
DYNAMICS AND STABILITY OF EDGES AND
COMMUNITIES IN SOCIAL NETWORKS

Amr Elsisy

Submitted in Partial Fullfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Approved by:
Dr. Boleslaw K. Szymanski, Chair

Dr. Malik Magdon-Ismail
Dr. Jianxi Gao

Dr. John Mitchell

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York

[December 2021]
Submitted November 2021

c© Copyright 2021

by

Amr Elsisy

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vii

ACKNOWLEDGMENT . ix

ABSTRACT . xi

1. INTRODUCTION . 1

2. CRIMINAL ACTIVITIES IN CITY COMMUNITY AREAS 3

2.1 Overview . 3

2.2 Introduction . 3

2.3 Data . 4

2.4 Distribution of Criminal Activities . 4

2.5 Predicting Yearly Crime Rate . 5

2.5.1 Methodology . 6

2.5.2 Feature Selection and Forecasting Results 7

2.6 Reducing City Crime . 8

2.6.1 Methodology . 10

2.6.2 Results . 11

2.6.3 Conclusion and Limitations . 12

3. GENERATING AND SHUFFLING SOCIAL NETWORKS 13

3.1 Social Search in Shuffled Social Networks . 13

3.1.1 Overview . 13

3.1.2 Introduction . 13

3.1.3 Model . 14

3.1.4 Experiments . 17
3.1.4.1 Embedding of Nodes . 17
3.1.4.2 Distribution of Friends . 19

3.1.5 Success Rate and Stretch Using Partial Knowledge of Indirect Friends . . . 21

3.1.6 Methodology . 26

3.1.7 Results and Discussion . 27

3.2 Synthetic Network Generator . 29

3.2.1 Overview . 29

3.2.2 Introduction . 31

iii

3.2.3 Organizations Represented by Covert Networks 33

3.2.4 Data . 34
3.2.4.1 Security vs Efficiency in Covert Networks 35

3.2.5 BWRN Network Generator . 36
3.2.5.1 Group Detection in Generated Networks 40
3.2.5.2 Generating Synthetic Networks 41
3.2.5.3 Baseline Generator . 43

3.2.6 Flowchart and Time Complexity of the BWRN Generator 44

3.2.7 Results . 45
3.2.7.1 Extension Methods . 47

3.2.8 Stability of Generated Structures . 48

3.2.9 Conclusion and Discussion . 51

4. MINIMIZING UNCERTAINTY COST OF NETWORK STRUCTURE FROM NOISY
DATA . 53

4.1 Overview . 53

4.2 Introduction . 53

4.3 Methods . 56

4.3.1 Noisy Network Data Preprocessing and the Shannon Entropy Metric 56

4.3.2 Set Entropy-based Metrics . 57

4.3.3 Beyond Entropy and Edges: Constructing the Community Structure Mini-
mizing the Cost of Uncertainty About Community Memberships 58

4.4 Validation . 61

4.4.1 Synthetic Networks . 61

4.4.2 Real Networks . 63

4.4.3 Results . 64
4.4.3.1 Finding the Lowest Shannon Entropy Network 64
4.4.3.2 Convergence of Shannon’s Entropy With Extended Rewiring . . . 66
4.4.3.3 Using the Fraction-based and Frequency-based Constructed Com-

munities to Lower Shannon Entropy 67

4.5 Conclusions . 69

5. CONTRIBUTION . 71

REFERENCES . 73

iv

LIST OF TABLES

2.1 For all years of data, we look at communities with crime rates that exceed the average
crime rate by at least 1 and 1/2 of the standard deviation for that year. 6

2.2 Null hypothesis test to determine which features, with a current length of historical
data, are optimal to use for crime forecasting. F51,F41,F42 are the optimal set of
features to use. 8

2.3 The three most influential communities in decreasing order. 12

2.4 The three least influential communities in decreasing order. 12

3.1 Distributions of fractions of friends, i-friends and communities over the ranges of
distances from nodes. The second column shows the fractions of friends at each
distance range, computed by summing the numbers of friends in each range for each
individual user and then dividing the result by the total number of friends of all users.
The third column shows fractions computed as ratios of sums of the numbers of i-
friends of each user at each distance range to the total number of i-friends for all users.
The fourth column shows fractions of members of communities of each individual
user at each distance range listed, computed as the sum of these numbers divided by
the total number of members of all relevant communities. Fifth, sixth and seventh
columns list cumulative values from the second, third and fourth column, respectively. 22

3.2 The numerical values of the average number of i-friends used, with different distribu-
tions of nodes and friendships. We limit the knowledge of i-friends to 15 per friend.
We find that for the original friendship distribution (original Gowalla friendships),
regardless of which spatial distribution of nodes is used, the average i-friends used
are around four. Average i-friends used is computed as the number of hops using
i-friends, divided by the total number of hops needed to get from the source user to
the target user. All reported results are for WD = 2

24 , WC = 7
24 , and WP = 15

24 , with
κ = 15. 24

3.3 The numerical values of the success rates reported in Fig. 3.4(a), with different dis-
tributions of nodes and friendships. All reported results are for WD = 2

24 , WC = 7
24 ,

and WP = 15
24 , with κ = 15. 28

3.4 The numerical values of the success rates reported in inset of Fig. 3.4(a), with dif-
ferent distributions of nodes and friendships. All reported results are for WD = 2

24 ,
WC = 7

24 , and WP = 15
24 , with κ = 0. 28

3.5 The numerical values of the stretch values reported in Fig. 3.4(b), with different
distributions of nodes and friendships. All reported results are for WD = 2

24 , WC = 7
24 ,

and WP = 15
24 , with κ = 15. 30

v

3.6 The numerical values of the stretch values reported in inset of Fig. 3.4(b), with
different distributions of nodes and friendships. All reported results are for WD = 2

24 ,
WC = 7

24 , and WP = 15
24 , with κ = 0. 30

3.7 The relative betweenness centrality scores of the management nodes in the Caviar
and Ciel networks. Management nodes in the Caviar network had high betweenness
scores, which made information flow in the network very efficient. In contrast, for
the Ciel network, the leader node had a very low betweenness score, which shows
that not many low level nodes had direct access to him, thus benefiting the security
of the leader node, N10. 36

3.8 Notation table. 38

3.9 Results show NMI scores from comparing the groups in networks generated from the
Caviar and Ciel networks to the groups in the original networks. The results show
performance of BWRN generator, and generators using the Weighted Random Graph
model and the weighted SBM baseline model. 46

3.10 The first row of the results shows group structure similarity from Table 3.9, the sec-
ond the leadership similarity, and the last row shows the combined Score that is the
product of the first two scores. In all three rows, the best score is shown in bold font. . 46

4.1 We rewire each variant of the synthetic star network 1000 times, using the BWRN
generator with varying pB values, and we report the Shannon entropy, and the Πunc,
on the set of rewired networks’ community structures. 62

4.2 We rewire each variant of the synthetic complete network 1000 times, using the
BWRN generator with varying pB values, and we report the Shannon entropy, and
the Πunc, on the set of rewired networks’ community structures. 62

4.3 The lowest Shannon entropy of networks rewired from the original Caviar, Ciel,
Jakarta, and Dolphins networks for range of parameters pB = [0.5,0.75,0.875,0.9375].
The generated networks are split into 10 subsets of 100 networks each, and the Shan-
non entropy is computed for the best community in each subset. The mean and stan-
dard deviation are reported for each case with different pB values. 64

4.4 Let gopt denote such network with community structure Copt , which when rewired
gopt yields the set of community structures against which gopt achieves the minimum
Shannon entropy. Using the BWRN generator, we further rewire a hybrid networks
that has gopt edge structure but C f rac community structure and find that this networks
lowers the minimum Shannon entropy and accordingly increases Πunc and Πmax lim-
its of predictability. For the Caviar network, the C f rac, and Copt had identical commu-
nity structures, and thus the Caviar results are omitted here. For comparison, we also
measure the uncertainty of the set of networks rewired using the original network,
and its corresponding community structure, denoted as Corg. Finally, we report the
fraction-based cost for each of the mentioned community structures relative to their
sets of rewired networks’ community structures. 69

vi

LIST OF FIGURES

2.1 (a) Histogram showing the crime distribution across community areas with varying
numbers of crime occurrences. Ranges for bin b = 0,1 . . . ,6,7 is [b∗1000,b∗1000+
999]. (b) Community areas are listed in the increasing order of their recorded number
of crime incidents in the year 2017. 5

2.2 Forecasting crime per capita rate for the upcoming year (2017), using features F51,
F41, F42. On the x-axis communities are listed in increasing order of crime per
capita rate. 9

3.1 Social search experiments in the Gowalla network. Starting nodes are shown as cir-
cles, and target nodes are shown as squares. Source and target nodes of the same color
represent a pair of nodes which we want to connect through levels of friendships. . . 15

3.2 We show the success rates achieved using different combination of weights for WD,
WC, and WP, and show that the optimal set of weights are WD = 2

24 , WC = 7
24 , and

WP = 15
24 . Success rates are shown as a function of the maximum number of i-friends

allowed, with error bars showing the standard error. 16

3.3 The degree distribution for the giant component of a network with 75,803 Gowalla
users located in the U.S., 454,350 friendship edges, and γ ≈ 1.49. 27

3.4 (a-b) Show plots with error bars of success rates (a) and stretches (b) achieved with
partial knowledge of i-friends under the different distributions of friendship edges as
a function of various distributions of nodes into space. Plots represent the results of
running 10 samples of each distribution resulting in 100 samples for each case of
the considered friendship edge distributions. Each of these samples was executed 10
times and averaged results plotted. Each friendship edge distribution has a unique
color assigned to its plots and two best performing distributions have also plots of
their stretches achieved without knowledge of i-friends marked with the dashed line.
We describe all distributions of friendship to edges and nodes into space in the text.
Plots for runs with awareness of i-friends were computed using kappa limit of the
number of i-friends set to 15, which, if needed, are uniformly randomly chosen from
i-friends for each friend of the sender. The error bars were in the range of [0.002,
0.039] for success rates (a) and in the range of [0.07, 1.61] for stretches (b). 29

3.5 We present the combination of the stochastic block model (SBM) and the hierarchi-
cal multi-layer network model on the Caviar network. Same colored nodes belong
to the same group, and nodes in the same hierarchical level have the same role in
management of the network. 35

3.6 The graphic framework showing the process of generating networks using the pro-
posed generator. Circles represent the processing stages of the generator, rectangles
stand for datasets, and hexagons show computational centers. The red color denotes
secure processes and data with access limited to within the secure processing facility,
while the blue color denotes open access data and facilities. 44

vii

3.7 The presented Caviar networks depict a) the groups in the original network, and
groups detected in the synthetic networks with similarity that is (b) highest, (c) low-
est, and (d) average. 47

3.8 Histogram of the meta-graph degree distribution for exact matches between the gen-
erated networks. The x-axis is the node degree d, and the y-axis shows the number
of nodes with d degree n(d). 51

4.1 Mapping the node’s community structure uncertainty model onto the random and
temporal-uncorrelated entropy metrics in the human mobility model. 58

4.2 Mapping the node’s community structure uncertainty model onto the real entropy
metric in the human mobility model. 59

4.3 A plot of the number of iterations leading to the minimum Shannon entropy for
Caviar, Ciel, Jakarta, and Dolphins networks. For the Caviar network we show the
results of rewiring using the brute force method, and the heuristic using the largest
modularity candidate network. For all the remaining networks, we use the heuristic
method. 66

4.4 During the iterative rewiring of the original Caviar, Ciel, Jakarta, and Dolphins net-
works presented in Fig. 4.3, we measure the set entropy and the limit of predictability
of the set of rewired networks’ community structures. The three entropy measures
used are Srand

i , Sunc
i , and Si, and we extract from them their corresponding limits of

predictability Πrand , Πunc, and Πmax. The results for Πunc are presented in the main
figure, and the results for Πrand and Πmax are presented in insets a and b respec-
tively. We find that as the Shannon entropy of Copt decreases, so does the set entropy
of the rewired networks’s community structures, and thus the corresponding limit of
predictability increases. 67

4.5 We extend the rewiring steps for the Ciel, and Jakarta networks and find that as we hy-
pothesized, the Shannon’s entropy of the generated networks’ community structures
converges as we further extend the rewiring steps. 68

viii

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Homeland Security under Grant Award Num-

ber 2017-ST061-CINA01, the Defense Advanced Research Projects Agency (DARPA) under Con-

tract No. W911NF-17-C-0099, the Army Research Office (ARO) under Contract No. W911NF-

16-1-0524 and by the Army Research Laboratory under cooperative agreement W911NF-09-2-

0053 (NS-CTA). The research and conclusions drawn in this thesis are those of the authors and are

not necessarily representing the official policies of the funding agencies.

I would like to thank everyone that has contributed towards this thesis. First and foremost,

I would like to thank my advisor, Professor Boleslaw K. Szymanski for supporting me throughout

my PhD. Professor Szymanski has always pushed me to learn, and has always been there to guide

me through any difficulties I had, whether they were work related or not. I would also like to thank

Professor Thomas Sharkey for always providing research related advice during the early phase of

my PhD. Finally I would like to thank my committee members, Professor Malik Magdon-Ismail,

Professor Jianxi Gao, and Professor John Mitchell for helping me realize several good research

ideas that have shaped the research I have done during my PhD.

Further I would like to thank my lab mates, Ashwin, James, Aamir, and Yeming, for provid-

ing a great lab environment, and for always being there to discuss the research I am conducting,

and helping me think of new ways to approach any sort of obstacles I was facing. I would also

like to thank all my friends in Troy for helping make graduate school more fun than it normally

is. Thanks to Michael, Bariscan, Andres, Javad, Shailesh, Omar, Ali, Stavros, George, Marcelo,

and Maha, I was able to take much needed breaks from work, which helped me clear my head and

recharge.

Finally, I would like to thank my friends and family from back home for supporting me from

afar. First, I would like to thank my father, Elnady Elsisy for always being the support system I

needed, and for always lifting me up whenever I needed it. Thanks to him I continued my graduate

school career, and if it was not for him, I would not be where I am today. I will forever be grateful

to him. I would also like to thank my sister, Essraa Elsisy for her constant calls and for always

being there for me. Her calls were always a breath of fresh air, and always helped me refocus. Also

to my aunt Hala Elsisy, I am thankful for how caring, and loving you are, and for always being

supportive. I would also like to thank Ahmed Elhefny for constantly travelling to the US, and for

always encouraging me to take much needed breaks, which ultimately helped recharge me, and

ix

made me much more productive afterwards. I would also like to especially thank him for flying

all the way to the US to attend my PhD defense. Lastly, I would like to thank Farah Al Barqouni

for always being there whenever I needed her. Farah has been with me during the lowest times of

my graduate school career, and her words of encouragement and constant support have helped me

in ways that I cannot describe. Thank you Farah, for always being there, and especially for always

allowing me to repeatedly practice my talks with you. Farah has given me the most support during

my PhD career, despite how far away she is. I am forever grateful to my friends and family, and

therefore, I dedicate this thesis to all of them.

x

ABSTRACT

We study social and criminal networks, with a focus on how users and communities of such net-

works interact with one another, and the impact that such interactions have on the community

structures of such networks. We first conducted a study on the crime rates present in different

community areas across the city of Chicago, and we were able to identify and predict which com-

munity areas have the highest crime rates. In this study, we did not have information about how

these community areas interacted with one another. This led us into the study of the Gowalla net-

work, where we analyzed how members of the Gowalla network interacted with one another, and

how the modifications of such interactions can break the structure of the original Gowalla network.

Such modifications involve the addition and removal of edges from the network, which then led

us into our third study, which was creating a synthetic network generator to rewire, with the ex-

tent defined by a parameter, edges of the given real-world network. When repeated, this rewiring

process adds and removes edges from many generated synthetic versions of the original network.

Consequently, all generated networks are also statistically similar to each other. We found that the

networks generated using this approach often had community structures different from the one that

the original network had. This led us into our final study of measuring the entropy and uncertainty

present in the generated networks’ community structures. Repeating rewiring enables us to identify

the generated network with the lowest community structure uncertainty. Such a network and its

corresponding community structure can be used as the best rewired version of ground truth struc-

ture alternative to the original network. Finally, we found that predicting the community structure

with the lowest cost of this network uncertainty lowers not only this cost but also uncertainty itself.

The cost function can be defined according to the requirements of the applications.

xi

CHAPTER 1
INTRODUCTION

We study the properties and structures of social networks, with a focus on covert networks. We

start off with studying criminal activities within a network of city community areas. We present our

work done on predicting crime in the city of Chicago, which is broken down into 77 community

areas. We introduce a method for predicting crime in community areas, using the census data, and

past crime data available for the community areas. We show the process of eliminating features that

were not helpful to our prediction method, and rank the most useful features. We find that features

representing demographic characteristics were not as important as features representing crime rate.

We develop a predictive algorithm to forecast future crime rates in each community area in a given

year, using past crime rates, and past neighborhood crime rates for a given community. We then

further study the community areas to better understand which of them would yield the largest city

wide crime reduction, if crime reduction funding was invested in them. We find that investment of

crime reduction funding in different community areas may result in vastly different overall crime

reductions, thus showing that any interventions need to be carefully planned.

We then study a real social network, Gowalla, which is a location-based activities network

that allows its users to ”check in” at physical location, and share this information with their friends.

Using the geographic coordinates, and friendships of the users in the Gowalla network, we emu-

lated Milgram’s small world social search experiment. We then shuffled the geographical coordi-

nates of the users, and the friendships relations of the users, using several different distributions,

to find whether these distributions impact the social search efficiency. We find that the embedding

of nodes into space has no effect on efficiency of the social search, and that only the spatial distri-

bution of friends affects the social search efficiency. The actual friendship edges did not matter, as

long as the spatial distribution of friends was similar to the original spatial distribution of friends

in the Gowalla network. We also found that partial knowledge of friends of friends improves social

search.

We proceeded with creating a social network generator, with a focus on covert networks, such

as terrorist or criminal networks. Unlike the members of open social networks, members of covert

networks attempt to hide their membership and activity, and thus data about covert networks tends

to be incomplete and/or inaccurate. We propose a Bernoulli Weighted Random Network (BWRN)

generator to address noisiness of covert network’s data, and to deal with the uncertainty regarding

1

2

the completeness of information in a given covert network. The BWRN generator collects statis-

tical information about the network’s edges, based on the communities and leadership hierarchy

present in the network. The BWRN generator will then create synthetic networks with the same

statistical properties as the original network possesses. The generated networks can then be used

to measure the stability of the original network, by analyzing the stability of community structures

across the different generated networks.

Finally, we proceed with using the BWRN generated networks to measure the uncertainty

of the provided real network, especially when the provided network has noisy data. We look into

the application of the BWRN generator to covert networks, which have noisy data, arising from

imperfect data collection methods. We study the generated networks’ community structures to

help shed some light on the stability and uncertainty of the original network. Using the BWRN

generator we rewire a real-world network, thus generating a universe of networks with varying

edge structures, and for each of those networks we detect its community structure. We then use two

entropy-based metrics to measure the uncertainty present across the community structures of the

generated networks, and identify the network with the lowest community structure uncertainty. The

first proposed entropy-based metric is the Shannon entropy-based metric, which is used to measure

the uncertainty present in the generated networks’ community structures. The second proposed

entropy-based metric is the set entropy based metric, which is used to measure the uncertainty, and

limits of predictability, on the entire set of generated networks’ community structures. Using such

entropy-based metrics we are able to quantify the uncertainty present in the generated network’s

community structures. We also propose a heuristic that builds the community structure that has the

lowest expected cost of uncertainty, and such cost can be individualized to the needs of different

applications.

CHAPTER 2
CRIMINAL ACTIVITIES IN CITY COMMUNITY AREAS

The contents of this chapter are based on the work published in [1], and contains the parts of the

publication that were originally contributed by the author.

2.1 Overview
The work presented focuses on criminal activities and patterns of crime in the city of Chicago.

The city of Chicago is broken down into community areas, and for each community area we have

census data, and criminal activities data, that were collected over 16 consecutive years. Using this

unique dataset, we study the spatio-temporal distribution of crime, and find that there is a presence

of criminal hot-spots. The presence of criminal hot-spots helps us better understand the nature of

crime activities. We develop predictive algorithms that incorporate both census data, and crime

rates of community areas, to forecast the number of future crimes in city community areas. Lastly,

each community area is examined in order to understand which area would result in the largest

reduction of crime, when considering the increase of crime reduction funding. The community

area which yields the largest city wide crime reduction, is considered to be an optimal community

area to invest such funding.

