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ABSTRACT

In recent years, cascading failures in the complex network, which cause enormous

damages in the real world, have been studied intensively because most critical in-

formation and infrastructure systems belong to the complex network, such as the

Internet, finance, and power grid systems. The spreading of cascading failures could

be significantly affected by the topology, initial attacks, and evolution dynamics of

an interconnected network. It is now evident that higher connectivity makes the

whole system more vulnerable to disruptions. Hence, there is a strong desire to

probe the properties of cascading processes and predict the damage in advance. In

this thesis, we analytically formulated abstract networks consisting of conceptual

objects, such as the global risk network and the fire propagation model. We also

studied a real-world system, which is the European power grid.

In the abstract models, we proposed an innovative methodology to quan-

titatively analyze the cascading failures in a system consisting of multiple non-

homogeneous Poisson processes. In this thesis, we formulated an Alternating Re-

newal Process (ARP) model of global risks in cross domains to capture the actual

dynamics of the cascade propagation. In our methodology, we simulated the time

series of discrete states with different lengths of time and fit the training data to

estimate the parameters of our model. We formulated a practical methodology to

simulate complicated processes with hidden variables. The recovery of the hidden

and explicit parameters of the model enables the predictions of the activation of

global risks. The critical infrastructures are sensitive to cascading failures, which

cause a huge threat to the global stability. Hence, assessing the reliability of param-

eter recovery is important.

Next, to verify the parameter recovery using the method of maximum likeli-

hood estimation (MLE), we compared the estimated parameters with ground-truth

parameters in another similar model, which simulates the fire propagation in a city.

In this model, we demonstrated that the convergence and asymptotic properties

of the maximum likelihood estimation are consistent with the theoretical analysis.

x



This study provides a quantitative perspective of cascading evolutions and identi-

fies the detrimental risks. In the interconnected network with discrete states, our

methodology delivers a great estimation of evolution dynamics and makes accurate

predictions of future activities.

In addition, we also studied the cascading failures in a real-world resistor net-

work model, which considers the spatial constraints of the European power grid. In

the cascades triggered by a single-node removal, we introduced the stochastic capac-

ity allocation to mitigate the potential damages. Moreover, in the cascades triggered

by multiple-node removals, we detected a bimodal distribution of cascading dam-

ages as a function of total load and degree of initiators. If the spatial constraints

of initiators decline, the cascading failures exhibit more randomness patterns, and

the complicated topology is more difficult to predict the cascades than it is in stan-

dard structures. Decision makers can benefit from our analysis to design efficient

mitigation strategies to protect the vulnerable parts of the system.
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CHAPTER 1

INTRODUCTION

The 2008 financial crisis emerged originally in the real-estate market and the banking

system in the United States. However, this crisis was not limited to a single country.

The successive impacts spread to other countries and caused heavy damage in many

aspects of the society, such as the labor market, government credits, manufacturing

industry, energy supply, and so on. Presumably, the high connectivity between

various aspects of our society exacerbates the spreading of a crisis from a localized

area to global-wide. This kind of behavior is called “cascading failures” since the

initial breakdown of small components may cause a catastrophe to the complex

network [1]–[3]. Therefore, the cascading failures drew much attention in the past

decades, which have been studied in many specific domains, such as the standard

networks [4]–[6]; bank systems [7], [8]; power grid [9]–[11]; the Internet [12], [13];

traffic systems [14], [15]; and interdependent networks [16]–[19].

In the beginning, we introduced many recent studies, which intensively discuss

the abstract and real-world networks. Some studies focus on the cascading properties

of particular networks, for example, detecting the relationship between the cascading

damage and the initially failed node, or revealing the critical values for the number

of initiators to collapse the entire network. Other studies emphasize the robustness

of the network, predictability, and mitigation of cascading failures. Although the

background and essential details of the previous studies are quite different, these

rigorous studies create a broad foundation for this thesis.

Today, the improvement of technology and science makes the world smaller

and increasingly connected. Although a more connected system possesses a higher

efficiency, this interconnected system may have a greater vulnerability than before,

and the materialization of a risk may trigger other connected risks and accelerate

the spreading of cascading failures [20]. The globalism and heterogeneity of the en-

tire network make the whole system more vulnerable to a catastrophe [21]. Thus, it

is crucial to study these cross-domain systems. Inspired by the previous studies, we

1
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built a quantitative model for global risks, and the detailed information is provided

in following sections. In this thesis, we formulated an abstract cross-domain network

consisting of 50 global risks from 5 domains: economic, political, societal, environ-

mental, and technological. Experts from the World Economic Forum evaluated the

likelihood, impact of future occurrence and connections of each risk [47]. We used

the expert assessments to build the structure of the global risk network and detect

the evolution dynamics of the model from historical occurrences of risks. Then, we

demonstrated the activity level of the network (the number of active risks) at each

time step of the stochastic process and detected the most persistent risks based on

the simulation. When risks from different categories are connected, the coupled

global risk network is a huge potential threat to the world. The primary purpose

of this model is to accurately predict the future behaviors of global risks. Although

not all risks and events can be precisely predicted, forecast plays a significant role

in mitigation strategies.

After we introduced the methodology to analyze the cascading failures in the

global risk network, a new question naturally comes up: how to evaluate the quality

of our prediction? To answer this question, we applied our methodology to a fire

propagation model in an artificial city to probe the limit of predictability. The city

structure includes three types of houses: small, medium, and large; each type of

house has unique properties. The quality of predictions relies on the approximation

of control parameters in our model. Since there are discrete states for each house in

the network, and we assumed the state transitions follow Poisson process, the maxi-

mum likelihood estimation (MLE) is suitable for parameter recovery from historical

observations [22]–[25]. As the input dataset increases, the estimated parameters

have a more accurate approximation to the ground-truth values, and the variance of

multiple estimations shrinks quickly in a power-law decay, which is consistent with

the asymptotic limits of MLE [22]–[24]. This study gives us a better understand-

ing of our methodology, verifies the estimation precision of control parameters, and

indicates the limit of our predictions of cascading failures.

Last but not the least, cascading failures not only exist in a global-wide net-

work across multiple domains but also occur in a specific field, such as the electricity
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system [9]–[11]. We analyzed the cascading failures in the European power grid sys-

tem with geometrical constraints. The complicated topology significantly influences

the damage. Different initiators selected from the same region could lead to oppo-

site results. The cascading damage is either small or large in different scenarios.

Simply increasing the capacity of the system does not save more components since

the removals of the “fuse” nodes could block the spreading of cascading failures. We

introduced a stochastic capacity allocation for each node to mitigate the damage

efficiently. In the cascades triggered by regional attacks, the cascading size presents

a bimodal behavior as a function of the total degree and load of the initiators.

This study provides valuable analysis to manage potential risks and identify the

dangerous parts of the system.

This thesis is organized as follows: Chapter 2 presents the literature reviews

for interconnected networks and cascading failures analysis. Chapter 3 discusses

the global risk network, such as the definition, dynamics, data fitting and cascade

simulations. In Chapter 4, the predictability limits of the abstract model are studied

to show the quality of prediction using the maximum likelihood estimation. In

Chapter 5, we analyzed the cascading failures in a spatially embedded resistor power

grid system and detected the relationship between cascading damage and topological

properties. The last chapter contains the conclusion of this thesis.



CHAPTER 2

LITERATURE REVIEW

2.1 Cascade in abstract networks

2.1.1 Standard model

Watts studied the general features of a systemic cascade on an arbitrary ran-

dom graph [4]. Two important features are derived from observations: first, a little

disruption or shock could trigger a systemic cascade in extreme cases; second, such

a systemic cascade occurs rarely. A normally working system repeatedly faces po-

tential shocks or attacks. A robust system can endure the influence of such shocks.

However, if the system cannot properly withstand the shock under the abnormal

state, the subsequent collapse destroys the whole system. Hence, one interesting

question arises: how severe is the damage of cascading failures? To answer this

question, we need to understand the distribution of cascade damages or losses in

a particular network. Generally, nodes and edges are critical to determining the

features of cascades. The author pointed out two possible distributions for the

cascading sizes. Network connectivity mitigates the severity of successive failures.

When the network connectivity is dense, nodes have weak influence on each other.

In scale-free networks [26], few nodes have an extremely large connections, which

act as hubs of the network and are critical to the global cascades instead of the

small-degree nodes. To mitigate the damage, stakeholders need to control these

highly connected nodes. If the network connectivity is sparse, the cascading failures

are determined by the stability of each node, and the distribution of cascade size

approximates a bimodal distribution. In small-world networks [27], large part of

nodes possess a similar value of connections. The failures of average-degree nodes

cause catastrophic losses. In this case, the system resists most small triggers but

fails to handle massive disruptions.

To verify this conclusion, Watts used a binary decision model [4]. In eco-

nomic and societal information networks, individuals often make a binary choice

based on their neighbors’ decision. For instance, a person is more likely to choose

4
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the restaurant that has high review scores and recommendations, specifically by

friends. Hence, the word-of-mouth effect plays a significant role in influencing ev-

eryone’s decision. Because of the incomplete information, each individual has to rely

heavily on others’ decision. This social behavior exists in many specific networks

and demonstrates a threshold feature. If the threshold is exceeded, an individual

abandons current selection for a more appealing one, such as when stock traders

make transactions, and customers find restaurants with good reviews on Yelp. In

this binary model, each node has a particular threshold φ, which is the fraction of

neighbors with the same state. The values of the threshold and degree for each

node are drawn from designated distributions. The main idea is to build a random

network with a heterogeneous connectivity and thresholds. This model is different

from other models for several reasons. First, the threshold effect just has a local

influence, which is unlike the epidemic model threshold with a global impact. Sec-

ond, the threshold is the fraction of neighbors rather than the frequency. Third,

the degree distribution is heterogeneous, which is different from the uniform distri-

bution in a regular lattice. By tuning the parameters of the network, it is possible

to simulate various types of random networks: sparse or dense connections, high or

low thresholds. The author pointed out a compromise for enlarging and declining

the heterogeneity of the binary network. A heterogeneous threshold makes the sys-

tem vulnerable, in contrast, a heterogeneous degree distribution makes the system

stable.

Dynamics of many social networks exhibit the threshold effect, and one ini-

tially failed node may be not sufficient to trigger others. Centola indicated that

increasing the structured randomness could reduce the probability for global cas-

cades [5]. The authors built a similar model to previous research [4], which studies

the threshold effect in the model dynamics. The difference is that active nodes

will stay unchanged, and there is no recovery in this model. The simulation is im-

plemented in a two-dimension lattice which has the small-world network features

between regular and random structures [27]. To increase the randomness of the

topology, the authors implemented two methods: rewire and swap. In the first

method, for each edge of node i, there is a probability p for this edge to connect
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with other nodes. In the second method, two edges swap ending node and reserve

the degree with a probability of p. For example, edge eij and ekl switch the ending

node j and node l. Then, new edges eil and ekj are obtained in the network. In a

small-world network, there are 10000 nodes with an average degree of 8. Centola

varied the value of threshold T and probability p to detect in which cases a global

cascade would occur. The results show that a small value of threshold T makes the

network more vulnerable to a global cascade. As the value of threshold T increases,

it takes a longer time for a cascading process to materialize every member in the

network. Moreover, the severity of materialization in the small-world network is

larger than that in a regular network eventually. As the value of p increases, more

nodes update their connections, which makes the uniform degree distribution more

heterogeneous. However, the additional randomness does not accelerate the prop-

agation of cascading failures. Because after rewiring and swapping, fewer nodes

share common neighbors, it is less likely for a node to exceed its threshold. This

conclusion is consistent with previous study [4], which states that a heterogeneous

degree distribution makes the network resistant to small disturbances.

In the small-world networks and random networks, most nodes have the num-

ber of connections close to the average value, and the degree distribution has a peak

at the average value and decreases exponentially before or after the peak. Besides,

another important category is the scale-free network, where the degree distribution

exhibits a power-law behavior. Few nodes have extremely large connections acting

as hubs in the network. This skewed distribution reflects that the scale-free network

has more heterogeneity than the small-world network. Albert et al. investigated

how initial failures impair the structure of networks [6]. The first network is the

Erdős-Rényi (ER) network [28], [29], which has N nodes, average degree of 〈k〉,
and a probability p to connect pairs of nodes. The second network is a scale-free

(SF) network. The size and average degree of network are identical in these net-

works. The authors built this network iteratively. At every step, there is a new

node adding to the network with a fixed degree of m. The probability to add a new

edge is determined by the degree of old nodes. If an old-node has more connections,

the new-node has a higher chance to connect with this node. Since every new node
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starts with m edges, the degree distribution has the following expression [6]:

p(k) = 2m2/k3, (2.1)

where the exponent value of the power law distribution is 3. Albert et al. used the

diameter d to reflect the performance of the entire system, which is defined as the

average length of all shortest paths in the network. A large d means two nodes are

distant in the network. The growth of d could quantify the damage of the cascading

process. If the cascading failures destroy numerous intermediate nodes, the value

of d becomes larger, which makes a longer path for communications. The authors

assumed two cases of initial attacks: intentional failures and random failures [6]. It

is interesting to find how different initial attacks damage the network. There are four

cases: the ER model with random failures, the ER model with intentional failures,

the SF model with random failures, and the SF model with intentional failures. At

first, the authors revealed the relationship between the network diameter d and the

initial fraction f of removed nodes. The value of d increases gradually as the value of

f becomes larger in the ER model, which is the same for both triggering strategies.

Intentional and random removals do not differ much while the system changes.

However, in the SF network, the diameter d in the case of intentional failures is

much larger than that of random failures. The gap between diameter in these cases

has a positive correlation with f . Regarding the relative size of the surviving giant

component G, the ER model exhibits a monotonic decrease as a function of the

initial-attack proportion f for both cases. When f exceeds the critical point, there

is a phase transition for G, which drops dramatically and becomes very close to

zero. This trend is similar to the SF model with intentional failures. However,

in the case of the SF model with random failures, the value of S decreases slowly

against f , without a phase transition behavior. This is because the SF network has

a more skewed degree distribution. The intentionally attacked nodes act as hubs

in the network, whose failures impact tremendous healthy nodes. However, the

randomly attacked nodes are likely to have few connections, which make them less

likely to trigger a global cascade. Albert et al. concluded that the SF network has a

higher tolerance to random failures compared with the ER network. Moreover, the



8

intentional failures in the SF network are critical for a systemic cascade since the

deliberately targeted attacks make the network more vulnerable, which is defined as

a “robust-yet-fragile” feature [6], [9] in the SF networks. The heterogeneous topology

makes the system stable for random disruptions, but very fragile for deliberate

attacks.

2.1.2 Flow-based model

So far, we introduce studies focused on the standard network whose evolution

dynamics is based on the influence of neighbors. In reality, cascades also exist in

various flow-based networks, such as the transportation system (traffic flow) [15],

the power grid (current flow) [9]–[11], and the Internet (information flow) [12], [13].

The allocation and spreading of flow realize the functionality of these networks.

Motter et al. analyzed the cascading failures in flow-based networks [9]. In the

cascading process, at each time step, overloaded nodes and edges are removed from

the system, and the load distribution is recalculated. The authors assumed that for

any two nodes (a source-target pair), one unit of flow travels through the shortest

path. After averaging on all possible source-target pairs, the authors counted the

number of shortest paths including the node i, which is defined as the load Li. The

capacity of node i is defined as [9]:

Ci = (1 + α)Li, (2.2)

where α is the tolerance parameter describing the excessive capacity of node i. In

the end, the load distribution remains unchanged, and there are no further failures.

However, once certain parts of the system are removed, the length of the shortest

path enlarges leading to a raise of load. Motter et al. considered a single node

removal and formulated three initial attack strategies to trigger the cascade. The

principal purpose is to detect how cascading failures develop as a function of time

due to different initial attacks. The authors compared results of a uniform network

with a scale-free network. The former network consists 5000 nodes with the same

degree of 3 for all nodes. The following network has an exponent value of 3 for the

power-law distribution, the average degree of 3.1, and 5000 nodes [9]. The value
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of G reflects a monotonic increase against the variable α. In distinct initial-attack

scenarios, the relationship between G and α is different. Motter et al. concluded

that intentional attacks, such as the high degree or load nodes, are more likely to

cause a catastrophe in a heterogeneous network. The authors applied the same

analysis to the Internet network and a power grid system. Similar behaviors are

observed in these systems which endorse the authors’ conclusion.

Crucitti et al. also proposed a study on the cascades in a flow-based network

[10]. The flow dynamics is similar to the previous research [9]. There are three

innovations in this model. First, the variable efficiency (E) is used to measure the

size of a cascade [31]. Second, if node failures occur, there is no removal of the failed

nodes or edges. The authors assumed that flow can avoid the overloaded nodes and

choose alternative paths. Third, at time step t, each edge has an efficiency value

eij(t) in the range [0, 1]. When eij(t) is 0, the flow cannot travel along the edge

between these two nodes. If the value is 1, the edge load of eij(t) does not have any

loss. The network efficiency can be calculated using the following formula [31]:

E(G) =
1

N(N − 1)

∑
i 6=j∈G

1

dij
(2.3)

where dij is the minimal distance between node i and node j, N is the size of the

network. Based on the definition of E, Crucitti et al. considered all possible shortest

paths. The higher efficiency means a faster communication velocity. The variable

Li(t) has the same definition as the previous study [9]. At time t, the edge efficiency

eij(t) updates its value according to the following formula [10]:

eij(t+ 1) =

eij(0) Ci

Li(t)
if Li(t) > Ci

eij(0) if Li(t) ≤ Ci

(2.4)

where Ci is the capacity for node i, eij(0) is the initial edge efficiency before the

cascade. When the load is larger than the link capacity, the edge efficiency is

adjusted to a smaller value. Hence, the excessive flow will reallocate to other possible

paths.

Crucitti et al. compared cascades in an Erdős-Rényi (ER) network [28], [29]
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and a Barabási-Albert (BA) network [30]. The sizes of network and connections are

the same for both networks. To trigger the cascading failure, the authors removed

a node either randomly or intentionally. The authors showed how the efficiency of

network E varies with the value of α. In the ER network, E is very sensitive to the

increase of α. A small value of α can cause a dramatic jump for the value of E.

This behavior is similar to the cascade triggered by a random node removal in the

BA network. However, in the BA network with intentional removals of the highest

load node, the cascade is persistent in the network when the degree distribution

is extremely imbalanced. The authors also applied the same analysis in two real

world networks. Similar behaviors are observed and consistent with the results in

BA network. Crucitti et al. concluded that in the scale-free network, single node

removal, such as the highest load or degree node, could cause a catastrophe to the

entire system. Oppositely, the network withstands most random attacks very well.

The heterogeneous topology determines the likelihood of cascades instead of the

dynamics of model evolution.

Wu et al. studied the features of cascading process in a flow-based network

with a community structure [11]. Individuals from the same community have simi-

lar behaviors. The connections inside one community are much stronger than those

between communities. It is interesting to study how the cascading process propa-

gates within one community or across multiple communities. The authors focused

on the scale-free network (Barabási-Albert network) with a community structure,

which is a dynamic network with the preferential attachment. If an existing node

has more connections, the probability to connect with the new node is higher. The

number of communities is denoted as c. At every step, one new node is connected

to n nodes inside the community and m − n nodes outside, totally m edges. The

power-law degree distribution has an exponent of 3 as shown in [11]: p(k) ∝ k−3.

The community is measured by the modularity Q, which is defined in [32]. A higher

value of Q (approaching 1) means a stronger connected community. If Q approaches

0, it is hard to observe any communities in this network.

In this flow-based model, Wu et al. designed two methods to trigger the

cascade [11]. The first method is to eliminate the edges inside a community with
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the highest load. The second method is to remove the edge between communities

with the highest load. After the removals of edges and nodes, the load distribution

is recalculated. The value of load Lij(t) is proportional to the total number of the

shortest paths that passing through edge eij. In this study, the authors varied the

value of modularity Q and compared different network structures. Based on the

simulation results, Wu et al. stated that a system with a high modularity possesses

to an excellent stability and resistance against the cascades. As the entire network

shrinks, the surviving giant component decreases gradually as a function of time.

Interestingly, both initial removal strategies could lead to a global cascade in certain

situations. To mitigate the cascading failures, decision-makers should increase the

modularity of communities and the tolerance parameter of the network.

2.2 Cascade in real-world networks

In addition to the important studies on standard networks, various real world

networks also draw substantial attention recently. Related studies concentrate on

the features of cascades in power grid, the robustness of the system and mitigation

strategies.

2.2.1 Power grid networks

Our daily life relies heavily on the infrastructure networks, such as trans-

portation network, communication network, water system, energy supply and elec-

tric power [14]. Among these critical infrastructures, power grid system has been

studied intensively because of its significance to our society.

Hines et al. analyzed the historical recordings of blackouts in North America

during the year 1984 − 2006 [33], [34]. The authors indicated that the blackout

size and cascading frequency have a power-law relationship. Most blackouts just

impact small-scale users, but few power outages could cause devastating damage

to the entire system. The blackout damage is measured by the reduction of elec-

tricity supply and the number of impacted customers. The extreme weather and

the equipment malfunction are the main reasons to cause blackouts. Moreover, the

occurrence of blackouts is also affected by the demand of power during a day and
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year. At the peak time of a year, such as the summer and the winter, the likelihood

of a blackout is substantially larger, which means the power grid faces enormous dis-

turbances proportional to the demand growth. Although the whole system tolerates

small-scale disturbances well, suddenly occurred large-scale disturbances make the

system very vulnerable to a wide-spreading blackout. However, the authors found

that the blackout sizes does not have a high correlation with the duration time. The

worst scenario could be a large blackout that lasts for a long time. Large-scale and

lone-term blackouts could cause tremendous loss to our society.

Dobson et al. formulated a threshold model for cascading failures [35], [36].

In this model, the threshold value of capacity Lfail is the same for all nodes, and

the initial load Li of node i is randomly selected from a range [Lmin, Lmax]. During

the cascading process, once the load of node i exceeds the threshold capacity, node

i is failed, and a fixed amount of flow P is redistributed to the remaining parts of

the system. Initially, a disturbance flow D is imposed to the network to start the

cascade. The authors tried many scenarios with different parameter values. Intrigu-

ingly, by adjusting the average value of the initial load Li, the probability of overload

size exhibits either an exponential or a power-law decay. Most cascades just cause

small-scale damages, but rare cases could destroy the whole system. Dobson et al.

also showed the critical point for the average initial load to cause a phase transi-

tion. Beyond the critical point, the average number of overloaded nodes increases

dramatically from a small value up to the system size.

2.2.2 Internet

Cohen et al. probed the stability of the Internet with respect to random and

intensional attacks [12], [13]. The connectivity of the Internet shows a power-law

distribution [12], [13]:

P (k) = ck−α, k = m,m+ 1, ..., K (2.5)

where k is the degree of a single node on the Internet, m is the lower bound for the

connection, and K is the upper bound. The authors detected how the relative size

of the surviving giant component G is affected by the fraction of the initial removal
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nodes p. In the case of random removals and α ≤ 3, the Internet is very robust

to the random disturbances, and the whole system stays connected [12]. However,

in the case of removing nodes with high degrees, the network is more vulnerable

than before. When the fraction of removed nodes p reaches the critical value pc, the

remaining system is divided into smaller components reflecting a phase transition.

The critical value pc decreases gradually as the exponent value α increases, which

indicates that the robustness of the Internet has a better performance in a more

skewed degree distribution. Also, the value of G shows a monotonic decrease when p

increases, so the network with higher capacities may result in more severe damages.

