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ABSTRACT

Recent global events and their poor predictability are often attributed to the

complexity of the world event dynamics. A key factor generating the turbulence

is human diversity. Here, we study the impact of heterogeneity of individuals on

opinion formation and emergence of global biases. In the case of opinion formation,

we focus on the heterogeneity of individuals’ susceptibility to new ideas. In the

case of global biases, we focus on the aggregated heterogeneity of individuals in a

country.

First, to capture the complex nature of social influencing we use a simple but

classic model of contagion spreading in complex social systems, namely the threshold

model. We investigate numerically and analytically the transition in the behavior of

threshold-limited cascades in the presence of multiple initiators as the distribution

of thresholds is varied between the two extreme cases of identical thresholds and

a uniform distribution. We show that individuals’ heterogeneity of susceptibility

governs the dynamics, resulting in different sizes of initiators needed for consensus.

Furthermore, given the impact of heterogeneity on the cascade dynamics, we

investigate selection strategies for accelerating consensus. To this end, we introduce

two new selection strategies for Influence Maximization. One of them focuses on

finding the balance between targeting nodes which have high resistance to adoptions

versus nodes positioned in central spots in networks. The second strategy focuses on

the combination of nodes for reaching consensus, by targeting nodes which increase

the group’s influence. Our strategies outperform other existing strategies regardless

of the susceptibility diversity and network degree assortativity.

Finally, we study the aggregated biases of humans in a global setting. The

emergence of technology and globalization gives raise to the debate on whether the

world moves towards becoming flat, a world where preferential attachment does

not govern economic growth. By studying the data from a global lending platform

we discover that geographical proximity and cultural affinity are highly negatively

correlated with levels of flatness of the world. Furthermore, we investigate the

xvi



robustness of the flatness of the world against sudden catastrophic national events

such as political disruptions, by removing countries (nodes) or connections (edges)

between them.
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CHAPTER 1

Introduction

Networks allow for the reduction in the representation of natural and artificial

complex systems by transforming objects to nodes and the interaction between ob-

jects to edges between the nodes. This representation reveals and allows the study

of various properties about the structure and interactive processes of a system. In

this representation a node can carry any number of attributes and the edges can

have all kinds of weights assigned to them, all depending on the system we aim to

represent and its dynamic processes [1]. The study of networks, namely Network

Science, has been ongoing over the past two hundred years and was mainly driven

by mathematicians and sociologists. In the past few decades a significant number

scientists from other disciplines, like physics, computer science, and biology have

been involved. Nowadays, Network Science is remarkably multidisciplinary [2]. In

fact, physics [3–6] lies at the heart of the field of Network Science. The physics ap-

proach has been different in three significant ways compared to other disciplines [3],

as we will elaborate further down.

1.1 Networks

1.1.1 Artificial Networks

A network represents more than a group of nodes. It connects them together

with a specific pattern. That pattern is in most cases not accidental. In the case of

artificial networks, the functionality of a network is typically clear, and predefined.

Artificial networks typically are designed to serve a specific global functionality,

hence nodes are not independent actors choosing their connections as the network

grows. For instance a group of people may serve no functionality on their own.

Yet, standing next to each other in a line, connected as a chain, creates a bucket

brigades. A bucket brigades is not an accidental design, since it allows for a faster

transfer of water for firefighters, or remove of debris from a collapsed building for

rescue teams. Another example of a artificial network is message passing in case of

1
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an emergency. It used to be that when an unpredicted event occurred, like a sudden

change of plans, the first few people who knew about it, would share the message

by calling a small number of members of the group. Then, they would also pass the

message and so on. In these cases the functionality of the networks was clear and

simple. Yet there are other artificial networks that have much higher complexity

of functionalities and structure. An example of a higher level complexity network

is transportation networks. They are designed to transport any type of vehicles

optimally, given some constraints. Those constraints are typically geographical con-

ditions, cost of construction and safety. Other examples of artificial networks are

power grid networks, computer networks, telecommunication networks etc.

1.1.2 Natural Networks

Natural networks are also easily recognizable and designed to serve some func-

tionalities, yet those functionalities are not necessarily serving the interest of the

system as a whole, but the interest of each node in particular. For instance, the

specific pattern of networks formed from research paper citations is formed through

the choices of citations for each research paper. In these cases, the growth function

is defining the pattern. Biological networks [7] are at the core of natural ones. For

example, cell metabolic networks cover all the metabolic processes that define the

biochemical and physiological properties. Another example is ecological networks.

They describe the biotic interactions in an ecosystem. Here, nodes represent the

various species and edges between them represent interactions such as trophic or

symbiotic. An interesting case of natural networks is our brain. It consists of nearly

one hundred billion nerve cells (neurons), billions of nerve fibers (dendrites and

axons); with neurons being connected by hundreds of trillions of synapses. It is es-

timated that a three year old child has in average around one quadrillion synapses.

The size of the (human) brain’s neural network is the largest network known to

humans, and perhaps the most complex.

In this Dissertation, we will focus more on social networks, and mainly Online

Social Networks (OSN) [9], which are the facilitators of a number of traceable social

dynamics [8], topic that this work is mostly focused on. OSN are considered natural,
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regardless of the fact that current technology is required for their access. The

network structure that they have is not beforehand designed to serve a great goal,

but arises from each person’s preferences of online connections. The goal of the

members (nodes), is to reach out to other connections, such as friends, professionals

or random people, and extend their online fingerprint. That fingerprint can be

used to keep their friendships warm with updates, by sharing moments sharing of

the lives, or to extend their professional network and being up to date with the

current research/professional/skills trends, and possible opportunities. In addition

to the dynamics that take place between members of social networks (which we will

elaborate further down), the popularity of OSN has given rise to a large number of

external influences pursuing to benefit from the exposure that social dynamics can

offer. Some of the external influences are viral marketing and advertising, multiple

types of online services, politics, etc. And thus, the interest of studying them,

goes beyond the purposes of understanding the human condition. It expands on

studying their dynamics in order to target members of OSN for advertisements of

products [10], services such as Healthcare [11–14], political influence [15,16], ideology

spread [17,18], as well as militaristic operations [19, 20] among others.

1.1.3 Emerging Properties of Networks

A number of mathematical models have been developed to generate synthetic

networks, which are used to understand the structure of numerous artificial and

natural networks. The earliest model used is the Erdős-Rényi(ER) graphs [21]. On

ER graphs, newly introduced nodes have the same probability of connecting with

any other node. The resulting degree distribution is binomial, that is

P (k) =

(
N − 1

k

)
pk (1− p)N−1−k (1.1)

for a finite system size N , and

P (k) =
(Np)k e−Np

k!
(1.2)
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for assymptotically large system size N , where the degree, system size and link

probability are given by k, N , and p respectively. In this model, 〈k〉 = Np is held

constant, where 〈k〉 the average degree. ER graphs do not capture the complexity

of most networks. However, because of their simplicity, they are very useful for

studying dynamical processes that run through them, since complex networks could

unpredictably impact the resulting dynamics. Furthermore, ER graphs (among a

few other models) are nicely expressed analytically, hence being used thoroughly

in analytical models on dynamics allowing for the study tipping points [22–24],

continuous transitions, on non-monotonic behaviors on networks.

Creating analytical models that can capture the properties of networks, and

especially the complexity of natural networks is a challenge, while ER graphs are far

from representing complex networks. To tackle this, physicists, instead of focusing

on random graph models, got inspired by the structure of empirical networks [25,26].

In addition, they focused on the statistical properties of empirical networks. A

very useful measure, which was neglected before, is the degree distribution of a net-

work [27–31]. The degree of a node is the number of connections it has. For instance,

for OSN it is the number of friends a person has. It has been shown [32] that the de-

gree distribution of the Internet follows a power-law trend, P (k) ∝ k−a, with degree

exponent, a = 2.1. Several other natural networks follow a power law degree distri-

bution [27,33,34]. This does not seem to be an accidental property, since there are

specific growth functions that give rise to their structure [29]. Physicists supported

that the power law degree distribution can be explained by two properties. The first

one is a scale-free state of organization of natural networks, meaning that the power

law distribution does not depend on the system size. The second property, prefer-

ential attachment, describes a specific behavior of the network for newly introduced

nodes. It states that new nodes will connect with higher probability of connecting

with nodes which are already more connected (higher degree nodes). Based on those

two properties, they could now construct analytically solvable synthetic networks,

named Scale-Free networks (SF).

Social networks carry another property that was revealed by the seminal ex-

periment conducted by Milgram [35–37] back in the 1960’, which revealed that the
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average number of acquaintances separating any individual on the planet is small,

regardless of the geographical distance, race, and other cultural differences. The

phenomenon is known as ‘small-world’. Interestingly, it also appears in other nat-

ural and technological networks, such as the WWW [38], economic networks [39],

brain networks [40] and transportation networks [41, 42]. Essentially, small-world

networks combine local clustering with random long range ties, giving them their

small-world property. A measure of the efficiency of information exchange in net-

works shows how small-world networks are efficient both locally and globally [43].

Watts and Strogatz [27] introduced a method for synthesizing small-world networks

by starting from a regular network and randomly rewiring a small number of edges.

By controlling the probability p of rewiring between any two edges, a regular graph

with p = 0 could be transformed to a random graph with p = 1. Then, the average

distance L between any two nodes becomes a function of p. The average distance

between any nodes for small world network scales as L ∝ logN [44], where N is the

system size.

The final property of networks that we will address here is their resilience

against random failures and targeted attacks. In case of an error or attack on the

node, that node is disconnected from the network. As a network loses its nodes,

it becomes more and more disconnected. Thus, to quantify the impact of node

disconnections in a network, physicists measure the size of the remaining giant com-

ponent, that is the largest connected (functional) component of the network [45]. It

is observed that many interconnected natural networks are much more resilient to

failure than artificial networks. Such a case is brain networks, which are connected

in a topology that maximizes stability, making them extremely robust [46,47]. This

finding is important, since it evidences the importance of resilience that living organ-

isms have developed through millions of years of evolution not just under exogenous

influences but also under endogenous failures. For artificial networks, examples of

random failures are natural disasters on power grid networks, server failures and

malfunctions in computer networks etc., while targeted attacks could possibly sim-

ulate of terrorist or military actions. Physicists [45] showed that it is scale-free

networks that are most resilient to random failures and errors. However, targeted
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attacks, such as aiming for the nodes with highest degree, on those systems can

greatly disrupt their connectivity, and essentially destroy them, due to the very

large number of connections a few nodes (hubs) have in SF networks. The under-

standing of the resilience of natural, i.e. mass extinctions in ecological networks,

and artificial systems, i.e. power grid cascading failures, to errors and attacks is of

huge importance. Recently, to capture the unpredictability of resilience (and its im-

plications) of complex systems, a new analytical framework was proposed [48] which

was taking into account the systems dynamics and topology to reduce the multi-

dimensional parameters the to one parameter. The authors’ framework “unveils

the network characteristics that can enhance or diminish resilience, offering ways

to prevent the collapse of ecological, biological or economic systems, and guiding

the design of technological systems resilient to both internal failures and environ-

mental changes.” In Chapter 4 we will address the impact on random failures and

perturbations, and targeted attacks on the nodes and edges of an empirical global

network.

1.2 Cascades in Social Systems

Networks exist to facilitate dynamical interactions between nodes. Those in-

teractions typically lead to a change of the different states of those nodes. Cascades

are caused from the propagation of those changes in a network. On their purest

form they are self-amplifying processes that depend solely on the type of interaction

between the nodes and the network structure, just like domino effects do. Here,

we will focus on cascades, and in particular cascades in social systems, a defining

characteristic of state change from one node to another in networks, yet not strictly

defined. A small perturbation, e.g. the change of the state of a node, can lead

to unpredictably large cascades, with catastrophic or beneficial impact depending

on the processes and its implications. For instance, a perturbation as little as a

malfunction of a power line in power grid networks, can build up to a vast size

power shut down, such as the 2003 blackout in Italy [49]. Similarly, a build up

of traffic congestions in road systems can start even by small speed variations of

the going vehicles; or in the case of financial networks, a financial institution may
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cause the failure of another, as we observed in 2008. In other cases, networks are

designed to facilitate cascades, such as neural brain networks, designed to allow mas-

sive triggering of neurons through voltage collection, or online social networks and

communities, where opinions and marketing become viral. Moreover, the cascading

process of a state of an attribute may trigger changes of states of other attributes

of nodes participating in interconnected systems, which make it even harder to pre-

dict their outcome [50–52]. There are three important properties defining cascades:

non-locality, non-additivity, and disproportional impact [53]. Non-locality refers

to a node changing its state by a non-neighboring node, without the neighboring

nodes being required to change state. Most opinion diffusion models do not carry

that property, since the nodes adopt a new opinion through interaction with their

direct (first) neighbors. Epidemic models of disease spread naturally have a locality

component, while cascading failures hold the non-locality feature. That property

typically is responsible for the high unpredictability of nodes that will be affected

by the change in the state of another node in the network. Non-additivity refers

to the property of a spread mechanism where the change of the state of a node is

not enough to cause a change of the state of a neighboring node. Threshold Models

of spread of influence and cascading failures in power grid networks typically follow

this property. However, epidemic disease cascades do not, since the probability of

a node getting infected when a neighboring node does, is always non-zero (unless

vaccinated). Finally, disproportional impact refers to the effect the change of state

of a node will have in the system, which is based not on the network structure prop-

erties of the spreader node, but on the intrinsic characteristics of that node. For

example, typically in epidemiology models the importance of all nodes is considered

the same in the system, and the models are based on the assumption that in average

each person has the same spreading probability. Contrary to that, the catastrophic

impact of failure of power grid nodes depends on their capacity.

1.3 Modeling Cascades

Even when the mechanism of the cascading spread is well understood and

quantified, due to the aforedescribed properties, modeling the cascades can be chal-
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lenging. Yet, the benefits on understanding them, predicting their location and size,

and finally controlling them are tremendous. Let us mention some of those types of

cascades.

1.3.1 Cascading Failures

Cascading Failures [54] describe the overload of nodes and the propagation of

that overload to other nodes. They are typically appearing in systems with flow dis-

tribution, such as current redistribution leading to blackout transmission in power

grid networks, as systemic risk in networks of financial institutions [55, 56], as traf-

fic overload in computer networks, road traffic networks [57] etc. The failures can

occur at the node [50] or edge level and they are non-local, non-additionary, and

with disproportional impact [53]. Cascading Failures can have tremendous impact

on our lives [49,58–61]. Several researchers focus on developing methods to control

such failures and to mitigate against them [62,63].

1.3.2 Epidemic Disease Spreading

In epidemiology and network science [64], understanding, modeling and pre-

venting disease spread at a macroscopic level is crucial for the global [65–69] and

local [70] public safety. A lot of scientific research has been done to cover various

scenarios of disease spread, the basic idea behind them being that a node (unless

vaccinated) can get infected with some non-zero probability from each of its neigh-

bors. The spread mechanism of the models is typically probabilistic, local, and each

node has the same ‘strength’ for spreading the disease, thus it does not obey the

non-locality, non-additivity and disproportional impact properties. The first mathe-

matical models were excluding the impact of the network structure in the spreading

process and were assuming that all individuals (nodes) have the same probability of

getting infected in time (full mixing assumption) [71]. For example, a basic disease

spread model is the Susceptible-Infected-Recovered (SIR) model, where individuals

can be in either of the three mentioned states. Macroscopically, the dynamics of

the fraction of nodes on each state (s, i, r) can be described by a system of coupled
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differential equations,

ds

dt
= −βsi (1.3)

di

dt
= βsi− γi (1.4)

dr

dt
= γi (1.5)

where, β and γ are the contact-transmission parameter, and the recovery rates

from infected to susceptible, respectively. Also, the fractional size of each state is

normalized such that s+ i+ r = 1. There isn’t an analytically trackable solution to

this. For γ = 0 SIR is simplified to the Susceptible-Infected (SI) model, which has

a logistic growth solution. However, the steady state is not hard to calculate, since

then the rates are zero, and so

r = 1− s0e
β
γ
r (1.6)

where, s0 is the initial susceptible fraction (s0 ≈ 1 assuming a small disease spread

fraction).

Another interesting variation is the Susceptible-Infected-Susceptible (SIS) model,

were nodes can become susceptible again after being infected. A mean field theory

on networks provides the epidemic threshold λc, above which the disease does not

die out, as λc = 〈k〉/〈k2〉 [72]. The case of λc for SF networks has been of a

great academic interest, due to the particularity of the structure of SF networks;

the degree second moment of SF networks diverges for γ ≤ 3. Yet, Castellano and

Pastor-Satorras [72] showed that λc is not impacted by the “SF nature of the network

but stems instead from the largest hub in the system being active for any spreading

rate λ > 1/kmax”. There are multiple variations of the SIS model, covering all

kinds of scenarios from the vaccination/immunization of the nodes, to the impact of

the disease duration and more [64]. Finally, identifying the critical nodes that can

potentially block the disease spread has been of a huge importance, has been studied

in simulated networks [73, 74] and in ‘real life’ [66, 67]. Interestingly, variations of

the above disease spread models can also be used to understand the diffusion of
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information in OSN [75].

1.4 Opinion Diffusion Models

1.4.1 Fundamental Social Drivers

Social dynamics is a multidisciplinary field aiming to qualify and quantify the

complex human interactions. Research from social psychology identifies multiple

social drivers, some of the most fundamental being social influence, structural bal-

ance, reciprocity, and homophily. Those qualitative drivers are being studied using

controlled experiments, data analysis and quantitative models, as we will describe

below. Interestingly enough, there is a number of data analysis research papers

clearly distinguishing the different social drivers in social networks [76,77].

The concept of Structural Balance (or Social Balance) was first introduced by

Heider [78], a social psychologist, and later it was introduced in graphs by Cartwright

and F. Harary [79] in the 1950s. It focuses on negative, positive, and perhaps neutral

relationships [80]; those states are assigned on the edges of the nodes in a network.

Structural Balance aims to describe the dynamics arising from four cases ‘the enemy

(friend) of my enemy (friend) is my friend’ and ‘the enemy (friend) of my friend

(enemy) is my enemy’. In order to test the balance, triangles of connected nodes

(closed triangles) are selected in random and tested to update the states of the edges.

A triangle is considered balanced when no change in the states of the edges occurs,

e.g. all three nodes are friends (enemies); otherwise it is considered unbalanced and

a random change towards balance will occur [81,82]. In the case of a fully connected

graph, mean-field based analytics can capture accurately the dynamics [82], yet not

as good for sparse graphs [80]. A recent data/model analysis [83] indicates that

‘online social networks are in general very poorly balanced’.

Reciprocity refers to the interaction between two nodes in a ‘give and take’

way. At a first glance, the concept of reciprocity can refer to the mutual connection

between any two nodes, and of course it extends to mutual interactions between

them [84]. Research has focused on the characterization of a network on its link

reciprocity (referring to the mutual links of nodes) whether it is unweighted [85]

or even more accurately, weighted [86, 87]. A large data analysis research on the
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reciprocity of mobile phone calls suggests that social interactions are not entirely

reciprocal [88]. Furthermore, empirical evidence indicates that money transfers for

charity actually have a strong direction to reciprocity [89].

Homophily means, as the word in Greek indicates, ‘love of the same’. It refers

to individuals’ drive to connect and interact with others that they have or they feel

that they share similarities with [90]. Those similarities can be physical, cultural,

class etc. characteristics [91]. There is a large number of research papers [92]

exposing this strong social drive in humans. People with great similarities are more

likely to be in agreement with each other on a new trend and opinion.