2.2 Introduction
Criminal activities have been extensively studied over the years in an effort to try and reduce

crime [2]–[4]. Crime reduction and prevention requires us to have a deep understanding of crime

patterns and the dynamics of crime, which is not easy to grasp due to the complex nature of criminal

activities [5]. The considerable data available nowadays, and the progression of computational

tools, permits researchers and police forces to gain further knowledge on the dynamic nature of

crimes. This will ultimately improve the detection and prevention of criminal activities. Criminal

records have recently become publicly available by many cities across the U.S., which can be of

great help to researchers. Researchers can use such data to forecast crime, and to ultimately work

hand in hand with the police force to prevent future crimes. Understanding the nature of crime

Portions of this chapter previously appeared as: X. Niu, A. Elsisy, N. Derzsy, and B. K. Szymanski, “Dynamics
of crime activities in the network of city community areas,” Appl. Netw. Sci., vol. 4, no. 1, p. 127, Dec. 2019.

3

4

can help us optimize the allocation of funding in a way that yields the greatest overall reduction in

crime.

The existence of criminal hot-spots has been shown through many studies that were per-

formed on government released data regarding crime activities in cities [6]–[10]. To build our

predictive model we take into account the spatio-temporal patterns of crime activities in cities. We

also take into account the census data of such community areas, to find if they have any impact on

our prediction accuracy. The final contribution of this chapter is the proposal of a crime reduction

optimizer, which studies how extra funding impacts community areas individually. Each commu-

nity area is studied to find how much impact it has on the reduction of overall crime in the city.

The community area with the highest impact on crime reduction is then proposed as the optimal

community area for investment of the crime reduction funding.

2.3 Data
The data which we collected and analyzed contains reports on crimes that occurred in the

city of Chicago. Since the city of Chicago is divided into 77 community areas. Crime records,

and census data were allocated for such communities. The crime records were available for 16

consecutive years (2002 to 2017), and the census data for 18 consecutive years (2000 to 2017). It

is important to highlight that while the crime data was available on a yearly basis, the census data

was not. The census data was only available for the years 2000, 2008, 2012, 2013, and 2017. Thus,

we had to interpolate this data from the reported years, to obtain yearly estimates of census data.

Demographic data was extracted from the census data provided by the U.S. Census Bureau

(U.S. Census Bureau). Crime information was extracted from the crime incident reports obtained

from the City of Chicago Data Portal, the Chicago Police Department’s CLEAR (Citizen Law

Enforcement Analysis and Reporting) system, and the IUCR (Illinois Uniform Crime Reporting)

codes (Chicago Police Department). We limit the data used in this study to records of violent

crimes (i.e., burglary, assault, homicide) as identified by IUCR.

2.4 Distribution of Criminal Activities
At the first glance of this data, we find that the distribution of crime across community areas

is not uniform. As foreseen, some community areas had high crime rates, while others had very

low crime rates. In Fig. 2.1, we show a histogram of the number of crimes occurring across the 77

5

community areas for the year 2017. We find that between the community areas with the highest

rate of crime, and the community areas with the lowest rate of crime, there is a difference of about

15 fold in the number of crime incidents.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7

N
u
m

b
e
r

o
f

c
o
m

m
u
n
it

y
 a

re
a
s
 i
n
 e

a
c
h
 b

in

Bin number, each bin b covers range (1000*b-1000, 1000*b-1)

The number of crime areas with the given crime count range

-1

 0

 1

 2

 3

 4

(a)

35

24

2

11

2 1 1 1

slope = -0.668

Bin number, each bin b covers range (1000*b, 1000*b+999)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80
N

u
m

b
e
r

o
f

c
ri

m
e
s

IDʼs of community areas

Number of crimes per district for 2017

 5

 6

 7

 8

 9

 10

(b)

slope = 0.039 slope = 0.039

Figure 2.1: (a) Histogram showing the crime distribution across community areas with
varying numbers of crime occurrences. Ranges for bin b = 0,1 . . . ,6,7 is
[b∗1000,b∗1000+999]. (b) Community areas are listed in the increasing order
of their recorded number of crime incidents in the year 2017.

As seen in Fig. 2.1, the majority of crimes that were occurring in the city of Chicago, for

the year 2017, were concentrated in just a few community areas. We studied the crime rates of

the 77 community areas over the 16 years of data that we have. We find that the communities

with the highest crime rates are more or less consistent all throughout the 16 years (2002 to 2017),

see Table 2.1. We see that communities 37, 32, and 40, are consistently ranking in the top 3

communities with the highest crime rates. We can see that throughout the 16 years, the highest

crime rate community is either community 37 or community 32. Meanwhile, the 5th position has

a lot more variations, where six different communities (26, 28, 40, 44, 67, 68) are placed in that

position throughout the years.

2.5 Predicting Yearly Crime Rate
Our goal here is to use the provided data, to better understand the patterns of crime, and to be

able to accurately predict future criminal activities. This will help us gain a thorough understanding

of which census data, or past criminal data, can be utilized to better forecast future crimes, which

can help us prepare for the future, and act as an instrument for crime prevention to mitigate future

6

Table 2.1: For all years of data, we look at communities with crime rates that exceed the
average crime rate by at least 1 and 1/2 of the standard deviation for that year.

year 1st 2nd 3rd 4th 5th 6th
Id rate id rate Id rate Id rate Id rate Id rate

2002 37 0.158 32 0.142 40 0.111 68 0.107 38 0.097
2003 37 0.184 32 0.177 40 0.147 44 0.132 68 0.128 67 0.126
2004 32 0.185 37 0.180 40 0.143 68 0.129 44 0.125 69 0.121
2005 32 0.175 37 0.174 40 0.143 68 0.127 44 0.122 67 0.120
2006 37 0.175 32 0.175 40 0.152 68 0.132 67 0.122 26 0.121
2007 32 0.177 68 0.142 40 0.140 37 0.140 67 0.128
2008 32 0.187 37 0.173 68 0.145 67 0.129 40 0.120
2009 32 0.168 37 0.135 68 0.133 40 0.120 67 0.117 69 0.106
2010 32 0.161 37 0.158 68 0.129 40 0.122 67 0.117
2011 37 0.190 32 0.153 40 0.124 68 0.122 67 0.116
2012 37 0.171 32 0.154 40 0.114 68 0.113 26 0.106 67 0.102
2013 32 0.142 37 0.137 40 0.110 68 0.100 67 0.095 44 0.090
2014 32 0.134 37 0.127 40 0.095 68 0.091 44 0.082
2015 32 0.144 37 0.130 40 0.098 68 0.084
2016 37 0.172 32 0.163 26 0.096 40 0.094
2017 32 0.187 37 0.170 26 0.098 40 0.094

crimes.

2.5.1 Methodology

The spatio-temporal information available from the census, and criminal data that we col-

lected were the following. For each community area we had CommunityID, Date, NumberOfInci-

dents. The demographic data corresponding to each community area were: HomeOwnershipRate,

PovertyRate, HighschoolDegreeRate, BachelorDegreeRate. With such data available, we used a

spatio-temporal linear regression algorithm [11] to forecast yearly crime rates for a given commu-

nity area. The implementation of the used algorithm is as follows. Let ai,t be the number of crime

incidents at community i during year t, and vi, j,t be the value of a feature j during year t and at

community i, with vi,1,t = ai,t . In order to predict the number of crime incidents for some future

year t at each community i we use a vector ~yt = {a1,t ,a2,t , ...,ai,t , . . . ,a77,t} ∈ RL, and the input

matrix Xt ∈ RL×τ×n, where L = 77 denotes the total number of communities, n is the number of

features, and τ is the length of the historical data used. Each feature value is defined at certain

community area i and historical time (year) t. Hence, each value of the input matrix at current

time of prediction tp is defined as Xtp = (vi, j,t), i ∈ [1,L], j ∈ [1,n], t ∈ [tp− τ + 1, tp]. In the

7

spatio-temporal linear regression model [11], at current time tp we have

~ytp+1 = wXtp. (2.1)

To obtain the optimal matrix w, we use regression on known past data about crime and features

values using the following equation

w = argmin
w
||~ytp−wXtp−1||21+τ×n. (2.2)

2.5.2 Feature Selection and Forecasting Results

For yearly crime prediction, we focus on per capita crime, as it is a more accurate reflection

of which community areas have higher crime rates. Per capita crime accounts for the population of

community areas, which is available as part of the census data. Our first task is to pick the set of fea-

tures that we will use for our prediction algorithm. From the mentioned available demographic, and

crime data, we chose the following set of features. F1 HomeOwnershipRate; F2 PovertyRate; F3

education level, which is a combination of both HighschoolDegreeRate and BachelorDegreeRate;

F4 NeighborhoodCrimeRate, which is the average crime rate over the neighboring communities

(sharing a border) to a given community, and the last feature F5 CommunityCrimeRate.

To determine which of those features are of importance to our prediction accuracy, we ran

the null hypothesis test. We start off with all the mentioned features from the year previous to

our prediction year. We run the null hypothesis test, and remove those features that do not pass

the null hypothesis test. To pass the null hypothesis test, a feature requires a P-value less than or

equal to 0.05. As shown in Table 2.2, feature F51, is the only feature that survives with a P-values

less than 0.05. We also noticed that feature F41 was not far off, and therefore we keep it, to test

it even further. Note, the index of each feature indicates the number of years before the year of

prediction, in which the value of the feature is computed. With feature F51 we get an R-squared

measure of 0.9338. Moving forward, we add features for the second year before the forecast year,

and only preserve the features that pass the null hypothesis test. Our set of possible features is:

F51,F41,F52, and F42, of which all pass except for F52. With F51,F41,F42 we get an R-squared

measure of 0.9635. We repeat this process for a third year before the forecast year, but find that

no improvements are observed, so we decide to keep our set of features of F51,F41,F42, as our

optimal set of features.

The results achieved using the features F51,F41,F42, giving us an R-squared measure of

8

Table 2.2: Null hypothesis test to determine which features, with a current length of
historical data, are optimal to use for crime forecasting. F51,F41,F42 are the
optimal set of features to use.

Historical
data depth Coefficients P-values Coefficients P-values R-squared

metric

1

F11 =−0.0017
F21 =−0.0016
F31 =−0.0037
F41 =−0.0888
F51 = 1.2198

0.6358
0.6087
0.5905
0.0631
< 10−47

F51 = 1.1786 < 10−55 0.93

2

F41 = 0.7661
F42 =−0.8118
F51 = 1.2432
F52 =−0.1234

0.0002
< 10−5

< 10−20

0.2738

F41 = 0.8484
F42 =−0.8955
F51 = 1.1181

< 10−5

< 10−6

< 10−89
0.96

3

F41 = 1.1177
F42 =−1.0378
F43 =−0.0702
F51 = 1.1967
F52 =−0.2443
F53 = 0.0953

< 10−9

< 10−6

0.6889
< 10−28

0.0334
0.2526

0.9635, demonstrates the following. The demographic characteristics of community areas are so-

well encoded in the features used, that the direct use of demographic data is not needed. The

results shown in Figure 2.2 represent the forecasting accuracy of the crime per capita rate for the

77 community areas present, for the year 2017, using features F51,F41,F42.

2.6 Reducing City Crime
The optimal set of features used for crime forecasting includes features that incorporate the

per capita crime rates of neighboring communities. We have to ask an important question of which

communities have the most influence on the overall crime present in the whole city. To answer

this question we propose the deployment of additional crime reduction funding to the communities

present. Crime reduction funding can be in the form of increasing home ownership, improving

schools, or increasing law enforcement personnel. In [12],[13] we see that an increase in the police

force personnel results in a decrease in violent crimes and property crimes. When considering the

data on community areas from 2002-2017, we assume that no interventions were made during

that period. It is also important to note that we will not try to estimate what the cost of such

interventions may be in reality, or whether that cost may vary from one community area to another.

We limit intervention to only one community area at a time, and for that community area

9

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 10 20 30 40 50 60 70 80

Cr
im

e
pe

r
Ca

pi
ta

Community Areas

Predicted vs True Crime per Capita for 2017

True
Predicted

Figure 2.2: Forecasting crime per capita rate for the upcoming year (2017), using features
F51, F41, F42. On the x-axis communities are listed in increasing order of crime
per capita rate.

the intervention is at a very small scale (a few percent change). This enables us to continue using

the models prepared for each year of crime in the city, since we can claim that the models remain

valid to formulate predictions, with the proposed crime reduction intervention. We will apply the

most simple and straight-forward crime reduction model. The total crime reduction will only be

applied to one community, when in reality the crime reduction funding can be spread over several

communities. We will also assume that the crime reduction intervention will only be applied

for one year, when in reality the intervention can be spread over several years. We apply crime

reduction intervention by choosing a community area for deploying intervention, and predicting

crime rates for all the community areas for the next year, with the crime reduced in the chosen

community.

For our simple one-year one-community intervention, we use the optimal set of features

10

F51,F41,F42, where F5 is CommunityCrimeRate for the last year previous to the forecast year,

and F4 is NeighborhoodCrimeRate accounting for the neighborhood crime rate for the last two

years before the forecast year. Then for each community, we run a simulation, and we reduce the

crime rate for that community for the year 2016 as indicated by the size of the intervention.

2.6.1 Methodology

Let Cc(t) denote the total number of crimes in the city for year t. Let Pc(t) denote the total

population of the city in the year t, and let dn = 77 stand for the number of community areas

present in the city. With that, we have the average crime rate in the city as Cc(t)/Pc(t), and the

average population of a community is Pc(t)/dn. Taking their product, Cc(t)/dn, gives us the average

number of crimes in a community with an average population size. We define the intervention size

in terms of the number of crimes reduced in a community from the above value. Let the rate of

reduction be denoted by r = 0.025, So we get Vr(t) = rCc(t)/dn. This helps us guarantee that the

intervention size is constant, and does not depend on the crime rate of a given community, or the

population size of a given community. With this, we get that the initial number of crimes reduced

in a community d is Id,r = min(Vr(t)/r,1).

There are three types of communities from the point of view of the intervention. First,

the community in which intervention is directly applied. Second, communities that neighbor the

community in which intervention was applied. Third, and finally, communities that intervention

is neither directly applied to, nor applied to any of their neighboring communities. To compare

results between the three types of communities, we have to compute the branching rate of crime

change in a given community d. This branching rate for community d is computed as the multiplier

metric, denoted by Md,r = Tr/Vr(t− 1) for year t, where Tr denotes the overall number of crime

incidents in the city for year t under intervention with rate r in community d during year t−1.

1. The first case is communities where intervention is directly applied. For such communities

the values for features F41 and F42 remain unchanged, since there is no change to the neigh-

boring communities. What will change is the value of feature F51. Let ∆Ci,t+1 denote total

crimes reduced by intervention in the year t +1 for community i. The presence of additional

funding during year t, results in the decrease of I crimes in that year in community i. The

post-intervention rate of crimes for this community now becomes (Ci,t − I)/Pi,t . Therefore

11

the crime rate changes as follows.

F51

(
Ci,t

Pi,t
−

Ci,t− I
Pi,t

)
=

F51I
Pi,t

. (2.3)

Hence, the actual change in the number of crimes is

∆Ci,t+1 = F51I
Pi,t+1

Pi,t
. (2.4)

2. For a community n neighboring community i, the value for features F51 and F42 remain

unchanged. The only feature whose value will change is feature F41 in the year t.

∆Cn,t+1 = F41Pn,t+1

(
∑k∈Nn C(k, t)
∑k∈Nn P(k, t)

− ∑k∈Nn C(k, t)− I
∑k∈Nn P(k, t)

)
= F41I

Pn,t+1

∑k∈Nn P(k, t)
, (2.5)

where Nn denotes neighbors of community n.

3. Finally, for all the remaining communities that intervention is neither directly applied to, nor

applied to any of their neighboring communities, nothing changes in values of features for

years t − 1, t. Since there is neither a change for such a community nor for its neighbors,

there is no change of prediction for this community for year t +1.

Summing up the changes from cases 1 and 2, we get formula for Mi,t+1 as

Mi,t+1 = F51
Pi,t+1

Pi,t
+F41 ∑

n∈Ni

Pn,t+1

∑k ∈ NnPk,t
(2.6)

2.6.2 Results

We start conducting our experiments, by running the above crime reduction intervention on

each of the 77 communities. We reduce crime for a given community for the year 2016, and ob-

serve how that change affects the overall city crime for the year 2017. One by one we applied

intervention to each community, while leaving all the other communities unchanged, to see which

of our communities had the highest branching rates, and which of our communities had the lowest

branching rates. Table 2.3 shows the three most influential community areas, and Table 2.4 shows

the three least influential community areas. We see that between the most influential community,

and the least influential community, the branching rate of crime change drops by 50%. It is impor-

tant to note, that all the communities, regardless of how influential they are, reduce the overall city

12

crime, when crime reduction funding is applied to them.

Table 2.3: The three most influential communities in decreasing order.

Community
ID Vr(t) Md,r

Number of crimes reduced in
community with intervention

Number of crimes
reduced in the city

62 37.64 2.737 42.22 103.03
4 37.64 2.685 42.88 101.07

29 37.64 2.542 42.05 95.70

Table 2.4: The three least influential communities in decreasing order.

Community ID Vr(t) Md,r
Number of crimes reduced in
community with intervention

City wide crime
reduction in 2017

30 37.64 1.554 42.69 58.51
56 37.64 1.439 42.82 54.19
74 37.64 1.378 42.52 51.86

2.6.3 Conclusion and Limitations

From the results presented in Tables 2.3 and 2.4, one can see that some communities can in

fact be much more influential, in terms of reducing overall crime, in comparison to others. The

difference in the branching rate between our most and least influential community is about 0.5.

These results emphasize that any form of intervention must be carefully planned, to attain the best

possible results.

One glaring limitation of our work is that city wide crime reductions are based solely on

predictions, with no real way of testing the predictions in reality. Which is why we applied very

small interventions, to maintain the validity of our prediction algorithms. The actual branching

rate values are not what is important in our study. The important aspect of this study was finding

if some community areas are more influential than others. Therefore, even if the branching rates

were to change, the presence of more and less influential communities should persist.

CHAPTER 3
GENERATING AND SHUFFLING SOCIAL NETWORKS

The contents of this chapter are based on the work published in [14] and [15], and contains the

parts of the publication that were originally contributed by the author.

3.1 Social Search in Shuffled Social Networks
3.1.1 Overview

Social networks are abundantly available in today’s world, and can help connect users from

across the globe. The idea of a small world, which was proposed by Milgram in the 1960s, depicts

how people can utilize their direct connections to efficiently perform a global search in surprisingly

few steps. To simply exemplify how a social search may occur, one can imagine a person looking

through levels of his/her friendships to try and connect with another person that they have no direct

connection to. We use a real location-based social network, Gowalla, to perform a similar synthetic

social search. The results observed in this chapter help us conclude that the physical location of a

user is of no importance to the social search efficiency. In fact, what is of actual importance is the

spatial distributions of friends. We also show that some knowledge of i-friends (we will refer to

them as indirect friends or i-friends in short) significantly improves the social search efficiency.

3.1.2 Introduction

Social search as a problem, involves tasking a source user, to try and reach a target user,

using their direct social connections. One of the more popular experiments of social search is the

Milgram’s small world experiments [16]–[18]. We applied the same idea used behind Milgram’s

experiment to the Gowalla social network. We used the Gowalla network to perform a synthetic

social search experiment, see Fig. 3.1. Gowalla contains exact geographical locations of users, by

allowing its users to ‘check-in’ at different locations, and share their geographical coordinates with

their friends on Gowalla.

The majority of social networking sites today have an average of six degrees of separations

Portions of this chapter previously appeared as: A. Elsisy, B. K. Szymanski, J. A. Plum, M. Qi, and A. Pentland,
“A partial knowledge of friends of friends speeds social search,” PLoS One, vol. 16, no. 8, Aug. 2021, art. no.
e0255982.

Portions of this chapter previously appeared as: A. Elsisy, A. Mandviwalla, B. K. Szymanski, and T. Sharkey, “A
network generator for covert network structures,” Inf. Sci., vol. 584, no. 1, pp. 387–398, Nov. 2021.

13

14

between most of their users, (4.7 in Facebook [19], 3.7 in Myspace [20], 4.1 in Twitter [21], and

so on [22]). The social network that we used, Gowalla, is a location-based social network, which

allowed us to track the locations of users, and their friends. This enhanced our understanding

in regards to how users in real social networks maintain links, and the properties of friendships

created and maintained on modern day social networks.

The availability of geographic coordinates for each user in the Gowalla network allows for

the analysis of the spatial distributions of friendships between users. It was found that in the

Gowalla social network about 35% of the friends of an average user are geographically located

within a 160 km radius of that user’s location [23]. Analysis of the spatial distribution of i-friends

in Gowalla revealed that about 20% of i-friends are also on average within a 160 km radius of

an average user’s location. As for higher order of friendships, such as friends of i-friends, the

fraction drops to below 5% for the same radius. The spatial distribution of friends can vary based

on areas, as it was found that the spatial distribution of friends significantly differs inside and

outside metropolitan areas [24]. It is very likely for a person to know some of the friends of his

or her friends, but it is very unlikely that a person will know of the friends of his or her friends.