Hence, the Internet with a skewed degree distribution is more vulnerable to the

intentional attacks rather than random attacks.

2.2.3 Financial networks

Extensive studies have been done in financial networks because of their ubiq-

uitous influence on our everyday life. Among the various critical factors of economic

systems, the network topology draws much attention. Roukny et al. analyzed how

different factors affect the cascades in a banking system, and detected the impor-

tance of the topology of an interconnected network [7]. The authors concluded that

a network with a divergent structure is either more stable or more vulnerable than a

uniform network. The influence of the network topology enhances when the liquid-

ity level deteriorates, and more strongly connected components become infected by

their neighbors. The nodes in the network represent commercial banks, and directed

edges represent the direction of investments. The authors defined the ratio between

the net capital and total assets of bank i to be the robustness ηi of a bank [7]. When

the invested institutions fail, the investor banks undergo a devaluation of their as-

sets and robustness to some extent. If the total assets of one bank are less than the

debt or liabilities, the bankruptcy occurs and leads to a lower liquidity level of the

market since it is hard to find investors to buy assets so that the assets have to be

sold under market price. Hence, the authors varied the key factors of the model to

simulate the cascading failures in different scenarios. These key factors include the

initial attack strategy, the correlation between the node degree and node robustness,
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the connectivity, and the liquidity of the market.

Roukny et al. demonstrated how the cascading failures change with the average

degree k and the average robustness m. They identified the phase boundary between

the global cascade (damage more than 90% of nodes) and the local cascade as a

function of k and m. The negative correlation between k and m shows that when

the value of k is small, we need a large value of m to avoid the global cascade. As

k increases, the critical value for m decreases gradually, which means a stronger

connection is more stable than a sparser structure. This trend is the same for

three different networks: the uniform, random and scale-free network. However,

distinct topologies react differently against initial attacks. When nodes are randomly

removed to trigger the cascade, the phase boundary of three topologies looks almost

the same. When the highest degree node is removed intensionally, in the scale-free

network, the average robustness m is larger than that of other topologies, which

means the scale-free network is more vulnerable to initial shocks. The other two

networks have a similar trend in the case of intensional attacks. The random network

has a slightly higher robustness level to make a phase transition than the uniform

network. When considering a situation of less liquidity and random attacks, the

phase boundary between the global cascade and the local cascade as a function of k

and m is non-monotonic. There is a turning point of the critical value of robustness.

In this case, lower liquidity means a higher likelihood for a bank to fail. When the

k increases, more connections indicate more contagions between failed nodes and

healthy nodes, presumably, there are more paths for cascading propagation. Among

three topologies, the scale-free network has the worst stability for both random

and intensional attacks. In the case of intensional attacks, the gap with others is

even larger. In the scenario of a positive correlation between individual robustness

and degree, a node with a higher degree should have a higher value of robustness.

The scale-free network performs better than other networks since the correlation

increases the heterogeneity of the network, and makes the network more stable

in this particular scenario. Therefore, a heterogeneous topology reflects an extreme

behavior in different scenarios: either stable or vulnerable when the market liquidity

is bad. In a healthy market with a high level of liquidity, various topologies have no
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obvious distinctions [7].

Huang et al. built a bipartite banking system and analyzed how the cascade

propagates between banks and assets [8]. This model provides useful guidances

about harmful and fragile components. One part of this model is the failed banks

during 2008 financial crisis, and the other part is the assets for these banks. Each

bank has a unique asset portfolio such as mortgages, investments, residential prop-

erties, loans and so on. Each category of the assets is shared by multiple banks.

Hence, the authors computed the components of bank assets and the market value

of each asset [8]. The fraction of different assets owned by one bank is calculated

using the formula: wi,m = Bi,m/Bi. The bank i possesses Bi,m amount of the asset

m, and Bi is the total property of the bank i. The share of one asset is defined as

si,m = Bi,m/Am, where Am is the total value for asset m in the market. To trigger

the cascade in the banking system, the authors imposed an initial devaluation p

on all assets. The updated portfolio value of the asset m after the initial shock is

pAm. The banks that possess this asset will also suffer from a reduction of the asset

value: Bi,m(1 − p). Therefore, the authors can update the value of each asset for

each bank iteratively. Once the properties of a bank are below its liabilities or debts

Li, this bank becomes bankrupt and is removed from the system. The assets owned

by the failed bank experience a devaluation of market value αBi,m. Once triggered,

the cascading failures propagate between banks and assets until reaching the steady

state. The primary motivation of this study is to identify which assets determine

the bankruptcy and predict the potential failures of banks. For example, the agri-

cultural loans are critical for bankruptcy. Failed banks have a weaker survivability

than good banks. Besides, the predictability of this model is measured using the

ROC curve analysis showing that this model makes more true positive predictions

than false positive predictions. In the end, the authors revealed the phase boundary

between the stable and unstable states for banks as a function of p and α. Huang

et al. indicated that banks should keep a balanced asset portfolio and increase the

liquidity to resist market shocks to avoid bankruptcy.
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2.2.4 Interdependent networks

As our world is connected tightly and strongly, the components of one network

could be another network. Multiple networks with various functionality combine to-

gether to assemble a more sophisticated and integrated system. More interdependent

systems exist in our society, which attracts more attentions than before.

Buldyrev et al. modeled the cascading failures on interdependent networks,

which include a power grid and a controlling system in Italy [16]. The simulation

demonstrates reflect that single node failure in the power system could trigger a

catastrophic cascade in both networks, breaking the whole network into fragments.

In the interdependent systems, two networks have the same size and all nodes are

pair-wisely connected. The dependency is bi-directional, and nodes have different

degrees. In addition, all edges connected with node ai and bi in both networks are

also removed. In the remaining networks, only the mutually connected components

are functional, in which all nodes are connected either inside one network or between

two networks. As iteratively updating the interdependent networks, the whole sys-

tem splits into clusters, and the surviving giant component diminishes gradually

until reaching the steady state. Buldyrev et al. compared the cascading behaviors

in three types of networks: random regular (RR), Erdős-Rényi (ER), and scale-free

(SF) network [16]. All networks have the same size and average degree. The authors

measured the probability of obtaining a mutually connected giant component and

observed a phase transition of the probability when increasing the number of initial

failures. In general, a more heterogeneous topology has a smaller critical value of re-

moval fraction, which means it is less likely to survive from cascading failures. Since

in a heterogeneous topology, such as a SF network with a high exponent value, the

degree distribution is skewed, and the failure of a small-degree node could disconnect

a large component in the interdependent network. For example, a small-degree node

in one network could connect with a high-degree node in the other network. This

extreme disparity could exaggerate the damage of cascading failure. When designing

the interdependent network, decision makers should consider a stable structure.

Pinnaka et al. studied the cascades in an interdependent network consisting

of the United States infrastructure systems [17]. Nodes of this network are from
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different infrastructure networks, such as energy, nuclear, communication, food and

agriculture and so on. Edges represent the dependency between nodes. If two

nodes are mutually dependent, the edge is bi-directional. The functionality of the

whole system is measured by the flow robustness defined in [37]. This variable

is determined by the network connectivity and the total amount of flows of the

network. When parts of the network are removed, the flow robustness is recomputed,

and the reduction of the flow robustness reflects the damage of cascading failures.

To trigger the cascade, the authors removed the nodes with the highest degree,

closeness, and betweenness. The cascades can be triggered by distinct types and

numbers of initial attacks. The flow robustness reflects a monotonic decreasing

as a function of the severity of initial failures. This trend is similar to different

initial attacks, which means the failures of the centrality nodes indeed have a huge

impact on the system. Interestingly, when the authors intentionally removed the

edges with a high centrality, the whole system tolerances to the initial attacks much

better than the case of random removals, which indicates that the centrality is

critical to a global cascade. Thus, Pinnaka et al. calculated the centrality of each

subnetwork and pointed out the vulnerability of several significant infrastructure

components, such as energy, communication and so on [17]. The ranking of these

critical systems provides valuable guidance to reduce the risk. To increase the

stability of the network, stakeholders should protect the vulnerable components of

the interdependent network.

2.3 Predictability of cascading failures

In previous sections, we discuss the features in standard networks and real-

world networks. It is important to understand the dynamics of cascading evolution

in different cases. Our primary motivation is to predict the future cascades and

protect the system in advance. Hence, we have a strong desire to find what is the

accuracy of predictions. In this section, we introduce related studies.

Daqing et al. analyzed the spatial correlation of cascades in real world networks

[15]. The spatial correlation is defined as [15]:
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C(r) =
1

σ2

∑
ij,i∈F (xi − x̄)

(
xj − x̄

)
δ
(
rij − r

)∑
ij,i∈F δ

(
rij − r

) (2.6)

where xi represents the state of node i (value of 1 for overloaded and value of 0 for

the normal state), x̄ is the mean value of state for all nodes, F is the overloaded

nodes, σ is the standard deviation of F , rij is the geometrical distance between

node i and j, and δ function assigns the value of rij equal to r. A positive value

of C(r) means the overloaded nodes are spatially close to each other. Daqing et al.

indicated that C(r) in the traffic flow network of Beijing, China exhibits a power-

law distribution in terms of r. During rush hours, the spatial correlation reflects a

power-law decay. However, at off-peak hours, the decay is more like an exponential

decay. Consequently, the time factor affects the cascading size, which means in

rush hours, these values reach the peak. In a real-world power grid, the authors

could also recognize similar behaviors. Daqing et al. indicated that the spatial

correlation could be a good predictor for the future cascading failures and improve

the mitigation strategies.

Shunkun et al. implemented machine learning algorithms to predict the over-

load rate for each node in a power grid system [38]. In a complex network, it is

difficult to characterize the dynamics of nodes. The cascading process is a stochastic

process since the initiators are uncertain. A group of nodes with same characteris-

tics possesses a higher predictability than isolated nodes. The authors started with

a two-dimension lattice with a size of 50×50. Each node represents a subnetwork or

community. The weight of each edge is randomly drawn from a Gaussian distribu-

tion. The weight is guaranteed to be non-negative. the authors used the number of

shortest paths including node i as the load Li. Capacity is calculated by multiplying

a factor of 1 + α to the initial load. Initially, the center 2× 2 square is removed to

trigger the cascading failures. Since the lattice can be divided into multiple layers

of squares from center to boundary, the distance between a large square and the

central square is used to show far away for the nodes in the large square to the

central square. In a 50× 50 lattice, there are 23 possible values for the distance of

a node from the central square. The authors implemented several machine learning

algorithms to predict the cascade rate for different distances. The training data is
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from multiple cascade simulations, and the prediction is from the regression results.

The relative error is very close to zero, which reflects the prediction is accurate. As

the tolerance parameter increases, the relative error decreases gradually, and the

support vector regression has the smallest error. Machine learning algorithms are

able to predict the future behaviors based on historical results, which is an indirect

method, but works well when the dynamics of cascading failure is complicated.

Zhao et al. studied how cascading failures propagate through the network as

a function of time and space [39]. In a geometrically concentrated network, the

cascading propagation is constrained by the network topology. Two variables are

defined to measure the propagation properties. First, rc(t) is defined as the aver-

age location of all overloaded nodes at time step t. Second, Fr(t) is defined as the

amount of overloads at time t, which indicates the severity of cascading failures at

current step. The authors calculated these two variables in a two-dimension regular

lattice with a size of L × L. Initial failures are located at the center of the lattice.

At first several steps t < 10, the value of rc(t) increases linearly, consequently, cas-

cading failures propagate at a nearly constant velocity. When t > 10, the increase

of rc(t) slows down. rc(t) becomes saturated when the cascading failures approach

the network boundary. rc(t) has a positive correlation with L and a negative corre-

lation with tolerance parameter α. Intuitively, in a network with a larger size and

lower capacity, the cascading failures travel faster than in other cases. After tak-

ing normalization, different networks have a similar value of rc/L. However, Fc(t)

experiences a bell-shaped behavior. The value of Fc(t) increases quickly, reaches

the peak when the time step is around 5, then Fc(t) decreases gradually. Fc(t) also

has a positive correlation with L, and different networks have a similar normalized

value: Fc(t)/L
2. In the network with a large tolerance parameter α, Fc(t) decreases

dramatically. Based on theoretical analysis and simulation results, Zhao et al. con-

cluded that the normalized variables rc(t)/L and Fc(t)/L
2 could be used to predict

the future cascading failures in a spatially constrained network. In general, a high

capacity of the system is necessary to slow down the propagation of cascade process.
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2.4 Robustness of complex network

Robustness of complex network reflects the ability to withstand disruptions.

Based on the topology and properties of the network, we could measure the robust-

ness in various ways. In this section, we discuss the related studies about the metrics

of robustness.

Koç et al. proposed a robustness metric for the power grid [40]. The cascading

failures are triggered by initial removals of targeted edges. The authors designed

the edges to be directed and used the direct current (DC) approximation in the

power grid. The robustness metric considers the topology and flows properties of

the network. At first, the authors utilized the concept of the information entropy

to define the nodal robustness [40]:

Rn,i = −
L∑
k=1

αkpk logpk (2.7)

where n is the out-degree of node i, L is the neighbors of node i, αk is the tolerance

parameter of neighbor node k, pk is the proportion of edge load fk over the sum of

all edge loads. The definition of pk is shown in [40]:

pk =
fk∑L
j=1 fj

(2.8)

where fk is the value of load on the edge eik. In addition, Koç et al. defined the

nodal significance as shown in [40]:

δi =
Pi∑N
j=1 Pj

(2.9)

where Pi is the load of node i. This value reflects the proportion of a single-node

load over the total load. In the end, the network robustness metric is a product of

nodal robustness and significance [40]:

RCF =
N∑
i=1

Rn,iδi (2.10)

Then, Koç et al. focused on the node with the highest significance value and re-
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moved the edge with the highest load to trigger the cascade in a real-world power

grid. The authors detected the correlation between the network robustness RCF and

the network survivability, which related to the link and capacity. Based on simula-

tion results, network robustness is positively correlated with survivability, which is

0.76 between RCF and link survivability, 0.75 between RCF and Capacity survivabil-

ity. Koç et al. concluded that the robustness metric RCF is a good measurement of

the stability of the power grid concerning cascading failures. Well-designed improve-

ments focusing on network topology and dynamics can reduce the vulnerability of

the whole system.

Albert et al. stated that North American power grid has a high robustness

for most perturbations, but fails to withstand targeted attacks [41]. The nodes

in the power grid has three identifications: generators, transmission nodes, and

consumers. The cumulative probability function of the degree in this power grid

follows an exponential distribution [41]:

P (k > K) ∼ exp(−0.5K) (2.11)

where k is the degree of one node. The load of node i has the same definition as in

the previous study [42]. The load distribution at the initial state is as follows [41]:

P (l > L) ∼ (2500 + L)−0.7 (2.12)

where l is the load of one node. From these two distributions, it is evident that

the load distribution is more skewed than the degree distribution. Few nodes have

a significant load, and their failure could cause catastrophic damages. The robust-

ness of a power grid considers not only the topological properties but also the flow

dynamics inside the network. Hence, Albert et al. introduced the connectivity loss

CL to measure the network robustness [41]:

CL = 1−

〈
N i
g

〉
i

Ng

(2.13)

where Ng represents total number of generators, N i
g represents how many genera-
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tors are connected with the consumer i, 〈N i
g〉i is the average value of N i

g over all

consumer nodes. When the generators are removed initially to trigger the cascading

failures, the connectivity loss CL does not increase too much and stays close to the

minimal value. However, when the transmission nodes fail initially, the cascading

failures have a different behavior. Cascade triggered by the removals of transmission

nodes with a high degree or load causes a significant connectivity loss. Hence, the

power grid fragments into smaller components and the cascading failures profoundly

affects the functionality of the system. As the fraction of initially attacked nodes

increases, the connectivity loss grows quickly and saturates in the end. According to

the simulation results, Albert et al. concluded that generators of the power grid are

critical to cascading failures. In general, decision-makers need to build the genera-

tors close to consumers, reduce the distance of electricity transmission, and increase

the capacity or connectivity of the system.

Parandehgheibi et al. proposed a robustness metric of the interdependent net-

works [18]. A good example of such networks is a power grid and a communication

system, which are mutually dependent. In the power grid, there are two types of

nodes: generators and substations. In the communication system, the control nodes

dispatch operation instructions, and router nodes connect with substations. The

power grid needs the control signal to work continuously, and the communication

system relies on the electricity power. Meanwhile, all generators only connect to

substations, and all control nodes only connect with router nodes. A single node

is randomly removed to trigger the cascading failures. The authors introduced a

robustness metric minimal total failure removals (MTFR) for the entire system

collapse [18]. A larger value of the MTFR means a higher stability of the interde-

pendent networks and vice versa. Parandehgheibi et al. proved that in the case of

directed edges, it is NP-hard to find the MTFR value. However, regarding undi-

rected edges, it just takes polynomial time to obtain the MTFR. The MTFR reflects

a linear relationship with the size of interdependent networks. And the robustness

of an undirected network is higher than that of a directed network. Parandehgheibi

et al. computed the MTFR in the interdependent networks in Italy, which includes

a power grid and a communication system. The whole system tolerates most of the
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initial disruptions. However, parts of the system are very vulnerable. For example,

even only three initially failed nodes could destroy the northen parts of the Italian

power grid (one-third of the entire system). This study provides valuable guidance

to build a robust structure of the interdependent networks.

2.5 Mitigation strategies against cascading failures

After we get familiar with the dynamics of cascading process, there is a strong

desire to propose efficient strategies to reduce the cascading damages. Our mo-

tivation is to use the limited resource to powerfully protect the system. Due to

the complex features of the system, it is difficult to find a general method to ap-

ply everywhere. Since the propagation of cascading failure is very fast through the

network, it is costly for our society to suffer the damage passively without any re-

actions. An active and well-designed defense strategy can save a huge part of the

network efficiently. One reasonable procedure is to start with simple theoretical

models and extend the research to real world networks. Several related studies are

briefly introduced in this section.

Motter et al. extended his research on cascading failures in a flow-based net-

work, and introduced a defense strategy to reduce the cascade damages [43]. The

structure of the network is the same as that in the previous study [9]. The main idea

is to intentionally remove specific nodes or edges immediately after the initial attack

to enable more nodes to survive eventually. The author concluded that removing the

small-load nodes and the large-load edges during the cascading process pro-actively

could dramatically mitigate the cascading damage [43]. Although the intentional

removals enlarge the overloaded parts at each step of the cascade, these components

act as “fuse” effectively blocking the propagation of failure to the remaining parts.

To determine the initial attacks, the author focused on the actual load that travels

through the selected node and its contribution load generated to the whole system.

The actual load of one node Lk is defined as follows [43]:

Lk =
∑
i,j

L
(i,j)
k , (2.14)
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where L
(i,j)
k is the load of node k with a specific source and target pair (i, j). The

flow is assumed to travel on the shortest path between the source and target nodes.

After summing up all the possible pairs, the author got the actual load of node k in

this network. The contribution load Lgi is defined as [43]:

Lgi =
(
D̄i + 1

)
(N − 1), (2.15)

where D̄i represents the averaged length of all shortest paths starting from node i

and ending with other nodes, N is the size of the network. If the real load Li is

larger than contribution load Lgi , node i have a higher ability to handle additional

flow. If Li < Lgi , node i generates more load than the actual load, which means

the excessive load is delivered to other parts of network. If there are numerous

nodes, whose contribution load is higher than their actual load, other nodes have to

consume the additional load and are more likely to overload during the redistribution

of load. Hence, a natural idea is to remove the nodes with a significant contribution

load but with a small actual load. In addition to the gap between two loads, Motter

et al. also designed another three triggering strategies: removing the node with

the largest contribution load, real load, and degree. The cascading damage is much

smaller on the network with the intentional removal strategies than the network

without any control actions. Since Li and Lgi is negatively correlated, a smaller Li

leads to a higher Lgi . Thus, removing the node with the lowest load at each step of

cascading process leads to the best performance of mitigation. Regarding removing

edges, Motter et al. applied same analysis. The conclusion is to eliminate the edge

with largest loads to optimize the defense.

Schneider et al. developed an edge-rewiring methodology to effectively miti-

gate the cascading damages [44]. The main idea is to rewire a small proportion of

connections, preserve the degree of each node, and maintain the functionality of the

network. A fraction of nodes q is removed initially to trigger the cascading failure.

The critical value of this fraction qc is popularly used to reflect the resilience of the

system, at which the whole system fails entirely. However, in some cases, cascading

failure causes enormous damages but fails to wreck the system. To capture more

features of cascading dynamics, the authors defined a new variable R to represent
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the robustness of the network [44]:

R =
1

N

N∑
Q=1

s(Q) (2.16)

where N is the total number of nodes, Q is the number of initial removals, s(Q)

is the relative size of the surviving giant component in terms of Q initially failed

nodes. A greater value of R reflects a higher robustness of the network. Because

of the limited resource, it is impractical to add too many connections or capacities

to the system. Hence, Schneider et al. focused on changing current edges and

assumed that the cost of changing edges is smaller than that of varying the node

degree. The strategy is simple: randomly choose two edges eij and ekl, swap the

endpoints of both edges, and generate new edges eik and ejl. If the new graph has

a higher robustness R than before, this change is accepted, and the same procedure

is repeated until no further changes can be made.

Schneider et al. tested this mitigation strategy in two real-world networks:

the European power grid and the Internet. After applying the mitigation strategy,

the relative size of the surviving giant component s(Q) becomes larger than the

original value, which means the robustness increases, and the severity of cascades

decreases accordingly. The robustness R of both networks improved 45% and 55%

respectively. The robustness R increases as more edges are rewired. Meanwhile, the

functionality of both networks remains unchanged after the edge reconstruction.

Also, Schneider et al. concluded that it is possible to find the most robust structure

based on a particular degree distribution.

Parandehgheibi et al. proposed a mitigation strategy for interdependent net-

works including a power-grid system and a communication network [19]. To reveal

the difference between the interdependent and isolated networks, the authors started

with two standard network scenarios: first, a single Erdős-Rényi (ER) network, and

second, two interdependent ER networks. It is evident that the interdependent net-

works suffer a greater damage, and the average size of the giant component G of the

interdependent networks is always smaller than that of the single network. When

the fraction of initial removals exceeds 0.5, the value of G drops dramatically and
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approaches zero.

Next, Parandehgheibi et al. designed the interdependent networks with a

power grid and a communication network. Both networks have 500 nodes, have the

average degree of 4, and are mutually dependent. In the power grid GP = (VP , EP ),

a direct current (DC) power approximation is applied, and three types of nodes are

considered: generators, consumers, and substations. If one node fails, the flow redis-

tributes to other parts of the grid. In the communication network GC = (VC , EC),

router nodes exchange signals, and control nodes dispatch instructions. Each gener-

ator in the power grid connects with a router node, and several router nodes connect

with one control node. The communication network replies on the electricity from

the power grid, and the power grid relies on the control instructions from the com-

munication network. If a power node disconnects from the corresponding router

node, this power node is out of control and is removed from the power grid. A

fraction of power nodes p are removed initially to trigger the cascade. If there are

no mitigations, even a small value of p could cause huge damages, and the average

size of the surviving giant component G is close to 0, which means the interdepen-

dency amplifies the cascading damages. Hence, Parandehgheibi et al. formulated a

two-phase mitigation strategy: first, the inevitably failed nodes are identified and

removed from both networks; second, the supply and demand of power nodes are

rebalanced in order to guarantee the normal operations in both networks. The cas-

cading failures are mitigated but cannot be avoided. Reducing the supply of power

nodes makes the overload in power gird less likely. However, increasing the supply of

power nodes satisfies the minimal requirement for the communication network. After

applying this mitigation strategy, the average reduction of power supply decreases

dramatically compared with the non-controlled case, which means the mitigation

strategy indeed protects the interdependent networks from the global cascades.



