
Proceedings of the 2003 Winter Simulation Conference

S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

LOOSELY-COORDINATED, DISTRIBUTED, PACKET-LEVEL SIMULATION

OF LARGE-SCALE NETWORKS

Boleslaw K. Szymanski
Yu Liu

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180, U.S.A.

ABSTRACT

The complexity and dynamics of the Internet is driving
the demand for scalable and efficient network simula-
tion. In this paper, we describe a novel approach that
partitions the networks into domains and simulation
time into intervals. Each domain is simulated indepen-
dently of and concurrently with the others with only
local domain information over the same simulated time
interval. At the end of each interval, global routing in-
formation, packet delays and drop rates for each inter-
domain flow are exchanged between domain simulators.
When the exchanged information converges to the value
within a prescribed precision all simulators progress to
the next simulated time interval. This approach allows
the parallelization with infrequent synchronization, and
achieves significant simulation speedups. Such a solu-
tion supports simulations of large-scale networks on dis-
tributed machines with modest memory size.

1 INTRODUCTION

In simulating large-scale networks at the packet level, a
major difficulty is the enormous computational power
needed to execute all events that packets undergo in
the network (Law and McComas 1994). Conventional
simulation techniques require tight synchronization for
each individual event that crosses the processor bound-
ary (Bhatt et al. 1998). The inherent characteristics of
network simulations are the fine granularity of events
(individual packet transitions in a network) and high
frequency of events that cross the boundaries of paral-
lel simulations. These two factors severely limit parallel
efficiency of the network simulation executed under the
traditional protocols (Bhatt et al. 1998).

Another difficulty is the large memory size required
by large-scale network simulations. With the current
trend of simulating ever larger and more complicated
networks, the memory size becomes a bottleneck. Cen-
tralized network configuration and routing information
results in large memory requirements during construc-

tion of the simulated network. Additionally, the needed
memory increases also with the intensity of traffic flows
that dictate the size of the future event list. Al-
though memory requirements can be tampered by the
good design and implementation of the simulation soft-
ware (Nicol 2002), we believe that to simulate truly
large networks, the comprehensive, distributed memory
approach is needed.

This paper describes our long-term research on devel-
oping an architecture that can efficiently simulate very
large heterogeneous networks in near real time (Szy-
manski et al. 1999). Our approach combines simu-
lation and modeling in a single execution. A novel
coarse granularity synchronization mechanism is used
to achieve better parallel efficiency. Thanks to this ap-
proach, Genesis is able to use different simulators in a
single coherent network simulation. This feature moti-
vated the name of the system: General Network Simu-
lation Integration System, or Genesis in short.

Genesis addresses also the large memory requirement
problem in large-scale network simulations. Many par-
allel simulation systems achieved speed-up in simula-
tion time, however, they also required that every ma-
chine involved had big enough memory to hold the
full network. This requirement is most easily achieved
through a system with shared memory. In Genesis, in
contrast, memory usage is fully distributed among par-
ticipating simulators.

As discussed in (Szymanski et al. 2002), the approach
underlying Genesis can also be seen as a variant of a
general scheme for optimistic simulation referred to as
Time-Space Mappings proposed by Chandy and Sher-
man in (Chandy and Sherman 1989). Although all op-
timistic simulations can be viewed as variants of this
scheme, very few apply, as we do, iterations over the
same time interval to find a solution.

Bolek
Text Box
 New Orleans, LA, December 2003, pp. 712-720

Szymanski and Liu

2 GENESIS APPROACH

2.1 Coarse Granularity Synchronization in

Genesis

Genesis uses a coarse granularity synchronization mech-
anism to simulate network traffics, as described below.
In Genesis, a large network is decomposed into parts
and each part is simulated independently and simulta-
neously with the others. Each part represents a subnet
or a domain or even Autonomous System (AS) of the
entire network. These parts are connected to each other
through edges that represent communication links ex-
isting in the simulated network. In addition, we parti-
tion the total simulation time into separate simulation
time intervals selected adaptively in such a way that
the traffic characteristics change little during each time
interval.