To account for this notion, we present a partial knowledge of i-friends when running social routing

experiments, using a partial knowledge parameter κ . κ defines the maximum number of i-friends

known to a user for each of his/her friends. We run several experiments and find that having some

partial knowledge of i-friends, about 15, drastically improves the social search efficiency.

Finally, we pose two novel questions. The first is how much social search is affected by

changes to κ when forwarding decisions are based on partial knowledge of i-friends. We find that

increasing κ strongly and positively influences the performance of the social search only if κ is

small. The second novel question is how the different ways of distributing friendship edges, and

use of partial knowledge of i-friends influence the Milgram social search. Surprisingly, we find that

only the distribution of friendship edges affects efficiency of this search. Hence, preserving only

this distribution and using partial knowledge of i-friends are necessary and sufficient conditions

for efficient social search.

3.1.3 Model

To proceed with our social search experiment, we had to decide on the criteria that a user

would use to select the friends which they will choose in the forwarding chain, in order to reach

the target user. For a user that has to choose a successor, they will compute a utility score of all

15

Figure 3.1: Social search experiments in the Gowalla network. Starting nodes are shown as
circles, and target nodes are shown as squares. Source and target nodes of the
same color represent a pair of nodes which we want to connect through levels of
friendships.

their friends, and ultimately choose the friend with the highest utility score. For every friend i, of

user U , utility score is computed as:

Ui =WD ∗Dm +WC ∗Cm +WP ∗Pm (3.1)

where WD, WC, and WP are weights represented by real numbers in the range of [0,1], with the

constraint that the total sum of WD +WC +WP = 1.0. These weights correspond to the following

metrics, distance, community size, and prominence. Normalized distance metric, Dm denotes the

normalized distance between the locations of node i and the target, the lower this distance is, the

higher the score of friend i. Community metric, Cm, defines the normalized size of the community

to which both the node i and the target belong, the smaller the size of the community shared

between i and the target node, the higher the score of friend i. Prominence metric, Pm, denotes

the normalized degree of node i, the more prominent i is, the higher its prominence score. We

tried several configurations using the mentioned three metrics. The first configuration, with all

weights equal to zero, randomly chooses a friend to forward the folder to, and it serves as the

baseline. The next three configurations each have a value of 1.0 for one of the metrics, and a

value of 0.0 for the remaining two metrics. The fifth, and optimal, configuration has weights

16

WD = 2/24,WC = 7/24,WP = 15/24. We find the optimal set of weights by conducting a binary

search starting with WD = 1/3,WC = 1/3,WP = 1/3, and then varying each weight by a step size

of 1/6, and we proceed be decreasing the step size by half at each step, while maintaining that

the sum of all weights is equal to 1.0. With the optimal set of weights found, we now had to

find the optimal value for the partial knowledge parameter κ . We used the aforementioned five

configurations to measure the impact of κ on the success rates achieved. Starting with κ = 0, and

slightly increasing it for each run, we find that as κ keeps increasing its impact on the success rate

diminishes, and found the optimal κ to be equal to 15. With the optimal weights, and κ = 15 we

achieved a success rate of 94%, so higher than the 77.8% rate achieved without it. The difference

is significant from the perspective of the failure rate, which is 6% in the first case but 22.2%, so

over three times higher than in the first case, see Figure 3.2.

Figure 3.2: We show the success rates achieved using different combination of weights for
WD, WC, and WP, and show that the optimal set of weights are WD = 2

24 , WC = 7
24 ,

and WP = 15
24 . Success rates are shown as a function of the maximum number of

i-friends allowed, with error bars showing the standard error.

It is also important to note that in all our experiments we only covered the contiguous US

territory (i.e. excluding Alaska and Hawaii). For the experiments to follow, we had to divide the

17

contiguous US territory into equal sized rhomboids, with sides of approximately 70 km. The sides

of the rhomboids were drawn along meridians and parallels, thus simplifying the translation of

geographical coordinates into positions in the rhomboids and vice versa. To cover the contiguous

US territory, we had to create 1,860 rhomboids, but many of which were empty with no Gowalla

users residing in them. The empty rhomboids were removed, many of which were in lakes or

oceans, and we were left with 850 rhomboids.

More on the process of the removal of empty rhomboids. Note that for each rhomboid, we

have the following: on-boundary flag, and a vector of size four set to external = (0,0,0,0), with

each element referring to a boundary (West, South, East, North). In addition to this, we also know

how many rhomboids existed in each row and in each column. Please refer to Algorithm 1 for the

full pseudo code.

3.1.4 Experiments

To answer the questions we set out to answer, it is necessary to do the following. To under-

stand the impact of the spatial embedding of nodes into space on social routing efficiency, we use

eight different methods of embedding nodes into space. To understand the influence of friendship

distributions among nodes on social search efficiency, we use five different methods of assigning

node degrees to our users.

3.1.4.1 Embedding of Nodes

The eight node distributions used are the following. First, original node distributions, to be

used as the baseline to compare against. Second, random node distribution, which assigns ran-

dom locations to each Gowalla user, by randomly choosing a rhomboid, and randomly picking

latitude and longitude coordinates within that rhomboid to place the user. The final six distribu-

tions are a combination of one of three methods of distribution nodes across rhomboids, and one

of two methods for embedding the node into actual coordinates within the rhomboid. The first

three distributions for distributing nodes across rhomboids are, exponential distribution, normal

distribution, and Zipf distribution. All three distributions use the mean of the populations of the

rhomboids in the original data. Additionally, the normal distribution uses the variance across the

rhomboids population in the original data. Finally, the Zipf distribution starts with the value of

10,700, which is the value of the largest population across all the rhomboids in the original data,

which generates a total population that is closest to the total population of the original Gowalla

18

Algorithm 1 Rhomboids Removal Algorithm
Step 1: Initialization

for each rhomboid r in left-most column do
on-boundary[r] = 1
external[r][0] = 1
if rhomboid r population == 0 then

add rhomboid r to unprocessed queue of rhomboids
end if

end for
for each rhomboid r in right-most column do

on-boundary[r] = 1
external[r][2] = 1
if rhomboid r population == 0 then

add rhomboid r to unprocessed queue of rhomboids
end if

end for
for each rhomboid r in lower-most column do

on-boundary[r] = 1
external[r][1] = 1
if rhomboid r population == 0 then

add rhomboid r to unprocessed queue of rhomboids
end if

end for
for each rhomboid r in upper-most column do

on-boundary[r] = 1
external[r][3] = 1
if rhomboid r population == 0 then

add rhomboid r to unprocessed queue of rhomboids
end if

end for
Step 2: Removal

for rhomboid r in unprocessed queue do
for each element in external vector of rhomboid r do

if external[i] == 0 then
select rhomboid rn (neighboring rhomboid in the direction defined by i)
if population of rn == 0 and on-boundary of rn == 1 then

push rn on the unprocessed queue
else

if population of rn != 0 and on-boundary of rn == 1 then
external[i+2%4] = 1

end if
end if

end if
end for

end for

19

network. The two methods for embedding nodes into rhomboids are geographic, and uniformly

random. The geographic method looks at the original rhomboids, and finds the rhomboid with the

closest population as the rhomboid that the user is about to be placed in, and places the user using

positions occupied by real users in the original rhomboid that was chosen. The second method,

uniformly random, places users uniformly randomly into the rhomboid. For each of the mentioned

distributions, except original, we generated 10 samples. We ran each created sample 10 times and

averaged the results.

3.1.4.2 Distribution of Friends

The five methods for assigning node degrees to Gowalla users are the following. First, orig-

inal friendships, which will be used as the baseline for comparison. Second, random distribution

while preserving both the node degree and the distance range of a node’s friend, while randomiz-

ing the actual friends. To preserve the node’s degree and the range of friendships for each node,

each node swapped edges with its neighbors that are in the same rhomboid with friends in the

same range of distances to those nodes. The third method, random uniform, generates a friendship

distribution using Erdos-Renyi [25] random graph, with an average node degree as the original

Gowalla network. The fourth method, exponential distribution, with a mean degree the same as

the original Gowalla network. Our fifth and final method, Power Law distribution, with a mean de-

gree the same as the original network, and a range of node degrees specified so the total number of

nodes very closely matches the total number of nodes in the original network. We again created 10

samples for each of the mentioned distributions, except for the original distribution. We ran each

created sample 10 times and averaged the results. Then, we implemented and ran the elch’s [26],

two-tailed, t-test to check whether or not the differences in performance are statistically significant,

and we report the results below.

More on the random friendship distribution while preserving the node degree. First we will

look deeper into how we preserve each node’s degree. Let us assume that we have two source

nodes S1 and S2, and the only condition we have for these two nodes is that they cannot be friends

in the original network. We now select two target nodes, T! and T2, where T1 is a friend of S1, and

T2 is a friend of S2, not only that, but also very importantly that T1 and S2 are not friends, and that

T2 and S1 are also not friends in the original network. We now simply shuffle the edge. Originally

we had (S1,T1), and (S2,T2), and after shuffling we have (S1,T2), and (S2,T1). The final condition

we have is that any two nodes can only share one edge, so an edge cannot be assigned more than

20

once between the same two nodes.

We now focus on the distance preservation part of our proposed friendship distribution. For

each of our users, we computed the distribution of their friends through each neighborhood, with a

total of nine neighborhoods present in our network. The first neighborhood is the set of rhomboids

that share an immediate border with the rhomboid that our user resides in. The second neigh-

borhood is the set of rhomboids that share borders with the rhomboids in the first neighborhood,

and the set of all rhomboids that share borders with those rhomboids. This pattern continues for

each neighborhood further out as we increase the step size. Our neighborhood distance steps are

d = [1,3,7,15,31,63,127,255,511]. After the completion of this step we should have for each user,

the distribution of their friends through each neighborhood. Our second step is to compute the

populations of the neighborhoods of each rhomboid, which can be done as follows. First, create a

population matrix representing the rhomboids populations in our data. Second, create a left popu-

lation matrix by going through each row, and each cell in that row will have the population of itself

plus the population of all the cells in the same row to its left. Third, create an up-left population

matrix, where each cell will now have its population, plus the population of all the cells to its

left and up of it. With this set up, the calculation of neighborhood populations is now relatively

simple, and extremely efficient. To compute the k-neighborhood population density of each rhom-

boid, we will need the population of four rhomboids, which are specified in Procedure 1. Once we

have gathered the populations of the four required rhomboids, we can proceed to finding the k-th

neighborhood population of our given rhomboid, which will be equal to:

Pk = R1−R2−R3 +R4 (3.2)

, where Pk denotes the k-th neighborhood population of our given rhomboid, and R1, R2, R3, R4,

denote the populations of the four rhomboids specified earlier.

We now know for each user the rhomboids that the user’s friends reside in, and we know

the users that reside in each rhomboid’s neighborhoods. We proceed by doing the following: for

each rhomboid, we go through the users residing within this rhomboid. For each of those users,

we go through their friendship edges, and we find the neighborhood that each friendship edge goes

to. We then look at the nodes residing in the neighborhood of that friendship edge, and if a node

within that neighborhood has an edge going to the source rhomboid, then we can shuffle the edges,

the same way as explained earlier. This shuffling of edges preserves the degree, and also preserves

the range of distance of the friendships.

21

Procedure 1 Computing Population of Neighborhoods of Rhomboids
R1: Will have the population of all rhomboids in the k-neighborhood, and possibly other neigh-
borhoods that we do not care about.
row = source rhomboid row + d[k]
column = source rhomboid column + d[k]

R2: Will have the population of all rhomboids in neighborhoods outside our range and residing to
the top of our rhomboid. If row value is less than 0, R2’s population will be set to 0.
row = source rhomboid row - d[k] - 1
column = source rhomboid column + d[k]

R3: Will have the population of all rhomboids in neighborhoods outside our range and residing to
the left of our rhomboid. If column value is less than 0, R3’s population will be set to 0.
row = source rhomboid row + d[k]
column = source rhomboid column - d[k] - 1

R4: If row or column values are less than 0, R4’s population will be set to 0. Also if R2 or R3 had
population set to 0, then R4’s population will also be set to 0.
row = source rhomboid row - d[k] - 1
column = source rhomboid column - d[k] - 1

3.1.5 Success Rate and Stretch Using Partial Knowledge of Indirect Friends

As aforementioned, it is safe to assume that a person has some knowledge of the i-friends,

but it is highly unlikely that a person would know everything about their i-friends, or that they

would know absolutely nothing about their i-friends. Which leads us to the question of how much

can we expect an average person, or user in our Gowalla network, to know about their i-friends. An

average user in our Gowalla network has 12 friends, but surprisingly has 2,016 unique i-friends.

To limit the number of i-friends that our average Gowalla user knows, we limit each user to 15

i-friends, which are randomly chosen, for each of their friends. This brings down the average

number of i-friends from 2,016 to 125.3, which is a lot more reasonable.

For the three metrics we used: distance, prominence, and community, it is reasonable to

assume that a user would have some partial knowledge on these metrics for the friends of his/her

friends. Regarding the distance metric, we can expect a user to have some partial knowledge on

past locations that their friends have lived at, or travel destinations that they recently or frequently

visited. For communities, it is reasonable to assume that a person would know some attributes

of their friends, for example: hobbies, profession, and thus can have some partial knowledge on

which communities their friends are involved in. As for the prominence metric, it is logical to

22

assume that a friend would mention if they were friends with a famous or notable person, which a

person would recognize and/or remember. These are all examples of partial knowledge of i-friends

that can allow a user to choose their successor friends based on some knowledge that they have of

the friends of that friend.

Table 3.1: Distributions of fractions of friends, i-friends and communities over the ranges
of distances from nodes. The second column shows the fractions of friends at
each distance range, computed by summing the numbers of friends in each range
for each individual user and then dividing the result by the total number of
friends of all users. The third column shows fractions computed as ratios of sums
of the numbers of i-friends of each user at each distance range to the total
number of i-friends for all users. The fourth column shows fractions of members
of communities of each individual user at each distance range listed, computed as
the sum of these numbers divided by the total number of members of all relevant
communities. Fifth, sixth and seventh columns list cumulative values from the
second, third and fourth column, respectively.

Range Percentage of Cumulative Percentage of
(km) Friends i- Commu- Friends i- Commu-

friends nites friends nities
≤ 6.25 18.6 2.6 14.0 18.6 2.6 14.0

6.25 – 12.5 8.6 1.3 4.3 27.2 3.9 18.3
12.5 – 25 10.3 1.7 5.5 37.6 5.6 23.9
25 – 50 7.6 1.5 4.6 45.2 7.1 28.5

50 – 100 3.9 1.0 2.6 49.0 8.1 31.1
100 – 200 3.8 1.6 3.1 52.8 9.7 34.1
200 – 400 6.4 6.0 6.8 59.2 15.7 40.9
400 – 800 6.4 8.8 8.2 65.6 24.5 49.1

800 – 1600 11.8 23.8 17.2 77.4 48.3 66.4
1600 – 3200 14.8 36.4 23.3 92.2 84.7 89.7
3200 – 6400 7.5 14.2 10.0 99.8 98.9 99.7

Let us dive more into understanding how partial knowledge of i-friends impacts the three

metrics we are using. Starting with the distance metric, we observed that the average distance

between our starting and target node is 1,880 km. We find that 49% of direct friends of an average

user, are within a 100 km radius of the user’s location. Meanwhile, for an average user, only 8.1%

of their i-friends are within a 100 km radius, while 59% of their i-friends are within 800 to 3,200

km from the user’s location, see Table 3.1. With an average distance of 1,880 km between our

starting node and target node, and 36.4% of a user’s i-friends being in the radius of 1,600 to 3,200

km away from the user. With an average of 125.3 i-friends, and 36.4% of i-friends being within

23

that range, a user has about 45.6 i-friends within this range with the possibility of the distance of

the closest i-friends to the target user being 280 km. Using only direct friends, it would take on

average 3 or more steps to get this close to the target user.

For the community metric, we compute the following. The average number of communities

that a user belongs to, which is 1.0, the average number of communities that a user can have

access to through friends, which is 6.8, and the average number of communities that a user can

reach through i-friends, which is 587. With κ limited to 15, a user can still reach about 47.4

communities through their i-friends, and when we account for the two steps required to reach

those communities of i-friends, the user would still have access to about 3.5x more communities,

than they would access through two steps using two of their friends.

For the prominence metric, and the usage of i-friends, we account for the following. First of

all, we separate our users into prominent, and non-prominent, with prominent users being within

the top 1% of all nodes in terms of prominence (degree). We have 758 prominent nodes in the

Gowalla network, each with a degree higher than 122. Such nodes are unlikely to look at their

i-friends when trying to find a popular user, as they themselves already have a lot of friends. Non-

prominent nodes have on average 9.2 friends, 2.1 of which are prominent, and 2,016 i-friends, 188

of which are prominent. With κ = 15, non-prominent nodes have about 75 i-friends, 15.4 of which

are prominent. Accounting for the two steps needed to reach that i-friends, a user has a reach that

is 3.5x stronger to prominent nodes, than they would through two steps using their direct friends

only.

Looking at the results of the social search simulations run on the original Gowalla network,

we make some very interesting observations. First of all, note that the optimal weights used are

WD = 2/24,WC = 7/24,WP = 15/24, with a ratio of 1 : 3.5 : 7.5, so the prominence metric is more

than twice as important as the community metric and more than seven times as important as the

distance metric. We find that for the social search experiments conducted on the original Gowalla

network, 60% of the hops used direct friends, and 40% used i-friends. It is also important to note

that even though we allow for up to 15 i-friends for each friend, an average of only 3.51 i-friends

were used, see Table 3.2. We were also interested to know which of the three metrics were most

dominant when selecting the recipient node. A metric dominating is simply stating that this metric

formed the largest component of the total score of the selected node. We find that for the hops using

direct friends, 0.3% of the hops were dominated by the distance metric, 22.7% by the community

metric, and 77.0% by the prominence metric. Meanwhile, for the hops using i-friends, 0.6% of

24

the hops were dominated by the distance metric, 30.1% by the community metric, and 69.3% by

the prominence metric. Of the 40% of the hops involving i-friends, when the package is sent to a

mutual friend to forward it to the i-friends, who is a direct friend of the mutual friend, 74% of the

time the mutual friend sends the package to the intended i-friends. Meanwhile, 4% of the time

the mutual friend finds a better direct friend, who is unknown to the original sender, and sends the

package to them. And 22% of the time the mutual friend will send the package to an i-friend of

their own.

Table 3.2: The numerical values of the average number of i-friends used, with different
distributions of nodes and friendships. We limit the knowledge of i-friends to 15
per friend. We find that for the original friendship distribution (original Gowalla
friendships), regardless of which spatial distribution of nodes is used, the average
i-friends used are around four. Average i-friends used is computed as the number
of hops using i-friends, divided by the total number of hops needed to get from
the source user to the target user. All reported results are for WD = 2

24 , WC = 7
24 ,

and WP = 15
24 , with κ = 15.

Friendship distributions:
Node distributions Original Random Exponential

geographic
Exponential

uniform
Normal

geographic
Normal
uniform

Zipf
geographic

Zipf
uniform

Original 3.51 3.76 3.94 3.78 3.94 3.77 3.64 3.83

Random
degree-preserving 9.27 17.03 14.45 15.49 15.81 13.06 13.17 10.32

Random
uniform 24.73 24.74 24.38 24.03 24.54 24.48 24.51 23.57

Random
exponential 24.38 23.31 24.02 23.35 24.48 23.87 24.32 23.30

Random
Power Law 25.80 26.09 26.53 27.03 26.30 26.66 26.44 26.67

As mentioned, we find that on the original Gowalla network, with 15 i-friends limit per

friend, an average of 3.51 i-friends are used. Meaning, that on an average path from a source node

to a target node, only a few number of i-friends are used when deciding which user to choose as

the recipient. About 60% of the hops used direct friends, thus showing that the direct friends often

outscore the i-friends. When an i-friend is chosen as the next recipient, even though a user does

not have full knowledge about all the friends of their friends, 74% of the time, the package reaches

the intended i-friends, through a mutual friend. This shows that a chosen i-friend is more often

than not the best option out of all the direct friends of the current user, and all of the friends of

the friends of the current user. Thus confirming two things, firstly, the usage of i-friends allows us

to make the social search much more efficient, as the chosen i-friends usually have a much higher

25

score than any direct friends. Secondly, increasing the limit of i-friends knowledge to more than 15

does not help improve the success rate by much, as shown in Figure 3.2, as the intended i-friends

outscores all the other possible recipients 74% of the time.