CHAPTER 3

FAILURE DYNAMICS OF THE GLOBAL RISK

NETWORK

In modern society, there are various functional systems connected with each other

in an explicit or implicit manner. Because of the development of technology and

science, the efficiency of a system is increasing quickly. However, this trend may

worsen the vulnerability of the systems since potential risks heavily threaten the

world. Unlike the traditional risks analysis, which only considers one particular

domain, such as the power grid [36], Internet [12], [13], and transportation systems

[45], various risks from diverse domains interconnect and form an interdependent

network, where one risk can be not only triggered internally but also by others. Not

many studies focus on the cross-domain risks. The materialization of a single risk

may trigger the cascading failures of other risks, cause a catastrophe in the entire

system, and lead to the social unrest in the end. Hence, there is a strong desire

to study the combined effects of global risks [4], [20]. It is difficult to distinguish

the combined effects of risk materialization in such a complex network. Moreover,

the dynamics of the risk propagation is complicated. Fortunately, crowd-sourcing

assessments could solve these problems. Taking advantage of expert assessments,

we developed a quantitative model analyzing the cascading dynamics and predicting

the materialization of global risks [46]. A better understanding of the underlying

connections between sub-systems provides us more valuable guidances to mitigate

the damage of failures of the global risks. Stakeholders and decision makers can

benefit from our studies to fight against potential threats and disruptions [47].

The main steps of designing the global risk network in this thesis are as follows:

1. Use the expert assessments from the World Economic Forum Global Risk

2013 Report [47] to build the structure of the global risk network. A survey

Portions of this chapter previously appeared as: B. K. Szymanski, X. Lin, A. Asztalos, and S.
Sreenivasan, “Failure dynamics of the global risk network,” Sci. Rep., vol. 5, no. 10998, Jun. 2015.
Accessed on: Apr. 21, 2017. [Online]. Available: https://www.nature.com/articles/srep10998.
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in the report provides us with the likelihood of materialization, the impact of

failure and the connectivity among 50 global risks in 5 domains: economic,

environmental, geopolitical, societal and technological.

2. Collect the historical status of each risk in each month during the period from

2000 to 2012. We searched academic articles, on-line encyclopedias, question-

and-answer sites, news websites, magazines, books and other resources to col-

lect training data for parameter recovery.

3. Use a Markov chain to simulate the evolution of risks. There are only two

discrete states: normal and materialized. We assume the state transitions

follow a Poisson process. Three independent state transitions determine the

next state of each risk. Each state transition has a control parameter.

4. Use maximum likelihood estimation to find the optimal value of control pa-

rameters [22]–[25]. Simulate the cascades in various scenarios. In addition,

detect the precision of predictions and compare with other models. Identify

detrimental risks, predict future activity of each risk, and mitigate the damage

according to simulation results.

3.1 Model definition

3.1.1 Crowd-sourcing assessment

Crowd-sourcing is defined as an efficient method to accumulate contribu-

tions for solutions, ideas, and services from a group of people (professional or

non-professional) and although used for centuries, its use accelerated in the re-

cent decade [48]–[52]. Crowd-sourcing has been implemented massively in business

organizations to seek technical solutions. What’s more, this trend becomes more

popular in non-commercial areas.

Since global risks have drawn much attention in the past decades, we focus in

our study in this popular area. We utilize the crowd-sourcing assessment coming

from the World Economic Forum (WEF) Global Risk Report 2013 [47]. The main

part of this report is based on an annual survey by over 1000 experts from various
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Table 3.1: List of global risks.

ID Risk ID Risk
1 Chronic fiscal imbalances 2 Chronic labor market imbalances
3 Extreme volatility in energy prices 4 Hard landing of an emerging economy
5 Major systemic financial failure 6 Prolonged infrastructure neglect
7 Recurring liquidity crises 8 Severe income disparity
9 Unforeseen negative consequences 10 Unmanageable inflation or deflation
11 Antibiotic-resistant bacteria 12 Failure of climate change adaptation
13 Irremediable pollution 14 Land and waterway use mismanagement
15 Mismanaged urbanization 16 Persistent extreme weather
17 Rising greenhouse gas emissions 18 Species overexploitation
19 Unprecedented geophysical destruction 20 Vulnerability to geomagnetic storms
21 Critical fragile states 22 Diffusion of weapons of mass destruction
23 Entrenched organized crime 24 Failure of diplomatic conflict resolution
25 Global governance failure 26 Militarization of space
27 Pervasive entrenched corruption 28 Terrorism
29 Unilateral resource nationalization 30 Widespread illicit trade
31 Backlash against globalization 32 Food shortage crises
33 Ineffective illicit drug policies 34 Mismanagement of population aging
35 Rising rates of chronic disease 36 Rising religious fanaticism
37 Unmanaged migration 38 Unsustainable population growth
39 Vulnerability to pandemics 40 Water supply crises
41 Critical systems failure 42 Cyber attacks
43 Failure of intellectual property regime 44 Massive digital misinformation
45 Massive incident of data fraud/theft 46 Mineralresource supply vulnerability
47 Proliferation of orbital debris 48 Unforeseen consequences of climate change
49 Unforeseen consequences of nanotechnology 50 Unforeseen consequences of new life science

fields such as academia, industry, government and so on. In addition, respondents

also have different organizations, residences, expertises, genders, and ages.

There are N = 50 global risks in 5 categories: economic, environmental, geopo-

litical, societal and technological in this report [47]. The respondents focused on

these 50 risks and evaluated the likelihood of their occurrence in the next 10 years,

the severity of the impact if they occur and the connectivity among them. The

WEF provided analysis based on this survey and also showed how the background

of respondents influences the evaluation. With the help of experts, we can have a

clearer understanding of the opaque behaviors among various risks. For example,

each survey respondent assessed the likelihood using a score from 1 to 5, where

lower score represents a lower likelihood. The score is either an integer or a mid-

point between integers. In the end, the average value of all respondents is used as

the final score of the likelihood. This process is the same for evaluating impact. For

connectivity, the respondents can choose from three up to ten strongest edges. The
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experts provided 515 different connections. Besides the average value of evaluations,

the standard deviation and margin of error are also shown in the results. Due to

the high quality of assessment, these margin of error is about 2%, which is a very

low level.

Table 3.1 shows a list of 50 risks in our model [47], which are grouped into five

categories and listed in the following order of categories: economic, environmental,

geopolitical, societal and technological. Some risks such as ”Chronic fiscal imbal-

ances” and ”Chronic labor market imbalances” may share an overlapped definition.

They could be triggered by the similar reasons. Hence, some real world events can

be labeled by multiple risks which show a complicated feature of these events. On

the other hand, some other risks have very clear definition and boundary, for exam-

ple, natural disasters and water supply crisis. They concentrate on one aspect of our

society and are very easy to identify and recognize their materialization. However,

the materialization of these risks could cause other risks to fail quickly if they are

out of control. One example is that a severe food shortage and water supply crisis

will make critical states fragile and lead to a global governance failure eventually.

Hence, one small risk may trigger cross-domain cascade and trigger some risks which

may seem to be unrelated to the initial risk. Because of the density of possible paths

for risk to propagation, we need to analyze the whole network systematically and

consider all the potential influences at the same time. It is a very complex sce-

nario, and our study is to capture the underlying features inside this network and

understand them better.

As described above, the intelligent opinions have been transformed to a quan-

titative scale by professional agents resulting in a higher quality scale that could

have been expected from non-experts. It is possible to find the most impactful and

dangerous risks in an explicit manner. According to the WEF Global Risk 2013

Report [47], the following tables show examples of the survey results:

As defined in the report [47] and shown in Table 3.2, “severe income dis-

parity” has the highest likelihood of materialization of 50 risks. In Table 3.3, the

top five highest impact risks are not the same as the highest likelihood risks [47].

It is interesting that this risk also has high connections. Hence, decision makers



31

Table 3.2: Top five risks with the highest likelihood.

No. Global Risk Likelihood
1 Severe income disparity 4.22
2 Chronic fiscal imbalances 3.97
3 Rising greenhouse emissions 3.94
4 Water supply crisis 3.85
5 Mismanagement of population aging 3.83

Table 3.3: Top five risks with the highest impact.

No. Global Risk Impact
1 Major systemic financial failure 4.04
2 Water supply crisis 3.98
3 Chronic fiscal imbalances 3.97
4 Diffusion of weapons of mass destruction 3.92
5 Failure of climate change adaptation 3.90

Table 3.4: Top ten highest degree risks.

No. Global Risk Connections
1 Global governance failure 44
2 Severe income disparity 41
3 Critical fragile states 40
4 Food shortage crises 33
5 Mismanaged urbanization 33
6 Pervasive entrenched corruption 32
7 Extreme volatility in energy & agriculture prices 30
8 Failure of climate change adaptation 30
9 Unsustainable population growth 30
10 Chronic fiscal imbalances 29

need to pay much attention to this risk because of the high likelihood and degree.

There might be an underlying correlation between the likelihood and connections in

Table 3.4 [47]. However, this is not the same for all risks. Some risks have high like-

lihood or impact, but few connections. Since there is no obvious metric to identify

the important risks, it is necessary to develop a quantitative model by simulating

the propagation dynamics among global risks and predict their future behavior.
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3.1.2 Global risks network

Helbing studied the enhanced vulnerability among systemic risks by forming

a network of networks [20]. In this model, an initial failure can destroy the whole

system very quickly. The complexity of the connected networks makes it very hard

to track the propagation path of the cascade process.

Inspired by the previous study, we take advantage of expert assessment to

build an interconnected global risk network. The damage or influence of one risk

is no longer local but global. We want to find how the failure propagates across

multiple domains.

The likelihood given by expert assessment in the range between 1 and 5 is

denoted as Li for risk i. In later steps, we normalize it to be within 0 and 1.

Although the experts give us a weighted evaluation on the connection intensity for

515 pairs with an average degree of 20.6, we just use a binary state to represent

these connections denoted as bi,j. The bi,j is the adjacent matrix element defining

connection between risk i and j. Value 1 means there exists a connection between

risk i and j; value 0 means no edge between them. The reason is that we get

the same value of maximum expectation from historical data using this simplified

information as the case using full information that includes how many times the

experts listed a given connection.

In addition to the likelihood and connections, we assume in this network, the

state of each risk is binary at each time step: each risk is in either inactive or active

state. In our model, we use one time step to represent one month of time in real

world. Risks either manifest their failures or not, regardless of impact. The average

degree of each node is 20.6. The probabilities of state transitions in this model are

expressed in terms of Li and bij.

We use a Stochastic Block Model [53] to represent the structure of global risks.

Since there are five domains inside this network, each domain is treated as a group

denoted as g. The probability of a connection between two nodes in the same group

pg varies from the probability of connection between nodes in two groups. The

probability of a connection between two nodes from different groups is defined as

pg1,g2. These two values can reflect how strong the connectivity is within one group or
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Figure 3.1: Connectivity of risk groups.

between two groups. Figure 3.1 visualizes the inter-group connectivity where node’s

color corresponds to its total connectivity and the number of lines connecting the

groups indicate strength of the inter-group connectivity. Groups 1 (economic risks),

2 (environmental risks), and 3 (geopolitical risks) are the best connected, so risks

from these groups dominate the list of most persistent nodes. The remaining two

groups: 4 (societal risks) and 5 (technological risks), have fewer connections to other

groups. The inter-edges are labeled with probability of inter-group connections.

3.1.3 Historical dataset of global risks

The expert assessment is used to build the structure of the global risk network.

A time series of binary states is used to represent how each risk changes its state

with time. Moreover, the time unit represents one month. As we mentioned above,

to find the optimal values of control parameters in our model, we require such a

time series in a contiguous period as input data. So we collected the historical

events for each risk over the period 2000 – 2012 so of 13 years and formulated

a table of time series comprising binary states. We searched academic articles,

online encyclopedias, question-and-answer sites, news websites, magazines, books
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and other resources systematically about the historical risk materialization events.

This collected dataset is called historical dataset, and it includes 7800 points of data

for parameter training.

Table 3.5: Examples of historical events.

Risk Event Impact Start date End data

Chronic Fiscal Imbalances

European sovereign debt crisis Global 2008.10 2012.12
2008 financial crisis in US Global 2009.01 2012.12

Early 2000s recession Regional 2000.08 2003.05
Dubai financial crisis Regional 2009.11 2010.01

Global Governance Failure
Crisis in Syria Global 2011.05 2012.12
Crisis in Libya Regional 2011.02 2012.12

In Table 3.5, we show some examples of events in the historical dataset. Each

historical event is recorded with the following information: name, impact (global or

regional), starting date and ending date. Only the events with global impact are

represented in the history of the corresponding risk. The time series is formulated

based on one-month time unit.

3.2 Model dynamics

3.2.1 Discrete time model

The failure dynamics of the global risk network can be modeled using Alternat-

ing Renewal Processes (ARP) [54], which were initially used for engineered systems,

but recently have been applied to science and economic problems [72]. Nodes under

ARP alternate between the normal state and the failure state, and the correspond-

ing events of failure activation and recovery are responsible for the state transitions.

Typically, these events are assumed to be triggered by homogeneous (time invariant

intensities) or the non-homogeneous Poisson Processes [54]. In our systems, use of

the Poisson distribution is justified because each failure represents a systemic risk

that can be triggered by many elementary events distributed all over the globe. Such

triggering distorts any local temporary patterns of events (such as periodic weather

related local disasters in some regions of the globe). Moreover, the time-dependence

of the intensity of risk activation is the results of influence that active risks exert on

passive risks connected to them. Accordingly, each risk at time t is either in state 1
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(materialized or active) or state 0 (not materialized or inactive).

In a traditional ARP, there are two directly observable processes, one of risk

activation and the other of recovery from the active risk. However, in our model, we

introduce two latent processes that together represent the risk activation process.

As explained later, we use the maximum likelihood estimation Algorithm [22]–[25]

to find model parameters that make the model optimally matching historical data.

Consequently, we assume that changes in the state of each risk result from events

generated by three types of Poisson processes.

First, for a risk i, given that it is in state 0, its spontaneous or internal mate-

rialization is a Poisson process with intensity λinti . Similarly, given the risk in state

1, its recovery from this state, and therefore transition to the state 0, is a Poisson

process with intensity λreci . Finally, given that risks i is in state 0, and j in state 1

are connected, the materialization of risk i due to the external influence of risk j is

a Poisson process with intensity λextji . We assume that each of these processes is in-

dependent of each other. We also evaluated models in which recovery is represented

by two latent processes, one of internal recovery and the other of recovery induced

by either the connected passive or active risks. In both cases, the optimal intensity

of the externally induced recovery was 0. Thus, the simpler model with just inter-

nal recovery is used as it yields the same results as the more complex models using

latent processes for recovery.

For nearly all events that we consider here, it is difficult to assign precise start-

ing and ending times for their periods of materialization. Thus, it is more proper to

consider a Bernoulli process in which the time unit (and also time step of the model

evolution) is one calendar month (we ignore the minor numerical imprecision arising

from the fact that calendar months have different numbers of days). Consequently,

all events starting in the same month are considered to be starting simultaneously.

Hence, at each time step t, each risk i is associated with a binary state variable

Si(t) ∈ {0, 1}. The state of the entire set of risks at time t can, therefore, be repre-

sented by a state vector ~S(t). Thus, the dynamics progresses by assuming that at

each time step t > 0:

1. a risk i that was inactive at time t − 1 materializes internally with probability
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pinti = 1− e−λinti .

2. a risk j that was active at time t − 1 causes a connected to it risk i that was

inactive at time t− 1 to materialize with probability pextji = 1− e−λextji .

3. a risk i that was active at time t−1 continues its materialization with probability

pconti = eλ
rec
i = 1− preci .

It is easy to show that for real time t (months in our case), the Poisson process

assumption for events results in a probability 1 − e−λdte of an event happening in

at most dte time units, which are identical to the assumed Bernoulli process. The

advantage of the latter process is that in each step the probability of an event is

known, simplifying maximum likelihood evaluation of the model parameters. Fi-

nally, the dynamics described above imply that the state of the system at time t

depends only on its state at time t − 1, and therefore the evolution of the state

vector ~S(t) is Markovian.

Given the probabilities of internal materialization, external influence and in-

ternal continuation, that is just 1 minus the probability of recovery, the probability

of a transition in a risk’s state between consecutive time steps can be written in

terms of these probabilities:

Pi(t)0→1 = 1− e−λinti −
∑

j∈A(t−1) λ
ext
ji

Pi(t)0→0 = 1 = Pi(t)0→1

Pi(t)1→0 = 1− e−λreci

Pi(t)1→1 = 1− Pi(t)1→0

(3.1)

where A(t) represents the risks that are active at time t, and Pi(t)x→y is the prob-

ability that risk i transitions between time t− 1 and t from state x to state y, or in

other words Si(t− 1) = x and Si(t) = y.

3.2.2 Continuous time model

The model is similar to a model of house fires in a city, where some houses

burn alone from a self-started fire, but others are ignited by the burning neighboring
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houses. Yet, the recovery, in this case rebuilding of a burnt house, is independent

of the state of its neighboring houses.

Denoting by si(t) the probability at time t that the state of a risk i at that

time is 1, we can express the expected number of risks materialized at time t as

the sum of all si(t)’s, each of which is defined by the following Ordinary Differential

Equation (ODE), as stated in [46]:

dsi(t)

dt
= λinti (1− si(t))− λreci si(t) + λexti (1− si(t))

N∑
j=1,j 6=i

ai,jsj(t) (3.2)

Checking stability, we conclude that this system of non-linear ODEs has only one

unique stable point in the feasible range 0 ≤ si(t) ≤ 1, which can easily be found

numerically. Moreover, this system of ODEs for a fully connected graph when the

intensities λs, λr, λe of the three Poisson processes are independent of the node on

which they operates, and for all nodes starting in the same initial condition s(0) has

the analytic solution of the form, as stated in [46]:

si(t) =

a+ b ∗ tanh

(
b ∗ t/2 + arctanh

((
2λE ∗ s(0) + a

)
/b
))

2λE
, (3.3)

where λE = (n− 1)λe, a = λs + λr − λE, and b =
√
a2 − 4λsλE. This solution tends

asymptotically to 2λs

λs+λr−λE−
√

(λs+λr−λE)2−4λsλE
.

The mapping of the Poisson process intensities into the expert assessments is

described in next section. Each of the probabilities of Bernoulli processes is mapped

onto the probability obtained from expert assessment of likelihood of risk failure by

single-parameter formula. We find the values of the model parameters that optimize

the model match with the historical data, while we use expert assessments to in-

dividualize probabilities of Bernoulli processes for each risk. In essence, the expert

assessments are defining those probabilities for each risk in relations to probabilities

for other risks, while model parameters map performance of all risks onto histori-

cal data. By distinguishing between internal and external materialization factors,

the mapping of parameters onto historical data enables us also to decompose risk
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materializations into these two categories. Once the mapping is done, the model is

complete and can be used to evaluate global risk dynamics.

From several alternative models discussed in following section, we discuss be-

low the best performing network model which uses all three parameters, and the

independent model which sets the value of probability of influence of a risk mate-

rialization on any other risk to zero, effectively isolating risk materializations from

each other.

3.2.3 Methods

The first step to define the model is to relate the Poisson process intensities

that determine the event probabilities in the model, to quantities provided by the

expert assessments, namely, the likelihoods Li of internal materializations of risks

over a decade, and the influence that a given risk’s materialization has on other

risks.

3.2.4 Mapping expert assessments to Poisson process intensities

We first normalize the likelihood values to probabilities in their natural range

of [0, 1] by a simple linear transformation as stated in [46]:

pi = (Li − 1) /4 (3.4)

This normalized likelihood value pi is in direct proportion to the expert assess-

ment Li, and for our purposes captures the risk’s vulnerability to failure. Next, we

assume that the relationship between the probability, pinti , that a risk i materializes

internally in a time unit (one calendar month) and this risk normalized likelihood

value obeys the following polynomial form, with a parameter α defining the exact

mapping stated in [46]:

pinti = 1− (1− pi)α (3.5)

Thus, the probability of failing within a time period increases as the vulner-

ability pi increases, and Equation 3.5 coupled with our earlier assumption that the
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internal risk materialization is a Poisson process with intensity λinti , yields in [46]:

λinti = −α ln (1− pi) (3.6)

An advantage of Equation 3.5 and Equation 3.6 is that their forms remain

invariant under changes of the time-scale under consideration. Indeed, multiplying

the original value of time unit by factor f simply changes the Poisson process in-

tensity and the value of α by the same factor f . For example, for the time unit of

the expert materialization likelihood assessment set to a decade, the corresponding

value of α is 120 times larger than the value obtained when the time unit is set

to a month. Moreover, the ratio of intensities is defined entirely by the ratio of

the corresponding model parameters and is independent of the risk for which the

corresponding Poisson processes generate events. So model parameters define the

same ratio of intensities of all risks, while likelihood assessments define individual

values of these intensities for each risk.

Another advantage of the form of Equation 3.5 is that it can represent convex

(for α > 1), linear (with α = 1), or concave (for α < 1) function, with the parameter

α defining the shape that best matches a given set of historical data.

We adopt a similar reasoning to the mapping between the probability of con-

tinuation in a time unit pconi and the normalized likelihood values pi. We start with

the assumption that the probability of a materialized risk continuing over a time

unit is 1 − (1 − pi)
γ, where parameter γ defines the mapping from likelihood to

probability. This dependence captures the increasing likelihood of continuation as

the vulnerability pi increases and leads to the following equation which are stated

in [46]:

λconi = −γ ln (1− pi) (3.7)

Finally, following similar arguments as above, the intensity λextji of the Poisson

process that enables a materialized risk j to influence the materialization of risk i

is a function of parameter β defined as, as stated in [46]:

λextji = −βbji ln (1− pi) (3.8)
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The factor bji on the right hand side merely serves to capture the fact that the

risks i, j must be perceived by the experts as having an influence on each other, in

order for the probability of influence to be non-zero.

The forms provided in Equation 3.6, Equation 3.7, and Equation 3.8 define the

model completely, and all that remains is to fit the parameters α, β, and γ optimally

to the historical data capturing the risk materialization events over the last 13 years.

In the historical dataset, each risk is assigned a state per month (the fundamental

time unit) over the period of 2000 − 2012. Thus, the likelihood of observing this

particular sequence of risk materialization events through the dynamics generated

by our model can be written as in [46]:

L
(
~S(1), ~S(2) · · · , ~S(T )

)
≡

T∏
t=2

N∏
i=1

Pi(t)Si(t−1)→Si(t) (3.9)

where T = 156 is the number of time units in the historical dataset and N = 50 is

the number of risks. Consequently, the logarithm of the likelihood of observing the

sequence is, as stated in [46]:

lnL
(
~S(1), ~S(2) · · · , ~S(T )

)
≡

T∑
t=2

N∑
i=1

ln
(
Pi(t)Si(t−1)→Si(t)

)
(3.10)

Following the well-known process of maximum likelihood estimation [22]–[25],

we find the arguments that maximize the log-likelihood to optimize the model

fitness. For a given set of values of parameters α, β, and γ, one can compute

the log-likelihood of observing the given time-series of risk materialization using

Equation 4.14 and Equation 4.15. Thus, by scanning different combinations of

α, β, and γ over their respective feasible ranges, and by computing the resulting

log-likelihoods, one can find with the desired precision the values of α, β, and

γ that maximize the likelihood of observing the data. The likelihood function

is smooth (see the plot in Figure 3.2) with a unique maximum that guarantees

that found parameter values are indeed globally optimal for the model considered.

