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ABSTRACT

In a very general context, communities in networks are defined as groups of nodes

that have some common properties such that connections are stronger between the

nodes in a community than with the nodes in the rest of the network. It is quite

common for nodes to participate in multiple communities. Therefore a commu-

nity detection algorithm for such applications should be able to detect overlapping

communities. However, overlapping community detection is more computationally

intensive than disjoint community detection and presents new challenges that al-

gorithm designers have to face. Besides, the big data phenomenon with exabytes

of data brings up datasets that take too long to analyze using even the fastest

algorithms currently available. Fortunately, the amount of computing power avail-

able to researches also increases. This computing power usually comes structured

as a number of cores, processors, or machines joined together to form a high per-

formance computer, cluster or a supercomputer. In this thesis we analyze what

other researchers have done to utilize high performance computing to perform ef-

ficient community detection in social, biological, and other networks. We use the

Speaker-listener Label Propagation Algorithm (SLPA) as the basis for our parallel

overlapping community detection implementation. SLPA provides near linear time

community detection and is well suited for parallelization. We explore the benefits of

a multithreaded programming paradigm for both synthetic and real-world networks

and show that it yields a significant performance gain over sequential execution in

detecting overlapping communities.
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1. INTRODUCTION

Analysis of social, biological, and other networks is a field which attracts significant

attention as more and more algorithms and real-world datasets become available.

In social science, a community is loosely defined as a group of individuals who share

certain common characteristics [1]. Based on similarity of certain properties, social

agents can be assigned to different social groups or communities. Communities allow

researches to analyze social behaviors and relations between people from different

perspectives. As social agents can exhibit traits specific to different groups and play

an important role in multiple groups, communities can overlap. Usually, there is no a

priori knowledge of the number of communities and their sizes. Quite often, there is

no ground truth either. Knowing the community structure of a network empowers

many important applications. Communities can be used to model, predict, and

control information dissemination. Marketing companies, advertisers, sociologists,

and political activists are able to target specific interest groups. The ability to

identify key members of a community provides a potential opportunity to influence

the opinion of the majority of individuals in the community. Ultimately, the entire

community structure can be altered or destroyed by acting upon only a small fraction

of the most influential nodes.

Biological networks such as neural, metabolic, protein, genetic, or pollination

networks and food webs model interactions between components of a system that

represent some biological processes [2]. Nodes in such networks often correspond

to genes, proteins, individuals, or species. Common examples of interactions are

infectious contacts, regulatory interaction, or gene flow.

The majority of community detection algorithms operate on networks which

might have strong data dependencies between the nodes. While there are clearly

challenges in designing an efficient parallel algorithm, the major factor which limits

the performance is scalability. Most frequently, a researcher needs to have commu-

Portions of this chapter previously submitted as: (K. Kuzmin, M. Chen, and B. K. Szyman-
ski, “Parallelizing SLPA for Scalable Overlapping Community Detection,” IEEE Special Issue on
Computational Aspects of Social Network Analysis, 2014).
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nity detection performed for a dataset of interest as fast as possible subject to the

limitations of available hardware platforms. In other words, for any given instance

of a community detection problem, the total size of the problem is fixed while the

number of processors varies to minimize the solution time. This setting is an ex-

ample of a strong scaling computing. Since the problem size per processor varies

with the number of processors, the amount of work per processor goes down as the

number of processors is increased. At the same time, the communication and syn-

chronization overhead does not necessarily decreases and can actually increase with

the number of processors thus limiting the scalability of the entire solution.

Yet, there is another facet of scaling community detection solutions. As more

and more hardware compute power becomes available, it seems quite natural to

try to uncover the community structure of increasingly larger datasets. Since more

compute power currently tends to come in a form of increased processor count

rather than in a single high performance processor (or a small number of such

processors), it is crucial to provide enough data for each single processor to perform

efficiently. In other words, the amount of work per processor should be large enough,

so that communication and synchronization overhead is small relative to the amount

of computation. Moreover, a well-designed parallel solution should demonstrate

performance which at least doesn’t degrade and hopefully even improves when run

on larger and larger datasets.

In order to design efficient parallel community detection code, it is necessary to

ensure high degree of concurrency. It means that multiple processors or cores should

be able to process data in parallel with as little interaction and synchronization

between them as possible.

A network consists of nodes, and there is a decision that needs to be made on

which nodes are processed by which processors or cores. Clearly, this partitioning of

nodes between the cores has a dramatic effect on how effectively the parallel code can

run. If a process has a lot of dependencies to pieces of data processed by other cores,

it will cause substantial synchronization overhead and severely limit the degree of

parallelism. If, in contrast, nodes that are assigned to a process do not depend on

any nodes processed by other cores, this process can run at full speed regardless of
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how other cores process their data. Unfortunately, except for very special cases of

networks analyzed with a particular number of processors, this scenario is rarely the

case in real life.

Accessing data that is shared between several processes in a parallel community

detection algorithm can easily become a bottleneck. Several techniques have been

studied, including shared-nothing, master–slave, and data replication approaches,

each having their merits and drawbacks.

An input to a community detection algorithm is usually a single network file

that needs to be analyzed. Effectively reading a network file and creating its in-

memory representation can be challenging in certain scenarios since multiple pro-

cesses access different regions of a single file simultaneously causing congestion in

the I/O system. Besides, disk I/O is usually very slow in most systems compared

to the speed of computation.

Our solution is built upon a shared memory architecture, and therefore an

input file is read and processed only once. Since only one copy of the dataset data is

resident in memory at any time, it completely avoids data replication any makes any

data accessible by any processor. One of the key design features of our multithreaded

approach is to minimize the amount of synchronization and achieve high degree

of concurrency of code running on different processors and cores. Provided the

data is properly partitioned, the parallel algorithm that we propose does not suffer

performance penalties when presented with increasing amounts of data. Quite the

contrary, results show that with larger datasets, there is no speedup saturation and

it continues to improve up to maximal processor counts.

1.1 Motivation

In the modern world more and more data is being collected, processed, and

stored every second. Video surveillance systems, sensor device networks, ubiquitous

RFID tags, global positioning devices, smartphones, and other systems that became

known as the Internet of things (IOT) [3] generate an enormous amount of data.

This data can become a valuable source of information, if properly mined. Extending

the concept of IOT to include also digital data that cannot be directly perceived by
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humans leads to the Internet of data (IOD) [4]. IOD is likely to spawn even bugger

collections of data than everyday objects.

With dataset sizes growing rapidly, it becomes increasingly important to be

able to analyze this data within reasonable time limits. Different community de-

tection methods and algorithms that have been developed by researchers to date

vary greatly in their worst case running time complexity. Comprehensive reviews

of the major community detection and clustering algorithms [5],[6] cover a range of

complexities from O(m3n), O(n4/m2 ), and O(n3) to O(m), where n is the number

of nodes and m is the number of edges in a network.

Although the asymptotic running time of all practical community detection al-

gorithms is polynomial in the size of input, the actual running time on real datasets

varies substantially depending both on the degrees of polynomial variables and con-

stants hidden by the asymptotic notation. For instance, running time of InfoMap

and FCD community detection algorithms on the same Epinion network (119,130

nodes and 704,276 edges) is compared in [7]. Although both algorithms were able

to complete community detection in under three hours for this relatively modest

graph, it is easy to imagine how long it would take to process a billion-edge net-

work. Besides, the completion times achieved by these two algorithms differed by as

much as a factor of two for certain network sizes. A comparison of FCD, InfoMap,

WalkTrap, and GN algorithms conducted for synthetic data revealed that a ratio

of slowest to fastest running time was peaking 50,000. A recent study [8] proposed

a new community detection algorithm called CESNA and compared it performance

on a synthetic network to the state-of-the-art community detection methods: COD-

ICIL, MAC, BigCLAM, and DEMON. While some sequential algorithms finished

processing 300,000 nodes in under two hours, others were running 3,000 nodes for

more than three hours.

