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ABSTRACT

Spreading processes on networks provide a valuable, abstract framework to study a vast

array of problems using a unified formalism, from the spread of wildfires in forests to opinion

formation in social groups. This thesis presents three specific problems that relate to different

spreading processes on complex networks.

The first of these is a study of diffusive persistence on disordered lattices and complex

networks to better understand the temporal characteristics and the lifetime of fluctuations

in stochastic processes in networks. Diffusive persistence is defined as the probability that

the diffusive field at a site (or node) has not changed sign up to a certain time (or in general,

that the node remained active/inactive in discrete models). Applications of our research

could help one better understand the lifetime and temporal dynamics of activity fluctua-

tions and trends in social networks. We investigated disordered networks (characterized by

the fraction of removed edges) and found that the behavior of the persistence depends on the

topology of the network. In 2D networks we have found that above the percolation threshold

diffusive persistence scales similarly as the original two-dimensional regular lattice, accord-

ing to a power law with an exponentof 0.186 ± 1.4 ∗ 10−4. At the percolation threshold,

the scaling exponent changes to one with 0.141 ± 5.3 ∗ 10−5, as the result of the interplay

of diffusive persistence and the underlying structural transition in the disordered lattice at

the percolation threshold. In contrast, we found that in random networks without a regular

structure, such as Erdős-Rényi networks, no simple power-law scaling behavior exists above

the percolation threshold. We also investigate finite-size effects for 2D lattices at the perco-

lation threshold and find that the limiting value obeys a power-law with exponent zθ, where

z ≈ 2.56± 2.3 ∗ 10−2 instead of the value of z = 2 normally associated with finite-size effects

on 2D lattices.

Next, we discuss percolation on quantum networks. Quantum networks describe com-

munication networks that are based on quantum entanglement. A concurrence percolation

theory has been recently developed to determine the required entanglement to enable com-

munication between two distant stations in an arbitrary quantum network. Unfortunately,

concurrence percolation has been calculated only for very small networks or large networks

without loops. Here, we develop a set of mathematical tools for approximating the concur-

rence percolation threshold for unprecedented large-scale quantum networks by estimating

x



the path-length distribution, under the assumption that all paths between a given pair of

nodes have no overlap. We show that our approximate method agrees closely with analytical

results from concurrence percolation theory. The numerical results we present include 2D

square lattices of 2002 nodes and complex networks of up to 104 nodes. The entanglement

percolation threshold of a quantum network is a crucial parameter for constructing a real-

world communication network based on entanglement, and our method offers a significant

speed-up for the intensive computations involved.

Finally, we study how public transportation data can be employed in the modeling

of the spread of infectious diseases based on SIR dynamics. We present a model where

public transportation data is used as an indicator of broader mobility patterns within a city,

including the use of private transportation, walking etc. The mobility parameter derived

from this data is used to model the infection rate. As a test case, we study the impact of

the usage of the New York City subway on the spread of COVID-19 within the city during

2020. We show that utilizing subway transport data as an indicator of the general mobility

trends within the city, and therefore as an indicator of the effective infection rate, improves

the quality of forecasting COVID-19 spread in New York City. Our model predicts the two

peaks in the spread of COVID-19 cases in NYC in 2020, unlike a standard SIR model that

misses the second peak entirely.
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CHAPTER 1

INTRODUCTION

In this chapter we will give an overview of the key areas that serve as relevant background

knowledge for the work presented in chapters 2-4. We start by giving a general overview of

networks, including some mathematical properties of networks, and examples of regular and

random networks. Next, we give an overview of percolation theory. Finally, we introduce

the notion of quantum networks and discuss how they differ from classical networks.

1.1 Networks

A network, or graph, is a set G = {N , E}, where N is a set of nodes (or vertices) and

E is a set of edges (or links), where each edge is a pair of elements of N and represents a

connection between them [1]. Many real-world systems can be represented as networks, such

as the internet, citation networks, and cellular networks [1], [2]. The adjacency matrix of a

graph A has components Aij which are 1 if there is an edge between nodes i and j, and is 0

otherwise [2]. In some networks Aij may have some other value that represents the strength

of the edge between these nodes. We say that a network is directed if Aij 6= Aji, with the

direction of the edge Aij being from j to i. In this work we will only be concerned with

undirected graphs.

The degree of a node i refers to the number of edges connected to it

ki =
∑
j

Aij (1.1)

. The total number of edges in an undirected network is

E =
1

2

∑
i

ki =
1

2

∑
ij

Aij. (1.2)

The factor of
1

2
compensates for the fact that every edge in the sum on the right is counted

twice. A graph in which every node is connected to every other node is known as a complete

1



2

graph. The number of edges in a complete graph with N nodes are

E =
N(N − 1)

2
. (1.3)

We define the density of a graph with N nodes and E edges as

ρ =
2E

N(N − 1)
. (1.4)

A graph where ρ → 0 as N → ∞ is known as a sparse graph, while a graph where

ρ→ O(1) as N →∞ is known as a dense graph [2]. So far we have not defined a notion of

how graphs might grow, but in the next sections we will see how graphs might be constructed

algorithmically and these notions of density will become helpful.

A path between two nodes s and t is said to exist if we start at node s and follow a

series of edges that eventually bring us to node t. The longest shortest path connecting any

two nodes in a network is called the diameter of the network. If, having left s, the only path

to return to s is by following exactly the same edges as those already traversed, the network

has no cycles [1]. Networks without cycles are called trees.

Networks where every node has the same degree is known as a regular network. Ex-

amples of regular networks are lattice graphs such as 1d chains (ki = 2), 2d square lattices

(ki = 4) and the Bethe lattice or Cayley tree.

1.1.1 Complex Networks

Erdős-Rényi Networks

Networks where the edges are distributed randomly are known as random networks.

The earliest systematic study of random networks was done by Paul Erdős and Alfréd

Rényi [3]. In an Erdős-Rényi (ER) network E edges are distributed with equal probability

among N nodes [1], [2], [3]. An alternative way of constructing an ER network is to define

a probability, p, with which an edge exists between any pair of nodes. A graph constructed

in this way is referred to as G(N, p). For a given p the expected number of edges is given by

〈E〉 = p
N(N − 1)

2
. (1.5)
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Table 1.1: The appearance of subgraphs in G(N, p) as p ∼ N z increases. All
values taken from [1].

z Subgraph
−∞ Disconnected Nodes
−3

2
Trees of order 3

−4
3

Trees of order 4
−1 Graphs with cycles
−2

3
Complete graphs of order 4

0 Complete graph of order N

The average degree of a node in an ER network may then be written as

〈k〉 =
2 〈E〉
N

= p(N − 1). (1.6)

Given a graph consisting of N disconnected nodes we can increase p and, consequently,

add more and more edges to the graph. We can visualize, for example, 3 of the original N

nodes forming a triangle at some probability p. In general, the average number of subgraphs

with n nodes and e edges is given by [1], [4]

〈X〉 ≈ peNn

a
, (1.7)

where X is the number of subgraphs and a is the number of isomorphic subgraphs with

the same number of nodes and edges. If we express the probability of the existence of an

edge as p ∼ N z we can express what subgraphs will appear in G(N, p) as a function of z [1].

Some examples are presented in Tab. 1.1.

The degree distribution of G(N, p) is approximately a Poisson distribution in the limit

of large N

P (k) ≈ e−〈k〉
〈k〉k

k!
(1.8)
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Barabási-Albert (Scale-Free) Networks

Many real-world networks do not follow the degree distribution of ER networks. In-

stead, a wide variety of empirical networks follow a power-law degree distribution of the

form [1], [5], [6]

P (k) ∼ k−γ. (1.9)

Networks with power-law distribution have a long tail in the degree distribution such

that there are a few nodes with a very large number of edges connected to them. In order

to generate networks with such a degree distribution Barabási and Albert proposed a model

of network growth based on preferential attachment, so that every node that is added to

the network has a probability of being connected to an existing node based on that node’s

degree.

Starting with z0 nodes at every step a node is added to the network and connected to

z existing nodes, where z is referred to as the coordination number. The probability of this

new node connecting to an existing node with degree ki is given by [1], [5]

Π(ki) =
ki∑
j kj

. (1.10)

As the number of steps in this process becomes very large the degree distribution of

the network approaches

P (k) ≈ 2z2k−γ, (1.11)

where γ ≈ 3 [1]. We refer to networks constructed in this way as scale-free or Barabási-

Albert (BA) networks.
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1.1.2 Processes on Networks

Percolation

Percolation refers to the process of removing nodes (site percolation) or edges (bond

percolation) with probability 1 − φ, where φ is called the occupation probability [7], [8].

Percolation can be used to describe a wide variety of systems, from phase transitions in

the Ising spin model [9] to the emergence of flocking behavior in large groups of living

organisms [10]. We define a cluster as a set of nodes in a network that are all connected

through nearest-neighbor edges. As an example we consider a 2d lattice. We begin to

remove edges from this lattice with probability 1− φ and we are interested in whether there

is a path connecting any node on the top boundary of the network to any node on the

bottom. This process is illustrated in Fig. 1.1. We can see that as φ decreases the network

becomes more disordered but for φ ≥ 0.5 we still see a cluster that spans the length of

the lattice connecting its top and bottom boundaries. However, for φ < 0.5 we only have

small disconnected clusters. The lattice undergoes a phase transition at a critical value of φ,

denoted φc, at which an infinite cluster first appears. This value is known as the percolation

threshold. For 2d lattices the bond-percolation threshold is φc = 0.5.

More generally we can define the percolation threshold as the value of the occupation

probability at which a giant, connected component first appears. If the size of the largest

connected component of a network with N nodes is G then

limN→∞
G

N
→ O(1) for φ ≥ φc, (1.12)

limN→∞
G

N
→ 0 for φ < φc. (1.13)

The fraction
G

N
for a 2d lattice, an ER network, and a BA network is plotted in

Fig. 1.2. We can see that the 2d lattice shows the sharpest transition around φc = 0.5 while

the percolation threshold for the ER network is roughly φc ≈ 1
〈k〉 . The BA network, on the

other hand, has a percolation threshold very close to 0.

The average correlation length, ξ, is a quantity proportional to the average cluster

diameter near the percolation threshold and has associated with it a critical exponent ν [11].
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ξ ∝ |φ− φc|−ν , (1.14)

where ν ≈ 4
3

[11], [12]. Many other quantities of interest in percolating systems follow

a similiar power-law behavior near the critical threshold. For example, the average cluster

size, S(φ) is the average size of all connected components in the network when 1− φ edges

have been removed. This quantity is associated with a critical exponent γ [11]

S(φ) ∝ |φ− φc|−γ = ξ
γ
ν . (1.15)

The above results hold only for the limit L� ξ (where L is the length of a d-dimensional

lattice, such that Ld = N). When L � ξ the behavior of these quantities is determined by

L. If we introduce a scaling function

f(x) =

x
γ
ν x� 1

constant x� 1
, (1.16)

we can write the behavior of the average cluster size as

S = ξ
γ
ν f(

L

ξ
). (1.17)

In general, the finite-size behavior of any quantity that is associated with a power-law

of the form |φ−φc|−θ in the infinite limit can be expressed in terms of a scaling function [11].

Random Walks on Ordered and Disordered Lattices

A random walk is a process where we start at a given node and at every time step take

a random step to one of the neighbors of that node [2], [13]. Consider a random walk on a

2d square lattice. If we define R as the distance from the starting node then at step t [8]
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(a) φ = 0.4 (b) φ = 0.5

(c) φ = 0.75 (d) φ = 1

Figure 1.1: A 2d lattice where each edge is occupied with probability φ. The
largest connected component is shown in red.

(a) (b)

Figure 1.2: (a) The giant component as a fraction of the network size for a 2d
lattice, an ER network with 〈k〉 = 4 and a BA network with
coordination number z = 4. All three networks have 104 nodes. (b)
The giant component as a fraction of the network size for 2d
lattices of different sizes.
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R ∝ t
1
2 . (1.18)

As the network becomes disordered, however, this relationship changes. At the perco-

lation threshold the average distance travelled by a random walker on the network is given

by

R ∝ t
1
D′ , (1.19)

where D′ ≈ 2.85± 0.05 [12].

Epidemics and Spreading of Infectious Diseases

A widely-used mathematical model for infectious diseases is the SIR (Susceptible-

Infected-Recovered) model [14]. The model uses differential equations to relate the sus-

ceptible (s), infected (i), and recovered or dead (r) population densities as [2], [15]

ds

dt
= −βsi, (1.20)

di

dt
= βsi− γi, (1.21)

dr

dt
= γi, (1.22)

where β is the rate at which individuals transmit the disease to each other, γ is the

rate at which individuals recover from the disease, and s(t)+i(t)+r(t) = 1. In general, these

equations cannot be solved exactly. However, the steady state value of the final population

of infected individuals goes to 0 (i(∞) = 0) while the susceptible and recovered populations

satisfy [2]

s(∞) = s(0)e−
β
γ
r(∞), (1.23)

r(∞) = 1− s(0)e−
β
γ
r(∞). (1.24)
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We can also define a quantity known as the basic reproduction number, denoted by

R0, which is the average number of people infected by an infected individual over the course

of the time period during which they remain infected. For the SIR model the reproduction

number has the simple form [2]

R0 =
β

γ
. (1.25)

We can rewrite the differential equation for the infected population as

di

dt
=

(
β

γ
s− 1

)
γi(t). (1.26)

We see that when R0 < 1 the infection will quickly die out while when it R0 > 1 it

will persist through the population until not enough of the susceptible population remains

for the disease to maintain itself.

