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ABSTRACT

In this thesis I discuss the model from the paper ”Polarization and Tipping Points”

which I coauthored [1]. I go into depth about the decisioning and reasoning behind

multiple features of the model and discuss possible future improvements and poten-

tial future research. During this, I highlight some of my own specific contributions

to the model and paper. In addition to giving background to the model we used to

analyze political polarization, I give a background in the current academic literature

surrounding political polarization as a whole.
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1. INTRODUCTION

Why political polarization? Political polarization is a complex phenomenon that

is not easy to define mathematically [2], but can be abstractly described as the

political opinions of a collection of individuals becoming more divided. Not only is

political polarization an intrinsically interesting phenomenon, but it additionally has

a large effect on the efficiency and stability of a nation [3][4]. Moreover, political

polarization is on the rise. Many Americans feel as though political polarization

has been increasing recently [5], and studies that analyze the voting patters of

congress also provide empirical evidence for a growth in political polarization [6][7].

Building up an understanding of the processes governing political polarization will

hopefully allow future generations to prevent and reverse trends of growing political

polarization. This may become increasingly important if current trends continue.

While the abstract concept of political polarization may seem relatively sim-

ple, there is a lot of nuance in the subject. As discussed below, polarization may

be measured by a multitude of definitions and formulas, and some of these mea-

surements and definitions may in fact be contradictory [2]. Additionally, there are

a number of potentially surprising effects of political polarization. For example,

in the United States of America a persons opinion on abortion has a statistically

significant correlation with their music tastes. Why? Music and abortion, as far as

I know, have no relationship to one another. This interesting phenomenon comes

from the fact that as individuals polarize politically they often take up the arbitrary

and orthogonal cultural practices of their political allies [8].

Political polarization is, by its very definition, a phenomenon derived by the

interaction and relationship between multiple individuals. This can be used to

produce a network, with nodes acting as representations of said individuals and the

links between those nodes representing the relationship and interactions between

those individuals. This is the impetus behind our research. We ask: can we use

network science to understand and model political polarization and the dynamics

that influence it? Additionally, we want to answer questions about the nature of

1
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polarization itself. Specifically, many networks have the notion of some kind of

tipping point where a small change in one feature creates a massive change in a

different feature[9][10]. Our lab group wanted to investigate tipping points in the

context of political polarization, and to see if small changes to model parameters

could generate large changes in the polarization of the model. To answer these

questions we created an agent based model, which I will describe in greater detail

later on in this thesis.



2. A REVIEW OF THE LITERATURE

As computer scientists, it is important to have an understanding of the domain

where you are conducting research. While some of my coauthors, including B.K.

Szymanski and especially M. W. Macy, had done previous research in this domain,

I am a novice in this field of research. As such, I was tasked with reading literature

and previous work done in the field. What follows is an overview and summary of

said literature.

While Americans feel that polarization is increasing, in what ways this is hap-

pening is often contentious [5]. This is not surprising; polarization is a complex

topic and can be mathematically defined in many ways [2]. In Understanding Po-

larization: Meanings, Measures, and Model Evaluation Bramson et al. discuss this.

Mathematically defining polarization and understanding said definition is a crucial

prerequisite for its analysis. Bramson et al. lay out nine different overall definitions

for polarization, and they note that these definitions are not exhaustive. Addition-

ally, Bramson et al. demonstrate that systems can be considered highly polarized

under one definition and not be polarized at all under another definition. The nine

definitions laid out by Bramson et al. are as follows:

1. Spread: The range of opinions or the difference between the quantification of

the ”maximum” and ”minimum” opinions.

2. Dispersion: The variance of opinions (although any measurement of variation

can be used)

3. Coverage: A measure of how much of the opinion-space is covered (and thus

a measure of how concentrated opinions are in the covered area)

4. Regionalization: The length of contiguous empty spaces. Thus, if a system

has groups of individuals spaced out across the opinion-space it will be less

polarized than a system with equal coverage but all of the empty space existing

in a single gap within the center of the opinion-space

3
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5. Community Fracturing: The measurement of how many groups the population

can be divided into.

6. Distinctness: The measurement of how distinct and separable groups are

7. Group Divergence: The measure of how far the centers of groups are from one

another

8. Group Consensus: The variance of opinions within groups

9. Size Parity: The relative sizes of groups to one another

While these definitions may give similar classifications of polarization at times,

they also can give conflicting classifications. Take a population of one hundred

opinionated agents that can be divided into groups. In one scenario the population

is evenly divided into two groups of fifty, and in another there is a group of fifty

agents, and twenty five groups of two agents, for a total of twenty six groups. By

definition found in size parity, the first group is more polarized than the second;

however, the notion of community fracturing tells us that the second is far more

polarized. This, as Bramson et al. state, is one of the reasons why it is crucial for a

paper to define the measurement of polarization that it is using. These definitions

can also be useful when discussing other papers and comparing their methods, but

again, this list is not comprehensive [2].