1.5 Social Influence

Here, we will focus on social influence, which can be described as behavioral

contagion, conformity, compliance, peer pressure, product adoption etc. There have

been large scale studies that demostrate the impact of Social Infleunce [93]. The

aim is to model and quantify human complex interactions that are related to social

influencing. A first framework of various cases of choices with externalities was

made by Schelling back in 1973 [94] with a game theory based analysis, however

his analysis did not include the impact of networks. Since then, more rigorous,

systematic, and analytical methods have been developed. Here, we will address the

methods that assume a microscopic rule of interaction. The macroscopic effects

that we are interested in studying emerge from the spread of those microscopic

interactions [6]. Macroscopically, in these models, the order parameter is typically

the fraction of the nodes that have been influenced. By controlling the model’s

initial conditions, and network parameters we can track their macroscopic effects

either by simulations or analytics. The most interesting cases are those for which

tipping points or non-monotonic behaviors are observed. There is a number of

different microscopic rules of adoption. The most extensively studied being the

Linear Threshold Model (LTM), Majority rule, the Voter Model, and the Naming

Game (NG) [95].
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1.5.1 Linear Threshold Model

In his seminal work in collective behavior, Granovetter [96] introduced the

Linear Threshold Model (LTM) to capture the social pressure that leads individuals

to follow their group and adopt their behavior, regardless if it’s beneficial for the

individual or not. As introduced, the model is deterministic and binary. Each node

i has an intrinsic resistance to adoption of the new behavior/opinion/product, that

resistance is given by its threshold φi. Node i adopts the new opinion only when the

fraction of its neighbors possessing that opinion is higher than its intrinsic value,

that is φi ≤ (number of active neighbors)/k. Granovetter, by introducing a frac-

tional threshold, aimed to capture the impact of the group on a person, since on a

larger group a person would have smaller probability of being apprehended [97]. In-

terestingly, the activation threshold in the LTM share similarities with the integrate-

and-fire neuron model [98–101], with the addition that the thresholds are not hard,

and a return on initial inactive state is allowed.

We will be studying extensively the LTM in Chapters 2, and 3. In Chapter 2

we will focus more on the model basic parameters such as the impact of the threshold

distribution and the impact of the system size in the cascade size. In Chapter 3 we

will focus on the importance of selection strategies for maximizing the cascade size.

1.5.2 Majority Rule

Conformity in Social Influence can be driven by normative social influence.

According to social psychology it is defined as “the influence of other people that

leads us to conform in order to be liked and accepted by them” [102]. Thus conform-

ing and siding with the majority can lead to the benefits of being accepted within a

social group, not because they want to consult/follow others who may have taken the

correct action/choice as informational social influence recommends. The impact of

laying with the majority is such that as indicated by conformity experiments [103],

people are willing to change their opinion on a binary topic from an obvious correct

answer, when the majority of a group supports the blindly false opinion.

The majority rule has been used to capture the dynamics of individuals in

social networks with a great success [104–106] given its simplicity. The model is not
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necessarily binary, and nodes can switch back and forth their opinions according to

the rule. Finally, it doesn’t obey disproportional impact, since all nodes are treated

equally, or non-additivity since the changes are proportional, nor non-locality, since

all the updates are local by default and Markovian.

1.5.3 Voter Model

The concept of the voter model was introduced back in 1970’s [107,108] and it is

a stochastic opinion spread model [109]. A node i adopts a new opinion by randomly

selecting the opinion of one of its first neighbors k at each step. Assuming two states

in the system σi = ±1, the probability of state change for node i is P (σi → −σi) =

1
2

(
1− σi

ki

∑
j∈Ni σj

)
. “A standard order parameter to measure the ordering process

in the voter model dynamics is the average interface density ρ, defined as the density

of links connecting sites with different spin values” (from [111]):

ρ =

∑N
i=1

∑
j∈Ni

1−σiσj
2∑N

i=1ki
(1.7)

The first analytical analysis on it was done for two (or higher) dimensional

lattices [107,108], but more recently it was expanded to small world networks [110],

and Scale Free Networks (SF) [111, 112], where the authors studied the consensus

time TN in relationship to the degree distribution exponent of the SF and the system

size N . Later, TN was also studied in relationship to the average degree of the

graph [113], and an exact solution has been given for complete graphs, also extended

for sparse graphs by spectral analysis [114]. Finally, the model has been expanded

for a q arbitrary number of opinions [115]. Furthermore, the selection order of nodes

with initial state σ = ±1, has an impact on the probability of reaching consensus(∑N
i=1 σi = ±N

)
for all the nodes, especially in networks with heterogeneous degree

distributions [112]. The voter model also does not obey disproportional impact, or

non-additivity, nor non-locality and is Markovian.
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1.5.4 Naming Game

The Naming Game (NG) model was introduced to study how global agreement

raises with multiple starting options. In particular, the model is designed to cap-

ture the patterns emerging from starting with multiple words representing the same

concept/object converges to a single word agreed upon by everyone [116] in the net-

work [117]. According to the authors such a process eventually allows for a common

language to emerge. The model follows the properties of locality, proportional im-

pact and additivity and is Markovian. Each node starts with an empty vocabulary

for a particular concept/object and invents its own word randomly. Thus, initially

there are essentially O(N) generated unique words, one for each node. A ‘speaker’

and a ‘listener’ are selected randomly in a pairwise fashion. The speaker sends ran-

domly one of the synonyms in his vocabulary to the listener. If that word is not

included in the vocabulary of the listener, then he adds it to the list of synonyms. If

the word is included in the listener’s vocabulary, then the speaker and listener drop

all other words from their vocabulary and ‘agree’ using this one word. The authors

show that there is a sharp transition point from disorder (multiple synonyms) to

order (consensus).

The model has been studied for various network structures [6,118]. The com-

mon parameter studied is the time to reach consensus and number of words in the

equilibrium. An interesting case raises when initially each node starts with only of

only two synonyms [118,119]. This restriction allows to study the dynamics between

two competing synonyms, which can also represent competing opinions, A and B.

Thus each node can be in either of three states, A, B, and their intermediate AB.

When the speaker communicates the opinion (assume A) the listener does not pos-

sess (B), the listener will move to the intermediate state AB. If both possess that

state (A), then they will agree on using it, and drop the state AB if they happened

to possess it. The binary NG shares many similarities with the binary voter model,

yet with the addition of the intermediate state. This addition changes the dynamics

and the time to reach consensus [6,120]. Recently, it has been shown that networks

with strong community structure are less likely to reach global agreement [118],

which suggests that diversity (lack of global agreement) is re-enforced by communi-
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ties. Another parameter that controls global consensus is the number of the initial

synonyms [121], were it was shown that a system higher number of synonyms has a

higher consensus time TN . Finally, the most interesting results rise from the exis-

tance of tipping points in the NG. The presence of a large enough size (pc ≈ 10%) of

committed agents (agents who do never switch their opinion) can force the system

to a global consensus [122]. This result is evident in several historical events, such

as the ‘rise of the African civil-right shortly after the size of the African-American

population crossed the 10% mark”.



CHAPTER 2

The Impact of Heterogeneous Thresholds on Social

Contagion with Multiple Initiators

2.1 Introduction

The technological breakthroughs of the 21st century have strongly contributed

to the emergence of network science, a multidisciplinary science with applications

in many scientific fields and technologies. As mentioned in Chapter 1, several soci-

ological opinion diffusion models first introduced in the middle of 20th century are

now being thoroughly studied, while variations of these classical models have been

introduced. Most of these models are based on social reinforcement, where simple

rules based on the interaction of individuals with their respective nearest neighbors

govern individual opinion evolution. The macroscopic outcome of these rules is a

cascade of nodes switching opinions [94,96,124–128].

We focus our study on one of the classic models of social influencing, the

Linear Threshold Model (LTM). The LTM is a binary opinion spread model first

introduced by Granovetter [96] to model collective behavior socially driven by peer

pressure. Under the LTM a node adopts a new opinion only when the fraction of

its nearest neighbors possessing that opinion is larger than an assigned threshold,

which represents the resistance of the node to peer pressure. The threshold of each

node is considered an intrinsic value. Thus, it is safe to assume that it is not a

unique for all the nodes, but rather heterogeneous.

Although the microscopic rule of opinion adoption in the LTM is simple, the

collective behavior that arises is complex and non-linear. The resulting spread size

depends on a large set of parameters, such as the network structure (e.g., cluster-

ing) [128–132], the size of the initially active nodes (initiators), the selection strategy

Portions of this chapter previously appeared as: P. Karampourniotis, S. Sreenivasan, B. K.
Szymanski, and G. Korniss, “The impact of heterogeneous thresholds on social contagion with
multiple initiators,” PLOS ONE 3, 2330 (2015).

16
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of the initiators, and the distribution of threshold values among nodes of the net-

work. In fact, Watts and Dodds [126] showed through simulations on various types

of diffusion mechanisms that the cascade size is governed not by superspreaders,

but by a small critical size of nodes with low resistance to influence. Hence, the

importance of thresholds is critical for the dynamics.

The first thorough investigation of the LTM was made by Watts [125], who

examined the effect of one randomly selected initiator on the cascade size. Gleeson

and Cahalane [133–135], on the other hand, determined analytically the cascade

size for varying initiator sizes (or fractions) for the infinite system size. Recent

investigations of the LTM by Karimi and Holme [137] and Michalski et al. [138]

also considered the impact of temporal networks on contagion cascades. Recently,

Ruan et al. [139] studied the effects of “immune” individuals (those who resist

adopting the new idea indefinitely) and external influencing (e.g., by mass media

or advertisements) in the LTM. Furthermore, an extension of the LTM includes a

persuasion mechanism, where the combination of adoption and persuasion giving

rise to new dynamics [140,141].

Watts [125], proposed the first analytic solution for the LTM, using percolation

theory and generating functions to measure the size of the largest cluster of nodes

requiring only one active neighbor to turn active (largest vulnerable cluster). The

model applies to unweighted, undirected graphs with small clustering coefficient.

In the infinite system size, when the vulnerable cluster percolates, there is a non-

zero probability that a cascade will take over a large portion of the network (global

cascade). A randomly selected initiator will activate the largest vulnerable cluster,

if it is a part of the cluster or is one of its neighbors. Using this analytic method,

Watts studied the regime for which global cascades are possible for one initiator,

for different values of identical thresholds φ0 and average degree 〈k〉 of synthetic

graphs. He found that, for ER graphs with O (1) initiator the criterion for global

cascades is 〈k〉 < 1/φ0.

Gleeson and Cahalane [133] formulated an analytic approach for the LTM with

varying initiator sizes. Their work was inspired by the zero-temperature Random-

Field Ising Model (RFIM) [142,143], where the cascade size, the initiator size and the
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threshold distribution correspond to the magnetization, the external uniform field

and the local quenched random fields of the RFIM. The main difference between

the two models is that in the LTM the activated nodes remain activated, while in

the RFIM the spins may flip back to an inactive state. The analytic approach to

the LTM model is applicable to locally tree-like structures [133], such as ER graphs.

The graph is considered an infinite-level tree with a level-by-level updating of the

spread size, starting from the bottom of the tree (for more see Appendix B.1).

An important problem in generalized models for social and biological conta-

gion [73,144,145] is to optimize the set of initiators, i.e., for a fixed cost (seed size),

find the set of initiators giving rise to the largest cascade, or alternatively, find the

minimum size seed set required to activate the entire network [146]. As far as se-

lection strategies are concerned, Kempe et al. [147] showed that the optimization

problem of selecting the most influential nodes in any directed weighted graph with

uniform random selection of thresholds is NP-hard. They also suggested a greedy

algorithm [147], where each new initiator is selected based on the maximum spread

it can cause, which unfortunately resulted in low efficiency of the algorithm. Chen

et al. [148] designed a scalable algorithm (LDAG) which is based on the properties of

directed acyclic graphs. Recently, Lim et al. [186] introduced a new node-level mea-

sure of influence, called cascade centrality (based on the size of the cascade resulting

from the node being the only initiator), which may guide the selection of multiple

initiators. Closely related to these studies and of practical interest is to find a set

of initiators (not necessarily the smallest) in a scalable fashion that guarantees that

the entire network will ultimately turn active, triggered by these initiators [149].

Their method was inspired by the k-shell decomposition of the network [150], which

itself can be an effective heuristic for selecting initiators in a broad class of models

for the spreading of social or biological contagion [73].

Singh et al. [129] studied the effect in the LTM of varying the fraction of

initiators on the cascade size for various basic heuristic selection strategies when each

node has identical threshold in the network. They showed [Fig. 2.1(a)] that there is a

critical fraction of initiators (“tipping point”) at which a sharp (discontinuous) phase

transition occurs from small to large cascades in Erdős-Rényi (ER) graphs [21]. This
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phase transition is apparent for the random, k-shell, and degree-ranked selection

strategies, which are listed in the increasing order of their performance. These

findings, in particular, the emergence of the discontinuous transition, were analogous

to those found by Baxter et al. [151,152] for bootstrap percolation (there, activation

of a node requires k active neighbors). Furthermore, Singh et al. looked at the

impact of the network’s average degree 〈k〉 to the cascade size [Fig. 2.1(b)].

Figure 2.1: Tipping points and non-monotonic behavior. (a) Appear-
ance of a discontinuous transition for various cases of identi-
cal thresholds on ER graphs with N=10000 and 〈k〉=10, plot
taken from [129]. (b) Impact of the network’s average de-
gree 〈k〉 (ER, N=1000) in the cascade size Seq for an initiator
fraction of p=0.01, with identical thresholds.

In most of the past research, the cascade size has been thoroughly investigated

for a identical threshold in the network [125, 129–132], or for a uniformly random

threshold for each node [147,148]. However, a model with identical thresholds does

not capture the complex nature of social influencing when multiple initiators are

present. The small scale experiment conducted by Latane [153] and more recently an

online experiment by Centola [154] as well as a large study on a Skype dataset [160]

suggest that individuals have diverse thresholds for adopting a newly introduced

opinion. Here, to capture the diversity of opinion adoption thresholds in a social

influence context, we study the effect of heterogeneous thresholds on the cascade

size under the LTM for empirical and synthetic unweighted and undirected networks
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for randomly selected initiators.

2.1.1 Empirical Evidence of Linear Threshold Model-like Contagion

An increasing number of controlled experiments [153–155] and empirical data

analysis on Twitter [156–159] and skype [160] datasets shine light on the existence

of LTM like spread in social networks and on the existence of a distribution of

susceptibility (thresholds). The works [155–158] support the existence of a version

probabilistic threshold model of opinion diffusion, namely complex contagion. In

1996 Latané and L’Herrou contacted a controlled experiment on the impact of the

choices of others in our choices, namely Conformity Game on an Email Experiment.

Individuals were asked to predict the choice of the majority of their group on a

bipolar issue, with the knowledge that they will receive a reward if their choice is in

the majority and will receive nothing if it is not. The only goal is for the individuals

to win the reward by siding with majority, hence holding their opinion has no other

social benefit or any importance. There were 192 participants, all of which being

undergraduate students, separated in 24 groups.

The participants would interact asynchronously through emails to their 4

neighbors. The computers were local and the duration of the experiments was

2.5 weeks. The only pre-game information the participants had is the size of the

group (24) and the number of their neighbors, no network information was given

to participants. To begin the experiment each participant would be given an gen-

eral neutral and non-provocative question, such as “ Now, see if you can predict

the mathematician (Euler or Hilbert) which the majority of your groupmates will

choose“. The participants would pick their choice. On each following round, the

participants would be notified on the choices of their nearest neighbors, and would

be given the option to change their previous selection. The experiments revealed

that individuals typically decide to change their answer when three out of their four

neighbors have a different opinion. More importantly, it revealed the heterogeneous

threshold distribution of the number of neighbors required for the participant to

change his opinion.

A recent empirical study on a Skype dataset [160] further supports the LTM
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based spread and the existence of heterogeneous threshold distribution. The authors

contacted data analysis and modeling of a service adoption in on a OSN, Skype.

Skype is the world’s leading voice over internet service. The authors tracked the

nodes which adopted the ‘Skype paid service’ “buy credit” for nearly 7.5 years since

2004, and only used the largest connected component of the aggregated free Skype

service as the underlying structure. A node would either spontaneously adopt the

service or would be influenced by its neighbors. Using the LTM model the authors

found out that the threshold distribution follows a lognormal relationship to the

degree of the node.

2.2 Materials and Methods

2.2.1 Simulations of the Linear Threshold Model

We assume that the thresholds are drawn from a truncated normal distribution

with mean φ0 and standard deviation σ. The threshold φ of each node is limited to

the interval [0, 1], thus the mean threshold φ0 is also within this interval, and σ is in

the range of [0, 0.2887], boundaries of which correspond to the identical threshold

and to the uniformly random threshold, respectively. The truncated threshold dis-

tribution P (φ, σ) is given by P (φ, σ) = N(µ, τ)/(1−
∫ 0

−∞N(µ, τ)dµ−
∫∞
1
N(µ, τ)dµ)

for 0 ≤ φ ≤ 1, and P (φ, σ) = 0 anywhere else [123]. Where, N(µ, τ) is the normal

distribution with mean µ and standard deviation τ , which take values 0 ≤ µ ≤ 1 and

0 ≤ σ ≤ ∞ respectively. Unlike, in the formulation of the LTM in [133,134], where

thresholds drawn can be negative, allowing nodes to get spontaneously activated as

innovators, and as a result randomizing the set of initiators, we are interested in the

case where spread is initiated only with the insertion of randomly selected initiators

in the network (Fig. 2.2).

Once a threshold for each node is set, for the simulations, we randomly assign

initiators one by one and measure the cascade size. We repeat this process by draw-

ing thresholds from the same distribution. The final cascade size for each threshold

distribution is obtained by averaging one thousand times on different threshold

distribution draws and, for the synthetic graphs, different network realizations. De-

tailed information on the networks used is located on Appendix (A.1).
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Figure 2.2: Visualization of the truncated Normal Distribution for mean
threshold φ0=0.5, and (a) σ=0 (Dirac distribution), (b) σ=0.2
(typical normal distribution), and (c) σ=0.2887 (uniform dis-
tribution).

2.3 Results

2.3.1 Multiple Initiators with Truncated Normal Threshold Distribu-

tion

First, we examine the effect of the standard deviation σ on the cascade size

Seq (averaged) for a constant initiator fraction and constant mean threshold φ0

(Fig. 2.3). As σ increases so does a fraction of nodes whose threshold is far from the

average causing a twofold effect. Of nodes far from average, the ones with thresholds

below average are easily activated while those with thresholds above average are

increasingly difficult to activate. Thus, when the initiator fraction is small, the

cascade size Seq is monotonically increasing since the presence of larger fraction of

low threshold nodes facilitate the spread. However, when the initiator fraction are

large, the increase in low threshold nodes helps a little since they are likely to be

already activated without the increase in σ, but presence of additional high threshold

nodes arrest the spread. This trade-off gives rise to the non-monotonic behavior

seen in Fig. 2.3, which is apparent for different types of networks. Depending on the

network structure and size of the initiators, the standard deviation σ for which the

spread is optimal varies. The networks we use are Erdős-Rényi (ER) graphs [21],

Scale Free (SF) networks [29, 161], a Facebook ego-network (FB) [162], and a high

school friendship network (HS) [163]1 (for more information on the networks used

1We use the network-structure data sets from Add Health, a program project designed by
J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris, and funded by a grant P01-
HD31921 from the National Institute of Child Health and Human Development, with cooper-
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see Appendix A.3).

Interestingly, in the vicinity of σ ≈ 0 the sharp decrease in the cascade size Seq

occurs because with non-zero σ, approximately half of the nodes acquire a threshold

higher than φ0 = 0.50. For all the nodes with threshold φ > φ0 with even degree,

even the slightest non-zero σ value will increase the number of active neighbors by

one, thus making cascades less likely to occur. Finally, for ER graphs [Fig. 2.3(a)]

and SF networks [Fig. 2.3(b)] the analytic estimates are in good agreement with the

simulations.

A visualization (Fig. 2.4) shows time steps of the spread on a random selection

of initiators with p = 0.20 in the FB network. For the same set of initiators, the

spread for large sigma (σ = 0.20) is much higher than for identical thresholds

(σ = 0.00). Furthermore, the network visualization is such to identify different

communities. Interestingly, we observe how the cascade is moving towards specific

communities, a more analytical discussion of the impact of communities appears

in [132].