We can numerically solve these equations by discretizing them as follows

s(t+ ∆t) = s(t)−∆tβs(t)i(t), (1.27)

i(t+ ∆t) = i(t) + ∆tβs(t)i(t)−∆tγi(t), (1.28)

r(t+ ∆t) = r(t) + ∆tγi(t). (1.29)

Fig. 1.3 plots SIR dynamics for two different reproduction numbers. The model is sim-

ple and more powerful models with additional compartments representing different phases of

the disease, such as the SEIR (Susceptible-Exposed-Infected-Recovered) model, are built on

it [15]. The model can also be modified to account for spatial patterns of disease spread due

to the movements of population. For example, if we introduce a spatial variable and assume

that our infected population travels and spreads the disease we may write a modified version

of the model that incorporates a diffusive term tracking the movement of the population [16].

In chapter 4 we will use an alternative method to model the spatial spread of the disease by

treating different locations, such as the neighborhoods of a city, as additional compartments

in the SIR model.
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(a) R0 = 5

(b) R0 = 0.9

Figure 1.3: Numerical evaluation of the SIR model with i(0) = 0.01. (a) When
R0 = β

γ
> 1 the disease infects a significant portion of the susceptible

population before it dies out. (b) When R0 = β
γ
< 1 the disease

quickly dies out.

One can map the steady-state of an SIR process to bond percolation on networks [2],

[17]. If we define 1
γ

as the amount of time that every every node remains infected then the

probability that a node will become infected by its neighbor before the neighbor moves to

the recovered state is given by φ = 1 − e−
β
γ . We can then represent this process as bond

percolation where the presence of an edge between two nodes indicates the possibility of

transmission. When any node in a connected cluster is infected, the disease spreads to every

node in that cluster.
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1.2 Quantum Networks

Entangled pairs of particles shared between two parties can be used to transmit in-

formation, with entanglement acting as a physical resource [18]. Communication networks

based on shared entangled particles have been proposed [19] and they exhibit several interest-

ing properties. Before we describe quantum networks in detail we provide a brief overview of

some key concepts from quantum information theory that determine many of the properties

of quantum networks.

1.2.1 Entanglement

A quantum state describing multiple particles is said to be entangled if it cannot

be decomposed as a product of the states of the individual particles. Using the Schmidt

decomposition any pure bipartite entangled state may be written as

|Ψ〉 =
n∑
i

√
αi |ψAi 〉 |ψBi 〉 , (1.30)

where {αi} are the Schmidt coefficients of this state [18], [20]. By tracing out the

degrees of freedom of one observer, we can define the partial density operator

ρA = TrB |Ψ〉 〈Ψ| =
n∑
i

αi |ψAi 〉 〈ψAi | . (1.31)

A common measure of entanglement is the von Neumann entropy given by [18]

E = −TrρA log ρA = −TrρB log ρB = −
n∑
i

αi logαi. (1.32)

We can see from the above expression that the entropy ranges from 0 to 1. For a

two qubit system the maximally entangled states are the singlet states known as the Bell

states [20]
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|Ψ+〉 =
1√
2

(|01〉+ |10〉) , (1.33)

|Ψ−〉 =
1√
2

(|01〉 − |10〉) , (1.34)

|Φ+〉 =
1√
2

(|00〉+ |11〉) , (1.35)

|Φ−〉 =
1√
2

(|00〉 − |11〉) . (1.36)

We can transform a given entangled state into some other entangled state. Consider

the following example taken from [18]: suppose that Alice and Bob each have a particle of

the entangled state |Φ+〉. Alice then measures her particle by applying the measurement

operators

M1 =

cos θ 0

0 sin θ

 , (1.37)

M2 =

sin θ 0

0 cos θ

 . (1.38)

If Alice measures sin θ |00〉 + cos θ |11〉 she applies a NOT gate, and if she measures

cosθ |00〉 + sin θ |11〉 she does nothing. She reports her result to Bob, who applies his own

NOT gate for the first measurement, or does nothing in the case of the second measurement.

At the end of this process of local operations and classical communications (LOCC) Alice

and Bob have transformed |Φ+〉 into cos θ |00〉+ sin θ |11〉.
The above is an example of the general process of entanglement transformation where

one pure bipartite state can be transformed into another using only LOCC [21]. In general,

a state |Ψ〉 may be converted to a state |Φ〉 with probability [22]

P (Ψ→ Φ) = minl∈[1,n]

(
{
∑n

i=l αi∑n
i=l βi

}
)
, (1.39)

where {αi} and {βi} are the Schmidt coefficients of |Ψ〉 and |Φ〉 respectively. A special
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form of entanglement transformation is entanglement distillation, where some arbitrary pure

state |ψ〉 is converted to one of the Bell states [18], [23].

Concurrence

We now introduce the quantity known as concurrence, defined for two qubit systems

as [24]

C = | 〈Ψ|Ψ̃〉 |, (1.40)

where |Ψ̃〉 = σx ⊗ σy |Ψ∗〉, and |Ψ∗〉 is the complex conjugate of |Ψ〉. Concurrence can

equivalently be expressed as [25]

C = 4
√

1− Trρ2. (1.41)

Concurrence is related to the von Neumann entropy as [24]

E = E(C), (1.42)

where

E(C) = H

(
1 +
√

1− C2

2

)
, (1.43)

and

H(x) = −x log2 x− (1− x) log2(1− x). (1.44)

Concurrence can be used to write an explicit formula for the entropy of formation for

a two-qubit system [24]. In chapter 3 we still discuss concurrence percolation theory, which

is a theory analogous to percolation used in the analysis of quantum networks.
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1.2.2 Quantum Random Networks

A quantum network is a model of a communication network where bipartite entangled

qubits are shared between nodes [26]. For example, a 1d quantum network can be constructed

using quantum repeaters [27], [28], [29].

A quantum random network consisting of N nodes can be constructed by assuming

that any pair of nodes share one pair of particles that are in the non-maximally entangled

state

|Ψ〉 =
√
λ1 |00〉+

√
λ2 |11〉 , (1.45)

where λ1 + λ2 = 1. By using local operations and classical communication (LOCC)

we may transform this state into the maximally entangled Bell state Φ = |00〉 + |11〉 with

probability p = min(1, λ2), which is the singlet conversion probability (SCP) [22], [26]. This

is a percolation-like process which is reminiscent of the construction of classical random

networks.

A remarkable property of quantum random networks is that for every possible subgraph

there is a quantum random network with p ∼ N−2 containing that subgraph, which can be

obtained through local operations between the nodes [26]. This is in sharp contrast to

classical random networks where there are critical values of p ∼ N−z below which certain

subgraphs do not exist (see for example Tab. 1.1).



CHAPTER 2

DIFFUSIVE PERSISTENCE ON DISORDERED LATTICES

AND RANDOM NETWORKS

2.1 Introduction

2.1.1 Persistence

The persistence probability is defined as the probability that some observable in a

random process has not crossed some threshold value by time t (e.g., after initializing the

system at t = 0) [30], [31]. The observable being studied may be global, such as a bulk order

parameter, or local, such as the value of a field at a node.

Past research have investigated the persistence properties of stochastic systems on reg-

ular lattices. Examples include diffusion [32], [33], interface fluctuations [34], [35], magnetic

and reaction-diffusion systems [36], [37], [38], and the contact process [30], [39]. The persis-

tence probability is also of particular interest in non-equilibrium or disordered systems such

as spin-relaxation in the Ising model [40], [41] and the Blume-Capel model [42], as well as

the persistence of the bulk order parameter in inhomogenous magnetic systems with defects

[43].

The fundamental question that researchers addressed (after initializing the system at

time t = 0) is the probability Pi(t) that the state of the system at location i has not changed

by time t (in homogeneous systems, e.g., in ones with translational invariance, this quantity is

independent of the location i). For example, for simple diffusion, the persistence probability

is the probability that the diffusion field ψi(t) has not changed its sign by time t. For an

Ising or Voter model [36], [37], [38], it is the probability that the local state variable has

never switched by time t.

In a wide variety of systems the persistence probability follows a power-law decay,

P (t) ∝ t−θ [31], [44]. For example, in one- and two-dimensional homogeneous diffusion, the

local persistence probability follows a power law decay with exponents θ ≈ 0.12 [32], [33]

and θ = 3/16 respectively [45].

Beyond the fundamental diffusion processes, persistence characteristics of stochastic

dynamics on network can clearly have important applications to complex systems. For

example, in critical infrastructure networks, persistence can be defined as the probability

15
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that a local region remains operational up to time t. In influencing and opinion dynamics in

social networks, persistence can be defined as the probability that certain nodes or network

“regions” in a have not changed opinion since the beginning of a“campaign”.

2.1.2 Percolation

The percolation process on a lattice may be understood as removing either the connec-

tions between sites (bond-percolation) or the sites themselves (site percolation). The process

is characterized by φ, where 1− φ is the probability of removal. Percolation on a 2D lattice

creates a fractal structure, with the percolation threshold, φc, marking the point at which an

infinite cluster first appears [46]. The fractal dimension of the lattice for φ ≥ φc is 2, while

below the percolation threshold it is 1.896 [8]. Thus the topology of the lattice undergoes a

phase transition as it becomes disordered.

The effect of this change in topology naturally affects any process on the lattice. Diffu-

sion on lattices, for example, is associated with power-law behavior. When the 2D lattice is

above the percolation threshold the distance traversed in a random walk behaves as R ∝ t
1
2 .

However, when the network is at its site percolation threshold of φc = 0.59 the behavior

changes to R ∝ t
1
D′ , where D′ ≈ 2.85± 0.05 [12].

In this paper, in order to study the effects of disorder on the temporal dynamics in lat-

tices and networks, we investigate the local diffusive persistence behavior of various random

graph topologies. In particular, we study the diffusive persistence probability of a diffu-

sive process on disordered spatially-embedded and random networks, created by removing a

fraction of edges, defined as 1− φ.

2.2 Methods

We define a diffusive field variable ψi for the ith node of the network. The value of this

variable for each node in the network is initialized by sampling from a normal distribution

with 0 mean and a standard deviation of 1. Following previous work [32], [33], the discretized

diffusion equation that we will study is

ψi(t+ ∆t)− ψi(t) = −α∆t
∑
j

Aij(ψi(t)− ψj(t)), (2.1)
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Figure 2.1: Persistence on a 2D lattice with 104 nodes. The diffusive persistence
exhibits a power-law behavior. However, as edges are removed from
the network, the power-law exponent changes. At the percolation
threshold, the power-law exponent is θ ≈ 0.14 ± 5.3 ∗ 10−5. The
flattening out of the curves is due to the finite size of the network.

where Aij is the adjacency matrix associated with the network and the RHS of the equation

represents the graph Laplacian operator. We choose α = 1 and ∆t = 1
8
. In order to track

the progress of diffusion we define persistence, P (t), as the fraction of nodes for which ψi(t)

has not changed sign.

To create disordered networks we iterate through the edge list and randomly remove

edges with probability 1− φ. We then repeat the diffusive process on the giant component

of the resulting disordered network. The bond-percolation threshold of 2D lattices is 0.5,

and we vary φ in the range [0.5, 1].

While our main focus is disordered 2D lattices we also investigate other network topolo-

gies, such as percolating Erdős-Rényi (ER) networks and percolating k-regular random net-

works.

For every network configuration we generate 100 samples and simulate the diffusion
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Table 2.1: Values of the power-law exponent, θ, associated with diffusive
persistence on 2D lattices with 3002 nodes as a function of φ, where
1− φ is the edge-removal probability.

φ θ
1 0.186± 1.4 ∗ 10−4

0.9 0.189± 1.6 ∗ 10−4

0.8 0.189± 1.4 ∗ 10−4

0.5 0.141± 5.3 ∗ 10−5

equation with randomized initial conditions.

2.3 2D Lattices

Fig. 2.1 shows the local persistence probability as diffusion proceeds on a 2D network

with a million nodes. P (t) exhibits power-law behavior. For the fully-intact network (i.e

φ = 1) we obtain, θ = 0.186± 1.4 ∗ 10−4. For different values of φ the persistence maintains

this power-law behavior, although we observe a different slope at the percolation threshold.

In order to characterize the change in the power-law exponent as a function of φ we fit

the different persistence curves. The results are shown in Tab. 2.1. The exponent undergoes

a dramatic shift at the percolation threshold. The persistence at the percolation threshold

follows a power-law with novel exponent θ = 0.141 ± 5.3 ∗ 10−5.

Away from the percolation threshold the power-law exponent maintains its value of

approximately 0.186 ± 1.4 ∗ 10−4 for φ > 0.8. We were not able to clearly discern the

behavior of the power-law exponent for intermediate values of φ.