After providing a background in measuring polarization Bramson et al. de-

scribe three families of models used to analyze political polarization. They catego-

rize the families as the Axelrod Family of models, Bounded Confidence and Relative

Agreement Models, and Structural Balance Models. Each of these families derives

from a common source or theme, but can internally vary greatly.

The Axelrod Family of models derive from the seminal paper The Dissemina-

tion of Culture: A Model with Local Convergence and Global Polarization Written

by Axelrod in 1997 [11]. All of these models rely on agents which interact with and

are modified by their neighbors. In his paper, Axelrod demonstrates that complex

social phenomena can be modeled by computers using simple rules. Axelrod divides

a grid into many squares with randomized values of ”culture” effectively a string of
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integer values. These squares are agents which can interact with their neighbors,

changing a value of their culture to that of their neighbor’s. Importantly, the chance

of a square interacting with its neighbor is based on the number of shared cultural

values at the beginning of an iteration. At the end of a simulation there are cultural

regions that internally have identical cultural values, and whose agents share no val-

ues with neighbors not in the region. Thus, no updates are possible as interactions

are impossible outside the region, and interactions within the region are meaningless

(as both agents by definition have identical cultural values)[11]. Axelrod considers

the number of distinct regions that exist once the simulation has come to an end to

be the value of polarization. This, as mentioned by Bramson et al., is a measure of

community fracturing [2].

Klemm et al. has written a number of papers [12][13][14][15] which analyze

the Size Parity of the Axelrod model using a measure called ”Giant Size Ratio”

which is bounded between zero and one. A Giant Size Ratio of one represents a

monoculture. Additionally, Klemm et al. note that the range of cultural traits

needed for the model to produce an intermediate Giant Size Ratio is rather small,

and call this center of this range q*. This value, q*, is also referred to in the literature

as the Klemm threshold [2]. In Homophily, Cultural Drift, and the Co-Evolution of

Cultural Groups, Centola et al. present a model of the Axelrod family that uses a

threshold comparable to the Klemm threshold [2][16]. Additionally, Centola et al. do

not allow agents to interact after they become totally culturally orthogonal, even if

the two agents become more similar later in the simulation. [2][16]. Flache and Macy

give another model which can be grouped within the Axelrod family in the paper

Local Convergence and Global Diversity: The Robustness of Cultural Homophily

[17]. Unlike previous models, which only care if cultural values are identical, Flache

and Macy allow traits to have some level of intermediate similarity. If agents A, B,

and C have a cultural trait with values 1, 2, and 5 respectively, the original Axelrod

model will say that the cultural similarity of A and B and A and C are identical: 0

for both AB and AC; however, the Flache and Macy model will see agents A and

B as more similar than A and C. These three extensions are more concerned with a

sense of size parity than the original Axelrod model [2][17].
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Bounded Confidence and Relative Agreement Models are based around agents

that exist along an opinion space. At every iteration, agents modify their opinions

to become the average opinion of all agents within a certain preset threshold of

themselves [2]. This model was described by Hegselmann and Krause in a series of

papers [18][19][20]. For small thresholds agents form many small groups, for large

thresholds agents form a single group, and for medium thresholds two large groups

form. This final scenario is considered the most polarized. Further extensions of this

family of models were made by Deffuant et al. [21][22]. Some of the key differences

between the Hegselmann-Krause model and Deffuant models include the Deffuant

model using a continuous function of influence based on distance rather than agents

either failing to influence or fully influencing one another, and the Deffuant model

includes a metric of ”stubbornness” by allowing agents to have differing thresholds

[2].

Structural balance models, the third and final family described by Bramson

et al. is an approach based on social networks. Nodes in the network are connected

to one another where every link between a pair of connected nodes represents either

a friendship or an enmity between those nodes. This model is also known as social

balance theory and was introduced as early as 1946 by Fritz Heider in his paper

Attitudes and Cognitive Organization [23][2]. Nodes will want to become friends

with their friends’ friends and their enemies’ enemies. Similarly, Nodes want to

become enemies with their friends’ enemies and their enemies’ friends. If two nodes

A and B are enemies, but both are friends with a node C, then the system is unstable.

Either C will pick a side and become enemies with A or B, or A and B will make

amends and all three nodes will end up being friends. On a larger scale a network will

go from being unstable to stable. The majority of networks take the form of either

”universal harmony” with all links being friendships, or ”social mitosis” with exactly

two groups where all internal links are friendships, and all links between groups are

enmities. If the network is fully connected these are the only possibilities, but if the

network is not fully connected a social mitosis resulting in more than two groups

is possible [24][25][2]. Polarization can be studied from this family of models by

treating social mitosis is a form of community fracturing [2]. These models continue
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to be analyzed and extended including by allowing friendliness to lie on a scale

between negative one and one rather than being in the binary state of friendship

and enmity [26] as well as using similarity in place of friendship in a way similar to

that of Axelrod type models [27][28][2].