Each domain is simulated by a separate simulator
which has a full description of the flows whose sources
are within its domain. Each simulator needs to ap-
proximate flows routed to or through its domain whose
sources are external to the domain. To this end, each
simulator creates its domain closure that includes all
the sources of flows that reach or pass through this do-
main. Since these are copies of nodes active in other do-
mains, we call them proxy sources. Each proxy source
uses the flow definition from the simulation configura-
tion file.

The flow delay and the packet drop rate experienced
by the flows outside the domain are simulated by the
random delay and probabilistic loss applied to each
packet traversing in-link proxy. These values are gen-
erated according to the average packet delay and its
variance as well as observed packet loss frequency com-
municated to the simulator by its peers at the end of
simulation of each time interval. Each simulator col-
lects this data for all of its own out-link proxies when
packets reach the destination proxy.

Every domain simulator stops its simulation at pre-
defined checkpoints, and exchanges data with all the
other domain simulators by exchanging data with oth-
ers. Each domain simulator checks its convergence con-
dition by analyzing the received data, based on some
pre-defined metrics (end-to-end packet delay, packet
loss rate, etc.) and parameters (e.g., precision thresh-
old). Until the convergence condition is not satisfied,
the domain simulator will be going back to the last
checkpoint and re-simulating the last time interval, uti-
lizing the data received during the latest checkpoint.
When all the domain simulators converge, a global con-
vergence is reached, and all the domain simulators go
on to the next time interval. The system framework is
shown in Figure 1.

Consider a flow from an external source P to the in-

Figure 1: Progress of the Simulation Execution

ternal destination Q, passing through a sequence of ex-
ternal routers r1, . . . rn and internal routers rn+1, . . . rk.
The source of the flow can be represented by the se-
quence of pairs (t1, p1), . . . (tm, pm), where ti denotes
the time of departure of packet i and pi denotes its
size. At router i, a packet j is either dropped, or passes
with the delay di,j . For uniformity, dropping can be
represented as as delay T greater than the total simu-
lation time. Hence, to replicate a flow with the proxy
source Q′ sending packets to router rn+1, packet j pro-
duced by Q′ at time tj needs to be delayed by time
Dj =

∑n

i=1
di,j . A delay at each router is the sum of

constant processing, transmission and propagation de-
lays and a variable queuing delay. If the total delay
over all external routers is relatively constant in the
selected time interval, a random delay with proper av-
erage and variance approximates Dj well. Thanks to
the aggregated effect of many flows on queue sizes, this
delay changes slower than the traffic itself, making such
model precise enough for our applications.

2.2 Efficiency Analysis

It has been observed that the execution time of a net-
work simulation grows faster than linearly with the size
of the network (Ye et al. 2001). Theoretical analysis
supports this observation because for the network size
of order O(n), the simulation time contains terms which
are (i) of order O(n ∗ log(n)), that correspond to sort-
ing event queue, (ii) of order O(n2), that result from
packet routing, and (iii) even of order O(n3), that rep-
resent the cost of building routing tables. Therefore,
it is possible to speed up the network simulation more
than linearly by splitting a large simulation into smaller
pieces and parallelizing the execution of these pieces.

The challenge in large scale network simulations

Szymanski and Liu

is that the processing of large amount of events re-
quires enormous computational power and long execu-
tion time. Conventional packet-level parallel simula-
tions achieved execution speedups with modest number
of parallel processors, but their scalability and paral-
lel efficiency were limited by their frequent event-level
synchronization. To achieve execution speedups, fluid
model network simulation took the approach of using a
high level abstraction of network traffics to reduce the
number of simulation events (Liu et al. 2001). But
the efficiency and accuracy of simulating fluid mod-
els highly depend on the types, parameters and com-
plexities of network models. Hence, such models can
sometimes be less efficient than packet-level simula-
tions (Liu et al. 1999), and it is difficult for them to
achieve high accuracy in complex wireless network mod-
els. Genesis, in contrast, took another approach and
uses a novel coarse granularity synchronization mecha-
nism to reduce the frequency of synchronization while
preserved packet-level simulation. It achieved better
parallel efficiency than conventional parallel simulations
with controllable accuracy. Figure 2 shows the compar-
ison among these approaches.

Parallel packet-level Simulation:

Unscalable parallel efficiency;

High accuracy (~ 100%).

