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ABSTRACT

A major problem plaguing the field of biomedical research is the tendency to perform

safe, incremental research.This implies that biomedical researchers tend to collabo-

rate with other researchers who are already “close” to them in their co-authorship

networks or citation networks. We propose a novel method to find new potential

collaborators in the Synergy research project. The idea is to include information

from molecular networks and propose researchers working on “nearby” molecules

as potential collaborators. Based on this idea, we have built a software application

where a biomedical researcher could input a list of molecules of her choice and find

several ranked lists of potential collaborators as output. The underlying network

is the Synergy network - a multilayer network formed from data in the PubMed

database. This Master’s thesis describes the algorithms to find and sort these po-

tential collaborators. These have been implemented in Java in the Synergy software

application. The algorithms output the results within minutes even with tens of

millions of author nodes and publication nodes in the network. Several potential

collaborators are identified with sample lists of molecules in this thesis. Finally,

this thesis validates the results found by comparing the probability of molecules

which serve as research topics of two co-authors as being neighbors to the probabil-

ity of molecules chosen at random being neighbors. It is found that the former is

considerably higher than the latter.
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1. INTRODUCTION

Public calls for return on investment in biological research, such as the Cancer

Moonshot (Lowy & Collins, 2016) [1] and the National Alzheimer’s Plan Act (“Na-

tional plan to address Alzheimer’s disease”, 2012) [2] that targets a preventative

drug by 2025, do not seek incremental scientific advances. Instead they call for

transformative insights that will substantially improve patient care. Big data re-

sources in biology may be one path to creating such insights, as seen in efforts to

extract actionable research directions, such as European programs on organizing

large-scale biological data (Crosswell & Thornton, 2012) [3] and collaborative en-

deavors across National Institutes of Health (NIH), like the Big Data to Knowledge

trans-NIH initiative (Margolis et al., 2014) [4] or scientific community attempts to

create large-scale metabolic models (Thiele et al., 2013) [5]. However, in the face of

unprecedented data sources and public calls for transformational scientific research

that makes use of these resources, the expert consensus is that the field of biology

increasingly favors “safe” research that does not challenge the status quo of the field

(Alberts, Kirschner, Tilghman, & Varmus, 2015) [6].

According to Smalheiser, Perkins, and Jones (2005) [7], there are two extreme

cases of how collaboration is established. One is a passive approach when one

side of the relationship, the supplier side, assumes a “vendor model” by providing

only a minimal set of well-defined resources to the receiver who is typically the

initiator of the collaboration. The other extreme case is an active model where two

parties are fully engaged in the collaboration, carry equal responsibility, and receive

equal credit for the work. There is also a wide range of possibilities between those

extremes which can be potentially very productive but are quite difficult to initiate

due to uncertainty associated with the need to agree upon many essential details.

As a proposed solution, Smalheiser et al. (2005) [7] introduce a set of guidelines

which describe several possible engagement levels (the minimal level and a number

Portions of this chapter previously appeared as (Kuzmin, K., Lu, X., Mukherjee, P. S., Zhuang,
J., Gaiteri, C., & Szymanski, B. K. (2016). Supporting novel biomedical research via multilayer
collaboration networks. Applied Network Science, 1 (1), 11.)
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of higher levels) that can be used by a supplier and a receiver to negotiate the terms

of the collaboration. Our goal is also to support potential collaborations that can

emerge from the middle area between two extremes.

To support this goal, a tool - Synergy is proposed which can help to imme-

diately reverse the trend towards incremental research, but does not require “high-

risk” efforts by young scientists. This is done by mining the structure of multilayer

molecular and authorship networks in search for rational innovative partnerships,

which have been shown to generate high-quality scientific findings (Wuchty, Jones,

& Uzzi, 2007) [8]. The current relationship of publications to molecular networks is

that publications generally pertain to “popular molecules” and rarely connect to less

studied ones (Rzhetsky, Foster, Foster, & Evans, 2015) [9]. A more efficient way to

explore biochemical relationships entails moving away from popular topics and ex-

ploring additional subjects. Accordingly, award-winning scientists show a preference

for exploring emerging topics (Uzzi, Mukherjee, Stringer, & Jones, 2013) [10] and

novel relationships between them (Foster, Rzhetsky, & Evans, 2015) [11]. We uti-

lize molecular networks to promote innovative, unbiased science, while minimizing

career risk; we identify and connect researchers whose topics of study are “nearby”

in molecular networks. Essentially, when molecules A and B interact biophysically,

we suggest that researchers of molecule A and B should interact scientifically to

explore their related interests.

By mirroring molecular organization in science, historical bias in the shape of

citation networks or collaboration networks is decreased. For instance, one scientist

may have negative findings related to a molecule in the context of cancer, while

those results can be useful to another scientist who studies interacting molecules in

schizophrenia. The links between their research, which share no overlapping key-

words, can only be found through the structure of molecular networks, which connect

the molecules they study. These collaboration recommendations not only make use

of molecular networks, but are resistant to historical bias and can be updated as

new or specialized molecular data become available. In short, by following paths in

molecular data, rational scientific communities can be constructed, as researchers

are alerted to the hidden potential in their existing research. This idea was first
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expressed in the paper by Kuzmin, Gaiteri, and Szymanski (2016) [12].

The remainder of this thesis is organized as follows. A survey of the relevant

research on multilayer networks and related fields is provided in chapter 2. In

chapter 3, the Synergy network and its implementation are described. The ranking

methods used to rank the authors in the search results are described in chapter

4. In chapter 5, implementation of the various ranking methods is described. The

results are presented in chapter 6. In chapter 7, the validation of the results is

described. Finally, in chapter 8, the contribution is summarized and the future

work is discussed. The core original contributions of the author of this thesis are

presented in chapters 4, 5, 6 and 7, based on the sub-sections “Network analysis and

mining” and “Performance evaluation” and the section “Validation” of the paper

by Kuzmin et al. (2016a) [23] of which the thesis author was the sole author, while

other sections of the thesis present material to which author contributed with other

authors of the paper by Kuzmin et al. (2016a) [23].



