
INFORMATION ASSURANCE IN RESOURCE
CONSTRAINT NETWORKS

By

Thomas A. Babbitt

A Dissertation Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: COMPUTER SCIENCE

Approved by the
Examining Committee:

Boleslaw K. Szymanski, Dissertation Adviser

Bülent Yener, Member

Sibel Adalı, Member

Koushik Kar, Member

Rensselaer Polytechnic Institute
Troy, New York

February 2016
(For Graduation May 2016)

c© Copyright 2016

by

Thomas A. Babbitt

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

ACKNOWLEDGMENT . x

ABSTRACT . xi

1. Introduction . 1

1.1 Research Problems . 4

1.1.1 Use of Redundancy to Determine Direct Trust Clues 4

1.1.2 Fusion of Direct and Indirect Trust 4

1.1.3 Secure Routing Using Trust Management 5

1.2 Dissertation Outline . 5

2. Key Terms, Definitions and Variables . 7

2.1 Key Terms and Defintions . 7

2.1.1 RCN Classes . 7

2.1.1.1 Delay Tolerant Networks (DTN) 7

2.1.1.2 Wireless Sensor Networks (WSN) 10

2.1.1.3 Mobile Ad-Hoc Networks (MANET) 11

2.1.1.4 Ad-Hoc Mess Networks 11

2.1.1.5 Vehicular Networks (VANET) 11

2.1.2 Information Assurance . 12

2.1.2.1 Availability . 12

2.1.2.2 Integrity . 13

2.1.2.3 Confidentiality . 13

2.1.2.4 Authentication . 14

2.1.2.5 Non-Repudiation . 14

2.1.3 Trust and Trust Properties . 15

2.1.3.1 Trust . 16

2.1.3.2 Trust Properties . 16

2.2 Variable Continuity . 17

iii

3. Resource Constraint Network Background 18

3.1 Literature Review: Information Assurance in Delay Tolerant Net-
works . 20

3.1.1 DTN Modified Network/Routing Protocols 20

3.1.2 DTN Security Protocols . 23

3.2 Literature Review: Trust Management in Resource Constraint Net-
works . 27

3.2.1 Bayesian Approach . 30

3.2.2 Iterative Trust and Reputation Management Mechanism (ITRM) 31

3.2.3 Trust Thresholds - Trust Management Protocol 33

4. Direct Observations Through Redundacy 35

4.1 Path Probabilities in a Delay Tolerant Network 36

4.1.1 Concept Overview and Assumptions 37

4.1.2 Exact Solution For h = 1 . 38

4.1.3 Approximation For General Case Of 0 < h < n− 1 39

4.1.4 Simulation Results . 40

4.2 Erasure Coding . 44

4.3 Erasure Coding Contribution to Trust Management in Delay Tolerant
Networks . 45

4.3.1 Utility of Waiting For One More Segment 46

4.3.1.1 Cost and Benefit . 46

4.3.1.2 Utility Functions . 47

4.4 EC Trust Management Simulations 48

4.4.1 Erasure Coding Simulation For DTN Module in NS3 49

4.4.2 Trust Management Object In NS3 For Use In The DTN Module 50

4.4.3 Simulation Overview . 51

4.4.4 Simulation Results . 52

4.4.4.1 90% Path Trustworthiness 52

4.4.4.2 60% Path Trustworthiness 53

4.5 Conclusions . 53

5. Trust Management in Resource Constrained Networks – Fusion of Direct
and Indirect Trust . 55

5.1 Trust Management Scheme Overview 57

5.1.1 Direct and Indirect Trust Aggregation 57

iv

5.1.2 Trust: Direct Observations/Clues 59

5.1.2.1 Expanded Path Information 60

5.1.2.2 Trust Updates Using Segment Matching 61

5.1.2.3 Simulation Results for Direct Trust 64

5.1.3 Trust: Indirect Trust Management 66

5.1.3.1 Founding Concepts for Indirect Trust 67

5.1.3.2 Trust Matrix . 70

5.1.3.3 Vector Approximation: Exponential Moving Aver-
age . 74

5.2 Simulation Results . 76

5.2.1 Aggregation Parameters . 77

5.2.2 Matrix Version . 78

5.2.2.1 Fraction of Good Nodes = 90%: 79

5.2.2.2 Fraction of Good Nodes = 75%: 80

5.2.2.3 Fraction of Good Nodes = 60%: 81

5.2.2.4 Conclusions on Variation of Bad Nodes 81

5.2.3 Vector Approximation . 82

5.2.3.1 Indirect Variable β 83

5.2.3.2 Indirect Variable γ 84

5.2.4 Comparison . 84

5.3 Conclusions . 85

6. Trust Based Secure Routing Protocol (TBSR) 86

6.1 Trust Based Secure Routing Protocol (TBSR) 88

6.1.1 Determining Situation Risk in Forwarding Decisions 90

6.1.1.1 Overview . 90