With the time unit of a decade, these optimal values (marked by ∗ superscript) are

α∗ = 0.365 ≈ 4/11, β∗ = 0.14 ≈ 1/7, γ∗ = 427, and the log-likelihood of observing
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the data given these parameters is −415.6. We refer to so-defined model as network

model.

α/120β/120 γ/120 α/120
γ/120

β/120

ln
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ln
 L
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 L

(b) (c)(a)

Figure 3.2: Log-likelihood of data as a function of model parameters.

3.2.5 Establishing model properties

Next, we measure how vulnerable our model is to noise in the expert data.

To do this, we randomly perturb each average likelihood value provided by the

experts to a value within one standard deviation from the average, and create 20

sets of such randomly perturbed likelihood data. Next, we compute 20 parameter

sets that maximize log-likelihood of observing the historical data. Then, we run 20

models, termed noisy data models, defined by the obtained parameter sets. For each

noisy model, we compute its monthly activity level, which is the number of risks

active in each month averaged over 106 runs of this model. Finally, we compute

the maximum differences between parameters and monthly activity levels at each

month of the network model and all 20 noisy data models.

From Figure 3.3, the bars represent activity level and the blue curve represents

relative error for each random likelihood result compared with basic case. Since the

fluctuation of results is small, the robustness of the model is verified. The value of

activity level arbitrary varies, but the sum of relative errors is very close to zero.

The max relative error is no more than 1.5%. Random likelihood does not have

an obvious impact on the result of risk propagation. The optimal parameters of

noisy data models were within ±1.4% of those values for network model. Finally,

the maximum log-likelihoods of noisy data models are within ±1% of this value for

network model. Since each set of activity level is very close to the base case, the
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Figure 3.3: Random likelihood experiment.

robustness of the network is good enough to handle the error of likelihood. Hence,

the background noise of crowd-sourcing data can be ignored.

Alternative models

We also measure the importance of network effects by comparing the maximum

log-likelihood obtained above to the corresponding maximum log-likelihood value for

a model which is oblivious to network effects, so has β = 0. We refer to this model as

the independent model. With the time unit of a decade (which experts used in their

likelihood assessment), the two optimal parameters are αd = 0.91, γd = γ∗ = 427

and maximum log-likelihood is 420.1. Using the likelihood ratio (LR) test [56], we

conclude the network model outperforms the independent model at a significance

level of 0.01. This result demonstrates that to fully uncover the value of expert data

requires accounting for network effects, as we have done in our network model.

Setting α = 1.0 creates a model that we refer to as expert data based model

which yields maximum log-likelihood of 420.1 that is only slightly higher (by 0.02%)

than for the optimal independent model. More importantly, it results in particularly

simple form for one-decade risk i materialization probability: pinti = pi. This linear
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mapping demonstrates that the averages of experts’ assessments of risk material-

ization likelihoods are in fact excellent estimates of probabilities of risk failures in

the ten-year period. It also attests to validity of our historical data and of expert

assessments, since any mistake in those two datasets would make a mapping from

expert data to probabilities a complex function. Similar high quality expert forecast

in strategic intelligence was discussed in [57]. Yet, this results uncovers the limit

of expert assessments, as they capture the aggregate probability of failures result-

ing from internal and external risk materializations without ability to distinguish

between them. Since external materialization depends on which risks are active,

any change in the states of the risks changes such aggregate probability. Our model,

through parameter mapping onto the historical data, is able to separate external and

internal materialization probabilities and therefore is valid regardless of the current

or future states of the risks.

We also evaluate the value of experts’ assessments of risks susceptibility to

failures and their influence on each other for modeling risks. An alternative model

with individual parameters for each risk susceptibility and influence would have too

many degrees of freedom to be well-defined. However, the network model applied

to risks with uniform likelihood and influence, a model to which we refer to as

uniform model, and which is therefore agnostic to expert data, yields a maximum

log-likelihood of 437.1, far from what the independent and expert data based models

deliver. According to the LR test [56], the independent and expert data based

models cannot be distinguished from each other with any reasonable significance

level. However, the same test allows us to conclude that these two models outperform

a simple uniform model based only on historical data with a significance level of

0.001.

Summary of models discussed here is provided in Table 3.6. Parameters for the

models mentioned in the text, and the data utilized to estimate the respective pa-

rameters. Parameters α, β, and γ govern the Poisson process intensities for internal

materializations, pairwise influence, and continuation, as expressed in Equation 3.6,

Equation 3.8, and Equation 3.7 respectively. Li represents the likelihood score pro-

vided for risk i by the WEF report [47], and bji is a binary variable that adopts
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Table 3.6: Summary of models on likelihood-ratio test.

Model Parameters Data used
network model α, β, γ Li, bji, historical data
independent model α, γ (β = 0) Li, historical data
expert data based model γ (α = 1, β = 0) Li, historical data
uniform model λint, λcon, λext historical data

a value of 1 if the materialization of risk j is deemed to have an influence on the

materialization of risk i in at least one of the experts’ opinion. The expert data

based model is the independent model in which value of parameter α is restricted

to 1.0. The uniform model uses two parameters for the Poisson process intensities

for internal materialization and materialization continuation (Equation 3.6, Equa-

tion 3.7) which are assumed to be identical for all risks. It uses the third parameter

to define the influence probability between risks (Equation 3.8) which is assumed to

be the same for all risk pairs. The network model outperforms all other models in

explaining the observed data.

Parameters α, β, and γ govern the Poisson process intensities for internal ma-

terializations, pairwise influence, and continuation, as expressed in Equation 3.6,

Equation 3.8, and Equation 3.7 respectively. Li represents the likelihood score pro-

vided for risk i by the WEF report, and bji is a binary variable that adopts a value

of 1 if the materialization of risk j is deemed to have an influence on the material-

ization of risk i in at least one of the experts’ opinion. The expert data based model

is the independent model in which value of parameter α is restricted to 1.0. The

uniform model uses two parameters for the Poisson process intensities for internal

materialization and materialization continuation (Equation 3.6, Equation 3.7) which

are assumed to be identical for all risks. It uses the third parameter to define the

influence probability between risks (Equation 3.8) which is assumed to be the same

for all risk pairs. The network model outperforms all other models in explaining the

observed data.
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3.3 Contagion potentials of risks

Here, we investigate the relative importance of different risks.First, in analogy

with epidemic studies, we calculate the contagion potential of individual risks, i.e.,

the mean number of materializations that a risk induces given that it alone has

materialized. For risk i, the exact expression for this quantity is, as stated in [46]:

Ci =
N∑

j=1,j 6=i

pconi pextij

1− pconi + pconi pextij

(3.11)

where N refers to the total number of risks. This expression assumes that risks

other than i can only be activated through the influence of risk i and not internally.

Figure 3.4: Global risk network intra-group connectivity and node con-
gestion potentials.

Figure 3.4 shows a visualization of the network capturing the contagion poten-

tials as well as the internal failure probabilities in the network model. As illustrated,

the internal failure probability does not strictly show a positive correlation with con-

tagion potential. Hence, a frequently materializing risk does not necessarily inflict

the most harm to the system as a result of its influence on other risks. For example,
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although risk 42 - “Cyber attacks” has a relatively high probability of internal ma-

terialization, its contagion potential is low. In contrast, risk 25 - “Global governance

failure” has both a high probability of internal materialization and a high contagion

potential. However, most striking is the fact that risk 8 - “Severe income disparity”

has both the highest internal materialization probability and the highest contagion

potential.

The five risks with the highest contagion potentials are: 8 - “Severe income

disparity”, 1 - “Chronic fiscal imbalances”, 17 - “Rising greenhouse gas emissions”,

40 - “Water supply crises”, and 12 - “Failure of climate change adaptation”. When

ranked purely by raw likelihood values Li (or equivalently by the internal failure

probabilities pinti ), the only change is on the fifth position, where risk 12 is replaces

by risk 34 - “Mismanagement of population aging” moves up from eleventh position

to fifth.

3.4 Network activity level and risk persistence

Next, we perform Monte-Carlo simulations of both the network model and the

independent model.

As shown in Figure 3.5a, simulations of the network model with optimal values

of all three parameters, produces a mean activity level that is commensurate with the

historical data. The activity levels observed in the historical data for each month

lie within 1.32 standard deviations of the mean activity level obtained from 106

simulations of the network model. In comparison, the most extreme activity levels

observed in the historical data lie about 2.35 standard deviations away from this

mean in the case of the independent model Figure 3.5b. This large difference further

corroborates the fact that network effects are indeed important in reproducing the

observed data. Figure 3.5c shows explicitly the comparison between mean activities

produced by the two models.

Figure 3.6 shows the fraction of time steps over 106 simulations, each consisting

2200 time steps, that a given risk was active (the initial transient consisting of

200 steps was ignored). We call this fraction the persistence of the risk. Each

simulation was initiated with the same active risks that are present in the first
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Figure 3.5: Activity level measured as a function of time.

month of historical data (i.e. January 2000). The most persistent risk was 8 active

90% of the time, followed by risk 1, active 68% of the time, risk 17, active 64% of

the time, risk 40, active 56% of the time, and risk 12, active 51% of the time.

Another interesting aspect is the distribution of the number of active risks

obtained in the simulation. The 10th percentile value of the number of active risks

is below 8, while the 90th percentile value of the number of active risks is over 19,

implying that about 80% of the time, the number of active risks will lie between

these two values.

The steady state (long-time limit) activity levels indicate that the carrying

capacity of the global risk network at the present time is 27% of the size of the

network, i.e., about 13.8 risks are active all the time. The top seven risks observed
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Figure 3.6: Persistence of risks in model simulation.

to be active most frequently in simulations are 8, 1, 17, 40, 12, 25, and 27. These seven

risks contribute on average 4.3 members to the total activity level at any month.

This implies that other 43 risks together contribute on average the remaining 9.4

active risks, thus their activity level per risk is nearly three times lower than it is

for the top seven risks.

3.5 Cascades due to single risk materializations

We further study the effect of risk interconnectivity by investigating the sur-

vival probability of a failure cascade initiated by a particular risk’s materialization.

Specifically, we perform 106 Monte-Carlo simulations of the model, each running for
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50, 000 time steps, starting with a given single risk active and setting the internal

failure probabilities of all risks to zero. Thus, all subsequent risk materializations

(after the initial failure) are caused purely by the cascade propagating within the net-

work. Note that this is different from the true activity dynamics within the network

discussed previously. These simulations are carried out to demonstrate the extent

to which the connectivity between risks facilitates secondary activations. Shown in

Figure 3.7 are the survival probabilities for cascades initiated by five highly conta-

gious risks ranked in descending order of contagion potential. The linear nature of

the curves on the linear-logarithmic scale indicates that survival probabilities decay

exponentially with time. Despite that, even the cascade initiated by the least con-

tagious risk in the displayed data, risk 40 “Water supply crisis”, has a greater than

1% chance of continuing beyond 10, 000 months, i.e., over eight centuries. These

long cascade lifetimes, even in the absence of internal failures, demonstrates the

profound disadvantage of interconnectivity of global risks.
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Figure 3.7: Survival probability of risks in cascades.

Next, we investigate which risks are predominantly responsible for the cascades

persisting for such long time-scales. Figure 3.8 shows the expected fraction of the

lifetime of a cascade for which a particular risk is active, in ranked order. The

bar graph shows the fraction of the total lifetime of a cascade that a given risk
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is expected to be active, as obtained from 106 simulations for each of 15 different

initiators, where initiators are chosen from sets of risks with high contagion potential,

medium contagion potential and low contagion potential. The specific risks chosen

as initiators were risks 1, 8, 9, 12, 16, 20, 23, 25, 26, 27, 31, 33, 42, 47, 49. The top five

highest active risks are 8, active for 83% of the cascade lifetime, 1, active for 53% of

the lifetime, 17, active for 46% of the lifetime, 40, active for 39% of the lifetime, and

12, active for 35% of the lifetime. Interestingly, the lists of top five most persistent

risks observed in the cascades and seen in the full dynamics of activation (when all

nodes undergo both internal and external activation Poisson processes) are identical.

Figure 3.8: Persistence in cascades.

We also compute the probability that the cascade resulting from the materi-

alization of a given initiator risk would result in the materialization of a selected

risk as shown in Figure 3.9. The bar graphs show the materialization probabilities

of four labeled risks, as a function of the initiator of the cascade. Each experiment

ended when either the selected risk was infected, or all risks became inactive. Specif-

ically, we consider the probability of materialization of the four risks, 8, 1, 17 and
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25, observed to be among the top five risks most frequently active in simulations.

Risk 8 is the initiator that yields the highest materialization probability for risks 1,

17, and 40, while it itself materializes with highest probability when the initiator

risk is 1 and is followed by risks 17, 25, and 40. The risks 8 and 1 materialized with

highest probability for initiators 17 and 25.

Figure 3.9: Materialization probabilities of risks in cascades.

3.6 Predicting risk materializations

In addition, we quantified the ability of our network model to predict future

risk materialization events and compared its prediction errors to those of alternative

models. Specifically, for evaluating prediction errors incurred by the network model,

we do the following. We split the 156 months of historical data into two sets.

Data from the first 132 months are used as the training set, and model parameters

(α∗,β∗ and γ∗) are derived using this set. The second set contains data for months

133− 156, which we used to evaluate the predictive ability of the model. Thus, this

set constitutes the test set. We start simulations of 106 experiments at month 133



52

using a vector of historical data for the month 132. Then, month after month, we

use the currently simulated month result to obtain subsequent month result, which

emulates the process of obtaining a two-year prediction of the global risk network. In

the end, for each simulated month, we compute the average frequency of risk i being

active in experiments in this month and use the result as the predicted probability

of risk i being active in this month.

To evaluate the quality of the model, we use a conventional measure [58] of

prediction error known as cross entropy. For the case where a prediction constitutes

the probabilities, pmi , i = 1 · · ·N,m = 1 · · ·M that each of N ×M distinct binary

variables will adopt value 1, the cross-entropy error is given by:

CE = − 1

NM

 N∑
i=1

M∑
m=1

tmi log (pmi ) + (1− tmi ) log (1− pmi )

 (3.12)

where tmi ∈ 0, 1, i = 1 · · ·N,m = 1 · · ·M are the realized values of the binary

variables. In the present context, each binary variable is set to 1 if the specific risk

i is active in the month m and 0 otherwise, so N corresponds to the number of

risks and M to the number of months. The lower the CE value, the better are the

predictions made by the model. In Figure 3.10a, we compare the CE for predictions

generated by the network model and the independent model. (Predictions for the

independent model are made using the same procedure as described for the network

model, except that the value of the parameter β is zero by definition.) For the mth

month in the test set, the N = 50m predictions made up to and including that

month are utilized in the computation of CE. Although the differences are small,

predictions of the network model consistently outperform those generated by the

independent model, and the CE error of the latter at the end of the test period is

6.0% higher than that of the network model.

Additionally, we also evaluated the predictive abilities of two simpler models

that depend only on the first 132 months of historical data and which ignore the

data provided by the experts. For the first of these models, each risk i is assumed

to be active at any time with probability p1i which is the fraction of months in the

training set for which the risk i was active. Thus, the predicted probability that a
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risk is active is independent of time, according to this model. We call this model the

activity model. The difficulty with this model arises for risks that either have not

been active for the period covered in the training set, or were active for the entire

period. A risk materialization for the former case, or risk recovery for the latter

case in the test set will cause the prediction error for these risks to be infinite. To

avoid that, we assume that materialization (recovery) will appear in the testing set

if we double it on each of its sides. Accordingly, the activity probability is set to

either 1/(3d+ 1) or 3d/(3d+ 1) respectively in these two cases, where d denotes the

length of training data.

The second model computes the transition probabilities Pi(t)0→1,Pi(t)1→0 for

each risk i directly from the training set. The first probability is for the transition

from the inactive state to the active state, which is the risk materialization prob-

ability. The second probability is for a transition from the active to the inactive

state which corresponds to the recovery probability. We call this model the switch-

ing state model, or switching model, in short. The same problem as in the activity

model arises here for risks which are in the same state over the entire testing period.

However, the same solution applies, which is adding needed events in the extended

training period. An additional problem arises if a single month of activity or inac-

tivity appears in the training data. For example, with only a single active month

in the training set, the estimated probability of recovery, i.e., Pi(t)1→0 would be 1

and the complement of recovery probability Pi(t)1→1 would be 0, resulting in an

error of infinity if there is any transition in the test set between two active states.

To prevent the prediction error from diverging to infinity in such cases, we set the

complement of recovery probability in the first case, and the materialization prob-

ability in the second case, to the frequency of risk materialization in the training

period. Figure 3.10b shows how the values of CE for these two models that are

agnostic to expert assessments, compares to the network model that utilizes expert

data. The advantage yielded by exploiting the expert data is clearly demonstrated

by the markedly lower error of the network model’s predictions. We also checked

that our conclusions regarding the relative predictive abilities of the various models

are not dependent on the specific error measure used.
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Figure 3.10: Predictability of the network model measured by cross en-
tropy.

In addition to evaluating the predictive ability of models using cross entropy,

we also used the Brier score which measures the predicted probabilities of occurrence

of N events as follows [59]:

B =
1

NM

i=N∑
i=1

M∑
m=1

(pmi − tmi )2 (3.13)

where pmi is the predicted probability that the event i occurs in month m, and

tmi is the realized outcome i.e. 1 if the event i occurs in month m and 0 otherwise.

Figure 3.11a shows the comparison between the Brier metrics for the network model

and the independent model. As was the case where prediction error was measured by

mean cross entropy, in this case too, the network model demonstratively outperforms

the independent model. Figure 3.11b shows that even using the Brier score, the

prediction errors produced by the network model are far smaller than those incurred

by the activity model and the switching model.

3.7 Mitigation of cascading failures

In previous sections, we demonstrate the persistent features and cascading

failures of most concerned risks. In addition, we also introduce the details of model

dynamics and how to estimate the parameters from the historical dataset. Besides

these achievements, another important application is to mitigate the damage of
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Figure 3.11: Predictability of models measured by Brier score.

cascading damages. As we know, there could be many efficient mitigation strategies.

What’s more, since the resource of our society is limited, we cannot afford to control

every part of the global risk network. We have to find a good balance between the

cost and benefit. Hence, we extend our study to develop an efficient method to

control the network and reduce the damage.

3.7.1 Reducing the likelihood and connections

Which part of the network should we control? To answer this question, we

have two choices: risks and connections. By controlling risks, we reduce the likeli-

hood of each risk to some extent. The value of likelihood defines directly the ability

to trigger the risk and indirectly the activity level for one risk. Since the controlled

risks will be more passive, fewer materializations make the whole system more sta-

ble. By controlling connections, we remove some edges of targeted risks to decrease

the network connectivity. It is intuitive that the number of possible paths for cas-

cade propagation is lower in a sparse network so that the vulnerability decreases

accordingly. It seems hard to determine which one is a better choice. We design

the following experiment to detect the effects of these two factors. We assume three

kinds of intervention strategies:

(1) I1: halving the likelihood of top ten risks

(2) I2: halving edges of top ten risks
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(3) I3: combining interventions I1 and I2

The reason for controlling top 10 risks is due to the limits of available resources.

It would be prohibitively expensive to control all the risks together. As we mentioned

before, several persistent risks contribute most to the activity level of the whole

system. Choosing top 10 risks can be a good start to probe the difference between

likelihood and connections.

Next question is how to determine the top 10 risks. There are various met-

rics for ranking the risks. And the top 10 risks will change according to different

rankings. Based on the available information about global risks, we formulate the

following 9 different ways to rank the risks:

(1) R1: by internal probability: pinti for risk i.

(2) R2: by the product of internal probability and expert-assessed impact: pinti ×
impacti for risk i.

(3) R3: by the product of internal probability and exponential value of impact:

pinti × eimpacti for risk i.

(4) R4: by persistence: Pi

(5) R5: by the product of persistence and expert-assessed impact: Pi × impacti
for risk i.

(6) R6: by the product of persistence and exponential value of impact: Pi×eimpacti

for risk i.

(7) R7: by contagion potential: Ci for risk i.

(8) R8: by the product of contagion potential and expert-assessed impact: Ci ×
impacti for risk i.

(9) R9: by the product of contagion potential and exponential value of impact:

Ci × eimpacti for risk i.
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Internal probability pinti : a risk i materializes due to internal factors with proba-

bility pinti . This value is computed, as described in Section 3.2.1 of this thesis, based

on the expert assessment given in the WEF 2013 report [47].

Persistence of the risk Pi: this value is defined in previous experiment (see

Section 3.4 of this thesis): the fraction of time over 106 simulations, each consisting

2200 time steps, that a given risk was active (the initial transient consisting of 200

steps was ignored). A risk with a higher persistence will stay active longer than

other risks once it materializes. For example as shown in Figure 3.6, risk 8 - “Severe

income disparity” stays in materialized state for more than 90% of time. Risk 1

- “Chronic fiscal imbalance” and risk 17 - “Rising greenhouse gas emission” both

have a high persistence because they are materialized for more than 60% of time.

Contagion potential Ci: the mean number of materializations that a risk induces

given that it alone has materialized. For risk i, the exact expression for this quantity

is, as stated in [46] and in Section 3.3 of this thesis:

Ci =
N∑

j=1,j 6=i

(1− preci ) poutij

preci + poutij − preci poutij

(3.14)

As shown in Figure 3.4, the color of nodes demonstrates the value of contagion

potential. Only a few risks have a high contagion potential since this value combines

the internally triggering ability together with connections. Most risks enjoy a low

value of contagion potential.

1. Expert-assessed impact impacti: the impact of risk if it occurs. The ex-

perts give the evaluation in the report [47]. These values reflect the risk impact

perceived from the global economy point of view. We combine these 9 different

rankings with 3 interventions to detect which strategy reduces the damage of

cascading most. Totally there are 27 combinations. To measure the damage,

we design three different metrics:

2. Activity level : the sum of probabilities of each risk being active.

3. Linear impact : the sum of products of each risk probability of being active

and its impact value.
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4. Exponential impact : the sum of products of each risk probability of being

active and its exponential impact value.

Activity level only considers the expected number of materializations by sum-

ming up probabilities of each risk. The “Linear impact” and “Exponential impact”

consider the effect of evaluated impact. In all 27 cases, the initial conditions for

simulations are the same: using the first month of historical data and simulating

1000 time steps. The fraction of time steps that each risk is active is recorded in

the simulation. We finish 106 independent realizations and average the fraction of

the active time. In the end, we compute the three metrics defined above to show

the mitigation results.
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Figure 3.12: Mitigation strategies results.

As shown in the Figure 3.12, among all the cases, the basic case has the highest

activity level, linear impact, and exponential impact since there is no intervention

involved. It is evident from the plots that interventions on the likelihood of risks

perform much better than those eliminating edges. When looking at the activity
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level, the basic case has a value about 11 expected materializations in a steady stage.

In the cases applying I2 intervention (reducing the connections), no matter which

ranking to use, the activity level drops to around 9 which is a 18% improvement.