While major advances in design of community detection algorithms do not

happen often and the best algorithms already offer linear time complexity (O(m)),

a natural choice for improving performance and being able to analyze larger net-

works is to exploit the benefits of parallel platforms. A parallel implementation

of CESNA [8] using 24 threads on a single machine was an order of magnitude
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faster than its sequential counterpart. A Parallel Label Propagation (PLP) scheme

described in [9] runs roughly 7 times faster with 32 threads than on a single thread.

Thus, in order to boost performance of community detection methods it seems

quite natural to apply efforts to scale sequential algorithms for parallel environments.

Given a fast and efficient near–linear time Label Propagation Algorithm we expect

the solution to be very scalable and able to process networks with hundreds of

millions of edges.

1.2 Thesis outline

The thesis is organized as follows. An overview of relevant research on parallel

community detection is presented in Chapter 2. Chapter 3 introduces the sequential

SLPA algorithm upon which we base our parallel implementation. It also discusses

details of the multithreaded community detection on a shared-memory multiproces-

sor machine as well as busy-waiting techniques and implicit synchronization used

to ensure correct execution. We describe the way we partition the data and re-

arrange nodes within a partition to maximize performance. Detailed performance

analysis of our algorithm for one synthetic network and four real-life datasets is

presented in Chapter 4. We also discuss the speedup and efficiency accomplished by

our approach. Finally, in Chapter 5 we provide some closing remarks and discuss

limitations of our implementation as well as the ways to overcome them.



2. LITERATURE REVIEW

Substantial effort has been put during the last decade into studying network clus-

tering and analysis of social and other networks. Different approaches have been

considered and a number of algorithms for community detection has been proposed.

As online social communities continue to grow, and so do networks associated with

them, the parallel approaches to community detection are regarded as a way to

increase efficiency of community detection and therefore receive a lot of attention.

The clique percolation technique [10] considers cliques in a graph and performs

community detection by finding adjacent cliques. The k-means clustering algorithm

partitions m n-dimensional real vectors into k n-dimensional clusters where every

point is assigned to a cluster such that the objective function is minimized [11]. The

objective function is the within-cluster sum of squares of distances between each

point and the cluster center. There are several ways to calculate initial cluster cen-

ters. A quick and simple way to initialize cluster centers is to take the first k points

as the initial centers. Subsequently at every pass of the algorithm the cluster centers

are updated to be the means of points assigned to them. The algorithm doesn’t aim

to minimize the objective function for all possible partitions but produces a local

optima solution instead, i.e. a solution in which for any cluster the within-cluster

sum of squares of distances between each point and the cluster center cannot be

improved by moving a single point from one cluster to another. Another approach

described in [12] utilizes an iterative scan technique in which density function value

is gradually improved by adding or removing edges. The algorithm implements a

shared-nothing architectural approach. The approach distributes data on all the

computers in a setup and uses master–slave architecture for clustering. In such an

approach, the master may easily become a bottleneck as the number of processors

and the network size increases. A parallel clustering algorithm is suggested in [13],

which is a parallelized version of DBSCAN [14].

Portions of this chapter previously submitted as: (K. Kuzmin, M. Chen, and B. K. Szyman-
ski, “Parallelizing SLPA for Scalable Overlapping Community Detection,” IEEE Special Issue on
Computational Aspects of Social Network Analysis, 2014).
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A community detection approach based on propinquity dynamics is described

in [15]. It doesn’t use any explicit objective function but rather performs commu-

nity detection based on heuristics rather than using an explicit objective function.

It relies on calculating the values of topology–based propinquity which is defined

as a measure of probability that two nodes belong to the same community. The

algorithm works by consecutively increasing the network contrast in each iteration

by adding and removing edges in such a way as to make the community structure

more apparent. Specifically, an edge is added to the network if it is not already

present and the propinquity value of the endpoints of this proposed edge is above

a certain threshold, called emerging threshold. Similarly, if the propinquity value of

the endpoints of an existing edge is below a certain value, called cutting threshold,

then this edge is removed from the network. Since inserting and removing edges al-

ters the network topology, it affects not only propinquity between individual nodes

but also the overall propinquity of the entire topology. The propinquity of the new

topology can then be calculated and used to guide the subsequent changes to the

topology in the next iteration. Thus, the whole process called propinquity dynamics

continues until the difference between topologies obtained in successive iterations

becomes small relative to the whole network.

Since both topology and propinquity experience only relatively small changes

from iteration to iteration, it is possible to perform the propinquity dynamics in-

crementally rather than recalculating all propinquity values in each iteration. Op-

timizations of performing incremental propinquity updates achieve a running time

complexity of O((|V | + |E|) · |E|/|V |) for general networks, and O(|V |) for sparse

networks.

It is also shown in [15] that community detection with propinquity dynam-

ics can efficiently take advantage of parallel computation using message passing.

Nodes are distributed among the processors which process them in parallel. Since

it is essential that all nodes are in sync with each other, the Bulk Synchronous

Parallel (BSP) model is used to implement the parallel framework. In this model,

the computation is organized as a series of supersteps. Each superstep consists of

three major actions: receiving messages sent by other processors during the previous
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superstep, performing computation, and sending messages to other processors. Syn-

chronization in BSP is explicit and takes the form of a barrier which gathers all the

processors at the end of the superstep before continuing with the next superstep.

Two types of messages are defined for the processors to communicate with each

other. The first type is used to update propinquity maps that each processors stores

locally for its nodes. Messages of the second type contain parts of the neighbor sets

that a processor needs in its local computation.

A number of researchers explored a popular MapReduce parallel programming

model to perform network mining operations. For example, a PeGaSus library (Peta-

Scale Graph Mining System) described in [16], is built upon using Hadoop platform

to perform several graph mining tasks such as PageRank calculations, spectral clus-

tering, diameter estimation, and determining connected components. The core of

PeGaSus is a GIM-V function (Generalized Iterated Matrix-Vector multiplication).

GIM-V is capable of performing three operations: combining two values, combining

all the values in the set, and replacing the old value with a new one. Since GIM-V is

general, it is also quite universal. All other functions in the library are implemented

as function calls to GIM-V with proper custom definitions of the three GIM-V oper-

ations. Fast algorithms for GIM-V utilize a number of optimizations like using data

compression, dividing elements into blocks of fixed size, and clustering the edges.

Finding connected components with GIM-V is essentially equivalent to community

detection. The number of iterations required to find connected components is at

most the diameter of the network. One iteration of GIM-V has the time complexity

of O( |V |+|E|
P

log |V |+|E|
P

) where P is the number of processors in the cluster. Running

PeGaSus on an M45 Hadoop supercomputer cluster shows that GIM-V scales up

linearly as the number of machines is increased from 3 to 90. Accordingly, PeGaSus

is able to reduce time execution on real world networks containing up to hundreds

of billions of edges from many hours to a few minutes.

A HEigen algorithm introduced in [17] is an eigensolver for large scale net-

works containing billions of edges. It is built upon the same MapReduce parallel

programming model as PeGaSus, and is capable of computing k eigenvalues for

sparse symmetric matrices. Similarly to PeGaSus, HEigen scales up almost linearly
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with the number of edges and processors and performs well up to billion edge scale

networks. Its asymptotic running time is the same as that of PeGaSus’ GIM-V.