6.1.1.2 Analysis . 91

6.1.2 Assessing Risk in Forwarding Decision 93

6.1.3 Assessing Risk in Decision to Recieve a Message 95

6.2 Message Classification Scheme . 96

6.3 Simulation Comparisons . 97

6.3.1 Simulator Overview . 98

6.3.1.1 Simulation and Network Initialization 98

6.3.1.2 Simulation Execution 99

6.3.2 Simulation Results . 100

6.3.2.1 Comparison with Boundaries and trustFirst 101

v

6.3.2.2 Congestion Analysis 103

6.3.2.3 Effect of Weight on The Number of Message Copies . 104

6.4 Future Work and Conclusion . 105

7. Conculsions and Future Research . 107

7.1 Path Clues . 107

7.2 Managing Indirect Trust . 108

7.3 Trust Aggregation . 109

7.4 Trust Based Secure Routing . 109

REFERENCES . 111

APPENDICES

A. Discreet-Event Simulator . 118

A.1 Principals of Discrete-Event Simulation 119

A.2 Simulation Tool . 120

A.2.1 Network State . 121

A.2.1.1 Initialization . 122

A.2.1.2 Event Types . 123

A.2.2 Event Queue . 123

A.2.3 Event Routines . 123

B. Supplemental Simulation Results by Chapter 125

B.1 Supplemental Simulations: Chapter 5 125

B.1.1 Simulation Results for Indirect Trust 126

B.1.2 Simulation Results for Distributed Trust Management System 127

B.1.2.1 Matrix Version . 129

B.1.2.2 Vector Approximation Version 130

B.2 Supplemental Simulations: Chapter 6 131

B.2.1 Simulation and Network Initialization 132

B.2.2 Simulation Execution . 132

B.2.3 Results . 133

B.2.3.1 Test Case 1: Change in Message Density 134

B.2.3.2 Test Case 2: Change in Node Meeting Density 135

B.2.3.3 Test Case 3: Change in Node Meeting and Message
Density . 135

vi

LIST OF TABLES

2.1 Variable Crosswalk . 17

3.1 Trust Characteristics and Properties of a DTN 28

4.1 Comparison of Truncate and Distribute Method for h = 5 42

5.1 Example Table PA bad for Given Figure 5.3 with pnx = 0.9. 63

5.2 Simulation and Tuneable Parameter Crosswalk 76

6.1 Message Classification . 97

6.2 Comparison of Routing Protocols . 101

6.3 Comparison of wnc . 104

B.1 Supplemental Simulations . 125

B.2 Simulation Setup Matrix Version Indirect Variables 129

B.3 Simulation Setup Vector Approximation Version 131

B.4 Congestion Results . 134

vii

LIST OF FIGURES

1.1 Information Assurance Model . 2

2.1 Discovery Delay ddisc . 8

2.2 Nodes Movement . 10

2.3 Information Assurance Terms . 12

2.4 Trust Overview . 15

3.1 Find Optimal Routing(Lt, p, n, dr) . 23

3.2 Flood Attack Affect on Packet Delivery Ratio 25

3.3 Protocol Run By Each Node . 27

3.4 Trust Figures . 29

3.5 ITRM DTN Trust Figures . 32

4.1 Probability of Using a Path with h Hops 40

4.2 Path with h Hops: Simulation with Approximations 41

4.3 Simulation with Approximation Comparison 42

4.4 Approximation Fit for One Through Four Hops 43

4.5 Ranking of All Nodes According to Their Trustworthiness 52

4.6 Trace of a Given Untrustworthy Node over Time 53

5.1 Node State Diagram . 59

5.2 Trust Distribution Changes . 61

5.3 SegMatch Example . 62

5.4 Node Trustworthiness Ranking pnx = 0.6, 0.9 66

5.5 Storage at Node i . 67

5.6 Effect of ∆t . 69

5.7 Meeting Event Between Nodes k and i 71

5.8 Node k Updates Current Trust Matrix when ∆t Expires 72

viii

5.9 The Effect of αa on Convergence Time 77

5.10 Sim Results: Various Percentage of Good Nodes, αi = 0.5 79

5.11 Sim Results: Bad Node Act Malicious 25% of the Time 80

5.12 Sim Results: Various Percentage of Good Nodes, γ = 0.1, β = 2.0 . . . 82

5.13 Sim Results: Effects of β and γ . 83

5.14 Comparison Between Vector and Matrix, Percent Good = 60% (Bad
Node Flips a Fair Coin to Determine Malicious Action) 84

6.1 Trust Information Sharing as Part of Handshake 89

6.2 Time Multiple for Node k Varying Trust of Node i (AT ki) 91

6.3 Algorithms for Forwarding Decisions in TBSR 94