In Fig 2.5, the cascade size Seq is plotted for varying initiator sizes p for

the same networks as in Fig. 2.3. As the initiator fraction increases, for small

enough σ there is a transition from small local cascades to large global cascades,

which, for synthetic graphs is a discontinuous phase transition [Fig. 2.5 (a) and

(b)]. However, the line of the average cascade size Seq appears smooth even in

the presence of a discontinuous phase transition, because for each repetition the

point of the discontinuous phase transition varies slightly. With increasing σ the

initiator fraction for which the transition occurs is reduced, while for the synthetic

graphs the spread size still exhibits a discontinuous phase transition. With largely

diverse thresholds we find that a critical initiator size beyond which cascades become

global ceases to exist and the tipping-point behavior of the social influencing process

disappears and is replaced by a smooth crossover governed by the size of initiator set.

This property can be important, for example, for a company’s marketing strategy

of a new product. If the threshold distribution is narrow enough, unless a critical

ative funding from 17 other agencies. For data files contact Add Health, Carolina Population
Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524, (addhealth@unc.edu, available at
http://www.cpc.unc.edu/projects/addhealth/ (Accessed September 27, 2015)
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Figure 2.3: Behavior of the cascade size Seq at equilibrium for varying
standard deviation σ. (a) ER graphs with 〈k〉=10 and N=104;
(b) SF networks with 〈k〉=10, γ=3, and N=104; (c) HS network
with 〈k〉=5.96 and N=921; (d) FB network with 〈k〉=43 and
N=4039. The mean threshold is φ0=0.50. The simulations
are averaged over one thousand repetitions. (a) and (b) also
show the analytic estimates (dotted lines) based on the tree-
like approximation (see Materials and Methods) [133].

initiator fraction is reached, there is a marginal local spread on a few of the first

or second neighbor friends of the initiators. On the other hand, if the threshold

distribution is wide, there is a significant spread.
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Figure 2.4: Visualization of the spread of opinion in the LTM model on
a FB network with 〈k〉=43 and N=4039. The fraction of the
randomly selected initiators is p=0.20. The mean threshold is
φ0=0.50 while the standard deviation of the threshold is (a)
σ=0, (b) σ=0.20. Inactive nodes, initiators, and active nodes
(through spreading) are marked with green, orange, and red,
respectively.

2.3.2 Multiple Initiators with Truncated Lognormal Threshold Distri-

bution

As we mentioned above, a recent empirical analysis on the skype dataset [160]

suggests a lognormal threshold distribution. The threshold distribution was given

by

P (φ) =
1

φσT
√

2π
e
−
(

lnφ−µ
2σ2
T

)2

(2.1)

with µT = −2 and σT = 1. The authors considered in their model nodes with nega-

tive threshold as self-initiators. We are not interested in this case, hence considering

that the thresholds are bound 0 ≤ φ ≤ 1, we obtain φ0 = 0.189 and σ = 0.233. For

this case the average threshold is small, and so a small initiator fraction can lead to

global cascades. Nontheless, we use their threshold probability function combined

with the truncation process to test the cascade size response. In Fig. 2.6 we show



26

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

S
e

q

 

 (d)

σ = 0.00

σ = 0.20

σ = 0.26

σ = 0.28

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

S
e

q

 

 (c)

σ = 0.00

σ = 0.20

σ = 0.26

σ = 0.28

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

S
e

q

 

 (b)

σ = 0.00

σ = 0.20

σ = 0.26

σ = 0.28

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

S
e

q

 

 (a)

σ = 0.00

σ = 0.20

σ = 0.26

σ = 0.28

Figure 2.5: Behavior of the cascade size Seq at equilibrium vs. the ini-
tiator fraction p. The networks are the same as in Fig. 2.3:
(a) ER graphs with 〈k〉=10 and N=104; (b) SF networks with
〈k〉=10, γ=3, and N=104; (c) HS network with 〈k〉=5.96 and
N=921; (d) FB network with 〈k〉=43 and N=4039. The mean
threshold is φ0=0.50. (a) and (b) also shows the analytic es-
timates (dotted lines) based on the tree-like approximation
(see Materials and Methods) [133].

the shape of truncated lognormal distribution. For both cases of φ0 with non-zero

σ the positive skew leads to very large cascades, since there is a large fraction of

nodes with low threshold, and fewer with high threshold. The minor decrease of the

cascade size we observe vs. σ in the plots (c) and (d) is due to the small number of

nodes with high threshold. Their size is significantly small that they do not happen

to be connected often and block the spread.
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Figure 2.6: The impact of truncated lognormal threshold distribu-
tion Eq. (2.1) to the cascade size for ER graphs with N=10000,
〈k〉=10. (a,d) Visualization of the truncated lognormal distri-
bution for mean threshold φ0=0.3, and φ0=0.5 respectively,
(b,e) cascade size Seq vs. inititator fraction p for φ0=0.3, and
φ0=0.5 respectively, and (c,g) cascade size Seq vs. standard
deviation σ for φ0 = 0.3, and φ0=0.5 respectively. The input
values of Eq. (2.1) for φ=0.3 and σ=0, 0.1, 0.2, 0.23, 0.25 are
µT=−1.205, −1.2575, −1.36, −1.3325, −1.17 and σT=0.001 , 0.321,
0751, 1.041, 1.361 respectively. The input values of Eq. (2.1)
for φ=0.5 and σ = 0, 0.1, 0.2, 0.23, 0.25 are µT=−0.7, −0.72,
−0.71, −0.56, −0.21 and σT=0.001, 0.201, 0.491, 0.701, 0.971 re-
spectively.

2.3.3 Impact of System Size

In Figs 2.7 and 2.8 we show that the behavior of the cascade size is largely

independent of the system size N for any threshold distribution with the same degree

distribution, for ER graphs and SF networks, respectively. We observe that with

increasing system size N the cascade size Seq is asymptotically converging.

2.3.4 Critical Initiator Fraction

We record the critical initiator fraction pc for which a discontinuous phase

transition occurs for varying mean threshold φ0 (Fig. 2.9). For the measurement
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Figure 2.7: Finite-size behavior of the final cascade size Seq vs. the ini-
tiator fraction p for ER graphs with average degree 〈k〉=10.
The mean threshold is φ0=0.50 while the standard deviation
of the threshold is (a) σ=0.00, (b) σ=0.20, (c) σ=0.26 and (d)
σ=0.28.

of pc, first we calculated the derivative of the Seq from Fig. 2.5 with respect to the

initiator fraction p. The position of maximum of the derivative yields the pc, in other

words, pc = arg maxp (dSeq (p) /dp). We used the same method for the calculation

of the respective analytic estimates. We confine the threshold distribution for up

to σ = 0.15 to assess if there is a discontinuous phase transition with increasing

initiators. Above each pc line global cascades occur. The value of pc decreases

with increasing σ. For identical thresholds φ0 (in blue), the pc line has some sharp

jumps, for example at φ0 equal to 0.50, 0.33, and 0.25 (Fig. 2.9). These jumps

are artifacts of the discrete steps of the degree distribution in the presence of a
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Figure 2.8: Finite-size behavior of the final cascade size Seq at vs. the
initiator fraction p for SF networks with 〈k〉=10 and γ=3. The
mean threshold is φ0=0.50 while the standard deviation of the
threshold is (a) σ=0.00, (b) σ=0.20, (c) σ=0.26, (d) σ=0.28.

unique threshold for all the nodes. In particular, microscopically, the number of

active neighbors required for a node to turn active increases by integer values. For

example, for a node with degree 10 and 0.40 < φ ≤ 0.50, that number is 5. For

identical thresholds in the network, the cumulative effect of these integer steps gives

rise to the jumps exhibited by the pc(φ0) curves (Fig. 2.9). Interestingly, this effect

also shows in Fig. 2.3, where for large enough initiator fractions (i.e., p = 0.25 or

higher) the cascade size drops abruptly as σ is increased from zero to small values.

For nodes with mean threshold φ0 = 0.50, even the smallest non zero increase on

the standard deviation σ results in approximately half of the nodes having threshold

larger than φ0 = 0.50. The pc lines are lower for the ER graph compared to the SF
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networks because of the importance of a randomly selected very high degree node

in SF networks can have on the spread. Our results obtained from simulations are

in agreement with the analytic estimates.
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Figure 2.9: Critical initiator fraction pc vs. mean threshold φ0. (a) ER
graphs and (b) SF networks with γ=3 with average degree
〈k〉=10 and system size N=104. An initiator size above the
pc line leads to global cascades. The analytic estimates (dot-
ted lines) are based on the tree-like approximation [133] (see
Materials and Methods).

2.3.5 Synchronous Updating and Cascade Size

To further understand the effect of the standard deviation σ, we study the

dynamics of the spread for synchronous updating of the nodes. In phase-space, as

shown in Fig. 2.10, the difference ∆S(n + 1)−∆S(n) defines the number of nodes

activated from time step n to n+1. The dynamic spread in the LTM is deterministic

and evolves in one direction, hence, the spread stops when the change on the cascade

size (vertical axis) reaches zero. Accordingly, the value of the cascade size in the

steady state is indicated on the horizontal axis. When cascades are not possible, the

spread rate decreases monotonically. However, when cascades are possible then for

up to some σ the change is non-monotonic and the fractions of nodes in cascades

reach almost one. But as σ’s grow larger and larger, these fractions stop growing

farther and stay farther from one. When σ approaches the standard deviation of

uniform distribution the shape of the lines decreases linearly. Interestingly, similar
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behavior is observed for the FB and HS networks as well.
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Figure 2.10: Phase-space diagrams for a constant initiator fraction
p=0.15, and various standard deviations σ=0 (blue), σ=0.2
(green), σ=0.288 (red) for (a) ER graphs and (b) SF net-
works with γ=3, with 〈k〉=10 and N=104. The colored lines
refer to a hundred independent repetitions, while the black
lines are their averages.

2.3.6 Closed-form Analytic Estimate for the Uniform Threshold Distri-

bution

For a uniform threshold distribution the phase-space line decreases linearly

for any initiator fraction for synthetic graphs and almost linearly for the empirical

networks (Fig. 2.11).

In addition, we show for this threshold distribution, using Gleeson and Ca-

halane’s analytical methods, that the phase-space line has a closed form and is

linearly decreasing. The extended proof of this is shown in Appendix B.2). For

a uniform threshold distribution the iterative formula in Eq. (B.2) of the analytic

approximation yields the following closed-form solution

qn+1 = p+ bqn, (2.2)

with b = (1− p) 1
〈k〉 (〈k〉 − 1 + P0). The solution of the above iterative equation
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Figure 2.11: Phase-space diagrams for the uniform random threshold
distribution (σ=0.288), for various initiator fractions p=0.05
(blue), p=0.15 (red) and p=0.25 (green) for (a) ER graphs,
(b) SF networks, (c) HS network, and (d) FB network as
in Fig. 2.3. The solid lines and dotted lines (complete over-
lap) correspond to the simulations and to the closed-form
analytic estimates [Eq. (B.2) ], respectively.

with the initial condition q0 = p, is

qn = p
1− bn+1

1− b
. (2.3)

According to [134], the spread at level n+ 1 is given by

Sn+1 = h(qn) = p+ (1− p)
∞∑
k=1

Pk

k∑
m=1

(
k

m

)
qmn (1− qn)k−m F

(m
k

)
, (2.4)
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which, in the case of a uniform distribution of thresholds (A.1.3) simplifies to

Sn+1 = p+ cqn, (2.5)

with c = (1− p) (1− P0), where the initial spread is S0 = p. Using the above Eq.

and Eq. (B.13) we can calculate (A.1.3) the formula for the phase-space diagram

Sn+1 − Sn = cp− (1− b)p− (1− b)Sn (2.6)

The above Eq. is the closed form phase-space line of Fig. 2.11. On the other hand,

at the equilibrium (as n→∞) the spread size in Eq. 2.5 becomes

Seq = p+ cq∞, (2.7)

with q∞ = p 1
1−b(A.1.3). Note that in this approximation for uniform threshold dis-

tribution, the size of the final cascade for uncorrelated networks does not dependent

on the details of the degree distribution, it only depends on the average degree 〈k〉.
In addition, it is easy to show that the derivative of the final cascade size [Eq. (2.7)]

with respect to the initiator size p is monotonically decreasing, in agreement with

the submodularity property of the LTM for the uniform threshold distribution [147].

2.3.7 Discontinuous Phase Transitions in the Linear Threshold Model

To further understand the final cascade size behavior at the critical point for

synthetic graphs, we are examining the system size dependence. The spread size at

the equilibrium is independent of the method of the insertion of initiators, e.g., it

does not matter whether the addition occurs in fractions or by individual addition

of initiators. Using Monte-Carlo simulations, Singh [129] showed that the average

cascade size is largely independent of the system size for the same initiator fraction

for an identical threshold for ER graphs with unique degree distribution. We use

the same approach to show that this is true for other threshold distributions for ER

graphs (Fig. 2.7) and SF networks (Fig. 2.8). These results indicate that given an

initiator fraction p0 and an average cascade size Seq (p0), the addition of another
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initiator fraction p1 will cause the same change ∆S = Seq (p0 + p1)− Seq (p0) in the

average cascade size Seq, largely independently of the system size, for large system

sizes, for the same input degree and threshold distributions.

Our analysis so far focused on the cascade size at the steady state Seq averaged

over many realizations of networks, threshold values and assignment of initiators

(Figs. 2.7 and 2.8). To verify the presence and nature of phase transitions, we

follow the approach presented in [151]. We start by measuring the increase of the

cascade size of each sample in response to the one-by-one addition of initiators. If a

discontinuous phase transition arises, at the critical point, the increase of the cascade

size should remain constant and independent of the system size. To investigate

this, let v be the current size of initiator set. For a given sample i, let ∆Si =

Si(
v+1
N

) − Si( vN ) denote the increase in the cascade size caused by the addition of

a single randomly selected initiator to the current initiator set. Let (∆Si)max (N)

be the maximum value of ∆Si (N) for all initiator sets of size v
N

. Then, varying

σ, we study how (∆Si)max (N) averaged over one thousand repetitions depends on

the system size N (Fig. 2.12) (solid lines). We observe that for the plotted cases

with σ = 0.00 and σ = 0.24, 〈(∆Si)max〉 (N) is independent of the system size.

Moreover, the contribution of the rest of the initiators to the cascade tends to zero

in the limit of infinite system size. However, for σ = 0.26, 〈(∆Si)max〉 (N) decreases

with the system size, indicating the absence of a discontinuous phase transition in

the infinite system-size limit. Thus, there appears a qualitative change somewhere

between σ = 0.24− 0.26.

A similar analysis can be applied to the analytical estimation, with the tree-like

approximation, of the increase in the cascade size (∆STL)max(δp) with a marginal

addition of initiators. However, since the analytical estimation is set for an infinite

system size, the one-by-one addition of initiators on larger and larger system sizes

is not possible. Hence, we insert smaller and smaller fractions of initiators δp. In

Fig. 2.12 the top horizontal axis is the fractional step increase of the number of

initiators. For consistency, we include the corresponding increase in the cascade size

〈(∆Si)max〉 (δp) that δp, a fractional step increase of the number of initiators, mea-

sured through simulations. In this case, the minimum possible fraction of initiators
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is δp = 1/N . We observe, that the results for the one-by-one addition of initiators

with varying systems through simulations, agree with those for the fractional in-

crease of an infinite system size with varying δp. We conclude that it is between

σ = 0.24 − 0.26 (for φ0 = 0.50) where the discontinuous phase transitions cease to

emerge in the thermodynamic limit.
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Figure 2.12: Maximum contribution of initiators to the cascade size for
various σ values. (a) for ER graphs and (b) for SF net-
works with γ=3, for 〈k〉=10. Solid lines: 〈(∆Si)max〉(N) of
O(1) initiator with one-by-one addition of initiators for vary-
ing system sizes (bottom horizontal axis). Dashed lines:
〈(∆Si)max〉(δp) for various initiator fractions (top horizon-
tal axis) for a constant system size N=105. Dotted lines:
(∆STL)max(δp) for various initiator fractions (top horizontal
axis) for the TL approximation. The mean threshold is kept
at φ0=0.50 in all cases.

2.4 Discussion

Past experimental online studies [153,154,159] indicate the existence of diverse

adoption thresholds of individuals in social networks. Prompted by this observa-

tion, we studied the impact of diversity of thresholds in spreading a new opinion,

by intuitively assuming that the adoption thresholds are drawn from a truncated



36

normal distribution. We explored this impact by using the linear threshold model,

a reinforcement model which has lately drawn significant attention in the scientific

community. We showed that in the presence of a small spread (standard devia-

tion) of the threshold distribution in a network, unless a critical initiator fraction

is reached, the impact of the randomly selected initiators is small. Furthermore,

we showed that, when discontinuous transitions in cascade size are possible for syn-

thetic graphs, the addition of a single randomly-selected initiator can have a signif-

icant (global) impact on the final cascade size, i.e., the manifestation of the tipping

point. However, with a sufficiently large spread in the individual thresholds (with

the same mean), the cascade size exhibits a smooth transition, where the impact

of each added initiator is reduced by the current size of the initiator set. Finally,

we showed that in the case of a uniform threshold distribution, the spreading rate

is linearly decreasing with the spread size for synthetic graphs and close to linearly

decreasing for empirical graphs. In summary, our results indicate that information

on the diversity of the thresholds is critically important for the understanding of the

behavior of cascades in threshold-limited social contagion with multiple initiators.

Most importantly, sufficiently large spread in the individual thresholds can change

not only the quantitative aspects of triggering global cascades, but also the qualita-

tive behavior of the system: the cascade size exhibits a smooth change (as opposed

to a discontinuous jump) as a function of the fraction of initiators.



CHAPTER 3

Influence Maximization for Fixed Heterogeneous Thresholds

3.1 Introduction

Cascading processes emerge naturally through the interactions of nodes in dif-

ferent states in natural and human-made networks. Microscopic processes can po-

tentially have large macroscopic impact on the networks. In the case of human-made

networks, their ever increasing size and interconnectedness exponentially increases

the uncanny impact of cascades processes. For instance, in financial or power grid

networks, small initial perturbations or failures can result in cascades in the net-

work causing tremendous disasters of global impact [49, 58, 60]. In social networks,

contact processes, namely social influence (or contagion), enable the spread of new

behaviors, opinions and products, driving politics, social movements and norms, and

Viral Marketing.

The identification of nodes whose change of state can potentially affect large

portions of the network becomes a key challenge. It is a computationally hard

problem, and as such, multiple heuristics, theoretical analyses and algorithms have

been introduced to solve it [165–167]. Some are designed to address the specific

nature of the cascade process, while others are based on more general algorith-

mic approaches or network based centrality measures. Such algorithms can be

used to minimize disasters by, for example, re-enforcing weak nodes in power-grid

nodes [54, 61, 62], or placing sensors to detect the contamination of water pipe net-

work [168]. Likewise, to arrest spread of infectious disease requires a global sense

of awareness [64,73,74,169]. Understanding cascades is also important for optimiz-

ing Viral Marketing [170–172]. Yet, it is challenging to find the set of initiators

(also called seeds) which when put into a new state (opinion/idea/product), will

Portions of this chapter to appear in: P. D. Karampourniotis, B. K. Szymanski, and G. Korniss,
“Influence maximization for fixed heterogeneous thresholds,” (unpublished, 2017).
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maximize the spread of this state [146–149,173–179].