In [18] the authors consider a disjoint partitioning of a network into connected

communities. They propose a massively parallel implementation of an agglomera-

tive community detection algorithm that supports both maximizing modularity and

minimizing conductance. The performance is evaluated on two different threaded

hardware architectures: a multiprocessor multicore Intel-based server and massively

multithreaded Cray XMT/XMT2. Because of different hardware platforms two mul-

tithreaded programming environments had to be used: Cray XMT and OpenMP.

These environments provide significantly different ways of managing the parallelism.

While Cray XMT offers implicit, automatic concurrency, OpenMP requires a devel-

oper to explicitly manage parallelism.

For both architectures and programming environments this approach is shown

to scale well on two real-world networks with up to tens of millions of nodes and

several hundred million edges. Additionally, the application was tested on a large

uk-2007-05 graph with over a hundred million nodes and more than 3 billion edges.

Unfortunately, no speedup or efficiency data for this dataset is presented in [18].

Therefore, it is not clear what scalability behavior this solution is capable of de-

livering for such networks. Based on the running time values given in the article,

the processing rate can be calculated to be between approximately 5.58 million and

6.66 million edges/second on an Intel-based platform, and slightly above 1.3 million

edges/second on a Cray XMT2 which is close to the values of processing rates seen

for the other tested networks.

An improved version of the agglomerative parallel community detection solu-

tion is proposed in [19]. Three datasets are tested, uk-2007-05 being the largest,

across five different hardware platforms (Cray XMT, Cray XMT2 and three different

Intel-based systems). The algorithm demonstrates good scalability on both Cray

and Intel platforms. The running time performance advantage relative to the initial

implementation is especially significant for Cray XMT2.



3. PARALLEL LINEAR TIME COMMUNITY

DETECTION

A family of label propagation community detection algorithms includes COPRA [20],

LPA [21], and SLPA [22]. The main idea is to assign identifiers to nodes, and

then make them transmit their identifiers to their neighbors. With node identifiers

treated as labels, a label propagation algorithm simulates the exchange of labels

between connected nodes in the network. At each step of the algorithm each and

every node that has at least one neighbor receives a label from one of its neighbors.

Nodes keep a history of labels that they have ever received organized as a histogram

which captures the frequency (and therefore the rank) of each label. The number

of steps, or iterations, of the algorithm determines the number of labels each node

accumulates during the label propagation phase. Being one of the parameters of the

algorithm, the number of iterations eventually affects the accuracy of community

detection. Clearly, the running time of the label propagation phase is linear with

respect to the number of iterations. The algorithm is guaranteed to terminate after

a prescribed number of iterations. When it does, communities data is extracted

from nodes’ histories.

In this thesis we design a multithreaded parallel community detection algo-

rithm based on the sequential version of SLPA. Although only unweighted and

undirected networks have been used to study the performance of our parallel SLPA

implementation, an extension for the case of weighted and directed edges is straight-

forward and doesn’t affect the computational complexity of the method. Since each

edge is treated as undirected, an extra edge is added to the network for every edge

of the network being read. Essentially, a network is made symmetrical, i.e. if there

is an edge from some node i to some node j then there is also an edge from node j to

Portions of this chapter previously appeared as: (K. Kuzmin, S. Y. Shah, and B. K. Szymanski,
“Parallel overlapping community detection with SLPA,” in Social Computing (SocialCom), 2013
International Conference on. IEEE, 2013, pp. 204–212).

Portions of this chapter previously submitted as: (K. Kuzmin, M. Chen, and B. K. Szyman-
ski, “Parallelizing SLPA for Scalable Overlapping Community Detection,” IEEE Special Issue on
Computational Aspects of Social Network Analysis, 2014).
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node i. Every undirected edge is represented with two directed edges connecting two

nodes in opposite directions. Although if the input network is initially undirected

this can lead to doubling the number of edges that are represented internally in code,

such approach is more general, and can be used for networks with directed edges as

well. A distinctive feature of our parallel solution is that unlike other approaches de-

scribed above, it is capable of performing overlapping community detection and has

a parameter enabling balancing the running time and community detection quality.

We test the performance of our solution on a synthetic graph and several real-

world networks that range in size from several hundred thousand nodes and a few

million edges to almost 5.5 million nodes and close to 170 million edges.

The SLPA [22] is a sequential linear time algorithm for detecting overlapping

communities. SLPA iterates over list of nodes in the network. Each node i randomly

picks one of its neighbors ni and the neighbor then selects randomly a label l from

its list of labels and sends it to the requesting node. Node i then updates its local

list of labels with l. This process is repeated for all the nodes in the network. Once

it is completed, the list of nodes is shuffled and the same processing repeats again

for all nodes. After t iterations of shuffling and processing label propagation, every

node in the network has label list of length t, as every node receives one label in

each iteration. After all iterations are completed, post processing is carried out on

the list of labels and communities are extracted. We refer interested readers to full

paper [22] for more details on SLPA.

It is obvious that the sequence of iterations executed in SLPA algorithm makes

the algorithm sequential and it is important for the list of labels updated in one

iteration to be reflected in the subsequent iterations. Therefore, the nodes cannot

be processed completely independently of each other. Each node can be potentially a

neighbor of some other nodes, therefore, if lists of labels of its neighbors are updated,

it should receive a label randomly picked from the updated list of labels.
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3.1 Multithreaded SLPA with Busy-waiting and Implicit

Synchronization

In the multithreaded SLPA we adopt a busy-waiting synchronization approach.

Each thread performs label propagation on a subset of nodes assigned to this partic-

ular thread. This requires that the original network be partitioned into subnetworks

with one subnetwork to be assigned to each thread. Although partitioning can be

done in several different ways depending on the objective that we are trying to reach,

in this case the best partitioning will be the one that makes every thread spend the

same amount of time processing each node. Label propagation for any node consists

of forming a list of labels by selecting a label from every neighbor of this node and

then selecting a single label from this list to become a new label for this node. In

other words, the ideal partitioning would guarantee that at every step of the label

propagation phase each thread deals with a node that has exactly the same number

of neighbors as nodes that are being processed by other threads. Thus the ideal

partitioning would partition the network in such a way that a sequence of nodes

for every thread consists of nodes with the same number of neighbors across all the

threads. Such partitioning is illustrated in Figure 3.1. T1, T2, ..., Tp are p threads

that execute SLPA concurrently. As indicated by the arrows, time flows from top

to bottom. Each thread has its subset of nodes ni1, ni2, ..., nik of size k where i

is the thread number, and node neighbors are m1,m2, ...,mk . A box corresponds

to one iteration. There are t iterations in total. Dashed lines denote points of

synchronization between the threads.

In practice, this ideal partitioning will loose its perfection due to variations in

thread start-up times as well as due to uncertainty associated with thread scheduling.

In other words, in order for this ideal scheme to work perfectly, hard synchronization

of threads after processing every node is necessary. Such synchronization would be

both detrimental to the performance and unnecessary in real-life applications.

Instead of trying to achieve an ideal partitioning we can employ a much simpler

approach by giving all the threads the same number of neighbors that are examined

in one iteration of the label propagation phase. It requires providing each thread

with such a subset of nodes that the sum of all indegrees is equal to the sum of all
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Figure 3.1: Ideal partitioning of the network for multithreaded SLPA.

indegrees of nodes assigned to every other thread. In this case for every iteration

of the label propagation phase every thread will examine the same overall number

of neighbors for all nodes that are assigned to this particular thread. Therefore,

every thread will be performing, roughly, the same amount of work per iteration.