2.3.1 Finite-size Behavior at and Above the Percolation Threshold

We can see from Fig. 2.2a that there is a finite-size effect in the persistence curves

where they flatten at some non-zero value. We refer to this limiting value as P (∞) and the

time at which this limiting value is reached as tx. On lattices of length L, where L2 is the

number of nodes in a 2D lattice, the crossover time behaves as tx ∼ Lz and the limiting

value of persistence has a power-law behavior P (∞) ∝ L−zθ [47], where θ is the exponent

associated with the power-law decay of P (t). Following previous work [12], [47], [48] we take

the scaling behavior of the persistence to be of the form
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(a) (b)

Figure 2.2: (a) Finite-size effects on 2d lattices with φ = 1. (b) Scaling behavior
of 2d lattices for φ = 1 with θ = 0.186 and z = 1.99.

(a) (b)

Figure 2.3: (a) Finite-size effects on 2d lattices with φ = 0.9. (b) Scaling
behavior of 2d lattices for φ = 0.9 with θ = 0.189 and z = 1.99.

(a) (b)

Figure 2.4: (a) Finite-size effects on 2d lattices with φ = 0.5. (b) scaling
behavior of 2d lattices for φ = 0.5 with θ = 0.141 and z = 2.62.
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Figure 2.5: The limiting value, P (∞), of the 2D lattice with φ = 0.5 obeys a
power-law relation as a function of the system length, L. The error
bars show the standard error over 100 runs. The dotted black line
is the best-fit power-law for P (∞) ∝ L−zθ.

P (t, L) = L−zθf(t/Lz), (2.2)

where

f(x) =

x
−θ if x� 1,

constant if x� 1.
(2.3)

For φ = 1 we calculate z = 1.99 ± 2.8 ∗ 10−3, in good agreement with the literature

value of the scaling exponent [47]. The scaling behavior of 2D lattices with φ = 1 is shown

in Fig. 2.2b and we see good collapse of all the curves.
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(a) (b)

Figure 2.6: (a) Local persistence for ER networks with n = 104. The dotted
lines show the segment that has been fit with a power-law. (b) The
power-law exponent of the persistence curves as a function of the
average degree.

We also observe finite-size effects for disordered lattices, as shown in Fig. 2.3a. In

comparison to the fully-intact network this effect is observed at longer time-scales. Using

the same value of z that we determined for φ = 1 we plot the scaling behavior in Fig. 2.3b.

We see that as the network size increases the collapse of the persistence curves onto a single

curve improves.

When the 2D lattice is at the percolation threshold with φ = 0.5 we observe that the

flattening of the persistence curves appears at a much longer time scale as can be seen in

Fig. 2.4a. We obtain z for this case by plotting P (∞, L) against L and fitting a power-law

with exponent −zθ, as shown in Fig. 2.5. We obtain z = 2.56 ± 2.3 ∗ 10−3. Fig. 2.4b plots

LzθP (t) against t/Lz for our calculated values of θ and z. We can see from the figure that

there is reasonably good collapse of the different curves onto a single curve.

The finite-size behavior that we have studied in this section stems from the underlying

diffusive process. The distance traveled in a random walk behaves as R ∝ t
1
2 for φ = 1, but

is R ∝ t
1
D′ on 2D lattices at the site percolation threshold, where D′ ≈ 2.85 ± 0.05 [7, 12].

This implies that tx ∼ LD
′
. The difference between our value of z and the literature value

of D′ may stem from the greater sensitivity of the persistence process to finite-size effects.

We expect to see closer agreement by looking at longer time-scales and larger network sizes.
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(a) (b)

Figure 2.7: (a) Diffusive persistence on Erdős-Rényi networks (n = 104) for
different average degrees, 〈k〉, and different edge removal
probabilities, 1− φ. (b) Diffusive persistence for ER networks of
different sizes with 〈k〉 = 4.

(a) (b)

Figure 2.8: (a) Local persistence for k-regular networks with n = 104. The
dotted lines show the segment that has been fit with a power-law.
(b) The power-law exponent of the persistence curves as a function
of the network degree.

2.4 Complex Networks

For complex networks we use ∆t = 1
100

since we study networks with higher average

degrees than the case of 2D lattices.

2.4.1 Erdős-Rényi (ER) Networks

The behavior of persistence is shown in Fig. 2.6a. In contrast to the clear power-law

scaling of 2D networks no such behavior is observed for ER networks.

Fig. 2.7b also shows that the particular shape of the curves is not defined by the
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(a) (b)

Figure 2.9: (a) Diffusive persistence on k-regular networks (n = 104) for
different k, and different edge removal probabilities, 1− φ. (b)
Diffusive persistence for k-regular networks of different sizes with
k = 4.

network size but is a function of the particular network topology.

Fig. 2.6a shows persistence curves for different average degrees and different values of

φ. As more edges are removed from a network of a given average degree we see that its

persistence behavior changes to that of a network with a smaller average-degree. This is not

surprising, since removing a certain fraction of edges from an ER network does not cause its

topology to change, rather only its degree distribution is changed.

While we do not see any clear power-law scaling, we do notice that as the average degree

of the network increases the persistence curves cluster increasingly close to each other. By

fitting a power-law to a segment of the persistence curves (marked by the dotted lines in

Fig. 2.6a) we are able to characterize this effect, as shown in Fig. 2.6b.

2.4.2 k-Regular Random Networks

The behavior of diffusive persistence for k-regular random networks is shown in Fig. 2.8a.

We see a distinct segment of the curve that shows power-law scaling. Similar to ER net-

works, we notice that as k increases the persistence curves become closer, and by plotting

the power-law exponent θ as a function of k in Fig. 2.8b we see that this exponent reaches

an asymptotic value of approximately 0.22 as k becomes larger.

As we delete edges from the network we can see from Fig. 2.9a that the persistence

maintains its power-law behavior for some segment of the curve.
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2.5 Conclusion

Our investigations shows that regular networks, such as the 2D network, show per-

sistence behavior with clear power-law scaling. As the network becomes more disordered 

through the percolation process, the power-law exponent remains constant at θ ≈ 0.186 for 

φ > φc but with some strong corrections to the scaling behavior. However, at φc we observe 

the novel power-law exponent θ ≈ 0.141 ± 5.3 ∗ 10−5. This change may likely be associated 

with the phase-transition that the network topology undergoes at the percolation threshold.

We also study finite-size effects for 2D lattices at the percolation threshold and dis-

covered that the limiting value of the persistence is associated with a different exponent of 

z ≈ 2.56 ± 2.3 ∗ 10−3 instead of the known value of z = 2 for ordered lattices.

We also observe interesting behavior for k-regular random networks where the persis-

tence curves show clear power-law behavior. However, we observe no such behavior for 

ER networks.

___________________________

Portions of this chapter are available as a preprint: O. Malik,  Melinda Varga, Alaa 

Moussawi, David Hunt, Boleslaw Szymanski, Zoltan Toroczkai, Gyorgy Korniss, "Diffusive 

Persistence on Disordered Lattices and Random Networks," preprint arXiv:2207.05878 July 12, 

2022.



CHAPTER 3
CONCURRENCE PERCOLATION THRESHOLD OF

LARGE-SCALE QUANTUM NETWORKS

3.1 Introduction

The application of network science to problems in quantum physics is a relatively new 

and rapidly developing field [50]. Quantum networks, where the links between nodes repre-

sent entangled qubits [19], [26], [29], [51], [52] are expected to form the basis of the quantum 

internet. Recent advances in quantum repeater technology have made long-distance, noise-

resilient quantum communication possible [53], [54], [55], [56], [57]. These networks have 

quantum correlations that can be exploited by performing specific local measurements on 

any node.

Protocols for quantum communication rely on the conservation of correlations in entan-

gled states, and the generation and distribution of entanglement are necessary for quantum 

networks [58]. For a given network topology, we want to determine the minimum amount 

of entanglement necessary between qubits to maintain a giant component in the network, 

which is a problem analogous to percolation on classical networks [2], [8], [59], [60]. However, 

there are crucial differences between classical and quantum networks, limiting the extent to 

which we can map a classical percolation theory to quantum networks. For example, in 

a classical random network with N nodes, if an edge between nodes exists with probabil-

ity p, a subgraph with n nodes and l edges exists above a critical threshold of p given by 

pc ∝ N−n/l [61]. For a quantum network, however, pc ∼ N−2 for all subgraphs for large 

N [62]. We can also use measurement strategies to alter the topology of a quantum network, 

meaning that the optimal entanglement percolation threshold needs to be minimized over 

all possible measurement strategies [51].

Recently, Meng et al. [49] proposed a concurrence percolation theory (ConPT), pre-

dicting a considerably lower entanglement percolation threshold for quantum networks than 

previously known thresholds. Despite the compelling result, the computational complexity 

of ConPT, given that it can only be calculated for networks consisting of ∼ 60 nodes at

Portions of this chapter have been published as: O. Malik, X. Meng, S. Havlin, G. Korniss, B. Szyman-
ski, J. Gao, ”Concurrence percolation threshold of large-scale quantum networks,” Commun. Phys., 5: 
193, July 29, 2022; https://doi.org/10.1038/s42005-022-00958-4 
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Table 3.1: Comparison of results for θth, the threshold of long-distance
entanglement transmission for various quantum network topologies,
given that each link is a bipartite state of qubits,
|Ψ〉 = cos θ |00〉+ sin θ |11〉, θ ∈ [0, π/4].

Network topology (π/4)−1θth (Fast ConPT) (π/4)−1θth (Ref. [49])
Bethe Lattice (Cayley Tree) (L = 100, k = 3) 0.5 0.5
Bethe Lattice (Cayley Tree) (L = 100, k = 4) 0.39 0.3918
2D square (n = 82, S9) 0.40 0.416
2D square (n = 202, S3) 0.44 n/a
2D square (n = 2002, S2) 0.5 n/a
ER ( n = 103, 〈k〉 = 3, S5) 0.6± 0.002 n/a
ER ( n = 103, 〈k〉 = 4, S5) 0.53± 0.0019 n/a
ER ( n = 104, 〈k〉 = 2, S1) 0.85± 0.0021 n/a
BA ( n = 103, z = 5, S1) 0.3± 0.0018 n/a
BA ( n = 104, z = 1, S5) 0.86± 0.0057 n/a

maximum, puts great limitation on its utility.

Here, we present a fast and tangible solution for the calculation of the ConPT threshold.

Our method relies on two approximations. The first is the parallel approximation, which

treats all paths in the network as non-overlapping. The second is what we call the Sm

approximation, where we calculate the total concurrence between nodes using a subset of

paths consisting of the m-th shortest paths on the network, with m = 1 referring to the

shortest paths. We find that our approximate method agrees closely with the analytical

results provided by Meng et al. [49]. Depending on the choice of Sm, the computation based

on this method can be several orders of magnitude faster than the analytical approach, as

shown in Fig. 3.7. By combining our method with combinatorial expressions for shortest

and second-shortest paths we can calculate, for the first time, an approximation for the

concurrence for much larger networks than would be analytically possible. Here, we calculate

the sponge-crossing concurrence for 2D lattices with up to 2002 nodes. We also extend the

notion of concurrence to networks without boundaries and present results for Erdős–Rényi

and Barabási–Albert networks of up to 104 nodes. Our results are summarized in Table 3.1.

3.2 Quantum Networks and Entanglement Percolation

Quantum networks [26] are used to model a scalable communication network based

on quantum teleportation. It consists of nodes that denote a local set of qubits and edges,

which represent a bipartite and entangled state of qubits shared between the two connected

nodes (Fig. 3.1a). The simplest practical quantum network can be built from quantum re-
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(a)

(b)

Figure 3.1: Schematic representation of a quantum network. (a) Each link in
the network represents a pair of entangled qubits shared between
the two connected nodes. (b) The entanglement swapping protocol.
Node B performs a Bell state measurement (BSM) on its qubits,
causing the qubits in A and C to become entangled. Entanglement
swapping can modify the topology of a quantum network, changing
its percolation threshold.

peaters [27], [28] which share only one entangled pair between nodes [29]. Quantum commu-

nication networks are expected to have several advantages over classical communication net-

works, including the ability to use quantum cryptography and send “quantum software” [19],

[26].

The bipartite state of any entangled qubits in the network can be defined as

|Ψ〉 = cos θ |00〉+ sin θ |11〉 (3.1)

up to a unitary transformation, where θ can change from 0 to π/4. Each entangled pair can be

converted to a maximally entangled pair with a certain probability p, known as the singlet-

conversion probability (SCP), given by p = 2 sin2 θ [22]. This represents the probability

of establishing a perfect communications channel [62]. Converting every entangled pair in

the network to a singlet is equivalent to a bond-percolation process and this measurement

strategy is called classical entanglement percolation (CEP) [8], [51].

Having established the mapping to percolation, it is natural to ask what is the minimum

level of entanglement necessary for the formation of a perfect communication channel between
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any two stations. Using classical percolation arguments, we can establish the minimum level

of entanglement necessary for establishing an infinite cluster under CEP for some simple

cases. For example, it is θth = π/4 for 1D chains and θth = π/6 for 2D square lattices [51].