Here, we study the problem of IM on a classical opinion contagion model,

namely the Linear Threshold Model (LTM) [94, 96], although our methods can be

used for any percolation based model. The LTM is designed to capture the peer pres-

sure dynamics that lead an individual to accept a new state being propagated. It is a

binary state model, where a node i has either adopted a new product/state/opinion,

ni = 1, or not, ni = 0. According to the LTM, each node in the network has a frac-

tional threshold, an intrinsic parameter representing the node’s resistance to peer

pressure. The spreading rule is that an inactive node (ni = 0), with in-degree kini

and threshold φi, adopts a new opinion only when the fraction of its neighbors

j ∈ ∂i possessing that new opinion is higher than the node’s threshold, that is∑
j∂i nj ≥ φik

in
i . The process is deterministic and nodes cannot return to their pre-

vious state. The integer number of active neigbhors required for node i to get active

is given by its resistance ri = dφikini e. A node gets activated through spread when

its resistance drops to zero, ri = 0, with the maximum resistance of a node being

kin. Bootstrap percolation [151,152] is an alternative formulation of the LTM where

the thresholds are not fractional, but integer (resistance). Interestingly, the activa-

tion threshold in the LTM and bootstrap percolation conceptually share similarities

with the integrate-and-fire neuron model [98–101], with the difference being that

there is a probability distribution describing the probability of activation of a node,

rather than a fixed threshold value, and return on the initial (inactive) state ni = 0

is allowed. The size of cascades in the LTM is governed by the thresholds of the

nodes [123,126], the size of the initiator set [129], the strategies for selecting initia-

tors [179], and of course the structure of the underlying network [130–132,135,136].

Examples of an LTM type spread mechanism and of the heterogeneity of the

thresholds are provided through a number of controlled experiments [153–155] and

empirical data analysis [156–160]. Watts and Dodds [126] showed through simula-

tions on various types of spread mechanisms that the cascade size is governed not

by superspreaders, but by a small critical set of nodes with low resistance to influ-

ence. Karampourniotis et al. showed that the threshold distribution is important

for the overall dynamics [123]. In particular, with an increasing standard variation
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σ of thresholds (while holding the average of the thresholds fixed) a smaller initiator

fraction is required for global cascades. Furthermore, they showed that in the vicin-

ity of σ ≈ 0 a tipping point appears as the fraction of randomly selected initiators

gradually increases. Yet, with gradually increasing variance σ eventually the tipping

point is replaced with smooth transition (See Chapter 2). In addition, Watts and

Dodds [126] showed that a critical size of nodes with high susceptibility contribute

to social influence much more than initiators with high network centrality.

And so, the knowledge of the thresholds or the threshold distribution is im-

portant for the IM algorithms. In the case of zero information on the thresholds

or the threshold distribution, a good assumption to make is the threshold distri-

bution is uniform. This is a very interesting case since then, the spread function

is submodular, that is, it follows a diminishing returns property [147], which we

can be used for maximizing the influence [147, 148, 168, 173–175, 180, 181]. Even

though there could be specific cases of thresholds distributions where a weakly sub-

modularity property [182] could be used, in general submodularity does not hold

when the thresholds are known and fixed or for any threshold distribution other

than the uniform. Such a case is when the threshold of each node is known with

some uncertainty [183]. When the thresholds are known and fixed the influence

of any seed set can be computed in polynomial time [184]. In the special case of

a threshold identical for all nodes, a first-order transition appears [125, 129, 133].

Then a powerful algorithm, namely CI-TM with complexity O (〈k〉N logN), pro-

vides the best performance [179]. In Ref. [185] the authors express the IM problem

as a constraint-satisfaction problem and use belief propagation to solve it, yet it

does not perform as well as the CI-TM for the case of identical thresholds that it

was compared with [179]. Other analytical based metrics show the importance of

the network structure, but only for a small number of initiators [186]. Furthermore,

Ref. [187] proposes the use of an evolutionary algorithm implemented with general-

purpose computing on graphics processing units (GPGPU) to tackle the challenge

of combinatorics, at the additional cost of higher time and memory complexity.

The authors show that their approach clearly outperforms the greedy algorithm for

known thresholds both in cascade size and time, but it is currently limited to graphs
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of size of the order of N = 103.

Here, we study the efficiency of known selection strategies for fixed (and

known) heterogeneous thresholds generated from different threshold distributions,

and a range of assortativities, and we introduce two new selection strategies for the

LTM with fixed thresholds, and compare them in terms of their performance with

a number of other strategies, including the CI-TM, and greedy. Since we focus on

fixed (and known) thresholds we do not include the performance of various net-

work centrality measures like the Page Rank and k-core [129], which do not take

into account the provided threshold information and thus are outperformed by the

strategies that do.

3.2 Selection Strategies

We use a number of simple and fast heuristics, which take advantage of the

knowledge of thresholds. Since the thresholds are fixed and known, the cascade size

caused by an initiator is deterministic. Hence, we sequentially introduce initiators

on the inactive subgraph of the original network. First, the node with the highest

dynamic fractional threshold (thres) is a reasonable choice. Likewise, a natural

selection is the node with the highest dynamic out-degree kouti (deg) at each step.

Another possible heuristic for the LTM is the selection of the node with the highest

resistance (res) at each step. Resistance ri is the current (dynamic) integer thresh-

old of node i, that is the number of active neighbors required for the node to get

activated. Accordingly, when a node is activated by a cascade or by being selected

as an initiator, its resistance turns zero, and so a fully activated network has total

resistance of zero.

The selection of any inactive node i as an initiator results to the decrease of

the resistance of all its inactive neighbor nodes by one, for a total kouti . Due to the

spread process taking place, if any neighbors of i had resistance equal to one, they

will also get activated, further resulting to other nodes reducing their resistance.

In addition, node i is the initiator, hence its resistance is reduced to zero, ri = 0.

Therefore, the total resistance drop of the entire graph is reduced by at least ri+k
out
i .

To capture the direct resistance drop we introduce the heuristic strategy RD, with
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metric

RDi = ri + kouti . (3.1)

In addition, we introduce the heuristic method red total resistance (RT), by adding

on the RD metric the drop of the resistance of the inactive subgraph caused by the

neighbors of the node i which are indirectly activated by the selection of i as seed.

That is

RDi = vi + kouti +
∑

j∈∂i|rj=1

(koutj − 1). (3.2)

The drop of the network’s total resistance caused by choosing i as an initiator is at

least as high as RTi; it is be more if the spread expands to the 2nd neighborhood

(and so on). This heuristic is equivalent to the CI-TM algorithm [179] for a sphere

of influence L = 1 with the addition of the resistance ri of the selected node i in the

metric. For very large L, a node’s i CI-TM score is essentially (assuming a tree-like

approximation of the network) equal to the drop of the network’s total resistance if

i was the seed, minus its resistance ri. The metric of CI-TM is governed by the out-

degree of the nodes surrounding the target node ignoring the challenge of activating

nodes with high resistance and/or low in-degree. For comparison to our methods,

we apply the CI-TM algorithm itself (for L = 6), and the greedy algorithm for fixed

thresholds, where at each step the node which would cause the maximum cascade

size is selected.

3.2.1 Balanced Index Strategy

Constructing a selection strategy mainly based on the network structure or

just on the resistance of the nodes, is not ideal, since useful information is not be-

ing utilized. On one hand, selecting nodes solely based on some network centrality

metric, leads to many easily susceptible nodes being selected as initiators, nodes

that could potentially be activated through spread. On the other hand, aiming on

selecting high resistance nodes, that is nodes with high resistance, does not guar-

antee they will be great influencers. The RD and RT strategies aim to address this

weakness, by using intuitive heuristics. To quantify on the interplay of importance

between low resistance vs. high centrality nodes, we introduce the Balanced Index
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(BI) selection strategy. For this strategy, we essentially introduce weights (a, b, c)

on each term of RDi to capture the importance of each feature, that is

BIi = ari + bkouti + c
∑

j∈∂i|rj=1

(
koutj − 1

)
, (3.3)

where a + b + c = 1 and a, b, c ≥ 0. The optimal weights for influence maximiza-

tion are determined by scanning for the allowed range of weights in the ensemble

of graphs and for various threshold distributions. In this case, the degree (deg)

strategy corresponds to (a, b, c) = (0, 1, 0), res to (a, b, c) = (1, 0, 0), the CI-TM

for L = 1 to (a, b, c) = (0, 1/2, 1/2), and the two heuristics we introduced, RDi

and RTi, correspond to weights (a, b, c) = (1/2, 1/2, 0) and (a, b, c) = (1/3, 1/3, 1/3)

respectively. Interestingly, the weighted metric BIi can be viewed as a measure

(units) of resistance, however in general, it does not correspond to the network’s

total resistance drop when i is the seed. As far as the time complexity of each

method is concerned, the computation of a seed’s induced spread takes O (〈k〉N)

time. Yet, (similar to [179]) when computing the spreading process, we can place a

stopping condition on the algorithm L levels away from the seed node, reducing the

complexity by O (N). In addition, using a heap structure, re-ordering the highest

BI nodes takes O (logN).

3.2.2 Group Performance Index Algorithm

All of the above strategies are essentially local in nature, since they aim to

maximize the number of activated nodes or to reduce the total resistance of the

system caused by one initiator at a time. They lack in their metrics the impact

of the combination of initiators on influence maximization, which by default limits

their performance. Algorithms that use combinations of nodes in their metrics

can lead to approximate global solutions. However, look-ahead algorithms suffer

from the potentially prohibitive computational costs. For instance, to measure the

total impact of g from N nodes, a deterministic greedy algorithm would require(
N
g

)
selections of possible initiator sets. The algorithm would choose iteratively at

each step (t = 1, 2 . . . , g) the highest impact node from the set of the inactive ones,
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therefore its complexity would be O (〈k〉N g), feasible only for very small g and

moderate N . In addition, to compute the cascade size for each possible initiator set

would require O (〈k〉N2).

Instead, a probabilistic greedy algorithm would aim to reduce the number of

combinations by randomly selecting initiators. That is, at each step t, in order to

measure the impact of a node i in the presence of other nodes, i would have to be

selected as an initiator. Then, the remaining initiators would be randomly selected.

This process would be repeated v times, each time recording the cascade size. We

would have essentially measured the impact of node i as an initiator in the presence

of any randomly selected set of initiators. Then, we would repeat this process for

all other inactive nodes, and finally select the node with the highest impact. Since

we would have to measure the impact of each inactive node, and run v simulations

to do so, the time complexity per step t is O (vN). Typically, g is comparable to

the total number of nodes N , adding an additional O (N). Finally, computing the

simulations takes another O (〈k〉N2), and so the total complexity of the probabilistic

greedy algorithm for g initiators is O (v〈k〉N4), which is still very expensive.

Here, we introduce the Group Performance Index algorithm (GPI). With GPI

we target the nodes which, when included in any randomly selected initiator set

(group), the group has the highest in average performance. GPI shares similarities

with the probabilistic greedy, however it is much more efficient. First, we take

advantage of the property that permutations of any set of initiators do not impact

the total cascade size returned by that set for the LTM. By not having to scan each

node individually when computing its impact in the presence of other initiators,

we reduce the number of computations by O (N). Moreover, for the probabilistic

greedy algorithm we would be selecting each initiator one-by-one, each time having

to update the impact of each node by re-running simulations. Here, we select q

initiators (instead of one-by-one, where q = dsNe, and s is a fraction of N), thus

reducing the complexity by another O (N). Also, when randomly picking nodes as

test-initiators for our metric, we do not predefine the order of selecting initiators, but

we pick them randomly one by one after ensuring that they did not get activated.

Finally, typically the quantity we wish to maximize is the cascade size for a specific
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number of initiators, which is essentially our cost budget. However, the impact of

even a small fraction of initiators can potentially have a large impact on the cascade

size, especially near a tipping point. That means, that we could potentially be near

a tipping point, but since we have a limited budget, we missed it. To address this,

we aim to minimize the size of the initiator set in order for the cascade size to be

at least as large as a specific predefined size Sgoal. However in general, GPI can also

be used when constraining on the cost budget, or computational time.

Let us start with the initial Graph G(V,E, r), where V (G) is the set of nodes,

E(G) is the set of edges of the graph, while r is the resistance of each node. Our

goal is to find the initiator set Y such that S(Y ) ≥ Sgoal [Alg. 1]. To do so, at each

step t we select q = |Q| nodes as initiators placing them in Y , with q = dsNe, where

Qt is the set the initiators selected at step t, that is Y = ∪tQt. The number of active

nodes required to get activated is d = dSgoalNe. In every step t, we need to find the

q nodes with the highest GPI-ranking (we will define it below), which we place in

Q. Then, we include Q in the initiator set Y , compute the cascade induced from

that set, update the spread size, and update H (reduce the resistance, and remove

all activated nodes and their edges). We define the function f(Qt|Ht) to express the

number of nodes that got activated at step t from the current bunch of initiators Qt

at the inactive subgraph Ht.

Now, at any step t we look for the nodes with the highest GPI value, that

is, the nodes which when present in the initiator set, the desired cascade size is

(on average) reached faster (smaller initiator set size). To measure the expected

GPI for each step t we run simulations till the desired cascade size is reached, for

a total of v times. The simulations are run on the graph Htest. In particular, at

the beginning of every step j, we set Htest = Ht and start with the empty set Xj.

We keep placing randomly selected inactive nodes as test-initiators one-by-one on

Xj and run the simulations on Htest (which is updated for the spread caused by

every test-initiator), until the desired spread size has been reached, that is until

f(Xj|Htestj) ≥ d−
∑

t f(Qt−1|Ht−1). The metric can be expressed analytically as

GPIi =

∑r
j=1 |Xj|xj,i∑r

j=1 xj,i
(3.4)
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where, xj,i represents whether a node i is included in the set Xj; if xj,i = 1 then

i ∈ Xj, else xj,i = 0. Since at the beginning of each step j, Xj is empty, xj,i for each

node is zero. Once we have the GPI for each node, we select the q = |Qt| highest

ranked nodes and place them in Y , that is Y = Y ∪Qt.

The nominator of GPIi is the cumulative of the sizes of the randomly selected

initiator sets |Xj| in the presence of node i. Since we select inactive nodes uniformly

at random, nodes do not appear in the initiator set equal number of times. If that

was not the case (that is if all nodes will be equally frequently chosen), just like for

the probabilistic greedy we mentioned above, the nominator of the fraction of Eq.

(3.2) would be enough to be used as a metric, where the smaller the cumulative the

larger the impact of node i would be. The presence of the denominator is necessary

to normalize the number of times node i is selected as an initiator. In addition,

because we only select inactive nodes; nodes which are likely to be activated through

spread, that is typically nodes with low resistance and high in-degree, are going to

be part of the initiator set less frequently than other nodes. And so, nodes with a

large number of appearances are nodes are less likely to be activated than others.

A node may on average contribute to the best performance over any set of

randomly selected initiators, yet it may not be a part of the optimal initiator set.

Since GPI deals with the expected impact of nodes, it is by default slower than the

rest of the strategies but can potentially find much better initiator sets aiming for

the global optimum (instead of local one). Estimating the time complexity of GPI,

it takes O (N) steps to go through all the nodes and it takes O (〈k〉N) to measure

the cascade size caused by any of them. It further takes v times to repeat this

process and approach the expected GPI values, adding a factor O(N). Furthermore,

the number of initiators selected adds another O(N) factor when selecting them

one-by-one, or it takes just an additional constant when selecting a fraction of

nodes as initiators. Thus, the total complexity of GPI is O (v〈k〉N2) for fractional

addition and O (v〈k〉N3) for one-by-one addition of initiators. However, for the case

of identical threshold for all nodes, since there is a sharp phase transition point (and

small spread otherwise), the total complexity drops by an O (N) factor [179]. For

the remaining of the paper, unless otherwise specified, the control parameters of
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Algorithm 1 Group Performance Index Algorithm

procedure Group Performance Index Algorithm
Input Graph G (V,E) and thresholds φi for each node i
Input the desired cascade size (fraction) Sgoal, the fraction s, the number of

randomizations r
Initialize the initiator set Y = ∅, the integer cascade size induced by the

current Y , S = 0
Get the resistance of each node, ri = dφikie, the number of initiators selected

at step t, q = dsNe, and desired integer cascade size d = dSgoalNe
Initiate step counter t = 0
we start the graph reduction from G, that is H = G
while S < d do

t← t+ 1
Initialize GPIi . average impact GPI for node i
Initialize noi . nominator of Eq. (3.4) for node i
Initialize dei . denominator of Eq. (3.4) for node i
Q = ∅ . set of top q GPI-ranking nodes
for j = 1 : v do

Htest = H
Initialize X = ∅ . set of test-initiators
Initiate the local integer test cascade size Sl = 0
while Sl < d− S do

Randomly select an inactive node i as test initiator
X ← X ∪ {i} . Include i to the initiator set X
Run the cascade on Htest induced by i:
compute the additional cascade size f(i), and update Sl, Sl ← Sl +

f(i)
insert all newly activated nodes to X
dei∈X ← dei∈X + 1, noi∈X ← noi∈X + |X|
reduce the resistance of all affected nodes and remove the inactive

nodes and their edges (that is, update Htest)

GPIi = noi/dei, for all i ∈ H
The top q GPI-ranking nodes are inserted in Q, and also in Y , Y ← Y ∪Q
Run the cascade on H induced by the Q:
compute the additional cascade size f(Q), and update S, S ← S + f(Q)
reduce the resistance of all affected nodes and remove the inactive nodes

and their edges (that is, update H)
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GPI we are using are s = 10−3, v = 105, and Sg = 0.5.

3.3 Results

We are comparing the performance of the strategies for the entire parame-

ter space of network assortativity ρ, and threshold distribution with fixed average

threshold φ = 0.50 and varying standard deviation σ. For more information on the

methods for the generation of ER graphs, and graphs with controlled assortativity

see the Appendix B.2. In Fig. 3.1 we present our main results for the ensemble of ER

graphs for the extreme cases of high positive (ρ = 0.9) and high negative (ρ = −0.9),

and ρ = 0 assortativity, measured with Spearmans ρ [188]. Furthermore, we exam-

ine the cases of a identical thresholds (σ = 0), a uniform threshold distribution

(σ = 0.287), and for some truncated normal distribution in between (σ = 0.2).

For GPI strategy, we present for which critical initiator fraction the Sgoal. First,

focusing especially on ER graphs (ρ = 0) we notice that as we move from a thresh-

old distribution with standard deviation σ = 0 to larger σ, there is change from a

first-order phase transition to a smooth crossover also seen for randomly selected

initiators in [123]. Interestingly, in the case of the uniform threshold distribution

(σ = 0.287) at the ensemble level, we observe that all the direct methods appear to

have diminishing returns with increasing cascade size, that is, the contribution in

the cascade size of any additional initiator in an initiator set is diminishing as the

initiator set is increasing larger.

As far as the performance of the strategies is concerned, the degree (deg) strat-

egy’s relative performance is decreasing for larger σ’s, while the resistance strategy’s

performance is increasing. In addition, CI-TM which incorporates a network struc-

ture decomposition using the neighboring nodes with the information about resis-

tance v = 1 in it as metric, is out-performing the degree strategy for the case of

σ = 0 and ρ = 0 but it is not performing as well in the rest of cases. On the other

hand, the RT approach is outperforming the degree, the resistance and the CI-TM

strategy for all cases of ρ and σ. Naturally, the introduced weighted strategy is out-

performing in all cases the strategies that incorporates their ranking metrics (deg,

res, CI-TM, RD, RT), especially for Seq = 0.5 which is what we optimized it for
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Figure 3.1: Comparison of the BI and GPI (for different Sgoal) selection
strategies in terms of cascade performance Seq for (a-b-c)
ρ=−0.9, for (d-e-f) ρ=0, for (g-h-i) ρ=0.9, for (a-d-g) σ=0, for
(b-e-h) σ = 0.20, for (c-f-i) σ=0.2887, with φ=0.5, averaged for
500 different network realizations (except for the GPI which
is 20) each with a different threshold generation, applied on
ER graphs with N=10000 and 〈k〉=10.

here.