Accuracy

E
ff

ic
ie

n
c
y

Sequential packet-level Simulation

High accuracy (~ 100%).

Genesis:

Higher parallel efficiency (60~100%);

controllable accuracy (~ 95%).

Fluid Model Simulation:

Speed-up depends on complexity of the model;

Accuracy depends on types of models

Figure 2: Simulation Efficiency vs. Accuracy

Our target application is network management based
on on-line network monitoring and on-line simula-
tion (Ye et al. 2001). The presented method fits very
well such an application as it predicts changes in the
network performance caused by tuning of the network
parameters.

2.3 Event-level Synchronization in Genesis

The basic Genesis approach described above was de-
signed to simulate TCP and UDP data traffics, but
could not be used to simulate some other flows, for
example, data flows providing information for routing
protocols. This is because the traffic of a routing pro-
tocol cannot be summarized on packet delay and drop
rate; instead, different content and timing of each rout-
ing packet might change the network status. Partic-

ularly, our desire to simulate BGP protocol required
us to develop additional synchronization mechanism in
Genesis. We developed an event-level synchronization
mechanism which can work within the framework of
Genesis and support the simulation of BGP.

2.4 Memory Distribution

Simulations of large-scale networks require large mem-
ory size. This requirement can become a bottleneck of
scalability when the size or the complexity of the net-
work increases. For example, ns2 uses centralized mem-
ory during simulation, which makes it susceptible to the
memory size limitation. The scalability of different net-
work simulators was studied in (Nicol 2002). This paper
reports that in a simulation of a network of a dumbbell
topology with large number of connections, ns2 failed to
simulate more than 10000 connections. The failure was
caused by ns2’s attempt to use virtual memory when
swapping was turned off. This particular problem can
be solved by using machines with larger dedicated or
shared memory. Yet, we believe that the only perma-
nent solution to the simulation memory bottleneck is to
develop the distributed memory approach.

In a typical parallel network simulation using non-
distributed memory, each of the parallel simulators has
to construct the full network and to store all dynamic
information (e.g., routing information) for the whole
network during the simulation. To avoid such replica-
tion of memory, we developed an approach that com-
pletely distributes network information. Thanks to this
solution, Genesis is able to simulate large networks us-
ing a cluster of computers with smaller dedicated mem-
ory (compared to the memory size required by shared
memory-based SSFNet simulating the same network),
as shown in section 4.2.

3 GENESIS DESIGN OVERVIEW

3.1 Design of Domain Simulator Model

In this section, we summarize the basic design of Gene-
sis domain simulator to support domain-based parallel
simulations presented by us in (Szymanski et al. 2002).

The user is responsible only for annotating domains
in the simulation configuration file. This is achieved
simply by labeling each node in the configuration by the
corresponding domain number. Based on these annota-
tions, the extensions to the ns system process domain
definition and its closure, collect the data for informa-
tion exchange and implement the information exchange,
as well as monitor convergence. A sample domain and
its closure is presented in Figure 3 and discussed below.

Support for domain definition in Genesis, i.e., iden-
tifying which nodes belong to a particular domain, is

Szymanski and Liu

Figure 3: Domain Simulator Structure

the first step towards creating the domain closure. By
definition, in the domain closure, each external proxy
source is directly connected to the destination domain
of its flow. We refer to such replicated source as an
proxy source and we call the link that connects it to the
domain border router an in-link proxy.

The design supports the selective activation and de-
activation of domains. The purpose is to process entire
simulation configuration on each participating proces-
sor, but then, during simulation, to keep active only
one domain closure while maintaining the routing in-
formation for the entire simulation. This information is
needed to identify the destination domains for all pack-
ets that leave the domain.

Consider the sample network in Figure 3. The net-
work is split into three individual domains, numbered
1, 2 and 3. Packets that flow into the domain 1 from
outside (with sources in skeletons of domains 2 and 3 in
Figure 3) are produced by their proxy sources in the do-
main closure and delayed or dropped during transition
through in-link proxies (marked by boxes in Figure 3).

Exchange of data uses the Farmer-Worker architec-
ture, in which one processor collects the data from all
the others and redirects them to all the simulators.
Recording the information needed for data exchange in-
volves calculating, for each packet leaving the domain,
the time expired from the instance a packet leaves its
source to the time it reaches the destination proxy. Also
recorded is information about each packet source and its
intended external node destination as well as whether
the packet was dropped by a router inside the domain.