2. RELATED WORK

This chapter describes the research related to the Synergy multilayer network. One

of the key concepts of the Synergy network proposed by Kuzmin et al. (2016b) [12]

is to establish new collaborative links between different types of entities (molecules,

authors, publications, etc.) It is a fusion of two concepts - multilayer networks and

collaboration networks.

2.1 Multilayer Networks

The idea of combining several different but related datasets into a single mul-

tilayer network is widely used in complex systems. De Domenico et al. (2013) [13]

define multilayer networks as networks which contain entities with different sets of

neighbors in each layer. The applications of multilayer networks are mostly found in

sociology and social information systems. A comprehensive review by Boccaletti et

al. (2014) [14] contains a detailed description of the properties and structural and

dynamic organization of networks that represent different relationships as layers.

Such networks have shown utility in economics, technical systems, ecology, biology

and psychology. Multilayer networks originate from many experimental sources and

model organisms. In many omics analyses it is now standard to project results into

these networks structures, to identify the overall functional role of the results. Many

free and commercial online tools are available for this purpose (For example, see the

papers by Krämer, Green, Pollard, & Tugendreich (2013) [15] and Mostafavi, Ray,

Warde-Farley, Grouios, & Morris, (2008) [16]).

Multilayer networks often contain nodes and edges of various types. The Syn-

ergy network is an example. Thus the Synergy network is also a Heterogeneous

Information Network (HIN). Gong et al. (2012) [17] give a formal mathematical

definition and describe a Social-Attribute Network(SAN) which is also an example

of a heterogeneous network. HINs are widely used to model and study different

Portions of this chapter previously appeared as (Kuzmin, K., Lu, X., Mukherjee, P. S., Zhuang,
J., Gaiteri, C., & Szymanski, B. K. (2016). Supporting novel biomedical research via multilayer
collaboration networks. Applied Network Science, 1 (1), 11.)

4



5

types of networks in various fields, like social sciences, biology, medicine, and trans-

portation, as well as across fields (e.g., scientific collaboration networks). The fact

that heterogeneous networks include different types of entities and relationships in

many cases significantly simplifies the process of mapping the properties of objects

being studied to the attributes of network entities, as compared to homogeneous

networks. For example, in the dblp computer science bibliography database [18]

one node can represent either a publication or an author. Publications and authors

are connected with relationships, such as a “co-author” relationship, and pairs of

relationships, like “cite” and “cited-by”, and “publish” and “published-by”.Even

though multilayer networks and HINs have different terminologies they can be es-

sentially treated as networks with multiple types of nodes. At the same time HINs

highlight different types of relationships among the nodes.

2.2 Collaboration Networks

The earliest work on collaboration networks by Newman (2001a) [19] defines

these networks as networks in which a scientist/author is represented by a node.

Two author nodes are joined with an unweighted edge only if they have been coau-

thors in a publication. Such networks can be used to explore social connections

among scientists. The study of these networks includes calculating various network

measures - see the papers by Newman (2001a) [19] and Newman (2001b) [20]. These

measures include means and distributions of the number of edges, clustering coef-

ficient, average distances between scientists in a network, and centrality measures

like closeness and betweenness centrality.

Recent work by Bian et al. (2014) [21] goes beyond such traditional metrics.

The networks themselves are slightly different — the edges are weighted based on

the number of collaborative grants awarded to the relevant pair of scientists, instead

of coauthorship. Multi-year grants are counted for every fiscal year. On these en-

hanced networks, the “leaders”, or the most influential scientists are identified by

various centrality measures and rank aggregation techniques. Furthermore, new col-

laborations are suggested using the Random Walk with Restart (RWR) algorithm.

However, this research does not take into account connections between scientists who



6

might be working on related topics but who might not have collaborated, something

which is addressed in the collaborators recommended by the Synergy software ap-

plication.



3. SYNERGY NETWORK AND SOFTWARE

APPLICATION

This chapter describes the concept of the Synergy network and how it has been

implemented with real world data from the PubMed Central database [22] and with

the help of various software tools to develop the Synergy software application.

3.1 The Network Structure

The Synergy network is a multilayer network with four layers - biomedical re-

searchers, publications, molecules with common names and unique molecules(Ensemble

ID molecules). Each node in the first layer represents a biomedical researcher,

henceforth referred to as the author. Each author node is connected by unweighted

inter-layer edges to the nodes in the next layer - publications.

Each node in the second layer represents a publication. There are no intra-layer

edges in this layer. Each publication node is connected by unweighted inter-layer

edges to author nodes. These author nodes represent the authors who published

the publication. Each publication node is also connected by inter-layer edges to the

molecules mentioned in its abstract.

The node in the third layer represents a molecule identified by its common

name mentioned in publications. These common names are alpha-numeric with a

minimum length of three. However, common names of molecules are not unique.

Different authors might refer to the same molecule with different common names.

Moreover, different authors might have used the same common name to describe

different molecules, though this is rarer. Therefore, there is the fourth layer to

represent molecules uniquely.

Each node in the fourth layer represents an unique molecule. The unique iden-

tifier for each node is the Ensemble ID, which is the unique identifier for molecules

in the biomedical domain. This layer has weighted intra-layer edges. Two molecules

Portions of this chapter previously appeared as (Kuzmin, K., Lu, X., Mukherjee, P. S., Zhuang,
J., Gaiteri, C., & Szymanski, B. K. (2016). Supporting novel biomedical research via multilayer
collaboration networks. Applied Network Science, 1 (1), 11.)

7
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are connected by an intra-layer edge if they participate together in one or more

biochemical reactions. The edge weight reflects the number and the importance of

the biochemical reactions in which the two connected molecules participate in. A

high edge weight indicates that these two nodes are “close”. Each node in this layer

also has unweighted inter-layer edges to the common name molecule nodes based on

the common names used to refer to it in the publications.