The GPI strategy largely outperforms all other strategies in all cases except

for the case of very high assortativity ρ with identical thresholds (σ = 0). Yet, with

even lower s and higher v the performance of GPI improves. Since, this method is

computationally expensive, we have used a s = 10−3 fraction of initiator addition

with v = 105, the best resolution we could achieve for a graph with size N would

be s = 1/N , by inserting the initiators one-by-one.

To further study the direct methods, we evaluate their performance in the
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assortativity space ρ (Fig. 3.2) and the threshold distribution space σ (Fig. 3.3) for

Seq = 0.5. Evaluating through ρ for σ = 0, we observe a highly non-monotonic

behavior for all the strategies. Between the range of approximately −0.8 ≤ ρ ≤
0.4, CI-TM, is outperforming the degree strategy, which is approximately the same

regime, in which RT is outperforming all other direct strategies. Yet, for ρ ≥ 0.5 RD

is the best strategy. With increased deviation of the thresholds σ = 0.20 (Fig. 3.2b),

the performance of the strategies which depend more on the network structure, like

deg and CI-TM, is getting worse, while strategies which give higher importance to

the resistance of the node, like res, RD and RT are performing better. Finally, for

a uniform threshold distribution σ = 0.2887 (Fig. 3.2c), we observe that strategies

show a convex response to ρ, with RT being the best strategy (for a desired cascade

size Sgoal = 0.5). On the other hand, the threshold (thres) strategy appears to

be independent of ρ for thresholds generated randomly with σ = 0.2887. Finally,

from Fig. 3.3 we observe that RT has the best performance compared to all the

direct strategies over nearly all of the σ range, making it the best overall strategy

(excluding the weighted and GPI strategies).

Figure 3.2: Initiator fraction pc required to reach spread Seq=0.5 vs. de-
gree assortativity ρ for graphs with N=10000 and 〈k〉=10 for
(a) σ=0, for (b) σ=0.20, and for (c) σ=0.2887 with φ=0.5, av-
eraged for 500 different network realizations (except for the
GPI which is 20) each with a different threshold generation.

Furthermore, we are interested in studying not just the average performance

of each strategy but also the probability of each being the best strategy for any

initiator fraction p (Fig. 3.4) for a fixed network, and for various assortativity and

threshold distribution cases. The actual cascade size Seq vs. initiator fraction p

can be seen in Fig. 3.5 (average) and Fig. 3.6 (50 runs). Since the GPI strategy
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Figure 3.3: Initiator fraction pc required to reach spread Seq = 0.5 vs. the
standard deviation of the generating threshold distribution σ
with φ=0.5 for graphs with N = 10000, 〈k〉 = 10 and a ρ=−0.9,
b ρ=0 c, ρ=0.9, averaged for 500 different network realiza-
tions (except for the GPI which is 20) each with a different
threshold generation.

is optimized for a specific Sgoal each time, we have not included it here. First, we

notice that the greedy algorithm is in all cases outperforming all other strategies

for a small initiator fraction, while for a very large initiator fraction all strategies

have the same probability, because all of the network is activated. For an ER graph

(ρ = 0) with σ = 0 the spread is minimal until the phase transition point has been

reached, and CI-TM leads until the tipping point for RT has been reached. Since

the metric of CI-TM takes into account the out-degree of the nodes, and does not

consider the effort required to activate nodes with high resistance and low in degree,

it is outperforming other methods for smaller initiator sizes, but eventually gets

surpassed, when the nodes with high resistance with a structural importance have

not been activated. However, for very low (ρ = −0.9) and high (ρ = 0.9) degree

assortativity, there are multiple initiator fractions for which a large spread occurs,

which vary for the strategies, allowing for a sudden change of ‘lead’ between the four

network depend strategies (CI-TM, RT, deg, and RD), with RD and RT performing

the best. For larger σ the importance of resistance increases while the importance of

the network structure declines, making the strategies more depended on resistance

to take the ‘lead’, while also reducing the number of sharp ‘lead’ changes.
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Figure 3.4: Probability of each strategy being the best strategy for one
network with N=10000, 〈k〉=10 and for (a-b-c) ρ=−0.9, for (d-e-
f) ρ = 0, for (g-h-i) ρ=0.9, for (a-d-g) σ=0, for (b-e-h) σ = 0.20,
for c-f-i σ=0.2887, with φ=0.5, for 500 threshold generations
(same for each strategy).

Next we focus on the BI and GPI strategies and their performance for their

different parameters. For the BI strategy, we scan the parameters space a × b and

record the average minimum pc at which the cascade size is Sgoal = 0.5 (Fig. 3.8).

The second and third feature of this weighted method Eq. (3.3) correspond to the

first two terms of the CI-TM metric. The three features are interdependent, e.g.

before the cascade begins with σ = 0, a node’s i resistance ri is nearly linearly

proportional to its degree ki, which is why we observe those linear contours on the

plots a, d, e. Moreover, it is clear that any strategy that would exclude the resis-

tance (a = 0) from its metric, such as the CI-TM, will have inferior performance.

The contours indicate that the importance of the resistance and degree of a node



52

Figure 3.5: Comparison of average cascade performance Seq for one net-
work with N=10000, 〈k〉=10 and for (a-b-c) ρ=−0.9, for (d-e-f)
ρ=0, for (g-h-i) ρ=0.9, for (a-d-g) σ=0, for (b-e-h) σ=0.20, for
c-f-i σ=0.2887, with φ=0.5, for 500 threshold generations (same
for each strategy).

is much higher that the third feature, which in addition is computationally most

costly to obtain. Furthermore, we have recorded the impact of the standard devi-

ation σ on the optimal weights (Fig. 3.7). As σ increases, the optimal c coefficient

decreases. Interestingly, the most important feature is the resistance (a ≈ 0.53),

then the degree (b ≈ 0.32), and the smallest importance is left for c ≈ 0.15. This

result is especially important since other strategies do not fully utilize the resistance

information combined with other network centrality measures.

For the GPI strategy, on Fig. 3.9 and Fig. 3.10 we present the cascade size

behavior for various numbers of randomizations v and step sizes s respectively. On

average, with increasing v and decreasing s we always minimize pc for obtaining
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Figure 3.6: Cascade performance Seq for 50 threshold randomizations for
one network with N=10000, 〈k〉=10 and for (a-b-c) ρ=−0.9,
for (d-e-f) ρ=0, for (g-h-i) ρ=0.9, for (a-d-g) σ=0, for (b-e-
h) σ=0.20, for (c-f-i) σ=0.2887, with φ=0.5, for 50 threshold
generations (same for each strategy).

a cascade size (here we aim at Sgoal = 0.5). On average, we expect and observe

an asymptotic return with increasing v. For computational efficiency, we fix the

s and v when the additional performance is minimal. Further investigation is re-

quired in order to find the interplay between the two control parameters in order

to optimize the performance of the algorithm for the smallest computational time

possible. Interestingly, for σ = 0.2878, in contrast to the direct methods, there is a

large transition to cascade size as we reach Sgoal.

3.4 Discussion

The challenge of Influence Maximization for the LTM or other diffusion pro-

cesses is finding low complexity, yet well performing algorithms for the discovery
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Figure 3.7: Impact of standard deviation σ on the optimal weights (from
Eq. (3.3), with a+b+c=1) for desired cascade Sgoal=0.5 for ER
graphs with N=10000, 〈k〉=10, ρ = 0, with φ = 0.5, averaged
for 500 different network realizations (except for the GPI
which is 20) each with a different threshold generation. The
resolution in the a and b weight space is 0.02.

of superspreaders. Most strategies do not directly consider the combination of ini-

tiators but rather use some heuristic/analytical metric, leading to local solutions

of reduced time complexity. Among the strategies discussed here, by default our

weighted strategy is outperforming strategies that take into account the same fea-

tures as the weighted one. Our weighted strategy was inspired by the combination

of analytics (CI-TM [179]) and computational methods. The great performance of

our weighted strategy demonstrated that that mixing of methods can be very suc-

cessful. Furthermore, it brings a connection between different selection strategies

discussed here. In addition, by scanning the weights space we discovered that be-

tween resistance, degree, and 2nd neighborhood of actived nodes, resistance is the

most important feature. Hence, the cascade size is governed not by initiators with

high network centrality measures but by low resistance nodes, a result also sup-

ported by Watts and Dotts [126]. Finally, we show that even when the weights are

not optimized, but are equal among the features (RT strategy), we can still obtain

better results than the CI-TM (for at least the cases of bidirectional random graphs

that we explored) for the same time complexity O (〈k〉N logN) (which is reduced
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Figure 3.8: Contours of pc for reaching Seq=0.5 by controlling parame-
ters a and b (from Eq. (3.3), with a+b+c=1) for graphs with
N=10000, 〈k〉 = 10 and for (a-b-c) ρ=−0.9, for (d-e-f) ρ=0, for
(g-h-i) ρ=0.9, for (a-d-g) σ=0, for (b-e-h) σ = 0.20, for (c-f-i)
σ=0.2887, with mean threshold φ=0.5, for 500 repetitions, av-
eraged for 500 different network realizations (except for the
GPI which is 20) each with a different threshold generation.
The resolution in the a and b weight space is 0.05.

by a factor O (〈k〉) for sparse graphs).

On the other hand, strategies using combinations of initiators, such as GPI, can

have higher performance by targeting a global optimum, at the expense of higher

complexity, O (〈k〉N2) (which is reduced by a factor O (〈k〉) for sparse graphs).

Those methods can be further improved by utilizing the network and model specific

properties (LTM in this case), analytics or even learning methods. More research

is required to elegantly mix those methods to deal with the challenge of Influence

Maximization. For those investigations, GPI serves as a benchmark for (synthetic)
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Figure 3.9: Impact of the number of randomizations v on the perfor-
mance of the GPI strategy for s=0.0025 for desired cascade
Sgoal=0.5 for ER graphs with N=10000, 〈k〉=10, ρ=0. (a-b-c)
cascade Seq vs. the initiator fraction p for σ =0, 0.2, 0.2887
respectively (for one realization). (e-f-g) initiator fraction pc
required for desired cascade Sgoal=0.5 vs. randomizations v
for σ=0, 0.2, 0.2887 respectively (for one realization).

graphs and sets a minimum bound for the optimal initiator set. Finally, in terms of

applicability, both strategies can be used for directed and weighted graphs as well,

although a few adjustments would have to be made for the weighted strategy in case

of weighted graphs.
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Figure 3.10: Impact of the size of initiator fraction s on the performance
of the GPI strategy for randomizations v=25000 for desired
cascade Sgoal=0.5 for ER graphs with N = 10000, 〈k〉=10, ρ=0.
(a-b-c) cascade Seq vs. the initiator fraction p for σ=0, 0.2,
0.2887 respectively (for one realization). (e-f-g) initiator frac-
tion s required for desired cascade Sgoal = 0.5 vs. randomiza-
tions v for σ=0, 0.2, 0.2887 respectively (for one realization).



CHAPTER 4

Peer-to-Peer Lending and Bias in Crowd Decision-Making

4.1 Introduction

The idea of a new level playing field where global economic equality gradually

improves is seductive [190]. Models of financial markets suggest that international

capital flows are reaching more countries [191] and dominating national institutional

policies [192], thereby laying a groundwork for global equality in access to capital

that can promote new possibilities for prosperity among the worlds poor [193–202].

However, others have countered that outside of a handful of cities/countries the vast

majority of economic activities (e.g., institution and government investment, web

traffic, and telecommunications) have remained domestic over time [203,204]. Such

critiques of flat world can be explained by the Lucas Paradox [205], which states that

“capital does not flow in relatively large amounts from developed countries to devel-

oping countries despite the fact that developing countries have lower levels of capital

per worker”. As crowdfinancing grows, is it a flat-world mechanism for creating op-

portunities for the worlds poor, or is it becoming biased similar to other established

economic activities? Nevertheless, the Lucas Paradox indicates that counterintu-

itively the liberalization of international capital regimes has not produced an open

club, but a rich club – that is, a group of countries with similarly well-developed

monetary institutions, cultures, and wealth that display in-group preferences [206]

in lending and borrowing, thus restricting capital to poor nations [207,208].

New data on global crowdfinancing allows questions to be asked about the

role of peer-to-peer lending networks in leveling global capital financial flows and

development. Crowdfinancing is a recent innovation. It enables private lenders and

borrowers to find and directly interact with one another through a website. Private

Portions of this chapter to appear in: P. Singh, J. Uparna, P. D. Karampourniotis, E.-A.
Horvat, B. K. Szymanski, G. Korniss, J. Z. Bakdash, and B. Uzzi, “Peer-to-peer lending and bias
in crowd decision-making,” (submitted to Manag. Sci., 2017).

58



59

individuals on the website, from theoretically anywhere around the world, can lend

or borrow capital directly from each other. Borrowers put forth their reasons (see

Appendix Fig. C1) and make requests for capital directly to lenders; in turn, lenders

make their lending decisions free of institutional constraints. In this way, peer-

to-peer lending sidesteps the long-standing institutional arrangements and cultural

norms that have up to this point characterized lending [209] (see Appentix C 3.4.1 for

a comparison between Kiva and government aid between countries). Crowdfinance

offers an alternative and/or supplemental mechanism to more institutionalized forms

of foreign aid. The flow of such aid is associated with increased stability, such

as reductions in terrorism [210]. However, the success of foreign aid is marred

by corruption, political changes, and other factors (e.g., see [211]). Patterns in

crowdfinance is associated with corruption in the country [212]. Thus, crowdfinance

provides a potential mechanism for unmediated, direct aid especially if it is flat in

terms of opportunities for the poor.

Despite the possibility for crowdfinancing to level the playing field in capital

flows, its potential is debated [213] and empirical patterns are largely unknown [214].

One critical association between peer-to-peer lending and global financial flows con-

cerns the flat-world hypothesis [190]. The flat-world hypothesis holds that crowd-

financing counter-balances lending biases by acting as a functional substitute for

capital from traditional lenders and lending institutions ( [190], see pp. 492–493).

However, the increased interconnectedness may also potentially make the world less

flat by reinforcing the existing global or individual level biases. If the flat-world

hypothesis is correct, peer-to-peer lending systems should display no preferential

attachment of capital flows between lender-borrower pairs [215].

To examine the flat-world hypothesis, we analyzed the total aggregate lending

of over half a billion dollars in over 600,000 peer-to-peer loans made on one of the

largest and well-regarded crowdfinancing websites in the world, Kiva from its incep-

tion in 2005 to 2013 [216]. Loans from private individual lenders in more than 220

countries were made to private borrowers in 80 nations. Kiva is philanthropic in

nature and lenders receive their capital back without interest and borrowers receive

loans without paying interest. By comparison, the aggregated (2005–2013) gov-
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ernment aid for the same time period involves 48 donor countries making interest-

based loans (data from AidData [217] see Appentix C). Our study examines three

related questions about crowdfinancing. First, to test whether crowdfunding loans

are associated with a flatter world, we measure the degree of flatness in the lend-

ing system. A flat world has capital flows that display no preferential attachment

between lender–borrower pairs [218]. To quantify flatness, we randomly rewire the

observed co-country network of loans, which creates a hypothetical Kiva network

wherein the propensity for any lender–borrower transactions is no greater than ex-

pected by chance. Deviation from the expected null network of flows reflects choice

in lending and hence a less flat world [218]. Second, we investigate the potential

susceptibility of the Kiva network to shocks that could change the systems ability

potential for flatness. Shocks to lending systems include national policy changes,

market collapse, climate change, health or security risks [219], and have been shown

to dramatically alter capital flows [225]. We represent these hypothetical changes

in the system as the disappearance of network nodes or links [45, 48, 220] and then

observe their simulated effects on the network structure and its flatness. Third (this

part was done by our collaborators, for more information see Appendix C), we use

regression analysis to predict bias in country–pair transactions based on variables

such as GDP, geographical distance that are typically used in gravity models of

trade [226, 238]. Although previous studies [214, 221] have investigated the biases

associated with lending on Kiva, our study presents a longitudinal analysis for a

longer observation window (2005-2013) (see Apendix C). Since the number of par-

ticipating borrower countries as well as the transactions have grown significantly in

the later years, it becomes important to account for yearly changes in the network

as opposed to treating it in a cross-sectional fashion (see Appendix C). Neverthe-

less, some of the factors that we find associated with lending bias are qualitatively

consistent with the findings of Burtch et al. [214].

4.2 Data

Crowdfinancing networks differ in orientation. Some lending systems provide

funds in exchange for equity in an investment (e.g., Equitynet.com, CrowdCube.com,
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Seedrs.com) versus financial return (e.g., Prosper.com) versus interest-free loans

made for the developmental aid of the borrower (e.g., Kiva.com). Our dataset of

lenders, borrowers, and loans includes all transactions made on Kiva.com, 2005–

2013. The vast majority of loan contributions are made in multiples of $25.00 and

most loans are for $25.00 and $50.00. These loans typically support purchases of

machinery for petty entrepreneurs, livestock for farmers, or domestic items such as

water purification systems that improve living conditions (see Appendix Fig C.2).

For each loan we know the time of effectuation, size of the loan, the location of the

lender and borrower as well as the specific Kiva field partner, that is, a representa-

tive of Kiva who provides access to computers to potential borrowers, helps them

translate or edit their requests for a loan into English, and manages lender-borrower

transactions. We constructed a yearly co-country (multi-edge) network aggregated

from the country-to-country transactions (an example is shown in Fig. 4.1). Loans

to compatriots (i.e., self-loops in the network), are allowed. Fig. 4.2 (A–G) summa-

rizes the growth of the co-country network and shows that money lent in the form

of loan contributions and the number of participating borrower and lender nations

grew dramatically on Kiva between 2005 and 2013. A few lender countries account

for a large portion of the loan transactions. Fig. 4.2(F) shows the top 5 lender

countries and their share of transaction volumes by year. It can be seen that these 5

countries together account for about 80% of all observed contributions with the US

alone being responsible for more than half of the contributions. The top 5 borrower

countries benefit from a large portion of the total contribution, but there is no clear

outlier and there are many countries with a similar share of received contributions

(Fig. 4.2 [G]). The same trend can be seen in terms of the degree distribution of

the network. The in-degree (out-degree) of a country is the sum of transactions

made to (by) that country. Fig. 4.2 (D) and (E) show that both in-degree and out-

degree distributions are skewed (log scale), but the out-degree distribution is highly

skewed (i.e., a few lender countries provide a very large portion of the observed

transactions).
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Figure 4.1: Biased links in the Kiva network. Visualization of positively
(colored white) and negatively (colored red) biased links in
the Kiva co-country network for 2007. Borrower countries
(nodes) are shown in red with size proportional to the to-
tal transactions received by that country; whereas, lender
countries are shown in blue and all nodes are of the same
size. The link thickness corresponds to the actual number of
transactions made between the country–pairs.

4.3 Results

To analyze the structural property of the network, we used degree-preserving

network randomization, a common technique for assessing the statistical significance
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of observed network properties, including biased links between nodes [1,199,222,224].

Using the randomization method for weighted (multiedge) networks, we generate

many synthetic networks by randomly rewiring the loan transactions in the ob-

served network [223] while preserving the total transactions made to and from, for

each country (i.e., in- and out-degree of every node). Many synthetic networks

provide a distribution of every bilateral exchange, giving an expected mean and

standard deviation across all links in the network, which are used to determine how

far observed relationships are from expected values. A comparison between the null

model and the observed data enables us to identify country-level lending biases in

this network – that is, which countries have a lending–borrowing relationship that

is greater or smaller than expected by chance, where chance theoretically reflects

a system without bias [215]. To measure the flatness of the lending network, we

count the number of country–pairs (positive as well as negative) where the observed

links are statistically different from what is expected using a z-score for each pair

of countries. The z-score zij of any link ij is given by

zij =
Oij − Eij

σij
(4.1)

where Oij is the observed number of transactions from a country i to country j.

ij and σij are the expected number of transactions and the associated standard

deviation according to the null model. For a country–pair, the z-score provides a

normalized and relative measure of how far away the observed number of transac-

tions is from what is expected by chance Fig.4.3. A pair is classified as biased if its

observed number of transactions is 2 standard deviations above or below the null

model (p < .05). Here p refers to the p-value used in statistical hypothesis testing.