Moreover, synchronization then is only necessary after each iteration to make sure

that no thread is ahead of any other thread by more than one iteration. Figure 3.2

illustrates such partitioning. As before, T1, T2, ..., Tp are p threads that execute SLPA

concurrently. As shown by the arrows, time flows from top to bottom. However each

thread now has its subset of nodes ni1, ni2, ..., niki of size ki where i is the thread

number. In other words, threads are allowed to have different number of nodes that

each of them processes, as long as the total number of node neighbors M =
∑ki

i=1mi

is the same across all the threads. A box still corresponds to one iteration. There

are t iterations in total. Dashed lines denote points of synchronization between the

threads.
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Figure 3.2: A better practical partitioning of the network for multi-
threaded SLPA.

We can employ yet an even simpler approach of just dividing nodes equally

between the threads in such a way that every thread gets the same (or nearly the

same) number of nodes. It is important to understand that this approach is based

on the premise that the network has small variation of local average of node degrees

across all possible subsets of nodes of equal size. If this condition is met, then, as in

the previous case, every thread performs approximately the same amount of work per

iteration. Our experiments show that for many real-world networks this condition

holds, and we accepted this simple partitioning scheme for our multithreaded SLPA

implementation.

Given the choice of the partitioning methods described above, each of the

threads running concurrently is processing all the nodes in its subset of nodes at

every iteration of the algorithm. Before each iteration, the whole subset of nodes

processed by a particular thread needs to be shuffled in order to make sure that

the label propagation process is not biased by any particular order of processing
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nodes. Moreover, to guarantee the correctness of the algorithm, it is necessary to

ensure that no thread is more than one iteration ahead of any other thread. The

latter condition places certain restriction on the way threads are synchronized. More

specifically, if a particular thread is running faster than the others (whatever the

reasons for this might be) it has to eventually pause to allow other threads to catch

up (i.e. to arrive at a synchronization point no later than one iteration behind this

thread). This synchronization constraint limits the degree of concurrency of this

multithreaded solution.

It is important to understand the importance of partitioning the network nodes

into subsets to be processed by the threads in respect to the distribution of edges

across different network segments. In our implementation we use a very simple

method of forming subsets of nodes for individual threads. First, a subset for the

first thread is formed. Nodes are read sequentially from an input file. As soon as

a new node is encountered it is added to the subset of nodes processed by the first

thread. After the subset of nodes for the first thread has been filled, a subset of

nodes for the second thread is formed, and so on. Although simple and natural, this

approach works well on networks with high locality of edges. For such networks, if

the input file is sorted in the order of node numbers, nodes are more likely to have

edges to other nodes that are assigned to the same thread. This leads to partitioning

where only a small fraction (few percent) of nodes processed by each thread have

neighbors processed by other threads.

Algorithm 1 shows the label propagation phase of our multithreaded SLPA

algorithm which is executed by each thread. First, each thread receives a subset

of nodes that it processes called ThreadNodesPartition. An array of dependen-

cies Used is first initialized and then filled in such a way that it contains 1 for all

threads that process at least one neighbor of the node from ThreadNodesPartition

and 0 otherwise. This array of dependencies Used is then transformed to a more

compact representation in the form of a dependency array D. An element of ar-

ray D contains thread number of the thread that processes some neighbor of a node

that this thread processes. Dsize is the size of array D. If no node that belongs

to the subset processed by this thread has neighbors processed by other threads,
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then array D is empty and Dsize = 0. If, for example, nodes that belong to the

subset processed by this thread have neighbors processed by threads 1, 4, and 7,

then array D has three elements with values of 1, 4, and 7, and Dsize = 3. Af-

ter the dependency array has been filled, the execution flow enters the main label

propagation loop which is controlled by counter t and has maxT iterations. At the

beginning of every iteration we ensure that this thread is not ahead of the threads

on which it depends by more than one iteration. If it turns out that it is ahead, this

thread has to wait for the other threads to catch up. Then the thread performs a

label propagation step for each of the nodes it processes which results in a new label

being added to the list of labels for each of the nodes. Finally, the iteration counter

is incremented, and the next iteration of the loop is considered.

3.2 Partition splitting

In order to even further alleviate the synchronization burden between the

threads and minimize the sequentiality of the threads as much as possible, another

optimization technique can be used. We note that some nodes which belong to a set

processed by a particular thread have connection only to nodes that are processed

by the same thread (we call them internal nodes) while other nodes have external

dependencies. We say that a node has an external dependency when at least one of

its neighbors belongs to a subset of nodes processed by some other thread. Because

of nodes with external dependencies, synchronization rules described above must be

strictly followed in order to ensure correctness of the algorithm and meaningfulness

of the communities it outputs. However nodes with no external dependencies can

be processed within a certain iteration independently from the nodes with external

dependencies. It should be noted that a node with no external dependencies is not

completely independent from the rest of the network since it may well have neighbors

of neighbors that are processed by other threads.

It follows that processing of nodes with no external dependencies has to be

done within the same iteration framework as for nodes with external dependencies

but with less restrictive relations in respect to the nodes processed by other threads.

In order to utilize the full potential of the technique described above, it is necessary
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Algorithm 1 : Multithreaded SLPA

ThreadPartition← CreatePartition(InputF ile)
p← number of threads

for j = 1 to j < p do
Used[j]← 0

end for
for all v such that v is in ThreadNodesPartition do

for all w such that w has an edge to v do
k ← getProcessorForNode(w)
Used[k]← 1

end for
end for
Dsize← 0

for j = 1 to j < p do
if Used[j] > 0 then

D[Dsize]← j
Dsize← Dsize + 1

end if
end for
while t < maxT do

for j = 0 to j < Dsize− 1 do
while t− t of thread D[j] > 1 do

Do nothing
end while

end for
for all v such that v is in myPartition do

l← selectLabel(v)
Add label l to labels of v

end for
t← t + 1

end while

to split the subset of nodes processed by a thread into two subsets, one of which

contains only nodes with no external dependencies and the other one contains all the

remaining nodes. Then during the label propagation phase of the SLPA nodes that

have external dependencies are processed first in each iteration. Since we know that

by the time such nodes are processed the remaining nodes (ones with no external

dependencies) cannot influence the labels propagated to nodes processed by other

threads (due to the symmetry of the network) it is safe to increment the iteration

counter for this thread, thus allowing other threads to continue their iterations if
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they have been waiting for this thread in order to be able to continue. Meanwhile

this thread can finish processing nodes with no external dependencies and complete

the current iteration.

This approach effectively allows a thread to report completion of the iteration

to the other threads earlier than it has in fact been completed by relying on the

fact that the work which remains to be completed can not influence nodes processed

by other threads. This approach, though seemingly simple and intuitive, leads

to noticeable improvement of the efficiency of parallel execution (as described in

Chapter 4 mainly due to decreasing the sequentiality of execution of multiple threads

by signaling other threads earlier than in the absence of such splitting.

An important peculiarity arises when the number of nodes with external de-

pendencies is only a small fraction of all the nodes processed by the thread (few

percent). In this case it would be beneficial to add some nodes without external

dependencies to the nodes with external dependencies and process them together

before incrementing the iteration counter. The motivation here is that nodes must

be shuffled in each partition separately from each other to preserve the order of ex-

ecution between partitions. Increasing partition size above the number of external

nodes improves shuffling in the smaller of the two partitions.