A model not mentioned by Bramson et al. is the Rice Index, described by Rice

in Quantitative Methods in Politics in 1928. Rice’s index is simple but powerful and

gives the ratio of the difference between the number of agents who hold the majority

opinion and the minority opinion and all agents [29].

RI =
∣∣∣∣A−B

A+B

∣∣∣∣
This index can be extended to American political polarization by comparing the

ratios of yes votes on congressional bills [6]. This gives a measure of collaboration,

which falls into the category of Distinctness given by Bramson et al. Another model

that uses this family of polarization measurements is the one given in Portrait of

Political Party Polarization by Moody and Mucha. Moody and Mucha use the

modularity of ”coalitions” obtained by analyzing the co-voting similarity network of

congress. This modularity and the amount of covoting is used to track collaboration

over each congress [7].

Other models of social dynamics can be modified to model polarization. In

Dynamics of social group competition – modeling the decline of religious affiliation,

Abrams, Yaple, and Wiener model the decline of religious affiliation in specific

regions of Switzerland, Finland, and the Netherlands. Their model uses a differential

equation:
dx

dt
= yPyx (x, ux) − xPxy (y, uy)

Where y and x represent the proportion of the populations in states X and Y (has

religious affiliation and does not have a religious affiliation), ux and uy represent the

utility an individual gets out of being part of group X and Y respectively, and Pxy

is the a function giving probability that an individual switches from being a part of

group X to being a part of group Y and is based on the size of X and the utility

obtained from a member (Pyx gives the probability of switching from group Y to
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group X). This function is symmetric, meaning x+y = ux+uy = 1. Abrams, Yaple,

and Wiener compare the real data from Switzerland, Finland, and the Netherlands

with their differential equation [30]. Lu, Gao, and Szymanski relate this back to

polarization replacing X and Y with groups of senators who are willing to work

with members of opposite parties and senators who solely vote along party lines.

This metric of polarization - what proportion of individuals are willing to collaborate

with individuals in separate groups - is a good example of a metric not described

by Bramson et al. Lu, Gao, and Szymanski similarly compare their equations to

real world data. The proportions x and y are given by the Rice index [6][29]. Every

two years members of congress are elected. Generally polarization starts higher

just after elections and then trends down as the congress continues. Lu, Gao, and

Szymanski fix the utility of polarization and the utility of collaboration for each

congress, but allow for its value to change between congresses depending on the

best fit of the data. They found that the utility of polarization has been increasing,

in turn resulting in increased polarization in each congress [6]. This is consistent

with other studies of the American legislative body. [7].

This review is by no means comprehensive, but it should give readers who may

be new to this field an understanding of the complexity of both Political polarization

and the methods of studying it. Choosing a good model and measure of polarization

must be done prior to performing any research on the topic. Rigorously defining

measurements of polarization will continue to play a crucial role in polarization

research which may become increasingly important and common itself if the trend

of growing polarization continues in the United States.



3. TIPPING POINT MODEL

In this section, I will give a broad overview of the model used in our research and

how we came to tune it to our specific use cases and my contributions to this tuning.

Finally, I will outline the math governing the final rendition of our model.

3.1 Broad Overview

The model used in our research is a network of agents that have N orthogonal

political opinions which lie in an N -dimensional space. The initial position of any

Agent is random. Agents may interact with their neighbors and update their opin-

ions after these interactions. Importantly, interactions may be positive, resulting in

the original agent becoming more similar to its neighbor, or negative, resulting in

the original agent moving further away from its neighbor in the opinions space. An

interaction is determined to be positive or negative based on the distance of the two

interacting agents. If a calculation using the distance of the agents as well as some

internal parameters is determined to be less than some threshold, the agents become

more similar; however, if the calculation returns a value greater than said threshold

the agents become more dissimilar. This can be thought of as the following real

world examples: if two agents are close enough in opinion their interactions will be

positive, and the two agents may learn from one another. On the other hand, if

two agents are politically different to the point where their interaction is strongly

negative (such as a heated argument), they may come to dislike the other agent,

and their opinions, resulting in the agents modifying their opinions to become more

dissimilar [1].

This model runs for a preset number of agent updates, or until there is a

convergence where the agents may no longer update and the measured level of

polarization may no longer change. In our research, my coauthors and I focused

on two separate measures of polarization. While it took some time for us to settle

on these measurements, we ended up with what we called extremism and partisan

polarization [1]. The first metric is a measure of dispersion, while the second is a

9
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measure of distinctness, as defined by Bramson et. al [2].

A final, but crucial feature of our model is to allow an exogenous shock to

modify the model partway through run time. This shock is modeled as a new

dimensional feature, of which all agents initially agree upon, being added to the

model. This represents an external threat to all individuals, such as war, famine,

disease, etc, forcing cooperation and at least temporarily decreasing polarization

[1]. This shock is used to test how forgone the system is, in terms of political

polarization. Effectively we ask: is there an event-horizon-like tipping point beyond

which polarization can no longer be reversed?