In the cases applying likelihood mitigation (I1 and I3), the activity level becomes

much lower than other cases, which is a 40% improvement. These results are valid

under the assumption that the cost of reducing half of the connection is the same as

the cost of halving the likelihood which may depend on the number of connections

the node have. The performance of all I3 cases is slightly better than I1 cases,

which is not surprising since I3 is more costly than either I1 or I2. Moreover, it

is hard to distinguish the difference between all rankings. The ranking of risks is

not critical for interventions. Since nine ranking categories have almost the same

results, it is reasonable to conclude that ranking is not as important as controlling

the likelihood. This trend is similar when we focus on another two metrics: linear

impact and exponential impact. Based on this figure, the improvement comes from

mitigation of likelihood instead of edges.

3.7.2 Mitigation cost for various number of risks

As discussed in the previous section, controlling likelihood is a better choice,

then controlling connectivity, so next step is to find how much we should change it.

One simple idea is to manage all risks and reduce their likelihood to some extent.

However, it is not feasible to do so since in reality, because of the prohibitively

high cost of mitigation of every risk in the network. We need to find the optimal

outcome based on the available resources. Due to the limited budget, the more risks

we control, the weaker our mitigation can be and vice versa. Hence, there should be

a relationship between the number of mitigated risks and the scale of the mitigation.

It is very complicated to find a precise formula to represent this relationship. So we

start with a simple equation defined as follows:

dk = d
N/k
N (3.15)

where dN is the reduction level for all N = 50 risks, dk is the reduction level for

k < 50 risks. The new likelihood is Li × dk. Given the value of dN and k, we can
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compute the corresponding value for dk. We assume an exponential relationship

between the number of controlled risks and the value of reduction level instead of a

linear one.

In this experiment, we set the value of dN to be 0.8, 0.9, 0.95, 0.99 and 0.999.

The initial condition is the first month status in historical data and simulation

time length is 1000 steps. We run 106 realizations. The definition of three metrics

is the same as in the previous experiment. The mitigation focuses only on the

likelihood of risks: we just control different numbers of risks and keep the connections

unchanged. In the following experiment, we vary the number of controlled risks (k)

to be 1, 2, 5, 10, 25 and 50.

In Figure 3.13, we demonstrate the mitigation results for 5 different reduction

levels dN . For each value of reduction level, we vary the number of controlled risks:

1, 2, 5, 10, 25 and 50. The more risks we control, the lower the reduction level is. For

example, if the reduction level for 50 risks is 0.8, then the corresponding reduction

level for 25 risks is 0.64, for 10 risks it is 0.32768, for one risk is 0.00001427. The

controlled risks are selected according to internal probability (R1). In the case

dN = 0.8 as shown in Figure 3.13a, the mitigation results change monotonically.

As the number of controlled risk increases, the mitigation improves. This trend

is the same for activity level, linear impact, and exponential impact. Hence if we

control on half of the nodes and for all nodes, the improvement is much better than

controlling on a smaller proportion of the nodes. The improved cascading impact

for controlling on all nodes is only 20% of the basic case. However, in the case of

dN = 0.9, 0.95 as shown in Figure 3.13b, Figure 3.13d and Figure 3.13e, the curve for

activity level, bars for linear impact and exponential impact show a non-monotonic

behavior. The best performance is achieved when controlling 25 risks instead of 50

risks. In these scenarios, we should focus on half of the nodes. In the last case as

shown in Figure 3.13e, the results of impact remain almost unchanged since the dN

is very close to 1 so the mitigation effect is not obvious. In general, according to

different values of reduction level dN , the optimal strategy may not be controlling

all the nodes or a small part of them. Based on the performance curve, we can

design an optimal mitigation strategy.
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(e) dN = 0.999

Figure 3.13: Mitigation with different reduction levels.
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Figure 3.14: Normalized mitigation results with different reduction lev-
els.
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Figure 3.14 show the simulation results normalized by the basic case. The

smaller proportion means a better mitigation improvement. In the case when dN is

equal to 0.9, 0.95 and 0.99, the normalized results behave in a similar non-monotonic

way regarding the number of controlled risks and mitigation performance. In these

cases, the best performance arises around with controlling 25 risks.

Figure 3.15 compares 6 different numbers of controlled risks: 1, 2, 5, 10, 25

and 50. X-axis enumerates different levels of reduction factor dN . The left y-axis

measures the impact while the right y-axis shows the activity levels. In each case,

we vary the value of reduction levels. All results are normalized by the value in basic

case. Simulation time steps are 1000 and the number of realization is 106. In the

cases with a small number of risks, the difference between various reduction levels

is not evident. With a large number of risks, activity level and impact both drop

dramatically as the reduction level increases. These figures provide some guidances

how to choose the optimal value of controlled risks.

In the Figure 3.16, the x-axis shows the case index as a pair of numbers, such

as 1−0.9, 50−0.1 and so on. The left y-axis is for impact value, and the right y-axis

is for activity level. The first digit is the number of changed nodes and the second

number is the reduction factor. In this figure, the bars are sorted from largest to

smallest, and the curve becomes lower gradually but not linearly. As we expected,

controlling on a large part of nodes increases reduction dramatically. If we have to

configure a strategy, it is necessary to influence as many risks as possible.

3.8 Conclusion

To summarize, in this study we have presented a method of obtaining a quan-

titative insights into the global risk network, starting from the qualitative obser-

vations provided by 1000 WEF experts. We assume a three parameter network

model for the propagation of risk materialization (representing the corresponding

network node failures), and obtain maximum likelihood values for the parameters

using historical data on risk materialization.

Our model was built upon expert assessments available in the WEF report

which enabled us the construction of a detailed and heterogeneous weighted net-
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(f) 50 risks

Figure 3.15: Mitigation for various controlled risks.
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Figure 3.16: Mitigation comparison for all cases.

work of risks. As we show, ignoring network effects (i.e. the independent model)

or ignoring specific heterogeneities in the failure likelihoods and influence (i.e. the

uniform model) yielded poor results in comparison to the network model. This un-

derscores the importance of the expert assessments in building a model capable of

matching the available activity data well, and therefore yielding reliable insights.

We have also found the greatest strength of expert assessments, which is nearly

perfect forecast of aggregated failure probabilities of different risks, but also those

assessments greatest weakness, which is inability to separate external risk material-

ization probabilities form internal ones. We have developed an approach in which

by selecting proper model parameters and using maximum likelihood estimation to

find optimal model parameters, we are able to do such separation.

We have uncovered the global risk network dynamics and measured its re-

silience, stability, and risks contagion potential, persistence, and roles in cascades of

failures. We have identified risks most detrimental to system stability and measured
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the adverse effects of risk interdependence and the materialization of risks in the

network. According to these studies, the most detrimental is risk 8 -“Severe income

disparity”. Other risks that play a dominant role due to either their contagion po-

tential or their persistent materialization are: 1 - “Chronic fiscal imbalances”, 25 -

“Global governance failure”, 27 - “Pervasive entrenched corruption”, 12 - “Failure

of climate change adaptation”, 17 - “Rising greenhouse gas emissions”, and 40 -

“Water supply crises”.

Utilizing the complete network model generated using the WEF data provides

a much more detailed picture of the threat posed by different risks than the one

obtained by simply relaying only on their failure-likelihood Li values and using

the independent model. Additionally, our analysis demonstrates that the carrying

capacity of the network i.e. the typical activity expected in the network given the

current parameters, is about 13.7 risks or 27% of the total number of network nodes,

of which four are persistently chosen from a subset of seven risks (see Figure 3.6).

Aiming to reduce this overall carrying capacity could potentially be an overarching

goal of global risk minimization.

We have compared the global risk network with several simpler models which

ignore the connections or use uniform expert assessments. The network model uti-

lizing crowd-sourcing evaluation has the best performance based on likelihood ratio

test and cross entropy error score. In addition, we also detected the mitigation

strategies in global risk network. We found that mitigation of the likelihood of risks

leads to a better reduction of damage than mitigation on connections. In order to

optimize the benefit of mitigation expense, we assumed an exponential relationship

between the number of controlled risks and reduction level. Interestingly, there is a

non-monotonic behavior for the mitigation improvement against the controlled risks

in some cases. Hence the most efficient strategy is not to control the entire network,

sometimes, controlling on half of the network may benefit the network most. It is

complicated to design an optimal mitigation strategy due to the complex topology

and imperfect expert assessments.

There are several prospects for extending the model that we presented here

and its further analysis. First, obtaining more robust historical estimates of risk
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materialization may help us improve the fitting of the model. Secondly, it will

be beneficial to account for slow evolution of network parameters in time. This

change in network characterization will be captured by a model through expert

data provided in yearly WEF reports, resulting in time dependent Lis and bijs.

Furthermore, the accuracy of the model could possibly be improved by assuming

the existence of different dynamics for chronic risks as compared to sporadic risks.

From a larger perspective, our attempt here has been to utilize data crowd-

sourced from experts towards gaining a quantitative picture of the network of global

risks, which in turn has yielded some actionable insights. The network by definition

has risks of varying complexity, which arguably makes the risk mitigation process

more involved for some risks than for others. In such a scenario, our quantification

of the relative impacts of different risks could provide a valuable guidance to any

cost-benefit analysis involved in the design of policies or strategies aimed at global

risk minimization.



CHAPTER 4

LIMITS OF PREDICTABILITY IN A CASCADING

ALTERNATING RENEWAL PROCESS MODEL

Most risk analysis models systematically underestimate the probability and impact

of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not

taking into account interconnectivity and interdependence of risks. To address this

weakness, we propose the Cascading Alternating Renewal Process (CARP) model to

forecast interconnected global risks. However, assessments of the models prediction

precision are limited by lack of sufficient ground truth data. Here, we establish the

prediction precision using alternative long historical data generated by simulations

of the CARP model with known parameters. We illustrate the approach on a model

of fires in artificial cities assembled from basic city blocks with diverse housing.

The results confirm that parameter recovery variance exhibits power law decay as a

function of the length of available ground truth data. Using CARP model, we also

demonstrate the estimation the real-world prediction precision for the global risk

model based on the World Economic Forum Global Risk 2013 Report [46], [47]. We

conclude that the CARP model is an efficient method for predicting catastrophic

cascading events with potential applications to emerging local and global intercon-

nected risks.

4.1 Introduction

A generalized Alternating Renewal Process model referred to as Cascading

Alternating Renewal Process (CARP), has been recently proposed for dynamically

modeling a global risk network represented as a set of Poisson processes [46]. This

Portions of this chapter previously appeared as: B. K. Szymanski, X. Lin, A. Asztalos, and S.
Sreenivasan, “Failure dynamics of the global risk network,” Sci. Rep., vol. 5, no. 10998, Jun. 2015.
Accessed on: Apr. 21, 2017. [Online]. Available: https://www.nature.com/articles/srep10998.

Portions of this chapter have been submitted to: X. Lin, A. Moussawi, G. Korniss, J. Bakdash
and B. K. Szymanski, “Limits of risk predictability in a cascading alternating renewal process
model,” submitted for publication.
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approach raises questions about the reliability of such recovery and the limit of the

prediction precision in different scenarios. Since most of the world’s critical infras-

tructures, including the global economy, form a complex network that is prone to

cascading failures [47], this question is important but difficult to answer given the

lack of ground truth data. Here, we discuss how the limits of prediction precision

can be established by simulating the CARP model with known parameters to gener-

ate many alternative ground truth datasets of arbitrary length. We develop a model

of fire propagation in an artificial city with different sizes of houses and time peri-

ods. Next, we use maximum likelihood estimation (MLE) [22]–[25] to recover the

parameters and calculate the error of parameter estimation from the ground-truth

values. We also measure the recovered parameter precision as a function of (i) the

complexity of the system (in our case the size of the cities) and (ii) the number of

events present in the historical data. Finally, using real-world data with the de-

veloped methodology, we assess the precision of parameter recovery in the World

Economic Forum model [46].

4.1.1 Risk modeling

Most quantitative risk analysis models (e.g., Value at Risk and Probability-

Impact models) systematically underestimate the probability and impact of worst-

case scenarios (i.e., maximum loss for a given confidence level, typically “tail” out-

comes) for catastrophic events such as economic crashes, natural disasters, and

terrorist attacks [61]. Underestimation in such models is due to speciously assuming

the sequences of random variables in probability distributions are normal, indepen-

dent, and identically distributed (IID) [62], [63] thus discounting the potential of

interdependencies and interconnections between events.

Few quantitative risk models capture the non-IID properties of risk factors

and their impacts. The Havlin model uses branching to predict cascading failures

(e.g., power grids, communication networks) [16]. A small fraction of initial failures

could cause catastrophic damage in mutually dependent systems. The authors used

the percolation theory and detected a phase transition for the robustness and func-

tionality of the interdependent networks. The Ganin model of resilience provides



70

an analytical definition for determining critically to design more resilient technical

systems [64]. Moreover, even when interconnections are included in risk modeling,

the traditional method for determining the implied correlations (among assets) in

financial models misestimates their values, resulting in potentially massive underes-

timation of both the probabilities and impacts of the decrease in value [65].

While above techniques go beyond simple risk models, which assume risks

exhibit independent probabilities and impacts, neither aims to quantify the limits

of predictability for interconnected risks. In contrast, the CARP model is a novel

method in which interdependencies and interconnections are explicitly represented

and the model parameters are recovered from historical data using maximum likeli-

hood estimation. Moreover, the CARP model offers a quantitative risk assessment

for interconnected conceptual models such as Reason’s Swiss cheese model of fail-

ure [66]. In Reason’s model, defenses preventing failure are layers (of Swiss cheese)

and when the holes of the layers align a risk may materialize. Previously, Reason’s

model has been formalized using percolation theory [67], but this formalization has

not been validated.

4.1.2 Alternating renewal process

The definition of Alternating Renewal Process (ARP) originated in renewal

probability theory. A simple renewal process alternates between two states: the

normal state representing its operational time and the abnormal (failure or repair)

state representing its holding (non-operational) time. An independent Poisson pro-

cess governs each state [68], [69]. The Alternating Renewal Process can be used

to find the best strategy for replacing worn-out machinery [70], [71]. A real-world

example is the electrical devices. The inter-arrival time between equipment failures

follows an exponential distribution. For each device, the evolution of states is a

stochastic process as a function of time. And we can find the asymptotic limit of

the proportion time of each state [72]. Once we get the expected length of the nor-

mal and abnormal state, the probability of the system in the normal state is just the

proportion of time in the normal state over total time. Here, we introduce recent

studies on the features and applications of ARP model.
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Roldán et al. studied the distribution of precipitation in the United States and

compared results from two methods: a first-order Markov chain and the Alternating

Renewal Process [73]. The stochastic process of precipitation has observations of

binary states (wet and dry days), which come from five National Weather Service

daily stations in the United States. The period of observations is more than 20 years.

To consider the seasonal variation, the authors either assigned constant parameters

or used finite Fourier series. Woolhiser et al. developed a model using first-order

Markov chain to simulate the precipitate process and calculate the coefficients using

maximum likelihood estimation [74]. The likelihood-ratio test verifies the quality of

results. Also, the ARP model simulates stochastic process consisting observations

of discrete states. The intervals of a dry day are assumed to be independent of each

other, so a conditional probability pij represents the likelihood of state transitions

[73].

Given the probabilities of state transitions and historical observations, the au-

thors used maximum likelihood estimation to find the optimal values of parameters.

Roldán et al. concluded that the ARP method requires longer running time and

higher computing ability to finish the optimization process and gives us similar re-

sults as the method of first-order Markov Chain. The methodology in this thesis

utilizes a similar procedure. We start with the ARP model to determine the dis-

tribution details; then we use maximum likelihood estimation to approximate the

parameters of the proposed distribution.

Besides the application in weather services, the ARP model can also be used

in manufacturing industry. In the coating process, there is a strong desire to predict

the distribution of coating mass on particles or items. Freireich et al. formulated an

ARP model to approximate this distribution based on the observations of coating

mass per visit and the cycle time of the process [76]. The ARP model has the

advantage of easy accomplishment and compact expression. Since there are small

fluctuations during the coating process caused by many factors, the coating mass

of particles follows an unknown distribution. It is critical to detect the details of

this distribution to control the quality of coating operation. A well-known metric to

reflect the degree of coating uniformity is the coefficient of variation (CoV), which
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is defined as the ratio between standard derivation of coating mass and the mean

value of coating mass [76]. Since the coating mass is proportional to the time of

spray step, the authors focused on the distribution of coating time. Freireich et al.

also introduced several alternative models. First is the Bernoulli trial model, which

focuses on the fraction of time for spraying one particle in the spraying step. The

expression is defined as [76]:

CoV =

√
1

α

4t
t

(4.1)

where α is the mean value of time fraction for particles staying in the coating spray

step, 4t is the actual time in spray step in one trail, and t is the total time spent in

the coating process. Other factors, besides the time spending in spraying step, could

affect the coating mass distribution, such as location, waiting time, and velocity.

During each simulation, the values of these factors are selected randomly from a

designated distribution. In the end, statistical conclusion is summarized from many

realizations. In the population balance model, the coating mass is a function of time

and we can use partial differential equations to reflect the dynamics [76]:

dm

dt
= JAα(d) (4.2)

where m is the mass of coating and J is the average value of spray flow at the unit

of time. A is the area of particle projection, d is the size of the particle, and α is the

mean value of time fraction for particles staying in the coating spray step. As the

spray process goes on, the value of mass m, projected area A, and particle size d all

increase gradually. In the ARP model, Mann firstly introduced the use of renewal

theory to represent the distribution of coating mass [77]. The main difference of

this model is that the coating mass and coating time are two independent variables.

The coefficient of variation is defined as [76]:

CoV =

√√√√µC
t

[(
σW
µW

)2

+

(
σC
µC

)2
]

(4.3)

where σW is the standard deviation of coating mass during the spray process and σC
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is the standard deviation of the coating time. µ is the mean value of these variables.

In this ARP model, coating mass and spray time both play important roles in

determining the quality of coating procedure. This method also demonstrates an

asymptotic CoV expression for a long term running time. Freireich et al. concluded

that this ARP model with a simple expression is an excellent complement to other

models.

In addition to above studies, there are many other applications of the re-

newal theory. Samuels stated that the superposition of two ARPs with a positive

inter-arrival time is also an ARP with a positive inter-arrival time [78]. Ferreira

extended this conclusion to the ARPs with the inter-arrival time close to zero [79].

The renewal processes can follow either Poisson or binomial distributions. These

conclusions inspire us since the state transitions in these studies follow a Poisson

distribution.

Another application of the ARP model is in the health insurance industry.

Silvestrov et al. indicated that a homogeneous ARP model could predict how many

claims the customers will report in the future and the amount of payment for the

illness or temporarily disabled clients [80]. An insured person only has binary status:

healthy or ill, which are independent in most cases. Hence, the ARP model has

a good applicability in this scenario. Young et al. demonstrated the ability of

the ARP model to simulate the traffic flow in high-speed communication networks

[81]. There are also binary states in this scenario. When the state is on, data

flow is traveling from the source node to the target node along all possible paths

in the system. In contrast, in the off state, there is no data transmitting. By

tunning appropriate parameters, the ARP model is an efficient method to capture

the dynamic features of data flow in a communication network. In addition, ARP

model can also be used in neural science. Steele et al. designed an ARP model

to represent the buildup function which simulates the switch of perception between

two states: integration and segregation [82]. Buildup function is widely used in a

behavioral experiment to indicate the ability of adaptation. The principal purpose

is to capture model dynamics from short-term observations and estimate long-term

behaviors of perceptual groups. Steele et al. assumed the waiting-time interval
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for each event is independent, and the analytical solution agrees with the Monte

Carlo simulation results. The authors concluded that the ARP model captures

the transient dynamics of the perceptual organization very well and make good

predictions for long-term behaviors.

The CARP model expands ARP in several ways. The most important exten-

sion is to allow for defining risks as a network of risks with the given set of weighted

edges representing interdependencies and probabilities of state transitions associ-

ated with each edge. Since state transitions are often observed without distinction

for the inner or external causes or triggers, the latter representing, edge induced

transitions, both are treated as hidden variables, since only their joined effect is

observed directly. Another generalization is not restricting the number of states to

two. Finally, we associate with CARP an MLE procedure for recovery of CARP

parameters from historical data of the system evolution over time.

4.1.3 Model structures

The city modeled is diverse. A small fraction of houses is large and placed

sparsely with low fire propagation probabilities and high recovery rates. A larger

fraction of houses with a medium size have a higher spatial density and fire propa-

gation probabilities. Finally, the most densely packed small houses have the highest

fire propagation probabilities, and lowest recovery rates.

Houses are grouped into blocks stitched together into a continuous city as

shown in Figure 4.1. A sample city consists of four basic blocks. Three types of

houses are represented as nodes. Red circles show the range of external fire spread.

All houses in this circle may catch fire from the burning center node. Large and

small houses sit on the West and East boundaries of the city, respectively. The North

and South boundaries border all three types of houses. The houses are placed on

rectangular lots whose size is commensurate with the size of the house. A large house

occupies a square lot of one by one unit size. There are four such squares horizontally

laid out with no space in between. Each medium house has a rectangular lot of half

unit length vertically by one unit length horizontally. Each block holds 8 medium

houses. Finally, repeating a similar pattern, small houses sit on a rectangular lot of
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one by a quarter unit size. One block contains 16 small houses. Distances between

two adjacent houses vary from 1 for large houses to 1/2 for medium and 1/4 for

small houses. A basic block holds 28 houses on 12 square units of land. A city

of arbitrary large size can be built by repeatedly adding blocks to it. Figure 4.2

shows the degree of each house, which is defined as the number of houses within a

fixed distance. As shown in Figure 4.1, all houses within a fixed distance may catch

fire from the burning center house. Hence, the small houses have a relative higher

degree because of the high density of nearby houses. The surrounding houses on

the boundary of the city and on the border of different communities experience a

slightly smaller degree compared with other same-size houses.

Figure 4.1: Basic block of the city structure.

A city with four basic blocks is shown in Figure 4.1 with the number of houses

N = 28 × 4 = 112. We assume each on-fire house can only ignite its neighbors

within an igniting circle. The size of circle is fixed to be the same for all houses.

Various sizes of circle show different external triggering ability inside this model. It

is obvious that fire will stay active longer in a denser community.

Figure 4.2 shows the degree of houses in the city. The degree of houses de-

creases generally from small houses to large houses. The small houses (in red color)

with the highest degree among three types indicates a high likelihood to ignite fires.

Intuitively, the likelihood of a house catching fire is determined by two factors:

the materials the house is made of and the density of its neighbors. Let N1,i be the
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Figure 4.2: House degrees in a city of 224 houses.

likelihood of house i to catch fire (internally or externally). This value is assumed

to be uniform for houses of the same category and should be positively correlated

with the size of the house. On the other hand, larger houses have access to more

resources, making the recovery process faster. Hence, we use another parameter N2,i

for the recovery likelihood of house i, and the value of N2,i is negatively correlated

with the size of the house.

4.2 Methods

4.2.1 Discrete model

Based on the structure of the fire-propagation model, we can simulate the fire

cascades throughout the entire network using CARP. At time t, each house is either

in state −1 (recovery), state 0 (fully operational) or state 1 (on-fire). Houses in the

recovery state are under reconstruction and are immune to fire. Hence only fully

operational houses are susceptible to fire. The burning (on-fire) state with certain

probability switches to a state of recovery. Each house alternates between these

three states.