Unfortunately, CEP does not give us the lowest possible percolation threshold value for

a quantum network because it is possible to lower the entanglement threshold necessary for

creating an infinite cluster by changing the network’s topology. This is done through a pro-

cess known as entanglement swapping, shown in Fig. 3.1b, where two previously unentangled

qubits are entangled using local operations and classical communication (LOCC) [63].

The network topology may be altered to lower the percolation threshold before con-

verting every link to a singlet by performing a series of entanglement swapping operations.

This strategy is known as quantum entanglement percolation (QEP) [51], [64]. The limi-

tation of QEP is that it is not generally adaptable to arbitrary network topology as CEP

is. For most network topologies, QEP cannot improve the percolation threshold in general.

Note also that neither CEP nor QEP are optimal, meaning that it is impossible to determine

if any given measurement strategy results in the lowest potential value of the percolation

threshold [50].

3.3 Concurrence Percolation Theory

In order to address the above limitations, a new local statistical theory has recently

been proposed to explain the observed quantum advantage in quantum networks over the

prediction of classical percolation theory [49]. This theory is analogous to classical perco-

lation theory but fundamentally different, as it is not built on probability measure p but

a new variable c for each link, which stands for concurrence—a key measure of bipartite

entanglement [65]. For pure bipartite states, the concurrence is defined as [25]

c =
√

2(1− Trρ2
r), (3.2)

where ρr is the reduced density matrix of one party (subsystem) of the bipartite state. For

qubits, Eq. (3.1), the concurrence is simply

c = 2 cos θ sin θ. (3.3)
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Meng et al. then use this quantity in place of probability to construct a concurrence perco-

lation theory (ConPT) on arbitrary network topologies [49].

To be more specific, recall that for classical bond percolation on a lattice, any link

in the lattice is active with probability p—a variable that should be considered as the link

weight. We may then define a “sponge-crossing” (SC) quantity, PSC, as the probability that

at least one path connecting the two distant boundaries is fully active. PSC, as a function of

p, can be calculated by summing up all paths that connect the two boundaries of the lattice,

following basic addition and multiplication rules of probability measures [8]. Essentially, we

treat PSC as a “weighted sum of all paths”.

Now, given an n-node quantum network, Gθ(n), where all the link weights are θ, by

the CEP/QEP schemes we have the mapping p ≡ 2 sin2 θ (i.e. the SCP). From classical

percolation theory, it is known that a minimum value of p exists, below which the sponge-

crossing probability, PSC, becomes zero in the thermodynamic limit n→∞:

pth = inf {p ⊂ [0, 1]|limn→∞PSC[Gθ(n)] > 0} . (3.4)

This minimum value, pth, is known as the percolation threshold.

The ConPT is constructed differently, using the mapping c ≡ sin 2θ instead [49]. Still,

an analogous quantity, CSC, referred to as the sponge-crossing concurrence can be defined

as the weighted sum of all paths in terms of this new weight c [49]. It is believed that a

nontrivial threshold on c also exists:

cth = inf {c ⊂ [0, 1]|limn→∞CSC[Gθ(n)] > 0} , (3.5)

such that cth is the minimum value of the concurrence c per link, below which CSC becomes

zero when n→∞.

It remains to show how the “weighted sum of paths” is calculated for ConPT. As a

problem of path connectivity, the calculation turns out to closely resemble the analysis of

an electrical resistor network, where a set of series and parallel rules are needed as the basic

connectivity rules [49], [66]. Fundamental quantum communication theorems demand that,
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for k links connected in series, the total concurrence must be given by

cseri ≡ seri(c1, c2, . . . ck) =
k∏
i=1

ci. (3.6)

The rule for k links connected parallel to each other is more involved,

1 +
√

1− c2
para

2
= max

{
k∏
i=1

1 +
√

1− c2
i

2
,
1

2

}
, (3.7)

which may be restated as

cpara ≡ para(c1, c2, . . . ck) =

2
√
f(c1, . . . ck)− f(c1 . . . ck)2 f(c1 . . . ck) > 1/2,

1 f(c1 . . . ck) ≤ 1/2,
(3.8)

where f(c1 . . . ck) =
∏k

i=1

1+
√

1−c2i
2

. A caveat lies in the fact that if the network topology is

not series-parallel [67] but has nontrivial loops (e.g., a bridge-circuit topology), then CSC

cannot be calculated using only series and parallel rules. Higher-order connectivity rules

are needed, of which general forms are unknown. There is, however, a heuristic way to

approximate these higher-order rules: by employing the so-called star-mesh transform, all

possible higher-order rules can be approximated using only the series and parallel rules [49].

Equations (3.6) and (3.7), together with the star-mesh transform, allow us to calculate

the “weighted sum of paths” between arbitrary two nodes in a quantum network of arbitrary

topology. Formally, we denote the two nodes as the source node (s) and the target node (t),

respectively, and we define the final concurrence between them as the s-t concurrence, Cst.

Note that although s and t are named differently, they are symmetric and exchangeable.

Hence, between any two nodes, a Cst can be calculated by the connectivity rules mentioned

above (see Fig. 3.2 for example).

On regular lattices, the sponge-crossing concurrence CSC can be calculated by contract-

ing two separate boundaries into two “mega” nodes [49] and calculate the s-t concurrence

between them. As we increase the network size n, a threshold cth will emerge, accompa-

nied with a sudden jump of CSC as soon as the concurrence c per link becomes larger than

cth. This observation supports the existence of ConPT. Also, the observed cth is significantly

smaller than all previously known classical-percolation-theory-based schemes [49], exhibiting
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Figure 3.2: Example of calculating the s-t concurrence Cst between nodes 1 and
6 on a 2D rectangular lattice using ConPT connectivity rules [series
and parallel rules, Eqs. (3.6) and (3.7), respecitively]. (Left to right:
step i-v.) Step i: original lattice; Steps ii and iii: series rules; Step
iv: star-mesh transform on the star-graph (edges 4↔ 1, 4↔ 3,
4↔ 6), then parallel rule for edges 1↔ 3 and 3↔ 6; Step v: series
rule for edges 1↔ 3 and 3↔ 6, then parallel rule for edge 1↔ 6.

a quantum advantage in large-scale quantum networks that is purely structural.

Despite the fresh insights the ConPT has offered, it has two main limitations:

1. The heuristic approximation (star-mesh transform) used for higher-order connectivity

rules is a double-recursive process that is computationally intensive, thus only feasible

for networks of very small size.

2. Although an s-t concurrence can be calculated between any two nodes in any network

topology, the sponge-crossing concurrence CSC is only defined for regular lattices that

have apparent boundaries, and thus so is cth. It is unknown how to define cth on

complex network topology where we cannot define a boundary, and, provided a proper

definition, how (non)trivial the numerical result of cth would be.

Unlike cluster-based percolation theories, ConPT is based on path connectivity, which

is arguably more general [49]. This is why cth simply cannot be defined by clusters like in

classical percolation theory for complex network topology. A proper definition and feasible

calculation of cth will be of great interest for the theory itself as well as for its applications.
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Below, we will show our suggested solution that can satisfactorily handle these two limitations

of ConPT.

3.4 A Fast and Tangible Solution for Concurrence Percolation

We start by generalizing CSC from being defined between two apparent boundaries to

two arbitrary sets of nodes, denoted S and T . It is reasonable that Eq. (3.5) will yield a

nontrivial ConPT threshold cth for this generalized CSC, as long as the lengths of all paths

connecting S and T increase with the network size n. We contract the two sets S and T

into two “mega” nodes, which amounts to erasing the internal network topologies of S and

T , and then calculate the s-t concurrence between them. This provides us a definitive way

of calculating CSC for arbitrary network topology and inferring cth from Eq. (3.5).

Our numerical computation of cth (“Fast ConPT computation”) on large-scale quantum

networks is further made possible by introducing two key simplifying approximations: the

parallel approximation and the Sm approximation.

Parallel Approximation

In this Section, we introduce the parallel approximation, where we treat all paths

connecting nodes of interest to be parallel, i.e. we treat them as if they have no shared

edges. For an arbitrary network with n nodes and uniform edge-weights c, the parallel

approximation C ′SC of the true sponge-crossing concurrence between two sets of nodes, S

and T , is given by

1 +
√

1− C ′2SC

2
= max


n∏
l=1

(
1 +
√

1− c2l

2

)Nl

,
1

2

 , (3.9)

where Nl is the total number of self-avoiding paths of length l that connect s and t for all

s ∈ S and t ∈ T , respectively. Equation (3.9) is the mathematical statement of the parallel

approximation, indicating that we are taking each of the Nl paths to be parallel (Fig. 3.3).

We illustrate the approximation with a simple example, and then show that on series-parallel

networks [67] the concurrence calculated under the parallel approximation forms an upper

bound to the true concurrence. First, we consider the case where our network is essentially

parallel, i.e., it can be expressed as the parallel combination of k subnetworks each with
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Figure 3.3: The parallel approximation preserves the number of paths and
their lengths, but ignores overlap between the paths. In this
example, k branches of a network, each with concurrence cpi, all
join to a segment with concurrence cs. Under the parallel
approximation the network is transformed so that the k branches
have no overlap with each other.

concurrence ci. In this case, the parallel approximation is exact:

C ′SC = CSC = para(c1, c2, . . . ck). (3.10)

The more interesting case is that of an essentially series network, i.e., a network that

can be decomposed as a combination of subnetworks in series. We consider an exemplary net-

work that splits into k branches, each with concurrence cpi (Fig. 3.3). The concurrence of the

segment before branching is cs. Following the series and parallel rules [Eqs. (3.6) and (3.7)],

the sponge-crossing concurrence from the left of this network segment to the right is

CSC =

cs
(

2
√
f(cp0 , . . . cpk)− f(cp0 , . . . cpk)

2
)

f(cp0 , . . . cpk) > 1/2,

cs f(cp0 , . . . cpk) ≤ 1/2,
(3.11)

where f(cp0 , . . . cpk) =
∏k

i=1 g(cpi) =
∏k

i=1

(
1 +

√
1− c2

pi

2

)
. Under the parallel ap-

proximation, the network is transformed so that the concurrence of the segment is given

by
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C ′SC =

2
√
f(cscp0 , . . . cscpk)− f(cscp0 , . . . cscpk)

2 f(cscp0 , . . . cscpk) > 1/2,

1 f(cscp0 , . . . cscpk) ≤ 1/2.
(3.12)

Since cscpi ≤ cpi , it follows that g(cscpi) ≥ g(cpi) and f(cscp0 , . . . cscpk) ≥ f(cp0 , . . . cpk).

There are three cases:

1. 1/2 ≥ f(cscp0 , . . . cscpk) ≥ f(cp0 , . . . cpk). In this case, it is obvious that C ′SC = 1 ≥ CSC.

2. f(cscp0 , . . . cscpk) ≥ f(cp0 , . . . cpk) > 1/2. Now we consider the fraction

(
C ′SC

CSC

)2

=
f(cscp0 , . . . cscpk)(1− f(cscp0 , . . . cscpk))

c2
sf(cp0 , . . . cpk)(1− f(cp0 , . . . cpk))

. (3.13)

The behavior of this expression can be inferred by considering some limiting cases.

When cpi = 0 for all i it results in CSC = C ′SC = 0. If we increase the concurrence of a

single branch i to be greater than 0 while holding the other branches to be zero, then

the expression becomes(
1
2

+ 1
2

√
1− c2

sc
2
pi

) (
1−

(
1
2

+ 1
2

√
1− c2

sc
2
pi

))
c2
s

(
1
2

+ 1
2

√
1− c2

pi

) (
1−

(
1
2

+ 1
2

√
1− c2

pi

)) = 1, (3.14)

which may be reexpressed as g(cscpi)(1− g(cscpi)) = c2
sg(cpi)(1− g(cpi)). This result is

simply a statement of the fact that, given only one branch, the parallel approximation

is identical to the exact result (since there is one and only one path). We now add a

second branch, j, while leaving the remaining k − 2 branches with zero concurrence.

The ratio of the two values of concurrence now becomes(
C ′SC

CSC

)2

=
g(cscpi)g(cscpj)

(
1− g(cscpi)g(cscpj)

)
c2
sg(cpi)g(cpj)

(
1− g(cpi)g(cpj)

) . (3.15)

For cs � 1 the fraction above reduces to

2c2
pi

+ 2c2
pj

c2
pi

+ c2
pj
− 1

2
c2
pi
c2
pj

+ c2
pj

√
1− c2

pi
+ c2

pi

√
1− c2

pj

≥ 1, (3.16)
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and approaches 1 as cs goes to 1. The derivative with respect to cs,

∂

∂cs

(
C ′SC

CSC

)2

=

−
csc

2
pi
c2
pj

(√
1− c2

sc
2
pi

+
√

1− c2
sc

2
pj

+
√

1− c2
sc

2
pi

√
1− c2

sc
2
pj

)
23g(cpi)g(cpj)

(
1− g(cpi)g(cpj)

)√
1− c2

sc
2
pi

√
1− c2

sc
2
pj

,

(3.17)

is non-positive for 0 ≤ cs ≤ 1, indicating that the expression of the parallel approx-

imation is never smaller than the true percolation. This tells us that the addition of

another branch results in the expression of the parallel approximation becoming larger

than the true concurrence calculated through series-parallel rules. As more branches

are added to the expression the concurrence calculated through the parallel approxi-

mation remains larger than the true concurrence

C ′SC

CSC

=

√
f(cscp0 , . . . cscpk)(1− f(cscp0 , . . . cscpk))

c2
sf(cp0 , . . . cpk)(1− f(cp0 , . . . cpk))

≥ 1. (3.18)

Notice that while {cpi} need to be constrained such that f(cp1 . . . cpk) >
1
2
, the above

expression holds for all {cpi}.