3.2 Model History and My Contributions

In this section, as well as the discussion of how our model came to be, I will

be discussing my specific contributions to the model. While I was, being the most

junior member on a team of five, less influential to the final version of the model than

some of my coauthors – especially M.W. Macy and M. Ma – the contributions listed

here are by no means exhaustive. As with any well functioning team, most decisions

were generated via group discussion. While I played some part in the discussions

and resulting decisions, those contributions are largely both too numerous and,

more relevantly, too minor to be worth discussing in this section. As such, I will

be focusing on a few of the more major contributions as well as ideas that did not

make it into the final model that I potentially would want to pursue or see pursued

in future political polarization research. When mentioning contributions and ideas

that are specifically my own, I will state this outright. When discussing other parts

of the model in this section, it can be assumed that they were either generated by

group discussion or created exclusively by one of my coauthors. Finally, as context

for the reader, we implemented our model three times. This was done as to check

for correctness and reproducibility. The implementations were created by M. Ma,

M.W Macy, and myself, and I will reference these implementations in this section.

Our model was based on the principles of network science, and thus the degree

of each node, as well as the overall structure of the adjacency matrix can in theory

vary. In the version of our model that was submitted to PNAS, we view the agents
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as making up some legislative body, such as the senate. As such, we both set the

number of agents to 100, and set the degree of all nodes to 100, that is to say make

the adjacency list a 100x100 list of all ones. Both of these decisions are informed

by real legislative bodies. In the senate, an American legislative body, there are 100

senators, and all of these senators presumably interact with one another. In future

work involving this model, these parameters may be different. For example, if a

researcher wanted to model political polarization in the constituency of a legislative

body, rather than the body itself, it would make sense to greatly increase the number

of nodes, but to have the overall network be far more sparse. As far as I know, no

American is regularly interacting with all of their fellow constituents, who easily

number in the millions. In some ways, our decision to use a fully connected network

of 100 agents represents a step away from network science, as it limits the number

of network science related analyses, such as modularity, that can be performed on

the network. These changes provide a more useful model for our purposes and we

leave variants of our model using other networks for future research either for our

lab or other researchers [1].

Another change which potentially removes some traditional network science

analyses is the change from the p-q parameter to the party identity parameter.

Originally, our model had a variable p and a corresponding variable q = 1 − p.

These measure the likely hood of intraparty and interparty interactions respectively.

Neither p nor q influence the chance of the interaction to be positive or negative,

rather only the chance of the interaction to happen. An agent with p = 1, q = 0

will only interact with its fellow party members, an agent with p = 0.5, q = 0.5 is

equally likely to interact with fellow party members and agents of different parties,

and an agent with p = 0, q = 1 only interacts with agents whose party membership

differs from their own. Originally, p and q represented the probabilities of a link

existing between two agents in a random graph [31][32]; however we were forced to

change this once we had decided to make the network fully connected. Thus, we

initially maintained p and q, but had them work as the chance of an interaction in

a tick, rather than the chance of two nodes being connected. As we continued the

development of our model we found other issues with the relic p and q parameters.
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Both W.M. Macy and I pointed out that while tipping points in political polarization

due to changes in p and q did arise, they only happened at extreme values of p

and q in what often could be considered unrealistic edge cases. For example, a

very high q implying that almost all interactions were happening across party lines.

Additionally, I personally took issue with the fact that upon initializing the model

there is nothing to differentiate agents by party. In the real world parties form

due to shared opinions and political goals; however the only thing shared by same-

party agents at the start of a run of the simulation was the static feature –more

on this later– which labels them as being part of the party. To make this more

realistic, I suggested a parameter which shifted the Gaussian distribution of agents

away from one another and the center of the N-dimensional space as said parameter

increased. This did not make it into the final model, but helped give the impetus for

M.W. Macy to introduce party identity to our model. The finalized version of party

identity modifies the distance between two agents. It does this by giving a weight

which informs a weighted average between the issue distance and party distance of

two agents. If party identity is 0, then the distance between two agents is in fact

the euclidean distance of the agents in the N-dimensional opinion space. If party

identity is 0.5, then the distance is averaged with 0 (if the agents are of the same

party), or 1 (if the agents are of differing parties). Finally, if party distance is 1,

then all agents are either 0, the minimum distance, or 1, the maximum distance,

from one another depending solely on if they share the same party [1].

As briefly mentioned in the previous paragraph, our model allows for static

features, although party membership is currently the only static feature used in the

paper submitted to PNAS. Unlike dynamic features, which are regularly updated,

static features, as their name implies, do not change when an agent is updated.