3.2 Data Source and Formation of the Network

The data source for the Publication layer and the Author layer is the PubMed

Central database [22]. Each paper was inserted as a node in the publication layer of

the Synergy network. For each of the authors of the paper, at first, we check if there

is an author node with identical attributes (identifying information). If there exists

such a node, the publication and the pre-existing author node are connected via an

inter-layer edge. If not, the author node is first created and then it is connected to

the publication like before.

The common name nodes and the Ensemble ID nodes are created from the data

described in the paper by Mostafavi et al. (2008) [16]. Biological molecules partic-

ipate together in various biochemical reactions in the human body. Two molecules

which participate together in one particular reaction has an edge connecting them

in biological networks. Usually, these edges are unweighted. However, some of these

reactions are more important than others, according to biomedical researchers. Thus

different reactions should have different weights. The edge weight between any two

molecules is thus the sum of the weights of the various reactions in which the two

molecules participate together. The nodes and edges of these two layers in the Syn-

ergy network were formed from these edges and a list of mappings of Ensemble IDs

to one or more common names.

3.3 Architecture

The Synergy software application consists of three layers - the Web Interface,

the Middle Layer and the Graph Database Layer. These layers are described in the

subsections below.
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3.3.1 Web Interface

The Web Interface serves as the interface between the user and the Synergy

software application. The user types in one molecule or a list of molecules as input

in the Web Interface. On click of a button, she sees the various ranked lists of

potential collaborators based on the several ranking algorithms as output. The web

interface has been developed with Hyper-Text Markup Language(HTML)- version

5, Cascading Style Sheets (CSS) - version 3 and JavaScript - version 1.7. The

webserver softwares are Nginx 1.4.6 and Tomcat 7.0.52.

3.3.2 Middle Layer

The middle layer is a Java (version 1.7) software program. It receives the

input from the Web Interface, queries the Neo4j database based on the input and

processes the result. The search and ranking algorithms are also implemented in

this layer. This layer returns the list of authors to the Web Interface as the output.

This layer is described in greater detail in chapter 5.

3.3.3 Graph Database Layer

The entire network described in section 3.1 is stored in a native graph database,

Neo4j, version 3.0.8. The numbers of each type of nodes and edges in the Synergy

network are given in the tables 3.1 and 3.2.

Table 3.1: Node Count.
Node Type Count

Author 27,080,319
Publication 24,358,442

Molecule(Common name) 59,477
Molecule(Ensemble ID) 19,264

The author and publication nodes contain multiple attributes or properties.

However, the molecule nodes, both common name and Ensemble ID, only have a

single property - the common name and the Ensemble ID respectively. The prop-

erties and their descriptions for the author and publication nodes are given in the

tables 3.3 and 3.4 respectively.
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Table 3.2: Edge Count.
Edge Type Count

Author-Publication 88,132,307
Publication-Molecule(Common name) 3,674,750

Molecule(Common name)-Molecule(Ensemble ID) 18,037
Molecule(Ensemble ID)-Molecule(Ensemble ID) 7,290,094

Table 3.3: Author Node Attributes.
Attribute Description

Unique identifier integer
AUID assigned to node during

Neo4j node creation
Author Initials First name initial of author

Author ForeName Full first name,
including middle name

Author AffiliationInfo List of strings describing
the affiliations of the author

Author LastName Full last name of the author

Table 3.4: Publication Node Attributes.
Attribute Description

JournalISOAbbreviation Abbreviation of the Journal
by ISO 4 standard

JournalIssue Issue Sequential number of the journal issue
JournalIssue PubDate MedlineDate Publication date of the journal

JournalISSN Unique identifier for the journal
JournalTitle Name of the journal

JournalIssue Volume Sequential number of the
journal issue’s volume

ArticleTitle Title of the Article
AbstractText Contents of the Abstract

PMID Unique identifier for the publication



4. RANKING ALGORITHMS

Using the power of the Synergy software application, an author can enter the

molecule(s) of interest and find a list of potential collaborators researching on the

molecules which are “one hop” away (directly connected by a single intra-layer edge

at the Ensemble ID node layer) from the molecule(s) of interest. Henceforth, the

molecules which are one hop away are referred to as the “neighbors”. This chapter

describes how these potential collaborators are ranked.

4.1 Number of Publications on Neighbors

The number of publications on neighbors by an author is henceforth indicated

by nPC . The first approach is to put authors with higher nPC before the authors

with lower nPC . This ensures that the most relevant prolific authors are at the

top. However, this approach often promotes authors who might have a higher total

number of publications on all molecules (this statistic is indicated by nTOTAL),

including the neighbors. Alternatively, it would be desirable to find authors who

are more dedicated on researching the neighbors.

4.1.1 Promoting Dedicated Authors

A modification of the described ranking method promotes authors who re-

search more exclusively on the neighbors. To accomplish this, a new measure is in-

troduced - normalized publication count rPC .Its formulation is given in equation 4.1:

rPC =
nPC

nTOTAL

(4.1)

Authors with higher rPC is ranked higher than authors with rPC in this ap-

proach.

This work constitutes original contributions of the author of the thesis, any portion of this
chapter previously appeared as (Kuzmin, K., Lu, X., Mukherjee, P. S., Zhuang, J., Gaiteri, C.,
& Szymanski, B. K. (2016). Supporting novel biomedical research via multilayer collaboration
networks. Applied Network Science, 1 (1), 11.) Sub-section “Network analysis and mining” were
written by the author.

11
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4.2 Number of Neighbors

Focusing on the number of publications on neighbors by an author has one

big disadvantage. Consider this scenario - one of the neighbors is a “popular”,

that is, a well-researched molecule with considerably more publications on it than

other neighbors. Authors who are more prolific on the popular neighbor will have

higher ranks. However, finding such authors will not promote novel research on

the neighborhood. In fact, using nTOTAL as a ranking criteria will produce similar

results in this scenario.