The original set of friendships achieved the highest success rate that, surprisingly, is inde-

pendent of the way nodes are distributed over the space. The success rate with partial awareness of

i-friends for κ = 15 is statistically significantly higher than the success rate with κ = 0 (no knowl-

edge of i-friends) and all other friendship edge distributions (P-value= 0.0005). The distant second

is the random friendship edge distribution preserving the degree and the ranges of distances from

friends of each node, whose success rate is not statistically significantly higher for this distribution

combined with κ = 0 (P-value= 0.2481), but it is statistically significantly higher for the remaining

tested methods of friendship edges distributions (P-value≤ 0.0005). The remaining three methods

of distributing friendship edges achieve much lower success rates. Accordingly, their success rates

without knowledge of i-friends are even lower and since they drop below 10%, they are not shown.

Now focusing on the differences between hops using direct friends, and hops using i-friends.

In both cases, the distance metric is of very low importance in comparison to the community and

prominence metrics. Nonetheless, it is still important to note that the distance metric was twice as

dominant for hops using i-friends as it was for hops using direct friends. This shows that, as we

hypothesized, the usage of i-friends can be of significance when trying to reach a target user that is

distant from the current user, as i-friends are often geographically distant, as shown in Table 3.1.

We also find that the community metric is dominant for 30.1% of the paths using i-friends, and for

22.7% of the paths using i-friends. Showing that through the usage of i-friends, we have access to

more diverse communities, which increases the chances of finding a community that the target user

is present in. Even though for the original Gowalla network i-friends are not frequently used, their

usage is deemed beneficial as they provide a “shortcut” to reaching the target user. This is due to

their presence in different communities than the communities of the direct friends, as many of the

direct friends will belong to the same set of communities. For our third and final metric, we find

that prominence is dominant in 77% of the hops involving direct friends, and in 69.3% of the hops

involving i-friends. This is the only metric that is more dominant for hops using direct friends. The

usage of i-friends is of most importance when trying to reduce the distance to the target, or when

trying to diversify the communities that we are searching through, but not as important when trying

to find a recipient that has high prominence. Even though i-friends can have higher prominence

than direct friends, in most of the cases an i-friend with high prominence would imply that their

26

direct friends are also of high prominence.

In Fig. 3.4(b) we also show the stretch with and without i-friends awareness for the second

best performing distribution of friendship edges that again is the original and the random preserv-

ing nodes’ degree and ranges of distance to their friends. The stretch of the original friendship

edge distribution with κ = 15 is statistically significantly lower than that of this distribution with

kappa = 0 (P-value= 0.0051), and the remaining friendship distributions (P-value≤ 0.0005). Sim-

ilarly, the stretch of the second in performance random friendship edge distribution preserving the

degree and the ranges of distances from friends of each node is not statistically significantly higher

for this distribution combined with κ = 0 (P-value= 0.5038), but it is statistically significantly

higher for the remaining tested methods of friendship edges distributions (P-value≤ 0.0053).

In conclusion, when i-friends awareness is used, the distribution of nodes does not affect the

stretch, but the friendship edge assignment does.

3.1.6 Methodology

The location-based social network used in this study is Gowalla [27]. At the time of the

collection of this network, Gowalla was mainly used in the United States, and in Sweden, with a

total of 154,557 users, and 1,139,110 friendships. To ensure connectivity in our network, we only

considered users within the United States contiguous territory, which consisted of 75,803 users,

and 454,350 friendship edges, with the node Power Law degree exponent γ ≈ 1.49. In Fig. 3.3,

we plot the degree distribution for the giant component of a network comprised of Gowalla users

located in the U.S.

For each of the social routing experiments that we conducted, we randomly uniformly se-

lected 100 starting users, and 100 target users from the network, and executed a social search, with

a limit of up to 50 hops, with the condition that the starting and target users are at least 1,600 km

apart, and the source node having a degree of at least 2. For each hop, the current user chooses one

of his/her friends as the successor, in order to ultimately reach the target user, with the condition

that this successor has not been chosen previously, to avoid any loops. The search can either fail,

or can successfully end once the target user has been reached.

Regarding the three metrics discussed earlier, here we will formally define how the value of

each metric is computed. For the distance metric, let Dmax denote the diameter of the network, and

Di denote the distance between node i and the target node. If there is a community to which both

the target and the current holder of the folder belong, we set Cmax to the size of this community,

27

Figure 3.3: The degree distribution for the giant component of a network with 75,803
Gowalla users located in the U.S., 454,350 friendship edges, and γ ≈ 1.49.

otherwise Cmax is set to N, the size of Gowalla network. In our study, Gowalla communities

were detected using a label propagation algorithm named Label rank [28]. For the final metric,

prominence, let Pmax be the largest node degree in the network, and let Pi be the degree of node i.

The metric values for node i in Eq. 3.1 are defined as follows:

Dm = 1− log(Di)

log(Dmax)
(3.3)

Cm = 1− log(Cmax)

log(N)
(3.4)

Pm =
1

log(Pmax)− log(Pi)+1
(3.5)

3.1.7 Results and Discussion

The distribution of nodes into space did not have an impact on the success rate of the social

search, see Figure 3.4(a), and Tables 3.3 and 3.4. The spatial distribution of friends is what greatly

affected the success rate of the social routing experiments. Our highest success rate was achieved

using the original friendships, followed by the random degree/range preserving friendships, while

the remaining methods all had much worse performance. This shows us that the spatial distribution

of friends is what matters, even if the actual friendships are randomized.

We also look at the stretch, which is defined as Sn1,n2 =< d(n1,n2) > /ds(n1,n2), where

28

< d > is the average distance traveled between n1 and n2 and ds is the length of the shortest path

between n1 and n2. The results can be seen in Figure 3.4(b), and Tables 3.5 and 3.6. The closer the

stretch value is to 1, the better and more efficient the routing is. We observe that the best stretch

results are achieved when using the original friendships of Gowalla, followed by the degree and

range preserving random friendships. We again see that for the remaining friendship distributions,

stretch increases drastically. Unlike before, the spatial distribution of nodes does have some impact

on the stretch. From the inset in Fig. 3.4(b), we see that the distribution of nodes has a major impact

on stretch when we have κ = 0, but not that big of an impact when κ = 15.

Table 3.3: The numerical values of the success rates reported in Fig. 3.4(a), with different
distributions of nodes and friendships. All reported results are for WD = 2

24 ,
WC = 7

24 , and WP = 15
24 , with κ = 15.

Friendship distributions:
Node distributions Original Random Exponential

geographic
Exponential

uniform
Normal

geographic
Normal
uniform

Zipf
geographic

Zipf
uniform

Original 94% 93% 91% 91.4% 92.4% 91.8% 92.8% 91.8%

Random
degree-preserving 69.8% 33.8% 45.2% 38.8% 41.6% 58.6% 55.6% 67.2%

Random
uniform 26% 30% 30.8% 31.8% 30% 29.8% 30% 32.8%

Random
exponential 16.8% 20.4% 18.4% 21.2% 16.4% 21.2% 19% 21.6%

Random
Power Law 17.2% 17.6% 13.8% 11.8% 15.5% 13.6% 14.4% 13.2%

Table 3.4: The numerical values of the success rates reported in inset of Fig. 3.4(a), with
different distributions of nodes and friendships. All reported results are for
WD = 2

24 , WC = 7
24 , and WP = 15

24 , with κ = 0.

Friendship distributions:
Node distributions Original Random Exponential

geographic
Exponential

uniform
Normal

geographic
Normal
uniform

Zipf
geographic

Zipf
uniform

Original 77.8% 72% 70.6% 72% 71.8% 72.6% 73.8% 71.2%

Random
degree-preserving 66.6% 30.5% 41.1% 34.9% 40.6% 53% 51.2% 62.6%

Random
uniform 3% 4.4% 1.8% 3% 3.4% 4% 2.8% 4.4%

Random
exponential 2.4% 2.6% 3.4% 8% 3.6% 2.6% 2.8% 2%

Random
Power Law 1.2% 2.4% 1% 1.4% 2.2% 2% 2% 1.4%

29

Figure 3.4: (a-b) Show plots with error bars of success rates (a) and stretches (b) achieved
with partial knowledge of i-friends under the different distributions of
friendship edges as a function of various distributions of nodes into space. Plots
represent the results of running 10 samples of each distribution resulting in 100
samples for each case of the considered friendship edge distributions. Each of
these samples was executed 10 times and averaged results plotted. Each
friendship edge distribution has a unique color assigned to its plots and two best
performing distributions have also plots of their stretches achieved without
knowledge of i-friends marked with the dashed line. We describe all
distributions of friendship to edges and nodes into space in the text. Plots for
runs with awareness of i-friends were computed using kappa limit of the
number of i-friends set to 15, which, if needed, are uniformly randomly chosen
from i-friends for each friend of the sender. The error bars were in the range of
[0.002, 0.039] for success rates (a) and in the range of [0.07, 1.61] for stretches
(b).

3.2 Synthetic Network Generator
3.2.1 Overview

In the earlier sections of this chapter we focused on social search in social networks, which

is based on the work presented in [14]. In the following sections of this chapter we will focus

30

Table 3.5: The numerical values of the stretch values reported in Fig. 3.4(b), with different
distributions of nodes and friendships. All reported results are for WD = 2

24 ,
WC = 7

24 , and WP = 15
24 , with κ = 15.

Friendship distributions:
Node distributions Original Random Exponential

geographic
Exponential

uniform
Normal

geographic
Normal
uniform

Zipf
geographic

Zipf
uniform

Original 1.82 1.88 1.79 1.75 1.84 1.78 1.83 1.79

Random
degree-preserving 3.35 3.92 4.23 3.90 4.47 3.99 3.40 3.06

Random
uniform 6.66 6.90 6.86 6.40 7.42 6.78 7.19 6.56

Random
exponential 6.34 5.83 5.87 6.06 5.89 6.77 6.64 5.95

Random
Power Law 5.75 7.23 6.23 6.68 6.66 6.78 6.44 6.59

Table 3.6: The numerical values of the stretch values reported in inset of Fig. 3.4(b), with
different distributions of nodes and friendships. All reported results are for
WD = 2

24 , WC = 7
24 , and WP = 15

24 , with κ = 0.

Friendship distributions:
Node distributions Original Random Exponential

geographic
Exponential

uniform
Normal

geographic
Normal
uniform

Zipf
geographic

Zipf
uniform

Original 2.72 2.74 2.87 2.95 2.84 2.90 2.77 2.81

Random
degree-preserving 3.34 4.94 4.97 4.44 4.91 3.98 3.86 3.21

Random
uniform 7.89 6.72 7.71 4.63 6.94 7.97 6.67 6.04

Random
exponential 5.99 6.82 5.60 8.35 7.69 6.22 6.77 4.68

Random
Power Law 8.04 5.31 3.48 8.34 6.58 5.24 6.25 6.70

more on the work presented in [15], which focuses on the structures of covert networks, such as

terrorist or criminal networks, and the process of generating synthetic networks that are statistically

similar to real social/covert networks. Covert networks differ from regular social networks in many

ways. The mere fact that the activities of covert networks are illegal, impacts their structures, and

the nature of the memberships that they have within. The data collected on covert networks can

often be incomplete and/or inaccurate, which results in a challenging process of trying to interpret

and understand the structures and activities of such networks. Real data on covert networks is

often inaccessible to researchers, due to legal reasons, thus we propose here a synthetic network

generator to help address this issue of lack of data. We introduce a novel method of rewiring covert

networks parameterized by the edge connectivity standard deviation. The generated networks are

31

statistically similar to themselves and to the original network. The higher-level organizational

structures are modeled as a multi-layer network while the lowest level uses the Stochastic Block

Model. Such synthetic networks provide alternative structures for data about the original network.

Using them, analysts can find structures that are frequent, therefore stable under perturbations.

Another application is to anonymize generated networks and use them for testing new software

developed in open research facilities. The results indicate that modeling edge structure and the

hierarchy together is essential for generating networks that are statistically similar but not identical

to each other or the original network. In experiments, we generate many synthetic networks from

two covert networks. Only a few structures of synthetics networks repeat, with the most stable

ones shared by 18% of all synthetic networks making them strong candidates for the ground truth

structure. The proposed generator can be used for many kinds of complex social networks that are

either incomplete, or partially incorrect.

3.2.2 Introduction

Generating randomized synthetic networks is often used to facilitate the understanding of the

network’s properties, which depend on the network’s structure [29]. The random network model

introduced by Erdós and Rényi [25] generates edges between pairs of nodes in a network with a

certain probability that is fixed for all edges. Such networks are highly random, as we expect. The

randomness of such networks has sparked the interest of many researchers as to which properties

of a network will be maintained, and which will be lost, when a given network is randomized.

As more research was done, it was found that the random network model rarely arises in the real

world.

A more advanced model that builds on the random network model, is the scale-free network

model proposed by Barabási [30]. Many real-world social networks follow the scale-free network

model. Another model is the Stochastic Block Model (SBM) [31], which is also an extension of

the random network model. In the SBM nodes are grouped together, and the probability of an

edge between any two nodes will depend on the probability of edge formation between the groups

that the nodes belong to. The SBM produces community structures that arise in real-world social

networks, but with one limitation of giving all nodes within a group the same probability of edge

formation, which limits the difference in degree between the nodes present in a given group. To

address this weakness, other variations of the SBM were proposed, such as the degree-planted

SBM [32], and the degree-corrected SBM [33].

32

The Lancichinetti-Fortunato-Radicchi (LFR) benchmark [34] is a benchmark where syn-

thetic networks of heterogeneity in the distribution of node degrees and community sizes are gen-

erated. The generated synthetic networks are customized using different parameters, such as the

power-law exponents, which determine the distribution of node degrees, the distribution of com-

munity sizes, and the density of edges within and between communities, to mimic real-world

networks. The LFR benchmark is often used to test the quality of community detection methods.

Another model that generates synthetic networks by shuffling edges in real-life networks is pre-

sented in [35]. To make communities in the network more blurry we simply shuffle more edges,

and usually the blurrier the communities are, the easier it is to spot stable communities, which

are communities that remain stable through the blurring process. Another generative model for

hierarchical multi-layer networks is presented in [36], and can be used to model networks with a

hierarchical managerial structure.

The Hidden Community Detection (HICODE) model [37] identifies hidden communities by

first performing a standard community detection method and then intentionally weakening the de-

tected communities by removing or reducing the weight of edges. This allows weaker communities

to be detected. Unlike our approach, the proposed method neither accounts for node hierarchy, nor

preserves total edge connectivity in a rewired network. Another generative model creates hierar-

chical multi-layer networks that are often used to represent the hierarchical management structures,

but does not consider reliability of a group or edge structure of the network [36].

In general, we are interested in on-line social networks that have been supported by the grow-

ing number of computer platforms and companies. Social networks create massive amounts of data

that can help researchers study such networks and their properties. Such networks have been in-

creasingly present with the increase in the amount of social networking platforms available. With

that being said, access to such data is increasingly limited due to the many laws protecting the

privacy of the users present in such networks. We are more interested in studying covert (hidden)

networks, and for such networks it is even harder to collect data. Covert networks are naturally

hidden, to avoid the detection of their members, and the illegal activities that they conduct. Col-

lecting data on covert networks is very challenging, due to the secretive nature of the members

of the networks. If such data was successfully collected, a very limited number of people would

have access to it, due to the privacy laws put in place by many countries to protect its citizens from

unjustified surveillance. Usually a small fraction of data becomes publicly available, when the

members of such networks are prosecuted in court, and the transcripts of the investigation become

33

publicly available.

The main contribution of the network generator introduced here is creating synthetic net-

works that are structurally similar to real networks, but with anonymous nodes that are inter-

connected or clustered differently than nodes in the original network. The direct use of such

anonymized networks is to provide a safe but statistically equivalent substitute for real networks

for research on analytical tools for covert networks. A large number of such networks generated

from a single covert network can serve as a set of alternative interpretations of the structure of that

network. The distribution of frequencies of these structures enables analysts to quantify statisti-

cally expected outcomes of operations on the covert networks. A high frequency of presence of a

particular synthetic structure among synthetic networks makes it a likely candidate for the ground

truth structure.

3.2.3 Organizations Represented by Covert Networks

To collect data on covert networks, we need access to the flow of information between users

of the network that are involved in the illegal activities of the network. The flow of information

between users may be captured using wiretapped phone interactions, recorded conversations, or

the discovery of written documents. For the rest of this section we will refer to such networks as

covert networks, and to the users of such networks as members. We will also refer to members

that are highly connected as a group, rather than the usual community, which is usually used to

describe members that have a casual relationship, or cluster, which usually refers to members

having a set of shared values or attributes. Covert organizations often have a hierarchical structure

of management. The levels of hierarchy will vary depending on the size of the organization. In

our proposed generator, we use parameters to describe the hierarchy level of a node, and thus

separating the group leaders from the low-level nodes of the network. Given a real covert network,

our generator will rewire proto-edges based on the groups, and the management hierarchy of the

node. Having said this, our proposed generator combines two network models: the SBM for

generating edges between groups, and hierarchy for maintaining the management structure of the

network.

In small organizations, groups could be independent of the organizational structure of the

network, but more often they have a hierarchical structure for management nodes. The number of

hierarchy levels depends on the organization size. In covert networks, the hierarchical structure is

important since law enforcement interdiction success vitally depends on correct recognition of the

34

leadership roles in a crime organization. For this reason, our model explicitly assigns to each node

its place in the organizational hierarchy. In addition, each group is represented by two parame-

ters, one defining proto-edge densities inside a group, and the other from this group to any other

group. This extends also to densities of proto-edges from a group leader to its subordinates, and,

separately, to other nodes. Given an original network, the generator individualizes it by randomly

rewiring edges of its groups and its management hierarchy [36]. As a result, our model com-

bines two network models: SBM for groups and hierarchical network for higher level management

structure.

Most of the previously proposed synthetic network generators rely only on one network gen-

erative model. For example, in [38] the authors propose a network generator that creates synthetic

multi-layered networks. A network generator presented in [39] implements small-world social

networks with the desired high clustering coefficient, while [40] presents a generator of a dynamic

scale free network with the given exponent γ with the minimal divergence from the scale-free

model at each size of its evolution. Another network generator described in [41] creates dynamic

networks with the prescribed group structure.

3.2.4 Data

The datasets used to test our proposed generator are the Caviar and Ciel datasets [42]. The

Caviar dataset is based on a drug smuggling network, using data collected from 1994 to 1996 by an

investigation of the West End Gang in Montreal, Canada. This gang mainly trafficked hashish and

cocaine. What is unique to this dataset is that during the investigation, the police only confiscated

shipment of drugs, but did not make any arrests until the investigation was over. The data consists

of 11 2-months snapshots, where each snapshot showed the interactions between the gang members

during that two-month period. Each snapshot of the network consisted of weighted proto-edges

representing the calls made between nodes of the networks, and the frequency of those calls. The

different snapshots allowed us to observe how the network reacted to the confiscations made by

the police. Based on the publicly released court proceedings, we know which nodes of the Caviar

network had management roles. From the proceedings, node N1 was identified as the leader of the

hashish group, and node N12 as the leader of the cocaine groups. In Fig. 3.5, we show more of the

nodes in managerial positions. It is important to note that using community detection algorithms,

many low degree nodes were not assigned to any group [43].

We also test our network generator on the Ciel dataset [42], which is based on a drug trans-

35

Figure 3.5: We present the combination of the stochastic block model (SBM) and the
hierarchical multi-layer network model on the Caviar network. Same colored
nodes belong to the same group, and nodes in the same hierarchical level have
the same role in management of the network.

portation network that was mainly involved in trafficking hashish from Jamaica to Montreal, with

data collected between May 1996 to June 1997. This dataset is both weighted and directed, with

weights representing the frequency of node interactions, which was obtained from the phone calls

surveillance records. High ranked members of the Ciel network were identified, with nodes N1,

N2, and N10 being important members of the network. Just like the Caviar network, the Ciel

network’s ground truth was also not known. For both the Caviar and Ciel networks, the Louvain

community detection algorithm [44] was used to find groups in the network. It is also important to

note that we used an undirected version of Louvain community detection, due to the uncertainty of

connectivity between the nodes in our network. For this, we simply transformed the directed edges

of our networks into undirected ones, thus summing the weights of the directed edges between a

pair of nodes, into a single weight of an undirected edge.