The state transition is invoked by four types of Poisson processes. A house
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i transitions from state 0 to 1 (on-fire) for internal reasons according to a Poisson

process with intensity λinti . In this event, a fire starts inside of the house, caused

by events such as overheating of electrical appliances, unattended stoves or other

possible accidents. This house can make this transition if its neighbor j ignites

the fire externally through a Poisson process with intensity λextji . A transition from

state 1 (on-fire) to −1 (recovery) also follows a Poisson process, with intensity λetgi

(extinguishing the fire). Finally, transition from state −1 to 0 is caused by a Poisson

process with intensity λreci (completing the recovery process).

For all the events discussed above the exact time of occurrence is not known,

hence we use a discrete time step to accommodate this uncertainty and round up

the event time to the nearest integer step. Hence, the evolution of the system can

be viewed as a discrete-time series of stochastic processes with three states. For

convenience, we assume here that each time unit represents one day of the real

world. Hence, there are multiple state-transition events in a single day. As shown

in [46], at one time unit (day), each Poisson process (state transitions) is actually

the same as the corresponding Bernoulli trials.

Here, like in [46], we assume that experts provide assessments of each house’s

fire resistance. The value of N1,i represents the likelihood of house i to catch fire

internally or externally, and N2,i represents the likelihood that the house fire is extin-

guished and house rebuilt over large period of time. Here, we set a control parameter

for each state transition process. The internal risk materialization is controlled by

parameter α. The external risk materialization is controlled by parameter β. How-

ever, only the state transition from fully operational to on-fire is observed, without

knowing the actual reason for it. So, impact of an individual parameter α or β is

hidden from direct observation. In contrast, parameters γ, controlling recovery and

δ controlling fire extinguishing are independent of each other, so impact of each of

the two can be observed in the changes in the evolution of corresponding underlying

process.

We list events and parameters in the order compatible to the way they were

ordered in the World Economic Forum model [46] in which only three events (int,

ext, rec) and parameters (α, β, γ) exist. We set N1,i = 0.4 for large, 0.3 for medium
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and 0.2 for small houses and N2,i = 0.2 for large, 0.3 for medium houses and 0.4

for small houses. We assign target values to our parameters α = 0.08, β = 0.012,

γ = 0.016 and δ = 0.032.

Figure 4.3: Fire propagation dynamics.

The dynamics process is shown in Figure 4.3. The nodes represent a fully

operational house (green), a burning house (red) and a recovering house (blue).

Houses in normal state can be ignited to on-fire state (red color) due to external

and internal triggering. The probability of internal triggering of house i is denoted as

pinti . The probability of external triggering by on-fire house j is denoted as pextji . The

state transition from operational to on-fire state is governed by these two processes.

For an on-fire house, the probability of extinguishing fire is petgi . Finally, a house in

recovery state (blue color) becomes operational again with a probability of preci .

To summarize, the dynamics progress in discrete steps t = 1, . . . , T and the

probability of transition in each step is defined by the intensity of the corresponding

Poisson process as shown in Table 4.1. The dynamics described above and shown

in Figure 4.3 imply that the state of the system at time t depends only on its state

at time t−1, and therefore the evolution of the state vector ~S(t) is Markovian. The

definitions of parameters and equations mapping them into intensities of Poisson



79

processes are listed in Table 4.1.

Table 4.1: Intensities of Poisson processes and state transition probabil-
ities.

House type λint λext λrec λetg pint pext prec petg
Large 0.0073 0.0109 0.0257 0.0515 0.00730 0.01094 0.02542 0.05020

Medium 0.0096 0.0144 0.0192 0.0385 0.00959 0.01434 0.01908 0.03779
Small 0.0129 0.0193 0.0146 0.0293 0.01279 0.01913 0.01455 0.02889

Thus, the dynamics progresses at each time step t > 0:

1. House i that was fully operational at time t − 1 gets on-fire internally with

probability pinti = 1− e−λinti .

2. House j that was on-fire at time t ignites a fire of a neighboring house i that

was fully operational at time t with probability pextji = 1− e−λextji .

3. House i that was on-fire at time t− 1 switches to the state of recovery at time

t with probability of petgi = 1− eλ
etg
i .

4. House i that was in recovery state at time t − 1 becomes susceptible at time

t with probability preci = 1− eλreci .

λinti = −α ln (N1i)

λextji = −β ln (N1i)

λreci = −γ ln (N2i)

λetgi = −δ ln (N2i)

pinti = 1−N1i
α

pextji = 1−N1i
β

preci = 1−N2i
γ

petgi = 1−N2i
δ

(4.4)

Given the value of N1i, N2i and control parameters, we can compute the prob-

ability of state transition explicitly. For a real city, the values of N1i and N2i would

be assessed and provided by experts and the control parameters would be learned
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from the historical records of city fires. In our artificial city case, the evolution of

the system can be simulated as a discrete time stochastic process with three states

for the desired period of times to provide historical data for parameter recovery.

Moreover, repeating simulations with different random number generator seeds, we

can obtain alternative historical data, which is of course impossible in the real life.

At each time step t, we can calculate the proportion of houses on-fire for the

simulated set of parameters. The probabilities of events are derived from expert

assessment (assumed by us the case of the artificial city) as the input of the model

and used to compute probabilities using Equation 4.4. Like in the case of global risk

network, experts should provide estimation of the likelihood of catching fire and of

rebuilding, as well as of the number of neighbors that can ignite a fire for each house.

Here, we established them to have them perfectly corresponding to the definition

of Poisson processes used in simulation. The complete algorithm in pseudo-code is

given in display Algorithm 1:
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Figure 4.4: Fraction of on-fire time of houses.

With the assumed expert assessments and the created ground truth parameter

values for the model, we simulate the evolution of house states for a particular period

and record the frequency of emerging fires. In Figure 4.4, we show the fraction of
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Algorithm 1 Fire propagation algorithm

1: Inputs:
~S = si

2: Initialize:
s0i ← 0, i = 1, . . . , N
~S0 ← ~S

3: for t = 1 to T do
4: ~St ← ~St−1
5: for i = 1 to N do
6: if st−1i = 0 then
7: if random number r < pinti then
8: sti = 1;
9: else

10: sti = 0;
11: end if
12: else if st−1i = 1 then
13: if random number r < petgi then
14: sti = −1;
15: else
16: sti = 1;
17: end if
18: else
19: if random number r < preci then
20: sti = 0;
21: else
22: sti = −1;
23: end if
24: end if
25: end for
26: for i = 1 to N do
27: if st−1i == 1 then
28: Ni ← neighbors of i
29: for j ∈ Ni do
30: if stj == 0 and st−1j == 0 and random number r < pextj then
31: stj = 1;
32: else
33: stj = 0;
34: end if
35: end for
36: end if
37: end for
38: end for
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time each house is on-fire during one million time steps. Results are averaged over

100 independent realizations. Each simulation runs 106 time units. The houses are

fully operational initially. The simulations used parameter values listed in Table 4.1.

The range of this on-fire fraction varies from 0.12 to 0.32. The fraction increases

when the size or degree of the house increases, but areas of higher density housing

suffer higher on-fire fractions than indicated by their degree.

4.2.2 Continuous model

In addition to the time series with discrete states, we can also describe the

dynamics in a continuous formulation. In each time step, we use a probability of each

state denoted as si(t), fi(t) and ri(t) to represent the expected value of occurrence

instead of the discrete state. si(t) defines the probability of susceptible at time t

for house i. Similarly, fi(t) is the probability for the state of on-fire and ri(t) is

the probability for the state of recovery. The state transitions can be expressed by

Ordinary Differential Equation (ODE):

dsi(t)

dt
= −λinti si(t)− λexti si(t)

N∑
j=1,j 6=i

ai,jfj(t) + λreci ri(t) (4.5)

dfi(t)

dt
= λinti si(t) + λexti si(t)

N∑
j=1,j 6=i

ai,jfj(t)− λetgi fi(t) (4.6)

dri(t)

dt
= λetgi fi(t)− λreci ri(t) (4.7)

Summing up all three equations, we get dsi(t)
dt

+ dfi(t)
dt

+ dri(t)
dt

= 0 which means

the total size of the system does not change along with time. The non-linear ODEs

have stable points in the range of [0, 1].

To verify the simulated time series, we compare the simulation results with

the numerical solution of ODEs in two simple models. One is a torus model with 8

neighbors for each house; the other is a fully connected model. Both models have

the same number of identical houses which is 224. The parameters for each state

transition are also the same. The difference between these models is the number

of neighbors of each house. We calculate the proportion of each state (susceptible,
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(a) Susceptible (b) On-fire (c) Recovery

Figure 4.5: Comparison in the torus model.

(a) Susceptible (b) On-fire (c) Recovery

Figure 4.6: Comparison in the fully connected model.

on-fire and recovery) for a time steps of 2000. From the Figure 4.5 and Figure 4.6,

the gap between simulation and numerical results is larger in the torus model than

the fully connected model, which means the higher model connectivity, the better

match between discrete and ODE results. The red curve represents the simulation

result and blue curve is for ODEs results. The x axis is the time step and y axis is

the proportion of each state. It is intuitive that a higher degree graph has smaller

topology structures. In the fully connected model, there is only one possible topology

structure. For the torus model with 8 neighbors, it is only one specific structure for

the network with a uniform degree of 8.

4.2.3 Precision limit of maximum likelihood estimation

In our approach, we use maximum likelihood estimation (MLE) to recover

parameters from ground truth data. The main reason for this choice is that state

transitions are governed by independent inhomogeneous probability distributions for

which MLE delivers consistency and asymptotic normality with sufficient amounts

of observed data [22]–[25]. The historical data represents the combined effects of four

Bernoulli processes. Our purpose is to recover the unknown parameters α, β, γ and
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δ mapping the expert assessments into event probabilities for Bernoulli processes of

our model. We denote α̂, β̂, γ̂ and δ̂ to be the recovered (estimated) values of each

parameter.

The use of MLE to find the values of hidden parameters from observed events

has not been studied, yet [22]–[24] indicate that it is feasible. In our approach,

we split one of the parameters of directly observable events into a pair of hidden

(and tangled) parameters of two processes and recover these two parameters from

observed events. We denote the unknown parameters as θ. Given the n observations

x1, x2, ...xn, the likelihood function of this set of observations is defined as [24]:

L (θ) = f
(
x1, x2, ..., xn|θ

)
(4.8)

When the distribution is discrete, f is a frequency function, and the likelihood

function L(θ) shows the probability of observing the given data. The maximum

likelihood method [24], [25] finds the values of parameters that yield the maximal

probability of observing the given data. Logarithms are monotonic and therefore

the likelihood and its logarithm have the maximum at the same argument. Since

the observed data comes from independent distributions, the logarithm of likelihood

function can be written as [24]:

lnL (θ) =
n∑
i=1

ln
(
f
(
xi|θ

))
(4.9)

For continuous and smooth likelihood functions, which is the case here, we can scan

the parameter space in order to find the maximum point for lnL(θ). The historical

data size is limited, so we need to study how this limitation affects the precision of

results. In this section, we derive an estimation of the optimal parameters for large

sample sizes. Under appropriate smoothness conditions, the estimate is consistent

with large data sets and obeys the asymptotic normality. Detailed description of

these conditions can be found in [22]. These conditions can be summarized as: the

first three derivatives of the ∂ log(f(xi|θ))
∂θ

are continuous and finite for all values of xi

and θ; the expectation of the first two derivatives of ∂ log(f(xi|θ))
∂θ

can be obtained and
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the following integral is finite and positive [22]:

∫ ∞
−∞

(
∂ log f

∂θ

)2

fdx (4.10)

Let θ0 denote the true value of the parameter θ and θ̂ to be its recovered value. In

the asymptotic case for MLE with large amount of data size n, once the smoothness

conditions are met, the recovered value θ̂ converges to the true value θ0. If we

normalize θ̂, we obtain an approximation from a normal distribution if the variance

of MLE σ2
MLE exists [24]:

lim
n→∞

(
θ̂ − θ0

)
= N

(
0, σ2

MLE

)
(4.11)

Given the definition of Fisher information I(θ) shown in [24]:

I (θ) = E

[
∂

∂θ
log f

(
x|θ
)]2

(4.12)

The asymptotic normality of MLE can be written as [24]:

lim
n→∞

(
θ̂ − θ0

)
= N

(
0,

1

nI (θ0)

)
(4.13)

The variance of the normalized estimate decreases as Fisher Information I(θ0) and

the amount of training data increases. Intuitively, higher information leads to a

smaller variation and a lower uncertainty level. More observed data provides us

more evidence to estimate true parameters. This asymptotic variance to some ex-

tent measures the quality of MLE. Although it is hard to compute the variance

analytically in our model, we know there exists an estimation limit and the perfor-

mance of MLE becomes better as the volume of given data increases. In the next

section, we demonstrate that the variance indeed decreases as the size of the training

dataset increases and the mean values of θ̂ approaches θ0 with the error approaching

0.
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4.2.4 Parameter estimation in fire-propagation model

Given the historical data about each house transition in a finite period, we use

maximum likelihood estimation to find optimal values of model parameters which

produce the maximum likelihood of the historical observations. State transitions are

independent functions with unknown parameter values. Since the historical data is

generated from the discrete stochastic process, the likelihood function of particular

observations of risk materializations can be written as:

L
(
~S(1), ~S(2) · · · , ~S(T )

)
≡

T∏
t=2

N∏
i=1

Pi(t)
Si(t−1)→Si(t) (4.14)

where T is the number of time steps, N is the number of houses in the model, Si(t)

is the current state of house i at time t, and Pi(t)
Si(t−1)→Si(t) is the state transition

probability of house i from time t− 1 to time t. ~S(t) is the vector of states for each

house in the network at time t. The logarithm of this likelihood is:

lnL
(
~S(1), ~S(2) · · · , ~S(T )

)
≡

T∑
t=2

N∑
i=1

ln
(
Pi(t)

Si(t−1)→Si(t)
)

(4.15)

In the training process, we compute the probability of state transitions using pinti and

pextji for transition into fire, petgi for transition into recovery and preci for transition

into the fully operational state. Correspondingly, there are three cases of state

transitions in the historical data.

A transition from the fully operational state to the on-fire state (0→ 1) hap-

pens when a house catches fire due to internal or external reasons. The probability

of internal ignition is pinti . For external influence, we compute first the probability

that none of the neighbors ignited this house, and then take the complement of this

value. On-fire neighbor j fails to ignite house i with probability 1− pextji . The prod-

uct of those over all on-fire neighbors defines the probability of house i not ignited

by external fire:

prod0→0
i =

∏
j∈Ai

(
1− pextji

)
(4.16)

where Ai is the set of all on-fire neighbors of house i. The complement of this
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product defines the probability that at least one neighbor ignites house i. Adding

the probability of such external ignition to the probability of internal ignition, we

obtain the total probability of a house catching fire:

P 0→1
i = pinti +

(
1− pinti

)1−
∏
j∈Ai

(
1− pextji

) (4.17)

Since internal and external ignition are mutually exclusive we include a factor of

(1 − pinti ) in the external ignition probability. Accordingly, the probability of not

catching on fire is:

P 0→0
i =

(
1− pinti

) ∏
j∈Ai

(
1− pextji

)
(4.18)

A transition from being on fire to recovery state happens when the fire is extin-

guished and rebuilding process starts. This probability is defined as:

P 1→−1
i = petgi (4.19)

Transition from recovering to fully operational state (−1→ 0) happens when a house

is completely rebuilt and becomes fully operational. The corresponding probability

is:

P−1→0
i = preci (4.20)

The maximum likelihood parameters are obtained by summing the logarithms of

corresponding probabilities. After scanning the potential ranges of the model pa-

rameters, we find the globally optimal values that maximize the likelihood of the

historical data. The closeness of the recovered parameters to their values set in the

simulations measures how precisely our model captures the dynamics of the system.

Unlike real-life, in simulations, we can arbitrarily vary the length of time over

which we collect historical data and produce many variants of such data to measure

the prediction precision of our model. We start with a mixed model with 8 large

houses, 16 medium houses and 32 small houses, for a total of 56 houses. The

parameter recovery is applied at seven different intervals: 100, 200, 400, 800, 1600,

3200 and 6400 time steps. The parameter recover is run on 50 versions of historical
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data created by simulations running with different seeds for the random number

generator to account for the randomness of the stochastic processes. To quantify

the accuracy of parameter recovery, we compute the relative error between the

recovered values and the target values used for creating ground truth data.
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(c) Relative error of γ̂
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Figure 4.7: Parameter recovery in the fire-propagation model.

4.3 Results

As shown in Figure 4.7, the x-axis includes seven time intervals: 100, 200,

400, 800, 1600, 3200 and 6400 time steps. The y axis shows the relative error for

the recovered parameters. Using parameter values shown in Table 4.1, parameter

recovery was run on 50 different historical datasets generated by simulations with

different seeds for the random number generator; the results of these runs are repre-

sented by blue dots. The red dashed curves show the average values of the relative

error. The visible trend is that the average of relative errors tends asymptotically

to zero and the variance exhibits power law decrease as the number of time steps

increases, which means more training data improves the performance of parameter

recovery. The blue vertical dots represent the relative error of parameter recovery

in one realization. There are 50 blue dots for each particular length of training
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dataset. The scattering of blues dots represents the variation of parameter recovery

accuracy. The red curve is the average value among these 50 realizations, which is

very close to zero. Obviously, variance is a better measurement for the precision

since variance considers the positive and negative errors instead of canceling them

out. The average of relative errors tends asymptotically to zero and the variance

shrinks according to the power law with an increase in sample size which is the

length of historical data series in this case. This trend is consistent with the asymp-

totic behavior of the MLE method [22], [24]. When the sample size is very large,

the relative error of realization follows a normal distribution with 0 mean value and

a finite yet small variance. More data decreases relative error, and therefore it is

useful to find a balance between run time and prediction accuracy.

The relative errors of α̂ and β̂ are larger than that of other parameters. This

is due to the combined effects of two Poisson processes causing the same transition.

As defined, α and β represent the intensity of internal and external fire ignition

processes respectively. In real life, it is often hard to determine the actual reason.

During the parameter recovery, these two parameters influence chances of each other

to start a fire, which impacts the computation of likelihood function. This nonlinear

effect tangles the errors of α̂ and β̂ together as larger value of α̂ can be compensated

by smaller value of β̂ and vice versa.

We also compute the standard deviation of relative error of recovered param-

eters. Figure 4.8a shows that the distribution of the standard deviation follows a

power law. We use seven simulation time intervals: 100, 200, 400, 800, 1600, 3200

and 6400 time steps. There are 56 houses. Using parameter values shown in Ta-

ble 4.1, parameter recovery was run on 50 different historical datasets generated

by simulations with different seeds for random number generator. The standard

deviation decreases very quickly and then slowly as historical data size increases.

The double-logarithmic plot in Figure 4.8b has a slope close to −0.5, which shows

that the standard deviation decreases in a power-law fashion as the training data

size increases.

For real-world case processes, it is impossible to get multiple historical datasets

for parameter recovery, yet recovery error based on single dataset may be different
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Figure 4.8: Standard deviation of relative error of parameter recovery.

from the one based on the average of such recovered values on multiple datasets.

Hence, we study how sensitive our methodology is to imperfect input datasets. In

order to test this sensitivity, we compare four cases of simulations in which we record

the average length of time in each state and the number of emerging fires during five

simulation periods: 400, 800, 1600, 3200 and 6400. The first case is using the target

values of parameters. The second case is using the averaged value of parameters

recovered from 50 independent realizations. The third case employs adding σ to

the average value of recovered parameters. The last case is subtracting σ from the

average value of recovered parameters. The four sets of parameters employed in our

simulation are listed in Table 4.2:

Table 4.2: Parameter values for simulation.

Parameters α β γ δ
Target value 0.00800 0.01200 0.01600 0.03200

Recovered value 0.00799 0.01199 0.01596 0.03204
Recovered value +σ 0.00853 0.01162 0.01622 0.03274
Recovered value −σ 0.00747 0.01237 0.01570 0.03134

The average values of recovered parameters come from 50 independent re-

alizations with 6400 time steps of training data. The standard deviations are:

σα = 0.00053, σβ = 0.000372, σγ = 0.00026, σδ = 0.0007. When adding one standard

deviation σ to average value of α̂, we subtract σ from β̂ and vice versa. We assume

complementary recovery errors on α and β since both of them contribute to the
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fire triggering process so the maximum value of one is likely to be reached at the

minimum of the other. This corresponds to the assumption that the unique histor-

ical dataset produces parameter values within one σ of their average values, more

stringent assumption might require using broader interval around average values of

parameters. In simulation, we record how long each house stays fully operational,

on-fire and in recovery and record the number of new fires during the simulation.

The number of houses is 56. Using parameter values shown in Table 4.2, param-

eter recovery was run on 50 different historical datasets generated by simulations

with different seeds for random number generator. We gather results upon reaching

five simulation periods: 400, 800, 1600, 3200 and 6400. We complete 50 indepen-

dent realizations to summarize the statistical conclusion of the predictability of our

methodology. There is a trade-off between the running time and precision. To save

computation effort, we do not finish too many realizations and choose an empirical

value of 50. Figure 4.9 shows that all four parameter estimations have similar pre-

cision. In Figure 4.9a, the average duration of the fully operational state is almost

the same for four cases since two parameters α and β have opposite influences on

fully operational houses. In Figure 4.9b and Figure 4.9c, the gap between the cases

of estimated parameters ±σ is very small. In Figure 4.9d, the number of emerging

fires for all cases are increasing linearly as a function of time. The largest relative

error is small in predicting the length of fire, which is just below 2%. Because of the

specific target values of parameters, the duration of each state is in the same order,

and the frequency of emerging fires is larger than that of a real-world scenario. We

intentionally set large and comparable target values in order to generate sufficient

state transitions and test the quality of parameter recovery in an arbitrary case. Ta-

ble 4.2 shows that the estimated parameters approach the target values very well,

even if the target values are in the same order.

Additionally, we design another method to find the ±σ boundary of the per-

formance of recovered parameters where σ is the standard deviation. Initially, we

complete 125 sets of parameter recovery for a period of 6400 time steps. Then, 5

different periods of time steps: 400, 800, 1600, 3200 and 6400 are simulated for each

set of recovered parameters. In each case, 20 independent realizations are finished
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Figure 4.9: Impact of imperfect recovered parameters.

and the average value of four features is recorded for the performance: (i) the length

of time in normal state, (ii) the length of time in on-fire state, (iii) the length of

time in recovery state and (iv) the number of emerging fires. These values can

be used as metrics to detect whether the performance of the estimated parameters

is consistent within ±σ standard deviation. Then, we compute the relative error

of these features between each set of estimated parameters and the ground truth

parameters. For each feature, based on the absolute value of relative error and fol-

lowing Kolmogorov-Smirnov test [83], [84], we remove 39 results with largest error

from the original 125 results. In this way, the 31.2% worst performance has been

removed and the remaining 68.8% result showing a range of ±σ performance. For

each set of recovered parameters, there are four features and each feature has two

boundary values for the case of +σ and −σ.

Figure 4.10 shows the performance of the ±σ case for five different periods.