The solution to this problem is to consider a different ranking criteria - the

number of neighbors on which the author has published, mNEI . Authors who have

higher mNEI are ranked higher. This ranking method achieves a higher “coverage”

of the neighborhood.

4.2.1 Weighted Number of Neighbors

Using mNEI as a ranking criteria ignores one aspect, not all neighbors are

equal. Some neighbors are connected via higher weight edges to the searched

molecule(s) than others. Authors who have published on these neighbors should

be ranked higher. To account for this, a new measure is introduced, wNEI , which

is the sum of the weights of each edge connecting the neighbor to the searched

molecule(s). Authors who have higher wNEI are ranked higher.

4.3 Combining These Ideas

The previous sections in this chapter describe several ranking criteria. Each

of them have their own advantages and disadvantages. Therefore, it would be ideal

to combine these ranking criteria to form one composite criterion. Four of these

composite criteria are given in the subsections below.

4.3.1 Non-normalized and Unweighted Ranking

This ranking criterion involves first sorting the authors based on the number of

neighbors mNEI on which they have researched on, as described in section 4.2. Since

the weights of the edges connecting the neighbors to the searched molecule(s) are
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not accounted for here, the word “unweighted” is used in the name. For the authors

who have researched on the same number of neighbors , the sorting is based on the

number of publications on the neighbors nPC , as described in section 4.1. Since the

number of publications is not normalized by the total number of publications of the

author, the word “non-normalized” is used in the name.

4.3.2 Normalized and Unweighted Ranking

This ranking criterion, like in the previous subsection 4.3.1, involves first sort-

ing the authors based on the number of neighbors mNEI on which they have re-

searched on. For the authors who have researched on the same number of neighbors,

the sorting is different. Here it is based on the normalized number of publications

on the neighbors rPC , as described in subsection 4.1.1. Since the number of publi-

cations is normalized by the total number of publications of the author, the word

“normalized” is used in the name.

4.3.3 Non-normalized and Weighted Ranking

This ranking criterion involves first sorting the authors based on the weighted

number of neighbors wNEI on which they have researched on, as described in subsec-

tion 4.2.1. Since the weights of the edges connecting the neighbors to the searched

molecule(s) are accounted for here, the word “weighted” is used in the name. For

the authors who have researched on the same weighted number of neighbors , the

sorting is based on nPC , same as the secondary sorting criterion described in 4.3.1.

4.3.4 Normalized and Weighted Ranking

This ranking criterion, like in the previous subsection 4.3.3, involves first sort-

ing the authors based on the weighted number of neighbors wNEI on which they

have researched on. For the authors who have researched on the same weighted

number of neighbors , the sorting is based on rPC , same as the secondary sorting

criterion described in 4.3.2.



5. IMPLEMENTATION OF SEARCH AND RANKING

ALGORITHMS

The Synergy network is queried to find the potential collaborators researching on

neighbor molecules. This chapter describes how those query results are processed.

It also describes how the ranking algorithms described in chapter 4 are implemented

using the Java programming language.

5.1 Object Oriented Approach

An object oriented approach has been used to represent the node types in

the Synergy network with classes. The table 5.1 gives this correspondence. Out

of these, ENSGMolecule and Publication classes are mainly for future use. There

is another class SynergyMiddleLayer, which has static functions and is used in an

imperative paradigm. This is the class which contains the main function and hence

serves as the starting point of the code execution.

Table 5.1: Node Type and Corresponding Java Class
Node Type Java Class

Author Author
Publication Publication

Molecule(Common name) Molecule
Molecule(Ensemble ID) ENSGMolecule

5.1.1 Author Class

This class contains instance variables corresponding to the attributes of the

author nodes - author ID, first name, last name, initials, affiliation. In addition, this

class contains instance variables which store other important information about the

This work constitutes original contributions of the author of the thesis, any portion of this
chapter previously appeared as (Kuzmin, K., Lu, X., Mukherjee, P. S., Zhuang, J., Gaiteri, C.,
& Szymanski, B. K. (2016). Supporting novel biomedical research via multilayer collaboration
networks. Applied Network Science, 1 (1), 11.) Sub-section “Network analysis and mining” were
written by the author.

14
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author - her total number of publications nTOTAL, the number of publications on

the neighbors nPC , the weighted number of neighbors on which she has published

wNEI and a hashtable to store the number of publications corresponding to each

neighbor. Finally, this class contains the comparators which allow us to sort the

author objects by the ranking criteria described in section 4.3.

5.1.2 Molecule Class

This class contains instance variables to store the following information - the

common name, the hashtable to store the edge weights corresponding to the neigh-

boring molecules and the sum of edge weights. It also contains a comparator to

compare Molecule objects based on their sum of edge weights.

5.2 Flow of the Program

This section describes the flow of the program, mainly driven by the function

searchAuthorsThruNeighbors. The function has two boolean arguments - one to

indicate if the ranking method uses weighting for the number of molecules or not

and another variable to indicate whether the ranking method uses nPC or rPC for

the secondary ranking criteria. In addition, the function has two list arguments -

a list of common name molecule strings which would serve as the search terms and

a list of common name molecule strings which would be avoided if they are found

as neighbors of the search terms. The function also has two numeric arguments -

a floating point number which serves as the threshold for the number of molecules

wNEI or mNEI for an author to be considered and an integer which serves as the

threshold for nPC for an author to be considered.

The function begins by placing all the search terms in the list of molecules to

avoid. This implies that if a pair of molecules in the search terms list correspond

to neighboring Ensemble IDs, none of them would be counted among the neighbors

for which we want to find the researching authors.

At this point, another function findTopNeighbors is called. This function

populates a hashtable htMOL where each key is a neighbor common name molecule

string NEI and the value is another hashtable. In the inner hashtable htWEI , each
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key is a search term SRCH and the value is the edge weight connecting NEI to

SRCH through weighted molecule (Ensemble ID) edge(s). After this function has

returned, Molecule objects are created corresponding to each neighbor. Each of

these objects are placed in a list. The list is sorted based on the highest total sum

of edge weights over all of the htWEI hashtables, using the comparator mentioned in

subsection 5.1.2. Then this list is pruned to keep only the top 30 closest neighbors.