The following functionalities were also implemented
in Genesis:

The ability to suspend the simulation to enable
exchange of data on path delays using message pass-

ing between processors simulating individual domains.
During the simulation freeze, each individual simula-
tion domain exchanges information on packets gener-
ated and dropped along links leaving the domain (cf.
Figure 3).

The ability to record information about the

delays and drop rate experienced by the packets leav-
ing the domain. Each delay measures the time expired
from the instance a packet leaves its source to the time
it reaches the domain boundary. Packet drop rates are
computed for each flow separately. Also recorded is
information about each packet source and its intended
destination. Having this information enables us to repli-
cate the source from the original domain to the bound-
ary of the target domain (sources in skeletons of do-
mains 2 and 3 in Figure 3) and postpone an arrival of
each packet produced by the replicated source at the
domain boundary by the delay measured in the source
(and transient, if necessary) domains. Also, with prob-
ability defined by packet drop rates, packets are ran-
domly dropped during the passage to the boundary of
the destination domain (D boxes in Figure 3).

3.2 Design of Distributed Wireless Network

Simulation

In this section, we summarized the additional challenges
to Genesis approach arising in wireless networks and re-
ported by us in (Mandani and Szymanski 2003). As in
the Genesis interface to wired networks, domains are
simulated concurrently with each other over the same
time interval. The domains freeze at user-specified in-
tervals. At the time of freeze the inter-domain data ex-
change takes place. In GloMoSim, a node can schedule
events (transmit and receive packets) while it is mobile.
The current Genesis extension to GloMoSim accounts
for the “mobility-trace” defined mobility in which the
user specifies the speed, start and destination locations
of the nodes in a configuration file. Knowing the above
parameters, before the simulation starts, Genesis com-
putes the time and location at which the node crosses
the domain boundaries. Using this information, each
domain simulator knows when and where the mobile
node will be active in its domain.

The introduction of domain closures creates regions
in the network topology which overlap at least two do-
mains. Thus, a node in such a region is active in both
domains at the same time. The Genesis domain sim-
ulators which simulate activities of such a node must
include the same events for the node. To achieve this,
the inter-domain messages include information about
communications (packets received and sent) by nodes
lying in the domain-closure. Each domain receiving this
information checks if the same communications were ex-

Szymanski and Liu

ecuted for its copy of the nodes in question. If not, the
time interval is re-simulated with the modified list of
events for the offending node.

Each domain has at most eight domains as neighbors.
Thus, each domain needs to communicate information
about the activity of domains lying in its closure to its
neighbors only. We achieve this by establishing a peer-
to-peer connection between domains. In other words,
each domain receives data from at most eight of do-
mains during the freeze event. On exchange of this
information, each domain checks whether it needs to
go-back and re-simulate the freeze interval (based on
the information collected and its own information).

3.3 Interoperability Design

We implemented our Genesis based on ns, SSFNet
and GloMoSim, and enabled the interoperability among
them within the Genesis framework.

To support interoperability among different systems,
we defined generic network models and common flow-
based message exchange formats. Mapping files were
used to convert the flow information in common for-
mats into local network data for different systems. We
also created scenarios where we had mixed-mode traffics
between a wired network (modeled using SSFNet) and
a wireless network (modeled using GloMoSim). The
wired network (SSFNet) viewed the wireless network
(GloMoSim) as a black box, and vice versa. Proxy
traffic aggents were created in Genesis to represent the
network in the black box. In such an approach, the im-
plementation details of each simulator are hidden from
the others.

3.4 Design of Event-level Synchronization for

BGP Simulations

In the simulation systems which use only event-level
synchronization based on either conservative or opti-
mistic protocol, the correct order of event delivery is
guaranteed by the protocol. The price, however is fre-
quent synchronization.

