c elements. Indeed, as in each step of heuristic the number of non-zero elements
is constant, only their values are recomputed, so non-differentiability of the loss
function sparseness term does not impact our optimization. Hence, comparing
ours with Gunn’s approach, we notice that we optimize approximately (by us-
ing greedy selection of the vector c non-zero elements) the exact loss function,
whereas Gunn optimizes exactly (by using a quadratic problem solver) the ap-
proximate expression of the loss function.

The final advantage of the heuristics is its memory efficiency. The size of the
sparse kernel array is O(MN2), however, as shown later, our heuristic requires
storing only one element for each column of the spline kernel. Hence, the size
of the storage needed for our implementation is just O(MN). This reduction in
the memory size by a factor of N enables us to solve much larger problems than
solvable on the same machine using the quadratic problem solver. The gain in
computational and memory efficiency combined with the quality of the solutions
that we obtained justify our approach.

The computation in step S2 proceeds as follows.
First, we compute λc such that the loss is equal to the loss of the validation

error in the initialization step, assuming that the maximum number of non-zero
elements in vector c is N (as this is the number of independent equations in
the corresponding optimization problem which we use to compute the values of
non-zero elements of vector c), so λc = λa

N

∑M
j=0 a′T × Kj · a′.

The loss function contains N approximation error terms of the form

⎡

⎣yi −
M∑

j=0

cj

N∑

k=1

Kj(xi, xk)ak

⎤

⎦
2

=

⎡

⎣yi −
M∑

j=0

cjPi,j

⎤

⎦
2

,
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where Pi,j =
∑N

k=1 Kj(xi, xk)ak. Assuming that only k ≤ N positive elements
of vector c should be selected and all other elements should be set to 0 (so this is
the k-th step of the “greedy” selection in our heuristic), the choice is easy. Tak-
ing the derivatives for all non-zero elements selected, each derivative for some
non-zero element cp yields the equation

∑N
i=1

∑k
j=0 cjPi,jPi,p =

∑N
i=1 yiPi,p.

If solving this set of k equations with k unknowns, we obtain all the non-
zero values positive, then we can easily compute the corresponding error as
∑N

i=1

[
yi −

∑M
j=0 cjPi,j

]2
+ kλc. To select the next non-zero value in vector c,

we can now substitute the found optimal values of the k elements of vector c
so far selected, computing the new vector yk of approximation error terms in
the loss function as yk

i = yi −
∑k

j=1 cj

∑N
m=1 Kj(xi, xm)am. Then, we can com-

pute the derivative for each of the M − k unselected elements cr’s of vector c as∑N
i=1 crP

2
i,r =

∑N
i=1 yk

i Pi,r to find the optimal value of cr and the correspond-
ing value of the loss function. Selecting that element cr that yields the smallest
approximation error term of the loss function, we can extend the non-zero value
subvector of c with the newly found non-zero element and continue the heuristic.

The more detail description of the implementation of step S2 follows.

1. Initialization. We create initially empty set S of all selected elements of
vector c that are positive, and a set E contains all the remaining elements
of vector c.

2. Selection. We select, one by one, elements er in set E and compute, accord-
ing to Equation 3 the minimum value of the loss function with this selection.
Then, we choose that element er that yields the smallest minimum among
all elements of set E and move this element from set E to set S.

3. Adjustment. With the newly created set S, we compute the solution to the
set of linear equations obtained by taking derivatives of the error expression
for the elements of set S. If all elements of the solution are non-negative,
the solution is accepted. Otherwise, the previously found solution is retained
and the heuristic stops.

4. Control loop. If set E becomes empty, heuristic stops, otherwise step 2 is
executed with the extended set S.

In pseudo-code, the heuristic can be written as follows.

S = ∅, E = {c}, k = 1, toterr=
∑N

i=1

[
yi −

∑M
j=0

∑N
p=1 Kj(xi, xp)ap

]2
+ λc

do {
eopt
1 =

∑N
i=1 yk

i Pi,1/
∑N

i=1 P 2
i,1, kerror =

∑N
i=1

[
yk

i −
∑N

p=1 eopt
1 Pp,1

]2

for r=2 to |E| do

eopt
r =

∑N
i=1 yk

i Pi,r/
∑N

i=1 P 2
i,r, kerror =

∑N
i=1

[
yk

i −
∑N

p=1 eopt
r Pp,r

]2

if error<kerror then kerror=error, ksel=i endif
endfor
S = S ∪ {eksel}
compute k derivatives and solve a system of k linear equations
if all elements of S are positive then
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error=
∑N

i=1

[
yi −

∑k
j=0 sj

∑N
m=1 Kj(xi, xm)am

]2

continue=(error<toterr)
endif
if continue then k=k+1, toterr=kerror+kλc endif
until continue