For a probability distribution, the p-value is the cummalitive probability of a par-

ticular value or any value above not being generated by the probability distribution.

For the Normal distribution a (double sided) p-value of 0.05 corresponds to z = 1.96

standard deviations. The flatness is then given by the fraction of unbiased links:

flatness = 1− number of biased links

total number of links
(4.2)
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The measured flatness in the year range 2006–2013 is shown in Fig. 4.4 and is

systematically decreasing with time. This indicates a statistically significant trend

of less rather than more flatness. Between 2006 and 2013 (we drop the year 2005

from this analysis due to the small number of transactions made in that year), the

flatness dropped by nearly 10% from its initial value. A detailed comparison of

z-score distributions is shown in Fig. 4.3.

An examination of country–pairs reveals that some pairs show persistent bias

(positive as well as negative), whereas others remain unbiased through time. Fig. 4.5

shows the time evolution of z-scores of a few of these country pairs. An example of

positive bias (over-lending relative to the null model expectations) in the network

is illustrated by loans from the US to Mexico. In the year 2012 there were 59k

transactions made from the US to Mexico, about 5k more than expected by the

null model ( 54k), which corresponds to a z-score of +32. Loan contributions made

to borrowers in US and lenders from other countries usually show a negative bias.

For example, transactions from Australia to the US in the same year (2012) were

only 639. This observation is much lower than expected, 1,962 transactions with a

z-score of −31. However, this is compensated by US-to-US over-lending (self-loop)

as shown in Fig. 4.5. Interestingly, within country lending and borrowing (positive

bias associated with self-loops) is seen consistently across the whole network and

over time.

4.4 Network Robustness

World events have the potential to significantly change the Kiva network and

lending systems like it. For example, events can impact the nodes or links in the

network at random with events being precipitated by unpredictable financial col-

lapses, coups, or natural disasters [225]. Events that drop nations out of the system

can be strategically determined by new regulations, policies, or relationship failures.

For example, the construction of a wall between the US and Mexico, an embargo,

or a Brexit event could reduce or shut down flows in country–pairs [45, 48,220].

To take a first step in trying to capture these network events in an abstract

way, we explore key what-if scenarios of how the Kiva network responds to events
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that disrupt capital flows. Our what-if shocks occur at the country level (affecting a

node) or the country-pairs link level. For country/node level effects we remove nodes

and all their links in four scenarios: (i) random removal of borrower nations, (ii)

random removal of lender nations, (iii) removal of nations according to their lending

volume (out-degree), and (iv) the removal of nations according to the borrowing

volume (in-degree). For link removal, we remove links (i) at random, (ii) with

minimal z-score, (iii) maximal z-score, and (iv) maximal transaction volume. Node

removal is equivalent to a total edge removal when all the edges of a specific node

are removed at the same time. For each reshaped network topology, we compare

the new network to its corresponding null model distribution.

Fig. 4.6 shows the change in flatness as a result of node removal, broken down

by year. The vertical axis represents the percentage of nodes removed for each of our

four scenarios and the vertical axis shows the flatness. Our results indicate that the

systems flatness responds differently to random and targeted removal of nodes. The

system is remarkably stable when lender or borrower nodes are removed at random.

This suggests that shocks that might impact nodes in the network at random are

unlikely to change the system properties in regard to flatness. By contrast, the

removal of just 10% of nodes targeted by their ranked out- or in-degree rapidly

change system dynamics. The removal of only a few big lenders increases flatness

quickly in all years. This makes intuitive sense as the big lenders correspond to

pairs with larger per capita GDP difference, and therefore, are associated with bias

(Fig. 4.5). This increase reaches saturation when the network attains an almost

flat configuration. The trend in the elimination of the big borrowers is similar, but

not as pronounced. This can potentially be attributed to the difference in out-

degree and in-degree distributions. Since the out-degree distribution is more skewed

(Fig. 4.2[D]), a few high-degree lender nodes account for a significantly larger portion

of observed transactions. Hence, their removal results in the disappearance of more

biased links than a high-degree borrower.

Since the in-degrees and out-degrees of nodes are preserved, presence of highly

biased connection to a node may force other connections to that node to be biased as

well (e.g., under-lending to a country from one or more lender countries balanced by
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over-lending by others). Due to this interdependency of link biases, a local disruptive

change in the network may have cascading effects causing a larger number of links

to become biased.

The systems flatness is robust against random removal of edges and increases in

flatness with removal of high transaction links (Fig. 4.7). In addition, we investigate

the effect of edge removal according to the positivity or negativity of bias. Gradually

removing links with strong positive bias causes flatness to increase comparatively to

targeting maximum transaction links. This change is more drastic for small fraction

of removed links and holds especially for earlier years (when the network was small).

Targeting links with strong negative bias results in a weaker increase in flatness. This

difference can be understood qualitatively in terms of the slight asymmetry in the

z-score distribution. There are more positively biased links than negatively biased

links. We also observe that the selection order of link removal based on the highest

number of transactions increases most the flatness of the networks for later years.

This sensitivity analysis about system responses to different kinds of removals

(nodes or links, random or targeted) reveals that random removal of nodes or links

causes little-to-no change in overall flatness of the lending system. However, the

flatness increases rapidly as big-players are removed from the network or few im-

portant channels of capital flow are blocked. We find that most of the bias in the

system is accounted for by these few key countries or country–pairs.

4.5 Discussions and Conclusions

Global interconnectedness has raised the possibility that the world is becoming

flatter and offering more equality of opportunity worldwide. Online crowdfinanc-

ing platforms like Kiva provide alternative channels of capital flow to traditional

institutions raising the question as to whether peer-to-peer financing is making a

flatter world – that is, one with fewer institutional and cultural biases in lending.

To the contrary, we find continued and increasing bias in an inter-country, peer-to-

peer crowdfinancing network. This drift towards a less-flat world may arise from

individual level preferences or global factors. Although crowdfinancing provides a

lending platform that connects lenders with borrowers and eliminates conventional
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intermediaries such as banks, it is the individual lenders who decide whom they give

loan to and can often be biased in their decisions. These biases are reinforced and

made even stronger by the rapid growth of the crowdfinancing platform itself (rich

get richer effect). An example of this growing bias in the crowdfinancing network

is seen in the form of self-loops (lenders lending to borrowers in the same country),

which are consistently biased in the positive direction. Nonetheless, whether or not

these biases will continue to persist in the long run, remains an open question. We

explored the effects of hypothetical disruptive events on system-level flatness with

simulations and found that the lending network is not vulnerable to random losses

of countries or bilateral ties. However, the targeted removal of a few high-volume

lenders or high-transaction links could cause the networks flatness to increase sig-

nificantly. This implies that the decreasing flatness is not centered on all lending,

but on the lending bias of a few giant lenders that skew the overall system. In this

way, the flatness of the system is directly linked with the dominance of a few big

players.

Using regression analysis, we identified a few factors associated with prefer-

ential lending on this platform. One of the factors that significantly affect lending

is economic disparity. Lenders in high-GDP per capita countries show a preference

to provide money for low-GDP per capita countries – facilitating capital flow from

developed to developing nations. This is important from the point of view of equal-

ity as it suggests that Kiva favors links that allow capital to flow from rich to poor

countries (a counterexample of Lucas paradox). Other factors effecting lending are

migration and colonial past, which are positively associated with lending, along with

geographical distance, which has a negative association. Interestingly, these factors

also effect other forms of international capital flows in the same manner (the effect

size may vary from one system to another), as revealed by analyzing the government

aid and shown by previous studies on international trade [226], thus reflecting the

embeddedness of crowdfinancing in a larger ecosystem [227,228]. The association of

these factors with trade flow and government aid have to do with reasons that may

be logistic (e.g., in trade flows, distance adds to the cost for supplying goods) or so-

ciopolitical (e.g., a colonizing power providing development aid to its past colonies).
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The same factors that determine the level of bilateral trade or aid are also associ-

ated with biasing the capital flows in an online crowdfinancing platform where loan

transactions have zero logistic costs. This suggests that while crowdfinancing holds

promise to add flatness to the world system of finance, it is embedded in a larger

system of stable inequities that limit its effects and influences its development.

4.6 Methods

4.6.1 Node Removal

Starting from the original observed network, we remove a node (or a set of

nodes), and all their edges, either randomly or in a particular order. Then we are

interested in comparing the flatness of the remaining network with a null model

generated from it. For measuring the flatness, we need the expected number of

transactions of all links, as well as their standard deviation. We use the following

analytical approximation to estimate the null model distribution. Let kouti denote

the out-degree of node i. Similarly, kinj is the in-degree of node j. Assuming that

the probability of observing a link is independent of all other links, the probability

of appearance of an edge from node i to j is independent of the connectivity of the

rest of the edges, and it is given by

pij =
kouti kinj
N2
E

(4.3)

where NE corresponds to the total number of edges in the network. Using the above

probability, the expected number of transactions from i to j is

Eij = NEpij =
kouti kinj
NE

(4.4)

with standard deviation (since the distribution is binomial)

σij =
√
NEpij (1− pij). (4.5)
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4.6.2 Edge Removal

Starting from the original observed network, we now remove links, according

to the selected removal order. Similar to the case of node removal, we compare the

remaining network with a null model. Here however, due to the eliminated links,

which now have forbidden flows, both analytical approximations and simulations are

challenging. Therefore, to obtain the desired distribution for the null model, we use

the algorithm MaxEnt [229–232] to find the probability distribution that maximizes

the Shannon entropy of the system given the node-level constraints (in- and out-

degree) and the imposed edge-level constraints (no flow across certain edges). The

distribution corresponding to maximum Shannon entropy is the least informative

distribution, which in our case corresponds to the distribution of the null model [229,

230]. The Shannon Entropy is given by

H = −
∑
ij

pij log pij, (4.6)

and is a non-linear, convex function. We use non-linear programming to

maximize
pij

H (pij)

subject to
∑
j

pij =
kouti

NE∑
i

pij =
kinj
NE

0 ≤ pij ≤ 1

pij = 0,when {ij} ∈ L

where, L is the set of constrained links. The expected number of transactions Eij

is then given by Eij = pij ∗NE. Since MaxEnt cannot provide us with the standard

deviation σij, we approximate it using Eq. 4.5 and assuming that appearance of

each edge is independent of other edges (thus it follows a binomial distribution).
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4.6.3 Node and Link Removal Simulations

Because of the large number of nodes and links in the network, simulations for

all of them were computationally infeasible; therefore, we applied a well-accepted

numerical method to approximate the simulation results. Here, we show that the

network estimated by simulation or analytical methods show close agreement with

one another for 2006. A comparison between simulations and the numerical approx-

imation (Figures 4.8 and 4.9) shows that the agreement between the approximation

and degree preserving simulation is good. Since this approach overestimates the

standard deviation slightly because of the small contribution from node degree not

being preserved exactly but only on an average, we see that the flatness obtained by

analytical approximation is larger in a systematic way even though the magnitude of

the difference is small. Moreover, since the analytical method always overestimates

the flatness (and this is true for all node/link removal methods), it only shifts the

flatness measure by a small amount and does not affect the overall trend of flatness

change with respect to removal (Figures 4.8 and 4.9).

4.6.4 Targeted Link Removal

Figure 4.10 shows that there are slightly more positively biased links than

negatively biased for all years. This has an effect when links are removed by max-

imum and minimum z-scores. Since removal of biased links have a stronger effect

on flatness, the curve corresponding to minimum z-score becomes flatter before the

one corresponding to maximum z-score (Figure 4.7). The discrepancy is larger for

the year 2006 where there are much fewer negatively biased links than positively

biased links. The flatness continues to increase for link removal based on maximum

transactions beyond maximum z-score and minimum z-score based removal. This

can be attributed to the fact that the number of transactions are highly correlated

with the absolute z-score as shown in Figure 4.11. Removal according to maxi-

mum or minimum z-score starts by targeting either positively or negatively biased

links, respectively; whereas, removal by transaction has the advantage of potentially

targeting positively as well as negatively biased links.
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Figure 4.2: Evolution of the Kiva country network. (A) Total annual
money lent through Kiva (cumulative). (B) Cumulative num-
ber of borrower and (C) lender countries. Plot (A)–(C) show
the rapid growth of Kiva as platform for crowdfinancing both
in terms of money lent and level of participation. (D) His-
togram of total number of outgoing transactions from coun-
tries (out-degree) and (E) histogram of total number of in-
coming transactions to countries (in-degree), color stacked
by year. The horizontal axis scale is logarithmic, thus, the
histograms reflects the skewness of the distributions. (F) Top
five lender countries and their share of loans given and (G)
top five borrower countries for each year. The US accounts
for a major share of the lending activity (> 50%), however
the US dominance is decreasing with time as we see increased
participation levels from more countries.
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Figure 4.3: Broadening of z-score distributions. (A) Distribution of z-
scores for each year shown by violin plots overlaid on the
cloud of data points. It can be seen that the range of z-scores
is becoming wider with time indicating a growing abundance
of biased country–pairs. (B) KS test statistic DKS of the z-
score distributions for every pair of years. Significance levels
are indicated by stars (*p < 0.1, **p < 0.05) in each cell. All
pairs of years show a significant (p < 0.1 or p < 0.05) difference
except one (2006–2007), which is not significant. The color
of each cell corresponds to the value of the KolmogorovS-
mirnov (KS) statistic DKS, which measures how far away the
two distributions are. (C) Probability distribution function
of |z| for each year with the dashed line showing the cut-off
|z| = 2. Each curve corresponds to a particular year. This
density plot shows that with time the distribution is shifting
right, which indicates that a larger fraction of links is becom-
ing biased (fraction beyond the |z| = 2 cut-off shown by the
dashed line).
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Figure 4.4: Flatness of the Kiva network. Flatness is defined as the frac-
tion of unbiased country–pairs (|z| ≤ 2) under the null model.
The flatness is measured by comparing the observed flow with
the expected flow as described in the text. The line fit reveals
a trend of decreasing flatness over the considered time frame
(2006–2013).

Figure 4.5: Evolution of link biases. Time series of link level bias mea-
sured as z-scores for select links. The size of each dot corre-
sponds to the number of transactions across the correspond-
ing link. Few of these links (e.g., US to MX) are consistently
biased while a few are unbiased (contributing to flatness) for
all years.
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Figure 4.6: Simulated shocks: the effect of node removal. Change in
flatness (defined as the fraction of unbiased links in the net-
work) of the system as a function of removed fraction of nodes
for different selection methods and for a few selected years
(other years show a similar trend). The error bars correspond
to ± 2 standard error for the random borrower and random
lender case. The plots suggest that when nodes are removed
randomly, the system flatness does not change; however, re-
moving the biggest lenders or borrowers drives the system
towards a more flat configuration.
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Figure 4.7: Simulated shocks: the effect of link removal. Change in flat-
ness (defined as the fraction of unbiased links in the network)
as a function of removed fraction of links for different selec-
tion methods and for a few selected years (other years show
a similar trend). The error bars correspond to ± 2 standard
error for the random link removal case. Similar to the node
removal case, the system flatness does not change apprecia-
bly as links are removed randomly. Removing biased links
(i.e., maximum or minimum z-scores) and links with maxi-
mum transactions makes the system flatter.
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Figure 4.8: Comparison between simulation and analytical approxima-
tion for node removal for 2006 (for random and degree based
removals). Results show good agreement between simulation
and analytical approximation. The analytical approximation
by construction overestimates the flatness as explained in the
text. The error bars correspond to ± 2 standard error for the
random removal case.
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Figure 4.9: Comparison between simulation and maximum entropy
method for link removal for 2006 (for random and
transaction-based removals). Results show a good agree-
ment in the trend between simulation and maximum entropy
method. The maximum entropy method overestimates the
flatness as explained in the text. The error bars correspond
to ± 2 standard error for the random removal case.

Figure 4.10: Positively vs. negatively biased fraction of links. Fraction
of positively (z > 2) biased (red), and negatively (z < 2) bi-
ased links (blue) for the years 2006–2013. The figure shows
a slightly larger proportion of positively than negatively bi-
ased links.
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Figure 4.11: Correlation between the number of transactions and abso-
lute value of z-scores. Linear correlation between absolute
value of z-score for the biased pairs of countries in the net-
work (computed separately for positively (z > 2) and nega-
tively (z < 2) biased links) and the number of transactions
between a pair of countries for years 2006–2013. Red and
blue points correspond to positive and negative z-scores.
The number of transactions seem to be correlated with both
positively and negatively biased links. Thus, the removal of
links with maximum transactions has a similar effect on the
system flatness as removal of highly biased (positive or neg-
ative) links.



CHAPTER 5

Summary and Future Work

5.1 Summary

In this dissertation we have investigated the impact of heterogeneity in social

networks in two different frameworks. In the first framework, we focus on the

heterogeneity of a node’s susceptibility to the adoption of new opinions. There,

each node is the receiver of peer pressure and it has a finite capacity (threshold)

of resisting to it. Hence, interesting dynamics occur when a node’s resistance is

suppressed. We study these dynamics using a model based on simplistic rules. In

the second framework, using empirical data we study the impact of the heterogeneity

of nodes when actively taking a decision, with no direct monetary benefit from their

choice. Studying the node’s choice reveals the direction a network growths. To this

end, we have used Monte Carlo simulations, analytical and optimization methods,

as well as methods from network and data science. A summary of our findings is

given below.

In Chapter 2, we explored the impact of the heterogeneity of resistance (thresh-

olds) in an opinion diffusion model (threshold model) with multiple initiators. The

parameter we controlled is the standard deviation σ of the threshold distribution.

In the case of σ = 0 all the nodes have the same threshold, and in the case of

σ = 0.2878 the thresholds are selected uniformly at random. We found out that

as the distribution of the thresholds increases the cascade’s change from having a

tipping point to cascades with a smooth transitions to reach consensus. By studying

the response of the cascade size, we computationally detected the critical σ value for

which (for a given fraction of randomly selected initiators) we move from cascades

with a tipping point pc to a smooth crossover, where pc does not exist. Furthermore,

in the case of thresholds selected uniformly at random we found a closed form ana-

lytical expression of the cascade size in relationship to the inserted initiator fraction.

Interestingly, it is independent of the network structure. Finally, all of our above

findings hold for synthetic and empirical networks.
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In Chapter 3, following on our findings in the dynamics of the threshold model,

we introduced two new strategies for selecting initiators in order to maximize the

social influence. We compared the performance of our methods with other existing

ones. We further study the impact of the heterogeneity of the thresholds and the

network assortativity for all methods. To find a good set of initiators, our first

method, namely Balanced Index (BI), looks for the optimal balance between the

threshold of the nodes and their network centrality. Typically, nodes with high re-

sistance and high network centrality are the better spreaders. Our second method,

namely Group Performance Index, uses the power of the combination of nodes to

reveal superspreaders. To do so, it selects the nodes for which any set of randomly

selected nodes performs better in their presence. We show that our methods outper-

form any other methods for any initiator fraction, any threshold distribution, and

any network assortativity.

In Chapter 4 we study the aggregated heterogeneity (biases) of individuals in

the country level using the data of the lending patterns from a global charitable

non-profit platform (KIVA). To this end, we defined a metric of the bias between

each lender to borrower country (edge). The global bias was given as the fraction

of biased edges, namely flatness. We showed that the world flatness is decreasing in

time. In addition, we studied the response of the flatness in simulated scenarios of

(borrower or lender) country or edge removals. Those removals simulated policy and

event shocks (raising walls). We studied this response for both random shocks, and

targeted shocks. We found that the high-transaction links could cause the networks

flatness to increase significantly, while random shocks would insignificantly affect

the flatness. These results, combined with regression analysis of our collaborators

revealed that geographical distance and cultural biases are the leading factors of

this bias.