In Genesis, we take advantage of coarse granularity
synchronization for TCP and UDP traffics, and at the
same time synchronize BGP update messages by do-
ing extra rollbacks, to reflect the actual routing dy-
namics in the network. To simulate BGP routers sep-
arately from the Genesis domain in each parallel AS
domain simulator, and to make them produce BGP up-
date messages for its neighbor domains, we introduced
proxy BGP neighbor routers. Those are routers mir-
roring their counterparts which are simulated by other
domain simulators. The proxy BGP routers do not per-
form the full routing functionality of BGP. Instead, they

maintain the BGP sessions and collect the BGP update
messages on behalf of their counterpart routers.

At the synchronization point in Genesis, the BGP
update messages collected in the proxy BGP routers,
if there are any, are forwarded to the corresponding
destination AS domain simulators through a component
called BGP agent. These update messages are delivered
to the BGP agent in the destination AS domain through
a Farmer-Agent framework, and are distributed there
to the BGP routers which are the destinations of these
messages.

During the Genesis checkpoint after one time inter-
val, the BGP agent in each AS domain collects BGP
update messages from other BGP agents. If it receives
some update messages for the previous interval, it will
force the AS domain simulator to rollback to the start
time of the previous interval. Then, it inserts all the re-
ceived update messages into its future event list. Its do-
main simulator will re-simulate the time interval again,
and will “receive” these update messages at the cor-
rect simulation time and will react to them correspond-
ingly. The BGP messages produced in the current ex-
ecution might be different from the once seen at pre-
vious one. Hence, the rollback process might continue
in domain simulators until all of them reach a global
convergence, as showed in Figure 4. High cost of check-
pointing the network state makes it impractical to in-
troduce separate rollbacks for BGP activities. Hence,
the UDP/TCP traffic checkpoints are used for all roll-
backs in Genesis.

Rollback

Convergence test

Insert received remote

BGP future events into

event list

BGP message

exchanging during

check-pointing

Simulation

Continue

Resume simulation

No

Yes

Figure 4: Synchronization for BGP Updates

3.5 Memory Distribution Design

Memory distribution is particularly challenging in Gen-
esis, because of its special coarse granularity synchro-
nization approach. In Genesis, within one time inter-

Szymanski and Liu

val, one domain simulator is working independently of
others, simulating the partial traffics flowing within or
through that domain. Other parts of these traffics,
which are outside of that domain, are simulated by
proxy links which compute the packet delays and losses
based on flow “summaries” provided by the outside do-
main simulators. If the network information is com-
pletely distributed among the domain simulators, each
one has information about only a part of the network.
Hence, these simulators cannot simulate global traf-
fics independently because information about some flow
sources or destinations, or both will not be there. We
should notice the difference here from other event-level
synchronization systems. In those systems, to simulate
distributed network, each individual event crossing the
boundary is forwarded to remote simulators regardless
of its “semantic meaning”. Hence such parallel simula-
tors do not need to simulate global flows independently,
but they must synchronize their execution tightly.

In Genesis solution, each domain uses traffic prox-
ies that work on behalf of their counterparts in the re-
mote domains. Traffic proxies send or receive TCP or
UDP data packets as well as acknowledgment packets
according to the produced feedbacks. To simulate inter-
domain flows, partial flows are constructed between lo-
cal hosts and proxy hosts. Thus, in the simulation of
one AS domain, the simulator just simulates one part of
an inter-domain traffic by using proxy hosts and proxy

links, as shown in Figure 5.

Proxy Host

Proxy Host

Proxy Host

Inter-domain traffic

Inter-domain traffic

AS Domain Simulator

Host

Proxy Host

Proxy Link

Figure 5: Proxy Hosts and Inter-domain Traffic

The actual traffic path between local hosts and re-
mote hosts must be decided by inter-AS routing. For
example, inter-AS routing changes can cause remote in-
bound traffic to enter the current AS domain from dif-
ferent entry points, thus routing the flow through a dif-
ferent path inside the domain. We developed a method,
described below, to construct these remote traffic paths
and to automatically adjust them to reflect the current
inter-AS routing decision.