Rather than representing political beliefs, these static features represent intrinsic

and unchanging features of agents that may effect who they feel is part of their

in-group and out-group such as, race / ethnicity, gender, religion, and political

party. While static features can take any value in the continuous [−1, 1] space, static

features are always either −1 or 1 and cannot take intermediate values. Even though

our model does not explicitly exclude static features such as religion, gender, race,
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etc, the PNAS rendition of our model ended up using only a single static feature:

party [1]. As with different network structures, there is potential for future research

using this model with static features. Additionally, I proposed to my coauthors, and

propose to the reader hear, a modification to static features that I believe may be

a more accurate representation of the real world. While some traits may be truly

static, some traits like religion and party membership are free to change even if they

change rarely. As such I believe a semi-static feature may be more applicable in

these situations. Such a feature would be allowed to move, but would move much

more readily towards the poles −1 and 1 than the neutral value of 0. Thus a very

large influence would be required to shift an agent from one value to the other, and

they generally will maintain their current value. I personally believe such a semi-

static feature will be more important for modeling constituents than members of a

legislative body. Although neither are particularly common, constituents changing

their party registrations is much more common and likely than an elected official

doing so.

3.2.1 Suggestions for Future Research

As I conclude this section, I will discuss two additional ideas to improve the

model that I suggested to my coauthors, but which did not make it into the final

rendition of the model.

My first suggestion is performing larger updates in each iteration. Currently,

the model updates one agent at every iterations and each update is the interaction

between exactly two agents. I believe that a speedup can be gained by allowing

multiple agents to update continuously and even be updated by multiple agents.

This is not a complex change, it simply requires storing two copies of every agent

– a parent and a child generation – and then swapping them at every update.

At every generation the updated agents would be stored in the child structure,

which then would become the parent of the next iteration of agents. Performing

iterations in this way provides a few key enhancements. From a computational

perspective, doing iterations this way allows for greater parallelization. With no

threat of race conditions, thanks to the constant parent array, multiple threads and
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or processes can be run. From a theoretical standpoint, I am of the opinion that

this is more reflective of real social dynamics. When an interaction happens both

parties are effected and additionally, multiple simultaneous social interactions are

possible. Thus, in future versions research using this kind of model, I would suggest

performing larger updates per iteration.

The second suggestion I will make to improve the model for future research

is to add some amount of additional noise to updates. Originally, the way our

model updated each agent was deterministic. The initial positions of the agents and

which agents were updated at every iterations were both random; however, once

two agents had been selected, the resulting update would be identical no matter

how many times it was run. To show the robustness and to generally improve our

model, we, at the behest of M.W. Macy, modified the update function to move

the influenced agent a random amount towards or away from the influencing agent.

Additionally, the chance of a positive or negative interaction, while still based on

the distance of the agents, is now probabilistic. I suggested adding an additional

(tunable) random epsilon to each opinion dimension at every update which may

vary on every dimension and update. This new epsilon would also have tested the

robustness of the model, and could even provide an additional tipping point, with

larger values of epsilon potentially resulting in a breakdown of polarization (as agents

move about more randomly). Additionally, like using larger update sizes, I believe

that using an epsilon to add noise to the updates will again make the model more

reflective of the real world. In the real world, it is possible that after the interaction

of two individuals, one individual then agrees more with the second on a specific

topic, but further disagrees on a separate topic. Additionally they may randomly

change their own opinions based on new information or self reflection without the

need for a social interaction. As there is already a system of random noise in the

model, there is less of a need to implement this secondary suggestion. I would still

encourage it, and due to some randomness being available in the model, similar

effects can be gained by making small tweaks. For example, instead of adding an

epsilon, the same effect could be gained by probabilistically allowing for positive

or negative interactions on each feature, and allowing the random distance moved
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to be rarely be negative, or greater than the distance needed to reach the location

it is being pulled towards. This later case is when an agent effectively is not only

convinced on an issue, but also becomes more radical on that issue than the agent

who convinced it. Finally, it should be noted that with any of these additions, future

researchers would need to be careful to keep the opinions of all agents within the

[−1, 1] range.

3.3 Mathematical specifics

In this section, I will give some of the mathematical formulas in the model, as

seen in our paper submitted to PNAS [1]. These formulas appear there and came

from discussions involving all authors, but I will lay them out in order to give greater

context to this thesis.

3.3.1 Initialization

Each node is initialized with an N + 1 dimensional feature array. One dimen-

sion is the party. This feature is static and is randomly selected to be −1 or 1. For

all other dimensions Zi, a random number is generated from a normal distribution

that has a standard deviation of 0.25 and a mean of 0. Any values that are not in

the range [−1, 1] are set to −1 if negative or 1 if positive [1].

3.3.2 Updates

The first step in any update, as mentioned above, is to select two nodes i and

j, where i is the node that will be updated and j is the node that is influencing i.

It should be noted that the model allows for the case where i = j. In this situation,

there are no changes, but one iteration is used up. This can be thought of as a

time-step where no social interactions happen [1].