Let s(M), which we will call a sparse factor, denote the number of non-zero
entries in the final sparse vector c of size M . Since we have at most N approx-
imation terms in the loss function, then clearly s(M) ≤ N . The computational
complexity of the entire computation is O(MN2). Indeed, the spline kernel has
O(MN2) elements, which of each has to be computed. In step S1, we solve
the set of N linear equations repeatedly to find the optimal value of regular-
ization parameter λa, operation of complexity O(N3) = O(MN2) for M > N .
Finally, in step S2, we compute coefficients Pi,j , again an operation of complex-
ity O(MN2), then we solve s(M) sets of linear equations varying in size from 1
to s(M), so operation of complexity O(s(M)3). Since s(M) ≤ N < M then also
the last operation is no worse than O(MN2). The memory complexity is also
reasonable. It is easy to notice that in step S1, all elements of vector c are equal
to 1, so instead of the full kernel, we need to store only the sum of all values
along the vector c dimension, in total O(N2) memory requirement. In step S2,
the only arrays Pi,j and similarly sized arrays storing the sum of squares of el-
ements Pi,j and products of elements Pi,j by elements yk

i need to be stored. So
in total only O(MN) data items need to be stored. This is a huge improvement
over storing entire spline kernel that would require memory by factor N larger.

4 Performance Metrics and Data Benchmarks

We use two metrics evaluate the prediction performance. The first one is the Root
Mean Square Error index or RMSE, which is defined as the average value of the

squared error: RMSE =
√

1
n

∑
i(ŷi − yi)2, where ŷi = f(xi) is the predicted

value for the data vector xi. The second one is r2, defined as the correlation
coefficient squared between target values and predictions for the response, r2 =

(
∑ ntrain

i=1 (ŷi−¯̂y)(yi−ȳ))2∑ ntrain
i=1 (ŷi−¯̂y)2

∑ ntrain
i=1 (yi−ȳ)2

. Two related metrics, q2 = 1 − r2 and Q2 = 1 −
R2, are used to assess the performance of validation or test data. The smaller
the values for q2 the better. Ideally, both values should be similar. Detailed
information about these metrics is given in [6].

The model quality was measured on two machine learning benchmarks: the
petal iris data and the Boston housing market data. Both data sets are members
of the UCI Repository for Machine Learning Data-Bases [9] and are described
below.

Petal iris data defines a classification problem with linear relationship. We
use this simple data set to verify the implementation. This is dataset is widely
used in the pattern recognition literature and was adopted from a classic paper
in botany [10] perhaps because of its simplicity for classification. The dataset
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contains 3 classes of 50 instances each, for a total of 150 data points. Each class
refers to a type of iris plant. One class is linearly separable from the other two
that are not linearly separable from each other.

The Boston housing dataset has been extracted from the work of Harrison
and Rubinfield [11] who were studying the effects of air pollution on housing
prices. The data provides the median price for 1970 of owner-occupied houses
in 506 census tracts within the Boston metropolitan area. Thirteen features
characterizing each census tract are available for use in predicting the median
price, including crime rate, mean no. of rooms, distance to job center, etc.

5 Experimental Results

The described above two data sets were subject to many machine learning ex-
periments, including [4, 7, 12]. For this reason, we have chosen them to illustrate
the performance of the SUPANOVA method in general and our heuristic in
particular.

The results from processing the petal iris dataset using our initial implemen-
tation are shown in Figure 1. The available data were split as follows: 50 samples
were chosen for training and 30 samples are used for validation. This data set
has only four features so only 24 elements in vector c were created. The optimal
solution uses nine out of these 16 elements. Values of q2 and Q2 indicate a high
quality of the results, as shown in Figure 1. The positive and negative cases are
separated nearly perfectly. Measuring from the ROC curve, the goodness of fit
is close to 1.

The results from the Boston housing market data set are shown in Figure 2.
They display very similar, high quality results as shown in the previous figures.
This data set has a large number of dimensions, 13, and therefore a relatively
high number of feature combinations (213 = 8192). The non-linearity of the
data is limited, so the model that we ran included only empty feature set, single
features and pairs of features, yielding 92 feature combinations in total. From
this set of 92 potential features, the heuristic selected only 40 features for the
solution, as indicted by the number of non-zero elements in vector c. Hence,
sparseness of the solution, 40/8192 ≈ 0.5%, was excellent. Finally, despite of the
large size of the model, the results are good, as indicated by the high values of
q2 metrics and Q2 metrics.

It is interesting to note that in these plots, the largest divergence between
the measured and predicted values is at the extremes of the pattern sequence
numbers. This is not surprising, because prices of the most expensive houses were
censored at the value of 50k causing the model to predict wrongly for them.

To simplify the analysis of input variables, we introduce a parameter in the
algorithm to control the maximum number of features in feature combinations
considered in the solution. In general, it could be expected that the significant
elements of vector c may correspond only to single features and their binary
and triple combinations. As already mentioned, the results for Boston housing
market data set are obtained using at most binary combination of features. To
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Fig. 1. Predicted vs. target values and scatterplot for the petal iris test data

Fig. 2. Processing results for the test Boston housing market data; closeness of the
data points to the diagonal in the scatterplot indicates quality of predictions

investigate if adding triple feature combination improves the quality of the pre-
diction, we extend feature space to include 378 feature combinations, including
all possible triples, but there are no obvious improvements in the predictions. We
may conclude that most of the information for Boston housing market data lies
in feature compositions that are generated up to binary combination of features.
This result is significant as it yields an extreme reduction in the search space for
vector c while retaining good quality of predictions. This is useful for pruning
features based on relatively simple binary combination of inputs. In fact, this
could be a basis of an efficient and systematic approach to pruning, in which we
start with binary feature combinations and then continue with the increasing
numbers of features in combinations until no further improvement to the quality
of the solution can be obtained. As we expect this iteration to finish after three
to five steps, (as it did in the test cases), the size of vectors c is greatly reduced
from M = 2n −1 to M in the range n3

6 to n5

120 , making analysis of problems with
up to 100 features feasible.