Global routing information consistency: To
compute global routing in separate simulations, each
of which has only a part of the network, IP address

consistency is required to make the routers understand
the routing update messages. In addition, we use
BGP proxies and traffic proxies to act on behalf of
their counterparts. To use routing data, these prox-
ies need to use the IP addresses of their counterparts
when they produce traffic packets. We used a global
IP address scheme for the whole network, and intro-
duced a mechanism of IP address mapping, which trans-
lates local addresses to and from global addresses used
in our BGP update messages. In our global IP ad-
dress scheme, domains are assigned different IP address
blocks to avoid address conflicts among domain simula-
tors. Inter-domain routing information is stored based
on these global addresses. Each proxy host stores the
IP address of its counterpart host which has a global IP
address. When packets are sent from proxy hosts, the
IP addresses in the packet headers would be replaced
with corresponding global IP addresses. In this way,
the addresses in these packets are consistent with the
routing information and can be correctly routed to the
destinations.

Remote host, traffic and link: Those definitions
were added to the network definitions. Remote host

defines the traffic host (source or sink) which is not
within the current simulating domain, and specifies the
global IP address for this proxy. Remote traffic pattern
allows the definition of a traffic which will use proxy
IP address instead of its own local IP address. Remote

link is defined to connect the remote host to the current
domain, and it is implemented as a Genesis proxy link

which can adjust its link delay and applied packet drop
rates during the simulation.

Remote traffic path construction: The difficult
part of remote traffic path construction was to decide
how to connect proxy hosts to the current AS domain.
Changes in inter-AS routing decision might change the
entry (exit) point of traffic packets to (from) the do-
main. Such a change cannot be determined during the
network construction phase. We designed a structure
which connected remote traffic hosts to a proxy switch,
instead of connecting them to any entry point directly,
as shown in Figure 6. When a packet sent by a proxy

host reaches the proxy switch, the proxy switch will
lookup an internal mapping from flow id to the cur-
rent inter-AS routing table, and will forward this packet
via the correct inbound link to one of the BGP routers
on the domain boundary. If the inter-AS routing is
changed by some BGP activities later, the proxy switch

will automatically adjust its internal mapping, and the
packets with the same flow id will be forwarded to a
different inbound link.

Szymanski and Liu

Proxy Host

AS Domain Simulator

Host

BGP

BGP

Global routing

decision

Proxy Host

…………

Proxy

Switch

Host

Figure 6: Remote Traffic Path Construction

4 PERFORMANCE EVALUATION

This section briefly summarize results from a series of
simulations that we run on a large network model us-
ing the distributed Genesis and which were initially de-
scribed by us in (Szymanski et al. 2003).

4.1 Simulation Model

To test the performance and scalability of Genesis in
large-scale network simulations, we use a modified ver-
sion of the baseline model defined by the DARPA NMS
community (NMS Baseline Model). The topology for
the model that we are using can be visualized as a ring
of nodes, where each node (representing an AS domain)
is connected to one node preceding it and another one
succeeding it. We refer to each node or AS domain as
the “campus network”, as shown in Figure 7. Each of
the campus networks is similar to the others and con-
sists of four subnetworks. In addition, there are two
additional routers not contained in the subnetwork, as
shown in the diagram.

Figure 7: One campus network

The subnetwork labeled Net 0 consists of three
routers in a ring, connected by links with 5 ms delay and

2 Gbps bandwidth. Router 0 in this subnetwork acts
as a BGP border router and connects to other cam-
pus networks. Subnetwork 1 consists of 4 UDP servers.
Subnetwork 2 contains seven routers with links to the
LAN networks as shown in the diagram. Each of the
LAN networks has one router and four different LAN’s
consisting of 42 hosts. The first three LAN’s have 10
hosts each and the fourth LAN has 12 hosts. Each of
the hosts is configured to run as a UDP Client. Subnet-
work 3 is similar to Subnetwork 2, so internal links and
LAN’s have the same property as those in Subnetwork
2.

The traffic that is being exchanged in the model is
generated by all the clients in one domain choosing a
server randomly from the Subnetwork 1 in the domain
that is a successor to the current one in the ring. We
used different send-intervals of 0.1, 0.05 and 0.02 sec-
ond to vary the traffic intensities, and used different
numbers of nodes (AS domains) to vary the size of the
network. Each simulation was run for 400 seconds of
the simulated time.

All tests were run on up to 30 processors on Sun 10
Ultrasparc workstations, which were interconnected by
a 100 Mbit Ethernet. One of these workstations had 1G
large memory, and each of the others had at least 256M
dedicated memory. In the simulations under distributed
Genesis, the number of processors used was equal to the
number of campus networks.