For each of these top neighbors, the function findAuthorsFromMolecule is

called. This function populates a hashtable htAUTH where each key is an author

ID and the value is another hashtable htPUB. In htPUB, each key is a publication

ID representing a unique publication and the value is the set of neighbor common

name molecule strings which are mentioned in the abstract of that publication. This

function also populates another hashtable htAUTHINFO where each author ID is the

key and an Author object created from her information is the corresponding value.

The next step is to traverse through the hashtable htAUTH . For every author in

the hashtable, wNEI or mNEI and nPC are calculated from the information in htPUB

and htMOL. The measures calculated depends on the ranking method used (these

are described in section 4.3) — for the weighted ranking methods, wNEI is calculated

while for the unweighted ranking methods, mNEI is calculated. nPC is required for

all ranking methods. However, if the ranking method is normalized, nTOTAL is also

required to be calculated, to find rPC as per equation 4.1. If the author passes the

threshold arguments, the Author object obtained from the htAUTHINFO hashtable

is placed in a list of selected authors liSELECTAUTH .

After the hashtable htAUTH has been processed, the list liSELECTAUTH is sorted

using the custom comparators in the Author class, based on the ranking method

used. The information of all these authors are then displayed on standard output

or written to a file.

5.3 Finding the Closest Neighbors

This section describes the process by which the closest neighbors are found

by the findTopNeighbors function. This function has three arguments - the search

term string SRCH, the hashtable htMOL mentioned in section 5.2 and the set of
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molecules to avoid. Data structures are passed by reference in Java, hence the

existing information in the hashtable htMOL is preserved as it is called repeatedly

for each of the search terms.

The function creates a Neo4j query to find all the common name molecules

which are “directly” connected to SRCH. These connections would be three hops

away - SRCH would be connected via inter-layer edge(s) to one or more Ensemble

ID molecules, which in turn would have connections to other Ensemble ID molecules

via weighted intra-layer edges. These neighbor Ensemble ID molecules would be con-

nected via inter-layer edges to other common name molecules. These common name

molecules are the “neighbors” mentioned in chapter 4. The edge weight connecting

the Ensemble ID nodes are also obtained through this query. As it is possible for

SRCH to be represented by more than one Ensemble ID molecule, the connection

between SRCH and its neighbor NEI could be through multiple weighted edges.

In this case, the sum of these edge weights SUMEDGEWT is considered. Thus, in the

hashtable htMOL, corresponding to the key NEI, the value hashtable htWEI would

have an entry with SRCH as the key and SUMEDGEWT as the value. The result of

the Neo4j query is processed to extract the information described above.

5.4 Finding the Authors

This section describes the process by which the authors researching on a par-

ticular neighbor are found by the findAuthorsFromMolecule function. This function

has three arguments - the two hashtables htAUTH and htAUTHINFO and the neigh-

bor common name string NEI. This function creates a Neo4j query to find all the

authors and their information who research on NEI. These authors are two hops

away from NEI - NEI is connected via inter-layer edges to publications which

mention it and these publications, in turn, are connected via inter-layer edges to

their publishing authors. The result of the Neo4j query is processed to extract the

information required to populate the hashtables htAUTH and htAUTHINFO.

Another citation for the bibliography:[?]



6. RESULTS

This chapter presents the Synergy software application’s results and their anal-

ysis. The Synergy software application has been run with several molecule lists as

input.

6.1 Tables and Discussion - First Input List

One of these lists INP1 is given in the table 6.1, along with the correspond-

ing Emsemble IDs. The Ensemble IDs corresponding to common name molecules

LUBB3 and U1 − C are not found. Therefore, there are no authors who research

on the neighbors of these molecules in the results.

The top five authors recommended for collaboration using the ranking methods

- non-normalized unweighted, normalized unweighted, non-normalized weighted and

normalized weighted are given in the tables 6.2, 6.3, 6.4 and 6.5 respectively. The

results are similar for the four ranking methods, with identical top three authors,

even though Dr.Juri Rappsilber is second in the normalized methods but third in the

non-normalized methods. Since the number or weight of neighbors is the primary

ranking criteria, the two weighted methods are even closer with identical top four

authors. The same is true for the unweighted methods.

The ranking methods have been compared through a plot 6.1. The results of

the three ranking methods - normalized unweighted, non-normalized weighted and

normalized weighted have been plotted against the results of the non-normalized

unweighted ranking method. This has been accomplished by identifying the top 100

authors in the non-normalized unweighted ranking method and then finding and

plotting their ranks in the other methods, if the ranks are within 210.

As in the tables, it is found that the two unweighted methods have some

This work constitutes original contributions of the author of the thesis, any portion of this
chapter previously appeared as (Kuzmin, K., Lu, X., Mukherjee, P. S., Zhuang, J., Gaiteri, C.,
& Szymanski, B. K. (2016). Supporting novel biomedical research via multilayer collaboration
networks. Applied Network Science, 1 (1), 11.) Sub-section “Performance evaluation” were written
by the author.
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Table 6.1: Sample Input List of Molecules INP1
Input Common Name Corresponding Ensemble ID(s)

ANXA5 ENSG00000164111
CD44 ENSG00000026508
DNM3 ENSG00000197959

EPB41L3 ENSG00000082397
LMNA ENSG00000160789
LUBB3 None
MSN ENSG00000147065

PLCD1 ENSG00000187091
PLEC ENSG00000178209

PPP1R7 ENSG00000115685
PTRHD1 ENSG00000184924

RTN4 ENSG00000115310
SFRP1 ENSG00000104332

SNRNP70 ENSG00000104852
SNRPB ENSG00000125835
SNRPN ENSG00000128739

U1-A ENSG00000077312
U1-C None

Table 6.2: Top Five Authors Recommended as Collaborators with
INP1(Non-normalized Unweighted Ranking Method).

