
LINKING SPATIALLY EXPLICIT PARALLEL CONTINUOUS AND DISCRETE MODELS 

Boleslaw K. Szymanski 
Gilbert Chen 

Department of Computer Science 
Rensselaer Polytechnic Institute 

Troy, NY 12180, U.S.A.

 ABSTRACT 

This paper advocates the use of mobile agents for linking 
simulations running on different computers. A Mobile 
Component approach is proposed to enhance reusabilit y 
of existing simulations and to improve eff iciency of 
component based simulations of complex systems. A 
basic unit of the mobile component simulation is a 
simulation server with a communication interface to 
mobile agents. Each mobile agent links and coordinates 
component’s execution. We used this approach to 
implement a combined Lyme disease simulation. It 
consists of a partial differential equation based continuous 
simulation and parallel discrete event simulation with 
explicit space representation. The performance of this 
implementation is presented to demonstrate the feasibilit y 
of the Mobile Component approach. In addition, a 
process-port model of simulation is discussed. Its 
implementation allows eff icient linkage of simulation 
servers, if they are programmed in a simulation language 
supporting the process-port model. We finall y show that 
the performance of the Mobile Component approach 
could be significantly improved by using compiler 
techniques to eliminate overhead of communication 
among simulation servers.  

1 INTRODUCTION 

An exponential growth in processor speed and network 
bandwidth in the last decade enables development of large 
simulations of unprecedented fidelit y and computational 
complexity. In particular, it has become feasible and 
computationally eff icient to create large-scale simulation 
by integrating several existing models. Component-based 
modeling technique is a convenient way of building 
integrated simulations for distributed and heterogeneous 
computational environments. A large simulation can be 
partitioned into a number of components that interact with 

each other. The interaction itself is relatively simple and 
therefore easy to describe. Building each component may 
require knowledge from specific disciplines, which makes 
modeling a whole system by a single team diff icult. 

Another advantage of component-based approach is 
that it facilit ates simulation reusabilit y. Existing models 
can easil y be integrated with new ones that are built from 
scratch. Since verification and validation of a simulation 
is a very tedious and diff icult task, using a simulation 
already verified is very valuable. Hence, modern 
simulation design paradigms support reusabilit y as a 
means of reducing the cost and complexity of the design 
of large simulations. 

In the next section, we briefly review High Level 
Architecture (HLA), the best-known component approach 
for simulation, and point out its advantages and 
disadvantages. Section 3 introduces mobile agent 
technology, which allows autonomous programs to 
dynamicall y link distributed simulations. In Section 4, we 
propose a new approach, referred to as Mobile 
Component approach, to coordination of distributed 
simulations based on mobile agent technology. In Section 
5, we present a case study of the simulation of Lyme 
disease. In Section 6, we introduce a process-port model 
that results in eff icient linkages within a mobile 
component simulation.  Section 7 concludes the paper. 

2 THE HLA 

Developed by the US Department of Defense, HLA (see 
US Department of Defense, Judith et al. 1998) provides 
software architecture for integration of a wide variety of 
simulations. A major design goal of HLA was to provide 
a modeling mechanism for reusing existing simulations so 
that the cost and time required to create new ones can be 
decreased. The U.S. Department of Defense (DoD) has 
mandated that the HLA should be used across all classes 
of simulations within the DoD. In addition, the HLA has 
been adopted as the standard for distributed simulation by 

Bolek
Text Box
Proc. Winter Simulation Conference, Orlando, FL, December 2000 IEEE Computer Society Press, Los Alamitos, CA, pp. 1705-1712



the Object Modeling Group, and is currently under 
consideration for becoming IEEE standard 1516. 

The HLA standard is composed of three parts: 
1. HLA rules that describe design principles and 

constraints on HLA-compliant federates 
(simulations) and the entire federation. A 
federation is a combined simulation system that 
is created by integrating federates.  

2. HLA object models that describe the criti cal 
aspects of simulations and federates shared 
across a federation.  

3. An HLA interface specification that describes the 
runtime services provided by the Runtime 
Infrastructure (RTI) to federates and by federates 
to the RTI. The Runtime Infrastructure is 
responsible for executing a federation.  