3. f(cscp0 , . . . cscpk) > 1/2 ≥ f(cp0 , . . . cpk). As before, we consider the fraction

C ′SC

CSC

=

√
f(cscp0 , . . . cscpk)(1− f(cscp0 , . . . cscpk))

c2
s(1/4)

(3.19)

Since we require that f(cp1 . . . cpk) ≤ 1/2, there is a lower bound to the smallest value

of concurrence that any branch can have given by min({cpi}) ≥ 4
(

1
2

)1/k
(

1−
(

1
2

)1/k
)

.

Additionally, as cs → 1 the function f(cscp1 , . . . cscp2) will becomes less than 1
2

and we

will revert to case 1. Therefore there is also an upper bound on cs. If we remain below

this value and f(cscp1 . . . cscpk) > 1/2 then for small cs the expression reduces to
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C ′SC

CSC

≈

√√√√ k∑
i=1

c2
pi
, (3.20)

≥

√√√√4k

(
1

2

)1/k
(

1−
(

1

2

)1/k
)
≥ 1, (3.21)

where the equality only holds for k = 1. As cs approaches its allowed upper bound

and f(cscp1 . . . cscpk)→ 1/2

limf(cscp1 ...cscpk )→1/2
C ′SC

CSC

=

√
1

c2
s

≥ 1. (3.22)

Since this expression only differs from the previous case by terms in the denominator

that do not depend on cs, the derivative with respect to cs for this case will also be

non-positive for all values of cs. Therefore

C ′SC

CSC

=

√
4
f(cscp0 , . . . cscpk)(1− f(cscp0 , . . . cscpk))

c2
s

≥ 1 (3.23)

We have shown that C ′SC is an upper bound for CSC on series-parallel networks. Inter-

estingly, as we will see, this upper bound seemingly becomes tighter as the network becomes

larger. We hence expect that a new concurrence threshold on C ′SC could even emerge, which

should numerically approach the true cth from below and completely match cth in the ther-

modynamic limit n→∞.

Sm Approximation

For most regular lattices and complex networks, however, the distribution ofNl [Eq. (3.9)]

is not so trivial. When we look at arbitrary networks, the calculation for the sponge-crossing

concurrence is essentially a path-counting problem which may require approximation as well.

Although the literature of path counting on graphs is rich and well studied, unfor-

tunately, there is almost no closed-form solution for enumeration of self-avoiding walks of
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arbitrary length for even the simplest network (like 2D lattices) [68]. While approximate

path enumerations exist for both 2D lattices [69] and random networks [70], we find them

impractical, since the concurrence calculation is very sensitive to Nl for small l. Indeed,

observation of Eq. (3.9) implies that a single path’s contribution to the total concurrence

decreases with increasing l and increases with increasing Nl. Even though longer paths

(l ' n) will outnumber shorter paths by several orders of magnitude, shorter paths will still

contribute significantly more to the concurrence.

Based on this, if we define Sm as the set which contains up to the mth shortest paths

(i.e., the shortest paths, the 2nd shortest paths, and so on up to the mth shortest paths)

between s and t for all s ∈ S and t ∈ T , then it is possible to approximate the sponge-crossing

concurrence between S and T using only these paths. When m = mmax, Sm becomes the set

of all sponge-crossing paths.

3.5 Results

In this Section, using our Fast ConPT computation, we present numerical results for

different networks of large size n. We numerically estimate the finite-size ConPT threshold

in terms of θth ≡ 1
2

sin−1 cth, determining its position on the critical curve by matching the

corresponding sponge-crossing concurrence at the half point, CSC = 1/2.

3.5.1 Bethe Lattice (Cayley Tree)

Given a finite Bethe lattice (i.e., a Cayley tree) with L layers and coordination number

k [71], [72] all paths from the root node to any one of the boundary nodes have the same

length, L. Since only one path exists from the root node to any node on the boundary, the

number of paths of length L is

NL = k(k − 1)L−1. (3.24)

There is no need to employ the Sm approximation since all paths are exactly known. Only

the parallel approximation C ′SC of the sponge-crossing concurrence CSC is to be calculated,
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which is given by [following Eq. (3.9)]

1 +
√

1− C ′2SC

2
= max


(

1 +
√

1− c2L

2

)NL

,
1

2

 . (3.25)

To solve for cth, near C ′SC = 0 we let

(
1 +

√
1− c2L

th

2

)NL

= 1− ε (3.26)

given an arbitrarily small positive ε. This gives rise to

c2L
th = 1−

[
2 (1− ε)1/NL − 1

]2

' −4N−1
L ln (1− ε) +O(N−2

L ), (3.27)

and thus

cth '
(

4ε

k

) 1
2L
(

1

k − 1

)L−1
2L

' 1√
k − 1

(3.28)

in the limit of large L. This is identical to the exact ConPT threshold calculated in Ref. [49]

using a recursive renormalization trick on the series and parallel rules [Eqs. (3.6) and (3.7)].

Interestingly, it is known that a saturation point csat < 1 also exists in ConPT [49],

namely, before c reaches unity, CSC will already reach unity at c = csat. This is because

of the maximum function appearing in the parallel rule [Eq. (3.7)]. It is also obvious that

csat ≥ cth, given the monotonicity of the series and parallel rules. To see if we can solve for

csat using the parallel approximation too, let

(
1 +

√
1− c2L

sat

2

)NL

=
1

2
, (3.29)

set by C ′SC = 1. This yields

c2L
sat = 1−

[
2 (1/2)1/NL − 1

]2

' 4N−1
L ln 2 +O(N−2

L ), (3.30)
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(a) (b)

Figure 3.4: Sponge-crossing concurrence CSC for the Bethe lattice with the
parallel approximation for (a) k = 3 and (b) k = 4. As the network
becomes larger the numerical values of θth approaches the
analytical value.

and thus

csat '
(

4 ln 2

k

) 1
2L
(

1

k − 1

)L−1
2L

' 1√
k − 1

. (3.31)

We see that the saturation point calculated using the parallel approximation is equal to cth,

which is underestimated, since the true saturation point is given by [49]

csat =

√
(1/2)1/k − (1/4)1/k

(1/2)(k−1)/k − (1/4)(k−1)/k
, (3.32)

which can calculated similarly using a recursive renormalization trick on the series and

parallel rules [Eqs. (3.6) and (3.7)].

For validation purposes, numerical results of the sponge-crossing concurrence on the

Bethe lattice using the parallel approximation versus the true ConPT results are shown in

Fig. 3.4. We see that as L increases, both cth and csat (where c = 2 cos θ sin θ) approach

1/
√
k − 1 from below and above, respectively, consistent with our theoretical result. Hence,

it is highly suggested that the parallel approximation can correctly estimate the true ConPT

threshold cth in the thermodynamic limit.
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3.5.2 2D Square Lattices

In a 2D square lattice of n nodes (
√
n ∈ Z), the length of the mth shortest self-

avoiding path, between source and target nodes of coordinates s = (xs, ys) and t = (xt, yt)

(1 ≤ xs, xt ≤
√
n and 1 ≤ ys, yt ≤

√
n), is simply

lm = |xs − xt|+ |ys − yt|+ 2 (m− 1) . (3.33)

Now, let S and T denote the left (xs = 1) and right (xt =
√
n) boundaries. Let

s = (1, ys) ∈ S and t = (
√
n, yt) ∈ T . Under the Sm approximation, the total number of

self-avoiding paths of length l between S and T is given by

Nl ≈

√
n∑

ys=1

√
n∑

yt=1

δl1lNl1(s→ t) + δl2lNl2(s→ t) + · · ·+ δlmlNlm(s→ t), (3.34)

where δij is the Kronecker delta. This approximation of Nl is then substituted into the

parallel approximation [Eq. (3.9)] to calculate CSC between S and T .

For m ≤ 2, it is possible to directly enumerate the 1st and 2nd shortest self-avoiding

paths between every pair of s and t. The general expressions are given by

Nl1 (s→ t) =

(
|xs − xt|+ |ys − yt|

|xs − xt|

)
, (3.35)

and

Nl2 (s→ t) =

min{xt+1,
√
n}∑

x′=max{xs,2}

yt−2∑
y′=ys

(
|xs − x′|+ |ys − y′|

|xs − x′|

)(
|xt − x′ + 1|+ |yt − y′ − 2|

|xt − x′ + 1|

)

+
xt−2∑
x′=xs

min{yt+1,
√
n}∑

y′=max{ys,2}

(
|ys − y′|+ |xs − x′|

|ys − y′|

)(
|yt − y′ + 1|+ |xt − x′ − 2|

|yt − y′ + 1|

)

+ B(xs, xt)

(
|xt + 1− xs|+ |yt − 1− ys|

|xt + 1− xs|

)
+ B(ys, yt)

(
|yt + 1− ys|+ |xt − 1− xs|

|yt + 1− ys|

)
,

(3.36)
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Figure 3.5: Counting the 2nd shortest path l2 for 2D square lattice. Every 2nd
shortest self-avoiding path must contain one and only one of the
configurations (solid line): either “Z”-shape (a-b) or “L”-shape
(c-f), then the rest connected by shortest paths (dashed lines).

where the boundary effect

B(u, v) = B(v, u) =


0, u = 1, v =

√
n

1, u = 1, v <
√
n or u > 1, v =

√
n

2, u > 1, v <
√
n

(3.37)

(w.l.o.g., u ≤ v) is taken into account. In particular, Eq. (3.36) is given by the fact that every

2nd shortest self-avoiding path in the square lattice, having length l2 = |xs−xt|+|ys−yt|+2,

must contain one and only one of the configurations as shown in Figs. 3.5a-3.5f. The first and

second terms in Eq. (3.36) account for the two “Z”-shape configurations (Figs. 3.5a and 3.5b),

respectively; the third term for the two “L”-shape configurations (Figs. 3.5c and 3.5d); and

the last term for the other two “L”-shape configurations (Figs. 3.5e and 3.5f).
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Piecewise Path Enumeration Algorithm

For m > 2, it becomes difficult to write down a closed-form combinatorial expression

like Eqs. (3.35) and (3.36) for Nlm(s → t). A path enumeration algorithm is thus needed.

We treat paths of length lm with m > 2 as deviations from the 1st and 2nd shortest paths.

For a given m, these deviations can only take a finite number of shapes. Once we have

identified these primitive deviations, we must next identify positions in the lattice where

these deviations can be placed. Finally, we count the total number of paths by counting the

number of shortest paths between deviations using Eqs. (3.35) and (3.36).

For example, given source and target nodes s and t, all 3rd-shortest paths (m = 3)

have either two single-step deviations or one double-step deviation from the 1st shortest

path. For the case where we have two single-step deviations, we first identify two sets of

points, D1 and D2, where the first and second deviations can happen respectively. Then

we calculate Ns,D1 (the number of shortest paths from s to every point in D1), ND1,D2 (the

number of shortest paths from every point in D1 to every point in D2), and ND2,t (the

number of shortest paths from every point in D2 to t). The total number of 3rd-shortest

paths is then given by Nl2(s → t) = Ns,D1ND1,D2ND2,t. This algorithm, while significantly

faster than a brute-force path enumeration, is still too involved for large m. We use this

algorithm to calculate S3 exclusively.

Numerical Calculations

The final numerical results of CSC, calculated using the exact combinatorial expressions

(S1, S2) and/or the piecewise path enumeration algorithm (S3), are shown in Fig. 3.6. From

Fig. 3.6b we see that for large enough m or n, the numerical threshold θth levels out at

constant values that are very close to those calculated using the star-mesh transform. For

example, for n2 = 8 the Fast ConPT method yields θth = 0.4, compared to the value

of θth = 0.416 calculated using the star-mesh transform [49]. This suggests that our Fast

ConPT calculation can yield a good approximation of the ConPT threshold. We can also see

from Fig. 3.7 that the Fast ConPT computation is over 100 times faster than the star-mesh

transform method.
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(a) (b)

(c) (d)

Figure 3.6: Fast ConPT calculation on 2D square lattices. (a) Sponge-crossing
concurrence CSC as a function of link weight θ, calculated under the
S1-S3 approximations. Only the result of S3 is plotted. The results
of S1 and S2 are nearly identical to S3. (b) Numerical ConPT
threshold θth under the Sm approximation. As m increases, θth
approaches a constant value. (c) θth for different size n. (d) Same
as (c) but for larger n. S3 becomes too computationally intensive to
calculate for n > 202. As n increases, θth also approaches a constant
value.