Name Neighbor Molecules Number Of Publication Count
(Number Of Neighbor On Neighbor
publications) Molecules Molecules nPC

Gideon EIF4A3(2), MAGOH(6),
Dreyfuss SNRPD1(1), SNRPD3(1), 5 7

SNRPE(1)
Matthias EIF4A3(1), MAGOH(1),

Mann SNRPD1(1), SNRPD3(1), 5 2
SNRPE(1)

Juri EIF4A3(1), MAGOH(1),
Rappsilber SNRPD1(1), SNRPD3(1), 5 2

SNRPE(1)
Edouard EIF4A3(1), MAGOH(2),
Bertrand SNRPD1(1), SNRPD3(1) 4 3
Martin E LINGO1(2),
Schwab ROCK2(1), RTN4R(8) 3 11
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Table 6.3: Top Five Authors Recommended as Collaborators with
INP1(Normalized Unweighted Ranking Method).

Name Neighbor Molecules Number Of Normalized
(Number Of Neighbor Publication
publications) Molecules Count rPC

Gideon EIF4A3(2), MAGOH(6),
Dreyfuss SNRPD1(1), SNRPD3(1), 5 0.13

SNRPE(1)
Juri EIF4A3(1), MAGOH(1),

Rappsilber SNRPD1(1), SNRPD3(1), 5 0.03
SNRPE(1)

Matthias EIF4A3(1), MAGOH(1),
Mann SNRPD1(1), SNRPD3(1), 5 0.01

SNRPE(1)
Edouard EIF4A3(1), MAGOH(2),
Bertrand SNRPD1(1), SNRPD3(1) 4 0.04
Amelie K SNRPD1(1),

Gubitz SNRPD3(1), SNRPE(1) 3 1.00

Table 6.4: Top Five Authors Recommended as Collaborators with
INP1(Non-normalized Weighted Ranking Method).

Name Neighbor Molecules Sum Of Edge Publication Count
(Number Of Weights On On Neighbor
publications) Published Molecules nPC

Neighbors

Gideon EIF4A3(2), MAGOH(6),
Dreyfuss SNRPD1(1), SNRPD3(1), 3.19 × 10−2 7

SNRPE(1)
Matthias EIF4A3(1), MAGOH(1),

Mann SNRPD1(1), SNRPD3(1), 3.19 × 10−2 2
SNRPE(1)

Juri EIF4A3(1), MAGOH(1),
Rappsilber SNRPD1(1), SNRPD3(1), 3.19 × 10−2 2

SNRPE(1)
Francis S LMNB1(1),
Collins LMNB2(1), MSH4(1) 3.06 × 10−2 2

Catherine EIF4A3(2),
Tomasetto MAGOH(4), ROCK2(1) 2.88 × 10−2 6
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Table 6.5: Top Five Authors Recommended as Collaborators with
INP1(Normalized Weighted Ranking Method).

Name Neighbor Molecules Sum Of Edge Normalized
(Number Of Weights On Publication
publications) Published Count rPC

Neighbors

Gideon EIF4A3(2), MAGOH(6),
Dreyfuss SNRPD1(1), SNRPD3(1), 3.19 × 10−2 0.13

SNRPE(1)
Juri EIF4A3(1), MAGOH(1),

Rappsilber SNRPD1(1), SNRPD3(1), 3.19 × 10−2 0.03
SNRPE(1)

Matthias EIF4A3(1), MAGOH(1),
Mann SNRPD1(1), SNRPD3(1), 3.19 × 10−2 0.01

SNRPE(1)
Francis S LMNB1(1),
Collins LMNB2(1), MSH4(1) 3.06 × 10−2 0.01
Fabien EIF4A3(2),
Alpy MAGOH(4), ROCK2(1) 2.88 × 10−2 0.25

similarity. The blue points indicating the normalized unweighted ranks are present in

two sections of the plot - bottom left and top right, indicating a positive relationship.

However, the relationship is not exactly linear. The number of blue points is also far

lower than 100 implying that not all of the top 100 authors in the non-normalized

unweighted ranking method are present within the top 200 list of authors in the

normalized weighted ranking method.

On the other hand, the two weighted methods produce quite different ranks.

The red points, indicating the ranks in normalized weighted ranking method, are all

over the plot, indicating little to no positive relationship with the non-normalized

unweighted ranking method. The green points, indicating non-normalized weighted

ranking method, are also all over the plot. In contrast to the other two ranks, their

number is lower, indicating that fewer of the top 100 authors in the non-normalized

unweighted ranking method are placed among the top 200 in the non-normalized

weighted ranking method. Thus the two non-normalized ranking methods are dras-

tically different from each other due to the weighting factor.
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Figure 6.1: Plot of the normalized unweighted, non-normalized weighted
and normalized weighted ranks of the top 100 authors from the non-
normalized unweighted ranking method — INP1.

6.2 Tables and Discussion - Second Input List

Another input list INP2 is given in the table 6.6. The Ensemble ID corre-

sponding to the common name DA2IP is not found.

The top five authors recommended for collaboration with this input list are

given in the tables 6.7, 6.8, 6.9 and 6.10. The results show more variability for

INP2. Only one author is consistently present in all the four ranking methods.

However, the weighted methods are much closer, with the identical five authors and

their identical ranks. The unweighted methods are also closer but not as much, with

the identical top three authors and swapped ranks.