6.4 Algorithm: Message Reception Decisions in TBSR 95

6.5 Energy, Security and Delivery Time Trade-Off using wnc 104

A.1 Event Occurrence at time ti . 119

A.2 Flow for Discrete-Event Simulation . 121

B.1 Comparing αin, Given n = 40 and pnx = 60 130

ix

ACKNOWLEDGMENT

There are more individuals than I can possibly acknowledge and thank that have had

a positive effect on my life and, in some small way, contributed to this dissertation.

I cannot articulate how much the guidance, teaching, discipline and love shown

by my parents Richard and Joanne Babbitt have molded me and given me the

basic tools for success. I would like to thank the multiple mentors, too numerous

to list, that have guided, taught and shown me an example of success both in

the military and academia. I could not have finished this without the help of my

committee and specifically my academic adviser Boleslaw Szymanski. He always

kept my academic fire within the proper range fan helping to ensure minimal scope

changes, innovative ideas and quality work. Most importantly, I would like to express

my love and eternal thanks to my exquisite wife Bridget and my wonderful children

Grace, Margaret, Eleanor, and Thomas. Your love supported me throughout this

and all of my previous jobs and deployments. This is a testament to your love,

confidence, support and patience. Thank You.

x

ABSTRACT

People are connected through a network of friends and acquaintances, most using

multiple electronic devices to foster those relationships. First responders and the

military work in chaotic environments with the potential for disjointed or destroyed

communication infrastructure and must have the capability to establish ad-hoc net-

works in remote areas. In social, disaster relief, military situations, and sensor net-

works, there is a growing need for a class of Resource Constraint Networks (RCN).

A RCN is a network where some node or network resource constrains the use of

traditional Information Assurance (IA) protocols or practices. This can leave secu-

rity vulnerabilities that are exploitable for nefarious purposes. A Wireless Sensor

Network (WSN) is an example of a RCN where the battery power on a node is

limited. In many WSNs, nodes communicate using a half-duplex system with only

one transmitter/receiver in order to reduce hardware battery consumption. This,

along with small buffers, restricts routing information stored locally and affects in-

formation availability. Processing is at a premium as each computation draws from

the limited battery power, making many traditional encryption schemes costly. A

second example of a RCN is a Delay Tolerant Network (DTN) where nodes are

connected intermittently and ad-hoc. The connection between nodes is ever shifting

as they move. The primary network constraint in a DTN is a lack of end-to-end

routing knowledge. In addition to making routing challenging, the use of centralized

servers is difficult if not impossible. In both a WSN and a DTN, determining trust

between nodes is not trivial.

In all networks, security and privacy of data as it flows from source to desti-

nation is paramount. Information Assurance (IA) has not been properly addressed

in RCNs. This dissertation will focus on five key IA services: availability, integrity,

confidentiality, authentication, and non-repudiation. Due to the nature of a RCN,

it is challenging to provide IA services. Most of the research in RCNs has focused

on availability by proposing schemes to efficiently move data packets while minimiz-

ing delay and device resources such as buffer space, battery power, and processing.

xi

While this research is important, the resulting increase can quickly be lost if the other