The remaining nodes without external dependencies can be processed after

incrementing the iteration counter, as before. In order to reflect this optimization

factor we introduce an additional parameter called the splitting ratio. A value of

this parameter indicates the percentage of nodes processed by the thread before

incrementing the iteration counter. For instance, if we say that splitting of 0.2 is

used it means that at least 20% of nodes are processed before incrementing the

iteration counter. If after initial splitting of nodes into two subsets of nodes with

external dependencies and without external dependencies it turns out that there are

too few nodes with external dependencies to satisfy the splitting ratio, some nodes

that have no external dependencies are added to the group of nodes with external

dependencies just to bring the splitting ratio to the desired value.

Algorithm 2 shows our multithreaded SLPA algorithm that implements split-

ting of nodes processed by a thread into a subset of nodes with external dependencies
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Algorithm 2 : Multithreaded SLPA with splitting of nodes

Internal← CreateInternalPartition(InputF ile)
External← CreateExternalPartition(InputF ile)
p← number of threads

/* Unchanged code from Algorithm 1 omitted */
while t < maxT do

for j = 0 to j < Dsize− 1 do
while t− t of thread D[j] > 1 do

Do nothing
end while

end for
for all v such that v is in External do

l← selectLabel(v)
Add label l to labels of v

end for
t← t + 1
for all v such that v is in Internal do

l← selectLabel(v)
Add label l to labels of v

end for
end while

and a subset with no external dependencies. The major difference from Algorithm 1

is that instead of processing all the nodes before incrementing the iteration counter,

we first process a subset of nodes that includes nodes that have neighbors processed

by other threads, then we increment the iteration counter, and then we process the

rest of the nodes.



4. PERFORMANCE EVALUATION

4.1 Hardware platform

We performed runs on a hyper threaded Linux system operating on top of a

Silicon Mechanics Rackform nServ A422.v3 machine (GANXIS.nest.rpi.edu). Pro-

cessing power was provided by 64 cores organized as four AMD OpteronTM 6272

central processing units (2.1 GHz, 16-core, G34, 16 MB L3 Cache) operating over a

shared 512 GB bank of Random Access Memory (RAM) (32 x 16 GB DDR3-1600

ECC Registered 2R DIMMs) running at 1600 MT/s Max. The source code was

written in C++03 and compiled using g++ 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5).

4.2 Test datasets

One synthetic network and four real-world datasets have been used to test the

performance of the multithreaded solution. The main properties of these datasets

are given in Table 4.1. Three of these networks (com-Amazon, com-DBLP, and com-

LiveJournal) have been acquired from Stanford Large Network Dataset Collection

[23] which contains a selection of publicly available real-world networks (SNAP

networks).

Undirected Amazon product co-purchasing network (also referred to as com-

Amazon) was gathered, described, and analyzed in [24]. From the dataset informa-

tion [25], it follows that it was collected by crawling Amazon website. A Customers

Who Bought This Item Also Bought feature of the Amazon website was used to

build the network. If it is known that some product i is frequently bought together

with product j, then the network contains an undirected edge from i to j. For each

product category defined by Amazon there is a corresponding ground-truth com-

munity. Each connected component in a product category is treated as a separate

Portions of this chapter previously appeared as: (K. Kuzmin, S. Y. Shah, and B. K. Szymanski,
“Parallel overlapping community detection with SLPA,” in Social Computing (SocialCom), 2013
International Conference on. IEEE, 2013, pp. 204–212).

Portions of this chapter previously submitted as: (K. Kuzmin, M. Chen, and B. K. Szyman-
ski, “Parallelizing SLPA for Scalable Overlapping Community Detection,” IEEE Special Issue on
Computational Aspects of Social Network Analysis, 2014).
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Table 4.1: Properties of the datasets used in performance evaluation.

Dataset Name Type Nodes Directed
edges

Synthetic network
Undirected, unweighted,

no ground-truth
communities

4,350,248 12,332,112

com-Amazon original
Undirected, unweighted,

with ground-truth
communities

334,863 1,851,744

com-Amazon modified
Undirected, unweighted,

with ground-truth
communities

319,948 1,760,430

com-DBLP original
Undirected, unweighted,

with ground-truth
communities

317,080 2,099,732

com-DBLP modified
Undirected, unweighted,

with ground-truth
communities

260,998 1,900,118

com-LiveJournal
Undirected, unweighted,

no ground-truth
communities

3,997,962 34,681,189

Foursquare
Undirected, unweighted,

no ground-truth
communities

5,499,157 169,687,676

ground-truth community.

Since small ground-truth communities having less than 3 nodes have been

removed, it was necessary to modify the original com-Amazon network to ensure

that only nodes that belong to ground-truth communities can appear in communi-

ties detected by the multithreaded parallel algorithm. Such a modification enables

subsequent comparison of communities produced by the community detection al-

gorithm and the ground truth communities. The modified com-Amazon network

was obtained from the original one by removing nodes which are not found in any

ground-truth community and all the edges connected to those nodes. While the

original Amazon network consists of 334,863 nodes and 925,872 undirected edges,
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the modified dataset has 319,948 nodes and 1,760,430 directed edges. As outlined

in Chapter 3, each undirected edge is internally converted to a pair of edges. There-

fore, 925,872 undirected edges from the original network correspond to 1,851,744

directed edges in the internal representation of the code, and since some of the

edges were incident to removed nodes, the resulting number of directed edges left in

the network was 1,760,430.

The DBLP computer science bibliography network (referred to as com-DBLP)

was also introduced and studied in [24]. According to the dataset information [26],

it provides a comprehensive list of research papers in computer science. If two

authors publish at least one paper together, then the nodes corresponding to these

authors will be connected with an edge in a co-authorship network. Ground truth

communities are based on authors who published in journals or conferences. All

authors who have at least one publication in a particular journal or conference form

a community. Similarly to the com-Amazon network, each connected component

in a group is treated as a separate ground-truth community. Small ground-truth

communities (less than 3 nodes) have also been removed.

The com-DBLP dataset was also modified to enable comparison with ground-

truth communities as described above for the com-Amazon network. Since com-

DBLP is also undirected, the same modification was applied to this dataset as to

the com-Amazon network.

Another network from [24] that we are using to evaluate the performance of

the multithreaded parallel implementation of SLPA and the quality of communi-

ties it produces is a LiveJournal dataset (referred to as com-LiveJournal). The

dataset information page [27] describes com-LiveJournal as a free on-line blogging

community where users declare friendship with each other. com-LiveJournal users

can form groups and allow other members to join them. For the purposes of eval-

uating the quality of communities we are treating the com-Livejournal network as

having no ground-truth communities. Since we are not comparing the communities

found by the community detection algorithm with the ground-truth communities,

no modification of the original network is necessary.

The fourth real-world dataset that we used to test the performance of our
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parallel solutions is a snapshot of the Foursquare network as of October 11, 2013.

There is no information about ground truth communities available.

4.3 Testing methodology

We calculated speedup using formula shown in (4.1) and efficiency according

to (4.2).

Speedup =
T1

Tp

(4.1)

where Speedup is the actual speedup calculated according to equation 4.1 and p is

the number of processors or computing cores.