The ranking methods have also been compared through a plot 6.2. The plot

has been generated using the method described in 6.1 but with the results for INP2.
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Table 6.6: Sample Input List of Molecules INP2
Input Common Name Corresponding Ensemble ID(s)

CCDC85C ENSG00000205476
CIC ENSG00000079432

CSRP1 ENSG00000159176
DA2IP None

FAM63A ENSG00000143409
FURIN ENSG00000140564

HMG20B ENSG00000064961
IGFBP5 ENSG00000115461
ISYNA1 ENSG00000105655
KIF1C ENSG00000129250
PADI2 ENSG00000117115

SLC38A2 ENSG00000134294
SNAP25 ENSG00000132639
STX1A ENSG00000106089

STXBP3 ENSG00000116266
SV2B ENSG00000185518
SYT1 ENSG00000067715
SYT12 ENSG00000173227
VGF ENSG00000128564

ZBTB47 ENSG00000114853

The number of blue points, indicating the normalized unweighted ranking method,

is closer to 100 here. The positive relationship between the two unweighted methods

is more apparent here. However, green points, indicating non-normalized weighted

ranks, are extremely few in number. The number of red points, indicating the

normalized weighted ranking method, is considerably lower than the number of blue

points, unlike for INP1. The red points are also all over the map. Thus the weighted

methods, especially the non-normalized one, have produced dramatically different

ranks, when compared with similar results for INP1. One probable reason for this

phenomenon is that the popularity of the neighbors of the molecules listed in INP2

- most of the nPC values are greater than 10 for the top 5 authors for INP2 with

different ranking methods, while for INP1, it is mostly lower than 10. The change

in the weighting scheme of the ranking method thus brings new prolific authors into

the ranked list, especially for the non-normalized ones.
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Table 6.7: Top Five Authors Recommended as Collaborators with
INP2(Non-normalized Unweighted Ranking Method).

Name Neighbor Molecules Number Of Publication Count
(Number Of Neighbor On Neighbor
publications) Molecules Molecules nPC

Thomas C RAB3A(11), SLC17A7(1),
Sudhof STX1B(1), STXBP1(4), 5 24

VAMP2(7)
HDAC2(1), IGF1(1),

Yang Shi KDM1A(6), PHF21A(3), 5 10
RCOR1(2)

Gudrun SLC17A7(2), SLC18A2(2),
Ahnert-Hilger STX1B(1), STXBP1(1), 5 8

VAMP2(2)
Robert H SLC17A7(15), SLC18A2(9),
Edwards SSLC18A3(1), VAMP2(1) 4 24
Bruno HDAC2(1), SLC17A7(4),
Giros SLC18A2(4), SLC18A3(2) 4 11

Table 6.8: Top Five Authors Recommended as Collaborators with
INP2(Normalized Unweighted Ranking Method).

Name Neighbor Molecules Number Of Normalized
(Number Of Neighbor Publication
publications) Molecules Count rPC

Gudrun SLC17A7(2), SLC18A2(2),
Ahnert-Hilger STX1B(1), STXBP1(1), 5 0.18

VAMP2(2)
Thomas C RAB3A(11), SLC17A7(1),

Sudhof STX1B(1), STXBP1(4), 5 0.12
VAMP2(7)

HDAC2(1), IGF1(1),
Yang Shi KDM1A(6), PHF21A(3), 5 0.05

RCOR1(2)
Noelia Fernandez CPLX1(1), RAB3A(1),

-Castillo STXBP1(1), VAMP2(1) 4 1.00
Bernard HDAC2(1), KDM1A(1),
Lakowski PHF21A(1), RCOR1(1) 4 1.00
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Table 6.9: Top Five Authors Recommended as Collaborators with
INP2(Non-normalized Weighted Ranking Method).

Name Neighbor Molecules Sum Of Edge Publication Count
(Number Of Weights On On Neighbor
publications) Published Molecules nPC

Neighbors

Jerome I IGF1(1), IGFALS(1),
Rotter KDM1A(1), NOTCH3(1) 3.77 × 10−2 4

Romano CPLX1(1), RAB3A(3),
Regazzi SLC17A7(1), VAMP2(4) 2.80 × 10−2 9
Gudrun SLC17A7(2), SLC18A2(2),

Ahnert-Hilger STX1B(1), STXBP1(1), 2.73 × 10−2 8
VAMP2(2)

Robert H SLC17A7(15), SLC18A2(9),
Edwards SSLC18A3(1), VAMP2(1) 2.72 × 10−2 24
Bruce M IGF1(2), IGFALS(1),

Psaty PAPPA2(1), RCOR1(1) 2.70 × 10−2 5

Table 6.10: Top Five Authors Recommended as Collaborators with
INP2(Normalized Weighted Ranking Method).

Name Neighbor Molecules Sum Of Edge Normalized
(Number Of Weights On Publication
publications) Published Count rPC

Neighbors

Jerome I IGF1(1), IGFALS(1),
Rotter KDM1A(1), NOTCH3(1) 3.77 × 10−2 0.01

Romano CPLX1(1), RAB3A(3),
Regazzi SLC17A7(1), VAMP2(4) 2.80 × 10−2 0.22
Gudrun SLC17A7(2), SLC18A2(2),

Ahnert-Hilger STX1B(1), STXBP1(1), 2.73 × 10−2 0.18
VAMP2(2)

Robert H SLC17A7(15), SLC18A2(9),
Edwards SSLC18A3(1), VAMP2(1) 2.72 × 10−2 0.28
Bruce M IGF1(2), IGFALS(1),

Psaty PAPPA2(1), RCOR1(1) 2.70 × 10−2 0.01
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Figure 6.2: Plot of the normalized unweighted,non-normalized weighted
and normalized weighted ranks of the top 100 authors from the non-
normalized unweighted ranking method — INP2.
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6.3 Running Time

The most time consuming step in this project is running a Neo4j query. Nor-

malized methods, which require the calculation of nTOTAL for every author in the

ranked list with a separate query for each, take much more time than non-normalized

methods. The other factor affecting run time is the number of authors in the ranked

list, which decreases for high thresholds and less popular neighbors. The running

times with the four ranking methods for INP1 and INP2 are compared with bar

graphs in Figures 6.3 and 6.4 respectively.
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Figure 6.3: Comparison of the running time produced by the
non-normalized unweighted, normalized unweighted, non-normalized
weighted and normalized weighted ranking methods with INP1.