3.2.4.1 Security vs Efficiency in Covert Networks

Unlike social networks, covert networks cannot just maximize efficiency of the flow of in-

formation. The more efficient the information flows through a covert network, the less secure

that network is. Therefore covert networks need to either prioritize efficiency or security, but not

both. We used the relative betweenness centrality [45] to identify nodes of high importance in our

36

network, and thus nodes that belong in management positions. Betweenness centrality measures

the centrality of a node in the network, by measuring the fraction of shortest paths of information

flow that pass through the node. For all the results reported below, we used relative betweenness

centrality, for ease of comparison, which is a normalized version of the betweenness centrality

with its range being from [0,1]. We compare the Caviar and Ciel networks, as shown in Table 3.7,

and it can be seen that Caviar prioritized efficiency, while Ciel prioritized security. In the Caviar

network, node N1, who is the leader of the network, and nodes N3, N12, and N76, who are all

in manager positions, have the highest relative betweenness centrality scores from all the nodes in

the Caviar network. This shows that a lot of information flows through these nodes, which implies

that a lot of nodes have access to them, which results in a high efficiency flow of information, but

low security of the leader nodes. On the other hand, the leader of the Ciel network, node N10, has

a very low relative betweenness, in comparison to the manager nodes N1, and N2. This shows that

the leader was not easily accessible by many of the nodes in the network.

We chose to investigate both the Caviar and the Ciel datasets because they are very well

studied [43], [46], [47], and they represent two types of covert networks, ones that prioritize effi-

ciency, and ones that prioritize security. We show that using our generator we are able to generate

synthetic networks that are similar to both networks, despite the fact that only partial knowledge of

the ground truth was available for both networks. This is important because for many real covert

networks the ground truth will not be known.

Table 3.7: The relative betweenness centrality scores of the management nodes in the
Caviar and Ciel networks. Management nodes in the Caviar network had high
betweenness scores, which made information flow in the network very efficient.
In contrast, for the Ciel network, the leader node had a very low betweenness
score, which shows that not many low level nodes had direct access to him, thus
benefiting the security of the leader node, N10.

Network Caviar Ciel

Node identifier N1 N3 N12 N76 N1 N2 N10

RBC score 0.430 0.180 0.303 0.078 0.591 0.641 0.015

Rank of the score 1 3 2 4 2 1 7

3.2.5 BWRN Network Generator

Generating weighted networks has received a lot of attention over the last decade. Many of

the proposed models aim to produce weighted networks that have properties similar to real social

37

networks. In [48]–[50], weighted network models, based on Barabási’s preferential attachment

model [30], are proposed with the goal of generating weighted networks with power-law degree

distribution, positive degree correlation, and high clustering coefficient. In [40], a growth model

that preserves the power-law degree distribution with nodes dynamically joining and leaving the

network is proposed. Another model that generates weighted networks that meet user defined

criteria, such as symmetry, clustering, and positive degree correlation, is proposed in [51]. Rather

than user defined criteria, generated networks can be based on real input networks, to generate

weighted networks that maintain the power-law degree, degree correlation, and high clustering

coefficient of the real networks [52], [53]. In [54], Fortunato provides an authoritative review

of the state of the art in community detection. The review covers many generative models and

provides a more in-depth explanation of them for interested readers. It also demonstrates the poor

performance of these models in replicating the community structure of the original network. All

the discussed above models do not inform their rewiring processes about the hierarchy or group

structure of the original network. Information about both of these aspects of a network enables

the BWRN generator to rewire edges preserving internal connection densities within groups and

between leaders and their subordinates. Hence, the synthetic networks created by the BWRN

generator not only have an edge structure statistically similar to that of the original network, but

also their group structures and organizational hierarchies are similar.

The process of running the BWRN generator on a given network requires two inputs. The

first assigns to each node its place in the management hierarchy, and if a node has a management

position, a list of its direct subordinates, and its membership in a group. Nodes with a management

position may not have peers, in which case it will be considered a single node group. The second

input assigns to each edge the identities of the groups to which its endpoints belong. This step

creates proto-edges that are randomly assigned nodes from the relevant groups in the process of a

synthetic network generation. The generated synthetic networks can then be used to analyze the

stability of communities and hierarchical levels of the original network.

To further emphasize the final step of our process, we will focus more on the actual gen-

erating of synthetic networks. We will start with the model that serves as the foundation of our

BWRN generator. Networks in general are weighted and directed, as is the case with the Caviar

and Ciel networks. The weight of an edge between a pair of nodes is used to represent the intensity

or frequency of interactions between that pair of nodes. A weight can represent the number of

phone calls, meetings, messages, or any representation of an interaction occurring between two

38

nodes. Within our BWRN generator, we use the stochastic block model, as we mentioned earlier.

Within the stochastic block model, we had some freedom to choose the model which will be used

to assign weights to the generated edges. We provide the user with the option of choosing between

one of two models to assign weights to edges, the first is the Weighted Random Graph (WRG)

model [55], and the second is the Bernoulli Weighted Random Network (BWRN) model, which we

introduce as an alternative to the WRG model. For the WRG model, let W denote the total sum

of weights of all the proto-edges, and let E be the maximum number of proto-edges that can be

generated between two blocks of nodes. The proto-edges are then generated using Bernoulli trials

with probability p = W
W+E , and at the first failed trial, the trials stop. The weight of the proto-edge

will then be equal to the number of successful trials occurring before the first failed trial. The

proto-edge weights generated using the WRG model follow a geometric distribution.

Table 3.8: Notation table.

B(n, p) Process of n Bernoulli trials with success probability p
d Node degree
E Number of directed edges
Eg Maximum number of directed edges among nodes in group g
E i, j Number of directed edges from gi to g j
gi Group i

gs
i ,g

e
i Groups with starting and ending nodes of edge i

|¬i| The number of all nodes not in a group gi, and hierarchy < s(i)
k Weight of generated edge
n Number of nodes in the network

ns(n, p) Random number of successes in B(n, p)
n(d) Number of nodes with d degree
pa w− pBwB
pB Probability defining the variance of the generated weights

s(i) Node directly superior to node i
w,wi Weight of a single edge, weight of edge i
wB bw/pBc
W Vector of wi’s of a weight of edge i

WS,WU Sum of weights of edges, sum of unique weights of edges
W i, j Sum of weights of edges from gi to g j

We introduce an alternative model to the WRG, named Bernoulli Weighted Random Network

(BWRN) model, see Algorithm 2 for pseudo code, and Table 3.8 for notation used. This model

has two parameters, the first is a list of weights w’s representing the weights of proto-edges present

in the original network, and the second is probability pB, which determines the variance of weight

39

distribution of the generated proto-edges. To generate proto-edges using BWRN, we start with

the heaviest proto-edges, and move towards the smallest weighted proto-edges. For each of the

weights stored in the list of weights w, an associated weight wB = bw/pBc is computed. For each

proto-edge with weight w in the original graph, a weight in the range of [0, dw/pBe] is computed as

the new weight of that proto-edge in the generated graph. To create edges in our generated graphs,

we pick a pair of nodes that are not yet connected, and run wB Bernoulli trials, with probability of

success pB. In the case that pBwB < w, we run one more Bernoulli trial, but now with probability

pa = w− pBwB. The probability of choosing weight k for a given edge, where 0≤ k ≤ dw/pBe is

defined as:

pw(k, pB) =


(wB)!

(wB−k)!k! pk
B(1− pB)

wB−k if k ≤ wB

w− pBwB for k = wB +1 if pBwB < w
(3.6)

The generated edges of a synthetically generated graph will have an average sum of weights

that is equal to the sum of weights of the proto-edges in the original graph. The expected weight

using Equation 3.6 is pBwB +w− pBwB = w. pB defines the probability of a proto-edge of weight

w not being generated, which is (1− pB)
wB if w = pBwB and (1− pB)

wB(1−w+ pBw) otherwise.

As w and pB increase, the probability of a proto-edge not being generated quickly decreases. For

pB > 0.9, for all proto-edges, even those with w = 1, their probability of not being generated is less

than 1%. For all the experiments conducted we use pB = 0.875, and for that value of pB about 10%

of the proto-edges with weight 1 in the original network will be lost, not appear in the generated

network, but about 10% of another set of proto-edges will increase their weights from 1 to 2, thus

strengthening the communities present in the network.

The variance in the distribution of weights generated for a given proto-edge with weight w is

w(1− pB)+ pa(pB− pa) ≈ w(1− pB) [56], thus showing that the variance increases as w grows,

but decreases as pB grows. A large pB will result in the generation of synthetic networks that are

similar to the original network, and as we decrease the value of pB the generated synthetic networks

will become less and less similar to the original network. This feature of the model is essential for

covert networks, which have both missing and incorrect edges (e.g., edges connecting a member

of a Crime Organization (CO) to a person outside of it). Analysts involved in CO investigations

can use an estimate of levels of this deception and select a value of pB that would rewire enough

edges to add the hidden connections and remove the incorrect ones, but not enough to disassemble

the crime groups. For example, analysts can monitor whether the known CO members are losing

40

connections to other members, which would indicate that pB is too low.

Procedure 2 BWRN model
Input: vector W ; group gs

i ,g
e
i ; int E, real pB ∈ (0,1];

function ns(n, p); process B(n, p);
Comment: all symbols are defined in Table 3.8
Sort proto-edges in the order of groups they connect and their descending weights

for i=1 to E do
wB = bwi/pBc
randomly select a pair of not yet connected nodes in groups gs

i ,g
e
i

wg
i = ns(wB, pB)

if pBwB < w then increase wg
i by ns(1, w− pBwB)

end if
end for

3.2.5.1 Group Detection in Generated Networks

To test the quality of our generated synthetic networks, we compare the communities de-

tected on our synthetic networks, to the communities detected on the original network. For all the

community detection conducted in our experiments, we used the Louvain community detection al-

gorithm [44], to detect groups in our generated networks, and compare those groups to the groups

detected in the original network. There are many other alternative community detection methods,

such as Speakeasy [57] and Natural Communities [58] which we used and yielded similar results

to Louvain, CPM [59], modularity maximization [60], adaptive [61], or fast modularity [62]. The

Louvain method partitions the network into communities that maximize modularity. First, it finds

small communities that optimize modularity locally on all nodes. This process is repeated until

the modularity of the whole network is optimized. Speakeasy is a label propagation clustering al-

gorithm that can detect both overlapping and non-overlapping communities, by allowing nodes to

join communities based on an exchange of labels between connected nodes. Natural communities

method is based on the local optimization of a fitness function by performing a local exploration

of the network searching for the natural community of each node, while allowing a node to belong

to more than one community. This allows overlapping communities to be detected. Users of our

BWRN generator have the freedom to choose any of the mentioned, or other, community detection

methods to test the accuracy of the generated networks.

We utilized the Louvain community detection method on the Caviar and Ciel networks. It

was interesting to find that the detected groups did not always match with what we expected. There

41

are several reasons as to why that may have been the case. First of all, the Caviar and Ciel networks

are partially incomplete, and may have some undetected edges. Second, and more importantly,

high degree nodes are so often very well connected to many groups of the network, thus resulting

in those nodes not truly belonging to a single group of the network. For example, in the Caviar

network, we know that nodes N1 and N3 belong to the same group, but since N3 is very well

connected to other groups of the network, the generator may sometimes assign N3 to those other

groups. This is not the case with just N3, other well-connected nodes are often misclassified too.

Well-connected nodes are often connected to many different groups of the network, considering

that they play some role in each of the groups that they are connected to, thus signaling that this

node plays various roles within the network. As we continued to generate more synthetic networks,

we observed how the roles of certain nodes changed. This helped us further understand the nature

of operations being conducted in the original covert network. We also look into the hierarchy levels

of the network, and try to detect different hierarchy levels to reveal the hierarchical structure of the

network. We use relative betweenness centrality as a hierarchy measure, and it has been shown that

in networks there is a strong correlation between the betweenness scores and the hierarchical levels

of nodes [63]. We find the nodes with the highest relative betweenness in the generated networks

and compare them to those of the original network, to measure how well the leadership hierarchy

(leader nodes) was preserved in the generated networks. A Combined Score (CS) measures the

overall similarity of generated networks to the original one, by taking the product of the Group

NMI Score (GS) and Jaccard Leadership Score (LS), as below.

CS = GS∗LS (3.7)

3.2.5.2 Generating Synthetic Networks

To use the BWRN generator, the user needs to do the following. First, anonymize their data

by removing any personal information, and providing the generator with a list of nodes, and the

management hierarchy that each node belongs to. Second, the user has to provide the list of all

proto-edges present in their network, and the weight of each proto-edge. This list of proto-edges

should be composed of a source node, a target node, and the weight of the proto-edge connecting

them. Third, the user should provide a list of groups present in the network. This list can either

represent the ground truth groups of the network, or can simply be the list of groups detected

on the original network, using any group detection method, as we mentioned earlier. Once these

42

are provided by the user, we can start processing the input data. We start with computing the

probabilities of proto-edge connections between groups of the generated network. As mentioned

earlier, we use one of the two models to assign weights to the generated weighted edges. Both

models will separate the proto-edges in several classes, and generate weights and edges for each

class separately. The first class will represent the internal proto-edges of a group gi of size |gi|, with

members all belonging to the same hierarchy level. For such group gi, there are E i = |gi|(|gi|−1)

directed proto-edges, with a sum of weights denoted by W i. The second class will include proto-

edges across nodes belonging to different groups, i.e. between gi and g j. In this case, there are

E i, j = |gi||g j| proto-edges from gi to g j and E j,i proto-edges from g j to gi, with the sum of their

weights denoted by W i, j and W j,i respectively. The third class will include proto-edges between

a superior node s(i) and the members of its group gi. In this case, there are Es(i),i = E i,s(i) = |gi|
proto-edges going in each direction, from s(i) to gi and from gi to s(i), with the sum of their

weights denoted by W s(i),i, and W i,s(i) respectively. The fourth, and final, class will include the set

of proto-edges from a superior node s(i) to members not in its groups, so members not in gi, such

members will be denoted by |¬i|. Here there are Es(i),¬i = |¬i| proto-edges in each direction, with

the sum of their weights denoted by W s(i),¬i.

The two models used to assign weights to the generated edges are the Weighted Random

Graph (WRG) model [55], and the Bernoulli Weighted Random Network (BWRN) model. Both

models are discussed in depth in Section 3.2.5.

Our BWRN generator allows for the assignment of an arbitrary number of management

levels, but given that the Caviar and Ciel networks are relatively small, we set the limit of the

hierarchy levels to three, for the conducted experiments. Hierarchy levels, higher than the lowest

hierarchy level, can have a varying number of members, depending on the total number of members

present in the immediately lower level. For the three levels of management used in our experiments,

the third management level consisted of the leader node of the network, which is referred to as boss.

The second hierarchy level will be composed of intermediary nodes, referred to as managers, that

will connect the boss node with the rest of the network. The first level of hierarchy consists

of the remaining nodes, and is composed of several groups. Nodes residing in the first level of

hierarchy are referred to as members. The BWRN generator will attempt to detect the leader and

manager nodes automatically without any extra help from the user. When we were deciding how

many managers should we assign per member, we referred to the literature and found that small

companies tend to have an average of four employees per manager [64]. Given the differences

43

between a covert network, and a small company, we decided to go with six members for each

manager, with the reasoning that in covert networks we want to limit the number of members that

have direct access to the boss node.

Hierarchy is not always consistent across all groups of the network, some groups may have

more levels of hierarchy than others, while other groups may have no hierarchy at all. Groups

with no hierarchical management are referred to as independent. Groups that consist of a small

number of nodes, or with a very few number of edges are likely to be independent. One example

of an independent group is the money laundering group in the Caviar network, with members only

having outgoing edges to nodes outside the groups, and no incoming edges.

3.2.5.3 Baseline Generator

To test the accuracy of our BWRN generator, we needed a baseline generator to compare

it against. Initially, our baseline generator was the Erdós Rényi [25] random network generator,

but we had to use a better baseline. Our new baseline generator is an extended version of the

stochastic block model that supports weighted and directed edges. The SBM baseline generator

takes as input a list of the nodes present in the network, a list of the network edges, and a list of

the groups detected in the original network. We then proceed to do the following for each group,

we sum the weights of all the edges within the group, and the weights of all the edges between this

group, and other groups in the network. We then use these sums to calculate probabilities of edges

within the groups, and between groups. We use the built-in numpy random choice method [65], to

pick a pair of groups within our network. We then choose a source node from the source group,

and a target node from the target group. For edges within a group, we need to make sure there are

no self loops, thus the source and target node must not be the same node. Once a pair of nodes

is found, we execute a Bernoulli trial with probability based on the calculated probability of edge

formation between the source and target group. If the Bernoulli trial succeeds, we increase the

weight of the edge between the pair by one. We repeat this process until we generate the same total

weight of edges between the chosen groups, as present in the original network. Once we are done

processing all the groups, we should have the same total weight of edges in the generated network,

as present in the original network. As mentioned for the BWRN generated network, we once again

use Louvain community detection to detect groups in the baseline generated networks.

44

Figure 3.6: The graphic framework showing the process of generating networks using the
proposed generator. Circles represent the processing stages of the generator,
rectangles stand for datasets, and hexagons show computational centers. The
red color denotes secure processes and data with access limited to within the
secure processing facility, while the blue color denotes open access data and
facilities.

3.2.6 Flowchart and Time Complexity of the BWRN Generator

Fig. 3.6 summarizes the process of generating synthetic networks using the proposed gen-

erator. Although we start with a single real network, the synthetic networks generated from it will

all be unique. Some generated networks may have the same group structure, but they will all have

a unique set of generated edges, so after node anonymization, it would be difficult to recover the

original input network from the single synthetic network. Thus, the anonymized synthetic net-

works can be shared with researchers that operate in open research laboratories for testing and

validating software on networks that are similar to real covert networks.

The time complexity of executing the BWRN generator presented in Fig. 3.6 can be estab-

lished as follows. The input data consists of the management hierarchy, group structure, and the

list of proto-edges of the network to be rewired and may be already included in the data associated

with the real network to be rewired. Alternatively, the management hierarchy can be uncovered

using the relative betweenness centrality with complexity of O(n(n logn+E). This is by factor of

n the most computationally intensive part of the BWRN generator execution, but it can be avoided

if ground truth about the management hierarchy is uncovered by investigation. The group struc-

45

ture could be found by Louvain (or any other community detection) algorithm with complexity

O(n logn).

The network rewiring process consists of two main steps. The first sorts the network proto-

edges according to groups they connect and in descending order of their weights. The complexity

of sorting is O(E logE). The second step runs the BWRN generator, on every proto-edge of the

rewired network. Since each proto-edge is rewired once, the complexity of this step is O(E +

∑i∈W log(wi)), where wi denotes the weight of edge i.

3.2.7 Results

To compare the quality of the synthetic networks generated using the BWRN generator we

used Louvain community detection to detect groups in the generated networks. We then used the

Normalized Mutual Information (NMI) method [66] to measure the similarity between the gener-

ated groups, and the original groups detected in the original network. To avoid any statistically

insignificant outliers, we generated 100 synthetic networks and took the average scores.

We do not just measure how similar the detected groups of the generated networks are to

the original groups of the original networks, we also measure how well the management levels

were maintained in the generated networks. As we mentioned earlier, to measure how similar

the groups of the generated networks and the original networks are, we used Louvain community

detection and Normalized Mutual Information. To measure how well we maintained hierarchy

and management levels, we detect management nodes in the generated networks, by finding the

nodes with the highest relative betweenness centrality. To clarify, assume the original network has

n management nodes, all with known relative betweenness scores. We then proceed with finding

the top n nodes with the highest relative betweenness scores in the generated networks, and use a

90% threshold of the relative betweenness centrality scores between the top nodes in the generated

network, and the top nodes in the original network. All the tests conducted are based on the

Caviar and Ciel datasets, and for both datasets we create three sets of synthetic networks. We used

Bernoulli Weighted Random Network (BWRN) method to create the first set, Weighted Random

Graph (WRG) method to create the second set, and the weighted SBM (baseline generator) to

create the last set.

In Table 3.9 we see results solely based on the similarity of group structures between the

generated networks and the original networks. Results are reported for both the Caviar and Ciel

datasets, and are based on the three sets of synthetic networks mentioned earlier. We can see that

46

the groups detected on networks generated using BWRN method are by a factor of two or more

similar to the groups in the original network, when compared to the WRG method. The baseline

SBM and the BWRN have similar performance.

Table 3.9: Results show NMI scores from comparing the groups in networks generated
from the Caviar and Ciel networks to the groups in the original networks. The
results show performance of BWRN generator, and generators using the
Weighted Random Graph model and the weighted SBM baseline model.

Original Network Caviar Ciel

Generator Generator Weighted Generator Weighted

BWRN WRG SBM BWRN WRG SBM

mean 0.815 0.356 0.850 0.800 0.513 0.761

median 0.839 0.365 0.739 0.883 0.567 0.751

min 0.415 0.088 0.358 0.734 0.288 0.551

max 0.953 0.565 0.883 1.000 0.692 1.000

By measuring just the quality of the generated groups, it is hard to differentiate between the

BWRN model and the SBM weighted model. In table 3.10 we demonstrate the importance of

leadership detection. We use Jaccard metric [67] to measure the similarity in management levels

between the generated networks and the original networks. The results show that our BWRN

generator using the BWRN method preserved the hierarchical leadership structure two times better

than the SBM weighted baseline generator, and almost four times better than the BWRN with the

WRG method. This shows that the BWRN with BWRN does a much better job preserving the

leadership of networks than other methods, and also performs equally or slightly better than other

methods at maintaining groups.