Efficiency =
Speedup

p
(4.2)

Community detection runs for the synthetic network were performed using 100

iterations. Experiments with all real-world networks were run with 1,000 iterations

(the value of maxT was set to 1,000). On one hand, a value of 1,000 for the number

of iterations provides a sufficient amount of work for the parallel portion of the

algorithm, so that the overhead associated with creating and launching multiple

threads does not dominate the label propagation running time. On the other hand,

1,000 iterations is empirically enough to produce meaningful communities since the

number of labels in the history of every label is statistically significant. At the

same time, although running the algorithm for 1,000 iterations on certain datasets

(especially larger ones) was in some cases (mainly for smaller core count) taking a

few days, it was still feasible to complete all runs on all four real-world networks in

under two weeks.

We conducted one set of measurements by considering only time for the label

propagation phase since it is this stage that differs in our multithreaded implemen-

tation from the original sequential version. Time necessary to read an input file

and construct in-memory representation of the nodes and edges as well any auxil-

iary data structures was not included in this timing. All post-processing steps and

writing output files have also been excluded.

However, for an end user it is not the label propagation time (or any other
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single phase of the algorithm) that is important but rather the total running time.

Users care about the time it took for the code to run: from the moment a command

was issued until the resulting communities files have been written to a disk. There-

fore, for real-world datasets we conducted a second set of measurements to gather

data on total execution time of our multithreaded parallel SLPA implementation.

Since the total execution time includes not only a highly parallel label propagation

stage but also file I/O, threads creation and cleanup, and other operations which

are inherently sequential, it is to be expected that the values of both speedup and

efficiency are going to be worse than in the case when only label propagation phase

was considered. A further analysis of the sequential part of the algorithm and the

limit on scalability that it imposes is given below in Section 4.5.

Since the hardware platform we used provides 64 cores, every thread in our

tests executes on its dedicated core. Therefore threads do not compete for central

processing unit (CPU) cores (unless there is interference from the operating system

or other user processes running concurrently). They execute in parallel, and we can

completely ignore thread scheduling issues in our considerations. Because of this we

use terms ’thread’ and ’core’ interchangeably when we describe results of running the

multithreaded SLPA. The number of cores in our runs varies from 1 to 64. However,

we observed a performance degradation for a number of threads larger than 32. This

performance penalty is most likely caused by the memory banks organization of our

machine. Speedup and efficiency are calculated using (4.1) and (4.2) defined earlier.

No third-party libraries or frameworks have been used to set up and manage threads.

Our implementation relies on Pthreads application programming interface (POSIX

threads) which has implementations across a wide range of platforms and operating

systems.

We noticed that compiler version and compilation flags can play a crucial role

not only in terms of how efficiently the code runs but in the sole ability of code to

execute in the multithreaded mode. Unfortunately little if anything is clearly and

unambiguously stated in compiler documentation regarding implications of using

various compiler flags to generate code for execution on multithreaded architectures.

For the most part, developers have to rely on their own experience or common sense
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and experiment with different flags to determine the proper set of options which

would make compiler generate effective code capable of flawlessly executing multiple

threads.

For instance, when compiler runs with either -O2 or -O3 optimization flag

to compile the multithreaded SLPA the resulting binary code simply deadlocks

at execution. The reason for deadlock is exactly the optimization that compiler

performs ignoring the fact that the code is multithreaded. This optimization leads

to threads being unable to see updates to the shared data structures performed

by other threads. In our case such shared data structure is an array of iteration

counters for all the threads. Evidently, not being able to see the updated values of

other threads’ counters quickly leads threads to a deadlock.

Another word of caution should be offered regarding some of the debugging

and profiling compiler flags. More specifically, compiling code with -pg flag which

generates extra code for a profiling tool gprof leads to substantial overhead when

the code is executed in a multithreaded manner. The code seems to be executing

fine but with a speedup of less than 1. In other words, the more threads are used the

longer it takes for the code to run regardless of the fact that each thread is executed

on its own core and therefore does not compete with other threads for CPU and

that the more threads are used the smaller is a subset of nodes that each thread

processes.

4.4 Analysis of results

The results of performance runs of our multithreaded parallel implementation

are presented in Figures 4.1–4.22 below. (Data export was performed using Daniel’s

XL Toolbox add-in for Excel, version 6.51, developed by Daniel Kraus, Würzburg,

Germany.)

Figure 4.1 shows the time it took to complete the label propagation phase

of the multithreaded SLPA on a synthetic network for the number of cores vary-

ing from 1 to 32. Figures 4.3, 4.5, 4.7, and 4.9 show the time it took to complete

the label propagation phase of the multithreaded parallel SLPA on four datasets

(com-Amazon, com-DBLP, com-LiveJournal, and Foursquare, respectively) for the
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Figure 4.1: Label propagation time for a synthetic network with no
splitting of nodes.

Figure 4.2: Speedup and efficiency for a synthetic network with no split-
ting of nodes.
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Figure 4.3: Label propagation time for com-Amazon network at different
number of cores.

Figure 4.4: Speedup and efficiency for com-Amazon network (considering
only label propagation time) at different number of cores.
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Figure 4.5: Label propagation time for com-DBLP network at different
number of cores.

Figure 4.6: Speedup and efficiency for com-DBLP network (considering
only label propagation time) at different number of cores.
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Figure 4.7: Label propagation time for com-LiveJournal network at dif-
ferent number of cores.

Figure 4.8: Speedup and efficiency for com-LiveJournal network (con-
sidering only label propagation time) at different number of cores.
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Figure 4.9: Label propagation time for Foursquare network at different
number of cores.

Figure 4.10: Speedup and efficiency for Foursquare network (considering
only label propagation time) at different number of cores.
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number of cores varying from 1 to 64. It can be seen that for smaller core counts

the time decreases nearly linearly with the number of threads. For larger number

of cores the label propagation time continues to improve but at a much slower rate.

In fact, for 32 cores and more, there is almost no improvement of the label propa-

gation time on smaller datasets (com-Amazon and com-DBLP). At the same time,

larger datasets (com-LiveJournal and Foursquare) improve label propagation times

all the way through 64 cores. As outlined in Chapter 1, this is clearly something to

be expected as in a strong scaling setting enough workload should be supplied to

parallel processes to compensate for the overhead of creating multiple threads and

maintaining communication between them.

This trend is even more evident in Figures 4.2, 4.4, 4.6, 4.8, and 4.10 which plot

the values of speedup and efficiency for the five datasets (synthetic, com-Amazon,

com-DBLP, com-LiveJournal, and Foursquare, respectively) and the number of cores

from 1 to 64 (1 to 32 for synthetic). As the number of cores increase, the speedup

also grows but not as fast as the number of utilized cores, so efficiency drops. The

saturation of speedup is quite evident for smaller networks (com-Amazon and com-

DBLP) and corresponds to regions with no improvement of the label propagation

time that we noticed earlier. Similarly, the values of speedup continue to improve

(although at decreasing rates) for larger datasets (com-LiveJournal and Foursquare)

even at 64 cores. Nonetheless, the efficiency degrades since speedup gains are small

relative to an increase in core count. Such behavior can be attributed to several

factors. First of all, as the number of cores grow while the network (and hence the

number of nodes and edges) stays the same, each thread gets fewer nodes and edges

to process. In limit, it can cause the overhead of creating and running threads to

outweigh the benefits of parallel execution for a sufficiently small number of nodes.

Furthermore, as the number of cores grows, the number of neighbors of nodes with

external dependencies increases (both because each thread gets fewer nodes and

more threads to execute them). More nodes with external dependencies, in turn,

means that threads are more dependent on other threads.