In HLA, reusabilit y is understood much broader than 
the common notion of reusabilit y in the software 
engineering community (Ernest 1998). Runtime 
information of all elements within a simulation (federate) 
is collected by a federate wrapper and available to the 
RTI. The RTI acts as a communication bus. All 
communication between federates is implemented on a 
subscription basis and must go through the RTI. A 
federate may subscribe to a specific object class and may 
have the RTI notify that federate whenever a new object 
of this class is discovered. The subscriber federate may 
also request that it will receive updates to the subscribed 
object whenever its attributes are changed. The publishing 
federate notifies the RTI whenever an object’s attribute 
value changes, which are then sent to the subscriber 
federates.  

There are two problems with this approach. First, the 
HLA requires that the simulation is built i n accordance 
with its framework. Although in theory it is possible to 
wrap up a legacy simulation as an HLA-compliant 
federate, a considerable amount of effort must be put to 
program the wrapper. Often writing such a wrapper is 
more diff icult than writing a federate from scratch. 
Second, the subscribing and publishing scheme imposes a 
tremendous burden on communication bandwidth (Wayne 
and Gerald 1999). Some techniques, such as Remote Data 
Filtering (Willi am et al. 1998), have been proposed to 
reduce this communication overhead. Yet, the fact that 
federates cannot transmit messages directly to others 
prevents eff icient communication implementation.  

3 MOBILE AGENT 

A close examination of the idea behind the HLA approach 
reveals that the underlying communication scheme of the 
HLA is based on a Client/Server paradigm. The six 
groups of services defined by the HLA standard can be 
clustered into two classes. Some services, called federate-

initiated, are provided by the RTI and invoked by 
federates. In contrast, RTI-initiated services are provided 
by federates and invoked by the RTI. The RTI has an 
interface named RTIambassador that defines all federate-
initiated services. Similarly, a federate must implement a 
FederateAmbassador interface for all RTI-initiated 
services. As a result, both the RTI and each of the 
federates may act as a client and a server at the same time. 

One limitation of the Client/Server paradigm is its 
lack of flexibilit y. The set of services provides by the 
server is defined staticall y. Thus, it is impossible for a 
server to meet unforeseen requirements without 
modifying its interface. This is exactly the reason why the 
HLA designers have put a significant amount of effort to 
define enormous runtime services that enable cooperating 
a wide variety of simulations nowadays. Whether or not 
the HLA can meet all future needs is of course unknown. 

Another limitation of the Client/Server paradigm is 
that it results in ineff icient communication. Each request 
invoked by a client might require multiple two-way 
messages. For simulations that need intensive inter-
component interaction and that execute on limited-
bandwidth networks, this often is a serious ineff iciency. 

The described above limitations of the Client/Server 
paradigm result from the design in which the server but 
not the client has the code to perform the service. 
Therefore, the client must send a request to the server that 
then executes the corresponding service and sends the 
result back to the client. If the code would be able to 
migrate from host to host, the disadvantages of 
Client/Server paradigm would have been overcome. This 
is the idea behind Mobile Code paradigms of which the 
following are the three most important ones (Carlo and 
Giovanni 1997, Antonio et al. 1997): 

1. Code on Demand paradigm in which the client 
fetches the service code from the server and 
executes that code. This method can save 
bandwidth if the size of code is smaller than the 
size of data produced by that code. 

2. Remote Evaluation paradigm in which the client 
possesses code that performs the service. 
However, the client needs to send this code to the 
server for execution. In this solution, the main 
goal is increased flexibilit y. Binding the service 
code to the client instead of keeping it with the 
server makes modification and upgrades of the 
service easy. Another advantage of this approach 
is simpli fication of balancing the load between 
servers, because each server can execute any 
service under such an arrangement. 