Table 3.10: The first row of the results shows group structure similarity from Table 3.9, the
second the leadership similarity, and the last row shows the combined Score that
is the product of the first two scores. In all three rows, the best score is shown in
bold font.

Metric BWRN WRG Weighted SBM

Group NMI median (GS) 0.839 0.365 0.739

Jaccard Leadership (LS) 0.681 0.402 0.308

Combined Score (CS) 0.571 0.146 0.281

47

Figure 3.7: The presented Caviar networks depict a) the groups in the original network, and
groups detected in the synthetic networks with similarity that is (b) highest, (c)
lowest, and (d) average.

3.2.7.1 Extension Methods

With the achieved set of scores, we were interested to see if we can further improve our

generator by trying out different edge addition methods. Thus, we tried three different methods.

The first method adds edges based on the number of common neighbors between a pair of nodes.

The second method adds edges using the triangle closing method. Finally, the third method adds

edges using preferential attachment.

The approach for edge additions based on common neighbors is as follows. All pairs of

nodes (x,y) are assigned a score based on the number of neighbors that they have in common, such

that score(x,y) = Γ(x)∩Γ(y), where Γ(x) denotes the set of neighbors of node x, and Γ(y) denotes

the set of neighbors of node y [68]. The pairs with the highest scores will be assigned an edge in

the generated network, until we assign the required number of edges. The first variation is based

48

on assigning each pair of nodes an edge of weight 1. The second variation sets the weight of the

added edge equal to the common neighbors similarity score(x,y). For both variations, if a pair of

nodes already share an edge, the weight of their edge will be increased by the given amount.

The triangle closing method, presented in [69], is based on the idea of adding edges locally

within a network to connect nodes with common neighbors. The implementation of the triangle

closing method is as follows. First, we pick a node y and then choose two of its neighbors, nodes x

and z. Next we add an edge between x and z, thus closing the triangle of nodes (x,y,z). We extend

this method by adding some conditions to choosing the neighboring nodes. Each neighboring node

to y will be assigned a score based on whether it is in the same group or management level as node

y. Nodes in the same group and management level will obtain a higher score. The nodes x and z

with the highest scores will be selected to add an edge across. We ran tests on the triangle closing

method both with and without the attribute score extension.

Our final extension method is based on preferential attachment, which has been widely used

to generate edges in networks, as presented in [68] and [30]. Each pair of nodes (x,y), will be

assigned a score based on their degree. The score is defined as score(x,y) = deg(x) ∗ deg(y),

where deg(x) denotes the degree of node x, and deg(y) denotes the degree of node y.

To test these extension methods, we generated 100 networks with 70%, 80%, and 90% of

the edges generated using our generator. The remaining edges were added using each of the three

extension methods. We used Louvain community detection on the resulting networks, and used

NMI scores to compare the detected groups to the original groups, but found that the proposed

extension methods only worsened our results.

3.2.8 Stability of Generated Structures

Moving away from how similar the generated networks are to the original network, we are

now interested in how stable the generated networks are. The generated networks are statistically

similar to the original network, with some small perturbations to the proto-edges present in the

original network. As we compare the structures of the generated networks, we can find the most

stable structure, as it will be the structure most present across the generated networks. To find

whether our original network’s structure is stable or not, we can see how many of the generated

networks share the same group structure as that of the original network. If only a few of the gen-

erated networks are structurally similar to the original network, we can conclude that the structure

of the original network is not stable. On the other hand if many of the generated networks are

49

structurally similar to the original network, then we will know that the original network’s structure

is stable, and is resistant to the perturbations caused by the generator.

We apply this analysis to the Caviar network by generating 1000 synthetic networks. We

compare the structure of those synthetic networks to each other, and to the original network. Our

analysis is as follows, first we create a meta-graph G, with nodes representing the generated net-

works, so our graph G will consist of 1000 nodes. Nodes in G will be connected by an unweighted

and undirected edge if they share a matching group structure. We will have two versions of this

meta-graph G, the first version will have edges representing exact matches, and the second will

have edges representing flexible matches. In a flexible match, it is allowed for up to one node

difference in each group present between the two networks. In Figure 3.8, we show the results for

exact matches in meta-graph G. It is important to note that the original network’s structure only

had ten exact matches among the 1000 generated networks, thus showing that the original structure

is not very stable. The original structure is sensitive to any small perturbation in node connectivity.

We find that the most stable structure occurs 177 times with exact matching, and 301 times with

flexible matching. From the top ten most stable structures, each appear at least 20 times for exact

matching, and at least 206 times for flexible matching. All the other generated networks only had

a few matches for both exact and flexible matching.

The challenge in finding exact and flexible matching was mainly how to do it efficiently.

Comparing the groups of every generated network to the groups of every other generated network

can be very time-consuming, with a total of 1000∗1000 total comparisons. To make this process

efficient, we do the following. First, we sort each network’s detected groups in decreasing order

of size, and within each group, nodes will also be sorted in decreasing order of their identifiers.

This enables us to proceed with comparing the detected groups of the generated networks. To

minimize the number of comparisons needed, there are several checks that can confirm that a pair

of networks will not have a match. If two networks have a different number of groups, they can

never have a match. Assuming that two networks do have the same number of groups, we then

proceed with comparing the size of the groups present in the two networks. Since the groups have

been sorted, the networks may have a match only if all their groups match in size, otherwise they

will not have a match. Only if two networks pass all the previous checks, do we then manually

compare their groups to check whether these two networks are in fact an actual match. This process

makes the exact and flexible matching very efficient, which is a necessity considering the number

of networks that we are comparing against each other. See Algorithm 3 for the exact matching

50

algorithm pseudo code.

Algorithm 3 Exact Matching Algorithm
Step 1: Sort the detected communities of each network in decreasing order of size.
Step 2: Sort each detected community for each network based on node IDs.

for each network structure ns1 do
Add ns1 to list of visited network structures
for each network structure ns2 do

if ns2 in list of visited network structures then
Break

end if
if number of communities in ns1 == number of communities in ns2 then

Match = True
for i in range number of communities in ns1 do

if len(ns1[i]) != len(ns2[i]) then
Match = False

end if
end for
if Match == True then

for i in range number of communities in ns1 do
S = intersection(ns1[i], ns2[i])
U = union(ns1[i], ns2[i])
if abs(len(S) - len(U)) > 0 then

Match = False
end if

end for
if Match == True then

Add ns2 to ns1’s list of matching structures
Add ns1 to ns2’s list of matching structures

end if
end if

end if
end for

end for

Identifying stable groups in criminal networks is important. It can help analysts concentrate

on group structures that are occurring most frequently, and thus represent plausible interpretations

of the data based on those stable networks. Stability measures can also be of use for simulating

interdiction on many alternative structures of the network, to reveal a wide range of outcomes. A

distribution of the interdiction outcomes for the original network can be computed using probabil-

ities of the outcomes of the generated networks, based on the number of occurrences present of

51

these networks in the meta-graph.

Figure 3.8: Histogram of the meta-graph degree distribution for exact matches between the
generated networks. The x-axis is the node degree d, and the y-axis shows the
number of nodes with d degree n(d).

3.2.9 Conclusion and Discussion

In this section, we introduce and make available a synthetic network generator that produces

statistically similar networks to a given real or synthetic network. This generator will allow re-

searchers to share data, such data will be synthetic, but it will be a representation of a realistic net-

work. These networks can then be shared amongst researchers who need realistic data to develop

and study tools for network analytics. Owners of private data can protect their data by providing

the generator with abstract structural information, while maintaining the personal and operational

information of the network private. To do this, a user would have to provide our generator with

three lists. This includes a list of nodes, a list of groups and management roles, and a list of node

groups as well as the statistics about edges and weights across and within those groups. With the

mentioned lists provided, the original network provided is succinct and void of any personal data.

Our generator also allows for further shuffling or randomization of node IDs to further maintain the

anonymity of any personal information present in the original network. The generated networks

are of the format source node ID, target node ID, weight, which is also the same format expected

for any input network provided to the generator. We introduce the Bernoulli Weighted Random

Network method that creates networks with an average total sum of weights equal to the original

network, and we use the Stochastic Block Model to generate alternative group structures to those

in the original network. We use a combination of both the SBM and a hierarchical network model,

to preserve the hierarchical aspects of the original network.

52

The proposed BWRN generator was tested on covert networks, but is equally applicable to

social networks. This generator aims at aiding the analysis of covert networks with hidden or

incomplete information about their nodes, edges, or internal structures. This generator can enable

researchers to further study covert networks, with multiple versions of the same network, and can

help researchers develop algorithms on synthetic networks that can be used in real-life applications

and on real networks.

The second application of this generator is to be used as a tool for analysts, to utilize it

for network analytics on the original network. Studying the stability of the original network, by

comparing its structure to the structure of the generated networks, can enable analysts to better

understand the original network at hand. The more synthetic networks we have, the more we can

study and understand the nature of the operations occurring in the original network. Commu-

nity structures that are frequent can be studied to understand what makes them stable despite the

perturbations caused by the generator.

We tested the BWRN generator on two real covert networks, the Caviar and Ciel datasets.

To measure the quality of the generated networks, we used the Louvain community detection al-

gorithm, to measure the similarity between the communities of the generated networks and the

communities of the original network. After detecting groups using Louvain, we used the Normal-

ized Mutual Information metric, and the Jaccard metric, to measure the group and hierarchical

similarity between the generated networks and the original network. Our results demonstrate that

the generated networks and the corresponding original network were highly similar. From our re-

sults, we concluded that accounting for groups, as well as management hierarchy of a network, is

essential for generating synthetic networks that are statistically similar to the original network.

For future work, we plan to extend this generator by adding a fourth step that allows us to

scale the generated networks. One way to do this is to replicate parts of the original network, and

to add additional levels of management. Expanding the generated networks will allow researchers

and analysts to study large and complex criminal networks, which are hard to find real data on.

CHAPTER 4
MINIMIZING UNCERTAINTY COST OF NETWORK STRUCTURE

FROM NOISY DATA

4.1 Overview
Community structures form a basis of many network analytic tools. Yet, the prevalence of noise

in data massively collected for large networks and intentionally obfuscated in covert networks

distorts edges and community structures of such networks. To address this challenge, we repeatedly

rewire a given network with a community structure created from the noisy data while controlling the

standard deviation of the edges’ weights and connectivity. This process creates a large set of the

original network variants compatible with the noisy data. We use several entropy-based metrics to

identify the lowest uncertainty community structure among them. However, in many applications,

e.g., maintaining a complex system or disrupting a criminal or terrorist organization, the uncertainty

cost is more essential than uncertainty itself. Hence, we introduce a novel heuristic that creates a

community structure with the lowest expected cost of uncertainty. This cost can be defined by the

user as a function of differences between two community structures. To validate our approach, we

apply it to two criminal networks, one terrorist network and one social network. The results

demonstrate that our approach creates a set of feasible variants of an original network, finds for it the

minimum uncertainty community structure, and creates a community structure that minimizes the

expected cost of uncertainty.

4.2 Introduction

Increasingly, network science research involves real-world networks defined by the data col-

lected about them. Collection processes often involve continuous monitoring of a large number of

nodes and a vast volume of interactions resulting in massive data sets. However, such collection is

often marred by errors and mislabeling of nodes and interactions, resulting in noisy data [70],[71].

The causes of such noise can be classified into several categories of which we discussed three here.

The first one arises when the monitored relations are not directly observable, so collected data con-

tains proxy relations that only indicate probable presence of these desired ones. In the context of

social networks, an example could be a trust between two people, that usually implies frequent

Portions of this chapter have been included in: A. Mandviwalla, A. Elsisy, M.S. Attique, K. Kuzmin, C. Gaiteri, and B. K.
Szymanski, “Network Analytics Enabled by Generating a Pool of Network Variants from Noisy Data," Entropy, 25(8),
2023. https://doi.org/10.3390/e25081118, Featured paper in vol. 25, issue 8.

53

54

communication between them. Hence, repeated calls between two cell phones often are treated as

a sign of a trust between their owners, while in reality some of these calls could be made by peo-

ple different than the owners, and the calls could be strictly professional and void of any personal

interactions between the callers. Likewise, a common source of data noise in protein-protein in-

teractions (PPI) networks is the current inability of monitoring technology to observe PPI directly.

Hence, that data contains all proteins at the site of a reaction, yielding false positive interaction

between some protein pairs [72]. In covert networks, another category arises through intentional

hiding by members of their involvement and interactions by avoiding communicating within the

network using easy to trace means, such as cell phones with registered ownership [43], [73]. Such

members may also use wiretapped phones only for private communications [74]. In many net-

works with massive data collections, the third category of data noise arises because of the pres-

ence of a low but persistent rate of erroneous experimental measurements that distort the valid

results [75], [76].

The presence of noise in network data distorts the detection of the network’s edges and likely

modifies the network’s community structure. To address the challenge of finding edge and com-

munity structures in real-world network’s noisy data, the authors of [15] introduce the Bernoulli

Weighted Random Network (BWRN) generator. Given the basic parameters of a network recov-

ered from noisy data, such as the lists of nodes, weighted degrees of all nodes, communities, and

the hierarchy, the generator produces a set of networks randomly generated with the given pa-

rameters. Each network in this set is statistically equivalent to all others, but with a modified edge

structure and, consequently, also community structure. Effectively, this generator rewires networks

using a combination of the Stochastic Block Model (SBM) [31], to limit the changes to the gener-

ated network’s community structure and a hierarchical model, to preserve the network’s hierarchy

(other generative models used to create networks with communities are discussed in [77]). The ex-

tent of rewiring is controlled by the user-provided parameter, pB ∈ (0,1], that defines the variance

of the generated weights distribution. As pB approaches 1, the rewired networks become more

similar to the real network and to each other.

In this paper, we introduce the methods for finding the most likely community structure

from the noisy network data, assessing the probability that this data structure agrees with the

ground truth and estimating the level of uncertainty about the assignment of nodes to communities.

Using the BWRN method, we generate a set of r networks from the given noisy network data and

find the non-overlapping communities in each network. Then, we cluster these networks into

55

s ≤ r groups, each containing networks with the same community structure. Since the network

community structures are robust to minor edge perturbations [78], for larger r, s < r and the ratio

of size of each cluster to r approximates the probability that the corresponding structure is a ground

truth.

Entropy-based metrics were used in networks for different purposes. In [79], the authors

measure the uncertainty of nodes considered for strengthening or weakening their existing links

with their neighbors. In [80], entropy-based metric measures the vulnerability of communities

in complex networks. Similar metrics have also been used to measure the structure similarity

of nodes in complex networks, based on the node’s local structure topology [81]. Entropy metrics

have also been used to measure evolution of human communication in [82]. The authors found that

Shannon’s entropy generally decays with time when the social network stagnates with the same

members. In [83] the authors use node attributes to define the affinity of nodes to belong to the

same community and extend SBM to quantify uncertainty in the node’s community membership.

Their approach differs significantly from ours. We use the network edge structure to define the

affinity of nodes to be in the same community and we rewire edges in a network to create alternative

community structures to the one in the network being rewired.

To quantify the community structure limits of uncertainty and predictability, we introduce a

set entropy-based metrics that are adapted from human mobility entropy models proposed in [84].

We apply these metrics to the set of s community structures derived from r generated networks. The

original three metrics were introduced in [84] to quantify the limit of human mobility predictability.

The precision of localization was low, measured in square miles, as it was defined at each instance

by the area serviced by a cell tower that transferred the current call of the given user on each

trip. We make these metrics useful for our problem by mapping each node into a cell tower in

the human mobility problem, and each community with a node n into visits of this node to all

members (towers) of its communities in all community structures. We also use as a metric the

classical Shannon entropy [85] that measures the uncertainty of the outcome in a given experiment

based on the probability distribution of all possible outcomes.

In our application, the entropy-based metrics are used to measure the uncertainty present

in each community structure. The goal is to construct a community structure with the lowest

uncertainty and use it as the most likely ground truth structure for the given network data. Finally,

we present a new heuristic to create the community structure that minimizes the expected cost from

uncertainty of the data. Such structures are important in the investigation of criminal organizations,

56

and in planning disruptions of such organizations.

The rest of the paper is organized as follows. Section 4.3 describes the methodology used in

our paper. In Section 4.4.2, we present the data sets used for validation. The design of validation

and their results are presented in Section 4.4.3, and the conclusions are discussed in Section 4.5.

4.3 Methods
In this section, we present preprocessing of the noisy network data, three novel entropy-

based metrics, and a new heuristic that given a network constructs the community structure that

minimizes the expected cost arising from the noisiness of network data.

4.3.1 Noisy Network Data Preprocessing and the Shannon Entropy Metric

Given a network with a set N of nodes, denoted as {n1,n2, . . . ,n|N|}, and a set E ⊆ N×N

edges, we use the aforementioned BWRN generator to rewire the given network r times, creating a

set of r networks statistically similar to each other. Then, we use the Louvain community detection

algorithm [44] to detect non-overlapping communities in each generated network. We cluster

these networks putting in each cluster those with the same community structure (thus the same

communities), Ci, for i = 1, . . .s, where s stands for the number of created clusters. The number

of networks in a structure Ci is denoted as wi. This set of s communities structures constitutes

the feasible ground truth structures for the given noisy network data. When r tends to infinity, a

fraction fC
i = wi/r converges to the probability of structure Ci being the ground truth for the given

noisy network data.

This preprocessing is dependent on the choices of its parameters: pB, which defines the

extent of rewiring, and r that defines the number of generated networks. Clearly, the smaller pB

is, the larger r must be, since stronger rewiring requires more networks generated to create all the

feasible community structures. Since the presented method is a heuristic, to obtain the best results,

experimenting with some ranges of these parameters is recommended.

The first proposed entropy-based metric is the classic Shannon entropy computed over an

entire set of community structures by setting pC
i = fC

i . The corresponding equation is

eC
s =−

s

∑
i=1

pC
i ln pC

i (4.1)

57

It is clear from the definition that the most reliable ground truth structure is the community

structure Ci with the highest fraction fC
i .

4.3.2 Set Entropy-based Metrics

In this section, we introduce set entropy-based metrics adapted from the mobility entropy

metrics proposed in [84]. The authors use towers that serviced the calls of each user as the ap-

proximate location of the user and define three entropy measures for increasingly complex mo-

bility patterns of towers servicing the calls. The first is the random entropy, which accounts for

the number of distinct locations (towers) Vi, visited by user i. It is defined as Srand
i = log2Vi.

The second is the temporal-uncorrelated entropy, which accounts for the historical probability

pi(j) that a location j was visited by user i. It is defined as Sunc
i = −∑

Vi
j=1 pi(j) log2 pi(j).

The third and most complex entropy accounts for the frequency and order of visitations made

by each user. Let Ti = X1,X2, ...,XL denote the sequence of location at which user i was ob-

served at each consecutive hourly interval. In this case, the real entropy is used. It is defined

as Si = −∑T ′i ⊂Ti
P(T ′i) log2[P(T ′i)], where P(T ′i) is the probability of finding a particular time-

ordered subsequence T ′i in the trajectory Ti. The authors also introduce important measures of

predictability Π≤Πmax(S,V), where Πmax represents the limit of predictability for each user, It is

defined as S = H(Πmax)+ (1−Πmax)log2(V −1), where the binary entropy function H(Πmax) =

−Πmaxlog2(Π
max)− (1−Πmax)log2(1−Πmax). Maximal limits of predictability for Πrand and

Πunc were also determined and extracted from Srand and Sunc, respectively.

To apply those entropy measures designed for the human mobility model to our community

structures uncertainty model, we use the following two mappings. The first mapping, as shown

in Fig. 4.1, is for the random and temporal-uncorrelated entropy metrics. In this mapping, we

project each unique community i across the entire set of community structures in our model onto

the unique location Vi in the mobility model.

For the real entropy, S, we map, as shown in Fig. 4.2, each node ni ∈ N onto the unique

location Vi. Each community structure, Ct , is mapped onto time slot t in the mobility model. Node

ni, corresponding to the unique user i in mobility model, is mapped onto a list of members in its

community Ct . These members correspond to locations visited by user i in time slot t in mobility

model and are listed in the decreasing order of their frequency of pairings with node ni. In other

words, node ni will first list its community member n j that most frequently appears with ni in the

same communities across all r networks.

58

Figure 4.1: Mapping the node’s community structure uncertainty model onto the random
and temporal-uncorrelated entropy metrics in the human mobility model.