Once we have obtained th two agents i, j, their distances are calculated. Using

the variable names from Polarization and Tipping points [1] we calculate the distance

to be

Dij = Dparty
ij ∗ β +Dissues

ij ∗ (1 − β), (3.1)

Where Dparty
ij is the party distance of i and j: either 0 if i and j are of the same
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party or 1 if they are not. Dissues
ij is the issue distance, and is the distance of i and

j across all N + 1 dimensions and scaled to be within the range [0, 1]. Finally, β

represents party identity which, as mentioned above, is a set value between 0 an 1.

Thus, Dij is a weighted average of party difference and issue difference based on the

value of party identity [1]. It should be noted that Dissues
ij is normally the Euclidean

distance, but this is not the case after exogenous shock, which is discussed below

and defined mathematically in equation (3.5).

Before actually performing the update, we additionally need to determine if

the update is positive or negative. This is done probabilistically so that agents

that are of an intermediate distance may have positive or negative interactions.

This probability is given by a cumulative logistic function given by the distance

calculated above, a variable representing dogmatism, and a variable that effects

how steep, and thus deterministic the curve is [1]. The formula for this probability,

again taken from Polarization and Tipping Points, is as follows:

P+ =
1

1 + es(Dij−(1−α)) (3.2)

Where e is Euler’s constant, s is a tunable constant that gives the steepness of

the curve, Dij is the distance as calculated above, and (1 − α) represents how

dogmatic agents are. As s increases, the steepness of the curve quickly goes to

infinity resulting in nearly all values of P+ being extremely close to 0 or 1 (and

thus almost deterministically generating a positive or negative interaction). On the

other hand when s is small, a range of intermediate values can generate positive or

negative interactions. The variable α is a measure of intolerance or dogmatism and

thus 1 − α is a measurement of tolerance. I note here that α was originally known

as dogmatism, but my coauthors and I changed α to intolerance in order to be more

in line with a similar forthcoming model produced by Axelrod. In either case, this

variable is a measurement of how different far apart agents may be before the chance

of a negative interaction increases. As α gets larger, the two agents must be closer

to ensure a positive interactions. When agents are highly dogmatic (α is close to

1) they are likely to have negative interactions with agents that even slightly differ

from themselves. When agents are highly tolerant (α is close to 0) they are likely to
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have positive interactions with all agents except for those who are the most distant

from themselves [1].

Finally, once we have determined if i and j are having a positive or negative

interaction, we can update i. There are two equations, both again taken from

Polarization and Tipping Points [1]. I will list both equations before explaining

them in depth.

If i and j have a positive interaction:

Zif,t+1 = Zif,t + (Zjf,t − Zif,t) ∗ (1 −Dij) ∗ ran, (3.3)

If i and j have a negative interaction:

Zif,t+1 = Zif,t +
L− Zif,t

2
∗Dij ∗ ran, (3.4)

In each of these equations Zkf,t represents the f th dimension of agent k at time step

t. Thus, at the text time step, t+1, agent i’s f th feature is updated by adding some

additional value [1].

In the positive case, some amount of the difference between i and j on the

f th feature (Zjf,t − Zif,t) is added resulting in i and j becoming more similar, and

i is not allowed to be influenced to the point to where it passes j on feature f .

Additionally, we multiply this difference by the inverse of the distance, (1−Dij), so

that agents that are closer have a stronger influence on one another. Finally, we also

multiply both of these values by ran, a uniform random integer between 0 and 1.

All together this results in i necessarily either becoming closer to j or not moving.

It also gives the amount of movement some randomness, but results in closer agents

being more likely to be more attracted to one another [1].

The negative case is very similar, however instead of moving towards j, i is

moved towards the boundary on the opposite side of j. Thus, if i is less than j on

feature f , L is 1. On the other hand, if i is greater than j on f , then L is −1. In the

rare case that i = j, then L is the opposite sign of i and j, and if Zif,t = Zjf,t = 0,

then L is randomly picked to be −1 or 1. Now that L is described, we can see that

L−Zif,t is simply the distance between L and i, which moves i towards L. We divide
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this value by two in order to give greater strength to attraction, which makes the

model more conservative (as it reduces polarization). Unlike positive interactions,

the greater the distance is the stronger the repulsion, and thus we multiply by the

distance, rather than its inverse. Finally, we multiply by a uniform random number,

just like in the positive influence case. Again, this results in i necessarily either

becoming further from j or not moving. It also gives the amount of movement some

randomness, but results in agents with a greater distance between them being more

likely to repel one another [1]. This is both sensible and similar to the positive case.

Once i has been updated on all N dynamic feature dimensions (with the final

party dimension remaining static), the update is considered completed [1].

3.3.3 Measures of Polarization

We need to measure political polarization, both as a metric once the model

terminates, as a stopping condition, and as a trigger to cause an exogenous shock

[1], which I will discuss further in the next subsection.