3. Mobile Agent approach that can be viewed as a 
generali zation of Remote Evaluation. In this 
approach, there is no distinction between a client 
and a server. All hosts on the network behave the 



same way. An agent, consisting of the executable 
code and the intermediate state, can migrate from 
host to host and interact with other agents. As a 
result, both the issue of communication 
eff iciency and the issue of load balance can be 
addressed.  

Thanks to its effectiveness, the Mobile Agent 
approach has been an active research area in the past few 
years, while Code on Demand and Remote Evaluation 
approaches attract few researchers. Various Mobile Agent 
systems are now available, most important among them 
are D’Agent (Robert et al. 1996) and Aglets (Aglets 
Software Development Kit). Applications of Mobile 
Agent systems include network management (Alan et al. 
1999), information retrieval, electronic commerce, and 
others. Mobile Agents has also received much attention in 
the simulation community. They can be applied to the 
distributed simulations in two ways: 

1. Data Filtering (Linda et al., Linda et al. 1999). 
An approach has been proposed that uses mobile 
agents to link a continuous simulation with a 
discrete event simulation. By sending a mobile 
agent to the remote data server to perform a 
remote computation such as filtering the data, 
transmission of large data sets is avoided. Only 
the relevant data, that often contain a relatively 
small part of the full data, is sent back. 

2. Mobile Simulation. To reduce the variance of 
results, a simulation must be run for a long time, 
often repeatedly. As a result, the size of the 
simulation code is often small compared to the 
amount of data produced by such a run. 
Therefore, when linking multiple simulations, it 
is beneficial to move all simulation code together 
to a powerful multiprocessor instead of running 
them on separate hosts. Using this approach can 
significantly reduce the overhead of 
communication among simulation components. 
For instance, if the TCP/IP based message 
passing can be replaced by the shared-memory 
message passing, time savings can be very 
significant. Moreover, this overhead can be 
totall y eliminated if some compiler techniques 
are used to reconfigure the simulation, as we will 
describe in the later sections. 

As simulations are becoming larger, networks of 
computers are increasingly attractive platforms to execute 
them. The Mobile Agent technology provides an eff icient 
way of implementing simulations on such a platform, 
making the Mobile Agent an increasingly important 
direction in simulation research. In the next section, we 
present a novel approach, named Mobile Component 
Approach, which applies Mobile Agent technology to 
component-based simulations. 

4 MOBILE COMPONENT APPROACH 

Currently, two challenges for a good component-based 
modeling technique are: 

1. ease of linking existing simulations, and 
2. facilit ating collaborations in building new 

simulation.  
These two goals are what the HLA wants to achieve, 

too. However, in our opinion, the HLA fall s short of both 
of them. In case of the first goal, the HLA does allow easy 
linking of existing simulations, but such simulations must 
be built i n accordance with the HLA framework. It 
remains unclear whether the HLA can meet the second 
goal because two main disadvantages of the HLA are its 
inflexibilit y and inefficiency. 

We propose Mobile Component approach to solve the 
above problems. In this approach, mobile agents link 
together simulation components. The main benefit of such 
arrangement is that the mobile agent can choose the best 
host to execute on. The communication flow between the 
agent and the component simulations may not be 
symmetric. Some components may have more intensive 
communication with the linking agent than the others. 
Therefore, an eff icient solution is to put the agent and the 
component that requires maximum bandwidth on the 
same host. This solution can be modified and the agent 
can dynamicall y migrate to other host, if it detects 
changes in communication flow during a simulation run. 

Another important feature of Mobile Component 
approach is the concept of a simulation server. Each 
simulation is required to define an interface that provides 
suff icient functionalit y to link it with other components. 
Mobile agents interact with the simulations only through 
such interface. In this way, security issue is circumvented. 
By limiti ng the access to components, this paradigm 
distinguishes itself from the majority of the current mobile 
agent systems in which security is the important issue that 
has attracted a lot of researchers.  

An interface consists of methods and events. Mobile 
agents invoke methods while simulations trigger events. 
Both methods and events define an argument list and a 
returned data type. An interface may have multiple 
implementations to maximally utili ze the capabiliti es of 
the underlying computer hardware. For instance, if the 
simulation and the agent are located on the same host, 
shared-memory implementation can be used to avoid the 
relatively slow speed of TCP/IP. 