4.3.3 Beyond Entropy and Edges: Constructing the Community Structure Minimizing the

Cost of Uncertainty About Community Memberships

So far, we used the entropy measures to find the community structure Copt with highest prob-

ability to be a ground truth structure and therefore having the lowest entropy. Doing so we were

limited to communities found by Louvain community detection relaying on edge structure. Yet,

we want to construct a new structure that ensures the lowest expected cost arising from uncertainty

about communities of this structure. Such communities may not directly appear in any rewired

network structure. This freedom may enable this community structure to lower Shannon entropy

against the set of networks rewired from the hybrid network created by merging edge structure of

the rewired network with the lowest Shannon entropy with the community structure minimizing

the cost.

The cost of uncertainty, κ , is a function comparing two communities. In the cost minimizing

community structure construction one argument is the newly constructed k version of the candidate

59

Figure 4.2: Mapping the node’s community structure uncertainty model onto the real
entropy metric in the human mobility model.

community structure Ccan
k and one of the s already established structures Ci. Its definition is:

κ
T (Ccan

k) =
s

∑
i=1

κ(Ccan
k ,Ci), (4.2)

where κT denotes the total cost of uncertainty for a community structure against all its rewired

copies.

We define two different cost functions κ(Ccan
k ,Ci). The simple cost function, termed a

frequency-based, accounts for the average frequency of pairs of nodes appearing in all ground

truth communities. It is defined as follows:

κ f req(Ccan
k ,Ci) =

|N|

∑
j=1

(
|ccan

k, j ∪ ci, j|− |ccan
k, j ∩ ci, j|

)
fC
i . (4.3)

60

where ccan
k, j denotes the community with node n j in Ccan

k while ci, j refers to the community with

node n j in community structure i. Hence, this metric penalizes unmatched members of either

community with a unit cost, independently of the community size. We can simplify the formula by

denoting a size of two community union as u(i, j,k) = |ccan
k, j ∪ ci, j| and a difference between sizes

of a union and intersection of the two communities as d(i, j,k) =
(

u(i, j,k)−|ccan
k, j ∩ ci, j|

)
fC
i ,

yielding

κ f req(Ccan
k ,Ci) =

|N|

∑
j=1

d(i, j,k). (4.4)

The more subtle cost function, referred to as fraction-based, is defined as follows:

κ f rac(Ccan
k ,Ci) =

|N|

∑
j=1

(
1−
|ccan

k, j ∩ ci, j|
|ccan

k, j ∪ ci, j|

)
fC
i . (4.5)

Hence, this metric computes an arithmetic complement of the Jaccard similarity score [86] between

pairs of communities sharing a node in the corresponding community structures Ccan
k ,Ci. Unlike

the first one, the larger the communities are, the smaller the cost is for mismatched nodes. Again,

using d(),u() functions we can simplify the formula as follows

κ f rac(Ccan
k ,Ci) =

|N|

∑
j=1

d(i, j,k)
u(i, j,k)

, (4.6)

showing similarity between the two cost functions.

The heuristic for creating Copt starts with the initial candidate configuration Ccan,1 in which

each node n j ∈ N is a community. Let M j denote the average number of members of communities

containing node n j in all s ground truth community structures. Then, the total cost for the initial

structure Ccan,1 is −|N|+∑
|N|
j=1 M j for the frequency-based cost. Denoting mi, j the number of

members of a community containing node n j in Ci community structure, the fraction-based cost

can be expressed as |N|−∑
|N|
j=1 ∑

s
i=1

fC
i

mi, j
.

For the frequency-based cost, we first compute the weighted average frequency of all pairs of

nodes in all s feasible ground truth community structures, and denote it as fp(j1, j2). Consequently,

the change of cost from joining j1, j2 into one community is ∆κ = (1− 2 fp(j1, j2), and the cost

decreases when fp(j1, j2)> 1/2. This argument holds if we apply it to the communities ca,cb and

consider the frequency of their union ca∪ cb, motivating us to define our heuristic inductively as

follows.

61

1. Initial step 1. The initial Ccan,1 is the set of |N| communities, each containing a different

node.

2. Inductive step k, where 1 < k ≤ |N|. Having community structure with |N|+2− k commu-

nities from step k−1, we measure change of cost from merging any pair of communities in

this community structure. Then, we select the pair of communities iopt
1 , iopt

2 with the lowest

cost change ∆κ of the merge. If ∆κ ≥ 0, then the current community structure Ccan,k−1 is

the best, and we stop. Otherwise, we merge communities iopt
1 , iopt

2 creating Ccan
k structure

with one less community due to the merge, that is with |N|+ 1− k communities. Thus,

this heuristic stops in at most |N| steps, when only one community is left in the candidate

community structure.

The heuristic requires careful implementation to be efficient. We compute values of functions

d(),u() for all pairs of communities i, j, for the initial candidate community. Then, in each iterative

step only the merged community in the candidate structure needs to be recomputed. Since the sum

of sizes of all communities is at most s|N|, and for candidate communities it is exactly |N|, then

each step of the iteration has complexity of O(s|N|2) and therefore the whole algorithm is of

complexity O(s|N|3). However, we observe that s grows slowly with r as do sizes of communities

in covert networks with |N|. Thus, we can reasonably estimate that the sum of s community sizes

is O(ln(r) ln(|N|)) yielding the total complexity of heuristic as O(|N|2 ln(|N|) ln(r)).

We define here just two cost functions κ(), but there are others. For example, in covert

networks, the importance of information about the network members may be dependent on the

member ni position h in the hierarchy, nh
i . Such a cost may be defined as κhier(nh

i) = 2h−1. This

function could be used alone or with a combination with κ f req or κ f rac functions and used in aiding

decisions about interdiction of criminal organizations.

4.4 Validation
4.4.1 Synthetic Networks

We run validation on two types of synthetic networks, the first is a star network, and the

second is a complete network. For each of those networks, we created two size variants, one with

16 nodes and the other with 32 nodes, and three undirected edge variants, the first is unweighted,

the second with all edge weights set to 20, and the third with all edge weights set to 100. The goal of

using different sizes, and edge weights is to better understand the affect of size and edge weights on

62

the set of networks rewired from each synthetic network. Using the mentioned synthetic networks

will allow us to compare the results obtained to the results that we expect, which will ultimately

better our understanding of the rewiring process, and the application of the entropy-based metrics.

For each of the mentioned synthetic networks variants, we rewire r = 1000 networks, using

the BWRN generator with pB values = [0.875,0.9375,0.98], and use the Louvain community de-

tection algorithm to detect the community structures of the rewired networks. We then calculate

the Shannon entropy, and the set entropy metrics, and their corresponding predictability, on the

set of rewired networks’ community structures, as shown in Tables 4.1 and 4.2. Noted that for the

synthetic networks used, we only measure the uncorrelated-temporal entropy set metric, and its

corresponding predictability.

Table 4.1: We rewire each variant of the synthetic star network 1000 times, using the
BWRN generator with varying pB values, and we report the Shannon entropy,
and the Πunc, on the set of rewired networks’ community structures.

pB values Entropy metric 16-nodes 32-nodes

w = 1 w = 20 w = 100 w = 1 w = 20 w = 100

0.875 Shannon’s entropy 3.5214 0 0 4.5306 0 0

Πunc 31.35% 100% 100% 12.14% 100% 100%

0.9375 Shannon’s entropy 2.6769 0 0 4.1088 0 0

Πunc 44.81% 100% 100% 16.95% 100% 100%

0.98 Shannon’s entropy 1.4805 0 0 2.4203 0 0

Πunc 68.37% 100% 100% 51.51% 100% 100%

Table 4.2: We rewire each variant of the synthetic complete network 1000 times, using the
BWRN generator with varying pB values, and we report the Shannon entropy,
and the Πunc, on the set of rewired networks’ community structures.

pB values Entropy metric 16-nodes 32-nodes

w = 1 w = 20 w = 100 w = 1 w = 20 w = 100

0.875 Shannon’s entropy 4.6052 4.5636 4.5522 4.6052 4.6052 4.6052

Πunc 1.87% 2.97% 3.19% 1% 1% 1.25%

0.9375 Shannon’s entropy 4.5952 4.5583 0 4.6052 4.6052 4.5854

Πunc 1.97% 3.06% 100% 1% 1.09% 2.18%

0.98 Shannon’s entropy 4.425 0 0 4.6052 4.5564 0

Πunc 8.30% 100% 100% 1.09% 3.10% 100%

From the set of experiments conducted on the star and complete synthetic networks, we

63

draw the following conclusions. First, as expected the uncertainty of a network increases as the

the size of the network increases. Second, the more complex a network is, the more important

the weights of edges in the network become, as shown for the complete network. Increasing the

edge weights from 20 to 100 in the synthetic complete network used for rewiring helped reaching

100% predictability, as shown for the 32-node network using edge weights = 100, rather than edge

weights = 20, when using pB = 0.98. Finally, we also find that as pB increases the rewired networks

become more similar to the base network used for rewiring, and to each other, and thus the Shannon

entropy of the generated networks’ community structure decreases, and the Πunc increases. The

affect of increasing pB from 0.9375 to 0.98 is clearly observed when applied to the rewiring of the

complete network.

A third type of synthetic network that is commonly studied is the ring network which consists

of a ring of n nodes connected by one edge. For such networks, the modularity based community

detection methods such as Louvain, are unable to find the true communities of the network due to

the resolution limit problem [59],[87],[88]. Thus, when rewiring a synthetic ring network, we find

that the size, edge weights, or pB values used when rewiring the original network, have no affect

on the uncertainty or limit of predictability of the rewired networks’ community structures. The

quality of our generated networks’ community structures is limited by the accuracy of the Louvain

community detection algorithm, which as we mentioned performs badly on ring networks.

4.4.2 Real Networks

We also run validation on the Caviar and Ciel criminal networks [42], the Jakarta Bombing

terrorist network [89], and the Dolphins social network [90].

The Caviar network represents criminals that smuggled hashish and cocaine in Montreal,

Canada. The data was collected between 1994 and 1996. During this time, the law enforcement

officers only seized shipments of drugs, without making any arrests until the investigation was

completed. The Caviar network is a weighted and directed network, where edges represent wire-

tapped telephone calls between members of the network.

The Ciel network is also a drug trafficking criminal organization that smuggled hashish from

Jamaica into Montreal, Canada. Its data was collected between May 1996 to June 1997. This

network is also weighted and directed, with edges representing wiretapped telephone calls among

members of the network. Both the Caviar, and Ciel networks were created from data publicly

released from court proceedings.

64

The Jakarta Bombing terrorist network is an undirected weighted network composed of two

snapshots showing the network before and after the 2009 Jakarta bombing in Jakarta, Indonesia.

We only focus on the pre-attack snapshot as it shows a network that is denser than the post-attack

network.

The Dolphins network is a social network of bottlenose dolphins living off the shore of New

Zealand, with data collected between 1995 and 2001. This network is unweighted and undirected,

with edges representing sightings of dolphins together.

4.4.3 Results

To validate our proposed entropy-based metrics, and the heuristic for constructing the opti-

mal community structure, we use the BWRN generator with parameters pB = 0.875 and r = 1000.

We apply it to rewire all networks for which we measure the Shannon entropy and the set entropy,

since these measurements are done across the community structures of rewired networks.

Table 4.3: The lowest Shannon entropy of networks rewired from the original Caviar, Ciel,
Jakarta, and Dolphins networks for range of parameters
pB = [0.5,0.75,0.875,0.9375]. The generated networks are split into 10 subsets of
100 networks each, and the Shannon entropy is computed for the best community
in each subset. The mean and standard deviation are reported for each case with
different pB values.

pB values 0.5 0.75 0.875 0.9375

Ciel mean 4.366 4.101 3.386 2.539

σ 0.128 0.126 0.122 0.071

Caviar mean 3.640 3.246 2.727 2.169

σ 0.188 0.153 0.136 0.121

Jakarta mean 2.043 1.379 0.944 0.621

σ 0.174 0.148 0.060 0.039

Dolphins mean 6.908 6.908 6.906 6.884

σ 0 0 0.003 0.001

4.4.3.1 Finding the Lowest Shannon Entropy Network

The rewiring of the Caviar, Ciel, Jakarta, and Dolphins networks using the BWRN generator,

results in generated networks with varying edges and community structures. Our goal is to find

iteratively the rewired network that results in the lowest Shannon entropy when further rewired.

We start by setting the original network as gopt for the first step. Then, in the iterative step, we

65

take gopt found in the previous step and rewire it r times. From the set of rewired networks, we

select the community structure Copt with the highest fraction, fC
i , of rewired networks sharing

it, and mark the set of rewired networks with this community structure as candidates. Using the

BWRN generator, we rewire every candidate network r times, and mark the candidate network

that results in the set of rewired networks with the lowest Shannon entropy as the new gopt . We

repeat this process until the lowest Shannon entropy among community structure of the newly

rewired networks stops decreasing. Once this happens, we repeat the process one more time, and

if the set of newly rewired networks have a Shannon entropy that is once again decreasing, then we

continue rewiring until we once again yield the minimum achieved Shannon entropy, otherwise we

stop. What we find is that in most cases the Shannon entropy of the networks rewired from gopt ,

tends to be lower than that of the networks rewired from the original network.

To validate our methods, we measure the uncertainty present across the community struc-

tures of all the rewired networks using the Shannon entropy and the set entropy-based metrics

at each step of aforementioned iteration. We find that over the first few rounds of rewiring, the

Shannon entropy and the set entropy are constantly decreasing, until they reach a minimum value.

Once this happens further rewiring would cause the Shannon entropy and set entropy to increase.

Interestingly, further rewiring of the resulting networks with an increased entropy creates networks

that bring back previously observed minimum values of the Shannon entropy and set entropy.

The presence of many candidate networks to rewire in the set of networks rewired from the

gopt network indicates that gopt has low uncertainty. With the large repetition parameter r, rewiring

all candidates can be computationally prohibitive. Fortunately, we found a heuristic that chooses

the network with the largest modularity and performs well as shown in Fig. 4.3.

Fig. 4.4, shows the set entropy of the networks generated from the best candidate network

gopt , presented in Fig. 4.3. After every step of rewiring, we measure Srand
i , Sunc

i , and Si, and

their corresponding limits of predictability Πrand , Πunc, and Πmax over the set of rewired net-

works’ community structures. Sunc
i , and its corresponding limit of predictability Πunc, are the most

important measures for this study, as they truly measure the node’s structure uncertainty. The

temporal-uncorrelated entropy considers the number of unique communities to which the node be-

longs among all r rewired networks, and the node’s frequency of appearance in such communities.

Fig. 4.4, shows that Πunc increases as the corresponding Shannon entropy decreases. The Πrand ,

and Πmax are presented for completeness.

66

Figure 4.3: A plot of the number of iterations leading to the minimum Shannon entropy for
Caviar, Ciel, Jakarta, and Dolphins networks. For the Caviar network we show
the results of rewiring using the brute force method, and the heuristic using the
largest modularity candidate network. For all the remaining networks, we use
the heuristic method.

4.4.3.2 Convergence of Shannon’s Entropy With Extended Rewiring

We hypothesize that through further rewiring, the Shannon’s entropy will eventually con-

verge to the minimum observed Shannon entropy, as reported in Fig. 4.3. To test our hypothesis,

we extend the rewiring steps of the Jakarta, and Ciel networks, as they required the minimum

number of rewiring steps for the reoccurrence of the minimum Shannon entropy, and thus should

converge to the minimum Shannon entropy in the least number of rewiring steps.

In Fig. 4.5 we show the results of the extended rewiring, and confirm our hypothesis. For

the Jakarta, and Ciel networks, as we extended the number of rewiring steps, we observed that the

Shannon entropy of the rewired networks’ community structures starts converging to the minimum

Shannon entropy. For more complex networks, such as the Caviar and Jakarta networks, we expect

the same trend of convergence to occur, but it may require many more steps of rewiring.

67

Figure 4.4: During the iterative rewiring of the original Caviar, Ciel, Jakarta, and Dolphins
networks presented in Fig. 4.3, we measure the set entropy and the limit of
predictability of the set of rewired networks’ community structures. The three
entropy measures used are Srand

i , Sunc
i , and Si, and we extract from them their

corresponding limits of predictability Πrand , Πunc, and Πmax. The results for Πunc

are presented in the main figure, and the results for Πrand and Πmax are
presented in insets a and b respectively. We find that as the Shannon entropy of
Copt decreases, so does the set entropy of the rewired networks’s community
structures, and thus the corresponding limit of predictability increases.

4.4.3.3 Using the Fraction-based and Frequency-based Constructed Communities to Lower

Shannon Entropy

Since the cost-based constructed communities are not limited to those discovered by Louvain

algorithm in rewired networks, they can generate a set of rewired networks that have a lower Shan-

non entropy than the minimum Shannon entropy obtained through the repeated rewiring shown

in Fig. 4.3. We found that using the community structure created by the heuristic with fraction-

based cost outperforms such a structure created with frequency-based cost in this role. To validate

this insight, let Ropt stands for the first rewiring step that results in the network gopt yielding the

minimum Shannon entropy. We denote C f rac the community created by heuristic with κ f rac cost

function applied to the set of community structures created by the rewiring step Ropt .

We find that replacing gopt with the hybrid network with edge structure of gopt and com-

68

Figure 4.5: We extend the rewiring steps for the Ciel, and Jakarta networks and find that as
we hypothesized, the Shannon’s entropy of the generated networks’ community
structures converges as we further extend the rewiring steps.

munity structure C f rac for rewiring decreases the Shannon entropy and, accordingly, increases the

limits of predictability Πunc and Πmax. Table 4.4 shows the results.

To see how minimizing uncertainty and its costs affects the network community and edge

structures, we compare these structures to those in the original Ciel, Jakarta, and Dolphins net-

works. For the three networks, the fractions of edges present in both gopt and in gorg ranged from

0.72 to 0.93, while the remaining edges were changed through rewiring. Comparing the commu-

nity structures C f rac and Corg, we found that the fractions of nodes maintaining their community

memberships ranged from 0.83 to 0.95 and the remaining nodes either created their own new

communities, or changed their memberships to already established communities. Comparing the

community structures of C f rac and Copt , we find that the fractions of the nodes maintaining their

community memberships ranged from 0.91 to 0.96, while the remaining nodes created their own

new community in Copt . In conclusion, more flexibility in creating communities enables cost-

based heuristic to increase changes in its community structure and decrease both the uncertainty

and its cost.

69

Table 4.4: Let gopt denote such network with community structure Copt , which when
rewired gopt yields the set of community structures against which gopt achieves
the minimum Shannon entropy. Using the BWRN generator, we further rewire a
hybrid networks that has gopt edge structure but C f rac community structure and
find that this networks lowers the minimum Shannon entropy and accordingly
increases Πunc and Πmax limits of predictability. For the Caviar network, the
C f rac, and Copt had identical community structures, and thus the Caviar results
are omitted here. For comparison, we also measure the uncertainty of the set of
networks rewired using the original network, and its corresponding community
structure, denoted as Corg. Finally, we report the fraction-based cost for each of
the mentioned community structures relative to their sets of rewired networks’
community structures.

Network Community
structure

Frac
cost

Freq
cost

Shannon
entropy Πunc

Ciel
Corg 659.23 9964 4.07 53.49%

Copt 231.34 2072 2.23 76.58%
C f rac 206.13 1886 2.12 79.63%

Jakarta
Corg 100.19 944 0.91 91.32%

Copt 25.0 242 0.50 95.64%
C f rac 22.7 227 0.42 96.18%

Dolphins
Corg 4573.84 57448 6.90 27.16%

Copt 1498.09 23864 5.95 67.56%
C f rac 1027.95 15954 5.79 68.12%

4.5 Conclusions
The main contributions of this paper are as follows.

We introduce entropy measures of network community structure and use them to establish

limits of such structure’s uncertainty. This enables us to search for the network gopt with com-

munity structure with the lowest uncertainty against the network structures rewired from gopt . We

find such network by iteratively rewiring a network with the smallest Shannon entropy among all

rewired networks. We stop this iteration when the current step returns higher uncertainty than the

previous one did.

Despite the high theoretical value of low uncertainty, in applications, even more important

is its costs, as it can vary widely depending on which nodes are assigned to different communities

than predicted. To address this challenge, we introduce a novel heuristic that constructs a commu-

nity structure with the minimal expected cost from uncertainty of community memberships. The

cost function can be predefined or provided by the users based on the application. We show three

70

examples of such functions.

Finally, we develop a methodology that starts with noisy network data and constructs com-

munities and edges that minimize the expected cost arising from data uncertainty.

In future work, we plan to extend the methodology to other domains, in which networks are

created from noise data.