4.2 Experiment Results

Genesis distributively constructs and simulates BGP
routers in AS domain simulators. To measure scal-
ability of this solution in terms of network size, we
simulated BGP networks of 10, 15, 20 and 30 AS
domains, each run by a Sun 10 Ultrasparc workstation
with 256 MB of memory. As shown in Figure 8, when
the number of AS domains increases, unlike SSFNet,
the memory usage of one Genesis AS simulator does
not increase much. As a result, by utilizing more
computers with smaller memories, we are able to
simulate much larger networks.

Memory usage of simulation is related not only to the
static network size, but also to the network dynamics.
We increased the traffic intensity by reducing the
traffic send-interval from 0.1 to 0.05 and 0.02 second.
As shown in Figure 9, although we did not observe
very big changes in memory usage in SSFNet on this
campus network model, Genesis showed even smaller
increase in memory size with the same changes in
traffic (thanks to its smaller base memory size).

As we have shown, Genesis achieved execution

Szymanski and Liu

0

100

200

300

400

500

600

10 15 20 30

No. of AS Domains

M
em

or
y

U
sa

ge
 (M

b)

SSFNet
Genesis

Figure 8: Memory usage of SSFNet and one Genesis do-
main simulator for simulations of different AS domains

0

50

100

150

200

250

300

350

400

0.1 0.05 0.02

Send Interval (second)

M
em

or
y

U
sa

ge
 (M

b)

SSFNet
Genesis

Figure 9: Memory usage of SSFNet and Genesis for 20-
AS BGP network simulations with different send-rates

speedups thanks to its coarse granularity synchro-
nization mechanism. In addition, despite the extra
overheads introduced by distributing the network,
good speedups where achieved for 10, 15, 20 and 30
domain simulators with BGP routers. The Genesis
domains were defined by the AS boundaries. Figure 10
shows the speedups of simulations for these networks.

Figure 11 shows that Genesis achieved higher
speedups with higher traffic intensities. This is because
with higher traffic intensity, more events need to be
simulated in a fixed simulation time. Theoretical anal-
ysis tells us that sequential simulation time includes
terms of order O(n ∗ log(n)), due to sorting event
queues. Genesis distributes the simulation among
domain simulators, which reduces the number of events
needed to be simulated by one simulator, so it can
achieve higher speedups when the traffic increases as
well as when the network size increases.

To measure the accuracy of the simulation runs, we
monitored the per flow end-to-end packet delays and

0

2

4

6

8

10

12

14

16

10 15 20 30

No. of AS Domains

Sp
ee

du
p

Figure 10: Speedup achieved for simulations of different
BGP network sizes

0

2

4

6

8

10

12

14

0.1 0.05 0.02

Send Interval (second)

Sp
ee

du
p

Figure 11: Speedup achieved for 20-AS BGP network
simulations with different send-rates

packet drop rates. We compared the results from dis-
tributed Genesis with the results from sequential sim-
ulations under SSFNet, and calculated the relative er-
rors. Our results showed that for most of the flows, the
relative errors of both packet delay and drop rate were
within the range from 2% to 10%, while a small num-
ber of individual flows had higher relative errors of up
to 15% to 20%. Considering the fact that in a simula-
tion with large number of flows, the network condition
was mainly determined by the aggregated effects of sets
of flows, we calculated the root-mean-square of the rel-
ative errors on each set of flows which went through
the same domain. These root-mean-squares of relative
errors were below 5%, which seems sufficiently close ap-
proximation of the sequential simulation for many ap-
plications.

Simulation results showed that by fully distributing
the simulation in Genesis, we gained the scalability of
memory size. In addition, the parallel simulation in
Genesis still achieved performance improvement in this
distributed framework, compared to sequential simula-
tions.

Szymanski and Liu

5 COMMUNICATION FRAMEWORK

The current Farmer-Worker framework used in Gene-
sis is a simple centralized client/server system. This
framework worked efficiently with modest number of
domain simulators. In order to maximize the efficiency
of Genesis with huge number of domain simulators, we
are currently working on a new framework with the fol-
lowing new features: peer-to-peer traffic data commu-
nications among domains; hierarchical communication
structures for global synchronization. New framework
is expected to provide even better scalability for large
scale network simulations.