Currently, the research on Mobile Component 
approach focuses on the first goal, which is to facilit ate 
linking of existing simulations. We will discuss how it 
meets the second goal in Section 6. 



5 CASE STUDY: LYME DISEASE SIMULATION 

Lyme Disease is prevalent in the Northeastern United 
States. People can acquire the disease by coming in 
contact with a tick infected with the spirochet, which may 
transfer into the human blood, causing an infection. Even 
though the most visible cases of Lyme disease involve 
humans, the main infection cycle consists of ticks, mice 
and deer. If an infected tick bites a mouse or a deer, it 
becomes infected. The disease can also be transmitted 
from an infected mouse to an uninfected, feeding tick. 
Ticks undergo three life stages: they are born as larvae, 
transform then into nymphs and finally mature into adult 
ticks. Larvae and nymphs prefer feeding on mice, while 
adult ticks bite only mammals, mainly deer. The seasonal 
cycle of the disease, and the duration of the simulation, is 
180 days, starting in the late spring. This time is the most 
active for the ticks and mice. For example, during that 
time mice are searching for nesting sites and may carry 
ticks a considerable distance. The cycle of Lyme disease 
is shown in Figure 1.  

Figure 1: The Cycle of Lyme Disease  

We have already built a parallel discrete event 
simulation (PDES), in which deer and mice are modeled 
as individuals and space is discretized into a grid of 
locations (Ewa et al. 1996). Ticks are treated as a 
"background", a distinct feature of each space location.  
The density of ticks is computed independently at each 
location. Hence, it changes in discrete steps even between 
neighboring locations. Another simplification in this 
model is an assumption that ticks are totally immobile 
themselves and spread over the space only by being 
carried around by the animal on which they feed. The 
simulation uses the optimistic protocol. To reduce the 
overhead incurred by rollback, it employs Breadth-First 
Rollback (Ewa and Boleslaw 1997) that limits the number 
of events that need to be rolled back in response to a 
straggler. 

A more accurate model requires that tick density 
changes continuously in space and ticks themselves 
spread out by crawling in response to the level of 

crowding at each point of space. In such a model, ticks 
density is described by a set of partial differential 
equations (PDE). Incorporating a PDE solver directly into 
the parallel discrete simulation could be extremely 
difficult, because it changes fundamentally the nature of 
discrete event simulation; typically, the whole program 
would have to be redesigned. 

Alternatively, a separate PDE solver can easily be 
built using either a standard or customized numerical 
package. Then, the PDE solver and the parallel discrete 
event simulation need to work collaboratively in order to 
simulate the Lyme disease more accurately.  Using 
Mobile Component approach, both of them are viewed as 
simulation servers that need to define an interface for 
mutual collaboration. Then, an agent can be built to 
synchronize them, as shown in Figure 2 (Gilbert et al. 
2000). 

Figure 2: Linking Two Simulations 

5.1 Modified Discrete Event Simulation 

To reflect the mobility of ticks, the original discrete event 
simulation has been extended with an interface through 
which the tick state can be changed. Whenever the 
discrete event simulation needs to access the density of 
ticks, it triggers an event indicating that the tick density 
has changed in a particular location. That event is then 
passed to the interface, and is received by a mobile agent 
which can then decide whether to respond immediately or 
later, based on the timestamp of the event. 

Figure 3: Interface of the Discrete Event Simulation 

interface DES  
{ 
methods: 
 void init(); 
events: 
 void tickbite(int proc_id, int x, int y,  

double time, TICK& tick); 
 void tickdrop(int proc_id, int x, int y,  

double time, TICK& tick); 
 void tickbite_undo(int proc_id, int x, int y,  

double time, TICK& tick); 
 void tickdrop_undo(int proc_id, int x, int y,  

double time, TICK& tick); 
}; 
 