CHAPTER 5
CONTRIBUTION

In Chapter 2, we study the crime rates in 77 community areas in the city of Chicago, with data

collected over 16 consecutive years. We develop a predictive algorithm that makes use of both

the census and crime data collected for each community area. Through the usage of the null

hypothesis test to identify the features that are of importance for the predictive algorithm, we find

that the most significant features for the predictive algorithm are crime related features, and that the

census data was not of much importance. We also run a crime reduction simulation that shows us

the impact of deploying additional crime reduction funding to the community areas, and how such

deployment can impact the overall city wide crime rates. What we found is that the deployment of

such crime reduction funding in different community areas may result in different city wide crime

reduction. Thus, we conclude that some community areas are more influential than others, and that

before deploying any crime reduction funding each community area must be carefully analyzed to

successfully choose the most influential community area to deploy such funding.

In Chapter 3, we first study the application of social search on a real world network, and

study the manipulation of such network can impact the accuracy and efficiency of the social search.

Then, we describe the design of a synthetic network generator that creates synthetic networks that

are statistically similar to a real-world network. Starting with the social search, we study the

Gowalla social network, and we emulate Milgram’s social search experiment on this network.

We then manipulated the network in several different ways to see how the social search will be

impacted. First, we tried different node distributions, by reassigning the location of each user in the

network, while maintaining the friendship edges of each user. We found that node displacements

had almost no impact on the accuracy and efficiency of the social search. Then we tried different

friendship distributions and we found that the actual friendships do not matter, as long as the

friendship distribution preserves the degree, and range of the friendships present in the original

network. Finally, we introduce the notion of friends of friends, to which we refer to as i-friends.

We allow each user to know a maximum of κ (which defines the maximum number of i-friends

that a node can know) i-friends for each of their direct friends, and we found that the knowledge

of i-friends greatly improves the social search efficiency and accuracy. We conclude that certain

friendships distributions will break the properties of the network, and thus negatively impact the

social search, and that the knowledge of i-friends drastically improves the social search efficiency

71

72

and success rate. In the second part of Chapter 3, we introduce a Bernoulli Weighted Random

Network (BWRN) generator, that uses two models for creating synthetic networks. The BWRN

uses the Stochastic Block Model for preserving the community structure of the network, and a

hierarchical model for preserving the network’s hierarchy. The generator models weighted edges

in the synthetic networks using a set of Bernoulli trials. We conclude that accounting for both the

community structure and the management hierarchy is essential for generating synthetic networks

that are statistically similar to the original real network.

In Chapter 4 we use the synthetic networks generated from a real network using the BWRN

generator. We introduce entropy-based metrics to assess the probability that a given community

structure is the ground truth community structure. Using the Shannon entropy and set entropy-

based metrics, we were able to identify the network with the lowest community structure uncer-

tainty. We also introduced two heuristics for creating community structures, using the entire set of

BWRN generated networks’ community structures, and found that using such community struc-

tures in place of the ground truth community structures, results in a set of rewired networks with

decreasing uncertainty, and an increasing level of predictability.

REFERENCES

[1] X. Niu, A. Elsisy, N. Derzsy, and B. K. Szymanski, “Dynamics of crime activities in the
network of city community areas,” Appl. Netw. Sci., vol. 4, no. 1, p. 127, Dec. 2019.

[2] B. A. Furtado, P. A. Sakowski, and M. H. Tóvolli, “Modeling complex systems for public
policies,” Jul. 2015.

[3] E. Griffiths and J. M. Chavez, “Communities, street guns and homicide trajectories in
chicago, 1980–1995: merging methods for examining homicide trends across space and
time,” Criminology, vol. 42, no. 4, pp. 941–978, Mar. 2006.

[4] S. Guarino-Ghezzi and A. J. Treviño, Understanding Crime: A Multidisciplinary Approach.
Oxfordshire, U.K.: Routledge, 2010.

[5] M. R. D’Orsogna and M. Perc, “Statistical physics of crime: A review,” Phys. life Rev.,
vol. 12, no. 1, pp. 1–21, Mar. 2015.

[6] L. Anselin, J. Cohen, D. Cook, W. Gorr, and G. Tita, “Spatial analyses of crime,” Criminal
Justice, vol. 4, no. 2, pp. 213–262, Mar. 2000.

[7] L. Backstrom, E. Sun, and C. Marlow, “Find me if you can: improving geographical
prediction with social and spatial proximity,” in Proc. 19th Int. Conf. World wide web, 2010,
pp. 61–70.

[8] M. B. Gordon, “A random walk in the literature on criminality: A partial and critical view on
some statistical analyses and modelling approaches,” Eur. J. Appl. Math., vol. 21, no. 4-5,
pp. 283–306, Apr. 2010.

[9] A. T. Murray and T. H. Grubesic, “Exploring spatial patterns of crime using non-hierarchical
cluster analysis,” in Crime Model and Mapping Using Geospatial Technologies. New
York, NY, USA: Springer, 2013, pp. 105–124.

[10] A. M. Zeoli, J. M. Pizarro, S. C. Grady, and C. Melde, “Homicide as infectious disease:
Using public health methods to investigate the diffusion of homicide,” Justice Quart.,
vol. 31, no. 3, pp. 609–632, Oct. 2012.

[11] M. Misyrlis, C. M. Cheung, A. Srivastava, R. Kannan, and V. Prasanna, “Spatio-temporal
modeling of criminal activity,” in Proc. 2nd Int. Workshop Soc. Sensing, 2017, pp. 3–8.

[12] E. K. Weisburst, “Safety in police numbers: Evidence of police effectiveness from federal
cops grant applications,” Amer. Law and Econ. Rev., vol. 21, no. 1, pp. 81–109, Nov. 2018.

[13] S. Mello, “More cops, less crime,” J. Public Econ., vol. 172, no. 1, pp. 174–200, Apr. 2019.

[14] A. Elsisy, B. K. Szymanski, J. A. Plum, M. Qi, and A. Pentland, “A partial knowledge of
friends of friends speeds social search,” PLoS One, vol. 16, no. 8, Aug. 2021, art. no.
e0255982.

73

74

[15] A. Elsisy, A. Mandviwalla, B. K. Szymanski, and T. Sharkey, “A network generator for
covert network structures,” Inf. Sci., vol. 584, no. 1, pp. 387–398, Nov. 2021.

[16] S. Milgram, “The small world problem.” Psychol. Today, vol. 2, no. 1, pp. 60–67, May.
1967.

[17] J. Travers and S. Milgram, “An experimental study of the small world problem.” Sociometry,
vol. 32, no. 4, pp. 425–443, Dec. 1969.

[18] C. Korte and S. Milgram, “Acquaintance networks between racial groups: Application of the
small world method.” J. Personality and Soc. Psychol., vol. 15, no. 2, p. 101, Jun. 1970.

[19] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna, “Four degrees of separation.” in
Proc. 4th Annu. ACM Web Sci. Conf., 2012, pp. 33–42.

[20] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong, “Analysis of topological
characteristics of huge online social networking services.” in Proc. 16th Int. Conf. World
Wide Web, 2007, pp. 835–844.

[21] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network or a news
media?” in Proc. 19th Int. Conf. World wide Web, 2010, pp. 591–600.

[22] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, “Measurement
and analysis of online social networks.” in Proc. 7th ACM SIGCOMM Conf. Internet Meas.,
2007, pp. 29–42.

[23] T. Nguyen, M. Chen, and B. K. Szymanski, “Analyzing the proximity and interactions of
friends in communities in Gowalla.” in 2013 IEEE 13th Int. Conf. Data Mining Workshops,
2013, pp. 1036–1044.

[24] D. Laniado, Y. Volkovich, S. Scellato, C. Mascolo, and A. Kaltenbrunner, “The impact of
geographic distance on online social interactions,” Inf. Systems Frontiers, vol. 20, no. 6, pp.
1203–1218, Aug. 2018.

[25] P. Erdös and A. Rényi, “On random graphs. I,” Publ. Math., vol. 6, no. 4, pp. 290–297, Dec.
1959.

[26] B. L. Welch, “The generalization of student’s’ problem when several different population
variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28–35, Jan. 1947.

[27] T. Nguyen and B. K. Szymanski, “Using location-based social networks to validate human
mobility and relationships models.” in Adv. in Soc. Netw. Anal. and Mining (ASONAM),
2012 IEEE/ACM Int. Conf., 2012, pp. 1215–1221.

[28] J. Xie and B. K. Szymanski, “Labelrank: A stabilized label propagation algorithm for
community detection in networks,” in 2013 IEEE 2nd Netw. Sci. Workshop (NSW), 2013, pp.
138–143.

75

[29] A.-L. Barabási, R. Albert, and H. Jeong, “Scale-free characteristics of random networks: the
topology of the world-wide web,” Physica A: Statist. Mech. and its Appl., vol. 281, no. 1-4,
pp. 69–77, Jun. 2000.

[30] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Sci., vol. 286,
no. 5439, pp. 509–512, Oct. 1999.

[31] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First steps,” Soc.
Netw., vol. 5, no. 2, pp. 109–137, Jun. 1983.

[32] B. Karrer and M. E. Newman, “Stochastic blockmodels and community structure in
networks,” Phys. Rev. E, vol. 83, no. 1, Jan. 2011, art. no. 016107.

[33] M. E. Newman, “Equivalence between modularity optimization and maximum likelihood
methods for community detection,” Phys. Rev. E, vol. 94, no. 6, Nov. 2016, art. no. 052315.

[34] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing community
detection algorithms,” Phys. Rev. E, vol. 78, no. 4, Oct. 2008, art. no. 046110.

[35] J. Xiao, H.-F. Ren, and X.-K. Xu, “Constructing real-life benchmarks for community
detection by rewiring edges,” Complexity, vol. 2020, Apr. 2020.

[36] E. Ravasz and A. L. Barabási, “Hierarchical organization in complex networks,” Phys. Rev.
E, vol. 67, no. 2, Feb. 2003, art. no. 026112.

[37] K. He, Y. Li, S. Soundarajan, and J. E. Hopcroft, “Hidden community detection in social
networks,” Inf. Sci., vol. 425, pp. 92–106, Jan. 2018.

[38] K.-k. Shang, B. Yang, J. M. Moore, Q. Ji, and M. Small, “Growing networks with
communities: A distributive link model,” Chaos, vol. 30, no. 4, Apr. 2020, art. no. 041101.

[39] W. Guo and S. B. Kraines, “A random network generator with finely tunable clustering
coefficient for small-world social networks,” in 2009 Int. Conf. Comput. Aspects Soc. Netw.,
2009, pp. 10–17.

[40] X. Lu, E. Bulut, and B. Szymanski, “Towards limited scale-free topology with dynamic peer
participation,” Comput. Netw., vol. 106, no. 1, pp. 109–121, Sep. 2016.

[41] O. Benyahia, C. Largeron, B. Jeudy, and O. R. Zaı̈ane, “Dancer: Dynamic attributed
network with community structure generator,” in Joint Eur. Conf. Mach. Learn. and Knowl.
Discovery in Databases, 2016, pp. 41–44.

[42] C. Morselli, Inside Criminal Networks. vol. 8, New York, NY, USA: Springer, 2009.

[43] A. Bahulkar, B. K. Szymanski, N. O. Baycik, and T. C. Sharkey, “Community detection
with edge augmentation in criminal networks,” in 2018 IEEE/ACM Int. Conf. Adv. in Soc.
Netw. Anal. and Mining (ASONAM), 2018, pp. 1168–1175.

76

[44] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of
communities in large networks,” J. Stat. Mech.: Theory Exp., vol. 2008, no. 10, Oct. 2008,
art. no. P10008.

[45] S. K. R. Unnithan, B. Kannan, and M. Jathavedan, “Betweenness centrality in some classes
of graphs,” Int. J. Combinatorics, vol. 2014, no. 1, Mar. 2014, art. no. 241723.

[46] G. Berlusconi, “Do all the pieces matter? assessing the reliability of law enforcement data
sources for the network analysis of wire taps,” Glob. Crime, vol. 14, no. 1, pp. 61–81, Dec.
2013.

[47] D. B. Skillicorn, Q. Zheng, and C. Morselli, “Spectral embedding for dynamic social
networks,” in Proc. 2013 IEEE/ACM Int. Conf. Adv. in Soc. Netw. Anal. and Mining, 2013,
pp. 316–323.

[48] Y.-B. Zhou, S.-M. Cai, W.-X. Wang, and P.-L. Zhou, “Age-based model for weighted
network with general assortative mixing,” Physica A: Statist. Mech. and its Appl., vol. 388,
no. 6, pp. 999–1006, Mar. 2009.

[49] G. Wen, Z. Duan, G. Chen, and X. Geng, “A weighted local-world evolving network model
with aging nodes,” Physica A: Statist. Mech. and its Appl., vol. 390, no. 21-22, pp.
4012–4026, Oct. 2011.

[50] B. Hu, X.-Y. Jiang, J.-F. Ding, Y.-B. Xie, and B.-H. Wang, “A weighted network model for
interpersonal relationship evolution,” Physica A: Statist. Mech. and its Appl., vol. 353, no. 1,
pp. 576–594, Aug. 2005.

[51] D. Shanafelt, K. Salau, and J. Baggio, “Do-it-yourself networks: a novel method of
generating weighted networks,” Royal Soc. Open Sci., vol. 4, no. 11, Nov. 2017.

[52] P. Li, J. Yu, J. Liu, D. Zhou, and B. Cao, “Generating weighted social networks using
multigraph,” Physica A: Statist. Mech. and its Appl., vol. 539, Feb. 2020, art. no. 122894.

[53] M. C. Davis, Z. Ma, W. Liu, P. Miller, R. Hunter, and F. Kee, “Generating realistic labelled,
weighted random graphs,” Algorithms, vol. 8, no. 4, pp. 1143–1174, Dec. 2015.

[54] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486, no. 3, pp. 75–174, Feb.
2010.

[55] D. Garlaschelli, “The weighted random graph model,” New J. Phys., vol. 11, no. 7, Jul.
2009, art. no. 073005.

[56] W. Feller, An Introduction to Probability Theory and Its Applications, 3rd ed. New York,
NY, USA: Willey, 1968.

[57] C. Gaiteri, M. Chen, B. Szymanski, K. Kuzmin, J. Xie, C. Lee, T. Blanche,
E. Chaibub Neto, S.-C. Huang, T. Grabowski, T. Madhyastha, and V. Komashko,
“Identifying robust communities and multi-community nodes by combining top-down and
bottom-up approaches to clustering,” Sci. Rep., vol. 5, no. 1, Nov. 2015.

77

[58] A. Lancichinetti, S. Fortunato, and J. Kertész, “Detecting the overlapping and hierarchical
community structure in complex networks,” New J. Phys., vol. 11, no. 3, Mar. 2009, art. no.
033015.

[59] V. Traag, P. Van Dooren, and Y. Nesterov, “Narrow scope for resolution-limit-free
community detection,” Phys. Rev. E, vol. 84, no. 1, Jul. 2011, art. no. 016114.

[60] M. Chen, K. Kuzmin, and B. Szymanski, “Community detection via maximization of
modularity and its variants,” IEEE Trans. Comput. Soc. Sys., vol. 1, no. 1, pp. 46–65, Mar.
2014.

[61] X. Lu, K. Kuzmin, M. Chen, and S. B.K., “Adaptive modularity maximization via edge
weighting scheme,” Inf. Sci., vol. 424, no. 1, pp. 55–68, Jan. 2018.

[62] A. Clauset, M. Newman, and C. Moore, “Finding community structure in very large
networks,” Phys. Rev. E, vol. 70, no. 6, Dec. 2004, art. no. 066111.

[63] S. Rajeh, M. Savonnet, E. Leclercq, and H. Cherifi, “Interplay between hierarchy and
centrality in complex networks,” IEEE Access, vol. 8, no. 1, pp. 129 717–129 742, Jul. 2020.

[64] B. Davison, “Management span of control: how wide is too wide?” J. Bus. Strategy, Aug.
2003.

[65] T. E. Oliphant, A guide to NumPy. vol. 1, New York, NY, USA: Trelgol Publishing, 2006.

[66] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing community structure
identification,” J. Stat. Mech.: Theory Exp., vol. 2005, no. 9, Sep. 2005, art. no. P09008.

[67] M. J. Zaki and W. J. Meira, Data Mining and Machine Learning: Fundamental Concepts
and Algorithms, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2020.

[68] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social networks,” J.
Assoc. Inf. Sci. Technol., vol. 58, no. 7, pp. 1019–1031, Mar. 2007.

[69] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, “Microscopic evolution of social
networks,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl. discovery and data mining, 2008,
pp. 462–470.

[70] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Analyzing communities and their
evolutions in dynamic social networks,” ACM Trans. Knowl. Discovery From Data (TKDD),
vol. 3, no. 2, pp. 1–31, Apr. 2009.

[71] M. Coscia and F. M. Neffke, “Network backboning with noisy data,” in 2017 IEEE 33rd Int.
Conf. on Data Eng. (ICDE), 2017, pp. 425–436.

[72] R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, S. Chung, A. Emili, M. Snyder,
J. F. Greenblatt, and M. Gerstein, “A bayesian networks approach for predicting
protein-protein interactions from genomic data,” Sci., vol. 302, no. 5644, pp. 449–453, Oct.
2003.

78

[73] F. Calderoni, D. Brunetto, and C. Piccardi, “Communities in criminal networks: A case
study,” Soc. Netw., vol. 48, no. 1, pp. 116–125, Jan. 2017.

[74] L. Cavallaro, A. Ficara, P. De Meo, G. Fiumara, S. Catanese, O. Bagdasar, W. Song, and
A. Liotta, “Disrupting resilient criminal networks through data analysis: The case of sicilian
mafia,” PLoS One, vol. 15, no. 8, Aug. 2020, art. no. e0236476.

[75] L. Skrabanek, H. K. Saini, G. D. Bader, and A. J. Enright, “Computational prediction of
protein–protein interactions,” Mol. Biotechnology, vol. 38, no. 1, pp. 1–17, Aug. 2008.

[76] N. Bhardwaj and H. Lu, “Correlation between gene expression profiles and protein–protein
interactions within and across genomes,” Bioinf., vol. 21, no. 11, pp. 2730–2738, Mar. 2005.

[77] H. Cherifi, G. Palla, B. K. Szymanski, and X. Lu, “On community structure in complex
networks: challenges and opportunities,” Appl. Netw. Sci., vol. 4, no. 117, pp. 1–35, Dec.
2019.

[78] B. Karrer, E. Levina, and M. E. Newman, “Robustness of community structure in networks,”
Phys. Rev. E, vol. 77, no. 4, Apr. 2008, art. no. 046119.

[79] L. Yin and Y. Deng, “Toward uncertainty of weighted networks: An entropy-based model,”
Physica A: Statist. Mech. and its Appl., vol. 508, no. 1, pp. 176–186, Oct. 2018.

[80] T. Wen and Y. Deng, “The vulnerability of communities in complex networks: An entropy
approach,” Rel. Eng. & Syst. Saf., vol. 196, no. 1, Apr. 2020, art. no. 106782.

[81] Q. Zhang, M. Li, and Y. Deng, “Measure the structure similarity of nodes in complex
networks based on relative entropy,” Physica A: Statist. Mech. and its Appl., vol. 491, no. 1,
pp. 749–763, Feb. 2018.

[82] M. Kulisiewicz, P. Kazienko, B. K. Szymanski, and R. Michalski, “Entropy measures of
human communication dynamics,” Sci. Rep., vol. 8, no. 1, pp. 1–8, Oct. 2018.

[83] S. Legramanti, T. Rigon, D. Durante, and D. B. Dunson, “Extended stochastic block models
with application to criminal networks,” arXiv preprint arXiv:2007.08569, Jan. 2020.

[84] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability in human
mobility,” Sci., vol. 327, no. 5968, pp. 1018–1021, Feb. 2010.

[85] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE Mobile
Comput. and Commun. Rev., vol. 5, no. 1, pp. 3–55, Jul. 2001.

[86] P. Jaccard, “The distribution of the flora in the alpine zone. 1,” New Phytologist, vol. 11,
no. 2, pp. 37–50, Feb. 1912.

[87] A. Khadivi, A. A. Rad, and M. Hasler, “Network community-detection enhancement by
proper weighting,” Phys. Rev. E, vol. 83, no. 4, Apr. 2011, art. no. 046104.

[88] B. H. Good, Y.-A. De Montjoye, and A. Clauset, “Performance of modularity maximization
in practical contexts,” Phys. Rev. E, vol. 81, no. 4, Apr. 2010, art. no. 046106.

79

[89] S. F. Everton, Disrupting Dark Networks. no. 34, Cambridge, U.K.: Cambridge Univ.
Press, 2012.

[90] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, “The
bottlenose dolphin community of doubtful sound features a large proportion of long-lasting
associations,” Behav. Ecology and Sociobiology, vol. 54, no. 4, pp. 396–405, Jun. 2003.