Figure 4.11 shows synthetic network label propagation times of the multi-

threaded version of SLPA which splits nodes into a subset of nodes that have neigh-
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bors processed by other threads, and a subset of nodes that do not have such neigh-

bors. The splitting ratio is fixed in this case at 0.2. Figure 4.12 provides an insight

on the speedup and efficiency for this configuration. The general shape of curves is

similar to those in the version with no splitting. However, it can be seen that the

absolute values are better (times are lower, speedup and efficiency are larger) for

the version with splitting of nodes. The data collected supports our expectations

that minimizing the waiting time that a thread spends in a busy-waiting loop while

other threads are catching up makes code run faster and more efficiently.

Figure 4.11: Label propagation time for a synthetic network with split-
ting of nodes.

The benefit of splitting the nodes can further be examined by looking at Fig-

ures 4.13 and 4.14. For the entire range from 1 to 32 cores the version with splitting

outperformed its no-splitting counterpart in terms of label propagation time. The

advantage is low for 2 cores and also declines as the number of cores increase. Both

speedup and efficiency of the version with splitting were worse with 2 cores than

for a version with no splitting, but it was better for all the other cases. Speedup

and efficiency also degrade when the number of cores is increased to more than 8.

These effects are related to the behavior of split subsets of nodes when the number
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Figure 4.12: Speedup and efficiency for a synthetic network with splitting
of nodes.

of cores increases, as discussed above.

However, for the sake of fair data interpretation it should be reminded that

the definition of efficiency which we are using here is based on Equation 4.2. It only

takes into account the parallel execution speedup observed on a certain number of

cores. The cost of cores is completely ignored in this formula.

More realistically, the cost should be considered as well. The price paid for

a modern computer system is not linear with the number of processors and cores.

Within a certain range of the number of cores per system, as the architecture moves

towards higher processor and core counts, each additional core costs less.

Although the hardware platform that was used in our experiments (Silicon

Mechanics Rackform nServ A422.v3) has been discontinued and pricing information

is no longer available, the next version of the same system, Rackform nServ A422.v4,

is offered. Using an online price calculator [28] maintained by the vendor it is possible

to compare the cost parameters of different server configurations.

The pricing data presented in Table 4.2 is given for different models of CPU and

varying number of processors. The base system is the same for all configurations,
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Figure 4.13: Label propagation time advantage (as a difference between
running time for a version without and with splitting).

Figure 4.14: Speedup and efficiency advantage (as a difference between
speedup and efficiency for a version without and with splitting).
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and it is similar to the server that was used in our experiments (512 GB bank

of Random Access Memory (RAM) (32 x 16 GB DDR3-1600 ECC Registered 2R

DIMMs) running at 1333 MT/s Max; all other options are standard for the base

configuration, and no additional items are selected). Clearly, there is an order of

magnitude of difference in the cost per core between the lowest and the highest

performance configurations. Amazingly, comparing these two extremes we can find

that 16 times more cores costs only 1.5 times more money.

Consequently, the pure parallel efficiency defined by Equation 4.2 should be

effectively multiplied by the cost factor for making decisions regarding the choice

of hardware to run community detection algorithms on real-life networks. After

such multiplication, the efficiency including cost is going to be much more favorable

to higher core counts than the efficiency given by Equation 4.2. For example, it

takes close to 41 hours to completely perform community detection using 1,000

iterations on the Foursquare network with 4 threads (at 4 cores), and just under 10

hours at 64 cores. If we assume that the same running times can be obtained on two

corresponding extreme Rackform nServ A422.v4 configurations from Table 4.2 (with

one Opteron 6308 and four Opteron 6380, respectively), then the cost efficiency of

using a 64–core configuration vs. a 4-core system is going to be around 2.93, i.e.

”superlinear” (a 1.5 times increase in cost brings a 4.38 times improvement of the

running time).

Figures 4.15, 4.17, 4.19, and 4.21 present the total community detection time of

the multithreaded parallel SLPA on four datasets (com-Amazon, com-DBLP, com-

LiveJournal, and Foursquare, respectively) for the number of cores varying from

1 to 64. Although, clearly the total running time exceeds the label propagation

phase, the difference in many cases is not that significant. This is especially true for

larger datasets (com-LiveJournal and Foursquare) which, as we discussed above, is

something to be expected. The fact that the label propagation phase is a dominat-

ing component of the total running justifies our efforts to increase performance by

replacing sequential label propagation with a parallel implementation.

The values of speedup and efficiency calculated based on the total execution

time rather than label propagation time are plotted in Figures 4.16, 4.18, 4.20,
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Table 4.2: The cost of different configurations of a Silicon Mechanics
Rackform nServ A422.v4 server system.

CPU
Num-
ber of
CPUs

Total
number
of cores

Price
per

CPU, $

Price
per

core, $

System
price, $

Opteron 6308 (3.5GHz,
4-Core, G34, 16MB L3
Cache)

1 4 9047.00 2261.75 9047.00

Opteron 6308 (3.5GHz,
4-Core, G34, 16MB L3
Cache)

2 8 4815.00 1203.75 9630.00

Opteron 6308 (3.5GHz,
4-Core, G34, 16MB L3
Cache)

4 16 2699.00 674.75 10796.00

Opteron 6328 (3.2GHz,
8-Core, G34, 16MB L3
Cache)

1 8 9135.00 1141.88 9135.00

Opteron 6328 (3.2GHz,
8-Core, G34, 16MB L3
Cache)

2 16 4903.00 612.88 9806.00

Opteron 6328 (3.2GHz,
8-Core, G34, 16MB L3
Cache)

4 32 2787.00 348.38 11148.00

Opteron 6348 (2.8GHz,
12-Core, G34, 16MB L3
Cache)

1 12 9135.00 761.25 9135.00

Opteron 6348 (2.8GHz,
12-Core, G34, 16MB L3
Cache)

2 24 4903.00 408.58 9806.00

Opteron 6348 (2.8GHz,
12-Core, G34, 16MB L3
Cache)

4 48 2787.00 232.25 11148.00

Opteron 6380 (2.5GHz,
16-Core, G34, 16MB L3
Cache)

1 16 9730.00 608.13 9730.00

Opteron 6380 (2.5GHz,
16-Core, G34, 16MB L3
Cache)

2 32 5498.00 343.63 10996.00

Opteron 6380 (2.5GHz,
16-Core, G34, 16MB L3
Cache)

4 64 3382.00 211.38 13528.00
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Figure 4.15: Total execution time for com-Amazon network at different
number of cores.

Figure 4.16: Speedup and efficiency for com-Amazon network (consider-
ing total execution time) at different number of cores.
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Figure 4.17: Total execution time for com-DBLP network at different
number of cores.

Figure 4.18: Speedup and efficiency for com-DBLP network (considering
total execution time) at different number of cores.
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Figure 4.19: Total execution time for com-LiveJournal network at differ-
ent number of cores.

Figure 4.20: Speedup and efficiency for com-LiveJournal network (con-
sidering total execution time) at different number of cores.
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Figure 4.21: Total execution time for Foursquare network at different
number of cores.

Figure 4.22: Speedup and efficiency for Foursquare network (considering
total execution time) at different number of cores.
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and 4.22 for the four datasets (com-Amazon, com-DBLP, com-LiveJournal, and

Foursquare, respectively) and the number of cores between 1 and 64. Although these

values are worse than those calculated based only on the label propagation time, they

provide a more realistic view of the end-to-end performance of our multithreaded

SLPA implementation. In real life the speedup values of around 5 to 6 still constitute

a substantial improvement over the sequential implementation meaning, for example,

that you would only have to spend 8 hours waiting for your community detection

results instead of 2 days.