6 CONCLUSIONS

The need for scalable and efficient network simulators
increases with the rapidly growing complexity and dy-
namics of the Internet. In this paper we introduced a
novel scheme, implemented in Genesis, to support scal-
able, efficient parallel network simulation. Our results
indicate that the superlinear speedup for the single iter-
ation step is possible and is the result of the non-linear
complexity of the network simulation. Our approach
achieved significant speedup in the simulations of dif-
ferent network scenarios.

We also demonstrated that our system can work effi-
ciently with fully distributed network memory. This
design reduces and makes scalable the memory size
requirement for large-scale network simulations, espe-
cially large BGP network simulations which require
very large memory size. As a result, Genesis is able
to simulate huge networks using limited computer re-
sources.

ACKNOWLEDGMENTS

This work was partially supported by the DARPA Con-
tract F30602-00-2-0537 and an URP Grant from CISCO
Systems Inc. The content of this paper does not nec-
essarily reflect the position or policy of the U.S. Gov-
ernment or CISCO Systems—no official endorsement
should be inferred or implied.

REFERENCES

Bhatt, S., R. Fujimoto, A. Ogielski, and K. Perumalla,
Parallel Simulation Techniques for Large-Scale Net-
works. IEEE Communications Magazine, 36, 1998.

Chandy, K.M., and R. Sherman. Space-time and sim-
ulation. Proc. of Distributed Simulation, Society for
Computer Simulation, 53–57, 1989.

Law, L.A., and M. G. McComas. Simulation software
for communication networks: the state of the art.
IEEE Comm. Magazine, 32:44–50, 1994.

Liu, B., D. R. Figueirido, Y. Guo, J. Kurose, and D.
Towsley. A study of networks simulation efficiency:
Fluid simulation vs. packet-level simulation. Proceed-

ings of IEEE Infocom 2001, April 2001.
Liu, B., Y. Guo, J. Kurose, D. Towsley, and W. Gong.

Fluid simulation of large scale networks: issues and
tradeoff. PDPTA’99, Las Vegas, NV, June 1999,
2136–2142.

K. Mandani and B.K. Szymanski. Integrating Dis-
tributed Wireless Simulation Into Genesis Frame-
work. Summer Computer Simulation Conference,
Montreal, Canada, July 2003, to appear.

Nicol, D. Comparison of network simula-
tors revisited. Available at <http://www.

ssfnet.org/Exchange/gallery/dumbbell/

dumbbell-performance-May02.pdf>, May 2002.
NMS (Network Modeling and Simulation DARPA Pro-

gram) baseline model. See web site at <http://www.
cs.dartmouth.edu/~nicol/NMS/baseline/>.

B.K. Szymanski, A. Saifee, A. Sastry, Y. Liu and K.
Madnani. Genesis: A System for Large-scale Parallel
Network Simulation. Proc. 16th Workshop on Par-
allel and Distributed Simulation, Washington, DC,
May 2002, pp. 89-96.

B.K. Szymanski, Y. Liu, and R. Gupta. Parallel Net-
work Simulation under Distributed Genesis. Proc.
17th Workshop on Parallel and Distributed Simula-
tion, San Diego, CA, June 2003, pp. 61-68.

Szymanski, B., J.-F. Zhang, and J. Jiang. A Distributed
Simulator for Large-Scale Networks with On-Line
Collaborative Simulators. Proc. European Multisim-

ulation Conference - ESM99, Warsaw, Poland, SCS
Press, II:146–150, June, 1999.

Ye, T., D. Harrison, B. Mo, S. Kalyanaraman, B. Szy-
manski, K. Vastola, B. Sikdar, and H. Kaur. Traffic
management and network control using collaborative
on-line simulation. Proc. International Conference on

Communication, ICC2001, 2001.

AUTHOR BIOGRAPHIES

BOLESLAW K. SZYMANSKI, is a Professor of
Computer Science at Rensselaer Polytechnic Institute.
His research interests include simulation methodology,
networking and parallel and distributed computing.

YU LIU is a Ph.D. candidate in Computer Science de-
partment at Rensselaer Polytechnic Institute. His re-
search interests include distributed network simulation
and network managements.