uninfected 
larval tick 

infected 
nymphal tick 

uninfected 
mouse 

infected 
mouse 

infection 

tick bite 
infection 

tick bite 

interface 

Continuous 
Simulation 

Synchroni-
zation 
Agent 

Discrete 
Event 
Simulation 



5.2 Continuous Simulation 

There are five types of ticks in the Lyme disease 
simulation: uninfected adult ticks, infected adult ticks, 
susceptible nymphs, infectious nymphs and questing 
larvae. To describe the tick population, we use a reaction-
diffusion model. A reaction term summarizes spatially 
localized processes of birth, death, and when applicable, 
developmental advance and infection transmission. The 
parameters of the reaction terms are independent of spatial 
location. Diffusion terms involve the second-order partial 
derivatives. Diffusion approximates biological dispersal 
of ticks in response to the overpopulation. 

To solve the above partial differential equations, we 
chose the fully discrete finite difference method which 
discretizes both in time and space dimensions. Thus, the 
continuous domain of the equations is replaced by a 
discrete mesh of points and the derivatives are replaced by 
finite difference approximations. In addition, the PDE 
solver needs to be able to rollback simulation time 
because it is linked with an optimistic discrete event 
simulation whose events may be executed out of the 
temporal order. 

Figure 4: . Interface of the Continuous Simulation 

5.3 Synchronization Algorithm 

The synchronization between continuous and discrete 
event simulations uses approximations on the simulated 
time. The mobile agent that is responsible for the 
synchronization keeps track of the simulated time of the 
continuous simulation. If a discrete event arrives with a 
timestamp falling into the range between current and the 
next simulated time of the continuous simulation, then 
this event is processed immediately. If the event 
timestamp is greater than the next step continuous time, 
the event must be stalled for later execution. The mobile 
agent advances the continuous simulation into the next 
step only when all simulated times in discrete processes 
have past the next continuous simulated time. 

5.4 Experiment Results 

In our experiments, the parallel discrete event simulation 
is based on MPI and runs on a 16-node IBM-SP2 
machine.  Another standalone program running on the 
IBM-SP2 provides the interface to the parallel discrete 
event simulation. The continuous simulation running the 
PDE solver executes on a 12-node SGI Origin 2000 
shared-memory multiprocessor. The PDE solver uses 
Pthread library to distribute the computation over multiple 
processors. In addition to the computation processors, an 
additional communication processor is assigned that runs 
the interface opened by the PDE solver. 

5.4.1 Discrete Event Simulation as a Simulation 
Server 

As described earlier, the original discrete event simulation 
is modified to enable a mobile agent to change ticks state 
variables. To demonstrate feasibility of the Mobile 
Component approach, we built a mobile agent whose only 
function is to drive the discrete event simulation. This 
agent simply records the density of ticks without changing 
them, except in the initialization phase where certain 
amounts of ticks are distributed over the two-dimensional 
space.  

Table 1: Comparison of Simulation Execution Times with 
a Mobile Agent Running on Different Computers. The 
parallel discrete event simulation uses four processors. 

Agent host Execution Time 
Remote computer 134 seconds 

IBM SP2 74 seconds 
 
This agent is written in the Java-based Aglet system 

developed by the IBM Tokyo Research Laboratory. It can 
either run on the remote computer from which the user 
gets access to the simulation sever, or migrate to the IBM 
SP2, on which the computer simulation server resides. 
Table 1 shows a significant speed difference between 
these two options. 

This experiment shows how useful a mobile agent 
can be. Suppose a biologist uses the discrete event 
simulation to study dynamics of Lyme disease. She might 
want to add or remove ticks at selected points in space 
and the simulated time. The traditional approach would 
require that the biologist have access to and understanding 
of the source code. He would have to modify, recompile 
and run the source code. This is an error prone and 
difficult process. In contrast, using our approach, the 
biologist only needs to modify the mobile agent described 

interface CS{ 
methods: 
 void init(int x, int y); 
 void write(int x, int y, tick_type t, double density); 
 void read(int x, int y, tick_type t, double& density); 
 void forward(double time); 
 void backward(double time); 
events: 
 void forward_complete(); 
 void backward_complete(); 
}; 



above. The user is completely separated from the internal 
detail s of the simulation. 