IA services such as integrity or confidentiality are not maintained. This dissertation

explores challenges associated with IA in RCNs and proposes a trust management

scheme to defend by exploring clues for use in distributed trust management, inte-

gration of direct and indirect clues to create a distributed trust management scheme,

and introduces a Trust Based Secure Routing (TBSR) protocol for use in a Delay

Tolerant Network.

xii

CHAPTER 1

Introduction

For many people, the idea of not being able to use a cell phone to make calls or

interact with social media is a foreign concept. There are many situations where this

robust communication is either not present, controlled by an oppressive government,

or susceptible to attack or natural disaster. What happens when too many indi-

viduals gather to protest or attend events and they either overwhelm, or a hostile

government shuts down, cell towers? This occurred in Hong Kong where protesters

gathered and overwhelmed cell towers. A number of mobile phone applications that

create an ad-hoc mesh network facilitated the ability to chat. One example of such

application is discussed in [1], which allowed for text and images but maintained

little to no security features. Other than shared usernames, an individual using the

application could not tell who a message came from, the validity of the information

or who else was able to read it; in fact the organizers of the protest explicitly warned

attendees to use aliases since obscuring who was posting to the chat room or sending

a message was the only way to provide any security.

There are military, emergency response, natural disaster, and a number of

other uses for networks that securely perform with limited resources. Delay Toler-

ant (DTN), Wireless Sensor (WSN), Mobile Ad-Hoc (MANET), ad-hoc mesh, and

Vehicular Ad-Hoc (VANET) networks are all examples of a network with a limit-

ing constraint or constraints. These classes of Resource Constraint Networks (RCN)

must provide some level of Information Assurance (IA). Having an adversary modify,

block, or even just be able to overhear communications is potentially catastrophic.

For the military, this could lead to a failed mission. In an emergency response,

this could cost loss of life or expenditure of unnecessary resources that could save

someone else. For a protest, this could result in the arrest or mistreatment of key

leaders.

There are a number of different information assurance models and terms that

frame security problems in a network. The authors in [2] propose a comprehen-

1

2

Figure 1.1: Information Assurance Model

sive model with three foundations: information state, security countermeasures and

security services. Figure 1.1 [2, Fig. 1] visually depicts this model. For security

services, the model explicitly focuses on information availability, integrity, authen-

tication, confidentiality, and non-repudiation. While a valid argument can be made

to include other security services or use different terms [3], the five listed above focus

on making information available to an application/user in a secure manner.

Providing IA to different classes of RCN is a challenge. To ensure defini-

tion continuity a RCN is any network with a resource constraint(s), such that sig-

nificant modification of traditional IA, security, or routing protocols are required

to provide the security services of information availability, integrity, authentica-

tion, confidentiality, and non-repudiation (all key terms and variables are defined in

Chapter 2). Of course this definition is very broad, it encompasses WSN, MANET,

DTN, VANET, and some ad-hoc mesh networks. A DTN, as an example, is broadly

defined as a mobile ad-hoc network where nodes are likely to move and have in-

termittent connectivity with other nodes in the network such that no end-to-end

routing tables are maintained and that the applications on the network are able to

tolerate some level of delay; essentially trading higher quality of service (delivery

rate) for increased end-to-end delay.

To further illustrate the IA challenges in RCNs and using a DTN as an exam-

ple, there are numerous routing protocol proposals to ensure end-to-end transmission

(information availability). Most DTN routing protocols follow a store, carry, and

3

forward approach. When two nodes meet, each node has one of two choices for

each message stored in its buffer, namely, forward or wait. While flooding the net-

work might seem the best approach to ensure delivery, the cost in battery, storage,

processing and other node overhead is steep. Most protocols use a quota on the

number of replications of a packet such as spray-and-wait [4]. Much of the recent

work on DTN network protocols focuses on social-based routing. This concept is

valid because the understanding of how individuals interact and move gives insight

into when the devices they carry will likely be in range and can transfer data pack-

ets [5]. Whatever the approach to determining how many copies of a message or

to which node to forward a message, some measure of trust is required by the node

forwarding to the node receiving the message that it will follow security and routing

protocols. In the social based schemes mentioned above, if a node lies and states it

is closer to the destination, it is more likely to receive one of the limited copies of a

message.

Continuing with the DTN example, authentication and by extension confi-

dentiality, integrity and non-repudiation are challenging without key management.