As mentioned above, we measure political polarization as extremism, a mea-

surement of dispersion, and partisan polarization, a measurement of distinctness.

Extremism is the expected standard deviation of a randomly chosen feature. Thus,

we can calculate extremism by calculating the standard deviation of all agents on

each issue, and then averaging over the N issue standard deviations. Partisan po-

larization is the expected difference between two random agents of opposite parties

on any given issue. Thus, we simply calculate the average difference between all

opposite party pair agents on every issue [1].

3.3.4 Exogenous Shock

The timing of the exogenous shock is governed by a single external parameter,

σ which is set before the model begins running. Once the level of polarization is

measured by extremism, the shock is initiated [1]. In theory, we also could have

mapped σ to partisan polarization, or any other measure of political polarization.

Once the exogenous shock has been initiated, a new opinion dimension is

added (or activated depending on implementation) to every single agent. This new

opinion dimension is set to be 1 for all agents; however, the new dimension is
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dynamic and thus can update as the model continues to run [1]. Additionally, a

second parameter γ effects the importance of this new singular dimension. The

distance between any two agents i, j is the weighted average between the euclidean

distance on the original N opinion dimensions and the euclidean distance on the

new exogenous shock dimension [1]. The weight of this averaging is given by γ as

such:

Dissues
ij = DN

ij ∗ (1 − γ) +Dexo
ij ∗ γ, (3.5)

where DN
ij is the euclidean distance of i and j on the original N opinion dimensions

and Dexo
ij is the corresponding euclidean distance on the new dimension. I also note

here that a simple way of implementing this is to set γ to 0 before the measure of

polarization reaches σ. When using this sort of implementation, the coder must be

careful to also not update the values of the shock dimension – which must remain 1

– until the polarization reaches σ.



4. INITIAL WORK AND A SEPARATE MODEL

Before working on the model described in the rest of the paper, and Polarization

and Tipping points as a whole, I tried a different analysis of political polarization.

During this period, I performed research combining natural language processing –

an interest of mine – with network science. This was originally going to be an

enhancement of our other model, but it never quite fit into the paper. Below, I will

describe this model and research, the partial results I obtained, and suggestions for

future research in this topic.

4.1 Word2Vec, Modularity, and Political Polarization

In order to use natural language processing to analyze political polarization, I

downloaded data on congressional bills from congress.gov [33] and then used python

packages including Keras [34] and NetworkX [35] to analyze this data. I had three

overall goals. First, to find patters in congressional bills. Second, to examine those

patterns across the Democrats and Republicans – the two main American Political

Parties at the time of this thesis being written. And finally, third, to see if the party

difference changed over time.

The data I had from congress.gov [33] provided a ”billToopTerm” and ”bill-

Subjects” for each bill. The subjects consist of a list of topics that the bill covers,

and the top term is a overall category to which the bill belongs, and is also always

one of the bill subjects. My first idea for analysis was to use word2vec [36][37],

implemented by Keras [34] on the subjects. I had to make a few specifications to

the way I ran word2vec to account for the fact that the bill subjects are not actually

natural language. For example, I had to make the context window as large as twice

the maximum length of any list of subjects. In normal human language, words that

appear close to one another are usually more likely to be relevant to their neighbors;

however, the bill subjects were simply an alphabetized list. Thus, I had to make

sure all of the subjects in a bill were considered equal in the eyes of Keras. This

gave me a word embedding of length 512 of each and every subject that appeared

20
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Figure 4.1: PCA of TopTerm and individual Subjects on Subject
Word2Vec Word Embedding Space

in the data from congress.gov. I then went through every top term, and averaged

over the vectors of subjects that’s that appeared in bills with said top term. This

gave me a vector value for each top term. The PCA of these embedding spaces can

be seen in Figure 4.1.

I found the word embeddings to be sometimes informative on their own, but

they were not always extremely meaningful. As a good example of what I mean

by that vague statement, look no further than Fig 4.1. In the first two principle

components of the Word Embedding Space, many African countries appear together,

such as Togo, Niger, Senegal, and South Sudan; however, in between these four



22

Figure 4.2: The Extremely Dense Naive Bipartite Graph of Bill Subjects
and Top Terms at Three Levels of Increasing Magnification

Africans nations lies ”Nuclear Waste Technical Review Board,” which is in fact not

a sovereign nation located in the continent of Africa – if my memory serves me

correctly.