Figure 3.7: Computing time (in seconds) to calculate Cst, the s-t concurrence
between two nodes s and t, on 2D square lattices with n2 nodes.
We can see that the Fast ConPT method speeds up the calculation
over the star-mesh transform method by two orders of magnitude.
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(a) (b)

Figure 3.8: The s-t concurrence Cst between two maximally separated nodes as
a function of link weight θ for (a) Erdős–Rényi (ER) with 〈k〉 = 4
and (b) Barabási–Albert (BA) networks with coordination number
z = 2, calculated under the S1 approximation.

3.5.3 Complex Network Topologies

Unlike 2D square lattices, we cannot write down any analytical expressions for the

path length distribution of complex networks. While techniques to enumerate paths, such

as those presented in Ref. [70], give a good estimate of the total number of paths, they

approximate the path-length distribution poorly. This means that we must enumerate paths

through brute force methods and this restricts our analysis to sparse graphs.

For complex networks, we simply define the sponge-crossing concurrence as the Cst

between two nodes s and t which means that S = {s} and T = {t}. We choose s and t such

that the shortest path between them is equal to the diameter of the network. In general

there might be multiple choices for s and t that meet this criteria, and we randomly choose

one of these pairs.

We randomly generate 100 networks of a given size and degree distribution and average

the concurrence percolation threshold of each of these networks. These results are reported

in Tab. 3.1 along with the standard error, σ/
√
N , where σ is the standard deviation and

N = 100 is the number of samples of each random graph.

Erdős–Rényi Network

Results for Erdős–Rényi (ER) networks [3] are shown in Figs. 3.8a, 3.9a, and 3.9b.

The concurrence is calculated under the S6 approximation for different settings of network

sizes and average degrees. The results are averaged over 100 network realizations for each
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(a)
(b)

(c)
(d)

Figure 3.9: (a) The behavior of θth for ER networks with 〈k〉 = 4 and 〈k〉 = 8
under the S1 approximation with increasing network size. (b) The
behavior of θth for ER networks with n = 500 and n = 1000 as a
function of 〈k〉 for the S1 approximation. The circles are the
simulated values of the percolation threshold and the dotted lines
are a power-law fit with θth ∝ 〈k〉−0.5 (c) The behavior of θth on BA
networks with z = 1 and z = 2 under the S1 approximation with
increasing network size. (d) The behavior of θth for BA networks
with n = 500 and n = 1000 as a function z under the S1

approximation.

Figure 3.10: The behavior of θth with increasing m in the Sm approximation for
ER networks. The relationship can be approximated with a power
law with exponent φ.
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setting. Fig. 3.9a shows that the value of θth converges with increasing network size for

smaller values of the average degree, e.g. 〈k〉 = 4. For larger values of the average degree,

such as 〈k〉 = 8, we do not see the value of the threshold converging for the same network

size.

The calculation of the number of paths becomes increasingly computationally intensive

for larger values of the average degree and we must restrict our analysis to small values of m.

Fig. 3.9b shows how the concurrence percolation threshold changes as a function of average

degree under the S1 approximation.

For small values of m, the behavior of the concurrence for ER networks can be ap-

proximated with a power-law fit, as shown in Fig. 3.10. These results are also shown in

Table 3.1.

Barabási–Albert Network

Many real-world networks show power-law degree distribution, such as the Internet,

WWW, scientific collaboration networks, protein-protein interaction networks, and actor

networks [2], [73]. Barabási–Albert (BA) model [5] is the first model to describe the structure

property of such networks, using preferential attachment. In this model, every new node in

the graph is assigned z edges, where z is known as the coordination number, and nodes with

higher degrees are more likely to be selected. The classical bond percolation threshold for a

BA network with z > 1 and n→∞ is pc = 0 [74], [75].

Results for BA networks are shown in Figs. 3.8b, 3.9c, and 3.9d. For z = 1 there are

no loops in the network and the relatively small number of paths connecting any two nodes

allows us to calculate the concurrence for up to 104 nodes, shown in 3.9c. We also look

at smaller networks with higher coordination numbers, up to z = 25, shown in Fig. 3.9d.

Unlike ER networks, the value of θth decreases with the increasing network size.

Comparison with Classical Entanglement Percolation (CEP)

As a baseline comparison, we numerically calculate θCEP
th , the percolation threshold

associated with Classical Entanglement Percolation (CEP) for ER networks. As before we

define the percolation threshold on random networks as the minimum entanglement necessary

for the existence of a path between two nodes s and t, where s and t are a randomly selected

pair of nodes with the property that their distance is the diameter of the network. We



47

Figure 3.11: A comparison of θCEP
th , the entanglement percolation threshold

calculated under CEP, with θth, the approximate concurrence
percolation threshold for different network sizes and different
values of m. The black line represents x = y and is added for
comparison.

generate 100 random networks and eliminate edges with probability 1−p, where p = 2 sin2 θ

is the singlet conversion probability. For each network we perform 1000 simulations and

calculate θCEP
th as the average minimum value of θ such that the probability of the existence

of a path between s and t is 0.5. We also calculate θth(m) for these networks. The results

are shown in Fig. 3.11. We can see that for all our samples θth(1) < θCEP
th . Since CEP

represents the naive, baseline measurement strategy it is encouraging that our approximate

ConPT threshold always lies below it even when we restrict ourselves to m = 1. Therefore

θth heuristically approaches a lower-bound on the true concurrence and even for low values

of m it predicts a lower concurrence percolation threshold than that predicted by CEP.

3.6 Discussion and Conclusions

Table 3.1 summarizes the numerical results of our fast concurrence percolation theory

(Fast ConPT) computation compared with previously known results [49]. The algorithm we

have presented in this report utilizes two approximations to allow for numerical calculations

of ConPT. Where available, our results are in good agreement with the analytical values of



48

the concurrence percolation. We have also extended the analysis of the ConPT threshold to

complex networks and demonstrated that our method could be applied to square lattices of

2002 nodes and complex networks of 300 nodes. Combining our method with more efficient

path-counting algorithms would allow us to probe a more significant fraction of the total

paths of a network for the ConPT calculation and provide a more robust estimate for the

ConPT threshold. We believe that this work is an important step towards understanding

the structural and communication properties of large-scale quantum networks.

We believe that ConPT is a promising tool for practically designing and analysing quan-

tum networks. It offers crucial insights into how entanglement strength, viewed as a costly

resource, should be distributed throughout a network to ensure resilient communication. In

full-optical quantum communication networks, for example, entanglement strength is usu-

ally expressed as a function of the number of entangled photons shared between nodes [76].

Current methods used in simulations to determine the entanglement strength necessary for

the emergence of a giant-component in quantum networks or the connectivity of two random

nodes implicitly assume the CEP measurement strategy, i.e, they assume that the topology

of the quantum network is immutable like that of a classical network [76], [77]. The nu-

merical methods we have presented in this paper allow concurrence percolation theory to be

practically useful in the analysis of large complex networks, providing a lower bound on the

entanglement strength necessary for communication between distant nodes, therefore allow-

ing the cost associated with establishing communication channels of a certain strength in

these networks to be lowered. As we showed in our comparison with CEP, even for m = 1 the

Fast ConPT method already predicts a lower entanglement percolation than CEP, demon-

strating its effectiveness for determining how close any given measurement strategy is to

being optimal.

Still, the critical behaviors of ConPT near θth remain an interesting and open ques-

tion. Previous studies have indicated that some critical phenomena, such as the emergence

of subgraphs, are drastically different in quantum random networks than in classical net-

works [26]. While Meng et al. has provided a finite-size analysis of the critical behaviors of

Bethe lattices, their analysis of 2D lattices is limited by the size of the lattices they could

investigate [49]. Their initial results indicate that the critical exponent ν associated with

ConPT on 2D lattices are the same as those of classical percolation theory. This can now

be investigated more thoroughly using the algorithm presented in the present work.



CHAPTER 4
MODELING EPIDEMIC SPREAD IN CITIES USING PUBLIC

TRANSPORTATION AS A PROXY FOR GENERALIZED

MOBILITY TRENDS

4.1 Introduction

Long-range mobility, such as traveling between cities, can cause a disease to spread 

through case importation across large distances [78], [79]. Short-range mobility, such as 

usage of city buses or trams, has been correlated with a higher risk of contracting acute 

respiratory infections [80] and with the number of cases of COVID-19 within cities [81],

[82]. Accordingly, restrictions on human mobility, either directly by shutting down public 

transportation [83], [84] or indirectly by restricting public and private gatherings [85], which 

were highly effective in stopping the spread of COVID-19. We hypothesize that alongside 

being a high-risk medium for infections, public transportation usage is also a good indicator 

for the level of short-range mobility for the entire population of a city.

COVID-19 in New York City

When it became clear that the COVID-19 virus is highly infectious, New York City 

(NYC) imposed restrictions that included shutting-down non-essential businesses and for-

bidding large gatherings, but kept public transportation [86] and schools open [87]. The 

usage of NYC’s sprawling subway system was found to be correlated with the spread of 

COVID-19 [81], [82], [88] and mobility patterns in general were correlated with the spread 

of COVID-19 within regions of the city [89], [90]. There are various models of disease spread 

that incorporate human mobility patterns, such as a recent disease transmission model in-

spired by collision theory gas-phase chemistry [91], or a metapopulation model that allows 

for the movement of individuals between subpopulations [92]. We propose a model based 

on SIR dynamics where we explicitly model human mobility as a parameter and treat the 

infection rate as a function of the mobility of a region. To effectively model the spread of 

COVID-19 in NYC, we focus on data from the NYC subway. We hypothesize that trends in

Portions of this chapter have been published as: O. Malik, B. Gong, A. Moussawi, G. Korniss, B. Szy-
manski, ”Modeling epidemic spread in cities using public transportation as a proxy for generalized mobility 
trends,” Sci. Rep., 12:6372, Apr. 16, 2022, https://doi.org/10.1038/s41598-022-10234-8
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(a)

(b)

Figure 4.1: (a) The red line shows the daily reported cases of COVID-19 in
New York City. The blue line shows the total daily number of trips
taken on the subway, with entries related to the Port Authority
Trans-Hudson (PATH) removed. The dotted line indicates the
start of the NY PAUSE Program, (b) The fraction of total weekly
cases reported on each day of the week, averaged over 44 weeks.
While the weekdays remain largely consistent, there is a significant
drop in reporting on weekends.

subway usage are correlated with the usage of other modes of transport, such as buses, taxis

etc. We therefore treat subway usage as an indicator for broader human mobility patterns

in the city.

4.2 Data

New York City Subway Turnstile Data

Unlike pedestrian traffic, private automobiles, and to some extent taxis, public trans-

portation, and in particular the subway, has detailed records of passenger traffic such as

the total number of entries and exits from a station collected in real time. This enables

us to extract some important statistics regarding passenger traffic using publicly available

data on subway usage published by the Metropolitan Transportation Authority (MTA) [93].

As awareness of the pandemic grew in early 2020 the Governor of New York announced a

state of emergency on March 7 2020, followed shortly by the passage of an executive order,

known as ’New York State on PAUSE’, that shutdown all non-essential businesses in the

state [94], [86]. New York City saw a decline in subway usage alongside various other modes
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of public transport, including bikeshares [95], [96], and taxis [97]. As restrictions were slowly

eased in the later half of the year, there was a corresponding increase in the usage of public

transport, although some modes were preferred over others at different rates than before

the pandemic. Bikehares, for example, had recovered to their 2019 levels by September 30,

2020 while subway ridership was at 30% of pre-pandemic levels [95]. Despite the different

rates at which different modes recovered, both bikeshares and the subway saw increases in

usage in the latter half of 2020. We believe that this increase in both modes of transport

corresponds to the underlying increase in human mobility as restrictions were loosened after

June 8, 2020. This motivates us to use this directly measurable traffic as a proxy for all

traffic in the city.

We collected and analyzed the subway turnstile data of New York City for 12 consec-

utive months, starting from January 2020 to December 2020. The MTA publishes turnstile

data on a weekly basis, which includes administrative information such as the control area,

unit number, station name and line name, as well as the counts of the entries and exits

at a specific time for a particular turnstile [93]. The system collects these counts every

four hours, each of which is a cumulative register value. The data were first converted into

dataframes and then into a combination of control area code, remote unit, subunit channel

position (SCP), as well as the time of the observation that serves as a unique ID to identify

and remove duplicate records. We removed entries related to Port Authority Trans-Hudson

(PATH) trains, since they do not represent the mobility among NYC boroughs. The abso-

lute difference between the first and last counts at a turnstile on a particular day defines

the number of subway riders passing through that particular turnstile. The geographic co-

ordinates of the station and the borders of each borough allow us to place each station in

its corresponding borough. We calculated the total number of borough-level subway riders

by summing the numbers of riders at all the turnstiles of all subway stations located within

each borough. To estimate the mobility between boroughs, we used a survey that was con-

ducted among subway riders regarding the origin and destination of their trips [98]. Given

the number of departures at a given station, we used probabilities extracted from the survey

to determine the destinations of those trips.
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COVID-19 Data

We used publicly available data published by the NYC government about the number

of new COVID-19 cases reported for each day and for each of the five boroughs [99]. Fig 4.1a

shows that this data has a clear weekly cyclical pattern. Fig 4.1b shows that this pattern

arises because of the much smaller numbers of cases that were reported on weekends than

on weekdays. We remove this pattern by using a running 7-day average of the number of

daily cases.