5.4.2 Linking Two Simulations Together 

In our first attempt to link continuous simulation with 
discrete event simulation, we used the Aglet system to 
build a mobile agent, as ill ustrated in Figure 2. The 
communication between the agent and the interfaces is 
implemented in TCP/IP. However, the preliminary results 
were very disappointing. The simulation speed was 
extremely slow. A simulation run that ends at the 80th day 
of simulated time takes 1932 seconds, whereas in our 
earlier effort to link together the same simulations, the 
same computation took only 52 seconds. 

We first suspected that this outcome was caused by 
the use of JAVA programming language that could be up 
to ten times slower than C/C++. So we rewrote the agent 
in C++ (it was not a mobile agent in a strict sense, but we 
decided to focus on speed not on mobilit y at this point). 
The execution time decreased to 1320 seconds, indicating 
still very slow implementation.  This indicated that the 
TCP/IP communication was the source of the bottleneck. 
Hence, we replaced the TCP/IP communication between 
the agent and the continuous simulation running on SGI 
Origin 2000 with the shared-memory interprocess 
communication entirely within SGI machine. The result 
showed a great improvement, the execution time dropped 
to 289 seconds. 

However, the communication between the agent and 
the discrete event simulation is still im plemented in 
TCP/IP. Unfortunately, IBM SP2 is not a shared-memory 
computer. And more, it seems that the version of MPI 
currently installed on our IBM SP2 does not support 
message passing between two programs running on the 
same processor. Thus, just to demonstrate how fast this 

simulation can run, the interface provided by the discrete 
event simulation was moved to the SGI Origin 2000. The 
agent uses shared-memory message passing to access both 
interfaces. The execution time improved further into 117 
seconds.  

The experiment shows that in the component based 
approach the communication among different components 
might become the bottleneck that degrades the 
performance greatly. Eff icient communication is the key 
to an eff icient implementation using this approach. 

6 COMMENTS ON MOBILE COMPONENT 
APPROACH 

The experiment with linking two different simulations 
shows that the Mobile Component approach has the 
abilit y to reuse existing simulations with littl e extra 
programming effort. However, the best result achieved by 
the agent approach is still t wice slower than the approach 
based on direct connection between components. This 
performance gap is caused by the overhead induced by 
communication between the agent and the continuous 
simulation. While the directly connected approach 
accesses the tick density through memory references, the 
agent approach uses shared-memory based message 
passing. Therefore, an important question related to the 
Mobile Component approach is whether a more eff icient 
linkage is possible. 

Eff iciency is a fundamental issue in computer science 
that in our case has two aspects. First, there is a speed 
with which a program executes.  Second, there is the cost 
of program development. In many cases, these two 
aspects are contradictory. For instance, the component-
based approach is a convenient method to build a large 
simulation, however, it introduces considerable overhead 
incurred by the communication between components.

Table 2: Comparison of Different Implementations of the Linking Agent. In the directly connected approach (Gilbert et al. 
2000), there doesn’ t exist a speciali zed agent. Instead, an extra communicating thread in the continuous simulation is 
responsible for cooperating with the discrete event simulation. It uses memory references to access tick state variables, and 
uses TCP/IP to interact with discrete event simulation. 

 Source 
Language 

Communication 
between Agent and 
Continuous 
Simulation 

Communication 
Between Agent and 
Discrete Event 
Simulation 

Execution 
Time 
(seconds) 

Directly 
Connected 

C++   52 

Java TCP/IP TCP/IP 1946 
C++ TCP/IP TCP/IP 1320 
C++ Shared-memory TCP/IP 289 

Mobile 
Component 
Approach 

C++ Shared-memory Shared-memory 117 
 



This problem can be overcome by using of a process-
port model and a new simulation language that 
implements this model. Then, compiler techniques can be 
utili zed to eliminate the component communication 
overhead. 