The asymptotic running time is calculated for the processing performed on

the results returned by Neo4j - the neighbors of a searched molecule or the authors

researching on a neighbor molecule. The number of neighbors selected is 30. The size
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Figure 6.4: Comparison of the running time produced by the
non-normalized unweighted, normalized unweighted, non-normalized
weighted and normalized weighted ranking methods with INP2.

of the input molecule list rarely exceeds 100. The number of Ensemble ID molecule

nodes connected to a common name molecule node are mostly one and never exceed

five in the worst case. The number of common name molecule nodes connected to

an Ensemble ID molecule node, on the other hand, are often more than one but

their number never exceeds 16 in the worst case. Hence, all these small constants

are ignored in the asymptotic running time calculations. The asymptotic running

time is thus a function of the maximum number of keys in the hashtables htMOL and

htAUTH . These numbers are the number of common name molecule nodes NCM and

the maximum number of author nodes NA connected to a common name molecule

node through the inter-layer edges (author-publication) and (publication-common

name molecule) respectively. Therefore, the running time is O(NCM log(NCM) +

NAlog(NA)). The logarithmic terms originate from the sorting operations performed
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on the lists containing the molecule objects from htMOL and the author objects from

htAUTH respectively.



7. VALIDATION

The collaborators recommended by the Synergy software application are often

different from the collaborators found by searching the co-authorship or citation

networks. This should promote innovative research. However, it would also be

desirable to maintain continuity with the current research trajectories of the authors,

to promote innovation with minimal disruption. This chapter describes how the

collaborators recommended by the Synergy software application helps to achieve

this goal of continuity and thus maintains a balance between the two different, often

competing goals.

7.1 Molecular Connection Comparison

The Synergy software application recommends authors based on their publi-

cations on directly connected molecules or neighbors. Therefore, to establish con-

tinuity, the direct connectivity of the molecules which are the subjects of research

for authors and their coauthors are explored in this section. To put this concretely,

the hypothesis is that if AuthorA researches on molecule SRCH and her coauthor

CoauthorA researches on MOLB when she is not collaborating with AuthorA, the

probability of SRCH and MOLB being directly connected is greater than the prob-

ability of two molecules chosen at random are directly connected. Note that the

term ”connectivity“ here refers to connectivity at the Ensemble ID molecule node

layer.

7.1.1 Connectivity of Molecules Chosen Randomly

To find the connectivity of molecules chosen at random, 1000 common name

molecules are selected at random. They are then divided into two groups of 500

each. A pair is formed by selecting one molecule from one group and the other

This work constitutes original contributions of the author of the thesis, any portion of this
chapter previously appeared as (Kuzmin, K., Lu, X., Mukherjee, P. S., Zhuang, J., Gaiteri, C.,
& Szymanski, B. K. (2016). Supporting novel biomedical research via multilayer collaboration
networks. Applied Network Science, 1 (1), 11.) Section “Validation” were written by the author.
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molecule from the other group. There are 250,000 possible pairs. Out of them,

10,300 pairs have an edge between them at the Ensemble ID molecule node layer.

7.1.2 Connectivity of Molecules from Author-Coauthor Pairs

To find the connectivity of molecules researched by authors and their co-

authors, 1000 authors with more than a threshold number of publications, five,

are selected at random. For each such author AuthorA , a set of five molecules SetA

are selected on which she has published the highest number of papers. Five of her

collaborators are also selected with whom she has published the highest number

of publications. For each of these collaborators CoauthorA, a set of five molecules

SetC are selected on which CoauthorA has published the highest number of papers,

excluding the papers CoauthorA has published with AuthorA. At this point, SetA

and SetC are compared. If there are molecules present in both sets, they are re-

moved from both sets. Then, the number of possible pairs and the actual number

of edges for these pairs are computed where each pair have one molecule from SetA

and the other from SetC . There are 14,760 possible pairs. Out of them, 1,735 pairs

have an edge between them.

7.2 Results

The numbers are presented in a tabular form in table 7.1. When the Fisher’s

exact test is performed, the odds ratio is found to be 3.09 at the 95% confidence

interval with a p value less than 2.2×10−16. Thus molecules researched by an author

and her coauthors are significantly more likely to be neighbors than molecules chosen

at random.

Table 7.1: Validation Contingency Table.
Random Molecule Pairs Author-Coauthor Molecule Pairs

Non Neighbors 239,670 13,025
Neighbors 10,330 1,735



8. FUTURE WORK AND CONCLUSION

Future work on the Synergy software application and the Synergy network would

involve enhancements in several areas. One of them is the disambiguation of author

nodes. Many authors often have the same first name and last name. The PubMed

database might not have the affiliation or other identifying information to distinguish

these authors. Consequently, these authors have been fused to a single author node

in the Synergy network. The current and future research is focusing on how to

disambiguate or separate such composite author nodes into their constituents.

Another enhancement would be to include another network as a layer to the

Synergy network - the disease network. A disease node would be connected to

molecules via inter-layer edges if the molecules are affected by the disease or oth-

erwise interact with the disease. The disease node could also be connected to pub-

lications via inter-layer edges if the publications focus on the disease. A further

enhancement would be the reduction in the running time by targeting the bottle-

neck - time taken to run a query on the graph database Neo4j.

To summarize, this thesis proposes algorithms to find and sort potential col-

laborators using the Synergy multilayer network. The idea is to find authors who are

working on molecules directly connected to the molecule of interest of an interested

author. The algorithms run within minutes even with tens of millions of authors

and publications. These algorithms often help discover new authors who are not

found by searching traditional co-authorship or citation networks. Collaborations

with authors found by this novel recommendation technique is likely to promote in-

novative research as opposed to safe, incremental research. But collaborating with

these authors also help maintain the continuity in the research of the interested au-

thors because molecules researched by an author and her co-authors are more likely

to be neighbors.

Portions of this chapter previously appeared as (Kuzmin, K., Lu, X., Mukherjee, P. S., Zhuang,
J., Gaiteri, C., & Szymanski, B. K. (2016). Supporting novel biomedical research via multilayer
collaboration networks. Applied Network Science, 1 (1), 11.
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