Our results agree with both Husmeier (who used an ensemble of Bayesian
neural networks trained using an Expectation-Maximization (EM) algorithm
and incorporating automatic relevance determination (ARD) [13]) and Gunn and
Kandola (who used SUPANOVA [4]). concluded that Feature 1 in the Boston
housing market data, “Crime rate”, seems to have a low-impact on house prices,
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and this conclusion is confirmed in our approach. Likewise, Feature 2, “Percent-
age of residential land”, was also found not to be significant. More interesting is
a comparison with the original SUPANOVA analysis provided by Gunn [4]. The
paper listed the following single features as significant: mean number of rooms,
percentage built before 1940, distance to job center, and percentage of minori-
ties. and binary combination of features with the mean number of rooms and
with percentage built pre 1940 as the most important in the 14 non-zero vector
c entries selected, but the paper did not provide the prediction quality measure-
ments. On the other hand, the quality of prediction of our implementation of
SUPANOVA methods matched other advanced machine learning such as KPLS
kernels [6]. Our implementation selected only one single feature: mean num-
ber of rooms. It also selected the same binary combinations with mean number
of rooms and with percentage built pre 1940 as the Gunn and Kandola’s im-
plementation [4] did. In total, both approaches selected 14 non-zero entries in
vector c and agreed on 9 of those selections. These results demonstrate that our
new heuristic achieves a high accuracy of predictions while preserving the trans-
parency of the solution supported by the original SUPANOVA implementation.
We also noticed that the adjustment improves significantly the quality of the
results, as measured by the reduction in the total error by over 30% compared
with the unadjusted solution. At the same time, the sparseness of the solution
can be easily adjusted because of the sequential growth of the size of vector c. For
example, the last 20 elements of vector c, that is elements 21 − 40, improve the
final result by less than 3% and therefore can be discarded, improving sparseness
of the solution.

Another interesting conclusion is that the values of the c vector element mainly
decrease in the order of their selection. For example, the values of the first 20
elements selected by the heuristic vary from 4.86 to 0.36, whereas values of the
next 20 elements range from 0.11 to 0.29. This is not surprising, as our heuristic
was designed to do exactly that, meaning that it selects the non-zero elements
in the order of their importance for the solution. The fact that the order of the
selection is very strongly correlated with the magnitude of the impact confirms
that the heuristic works correctly, and in fact the difference between the order
of selection and the order of magnitude of the value of non-zero elements is a
measure of optimality of the heuristics. In fact, at the moment when the heuristic
completes, we can compute the largest shift of an element in the vector c in this
order to estimate how many additional steps the heuristics should be run to make
sure that no better non-zero vector exists. Such an extended vector, if found, can
than be truncated using the following observation. Since the magnitude of the
entry in the vector c is correlated with its impact on the solution, the corollary is
that the elements with small magnitude can be dropped without decreasing the
quality of the approximation error but improving the sparseness of the solution.
This is important, because the more sparse the solution is the more transparent
the model becomes, thereby increasing the value of spline kernel solutions to
the users.
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Finally, it should be noted that the presented heuristic is capable of eliminat-
ing linearly or nearly linearly dependent feature combinations (including single
features). Indeed, if two feature sets are linearly dependent, only one of them
would be selected as having a non-zero coefficient in vector c, whereas the other
(or others if there are more than one) would have their coefficients kept at zero,
as the inclusion of any of them would not improve the solution.

6 Conclusion and Future Work

So far we have used the benchmark data to examine a new implementation of
the SUPANOVA technique. our current work focuses on applying the developed
sparse kernel implementation with the new heuristic presented above to biolog-
ical data, such as magnetocardiograms. In this special case, the number of data
points, N , (the number of patients tested) is now relatively modest (on the or-
der of a few hundred, but it is expected to grow quickly to a few thousand).
This range of values of N is not a problem from a computational point of view
for the current implementation to handle. The challenge is that the number of
features that dictates the number of the feature subsets defining the size of the
sparseness vector, c. There is a need to limit the number of features considered
to 100 − 200, as larger numbers of features would result in our implementation
exceeding the current limits of memory in modern workstations (for example,
with triples of 200 features and 1, 000 data points in the training set, our imple-
mentation requires about 8 GB of memory). Our heuristic is instrumental here,
as without it, the same 8 GB memory workstation would be able to process at
most 23 feature problem with 1, 000 data points in the training set and triples
of features using the quadratic problem solver [14].
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