Overall, our model and data based results indicate that node heterogeneity

governs the world dynamics from social influencing to global patterns of country to

country biases. We hope our results can be utilized for spreading an opinion or idea

faster or considering local and global policies for balancing the global heterogeneity

towards a less polarizing more interconnected and stable world.
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5.2 Future Work

5.2.1 Analytical Model for Dynamical Selection of Inactive Nodes as

Initiators

For the analytics of the Threshold Model (TM) we used Gleeson and Caha-

lane’s tree like approximation [133], which is accurate for studying ensembles of for

ER or SF networks. This analytical model has been expanded to capture different

variations of the TM as well as the impact of specific network measures, such as

the clustering or modularity of a network, in the final cascade size. The model can

describe random (perhaps also degree or resistance based) selection of initiators,

where the nodes are pre-selected before the spreading process is initiated. Hence,

as designed, this analytical model cannot describe cases where the nodes are se-

lected dynamically. For instance, it cannot model the case of a random selection of

initiators which are dynamically selected from the pool of the inactive nodes.

A future plan is to create a variation of the tree-like approximation for dy-

namic selection of inactive initiators on the ensemble level of ER and SF networks.

On our proposed model, on each step, a small fraction of inactive nodes is selected

as initiators, and the cascade size is computed following the tree-like approximation.

We repeat the process assuming part of the graph has been activated, and only fo-

cusing on the inactive part of the graph. One challenge on this proposed model is to

compute the probability that any node with degree k has been activated. Another

challenge is keeping track of the normalization factors necessary when applying this

process on the inactive graph. In particular, Gleeson and Cahalane’s analytical

model is based on the assumption of an infinite size graph. Hence, in order to dy-

namically select only inactive nodes as initiators, we would have to assume that each

time a small fraction of inactive nodes is selected as initiators and a cascade takes

places, then the remaining inactive subgraph is always infinite in size. Yet, it will

have to be smaller from the initial graph we started from. Hence, the contribution

on the total cascade size of each dynamically selected initiator must be normalized

to the size of the initial graph.
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5.2.2 BI Algorithm: Improving on the Metric

Our current features for the BI algorithm is the resistance of a node, its dy-

namic degree, and the sum of the degrees of the second level vulnerable neighbors.

The benefit of selecting those three features is that they are fast to compute while

the performance of the algorithm is good. Yet, we have not systematically examined

the performance of the higher order terms, such as the impact of a third level neigh-

borhood etc. In the cases we have explored we found out that the resistance was

the most important feature, followed by the dynamic degree. A possible question

to examine is whether the drop on the weights of higher-order terms follows a spe-

cific pattern, such as exponential decay. That would reveal more on the dynamics

that take place in the LTM and the number of higher-order neighborhoods that we

should consider when computing the BI of each node. Furthermore, BI considers

the resistance of the node in question, and only the neighboring nodes which are

vulnerable (have resistance equal to one). Thus, nodes with resistance higher than

one are disregarded on this metric. Perhaps, a variation of the BI metric where more

of the information of the resistance of each node is utilized, would lead to better

performance. For instance, we could be taking into account the average resistance

or average dynamic degree of first level neighborhood of the node in question.

5.2.3 GPI Algorithm: Reducing the Time Complexity

The GPI algorithm’s speed limits its usability. To tackle this, we propose a

number of possible ways to reduce GPI’s complexity and number of Monte Carlo

simulations (v), while attempting to maintain the performance of the algorithm the

same. Currently, the time complexity of GPI is O (v〈k〉N2) (for any graphs, reduced

by 〈k〉 for sparse graphs), where O (v) is the number of runs required to compute

with a good accuracy the expected GPI for all the nodes, O (N) is the number of

test-initiators required to satisfy the goal (either looking to maximize the cascade

size for a fixed number of initiators, or minimize the number of initiators for a fixed

cascade size), and computing the spread induced by each initiator takes O (〈k〉N).

We should notice that on each step j after computing the GPI of each node, we need

to rank the nodes based on their current GPI value, which takes O (N logN) using
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Heapsort. However, the time complexity per step j (coming from the computation

of GPI) is larger than that, and so it is omitted.

Computing the impact (cascade size, reduced resistance) of one initiator in

graphs of any size and average degree takes O (v〈k〉N) time. However, similar to

the process used in the CI-TM algorithm and our BI algorithm, we can compute the

impact within a sphere of influence L, the size of which we control; the complexity

of which is O (1) (assuming sparse graphs). Then, the leading complexity term

per step j, becomes the time complexity of the Heapsort. Hence, the total time

complexity of the algorithm could would become O (vN logN).

To compute the GPI of all the nodes, we require a large number of runs v,

which are independent from each other. Hence, it is possible to parallelize this

process. Furthermore, the selection of test-initiators is completely random, thus

a large number of runs v is required to distinguish the expected GPI of the most

important nodes. To reduce the number of runs v, we can control the probability

that specific nodes get selected for testing (so far, we have been selecting inactive

nodes uniformly at random). One suggestion is to focus on nodes which more likely

are superspreaders, for instance, nodes with high degree and resistance, or nodes

with high BI ranking. Another suggestion is to focus on nodes which on the previous

initiator insertion step had a high GPI ranking, yet not high enough to be selected as

initiators. Unless the insertion of the initiators on the previous step has impacted

their performance significantly, those nodes will still have a high GPI value. A

final suggestion is to focus on nodes which have a high GPI ranking for the current

initiator insertion step for a first small number of runs.

5.2.4 GPI Algorithm: Improving on the Metric

GPI measures the average impact of a node in the presence of any other set

of initiators that satisfy a preset goal. This computational metric does not take

into account other approaches such as analytics, learning algorithms, or meta-data

heuristics. A possible future direction would be to combine those methods with GPI.

For instance, by using a non-uniform random selection of test-initiators, emphasized

on nodes with particular properties can potentially increase (not just the speed
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of the algorithm as mentioned before but also) the performance of the algorithm.

Those properties could be their network (first or/and second neighborhood) or their

threshold/resistance. In addition, when testing the impact of each test-initiators, we

only focus on the set of nodes which has not be activated yet either through being

an initiator or through spread. Hence, nodes with high in-degree or low resistance

are typically more likely to be activated through spread than other nodes. This

additional information is not utilized. Taking into account how often a node gets

activated through spread, or for how many inserted initiators it got activated, could

lead to a better selection of initiators.

GPI is a metric of the expected number of initiators required to satisfy the

goal. Yet, additional information on the statistics of the number of initiators could

be collected and utilized for the improvement on the performance of the GPI. For

instance, with no additional time and/or memory complexity cost the maximum

and minimum test-initiator size as well as the standard deviation of GPI of each

node could be recorded. Then, when selecting between two nodes with similar GPI

values, perhaps the node higher standard deviation for the computation of GPI

or the node with a lower minimum GPI would, or the node which was less times

activated through spread would make for a better initiator.

5.2.5 GPI Algorithm: Network Destruction

As mentioned in Chapter 1, and Chapter 4, the robustness of a network in

random failures and targeted attacks is an essential characteristic of a network.

The detection of the set of nodes whose removal would cause the largest damage

on a network is an NP-hard problem. The typical order parameter to quantify

the damage of a network is the remaining largest connected component of a graph,

namely the giant component. The larger the giant component is, the smaller the

damage on the network. The classical case of a network destruction ignores any

dynamical processes, and focuses only on the giant component given the removal of

a set of nodes. We propose the use of an variation of the GPI algorithm to measure

the size of the giant component. Here, the goal is to reduce the size of the giant

component of any graph as much as possible for a given set of nodes. Thus, in this
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case, GPIi would measure the average size of the remaining giant component when

node i is included in the set of randomly selected removed nodes.

5.2.6 Selection Strategies for Probabilistic Thresholds

In most cases, we do not know exactly the threshold of each node, but we will

be able to infer it around some value, with some probability of it being different.

A probabilistic threshold has a large impact on the performance of the algorithms.

This is because now there is less certain information to relay on. A possible future

project would be to first test the performance of the current algorithms we intro-

duced, BI and GPI, as well as other successful algorithms (CITM) with increasing

uncertainty on the threshold of each node. Then, we would have to examine possible

variations on the introduced algorithms to make them more suitable for probabilis-

tic thresholds. For instance, if the uncertainty of our inference of the probabilistic

threshold of each node is relative small, then we can apply the BI and GPI algo-

rithms as they are, but instead of using the expected probabilistic threshold of each

node, assume each node’s threshold is higher that, such as two standard deviations

higher.

5.2.7 Long term Impact of Random Failures and Attacks on the Ro-

bustness of the Flatness of Empirical Directional Networks

Our analysis on Chapter 4 on the robustness of the flatness of empirical

weighted directional networks (KIVA) focused on the removal of a link with mul-

tiedges from a lender to a borrower reducing the degree of both nodes. Removing

both the demand and supply of the two nodes respectively can capture the transient

impact on the flatness of the system, when both nodes have not had enough time to

redirect their capacity (their demand and supply). To capture the long term impact

of the removal of a (borrower or lender) node from the network or the removal of link

we would have to assume that both the lender, and borrower nodes would redirect

their supply and demand respectively. Thus, a new model has to be designed where

now, the remaining nodes of the network would have to absorb this perturbation

by increasing their transactions with those two nodes respectively. The challenge

here would be to correctly redirect the multi-edge capacity. For instance, would
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each non-constrained lender and borrower node increase their transactions with the

respected two nodes proportionality to the empirical network or the null model?

In our future work we plan to address the above proposals and questions.
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[145] M. Karsai, G. Iñiguez, K. Kaski, and J. Kertész, “Complex contagion process
in spreading of online innovation,” J. R. Soc. Interface 11, (2014).

[146] F. Morone, and H. A. Makse, “Collective influence optimization uncovers the
strength of weak nodes in complex networks,” Nature 524, 65 (2015).

[147] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the Spread of Influence
Through a Social Network,” in Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (ACM,
New York, NY, 2003), pp. 137–146.

[148] W. Chen, Y. Yuan, and L. Zhang, “Scalable Influence Maximization in
Social Networks Under the Linear Threshold Model,” in Proceedings of the
2010 IEEE International Conference on Data Mining (IEEE Computer
Society, Washington, DC, 2010), pp. 88–97.

[149] P. Shakarian, S. Eyre, and D. Paulo, “A scalable heuristic for viral marketing
under the tipping model,” Soc. Netw. Anal. Min. 3, 1225 (2003).

[150] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A model of
Internet topology using k-shell decomposition,” Proc. Natl. Acad. Sci.
U.S.A. 104, 11150 (2007).

[151] G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,
“Bootstrap percolation on complex networks,” Phys. Rev. E 82, 011103
(2010).

[152] G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,
“Heterogeneous k-core versus bootstrap percolation on complex networks,”
Phys. Rev. E 83, 051134 (2011).



98
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graphs with prescribed degree distribution,” J. Stat. Math. Phys. 124, 1377
(2005).

[234] F. Molnár, S. Sreenivasan, B. K. Szymanski, and G. Korniss, “Minimum
dominating sets in scale-free network ensembles,” Sci Rep. 3, 1736 (2003).

[235] M. E. J. Newman, “Assortative mixing in networks,” Phys. Rev. Lett. 89,
208701 (2002).

[236] F. Jr. Molnár, N. Derzsy, É. Czabarka, L. Székely, B. K. Szymanski, and G.
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APPENDIX A

Synthetic and Empirical Networks

A.1 Generation of Synthetic Networks

The networks we use are undirected and unweighted. The synthetic networks

used are Erdős-Rényi (ER) graphs and scale-free (SF) networks. For the generation

of ER graphs [21] we used the G(N, pER) model with N being the system size and

pER the probability that a random node will be connected to any node in the graph.

The probability pER is given by pER = z/ (N − 1), where z is the nominal average

degree in the network. We keep the average degree z = 10. For the generation

of uncorrelated SF networks [29, 161] (N = 104, z = 10, with power law constant

γ = 3) we employ the configuration model [161, 233] with a structural cut-off, and

a maximum possible node degree set to
√
N , using a high accuracy look-up table

from [234].

A.2 Generation of Synthetic Networks with Controlled As-

sortativity

The degree assortativity was first introduced by Newman [235] to describe the

connectivity between neighboring nodes with different degrees. To measure it we use

Spearman’s ρ [188]. ER graphs have degree assortativity measured with Spearman’s

ρ = 0. To control the degree assortativity we use the method applied in [236].

A.3 Empirical Networks

The empirical networks used are a connected ego-network from a Facebook

(FB) dataset, available from the Stanford Network Analysis Project (SNAP) [162]

(system size N = 4048, average degree z = 43), and a high-school (HS) friendship

network [163]. For the HS network, we only used the giant connected component of

that network, with N = 921 and z = 5.96. The network contains two communities
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which are roughly equal in size (Table A.1). Although SF, FB, and HS networks are

connected networks, the generated ER graphs may have a disconnected component

with probably e−z, which for z = 10 is approximately 0.000045.

Table A.1: Basic statistics of the two empirical networks used. The prop-
erties measured are: the type of network (directed or undi-
rected), total number of nodes N , total number of edges m,
average degree z, power law coefficient α, network diameter
d, fraction of closed triangles C1, average clustering coefficient
C2, assortativity (Spearman’s) ρ.

Network Type N m z α d C1 C2 ρ

FB Undir. 4039 88234 43.691 1.72 8 0.2647 0.6055 0.5432
HS Undir. 921 2745 5.9674 3.30 12 0.0521 0.1254 0.2817



APPENDIX B

Analytical Approximation for the Linear Threshold Model

For analytic methods, we apply Gleeson and Cahalane’s tree-like approxima-

tion for synthetic networks [133, 134]. The approximation is given by the following

set of equations

Seq = p+ (1− p)
∞∑
k=1

Pk

k∑
m=1

(
k

m

)
qm∞ (1− q∞)k−m F

(m
k

)
(B.1)

qn+1 = p+ (1− p)
∞∑
k=1

k

z
Pk

k−1∑
m=1

(
k − 1

m

)
qmn (1− qn)k−m−1 F

(m
k

)
. (B.2)

In this approximation the graph is considered an infinite level tree. The spread

diffuses level-by-level starting from the bottom of the tree. qn is defined as the

conditional probability that a node on level n is active, conditioned on its parent on

level n+ 1 being inactive” and it is given by Eq. (B.2). The final spread Seq is given

by Eq. (B.1), and is measured at the top of the tree. The fraction of initially active

nodes is given by p. In the bottom of the tree at level n = 0, the fraction of active

nodes is only based on the initiators, thus q0 = p. The graph degree distribution is

given by Pk, which for an infinite size ER graph is given by Pk =
(
zke−z

)
/k!, where

z is the average degree, while for SF networks it’s given by Pk ∼ k−γ. F
(
m
k

)
is the

cumulative probability that a node requires m or less active neighbors to get active,

which depends on the assigned threshold distribution.

B.1 Closed-form Analytical Estimate for Uniform Thresh-

olds

Here, we show explicitly the derivation of the closed form equation of the

treelike approximation [133, 134] of the fraction Sn of active nodes at level n on

Eq. (6) in the main text. According to [134] the level (or time) dependent evolution

of the fraction qn+1 of nodes with inactive parents at level n + 1 for synchronous
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updating of the nodes is given by

qn+1 = g(qn) = p+ (1− p)
∞∑
k=1

k

z
Pk

k−1∑
m=1

(
k − 1

m

)
qmn (1− qn)k−m−1 F

(m
k

)
, (B.3)

and the fraction of active nodes at level n+ 1 is given by

Sn+1 = h(qn) = p+ (1− p)
∞∑
k=1

Pk

k∑
m=1

(
k

m

)
qmn (1− qn)k−m F

(m
k

)
. (B.4)

The replacement of the cumulative probability function F
(
m
k

)
in the particular case

of a uniform distribution of thresholds in the above two equations yields the closed

form solution. Let a node i have degree k and an assigned threshold φ. Resistance l

is the absolute number of active neighbors required for node i to get activated, and

it is given by l = ceil(φ×k). The cumulative probability distribution F
(
m
k

)
of nodes

with degree k, having resistance less or equal to m, is given by F
(
m
k

)
=

m∑
k=1

rl,k,

where rl,k is the probability that a node has resistance l, conditioned that it has

degree k. For a uniform threshold distribution the probability that a node has

resistance l, conditioned that it has degree k, is r(l,k) = 1/k. For example, a node

with degree k = 2 will have resistance l = 1, with probability r(1,2) = 1/2 and

resistance l = 2 with probability r(2,2) = 1/2. Thus, the fraction F
(
m
k

)
of nodes

that have resistance m or less conditioned that they have degree k for the uniform

random threshold distribution is given by

F
(m
k

)
=

m∑
k=1

rl,k =
m∑
k=1

1

k
=
m

k
. (B.5)

Now, replacing Eq. B.5 in Eq. B.3 we show the linear relationship between the

fraction qn+1 of nodes with inactive parents at level n+ 1 with the fraction qn at the

previous level n of the approximated tree for networks with uniform distribution of

thresholds (see Eq (3) in the main text). So,

qn+1 = p+ (1− p)
∞∑
k=1

k

z
Pk

k−1∑
m=1

(
k − 1

m

)
qmn (1− qn)k−1−m

m

k
, (B.6)
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which simplifies to

qn+1 = p+ (1− p) 1

z

∞∑
k=1

Pk

k−1∑
m=1

(
k − 1

m

)
qmn (1− qn)k−1−mm. (B.7)

However,

k∑
m=1

(
k

m

)
qmn (1− qn)k−mm =

k∑
m=0

(
k

m

)
qmn (1− qn)k−mm, (B.8)

where the right hand of the equation is the mean of the binomial distribution, and

it is given by kqn [237], thus

k−1∑
m=1

(
k − 1

m

)
qmn (1− qn)k−1−mm = (k − 1) qn (B.9)

Using the above equation in Eq. (B.7) yields

qn+1 = p+ (1− p) 1

z

∞∑
k=1

Pk (k − 1) qn, (B.10)

which can be rewritten as

qn+1 = p+ (1− p) 1

z

(
∞∑
k=0

Pk (k − 1) + P0

)
qn. (B.11)

Since the average degree is given by z =
∞∑
k=0

kPk, the above equation becomes

qn+1 = p+ (1− p) 1

z
(z − 1 + P0) qn. (B.12)

which can be rewritten as

qn+1 = p+ bqn, (B.13)

with b = (1− p) 1
z

(z − 1 + P0). The solution of the above equation with initial

condition q0 = p is

qn = p
1− bn+1

1− b
(B.14)
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Similarly, replacing F
(
m
k

)
in B.4 by the right hand side of Eq. (B.5), the

analytic approximation yields

Sn+1 = p+ (1− p)
∞∑
k=1

Pk

k∑
m=1

(
k

m

)
qmn (1− qn)k−m

m

k
. (B.15)

Using again the property of the mean of the binomial distribution the above equation

reduces to

Sn+1 = p+ (1− p)
∞∑
k=1

Pk
1

k
(kqn) , (B.16)

which yields

Sn+1 = p+ (1− p) qn
∞∑
k=1

Pk. (B.17)

Thus, the closed form solution of cascade size at level n+ 1 is given by

Sn+1 = p+ cqn, (B.18)

with c = (1− p) (1− P0). Subtracting Sn from both parts of the above equation

and combining it with Eq. B.13 we get

Sn+1 − Sn = c (qn − qn−1) . (B.19)

Substituting qn = p+ bqn−1 from Eq. B.13 into the above equation yields

Sn+1 − Sn = c (p+ (b− 1)qn−1) . (B.20)

Solving Eq. B.18 for qn−1 at level n−1 and substituting to the above equation yields

Sn+1 − Sn = c

(
p+ (b− 1)

(
Sn − p
c

))
. (B.21)

Expansion of the above equation yields to the closed form phase-space equation at

Eq. (6) in the main text

Sn+1 − Sn = cp− (1− b)p− (1− b)Sn. (B.22)



112

Now, going back to the calculation of Sn+1 at Eq. B.18, substituting qn with the

right part of Eq. B.14 yields

Sn+1 = p+ cp
bn+1 − 1

b− 1
, (B.23)

where the cascade size S0 at level n = 0 is just the fraction of the initiators, S0 = p.