We also chose to restrict our analysis to 2020, since the introduction of vaccines in early

2021 decreases the number of people susceptible to infection. To account for this decrease

on the spread of epidemics would require the introduction of another parameter that might

change the quantitative effect of mobility on the spread of the disease.

Population Data

All population data for New York City were taken from the 2020 census conducted by

the US Census Bureau and published on their website [100].

Model

We start with the well-established SIR model [2],[? ]. While more powerful models

for modelling disease spread exist, such as the SEIR model [101], we picked the SIR model

in order to reduce the number of parameters and avoid overfitting. The COVID-19 hospi-

talization data that we use only reports daily newly infected cases and we do not believe

this data is fine-grained enough to justify the use of a more complex model. The SIR model

divides the total population (N) into susceptible (S), infected (I), and recovered or dead

(R) compartments. The equations governing the spread of the disease are

d

dt
S(t) = −βS(t)I(t)

N
, (4.1)

d

dt
I(t) = β

S(t)I(t)

N
− γI(t), (4.2)

d

dt
R(t) = γI(t), (4.3)

where β and γ are the infection and recovery rate, respectively.
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(a) (b)

Figure 4.2: (a) Schematic representation of the mobility-based SIR model.
Each region j has an associated infection rate βj and mobility
parameters fjj′ and fj′j, which represent individuals from region j
visiting region j′ and vice versa. (b) The enhanced model that
includes a public transportation node without a permanent
population. Inter-region mixing still occurs as in the basic model,
but the visiting populations of every region pass through the
transportation node for the duration of their commute time during
which they are exposed to the higher infection rate associated with
using public transportation. The effective population of region j
that is commuting is given by fjT while the effective population of
all other regions that are visiting region j are given by f+

j .

We modify the model by dividing the total population into subpopulations called re-

gions, each with a fraction of the population pj living in region j, thus
∑

j pj = 1. When we

apply the model to New York City the different pj represent the populations of the five bor-

oughs of New York City, normalized by the total population of the city, which was 8,804,190

in 2020 [100]. Within a region, people will have different infection rates based on their ac-

tivity. The infection rate for individuals working from home and following strict quarantine

protocols will be lower than the rate for frontline workers. Each activity-based cohort has an

associated infection rate βjc. Additionally, people may also have access to different quality

of healthcare, which may impact the frequency of testing and the likelihood of visiting a

doctor. Both of these parameters influence the recovery rate of a patient. Each healthcare-

based cohort has an associated recovery rate γje. The fraction of the total population in

region j with behavior c and healthcare e is denoted as pjce. For parameters representing

the population fractions, an omitted index indicates a sum over all values of this index, so

pjc =
∑

e pjce and pj =
∑

c,e pjce etc.

Each cohort within each region follows SIR dynamics. The equations governing the

population fractions of susceptible, infected and recovered individuals are given by:
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sjce(t+ ∆t) = sjce(t) (1− βjcijce(t)∆t) , (4.4)

ijce(t+ ∆t) = ijce(t) + (βjcsjce(t)ijce(t)− ijce(t)γje) ∆t, (4.5)

rjce(t+ ∆t) = rjce(t) + ijce(t)γje∆t, (4.6)

where sjce(t), ijce(t) and rjce(t) are the population fractions of susceptible, infected and re-

covered individuals, respectively at time t.

Inter-region Mixing

So far our model follows straightforward SIR dynamics. We now want to introduce

inter-region mixing through a mixing parameter that tells us the population fraction of one

region that is visiting another region at a given time. In order to calculate this quantity,

we need to know the origin, destination, and trip duration for every rider using the subway.

From the data, we only know the borough of departure. We do not know an individual

rider’s destination based just on the borough they departed from. Using an MTA survey

on the use of the NYC subway, we can determine the probabilities of a trip departing and

terminating at different boroughs [98].

In order to determine the average time spent visiting a borough, we also need to know

the borough of origin of riders arriving at a station. From the survey, we know P (oj), the

probability of any trip originating in borough j, P (dj), the probability of any trip terminating

in borough j, and P (dj′ |oj), the probability that a trip originating in borough j terminates

in borough j′ [98].

It will be helpful to define a fractional time, τ , which measures the time of day as the

fraction of the day that has passed since midnight. So, for example, 3 PM corresponds to

a fractional time of τ = 0.625. In order to determine the average duration that residents of

one borough spend in another borough, we start by treating NYC as a closed system where

individuals do not travel into or out of the city, and all residents of a borough return to it at

the end of the day. If a rider k leaves borough j at fractional time τAk and returns at τDk ,

then the fraction of the day spent away from the borough is τAk − τDk .
If there areMt total riders on day t, then the average fraction of the day spent away from

the borough on that day is

∑Mt

k=1(τAk − τDk)
Mt

. This average can be rewritten by collecting all
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the arrival and departure times separately rather than tracking each rider’s individual arrival

and departures so that

∑Mt

k=1 τAk −
∑Mt

k=1 τDk
Mt

. The subway turnstile data does not track

the arrival and departure of individual riders. Instead, it provides a number of snapshots

everyday of the cumulative arrivals and departures. So, the data instead provides us with

the number of arrivals, At,j(τk), and departures, Dt,j(τk), at fractional time τk, where the

index k no longer refers to riders, but to the different times at which the number of entries

and exits are recorded. We can then write the average fractional time spent by residents of

borough j away from their home borough

∆τj =
1

ttot

ttot∑
t=1

∑
k τk (At,j(τk)−Dt,j(τk))

Mt

, (4.7)

where ttot is the total number of days. It should be noted that the sum over k is no

longer over the number of riders, but over the number of snapshots of total entries and exits

taken that day.

For a variety of reasons, such as travel into and out of the city and the usage of

multiple modes of transport, the number of arrivals and departures at a station will not

match exactly. In order to account for this, we match the number of arrivals and departures

at a given snapshot in time in the data, and any discrepancy is added to the next time bin.

Once all time periods have been accounted for, any unmatched arrivals or departures are

ignored. The equation then becomes

∆τj =
1

ttot

ttot∑
t=1

∑
k τkmin

(
Ãt,j(τk), D̃t,j(τk)

)
M̃t

, (4.8)
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where

Ãt,j(τk) = At,j(τk) + UA
t (τk), (4.9)

D̃t,j(τk) = Dt,j(τk) + UD
t (τk), (4.10)

UD
t (τk) = max

(
0, D̃t,j(τk−1)− Ãt,j(τk−1)

)
, (4.11)

UA
t (τk) = max

(
0, Ãt,j(τk−1)− D̃t,j(τk−1)

)
, (4.12)

UD
t (τ0) = UA

t (τ0) = 0, (4.13)

M̃t = min

(∑
k

At,j(τk),
∑
k

Dt,j(τk)

)
, (4.14)

where UA
t (τk) and UD

t (τk) are the unmatched arrivals and departures from the previous time

period. An example of the matching process is shown in Tab 4.1. We can now write our

mixing parameter

fjj′(t) = ∆τjP (dj′ |oj)
∑
k

Dt,j(τk)

N
. (4.15)

On any given day we could estimate the number of people, expressed as a fraction of

the total population, that travel from borough j to borough j′ by P (dj′ |oj)
∑

k

Dt,j(τk)

N
. This

would give us an estimate of how many of the people leaving borough j are heading towards

j′. However, we do not have detailed temporal resolution on the movement of riders within a

borough and we do not know when any individual rider returns to their home borough. We

define an effective population of visitors by multiplying this quantity with ∆τj, the estimate

of the average time fraction spent away from borough j, that spend the entire day in borough

j′. The mixing parameter represents this effective visiting population.

The population fraction that leaves region j for all other regions is f−j =
∑

j′ 6=j fjj′ ,

while the population fraction that arrives at region j from all other regions is f+
j =

∑
j′ 6=j fj′j.

The resulting total population fraction in region j becomes pj + f+
j − f−j .

We must now keep track of the part of the susceptible and infected populations of

region j that do not leave the region, which we call ’stationary’, given by
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sSjce = sjce
pj − f−j
pj

, (4.16)

iSjce = ijce
pj − f−j
pj

. (4.17)

It should be noted that while this ’stationary’ population does not leave the borough,

the individuals that constitute this population may still be mobile within their borough. This

will be addressed later in this section. We also keep track of infected individuals visiting

region j from other regions. These are given by

i+jce =
∑
j′ 6=j

ij′ce
fj′j
pj′

. (4.18)

We can now write down the equations for the stationary susceptible and infected pop-

ulations for region j:

sSjce(t+ ∆t) = sSjce(t)(1− βjciSjce(t)∆t− βjci+jce(t)∆t). (4.19)

We also need to track individuals from region j who are visiting region j′. These are

given by

sVjce =
∑
j′ 6=j

sj
′

jce =
∑
j′ 6=j

sjce
fjj′

pj
. (4.20)

These individuals will interact with stationary infected individuals from other regions.

We can now write the equations for the individuals from region j visiting all other regions

sVjce(t+ ∆t) =
∑
j′ 6=j

sj
′

jce(t)(1− βj′ci+jce(t)∆t− βj′ciSj′ce(t)∆t), (4.21)

We can combine the equations for the stationary and visiting populations by introduc-
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ing a flow parameter

λjce =sSj βjc
[
iSjce + i+jce

]
+
∑
j′ 6=j

sj
′

j βj′c
[
i+jce + iSj′ce

]
. (4.22)

The flow parameter lets us compactly write the dynamics of region j

sjce(t+ ∆t) =sjce(t)− λjce(t)∆t, (4.23)

ijce(t+ ∆t) =ijce(t) + (λjce(t)− ijce(t)γje) ∆t, (4.24)

rjce(t+ ∆t) =rjce(t) + ijce(t)γje∆t. (4.25)

Since the data provided by the NY government tracks the number of newly reported

cases and does not report the number of active cases (i(t) in our model) we construct the

quantity

inew
jce (t) =

t+1−∆t∑
t′=t

λjce(t
′)∆t, (4.26)

where t is in units of days. In other words, inew
jce (t) represents the number of new cases

reported on day t and this is the quantity that we will fit to the data. Fig 4.2a shows a

schematic representation of our mobility-based SIR model.

Introducing a Public Transportation Node

While our model accounts for the spread of disease through the transit of infected indi-

viduals between regions, it does not take into account that use of public transportation poses

a higher risk of infection [80]. To account for this effect, we introduce a public transportation

node, denoted by the index T . The fraction of the population permanently residing on this

node is 0 (pT = 0). We modify our model so that all riders travelling to another borough

spend some part of their time at node T . This duration is taken from the average commute

time reported by riders of each borough [98]. The mixing parameter from node j to node T

becomes
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Table 4.1: An example of the matching process using real data. The columns
labelled ENTRIES, EXITS, and TIME are from the turnstile data.
We calculate the number of arrivals, At,j(τ), by subtracting successive
values of the running total of entries. These arrivals are assigned a
fractional time, τ , corresponding to the midpoint of successive time
snapshots. The departures, Dt,j(τ), are calculated in the same way.

ENTRIES EXITS TIME τ At,j(τ) Dt,j(τ) UA
t (τ) UD

t (τ) Ãt,j(τ) Ãt,j(τ)

0007328037 0002483731 03:00:00

0007328044 0002483742 07:00:00 0.208 7 11 0 0 7 11

0007328075 0002483781 11:00:00 0.375 31 39 0 4 31 43

0007328193 0002483821 15:00:00 0.542 118 40 0 11 118 51

0007328375 0002483878 19:00:00 0.708 182 57 67 0 249 57

0007328499 0002483910 23:00:00 0.875 124 32 192 0 316 32

fjT (t) = ∆τjT
∑
j′ 6=j

P (dj′ |oj)
∑
k

Dt,j(τk)

N
, (4.27)

where ∆τjT is the commute time for riders in node t, expressed as a fraction of the

day. Due to the introduction of a transport node we must also modify our expression for the

inter-borough mixing parameter, which becomes

fjj′(t) = (∆τj −∆τjT )P (dj′ |oj)
∑
k

Dt,j(τk)

N
. (4.28)

Fig 4.2b shows a schematic depiction of the model with the public transportation node.

The introduction of such a node allows us to independently model the infection rate during

rides on public transportation systems, βT , for individuals using public transportation. Since

our model does not track individual interactions but rather only the infection rate at the

population level we introduce the transport node to model the different risks of infection

experienced by the fraction of the population that uses the subway where they interact with

a different mixture of populations than the mixture that they encounter in the borough in

which they live.