6.1 A Process-Port Model 

The Process-Port Model is an extension of the classical 
logical process view in PDES community (Richard 1990). 
Each component is viewed as a logical process with a 
number of ports through which the process interacts with 
others. 

A legacy simulation can be easil y wrapped up as a 
Process-Port model by providing an interface. Notice that 
every method or event in the interface has a 
corresponding port. For instance, a method corresponds to 
a port that receives all  arguments of the method and sends 
out only those arguments passed by reference. 

Figure 5: A Process-port View of the Continuous 
Simulation 

6.2 A Language for Process-Port Model 

It is beneficial to have new simulations written in a 
simulation language that enforces the Process-Port model. 
The detailed discussion of such a language is beyond the 
scope of this paper. We only outline here its major 
features: 

1. Such a language may employ a communicating 
extended finite state machine (CEFSM) as the 
implementation of the Process-Port model. The 
CEFSM model enables the compiler to exploit 
the data and control flow information. 

2. The language should facilit ate mobile 
computing. A program written in this language 
should be able to migrate across a network of 
processors equipped with the language compiler.  

3. Prior to execution, a program written in this 
language may pass through a configuration phase 
in which the compiler optimizes away 
unnecessary message passing overhead between 
processes.  

6.3 Unifying Simulation Server with Agent 

Both the simulation server and the mobile agent can be 
programmed using the new simulation language. They can 
freely roam on the network and look for the most suitable 
computers for their execution. After configuration, they 
could be merged as a single program that can execute with 
maximum eff iciency. 

The users still should be able to program the 
simulation in other programming languages. In such case, 
the Mobile Component approach would degrade to a 
simple linking approach that doesn’ t provide the most 
eff icient linkage. However, such flexibilit y may be 
convenient for some users for various reasons. 

6.4 Comparison with the HLA 

As stated above, the HLA is an approach using a bus 
communication. The RTI serves as a bus into which 
simulations conforming to the standard can be easil y 
“plugged” . The disadvantage is quite obvious; the RTI 
tends to be a serious bottleneck that degrades the 
performance when the simulation becomes large. 

Figure 6: The HLA Approach 

In contrast, the Mobile Agent approach is 
hierarchical. A number of processes can be grouped into a 
composed process that behaves as a simple process. 

Figure 7:  The Mobile Component Approach 

However, the Mobile Federate Approach is by no 
means a substitute for the HLA. Rather, it is an alternative 

Simulation 

Agent 

RTI 

simulation 

simulation 

 

PDE 

Solver 

read 

init 

backward_complete 
write 

forward 

backward 

forward_complete 



to it. Both approaches address different problems. For the 
HLA, it is the interoperabilit y that concerns the designers 
most. For the Mobile Federate Approach, the main 
consideration is the eff iciency. There might be cases 
where one approach is preferable to the other. 

7 CONCLUSION 

The Mobile Component approach has been motivated by 
the attempts to link continuous simulation and discrete 
event simulation in order to create a more accurate model 
for Lyme disease. The mobile agent proved to be a useful 
method for linking different simulations. With the concept 
of a simulation server, the role of mobile agent in 
collaborating simulation has been clarified. Such 
clarification seems an important step towards wide spread 
use of distributed simulations. The Process-Port model 
suggests a novel approach to eff icient component-based 
simulations. Its usefulness needs to be verified by future 
research.  

ACKNOWLEDGMENT 

This work was partiall y supported by the NSF Grant KDI-
9873138. The content of this paper does not necessaril y 
reflect the position or poli cy of the U.S. Government – no 
off icial endorsement should be inferred or implied. 

REFERENCES 

Alan Bivens, L. Gao, M.F. Hulber and B.K. Szymanski, 
1999. Agent-Based Network Monitoring. Proc. 
Autonomous Agents99 Conference, Workshop 1, Agent 
Based High Performance Computing: Problem Solving 
Applications and Practical Deployment, Seattle, WA, 
pp.41-53. 

Aglets Software Development Kit. IBM Tokyo Research 
Laboratory. http://www.trl.ibm.co.jp/aglets/ 

Antonio Carzaniga, Gian Pietro Picco and Giovanni 
Vigna, 1997 Designing Distributed Applications with 
Mobile Code Paradigms. In Proceeding of the 1997 
International Conference on Software Engineering. 