The gap between the cases of estimated parameters ±σ has a comparable relative

error in all three cases in Figure 4.10, despite the fact that start of fire depends

on two parameters. However the two parameters α and β have opposite influences

on fully operational houses. In Figure 4.10d, the number of emerging fires for
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all cases are increasing linearly as a function of time. The curve of ground truth

parameter is located in the center between the curves of +σ and −σ cases and

the distance between the results from ±σ boundary and from the ground truth

parameters stabilizes as the simulation time steps increase. The absolute relative

error between results from ±σ cases and from the ground truth parameters is low,

about 2%. Additionally, the curve of the averaged results from estimated parameters

(red dash line) almost overlaps with the corresponding results from the ground truth

case which indicates a small bias overall. Using this method, we find an interval of

68% confidence level showing the variance of performance of estimated parameters.
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Figure 4.10: Performance of model prediction.

In addition to the parameter recovery from different lengths of historical

datasets, we study how the precision of parameter recovery varies against the com-

plexity of the system and the standard deviation of number of fires starting each

day. Figure 4.11a and Figure 4.11b show the relative errors of recovered parameters

for various city sizes (number of houses): 28, 56, 112, 224 and 448. Here we compare

two cases. In the first case, we keep three types of houses and use the parameter

values shown in Table 4.2. The blue dots in Figure 4.11a and Figure 4.11b represent

the results of the first case. In the second case, we initialize all houses with the same
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value of N1,i = 0.3 and N2,i = 0.3, which are equal to the values for middle houses.

The red dots in Figure 4.11a and Figure 4.11b represent the results from this case.

Therefore, we remove the influence of house types on the results. In both cases,

the length of historical data is 1600 time steps. The dashed curve shows the mean

values of relative error over 20 realizations and each dot represents one realization.

Only two parameters (α̂ and β̂) are shown in this figure since they are involved with

the fire igniting process and another two parameters have similar trend. We find

that the parameter recovery in a larger city has a smaller mean value and variance

of relative errors. As the city’s size increases, there are more state transitions within

specific periods, leading to a more precise recovery of our parameters. To study the

impact of intensity of emerging fires on recovery precision, we change the values of

N1,i, which define the intensities of fires. We compare three cases:
√
N1,i in red,

N1,i in blue and N2
1,i in cyan. Figure 4.11c and Figure 4.11d show the relative error

of recovered α̂ and β̂. Red dots represent the case of
√
N1,i, blue represents the case

of N1,i, and cyan represents the case of N2
1,i. The results come from 20 independent

realizations and 6 different lengths of historical dataset: 100, 400, 800, 1600, 3200

and 6400. N1,i is 0.4 for large 0.3 for medium and 0.2 for small houses. The model

with more emerging fires at each day enjoys a smaller variance of relative errors.

The reason is similar to that shown above: more state transitions in the historical

dataset and higher precision of the recovered parameters.

4.3.1 Sensitivity analysis

In real world case, the input training data including some error which may

influence the accuracy of the output. In order to study how the bias of input effects

the results, we conduct the sensitivity analysis in the same model. We intend to

add an uniformly distributed error to the target value of each parameters.

α∗i = α× (1 + εi)

β∗i = β × (1 + εi)

γ∗i = γ × (1 + εi)

δ∗i = δ × (1 + εi)

(4.21)
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Figure 4.11: Parameter recovery in various scenarios.

where εi is the error of parameter uniformly distributed within the range: [−0.1, 0.1].

In this case, the parameter of each house has different values due to the random

error, while in previous case, all houses have identical parameter values. We repeat

the same experiment in this biased model. The variance of the biased model is larger

than the unbiased model which is intuitive since the error of the input indeed effects

the output of MLE. Both models have the same trend for the size of training data.

This trend is consistent with the asymptotic normality of MLE discussed above.

The normalized estimates follow a normal distribution and the variance becomes

smaller as the sample size increases. However, actually the size of training data can

not be infinity, so the variance of the estimates always exists. This is a significant

limit for our predictive model. We have to consider the trade off between running

performance and prediction accuracy.

In order to demonstrate more information, we compare the mean value and

standard variance for the unbiased and biased model. In Figure 4.12, the x-axis is for

five discrete time steps: 100, 200, 400, 800, 1600 and 3200. The y-axis is the relative

error for the trained parameters. The curve shows the mean values of relative error

for both models along with the standard deviation. The standard deviation of both

models is very large when data size is small. As the size increases, the mean value
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Figure 4.12: Parameter recovery sensitivity.

of relative error becomes closer to zero and the variance also decreases. In general,

the unbiased model performs slightly better than the biased model. However, when

the time step is 3200, the difference between them is not obvious. It is intuitive that

when the biased error of the input is larger, the error for the biased model becomes

clearer. The result is sensitive for the input bias. Hence, it is necessary to make

sure the accuracy of training data. No matter the training data is from simulation

or from historical observation, we can not avoid error but only mitigate it. This is

another predicting limit for our model. We have to make sure the accuracy of input

data.

4.3.2 Parameter recovery precision in global risk network

Here we show how to apply the presented approach to a disparate, real-life

dataset of the global risk network, which, as with fires in cities, exhibits spreading



97

risk activation [46]. Using CARP, we estimate hidden parameters of global risks pre-

viously modeled using an Alternating Renewal Process [46]. Experts from the World

Economic Forum 2013 Global Risks Report [47] define the properties of 50 global

risks grouped into five categories: economic, environmental, geopolitical, societal,

and technological. These assessments include the likelihood, impact of materializa-

tion, and connections of each risk. We take the advantage of this crowd-sourcing

assessment to build an interconnected network to simulate risk propagation through

the system.

In the global risk network, each risk has binary states (normal and active), and

the state transitions also follow Poisson processes. The difference is that in the global

risk network, there are three state transitions instead of four in the fire-propagation

model: 1, internally triggering process from normal to active state; 2, externally

triggering process from normal to active state; 3, recovery process from active to

normal state. Hence, we have three control parameters (α, β, γ) and recover the

optimal parameter values from historical events. Based on the historical occurrences

of each risk in a 156-month period and using maximum likelihood estimation, we

recover the following parameter values: α = 0.003038, β = 0.00117 and γ = 3.5561.

They control internal risk materialization (α), external risk materialization (β) and

recovery (γ) processes, and their detailed definitions can be found in Ref. [46]. Once

we obtain the parameter values and set the initial situation, we can simulate the

stochastic process of model evolution. As in case of the fire-propagation model

presented here, we used these recovered parameters as the ground truth parameters

for establishing the recovery process precision.

We apply the same method used in Figure 4.10 to this global risk network. In

the first step of precision evaluation, we produce alternative historical ground truth

datasets by using parameter values recovered from real historical data to simulate

the model for a selected period of time repeatedly with different random generator

seeds. Then, we recover parameter values using MLE on the simulated time series

and compute their deviation from the values used in simulations. In this experiment,

we use 120, 240, 480 and 960 monthly time steps of data (representing 10, 20, 40

and 80 years) for parameter recovery. We create 50 independent historical datasets.
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Figure 4.13: Parameter recovery error in the global risk network.

Figure 4.13 shows the similar trend of relative error of parameter recovery

as for the fire propagation model shown in Figure 4.7. In particular, the variance

of relative error for α̂ and β̂ is obviously larger than γ indicating that it is hard

to split the combined effects of two interwoven triggering processes with limited

information. Here, the first process is the internal risk materialization controlled

by parameter α. The other process is external risk materialization controlled by

parameter β. We can only observe the state transition from normal to materialized

state without knowing the actual reason for it. In parameter recovery, if α is over

estimated, β will be under estimated and vice versa. In contrast, the state transition

from materialized to normal state depends only on the control parameter γ. So the

variance of γ is much smaller than the other two parameters. When we increase

the amount of training data, the mean value and variance of relative errors decrease

quickly (approaching zero).

In addition to previous the precision evaluation, we obtain multiple recovered-

parameters from different lengths of alternative historical data to predict the number

of risk materialization for a selected period of time repeatedly with different random



99

generator seeds. First, based on the ground truth parameters recovered from the

real historical data (α, β, γ), we generate 120, 240, 480 and 960 monthly time steps

of alternative historical data (representing 10, 20, 40 and 80 years) for parameter

recovery. Then, 125 cases of parameter recovery (αi, βi, γi, i = 1...125) are finished

for each period of time. Next, using the recovered parameters from both real and

alternative historical data, we complete 20 realizations for a prediction of 4 periods:

120, 240, 480 and 960. In each period, we use the average value of risk materi-

alization among all 20 realizations to measure the performance of each simulation

case. Thereafter, we compute the relative error of the average risk materialization

between the case with alternative recovered-parameters (αi, βi, γi, i = 1...125) and

the ground truth parameters (α, β, γ). In the end, we remove the 39 simulation

cases with the worst performance (with the largest absolute relative error). The

remaining 86 cases (68.8% of 125 cases) of results determine the ±σ boundary for

the performance of estimated parameters.
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Figure 4.14: Performance of recovered parameters in the global risk net-
work.

Figure 4.14a shows a histogram of number of materialization in each case.

Dash curve represents a Gaussian fitting over the histogram. As the length of
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simulation period increases, the distribution of number of materialization gradually

approaches a normal distribution. Meanwhile, the distribution shifts to the right

and gets close to a steady level. In the case with longer time steps for parameter

recovery and prediction simulation, the predictability is more consistent and variance

shrinks generally. Figure 4.14b shows the boundary of±σ performance for number of

materialization in each period. It is obvious that the distance between the boundary

is decreasing as we increase the length of period, which implies a stronger confidence

of prediction. Figure 4.14c shows the number of materialization for each risk in the

case of 960 time steps. The difference between three cases is very small indicating

a consistent prediction for estimated parameters.

4.4 Conclusion

The CARP model is used to simulate and then recover parameters of hetero-

geneous stochastic processes. First, we created a model of fires in the cities that

we use to illustrate our approach. Using assumed parameters values, we generated

several historical datasets and used them to measure parameter recovery precision.

The results confirmed that the accuracy of our method increases as the amount of

data increases even in the presence of parameters hidden from direct observations.

The limits of the parameter recovery precision are caused by the stochastic nature

of the modeled processes, so the variance of recovery always exists regardless of the

size of historical data.

Applying our approach to real-life cases, we started with recovery of the model

parameter values based on unique and limited real-life ground truth data. Then,

using these values as ground truth, we finished simulations to create many alter-

native historical datasets. Then using these historical datasets, the parameters are

recovered by applying MLE method. Next, we compared the results to the assumed

ground truth values to measure the accuracy of recovery. The standard deviation

of relative error of parameter recovery exhibits a power-law decay with an exponent

value of −0.5 as the training data size increases. The resulting statistics enable us to

verify the reliability of predictions based on originally recovered parameters. We did

so by comparing original predictions to predictions based on parameters differing
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from their average values by the desired multiple of their standard deviations as was

demonstrated for the city model. We recorded the duration of each state (normal,

on-fire, and recovery) and the number of emerging fires within the simulated time

period. The largest relative error of these variables is just below 2%.

In conclusion, we showed that the CARP model is a novel approach to pre-

dict and simulate risks. It is particularly useful for modeling cascading catastrophic

events and thus has potential applications for analyzing local and global risks. Lo-

cal risks were demonstrated using simulated fires in cities. However, the CARP

model was also successfully used to model global risks in earlier work [46]. A bet-

ter understanding of global networked risks is critical to predicting and mitigating

them [20]. Most of the world’s critical infrastructure forms a complex, intercon-

nected network prone to cascading failures with potentially devastating consequences

to global stability [85]. Quantifying the limits of risk prediction, which are bounded

by the amount of data, may inform earlier planning and thus potential mitigation

of spreading risks spread and their adverse consequences.



CHAPTER 5

PREDICTABILITY OF CASCADES IN

GEOMETRICALLY CONCENTRATED POWER GRID

NETWORK

Recently, cascading failures in infrastructure systems have been studied intensively

because of their ability to inflict tremendous damage to our society. Among basic

infrastructure systems, the electric power system plays an important role, and as

such, has drawn substantial attention in the past decades [33], [34], [36], [86]–[88].

The industries of gas, oil, water, agriculture, banking and finance, transportation,

telecommunication and so on all depend heavily on electrical power supply [14]. A

small breakdown in power grid may trigger huge cascading failures and propagate

quickly through the entire system. Once the system breaks down extensively, it

may cause the social unrest and extensive financial losses. The 2003 North America

blackout and 2011 Southwest blackout are two good examples. A tiny and localized

disruption may be exaggerated by the topological structures of a system and cause

tremendous financial losses and potentially life-threatening situations. Moreover,

the cascading failures travel at the speed of electricity in the system, which makes

it hard to react to them in time for arresting their spread.

Due to the huge impacts that a blackout would have on our society, there is

a strong need to study the cascading failures in a real world power grid system. A

great deal of research has focused on theoretical networks. However, a real world

power grid is much more complicated and operates under severe constraints, unlike

standard models. Geometrical constraint is a very significant feature of the real

world system since the transmitting lines have a limited length and are therefore

mostly connected with adjacent power stations located within a practical distance.

It is too expensive to transmit the current flow directly between two distant power

stations. Practically, the connections have to follow physical restrictions and the

current flow has to be delivered through multiple stations along the paths between

the original location and destination. Similarly, the cascading failure inside a geo-

102
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metrically constrained network also emerges locally at first and then propagates to

distant parts of the system. Our study in this chapter models the resistance in a

spatially embedded power grid and demonstrates how cascading failure behaves in

different scenarios.

5.1 Introduction

In addition to previous studies about cascades in the scale-free networks [4], [9],

[11], [16], [31], recent research has considered geometrical constraints in real-world

power grids, which could influence the propagation of cascades.

Zhou, et al created a flow-base model in the European electrical power grid

system, and simulated how the flow travels across countries [89], [90]. The authors

showed a high correlation (more than 90%) between the simulation results and the

public data of cross-border flow. The methodology has been applied to the European

power grid [89]–[91]. After collecting the information of transmission stations (such

as location, capacity, types, and connectivity), they computed the value of flow

crossing the boundary of countries. To verify the results, they modified the model

by varying the value of generation and capacity for each power plant. The simulated

results show a good approximation to the public data in various scenarios.

Asztalos et al. studied the cascades in the spatially embedded random net-

works [91], [92]. Some previous studies on cascades consider the case that flow only

travels along the shortest path from an original station to the destination. A more

realistic scenario is that the flow can travel through all possible paths between any

two stations. Moreover, in a spatial network, one node can only be connected by a

direct power line with neighbors within certain geometric distances. A distant con-

nection is prohibitively expensive in a real world power grid. Unlike Erdős-Rényi

and Scale-free networks, a non-monotonic behavior between the relative size of the

surviving giant component G and the tolerance parameter α can be observed in a

spatially constraint network such as the random geometric graph and an empirical

European power system. The damage does not decrease monotonically as the capac-

ity increases. The authors also proposed effective mitigation strategies: removing

preemptive nodes and introducing altruist nodes, which they tested in an empirical
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spatially embedded power grid.

5.2 The UCTE network definition

Inspired by the previous studies, we focus on exploring the cascades in a spatial

network triggered by a regional attack. It is difficult to predict the cascading failures

directly in a real world system because of its high complexity. Our purpose is to

study the limits of cascading prediction in an actual system. Mitigations against

a single node failure can be effectively achieved. However, as the complexity (such

as the number of initiators) increases, we find it is harder to predict the cascading

damage. In some cases, the mitigation of cascade cannot be enhanced by only

increasing the tolerance parameter. We concentrate our study on the European

power transmission system, and the data is from the Union for the Co-ordination of

Transmission of Electricity (UCTE) [89]–[91].

In this real word network, there are N = 1254 transmission stations. The

average degree is 〈k〉 = 2.889, and the number of edges is 1812. When such a

system is in the functional state, all transmission stations and lines conduct flow

below their capacity. We consider the resistance of each node and use the direct

current (DC) power flow approximation in this resistor network to simplify the

calculations. When an initial attack triggers the cascade, the overloaded parts will

be removed, and the flow distribution will be recalculated. The new distribution

may cause additional failures in other functional areas of the system. The cascade

stops when there are no further failures, and the remaining system becomes stable

again. Once the cascade ends, the relative size of the surviving giant component

G = N ′/N is used to measure the damage of cascades, where N ′ is the number of

surviving nodes and N is the number of original nodes [91]. A small value of G

indicates a severe cascading damage.

5.3 Model dynamics

Asztalos et al. analyzed the evolution dynamics in this spatially embedded

power grid with distributed flow [91], [92]. In this electricity system, current flow

is transmitting along all possible paths and among all nodes. The total flow going
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through a node is denoted as the load. As stated in [9], the capacity is defined as:

Ci = (1 + α)li, i = 1, 2, ...N, (5.1)

where α ≥ 0 is the tolerance parameter, N is the number of nodes and li is the load of

node i. When the load exceeds the capacity, this node becomes overloaded and flow

redistribution triggers successive failures. In this resistor model, Asztalos et al. used

the direct current (DC) power flow approximation to calculate load distribution.

Because of the huge cost, the capacity of nodes and edges cannot be increased

unrestrictedly so that the tolerance parameter α should stay in a reasonable range.

Generally speaking, the removal of nodes with the small load will not have too much

influence on the remaining power grid. Hence, the following overloads are unlikely

to occur. In contrast, the failure of large-load nodes could cause severe damages in

the end.

Asztalos et al. assumed that the flow can be transmitted in both directions

and denote the edge flow between node i and its neighbor j as Iij [91]. The sign

of lij indicates the direction of flow propagation. A positive value means the flow

travels from node i to node j and vice versa. Hence the actual value of flow going

through node i should be the absolute value of all out-going or in-going edge flows

of node i. The formula calculates the load of node i is shown in [91]:

li =
1

2

∑
j

∣∣lij∣∣ . (5.2)

When Ii exceeds Ci, node i becomes overloaded and is removed from the

system together with its edges. To calculate the load distribution, the authors used

the Kirchhoff’s law and the Ohm’s law. However, since the information of generators

(source) and consumers (target) inside the system is unknown, each node can be a

source node, and the target node will be randomly selected from remaining N − 1

nodes. One unit flow travels through each source-target pair. After averaging all

N − 1 targets for one particular source and summing up all N possible sources,
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Asztalos et al. computed the load value of node i as stated in [91], [92]:

lij =
1

N − 1

N∑
s,t=1

∣∣∣Istij ∣∣∣ , li =
1

N − 1

N∑
s,t=1

∣∣Isti ∣∣ , (5.3)

where lij is the edge load of between node i and j, li is the load of node i. When

the total amount of initial flow is I, the Istij is defined in [91]:

Istij = AijI
(
Gis −Git −Gjs +Gjt

)
. (5.4)

where A is the adjacency matrix of the power grid, G is the inverse of the Laplacian

matrix. For any source node i and target node j, the expression to compute the

load of node i is as stated in [91]:

Isti =
1

2

∑
j

∣∣∣Istij ∣∣∣ , (5.5)

Once we get the value of Istij and Isti , we sum up all source-target pairs and

get the value of lij and li. In this thesis, we use this methodology to focus on

geometrically regional attacks, in which multiple adjacent nodes fail initially to

trigger the cascades. In a more realistic case, if we can identify multiple source and

target nodes, we can rewrite the Equation 5.3:

lij = Aij

 N∑
k

GikIk −
N∑
k

GjkIk

 = Aij

N∑
k

(
Gik −Gjk

)
Ik, (5.6)

where Ik is the initial current flow of node k. If node k is a generator, Ik is positive

which means that node k generates flow into the network; if node k is a consumer,

Ik is negative; for other transmitting nodes, the value of Ik is zero. In this thesis,

we use the above formulas introduced in [91], [92] to calculate the flow distribution

and expand the analysis to more complicated scenarios.
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5.4 Cascades triggered by single node failure

Cascading processes are triggered by initial failures of the system. The simplest

case of initial failure is removing single node. In this experiment, we detect the

relationship between the severity of cascading damage and the tolerance parameter

α. The relative size of the giant component denoted as G is used to measure the

loss of the cascade [91]. If G is close to zero, it means a huge damage in the system.

If G is close to 1, the system encounters a little destruction. It is interesting to

study how the value of α determines the value of G. Figure 5.1 shows the sizes of

cascading failure as α increases [91]. To trigger the cascading process, we remove

the node with the highest load initially. The value of α grows from 0 to 1.0 with

an increment of 0.05. There is an obvious non-monotonic behavior between the

cascading damage and the capacity allocation. When α changes from 0.4 to 0.45,

the reduction of G indicates that the cascading damage in a higher capacity system

is more severe than that of a smaller capacity system. When α is between 0.45 and

0.65, the cascading failures cause more damages than other cases. This phenomenon

is counter-intuitive since in general, more capacity should protect more parts of the

system. However, the realistic scenario behaves in an opposite manner because of

the complex topology of the real world system.

In reality, the system capacity cannot be increased unrestrictedly. We have

to consider the balance between the cost and benefit. In this thesis, instead of the

uniform capacity, we propose a different method to allocate a stochastic random

capacity to the power grid. In this method, the total capacity is identical to the

uniform allocation. The additional capacity 4Ci is drawn randomly from a uni-

form distribution with a mean value αli and a width σ. We assign the value of σ

proportional to the mean value and guarantee the total additional capacity is fixed:∑
j4Ci. In Figure 5.2, we show the cascading damage in different cases of stochas-

tic capacity allocations. In this experiment, we compare three different values of

σ and finish 100 independent realizations to detect how the value of G changes as

a function of σ. Three different stochastic capacity allocations are compared by

varying the values of width σ: σ = 0.25 (green), σ = 0.5 (blue), and σ = 1.0 (red).

In each case, we finish 100 realizations. The black dots show the results from the
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Figure 5.1: Cascades in the UCTE network triggered by a single-node
removal.

uniform capacity case as shown in Figure 5.1. The node with the highest load is

removed from power grid to trigger the cascade. The value of tolerance parameter

α varies from 0 to 1.0 with a incremental step of 0.05. In general, a higher value

of σ leads to a smaller damage without additional cost since the total capacity is

preserved. For a baseline comparison, we also plot the initial case when the same

amount of relative additional capacity is assigned to each node (black filled sym-

bols). The results clearly demonstrate that the fixed-cost stochastic distribution

of resources (capacities) allows for identifying particular realizations which provide

superior protection against cascading failures in the power grid.

Figure 5.3 demonstrates the survived power grid caused by the removal of

the highest load node in case of the uniform capacity allocation when the tolerance

is α = 0.45, and the width of the stochastic search space is σ = 1/2. The best-

case scenario reflects the highest protection obtained from the stochastic capacity

allocation, and the worst-case scenario shows the lowest protection obtained from

stochastic capacity allocation. It is evident that the best case scenario has many

more surviving nodes than other two cases. Since the total capacity remains un-

changed in these cases, the best performance scenario protects the whole system
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Figure 5.2: Cascades with different stochastic capacity allocations.

most based on the value of G. This result gives us a better understanding of the

stochastic capacity allocation, which plays a critical role in determining the severity

of cascading damage. Even for the fixed total capacity and the same value of the

tolerance parameter, more randomness in the allocation makes the system obtain

a higher potential ability to protect more parts of the system. In some scenarios,

“fuse” nodes receive a smaller capacity and become more vulnerable to overload.

The failure of “fuse” nodes blocks the propagation of cascading failures. We will

discuss this issue more in this chapter.

5.5 The cascades triggered by spatially-localized regional

attacks

In addition to previous results of cascades triggered by a single node removal

[91], we consider the cascades triggered by regional attacks. In a real world case,

the initial attack in a power grid could be the failures of multiple adjacent nodes.

Taking into account the potential huge loss of cascades, we detect the impact of a

geometrically constrained triggering in the UCTE network.