60

Mobility-dependent Infection Rate

While inter-region mixing and the introduction of a public transportation node account

for mobility between regions, we also need to account for mobility within a region. To do

this, we introduce a mobility parameter for each region, mj(t), which represents the extent

to which individuals are moving within the region. We then write our infection rate as

βjce(t) = β0
jcemj(t), (4.29)

where β0
jce is the static infection rate. This is similar to the mobillity-informed approach

used in [91]. For the particular case of the NYC subway, mj(t) is calculated by taking a

7-day moving average of the total trips that start in borough j and rescaling this quantity by

dividing it by the maximum number of trips taken in one day in borough j in this training

period, thereby scaling it between 0 and 1. A plot of the average mobility parameter, defined

as mavg(t) =
∑

j pjmj(t), is plotted in Fig. 4.4b. We are using the level of subway usage as

a stand-in for all short-range mobility. We found that the number of bike-share rides taken

during the pandemic was correlated with the number of subway trips [96]. We assume that

subway usage is correlated with all mobility within the city, even as subway usage fell during

the pandemic across cities around the world [102].

4.3 Results

While our model is able to incorporate complex demographic information such as

healthcare status, access to testing, and public policies regarding gathering sizes and mask

usage, we are limited by the data to which we have access. Since we only have public

transportation data and the daily case count, we will assume that each region in our model,

corresponding to one of the five boroughs of NYC, has a uniform demographic distribution.

This means that we will be ignoring the c and e indices in our model.

In order to model the effect of different policies, we pick March 22, 2020, the official start

day of the NY PAUSE Program, as the beginning of the lockdown. We assume that there

are two different infection rates, one before and the other after this date. This assumption

is made because the PAUSE program marks the start of the implementation of widespread

mask usage and social distancing. These are non-mobility factors which impact the overall

infection rate.
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(a) (b)

Figure 4.3: (a) The best-fit model output of the daily number of new cases in
NYC. The black line shows the model’s output. The red line is the
7-day running average of the total daily reported cases in NYC as a
fraction of the total population of the city. The dotted line
indicates the start of the NYC Pause Program. (b) Fitting results
for the model without the mobility-dependent infection rate given
by Eq. 4.30. As the plot demonstrates, we cannot fit NYC’s
COVID-19 spread without modifying the infection rate by the
mobility term.

We also assume that the intensity of usage of public transportation is correlated with

the infection rate. The infection rate for borough j then becomes

βj(t) = βp(t)mj(t− tD), (4.30)

where βp(t) = βh before the start of the NY PAUSE Program on March 22 2020, and

βp(t) = βl afterwards. The second term, mj(t− tD), represents the normalized daily number

of trips taken on the subway within a region. The parameter tD accounts for the population

level delay between subway usage and the subsequent increase in Covid-19 cases. We also

average βj(t) over a 7 day moving window in order to smooth out abrupt changes due to

both noise in mj(t) and the discontinuous transition in βp(t).

We have the values of fjj′(t) and mj(t) from the data, Using these two values, we can

construct fjT . We need to learn the values of βh, βl, γ and τD. We also need to learn the

values of βh
T and βl

T , the infection rate on the subway before and after the start of the PAUSE
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program. Fig. 4.3a plots the results of fitting the model by minimizing the mean squared

error (MSE). We fit our model by sweeping over a million values for these parameters, with

our search guided by existing literature on the infection and the recovery rates [103]. By

contrast, we can see from 4.3b that an SIR model that does not take into account mobility

cannot explain the infection trend.

Forecasting

We also masked the last three weeks of data and trained our model without this period.

First, we do a parameter sweep to find the values of the parameters that best fit the training

data. Next, we use the end of the training period, inew
data(ttrain) (where ttrain, is the last day

of the training data) as the initial condition for the testing period. However, we cannot

directly use the number of daily new cases as the initial condition. Instead, the model

requires knowledge of the active infected and total recovered cases, i(ttrain) and r(ttrain), at

the end of the training period as the initial conditions for the testing period. This was not

a concern when we were fitting our model for the training period since we assumed that

i(0) = 1/N and r(0) = 0. In order to predict the spread of the disease in the testing period,

however, we need to know these quantities to serve as the initial conditions for our model.

While data are available for the number of active and recovered cases for New York state,

they are not available for New York City. We estimate the total recovered population by

dividing the cumulative deaths reported in New York City by the state-wide case mortality

rate [104]

rest(t)=
Cumulative deaths reported in NYC on day t

N ∗ Case mortality rate on day t
, (4.31)

where rest(t) is the estimated total recovered population (which includes both indi-

viduals who have died as well as those who have recovered from the disease) expressed as a

fraction of the total population of New York City. We also need to know iest(t), the estimated

total active number of infected cases. Specifically, we only need to estimate iest(ttrain), the

total number of active cases on the last day of the training data. We do this by searching

for a value of iest(ttrain − 1) such that using iest(ttrain − 1) and rest(ttrain − 1) as the initial

condition for our model and predicting the daily number of cases for the next day gives us
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Table 4.2: The results from fitting the data with and without the last three
weeks masked. Ein refers to the MSE of fitting the data, while Eout

shows the MSE of the model’s prediction during the testing period.
While we minimize the MSE during the fitting process, the table
also reports the in-sample and out of sample R2 score of the best fit.
We use ∆t = 10−2 for all our simulations.

Parameter Values
Data fitting
without testing period

Data fitting with
three-week testing period

βh 1.55 1.59
βl 0.55 0.53
βh
T 4 4
βl
T 4 4
γ 0.04 0.04
tD 21 days 21 days
Ein 4.46 ∗ 10−9 2.98 ∗ 10−9

Eout - 2.44 ∗ 10−10

R2
in 0.82 0.88

R2
out - 0.43

inew(ttrain)= inew
data(ttrain), (4.32)

where inew(ttrain) are the daily number of new cases output by our model on the last

day of the training data. The corresponding values of iest(ttrain) and rest(ttrain) become the

initial conditions for the model at the start of the testing period. The model’s prediction

is shown in Fig. 4.4a. Tab. 4.2 shows the parameters that minimize the MSE with and

without a testing period.

4.4 Discussion

Fig. 4.1a shows that the total number of cases in NYC rapidly increased after the

discovery of the first recorded case, followed by a decline and then a second rise. This

trend seems to follow the usage of the subway: initially, the usage of the subway declines

precipitously and then it slowly and partially recovers to about 2/3 of the previous usage.

By scaling our infection parameter with subway usage, we are simultaneously capturing

two effects. The first is the rise in infections directly due to the use of the subway, either
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(a) (b)

Figure 4.4: (a) The predicted number of daily cases in NYC normalized by the
total population of the city. The red line is the 7-day running
average of the total daily reported cases in NYC as a fraction of
the total population of the city. The dashed black line shows the
best-fit output of the model in the training period, and the solid
black line shows the model’s prediction for the testing period. The
vertical dotted line marks the beginning of the three-week testing
period. The inset figure shows the testing period in more detail.
(b) The ratio of the average infection rate, βavg(t) =

∑
j pjβj(t), over

the recovery rate, γ as a function of time. The second axis shows
the average mobility parameter, mavg(t) =

∑
j pjmj(t).

through higher infection rate or through case importation between regions. The second is

taking subway usage as a proxy for broader mobility trends, which in turn depend upon public

policy that governs the infection rate. As more people went back to work and as restrictions

on public gatherings, schools etc. were eased, we assume that there was a corresponding

increase in human mobility proportional to the increase in subway usage, even though this

usage is just one form of the total population mobility in the city.

The fact that our model is able to accurately capture both the first wave of infections

as well as the second one indicates that our assumption that subway usage is an indicator for

broader human mobility trends (and for public policies regarding restrictions more generally)

within the city is correct. While our model does predict a higher infection rate for the subway

than for the boroughs, infection trends are much less sensistive to inter-region mobility

compared to intra-region mobility.

If we set βj(t) = βp(t) and the dependence on mj(t) is removed, the reduced model is

unable to capture the second wave of infections towards the end of the year as shown in Fig
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4.3b.

Limitations

The turnstile data that we use imposes some limitations on our model. The most

crucial assumption in our work is that subway usage is correlated to all mobility within the

city and can therefore be used as a proxy for all mobility. This assumption is supported by

the fact that the usage of both bikeshares and taxis dropped at the same time as that of

the subway [96], [97], and bikeshare usage increased in the same period as subway usage,

although at a much faster rate [95]. Additional data on other forms of mobility, specially in

the latter half of 2020, would allow us to construct the mobility parameter that encapsulates

multiple modes of transport.

We also assume that the residents of a borough that leave it using the subway return

to the home borough using the subway on the same day. This assumption impacts our inter-

region mixing parameter through the calculation ∆τj, the average time spent away from the

home borough.

Finally, we assume that the fraction of cases that were reported remained constant

throughout 2020. While we have adjusted for the drop in reporting on the weekends by

taking a 7-day moving average, the fraction of cases that were reported may have changed

over the course of the year due to other factors as well. A possible effect of this varia-

tion in the reporting rate is the very high ratio of the average infection rate, defined as

βavg(t) =
∑

j pjβj(t), to the recovery rate, γ, that our model predicts during the beginning

of the infection, shown in Fig. 4.4b. The precipitous rise in cases at the start of the pan-

demic may represent a slew of people getting tested in a short amount of time as awareness

of the epidemic spread and widespread testing became available, rather than accurately rep-

resenting the true spread of the disease. After this initial period our βavg(t)/γ ratio has a

minimum of 1.43 and a maximum of 5.25. While an initial estimate for the reproduction

number was reported to be 2.2 in Wuhan [105], other studies using SIR models have reported

a much higher reproduction number ranging from a global estimate of 4.5 [106] to some re-

gions having a value as high as 7.8 [107]. While the ratio βavg(t)/γ is not equivalent to the

reproduction number and should be seen only as a crude estimate, it is encouraging that the

ratio predicted by our model falls within the range of estimates reported in the literature.
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4.5 Conclusion

The main contribution of this chapter is the introduction of a mobility-based model

of epidemic spread that uses a mobility-dependent infection rate. Based only on fitting the

data, our model confirms that subway usage is correlated with the usage of other forms of

public transportation because using it as a proxy for the short-range mobility parameter

allows us to predict the two peaks in the NYC infection rate in 2020. Using this model and

the turnstile data from the NYC subway, we predict the trend of daily infections in NYC for

a three-week period. Our model accounts for inter-region mixing of populations, and uses

an infection rate that is dependent on the short-range mobility within a region.

While we have used NYC as a test case, it would be interesting to verify the model

with data from other cities. We believe that by incorporating data from other public trans-

portation services, such as taxis, ride- and bike-sharing services etc., our model can offer

more accurate predictions about the spread of an epidemic disease. Thus, it can be a useful

tool in guiding public policies to tame the spread of pandemics.



CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis we have presented three different topics under the broad category of spreading

processes on complex networks.

For diffusive persistence on disordered networks we showed the emergence of a novel

power-law exponent associated with local persistence at the percolation threshold on 2d

lattices of θ = 0.141 ± 5.3 ∗ 10−5, as well as the emergence of a new scaling exponent,

z ≈ 2.56 ± 2.3 ∗ 10−3, associated with the limiting value of persistence on finite lattices. It

remains an open question how these quantities change for intermediate values of φ above the

percolation threshold.

While we have considered the persistence of a diffusive field where the field obeys the

heat equation, it would be interesting to observe the behavior of the discretized Schrödinger

equation on disordered lattices, where the field corresponds to the wavefunction. In this

case persistence can be defined as a first-passage time for the probability (defined as the

norm-squared value of the field) rather than the field itself. Since the probability is bounded

between 0 and 1, persistence cannot be defined as the first-passage time when the field crosses

0 at a given node. Instead, we would have to pick a different threshold and track the nodes

where the corresponding probability never crosses that threshold. While a natural choice for

this threshold might be 1/N , persistence in this situation would not be symmetrical above

and below this threshold. It might therefore be helpful to track the nodes that always stay

above this threshold and those that always stay below this threshold separately.

For our work on numerical methods for concurrence percolation theory we introduced

the parallel approximation, where we treat all paths connecting the source and target node

as parallel. We showed that the total concurrence calculated under this approximation is

an upper bound to the true concurrence on all series-parallel networks and we can greatly

speed up the calculation of concurrence by avoiding the costly computation of the star-mesh

transform. We combined this approximation with the Sm approximation, where we only

consider the m-th shortest paths in the networks since shorter paths contribute more per

path to the concurrence than longer paths. Taken together, these approximations greatly

speed up the process of calculating concurrence and allow us to estimate the concurrence

percolation threshold of complex networks of up to 104 nodes for the first time. However, we

67
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still rely on brute-force path-counting methods and in future work the approximation may

be improved by replacing path-counting with approximating the number of paths of a given

length. It will also be interesting to extend the study to concurrence based on mixed states.

For the work on the mobility-based SIR model we showed how data on public trans-

portation can be used to forecast the spread of COVID-19 by making the infection rate a

function of the mobility within a city, with the mobility parameter being calculated from

public transportation usage. Specifically, we used data on the NYC subway as a proxy for

all mobility within NYC and were able to show that our mobility based SIR model was able

to capture both peaks in the number of cases of COVID-19 in NYC in 2020. While our

model was able to successfully forecast three weeks of new daily COVID-19 infections, it can

be enriched by combining it with demographic information about the different boroughs of

NYC, as well as by using additional data on public transportation from taxis, ride-shares,

and bike-shares. It will also be interesting to see how the model performs in other cities.
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