Carlo Ghezzi and Giovanni Vigna, 1997. Mobile Code 
Paradigms and Technologies: A Case Study. Mobile 
Agents: First International Workshop.  

Ernest H. Page, 1998. The Rise of Web-Based 
Simulation: Implications for the High Level 
Architecture. In Proceedings of the 1998 Winter 
Simulation Conference. 

Ewa Deelman, Boleslaw Szymanski and Thomas Caraco, 
1996 Simlulating Lyme Disease Using Parallel 
Discrete Event Simualtion. In Proceedings of the 
Winter Simulation Conference. 

Ewa Deelman and Boleslaw Szymanki, 1997. Breadth-
First Rollback in Spatiall y Explicit Simulations. In 
Proceedings of the Workshop on Parallel and 
Distributed Simulation, 1997 

Gilbert Chen, Boleslaw, 2000 K. Szymanski and Thomas 
Caraco. Multiparadigm Simulations in Modeling 
Spread of Lyme Disease. In 2000 European Simulation 
Multi-Conference.  

Judith S. Dahmann, Richard M. Fujimoto and Richard M. 
Weatherly, 1998 The DoD High Level Architecture: 
An Update. In Proceedings of the 1998 Winter 
Simulation Conference. 

Linda Wilson, George Cybenko, David Lynch, Bruce 
Cushman-Roisin and Boleslaw K. Szymanski. KDI: 
Next-Generation Agent-Based Distributed Simulation, 
http://www-nml.dartmouth.edu/KDI 

Linda Wilson, George Cybenko and Daniel Burroughs, 
1999 Mobile Agents For Distributed Simulation. In 
High Performance Computing Symposium. 

Richard M. Fujimoto, 1990. Parallel Discrete Event 
Simulation. Communications of the ACM, 33 (10) 
pp.31-53, 1990 

Robert Gray, David Kotz, Saurab Nog, Daniela Rus and 
George Cybenko, 1996. Mobile Agents For Mobile 
Computing. Technical Report PCS-TR96-285, Dept. of 
Computer Science, Dartmouth College, May. 

US Department of Defense. High Level Architecture. 
Defense Modeling and Simulation Off ice 
http://hla.dmso.mil 

Wayne J. Davis and Gerald L. Moeller, 1999. The High 
Level Architecture: Is There A Better Way?. In 
Proceeding of the 1999 Winter Simulation Conference. 

Willi am S. Murphy Jr. and Galen  D, 1998l. Aswegan. 
High Level Architecture Remote Data Filtering. In 
Proceedings of the 1998 Winter Simulation 
Conference. 

AUTHOR BIOGRAPHIES 

BOLESLAW K. SZYMANSKI is a Professor of 
Computer Science. He has been at Rensselaer since 1985. 
In the past he was also aff ili ated with the University of 
Pennsylvania, Aberdeen University (U.K.) and Warsaw 
Polytechnic (Poland). Dr. Szymanski received Ph.D. in 
Computer Science from National Academy of Sciences in 
Poland in 1976. He is an IEEE Fellow, ACM National 
Lecturer, Editor-in-Chief of Scientific Programming. He 
has edited and contributed chapters to several books and 
authored over 150 research papers in journals and 
conference proceedings. His research has been supported 
by NSF, DARPA, ONR, ARO, NASA and industry. 

His current research focuses on pro-active network 
management, distributed and parallel computing and 



computational models of evolution, epidemics and 
biomedical systems. He has been also involved in 
econometric modeling, algorithm design and information 
retrieval. 

 
GILBERT CHEN is a graduate student in Computer 
Science department at Rensselaer Polytechnic Institute. 
He received BS and MS degrees in Electrical Engineering 
from Tsinghua University in 1995 and 1998 respectively. 
His email address is <cheng3@cs.rpi.edu>. 

 
 
 
 
 
 
 
 

 

 

 

 