We define the radius r of a region to be the largest distance between the
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Figure 5.3: Cascading damage comparison in the UCTE network.

geometrical center and any node inside this region. In this experiment, we select a

region with a radius of r at the border between France and Spain which consists of 9

nodes. If we expand the radius of the region to be 2r, 3r, 5r and 10r, the number of

nodes inside this region becomes 12, 20, 37 and 111. Consequently, we simulate the

cascading failures triggered by a regional attack in the European electricity system

and study how the cascading damage varies with different sizes of attacking region.

The attacking regions with different sizes are shown in Figure 5.4. The topological

features of the system determine the impact of adjacent initiators. In a larger region

such as the 10r region, the area becomes larger, but the initiators are less spatially

concentrated. This change increases the complexity and randomness of initiators,

which makes the cascading failures more intricate.

To find the correlation between the cascading damage and the node degree

together with the initial load, we preserve identical numbers of initiators for all

cases within different regional areas. In other words, 9 nodes are randomly selected

from the attack region as initiators to trigger the cascade.
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(a) Attack region of r (b) Attack region of 2r

(c) Attack region of 3r

(d) Attack region of 5r (e) Attack region of 10r

Figure 5.4: Different attack regions in the UCTE network.
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5.5.1 Cascade with different tolerance parameters

We start with the case of a r region and assign the tolerance parameter α

to be 0.1. Figure 5.5 shows the propagation of the cascading failure across the

system triggered by a 9-node regional attack. The initiators are located at the

border between France and Spain, which are marked in red. We set the value of the

tolerance parameter to be 0.1 and 0.15.

In the first case, as shown in Figure 5.5a, after initiators are failed, the flow

of the initiators is redistributed in the system. In step 2, according to the new

flow allocation, several nodes in normal operating conditions exceed their capaci-

ties. Therefore, these nodes are overloaded in this step and marked in blue. These

overloaded nodes are located very close to initiators, mostly at the southwest of

France. Then the flow distribution is redistributed again, and more overloaded

nodes appear. In step 3, many more nodes become overloaded. The north of Spain

and west of France suffer huge damages. The propagation of cascading failures is

evidently traveling far from the original attack region to Eastern Europe. In the

final step, only a few nodes are overloaded. The remaining system becomes stable

again, and the cascading process stops. In the end, the number of overloaded nodes

is 117 and the size of the giant component is N ′ = 949. Compare with the original

size of 1254, the relative size of the giant component is G = 0.7568. In this case,

the cascade caused by the regional attack only affects parts of Western Europe and

does not influence distant parts of the system. We can find a different cascading

path in the second case.

It is interesting that cascade causes much more severe damages in the UCTE

network with a higher capacity. In the case of α = 0.15, the cascade travels to

Eastern Europe and has a profound impact even at that distance. However, in the

case of α = 0.1, only the nodes in northern Spain and western France are overloaded,

which is more localized than the first scenario. It seems counter-intuitive because

a power grid with a higher capacity should be more resistant to cascading failures.

However, in reality, a higher capacity system suffers from a more severe cascading

damage. The reason might be the complex topological features in a practical system.

When we increase the capacity of nodes, several critical nodes can survive from the
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(a) Tolerance parameter is 0.1

(b) Tolerance parameter is 0.15

Figure 5.5: Cascade failures of the r region attack in the UCTE network.

cascading process and let the flow propagate to its neighbors. The excessive flow

may cause a catastrophe in the remaining power grid. If the failure of these critical

nodes can block the spreading of cascade and save more nodes eventually, we denote

these nodes as “fuse” nodes, which play a significant role in determining the severity

of cascade. In the case of smaller capacity, more “fuse” nodes are overloaded so as

to protect more functional nodes in Eastern Europe effectively.

5.5.2 Cascades in different attack regions

Besides the original r region, we also study the cascading failures triggered

in larger regions. Since larger regions have more than 9 nodes, there are many

permutations to select the 9 initiators. Different permutations of initiators lead to

different cascading processes. We find that in some scenarios, the cascade causes

huge damages, but some other scenarios behave oppositely.

Figure 5.6 shows two cascading scenarios within the 2r region. Because the 9

initiators they have are different, these two cascading paths are totally different. In

the low damage scenario, few nodes are overloaded in the end, and the cascade does

not cause large damages. Most overloaded nodes are located at the border of France
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(a) Small damage scenario

(b) Large damage scenario

Figure 5.6: Cascade failures of the 2r region attack in the UCTE network.

and Spain. However, in the high damage scenario, the cascade spreads very quickly

to Eastern Europe. Finally, almost all nodes in Eastern Europe are out of control.

The results of different cascades differ so dramatically that even their initial failures

are very close in a small region. This phenomenon shows the non-deterministic

and intricate features of the network topology, which make it difficult to predict a

cascading propagation in a real world system. This type of behavior also exists in a

larger region such as 3r, 5r, and 10r.

Figures 5.7 to 5.9 show a small and large cascading damage in larger initial

regions: 3r, 5r, and 10r. Every cascade has 9 initiators randomly selected from the

original region. The cascading propagation path is unique for each set of initiators.

5.6 Correlation between initiators and cascade failures

As shown in the previous subsections, the cascading process is determined

mainly by the choice of initiators, and the variance of cascading damage is significant

among different cases. To predict the cascading damage, we find the underlying

connections between the features of initiators and cascading failures. We define the

sum of degree and load of initiators as two important features. In this experiment,
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(a) Small damage scenario

(b) Large damage scenario

Figure 5.7: Cascade failures of the 3r region attack in the UCTE network.

(a) Small damage scenario

(b) Large damage scenario

Figure 5.8: Cascade failures of the 5r region attack in the UCTE network.
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(a) Small damage scenario

(b) Large damage scenario

Figure 5.9: Cascade failures of the 10r region attack in the UCTE net-
work.

we focus on the 2r and 3r regions, and finish 100 independent realizations in each

case. 9 initiators are randomly selected and the value of tolerance parameter α is 0.1.

We record these features of initiators together with the relative size of the surviving

giant component to analyze their correlation. Figure 5.10 shows the relationship

between G and two features: total degree and load of initiators. The contour plot

shows a bimodal distribution of G. The cascade leads to either a severe or a limited

damage.

In Figure 5.10a, when the total load is smaller than 260 and the total degree is

smaller than 30, the value of G is larger than 900 so that G > 0.718. However, large

loads and degrees lead to a large damage G < 0.4. This behavior is consistent with

two extreme cascading processes shown in the previous subsection, which indicates

a positive correlation with the damage of cascade. In Figure 5.10b, the boundary of

two phases is not as smooth as that in the case of a 2r region shown in Figure 5.10a.

In the case of a larger attacking region, it is more likely for a cascading process
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(a) case of 2r (b) case of 3r

Figure 5.10: Relationship between cascades and initiators in 2r and 3r
cases.

to cause a more severe damage since the area of dark color in the contour plot is

greater than that of light color. As the region expands, it is more difficult for us to

predict because of a more complex topological structure.

In addition to the contour plots, we count the frequency of node overload

among 100 realizations for both cases as shown in Figure 5.11. Darker color implies

a node becomes overloaded more frequently than lighter nodes. In both cases, the

nodes at the border of France and Spain, together with most nodes in Eastern

Europe all suffer a high frequency of overload. In the case of a 3r region, nodes in

the center of Europe also fail frequently, which shows cascading failures are more

wide-spreading than the case of a 2r region. It is interesting that many nodes are

rarely overloaded because of the specific topological structure in a real world power

grid.

5.7 Phase transition in cascading failures with multiple ini-

tiators

As shown in Figure 5.1, the cascading damage measured by G in a spatially

embedded network exhibits a non-monotonic behavior with parameter α in the case

of single node removal [91]. We observe a similar performance of cascading damages

when focusing on the cases of multiple initiators. Interestingly, unlike the single

failure triggered cascades, the distribution of the cascading damage reflects a clear
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(a) case of 2r (b) case of 3r

Figure 5.11: Overload frequency in the 2r and 3r cases.

(a) 4 center node removal (b) 9 center node removal

Figure 5.12: Phase transition with increasing protections in the UCTE
network.

phase transition in the cases of multiple initiators. When we increase α beyond the

critical value, there is a dramatic jump for the value of G, which reflects a phase

transition from vulnerable state to resistant state. This phenomenon exists in both

cases of the regional or the random multiple node removals.

Figure 5.12 illustrates the phase transitions in cascades caused by multiple

center node removals. There are two cases: 4 center node removal in the UCTE

network and 9 center node removal in the UCTE network. The pink highlighted



119

1 10 100

10

100

 

 

  = 0.60
 Power-law fit:  = -0.31
 Power-law fit:  = -2.69

P >(S
)

S

          N-stable UCTE
4 clustered node removal

(a) clustered removals with α = 0.6

1 10 100

10

100

          N-stable UCTE
4 random node removal

 

 

  = 0.60
 Power-law fit:  = -0.39
 Power-law fit:  = -2.73

P >(S
)

S

(b) random removals with α = 0.6

1 10 100

10

100

          N-stable UCTE
4 clustered node removal

 

 

  = 0.80
 Power-law fit:  = -0.63
 

P >(S
)

S

(c) clustered removals with α = 0.8

1 10 100

10

100

          N-stable UCTE
4 random node removal

 

 

  = 0.80
 Power-law fit:  = -0.80

P >(S
)

S

(d) random removals with α = 0.8

Figure 5.13: Cascade size distributions in the phase transition regime.

areas depict the region before the transition, after which the network becomes fully

protected against failures. The encircled highlighted regions depict the tolerance

values, where the system suffers from large-scale cascading damages. Increasing the

protection beyond these values, we can observe the system undergoes a phase tran-

sition, after which the entire network almost survives from the cascades. Compared

with the behaviors of G in a single node removal case, large capacity allocation

protects the network better with respect to multiple node removals.

Next, we analyze the distribution of cascading size in the phase transition

regimes, where, according to prior research, such distributions are characterized

by power-law tails [93]. The number of overloaded nodes S is used to measure

the cascading size. In Figure 5.13, we plot the cumulative frequency distribution

of S. Although S is not equal to N − G, there is a linear correlation between

these two quantities, and plotting data as a function of G or S provides similar
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results. For each particular value of S, we count the frequency of cascades with

a larger number of overloaded nodes than current S. The cumulative cascade size

distributions exhibit a power-law tail P>(S) ∼ S−γ with the exponent of γ, and the

cascading size distributions can be found as p(S) ∼ S−(γ+1). We focus on cascading

failures in the UCTE network triggered by spatially clustered sets of 4 nodes or

random sets of 4 nodes distributed throughout the network with the value of α

fixed within the phase transition region. Figure 5.13 illustrates a power-law tail

distributions and indicates that increasing the tolerance parameter α from α = 0.60

to α = 0.80 makes the distribution of the cascading size more abrupt, producing

a higher power-law exponent. This observation can be explained intuitively; by

increasing the tolerance parameter, we increase the protection in the system, and

reduce the number of large cascades, thus increasing the number of small failures.

As seen in these figures, for α = 0.60 both cascade size distributions triggered by

clustered sets of 4 nodes and random sets of 4 nodes exhibit a dual plateau. Thus, in

Figure 5.13a and Figure 5.13b, we analyze these as two separate event regimes: the

small event regime, where cascading damage is small-scale (1 ≤ S ≤ 200), and the

large event regime, where the resulted failures are large (201 ≤ S). We can see that

both triggering methods produce similar cascade size distributions, with power-law

exponents of γ ≈ 0.3 in the small event regime, and γ ≈ 2.7 in the large event

regime. Our results are in agreement with previous work [93], where the probability

density of conductance changes also follow a power-law, with two different regimes,

reported both for synthetic networks and the Norway power grid system. Moreover,

the values of the reported power-law exponents in the two distinct regimes are close

to the values observed in our work in the UCTE network.

5.8 Conclusion

In this chapter, we study the cascades in a geometrically concentrated load-

based power grid. We start with studying the cascade failures due to a single node

removal (highest load). In some cases, cascades in the network with a higher capacity

could cause a larger damage. However, in general, a higher capacity can indeed

protect more nodes from overloading during the cascading process. To mitigate the
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damage of cascades, we introduce a stochastic capacity allocation in addition to

a uniform allocation. In the new method, the value of capacity is drawn from a

uniform distribution. By varying the width of normal distribution, we control the

randomness of the capacity allocation. Moreover, the total capacity of the system

is preserved the same as the uniform capacity case. In some stochastic allocations,

the damage of cascading failures becomes smaller than the uniform capacity case

which means the new allocation method with fixed total value indeed protects the

entire system better.

Also, we consider a regional attack to trigger the cascades instead of removing a

single node such as a node with the highest degree or load. Unlike standard models,

the complicated topology in a real world scenario makes it harder to predict the

damage of a cascade. We demonstrate the non-monotonic influence of the tolerance

parameter. A system with a higher capacity, unfortunately, causes much more

overloads than a lower capacity system. The hidden “fuse” nodes play an important

role in blocking the cascade spreading and protecting the whole system. It is not

easy to find these “fuse” nodes since they are not the same in different scenarios

and many factors determine the role of the “fuse” nodes, such as locations, tolerance

parameters, connectivity, and the initial load of the system. Given more information,

we can find more clues about the “fuse” nodes and apply a greedy algorithm to find

these nodes iteratively. In addition, we also study the relationship between the

surviving giant component and the initiators. We find the relationship between the

cascading damage G and the total degree or load of all initiators. The results show

a bimodal distribution: the damage is either very small or large. To make the power

grid stable, it is better to keep the dangerous region in a low level of degree and load

so that to reduce the vulnerability of it. In a smaller attack region, the boundary

of two states is more evident than that in a larger region, which makes it easier

for us to protect this area. Once the size of dangerous region increases, it becomes

more difficult to identify the boundary of two phases. The area of a high damage

is much larger than that of a small damage. To prevent the wide spreading of the

cascades, we need to keep the initiators localized within a spatial region. Otherwise,

the cascading damage will be amplified by the complex topology of the power grid
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and the cascade would propagate far away very quickly. Similarly, there is also

a non-monotonic behavior and a phase transition for the cascading damage as a

function of the capacity in the cases of multiple node removals. When the tolerance

parameter α is relatively small, the cascading failure leads to a large-scale damage.

Once α exceeds certain critical value, the entire system can almost survive from

the cascading failures. The distribution of overloaded nodes S can be approximated

using a power law distribution. We can observe this behavior both in the cases

of clustered node removal and random node removal. This phenomenon provides

us a better understanding of cascading failure due to multiple initiators. In most

scenarios, cascading failure just results in a low damage. Hence, we should pay more

attention to the large-scale cascading damage.

As we all know the importance of the power grid system, it is necessary to

find an effective strategy to protect it. Given more information about our real world

system (such as the location of the region under potential attack, the identification

of power generators and consumers, the actual tolerance parameters for each trans-

mitting station), we can make a more accurate prediction of a future cascade to

mitigate the damage.



CHAPTER 6

CONCLUSION

In this thesis, we studied the cascading failures in the abstract and real-world net-

works. Our motivation is to detect the properties of cascades and predict their future

behaviors. Significantly, the cascading diffusion in a world-wide financial crisis has

different patterns than that in an electrical blackout. Since the behaviors are not

the same in every system, we apply distinct methodologies to different networks.

At first, we introduced related studies of the cascading failures in various scenar-

ios, such as simulating the cascading process in a standard or real-world network,

revealing the robustness of networks, evaluating mitigation strategies in particular

networks, and so on. Then, we utilized the Alternating Renewal Process to propose

a quantitative method for the global risk network. Our study provides an analytical

guidance to manage the potential risks in a coupled abstract system. By evaluating

the precision of parameter recovery, we established a limit for the predictability of

our methodology. To expand our analysis, we focused on a real-world power grid

system with spatial constraints. We concluded that several key factors, such as the

capacity allocation, initiators, and spatial correlation of a real-world system, sig-

nificantly determine the severity of cascading damage. The full contributions are

described as follows.

6.1 Contributions

In Chapter 3, we formulated a novel method to quantitatively analyze the cas-

cading failures in the global risk network, which is a binary-state stochastic model

for the propagation of risk materialization. Each risk switches between binary states

(normal and materialized). The model dynamics is governed by three state tran-

sitions: internal triggering, external triggering, and recovery, which are assumed

to be independent Poisson processes. Each state transition has a specific control

parameter. To build the network, we took advantage of crowd-sourcing assessments

of global risks, including the likelihood, impact of risk materialization, and connec-
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tions of risks. Professional evaluations act as a good starting point for our study to

differentiate the specific risks that are critical to the whole system. If we delete the

connection of risks or ignore the distinctive likelihoods, the prediction of network ac-

tivity becomes less accurate than that of the full model. We collected the historical

events of each risk as the training dataset. Since the model dynamics is Markovian,

each node may alternate between binary states at each discrete time step. We imple-

mented the maximum likelihood estimation to obtain the optimal values for control

parameters. The convex shape of the likelihood function ensures the estimated pa-

rameters are globally optimal. After that, we analyzed the robustness, persistence,

and contagion potential of global risks according to the simulation results. Based

on these measurements, we identified the most persistent risks, which stay materi-

alized longer than others, such as the “Severe income disparity” and “Chronic fiscal

imbalances,” contribute the most to the activity level (the number of active risks)

of the whole network. Moreover, we demonstrated that reducing the likelihood of

risks better mitigates the performance than cutting the connections does. In ad-

dition, when we considered a fix-expense mitigation strategy, the best mitigation

performance comes from the case of controlling half of the network. Therefore, our

study produces a quantitative analysis for the stakeholders to deeply understand

the interacted network and efficiently manage the potential large-scale risks.

In Chapter 4, we investigate the limit of predictability of the Cascading Alter-

nating Renewal Process (CARP) model, which simulates the stochastic processes.

To reveal the prediction accuracy of the methodology described in Chapter 2, we

applied a similar method to model the fire propagation in an artificial city. In the

city structure, there are three types of houses: large, medium and small. Each type

of house reacts differently for state transitions. Unlike the global risk network, there

are four state transitions in the fire-propagation model: internal triggering, external

triggering, fire extinguishing, and recovery. Similarly to the global risk network,

each state transition requires a control parameter. Since the model dynamics is

Markovian, we intentionally assigned the ground-truth values for the parameters

and generated the time series of model evolution as the historical dataset of the

model. Then, we completed parameter recovery from various historical datasets
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and compared the recovered parameters with the ground-truth parameters. Even

for the hidden parameters, our method splits their combined effects and makes an

excellent approximation of the ground-truth values, which is difficult since we can

only observe their combined effects explicitly, but do not know the actual reason

for this direct observation. After investigating various scenarios of the model, we

concluded that as the historical dataset increases, the variance of the relative error

of parameter recovery declines in a power-law decay. However, the variance cannot

be eliminated because the stochastic properties of the model dynamics determine

the limit of parameter estimation. In this research, we verified the reliability of pre-

dictions of the CARP model and demonstrated the ability of the CARP model to

simulate the small-scale (the fire propagation in a city) and worldwide risks (global

risks network).

In Chapter 5, we study the cascading failures in a resistor power grid with

spatial constraints. In a real-world system, the locations of power stations and the

length of transmitting lines have to obey spatial limitations based on a cost-benefit

consideration, so the properties of cascades in a real-world system are different from

those in the case of standard structures. The conserved flow in the European power

grid is governed by Kirchhoff’s and Ohm’s law. We applied a direct current (DC)

approximation to calculate the resistance without considering the phase of current

flow. At first, we detected the influence of a single-node (with the highest load)

removal on the cascading damage. The relative size of surviving giant component

exhibits a non-monotonic behavior as a function of the tolerance parameter be-

cause the “fuse” nodes play critical roles in determining the propagation of failures.

Despite the non-monotonic behavior, a significantly higher capacity level preserves

more parts of the system. Instead of a uniform tolerance parameter for the whole

system, we introduced a stochastic capacity allocation to mitigate the cascading

damage. In this method, the excessive capacity of each node is randomly selected

from a designated normal distribution, and the total capacity is the same as in

the uniform tolerance parameter case. In addition, we also analyzed the cascading

failures triggered by regional attacks, where initiators are located in a geometric re-

gion. Similarly, in certain cases, a larger capacity may not protect the system better
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than a smaller capacity case. Moreover, we detected a bimodal distribution of the

cascading size as a function of the total degree and load of the initiators. As the

spatial concentration of the initiators weakens (initiators are far from each other),

the features of the initiators worsen the predictability for the cascading damage. In

reality, multiple power stations and transmitting lines may fail simultaneously due

to internal reasons or external attacks. Our study provides a better understanding

on controlling the potential risks and mitigating the damages in a spatially em-

bedded real-world power grid. Decision makers need to focus on the high-density

regions with a high spatial correlation, and reduce the connectivity and load level

in these regions to design efficient strategies.

6.2 Future work

There are several ways to extend our current research. In the global risk

network, we can update the network structure and risk evaluations by using the

latest expert assessments. An updated crowd-sourcing assessments could reduce the

error of parameter recovery. The experts from many fields and organizations, such

as the World Economic Forum, evaluate the properties of global risks evaluations

in real time. Moreover, to improve the quality of historical occurrence of each risk,

we can utilize machine learning algorithms, such as natural language processing, to

detect the keywords of references on the Internet to collect the historical data for

parameter recovery instead of collecting data manually. This improvement could

be significant since the quality of training data critically determines the quality of

parameter estimation, which will enhance our future analysis on the resilience and

persistence of global risks. In addition, it is interesting to find how global risks

behave regionally, such as in Asia, Europe, North America, and so on. We can

analyze the coupled risks in a smaller scale to increase the prediction accuracy. For

the small-scale risk analysis (fire propagation in a city), we need to collect the real-

world data to build the city structure and use the real-word fire data to estimate the

control parameters. In this thesis, we arbitrarily assigned ground-truth values for

these parameters, which may be unrealistic to some extent. Given more valuable

data related to the fire propagation, we can make our model to simulate the fire
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propagation better. Furthermore, we can also implement the regression analysis to

detect the underlying patterns between the house properties and fire occurrences.

For the real-world power grid, we can extend current analysis by considering the

case of multiple generators and consumers. Hence, we need to revise the expressions

to calculate the load distribution and design a balanced strategy for the power

demand and supply. Although the analysis is more complicated in the case of

multiple generators and consumers, we can benefit from the additional efforts to

understand a real-world system more comprehensively.
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[40] Y. Koç, M. Warnier, R. E. Kooij, and F. M. T. Brazier, “A robustness metric
for cascading failures by targeted attacks in power networks,” in Proc. 10th
IEEE Int. Conf. Networking, Sensing and Control, Evry, 2013, pp. 48-53.

[41] R. Albert, I. Albert, and G. L. Nakarado, “Structural vulnerability of the
North American power grid,” Phys. Rev. E, vol. 69, no. 2, pp. 025103-025106,
Feb. 2004.

[42] M. E. J. Newman, “Scientific collaboration networks. II. shortest paths,
weighted networks, and centrality,” Phys. Rev. E, vol. 64, no. 1, pp.
016132-016138, Jun. 2001.

[43] A. E. Motter, “Cascade control and defense in complex networks,” Phys. Rev.
Lett., vol. 93, no. 9, pp. 098701-098704, Aug. 2004.

[44] C. M. Schneider, A. A. Moreira, J. S. Andrade, S. Havlin, and H. J.
Herrmann, “Mitigation of malicious attacks on networks,” Proc. Natl. Acad.
Sci., vol. 108, no. 10, pp. 3838-3841, Mar. 2011.
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