From here I switched to using modularity to analyze the top terms. For this

rendition of my analysis I created a bipartite network of every bill subject and every

bill top term. I naively connected every subject and top term where the subject and

top term appeared in the same bill at least once. I then used NetworkX [35] to run

Clauset-Newman-Moore greedy modularity [38] on this network. Unfortunately, this

network was far too dense with far too many links per node resulting in a single giant

cluster being returned with paltry modularity of 0 ± 10−16. The extreme density of

this Network can be seen in Fig 4.2

This clearly was not helpful, so I tried a number of methods to make the

network more sparse, including requiring more shared bills for a top term and subject

to be connected; however what seemed to work best was to create a graph of just the

bill subjects, and then to connect the nodes if their similarity, as given by Keras’s

Word2Vec implementation [34][36][37], was over some threshold. This produced a

number of interesting results, and networks with decent modularities in the range

(0.2, 0.4). While I did not to enough analysis in this area to provide a highly

empirical review of this experiment, I will share here my favorite result from this

method: One of the clusters generated was 51 nodes large. In what I have dubbed

the ”51 states” a cluster contained all 50 states, as well as – humorously and grimly

– hurricanes, which was connected to Louisiana and Mississippi. This can be seen,

with hurricanes cropped off, in Fig. 4.3.
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Figure 4.3: The ”51” states

4.2 Suggestions for Future work

At this point, my researched switched to focusing on the model described in

the rest of my thesis, but I still have a number of suggestions for myself or for some

other researcher who picks up the mantle of this research.

First, I would conclude my investigation on modularity and Word2Vec simi-

larity by finding an empirical, quantitative, and evidence based method of choosing

a the similarity threshold above which nodes are connected. I then would use this

threshold to produce a final network, and then perform some analyses on said net-

work. I might also use this methodology to form a network of bill top terms, in

addition to bill subjects.

Next, I would associate each bill with a sponsor, and thus a political party.

From here, it would be simple to analyze the vector of the average subject of the

average bill by party by year. A number of comparisons could be made from here,

such as the difference between these two averages by year. This set of yearly differ-

ences would be a measure of polarization, specifically one of distinctness as defined

by Bramson et al. [2]. I wanted to make this analysis myself, but ran into difficulty

due to this data, which was included in THOMAS –the predecessor of congress.gov

– but is no longer being easily queriable from congress.gov [33].



5. FUTURE WORK AND CONCLUSION

The model presented by my coauthors and I in ”Polarization and Tipping points”

[1] is a robust model which allows for a number of analyses. In ”Polarization and

Tipping points” we narrowly focus on the tipping point under a specific low agent,

fully connected network meant to represent a legislative body. Our model works

very well for this cause, and provides a number of interesting conclusions which are

discussed in our paper [1]; however, our model is also more broad than this narrow

focus and allows for significant modification for other analyses.

In my opinion, as well as that of my coauthors, one of the most interesting and

pressing analyses that our model could be applied to is that of a larger, more general

population, rather than that of a legislative body. As mentioned above this could

be done by greatly increasing the number of nodes while also increasing the sparsity

of the network to reduce connectivity. Immediately after making this change, the

idea of p and q, the probability of an agent to be connected to any same party

or opposite party node respectively in the form of a random graph [31][32], could

be added back to the model. A more complex addition that my coauthors and I

discussed for this type of model is a system allowing links to dynamically appear

and disappear between agents. On the same lines of thinking, other parameters,

such as dogmatism, α, or party identity, β could be allowed to dynamically change

and or differ from agent to agent.

A second, unexplored analysis provided by our model is the use of static fea-

tures. Anecdotally, identity seems to be playing an increasingly large role in our

politics. These identities include but are not limited to gender, sexual orientation,

ethnicity, nationality, and religion. Given that these identities generally do not

change over the course of ones life, they could be treated as static features. For

identities that may (rarely) change over the course of ones lifespan, semi-static fea-

tures as described above, could be used. Semi-static features also could improve

general population models by allowing party membership to (rarely) change over

the course of a model’s run. Using static and semi-static features other than party

24
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could answer questions such as: does involving identity with politics increase or help

mitigate political polarization? These analyses could then potentially provide infor-

mation that would help reduce political polarization by encouraging or discouraging

the use of identity in politics in accordance with the result of the research.

Finally, and potentially most importantly, is to tune model parameters to fit

what we see in real world politics. While these models are inherently informative

and explanatory, they lack a certain level of power without being related to the

real world. This can be done by tuning parameters such as α, β, σ, γ, s, etc to

real world data. An example of this for β, or party identity would be to analyze

survey data or roll call voting data as done by Lu, Gao, and Szymanski in ”The

evolution of polarization in the legislative branch of government” [6]. This data

could derive a measure of how much people care about issues compared to raw

party-name-difference – exactly the definition of party identity. This real value

of β would then allow for the prediction of future trends in political polarization.

Predictions from past data, when compared to the current political climate, could

allow researchers to tweak and improve the model. Predictions from current data

could allow researchers to predict future trends and potentially influence how we

deal with political polarization from a policy standpoint.

No matter what changes are or are not made to the model, the general back-

bone of the model described here and in ”Polarization and Tipping points” [1] will

hopefully allow for a rich and varied set of analyses on political polarization to be

performed.
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