On the other hand, in the equilibrium state (as n→∞) the cascade size Seq is given

by

Seq = p+ cp
1

1− b
, (B.24)

since 0 ≤ b < 1. Interestingly, the final cascade size doesn’t depend for uncorrelated

networks on the degree distribution, but only on the average degree < k >.



APPENDIX C

Further Information and Analysis on the Kiva Data

C.1 Extended Introduction

Example of Kiva Borrower and Lender Narratives (Fig. C.1).

Figure C.1: A sample of representative borrowers and lenders’ images
and reasons for asking taken from Kiva’s webpage [216].

A visualization of the Kiva sub-networks from the year 2007 is shown in Fig-

ure C.2

113



114

Figure C.2: Examples of Kiva sub-networks. Top 200 links by number
of transactions in the 2007 Kiva network (top). The bor-
rower (lender) countries are colored red (green). The size
of borrower country nodes is proportional to the received
transactions; whereas, the lender countries are shown to be
of the same size. Edge thickness is related to the number of
transactions from lender country to borrower country. The
figure contains only a subset of country–pairs for clarity. The
ego-network of Afghanistan is for the same year (bottom).
The outgoing links from Afghanistan have been colored dif-
ferently following the same convention for node size and link
thickness.
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C.2 Gravity Model and Regression Analysis

To further investigate the factors associated with lending bias between nation

pairs, we regress the level of lending between nations on factors effecting bilateral

international trade with the widely used fixed-effect gravity model [226,238]. In this

model, the level of trade from country i to country j, Yij, is modeled as

Yij = 1−G
Mα

i M
β
j

Mγ
ij

(C.1)

where Mi and Mj are the economic masses (e.g., GDP) of i and j, dij is the ge-

ographical distance between i and j, and G is a constant. The parameters to be

estimated are α, β, and γ, respectively. We aggregate transactions such that each

observation Yijfy denotes the number of transactions from the lender country i to

the borrower country j involving the Kiva field partner f for given year y. Field

partners are microfinance institutions (e.g., NGOs, schools, or social enterprises) op-

erating in the borrower country and are responsible for connecting borrowers with

Kiva, screening them, posting their loan requests online, and disbursing and col-

lecting repayments. Since many country–pairs in our data show zero transactions,

the log transformation of the level of bilateral trade typically used in the gravity

model is not feasible in our setting. Thus, we ran a second model that appropriately

accounts for the skewness in the level of loans between countries by discretizing the

dependent variable Yijfy into four categories (denoted by Qijfy) that correspond to

zero, low, medium, or high levels of lending [239]. We performed a fixed-effects

ordered logistic regression on the transformed variable to control for unobserved

heterogeneity related to the lender country, borrower country, Kiva field partner, or

year. Zero transactions category is the omitted category. The ordered logit and the

gravity model produce qualitatively similar results (see Table C.5 and C.6).

Per the gravity model, we include four explanatory variables in our regression:

(i) the difference of per capita GDP between lender and borrower countries (World

Bank data [248]); (ii) the geographical distance between the country–pairs [240];

(iii) the size of the migrant population of borrower country living in the lender

country [241]; and (iv) an indicator variable showing that lender country colonized
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borrower country (1 = yes) , which captures common culture and institutional struc-

tures [240,242] (see Tables C.2 and C.3. Our model is as follows:

Qijfy = β1GDP differenceij+β2Distanceij+β3Migrationji+β4Colonyij+εijfy (C.2)

This model (Model 4) unequivocally had the best fit, with an evidence/likelihood

ratio of 12.05 105 over the next best fit model (Model 3) [243]. The regression find-

ings reported in Table C.1 suggest that bilateral transaction volumes in this peer-

to-peer lending system reflect general patterns of trade between nations rather than

unique peer-to-peer patterns. The per capita GDP difference between countries, mi-

gration between county pairs, and the historical presence of a colonial relationship

are all positively (odds ratio > 1) and significantly associated with lending volumes,

while geographical distance is negatively and significantly associated with the level

of lending (odds ratio < 1). These findings suggest that the greater global context

within which peer-to-peer lending is embedded impacts crowdfinancing in much the

same way that it does other forms of global trade. We also apply the same model on

AidData using four categories of country-to-country government aid money (zero,

low, medium, high) as the outcome variable (see Appendix C.4). The results shown

in the last column of Table C.1 imply that distance, migration, and colonial tie are

associated with level of aid in the same manner. However, much higher odds ratio

for migration and colony (compared to Kiva) indicate that these variables have a

much stronger association with flow of government aid. Surprisingly the effect of per

capita GDP difference is not found to be significant, which is positive and significant

for Kiva.

To depict these effects in Kiva over the range of the variables, we plot the

relationship between transaction flows, GDP difference, and migration from an or-

dered logistic regression (ologit) using quantiles of GDP difference and high and low

migration (split at the median). Fig. C.3 shows the probability of high transaction

volumes (8 to 54,136 transactions) at different quantiles of GDP difference for dif-

ferent levels of migration. The plot shows an increasing trend in lending associated

with growing per capita GDP for country–pairs that share a large (above the me-

dian) and no significant change for small (below the median) immigrant population.
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Table C.1: Fixed-effect ologit estimates of levels of lending between coun-
tries. Odds ratio reported for 4 levels of transactions (4 lev-
els of commitment amount in the case of government aid).
**p < 0.05

Variable
Odds ratio

Model 1
Odds ratio

Model 2
Odds ratio

Model 3
Odds ratio

Model 4
Odds ratio

(Govt. Aid)

GDP (pc)
difference

1.76** 1.73** 1.73** 1.74** 0.99

Distance ... 0.94** 0.94** 0.94** 0.77**

Migration ... ... 2.47** 2.24** 2.52**

Colony ... ... ... 1.41** 12.65**

AIC: 181781.5 176346.9 162648.1 162624.7 ...

BIC: 181950.9 176555.7 162855 162624.7 ...

Fixed effects:

Year Yes Yes Yes Yes Yes

Partner Yes Yes Yes Yes -

Lender
(donor)
country

Yes Yes Yes Yes Yes

Borrower
(recipient)

country
Yes Yes Yes Yes Yes

We observe that the effect of GDP difference is weak up to its 60th percentile after

which it shows a much stronger impact on loan levels. This suggests that much of

the source of bias in the system is keyed to high GDP lenders. Specifically, for lower

than 60th percentile, the probability of observing biasedly high-volume transactions

is quite small (< 0.2) but grows rapidly for higher percentiles of GDP difference

( 0.75 at 90th percentile, in the case where migration level is also high).

Interestingly, the results show that migration from borrower to lender country

only plays a role when the per capita GDP of the lender country is sufficiently higher

than that of the borrower country (otherwise migration shows a slight negative as-

sociation). It can also be seen that higher GDP difference with high migration has a

strong positive effect on the transaction volumes, suggesting that the deeply embed-

ded structures that characterize relationships among nations continue to impact the
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Figure C.3: Marginal effects of GDP per capita difference and level of
migration. The vertical axis measures the probability of ob-
serving large numbers of transactions (i.e., the outcome Qijfy

falling into a high category), as a function of GDP difference
quantile and for different levels of migration (low vs. high).
For low migration the probability shows no increase with
GDP difference quantile, but for high migration the proba-
bility shows a significant increase – specifically beyond the
50th percentile of GDP difference. The plot shows that mi-
gration is only effective when it moves migrants from a low
GDP to a high GDP country (which corresponds to direction
across a large and positive GDP difference).

networked systems such as Kiva. These findings indicate that while crowdfinancing

may have reduced some biases [244] in the lending system, the greater global context

within which peer-to-peer lending is embedded impacts crowdfinancing in much the

same way it does other forms of global trade. Factors associated with the magnitude

of bias continue to be correlated with lending pair relationships that deviate from

flatness.
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C.2.1 Regression Specification

The ordered logit is a non-linear model where the dependent variable Yijfy

(defined as the aggregated number of transactions from the lender country i to

the borrower country j and involving the Kiva field partner f for a given year y)

is converted from a continuous variable to quantiles of transaction count between

countries (amount of aid between countries in the case of government aid) as the

dependent variable with outcomes zero (1), low (2), medium (3), and high (4) based

on natural break points in the distribution. This conversion is done to deal with

the non-normality of count data that makes up the dependent variable, the problem

caused by log transforming the variables with zero values [245], and also because of

the limitation of Poisson models for dealing with this type of data (skewed distri-

bution and containing a large number of zero observations) [246]. We supplement

the Kiva data with our explanatory variables: per capita GDP difference (averaged

over 2005–2013), inter-country distance, migration, and a categorical variable indi-

cating whether the lender country was a colonizer of the borrower country in the

past (a colonial tie). Data on distance between lending and borrowing countries

and the presence of absence of colonial past relationships between countries were

obtained from the GeoDist data of CEPII, Research and Expertise on the World

Economy [240]. Country per capita GDP data were obtained from the World Banks

World Development Indicators. Finally, data about the number of immigrants be-

tween countries came from 2010 estimates of the International Migrant Stocks of

the United Nations population division [241]. Since the data are obtained from dif-

ferent sources, after merging, our number of observations is reduced from 174,468

to 140,418 due to availability of data. In addition, the model considers the fixed

effects of lender country, borrower country, field partner, and year. (See Appendix

for a summary of the dependent and the independent variables (Table C.2) and

correlations among them (Table C.2).) We check the robustness of our model by

comparing it to other models that use a subset of explanatory variables. The model

we use corresponds to the optimal set of Akaike information criterion (AIC) and

Bayesian information criterion (BIC) statistics [247] (Table C.1). To test for multi-

collinearity among explanatory variables, VIF statistics were checked and found to



120

be satisfactorily low.

C.3 Extended Information on Regression Analysis

C.3.1 Categorical Dependent Variable

Figure C.4: Outcome variable for Kiva loans. Quantiles of Yijfy. Out-
comes (Q) represents zero (0 transactions), low (1 transac-
tion), medium (2–7 transactions), and high volume (8–54,136
transactions) of transactions, respectively.

Table C.2: Descriptive statistics.

Variable Obs. Mean SD Min Max

Q
(outcome)

174,468 1.82 1.16 1 4

GDP (pc)
difference

(thousands USD)
157,609 11.24 21.62 -47.96 122.16

Distance
(thousands of kms)

164,803 8.55 4.55 0.010 19.95

Migration
(Millions)

155,558 0.01 0.18 0 11.63

Colony 164,803 0.01 0.09 0 1
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Table C.3: Correlation matrix.

Variable
Q

(outcome)
GDP (pc)
difference

Distance Migration Colony

Q
(outcome)

1 ... ... ... ...

GDP (pc)
difference

0.42 1 ... ... ...

Distance -0.05 -0.03 1 ... ...
Migration 0.06 0.03 -0.04 1 ...

Colony 0.11 0.02 -0.03 0 1

C.3.2 Gravity Model

The results shown from the gravity model are qualitatively consistent with

the ologit model in section C.2. They show a positive and significant association

of transaction with economic disparity, migration and colony, and a negative and

significant association with geographical distance. Here we model the number of

transactions Yijfy from country i (lender) to country j (borrower) through the field

partner f and in a given year y, using the gravity equation in the following way:

log (Yijfy) = log (G), (C.3)

where G is a constant, GDPi and GDPj are the per capita GDP of the lender

and the borrower countries, distance is the geographical distance between i and

j, migration is the migrant population of borrower country in the lender country,

colony represents a colonial link between i and j (i being colonizer of j) and εijfy

is the error term. The model coefficient to be estimated is α, β, γ, and δ. We also

include the fixed effects of lender country, borrower country, field partner, and year.

Equation C.3 is the log transformed gravity equation (with fixed effects) where we

included terms that capture the economic disparity between lender and borrower

country (as the ratio of their per capita GDPs), distance, migration, and colonial

past. The associated coefficients are estimated by performing a linear regression

(see Tables C.4, C.5 and C.6).

The results in Table C.5 indicate that 1 unit increase in GDP ratio is associated

with a 408% increase (fractional change = ea − 1) in number of transactions, 1
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Table C.4: Descriptive statistics for gravity model.

Variable Obs. Mean SD Min Max
log (transactions) 65896 2.09 2.04 0 10.90
log (GDP ratio) 157609 0.78 1.52 -4.44 5.36
log (distance) 164803 1.93 0.77 -4.56 2.99

log (migration) 47081 -7.61 3.10 -13.81 2.45
Colony 164.803 0.01 0.09 0 1

Table C.5: Correlation matrix for gravity model.

log
(transactions)

log
(GDP ratio)

log
(distance)

log
(migration)

Colony

log (transactions) 1 ... ... ... ...
log (GDP ratio) 0.3575 1 ... ... ...
log (distance) 0.20 0.23 1 ... ...

log (migration) 0.35 -0.10 -0.28 1 ...
Colony 0.08 0.01 0.08 0.27 1

Table C.6: Gravity model regression. Gravity model regression with
number of transactions as the dependent variable. N = 30216,
goodness of fit R2 = 0.85.

log (transactions) Coefficient Robust SE t P > |t|
log (GDP ratio) 1.63 0.019957 81.53 0
log (distance) -0.11 0.013652 -7.89 0

log (migration) 0.02 0.004096 4.84 0.001
Colony 0.12 0.017699 7.09 0

Fixed effects ... ... ... ...
Lender country Yes ... ... ...

Borrower country Yes ... ... ...
Field partner Yes ... ... ...

Year Yes ... ... ...

unit increase in distance is associated with a 10% decrease in transactions, 1 unit

increase in migration is associated a 2% increase in transactions, and a presence of a

colonial tie is associated with a 13% increase in transactions. Although the numerical

estimates shown above cannot be compared exactly with the results obtained by the

ologit model, their relationship to the bilateral transaction levels is similar.

We also look at the interaction between per capita GDP difference and migra-

tion by considering 10 quantiles of per capita GDP difference and migration (high
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= above median, low = below median) and modeling the number of transactions

by the fixed-effect gravity model discussed above. The trend shown in Figure C.5 is

found to be qualitatively consistent with the ologit regression discussed in Appendix

C.2.

Figure C.5: Predicted transactions. Predicted number of bilateral trans-
actions as a function of per capita GDP difference quantile
and level of migration. Error bars indicate ± 2 standard
error (i.e., 95% confidence interval).

C.4 Aid Data

C.4.1 Global Financial Lending Flows: Kiva vs. Government Aid

We compare the participation level of countries on Kiva and aggregated aid

using data from AidData, (available at: http://aiddata.org/) from one country to

another (only looking at country-to-country aid) for the same time period as Kiva

(2005–2013). Figure C.6 (A) and (C) show the sum of commitment aid money

(USD) given and received, respectively, by each donor country; and Figure C.6 (B)

and (D) show the total loan contributions made by the lenders in a lending country

and total contributions made to the loans and borrower country, respectively.
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The distribution of receivers of money through bilateral aid and through Kiva

(by individual lenders) looks quite different. The Aid is distributed among recipient

countries more uniformly whereas Kiva focuses mostly on fewer developing regions.

The other distinguishing feature of Kiva is the global presence of individual lenders.

The donor countries providing aid in the AidData are fewer in numbers (48) in

comparison to Kiva lenders contributing from almost every country in the world (i.e.,

capital flow from few-to-many vs. many-to-few). Thus the Kiva dataset accounts

for a much larger number of inter-country links that reach developing regions from

developed regions.

C.4.2 Analysis of Government Aid Data

We construct a null model for the co-country aid network using data on inter-

national development aid [217] and extracting the yearly flow of country-to-country

government aid (for the years 2005–2012). The null model is constructed by ran-

domly rewiring the multi-edges in the network, where each (directional) edge rep-

resents an aid commitment made between a pair of countries. We preserve the

total number of incoming edges and outgoing edges for each node (country). As in

the case of the Kiva network (described in Chapter 3), by comparing the observed

network with the null model we identify the biased links and compute the yearly

flatness (as fraction of unbiased links in the given year). The flatness of the aid

network is shown in Figure C.7. We observe that the level of flatness in this net-

work is lower than Kiva and does not follow a systematic trend. It can be inferred

from Figure C.7 that lending in the form of developmental aid by governments on

an average is more biased than Kiva.

Next, to identify the potential factors associated with the observed bias, we

model the level of aid using the fixed-effect ordered logistic regression given as

follows:

Qaid
ijy = β1(GDP difference)ijy+β2Distanceij+β3Migrationji+β4Colonyij+εijy (C.4)

The fixed-effects of donor country, borrower country, and year were included in

the model. The categorical outcome variable is constructed by using four quantiles
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Figure C.6: Geographical coverage of Kiva and government aid. (A)
Donor countries by their total commitment amounts (USD),
(B) lender countries in Kiva by the total number of contri-
butions made, (C) recipient countries by total commitment
amount (USD), and (D) borrower countries in Kiva by the
total number of contributions received. All values are aggre-
gated sum from 2005–2013. The scale shown is logarithmic
with a base of 10. The coverage patterns show a difference
in the potential channels for capital flow. There are more
participating lender countries on Kiva compared to number
of donor countries from AidData in the same time period.

(zero, low, medium, and high) of aid amount (shown in Fig. C.8). The description

of variables and their correlations are presented in Tables C.7 and C.8.

The results of our ologit regression are reported in Table C.9 (N = 39031;

pseudo R2 = 0.4068 for the final model) and show that similar to lending in Kiva,

government aid is also driven by the same exogenous variables with the exception of

GDP difference, which in the case of government aid was not found to be significant.

The effect of migration and colonial past, as reflected by very high odds ratios, are
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Figure C.7: Flatness of government aid network. The level of flatness
is low (compared to Kiva, which is between 90% and 80%)
and increases between 2006 and 2007 and shows a decrease
afterwards.

Table C.7: Descriptive statistics for government aid data.

Variable Obs. Mean SD Min Max
Outcome 46456 2.89 2.105959 1 4

GDP (pc)
difference

(thousands USD)
39938 2766 192136 -44.72371 115.852

Distance
(thousands of kms)

44094 8.07 4.181782 0.0361766 19.95116

Migration
(Millions)

42094 0.02 0.1857959 0 11.63599

Colony 44094 0.03 0.1620495 0 1

Table C.8: Correlation matrix for government aid data.

Variable
Q

(outcome)
GDP (pc)
difference

Distance Migration Colony

Outcome 1 ... ... ... ...

GDP (pc)
difference

0.26 1 ... ... ...

Distance -0.14 -0.03 1 ... ...
Migration 0.08 0.02 -0.05 1 ...

Colony 0.16 -0.01 -0.02 0.06 1
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Figure C.8: Relative frequency of levels of commitment amount (Zero:
0 USD; low: 8 USD–0.3 Million USD; medium: 0.3 Million
USD–6.5 Million USD; high: 6.5 Million USD–11.1 Billion
USD).

much stronger in this case.
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Table C.9: Fixed-effect ologit estimates of levels of lending between coun-
tries. Odds ratio reported for 4 levels of transactions (4 lev-
els of commitment amount in the case of government aid).
**p < 0.05

Variable
Odds ratio

Model 1
Odds ratio

Model 2
Odds ratio

Model 3
Odds ratio

Model 4

GDP (pc)
difference

0.99 0.99 0.99 0.99

Distance ... 0.77** 0.77** 0.77**

Migration ... ... 5.21** 2.52**

Colony ... ... ... 12.65**

AIC: 62907.5 58361.99 58284.72 5737125

BIC: 62976.26 58430.56 58353.3 57439.83

Fixed effects: ... ... ... ...

Year Yes Yes Yes Yes

Donor country Yes Yes Yes Yes

Rrecipient country Yes Yes Yes Yes