4.5 Scalability limit

Designers of parallel applications need to be aware of the inherent limit on the

maximum overall speedup that can be possibly achieved for a certain application

on a multiprocessor system. A dependency between the fraction of the computa-

tional load that appears to be sequential and the performance of the entire parallel

system was first outlined by Gene M. Amdahl in [29]. He noted that even if this

sequential portion was run on a separate processor, an upper limit on the overall

system throughput would render all efforts on increasing performance of the parallel

portion useless. This observation was later restated in a form the became known as

Amdahl’s Law [30]. It can be expressed by the following formula:

Speedup =
1

fs + 1−fs
p

(4.3)

where Speedup is the overall speedup of running on p processors a program that has

a sequential fraction of fs. From Equation 4.3 it follows that if fs is large, then even

if the parallel portion is infinitely parallelizable, the 1−fs
p

term will tend to zero in

the limit which will make the Speedup close to 1 and independent of the value of p.

It should be remembered, however, that Amdahl’s Law is based on the as-

sumption that a sequential fraction fs is fully sequential, and the parallel fraction

1− fs is infinitely parallelizable. This is rarely the case in real life. Besides, it only

considers that additional processors can be used to speed up the parallel portion

while the sequential fraction does not benefit from increasing the computing power.
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With today’s silicon technologies, more sophisticated multicore chip designs can be

considered [31]: symmetric, asymmetric, and dynamic. However, in order to use

these multicore models they need to be implemented in silicon by chip designers.

In practice it is usually infeasible to analytically compute the value of fs for

an actual piece of code. Meanwhile, knowing this value could be useful in deciding

how much effort should be put into enhancing performance of the parallel portion.

Based on the formula 4.3 for Amdahl’s Law, we can roughly approximate the value

of fs using the speedup data that we collected.

Figure 4.23 shows values of the sequential component calculated based on the

Equation 4.3 from the running time data of four real-world networks. Naturally, this

calculation has to use the total running time, not just the label propagation time.

Remarkably, it seems that using running times obtained for different datasets as the

number of cores approaches 64 converges to the value of the calculated sequential

fraction of around 0.2. It means that by Amdahl’s Law the value of speedup which

we expect should be about 5. More importantly, even if the parallel fraction of the

code tends to zero as we increase the number of cores, the overall speedup is going

to be limited by the values of 5 to 8 or so.

Figure 4.23: Calculated sequential fraction of the code (by Amdahl’s
Law).

A 0.2 fraction of sequential code is quite high, and this is what limits the
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scalability of our solution. It is important to realize that a fraction of sequential

code is not solely a property of the code itself. It also reflects data dependencies

between nodes of a network since a larger number of such dependencies introduces

more synchronization between the threads which in turn causes them to execute less

concurrently. Hence, the calculated fraction of sequential code will depend on the

properties of the dataset and the partitioning of nodes between the threads. Better

partitioning techniques and reducing synchronization can lead to lower values of

fs. Besides, parallelizing operations that are currently performed sequentially (e.g.

reading and writing files) is another way to decrease the fraction of sequential code

and improve speedup and efficiency.



5. CONCLUSION

In this thesis, we evaluated the performance of a multithreaded parallel implemen-

tation of SLPA and showed that using modern multiprocessor and multicore ar-

chitectures can significantly reduce the time required to analyze the structure of

different networks and output communities. We found that despite the fact that the

rate of speedup slows down as the number of processors is increased, it still pays

off to utilize as many cores as the underlying hardware has available. Moreover,

considering the cost per processing core it might be economically effective to obtain

a system with the maximum number of cores. Our multithreaded SLPA implemen-

tation was proven to be scalable both in terms of using more cores and analyzing

increasingly large networks. Given a sufficient number of processors, the parallel

SLPA can reliably process networks with millions of nodes and accurately detect

meaningful communities in minutes and hours.

Portions of this chapter previously submitted as: (K. Kuzmin, M. Chen, and B. K. Szyman-
ski, “Parallelizing SLPA for Scalable Overlapping Community Detection,” IEEE Special Issue on
Computational Aspects of Social Network Analysis, 2014).
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[13] X. Xu, J. Jäger, and H. Kriegel, “A fast parallel clustering algorithm for large
spatial databases,” High Performance Data Mining, pp. 263–290, 2002.

[14] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in Proceedings of
the 2nd International Conference on Knowledge Discovery and Data mining,
vol. 1996. AAAI Press, 1996, pp. 226–231.

[15] Y. Zhang, J. Wang, Y. Wang, and L. Zhou, “Parallel community detection on
large networks with propinquity dynamics,” in Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2009, pp. 997–1006.

[16] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale graph
mining system implementation and observations,” in Data Mining, 2009.
ICDM’09. Ninth IEEE International Conference on. IEEE, 2009, pp.
229–238.

[17] U. Kang, B. Meeder, and C. Faloutsos, “Spectral analysis for billion-scale
graphs: Discoveries and implementation,” in Advances in Knowledge
Discovery and Data Mining. Springer, 2011, pp. 13–25.

[18] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader, “Parallel community
detection for massive graphs,” in Parallel Processing and Applied
Mathematics. Springer, 2012, pp. 286–296.

[19] J. Riedy, D. A. Bader, and H. Meyerhenke, “Scalable multi-threaded
community detection in social networks,” in Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International. IEEE, 2012, pp. 1619–1628.

[20] S. Gregory, “Finding overlapping communities in networks by label
propagation,” New Journal of Physics, vol. 12, no. 10, p. 103018, 2010.

[21] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to
detect community structures in large-scale networks,” Physical Review E,
vol. 76, no. 3, p. 036106, 2007.

[22] J. Xie and B. K. Szymanski, “Towards linear time overlapping community
detection in social networks,” in Advances in Knowledge Discovery and Data
Mining. Springer, 2012, pp. 25–36.

[23] J. Leskovec. Stanford large network dataset collection. [Online]. Available:
http://snap.stanford.edu/data (Date Last Accessed March 3, 2014)

[24] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” CoRR, vol. abs/1205.6233, 2012.



47

[25] J. Leskovec. Amazon product co-purchasing network and ground-truth
communities. [Online]. Available:
http://snap.stanford.edu/data/com-Amazon.html (Date Last Accessed
March 3, 2014)

[26] ——. DBLP collaboration network and ground-truth communities. [Online].
Available: http://snap.stanford.edu/data/com-DBLP.html (Date Last
Accessed March 3, 2014)

[27] ——. LiveJournal social network and ground-truth communities. [Online].
Available: http://snap.stanford.edu/data/com-LiveJournal.html (Date Last
Accessed March 3, 2014)

[28] 2U Quad Opteron Server - Rackform nServ A422.v4 - Silicon Mechanics.
[Online]. Available:
http://www.siliconmechanics.com/i44149/2u-quad-opteron-server.php (Date
Last Accessed March 19, 2014)

[29] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proceedings of the April 18-20, 1967, spring
joint computer conference. ACM, 1967, pp. 483–485.

[30] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2012.

[31] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” IEEE
COMPUTER, 2008.

[32] K. Kuzmin, S. Y. Shah, and B. K. Szymanski, Parallel overlapping community
        detection with SLPA," in Social Computing (SocialCom), International  Conference
        on. IEEE, 2013, pp. 204-212).

[33] K. Kuzmin, M. Chen, and B. K. Szymanski, Parallelizing SLPA for Scalable
        Overlapping Community Detection," Special Issue on Computational Aspects
         of Social Network Analysis, Scientific Programming, 2014.