The ability to provide and check revocation status of signatures is usually managed

centrally. Some operations can be done with a shared key, but one compromised

node compromises the whole network. Additional work on identity based security

[6] might assist in providing confidentiality and integrity. Due to topology changes

over time and the constraints in many RCN classes, to include DTN, any use of

a client server architecture is limited. The use of a valid trust value can allow for

probabilistic authentication.

There are a number of routing and security protocols proposed for use in a

Delay Tolerant Network, which are discussed throughout this dissertation. They

attempt to limit exposure of a message, and/or make routing decisions, based on

some trust component. This dissertation will focus on the use of trust management

in Recourse Constraint Networks specifically looking at DTNs, with proposals for

modification to other network classes, and secure routing. This will use the IA

model in [2].

4

1.1 Research Problems

The main focus of this dissertation is on utilizing trust to make secure routing

decisions in a Delay Tolerant Network. Specifically chosen were three interrelated

research problems which explore that focus. The first is the selection of direct

observation clues for use in distributed trust management. The second problem

is the fusion of direct and indirect observations to best converge on a valid trust

value. The third issue is the use of a valid trust value to make routing and security

decisions.

Trust management in RCNs and DTNs must take into account multiple trust

properties including the fact that trust is dynamic, subjective, context dependent,

asymmetric, and not necessarily transitive [7]. Because of the aforementioned trust

properties, distributed trust management and secure routing in a RCN is a chal-

lenging problem. The three main research topics are listed below.

1.1.1 Use of Redundancy to Determine Direct Trust Clues

A node in a DTN can only observe the actions of another node within the

constraints of it’s hardware. This limits any selected node in the DTN to broadcasts

it can overhear or to which it is a party (sender or receiver of a message). Some of

these observations can be used to determine if another node is acting trustworthy.

An example could be if node i observes node j resend a message with the same

message i.d. but a different data payload. Normally this is done through the use of

some form of redundancy, a good overview of which is found in [8]. In the simple

example listed above, that would be using redundancy of the same message. This

concept directly led to the exploration of path redundancy in a DTN and the idea

to use a modified erasure coding routing protocol to send messages and observe any

modifications to those messages. This is shown to be an effective clue in determining

untrustworthy nodes [9].

1.1.2 Fusion of Direct and Indirect Trust

Not all nodes in a DTN regularly interact. There are isolated nodes and for

any given node i there is a set of nodes with which it will rarely ever come in

5

contact. With a lack of direct observations on a subset of nodes, how can a node

maintain a valid trust value? This explores the fusion of direct observations with

recommendations received from other nodes. This shows that by properly fusing

direct and indirect trust the convergence time decreases and leads to more accurate

trust values when nodes are intermittently untrustworthy [10].

1.1.3 Secure Routing Using Trust Management

This researches the use of trust to make secure routing decisions. If each node

maintains a valid trust value between 0.0 and 1.0, can it securely route a message

from source to destination? Utilizing the distributed trust management results,

decisions of what nodes to forward to or “blacklist” are made. There are multiple

approaches and those are explored. This shows how making routing decisions based

on trust reduces the number of messages sent to untrustworthy nodes and minimizes

the increase in delay time as part of the trade off between security and energy use

versus message delay and delivery rate [11].

1.2 Dissertation Outline

The remainder of this dissertation follows the chapter outline below.

• Chapter 2: Key Terms, Definitions and Variables: This chapter defines

all key terms and variable.

• Chapter 3: Resource Constraint Network Background: This chapter

provides background and some previous work done in Resource Constraint

Networks.

• Chapter 4: Direct Observations through Redundancy: This chapter

discusses in detail direct clue observations for use in determining trust in a

Delay Tolerant Network.

• Chapter 5: Fusion of Direct and Indirect Trust: This chapter explores

the fusion of direct and indirect trust into an aggregate trust value suitable to

making secure routing decisions.

6

• Chapter 6: Trust Based Secure Routing: This chapter utilizes trust to

make secure routing decisions.

• Chapter 7: Conclusions and Future Work: This summarizes the re-

search contributions of this dissertation, proposes future research directions,

and outlines any research challenges.

CHAPTER 2

Key Terms, Definitions and Variables

The problems addressed in this dissertation focus on Information Assurance (IA) in

Resource Constraint Networks (RCN) and providing secure message transmission

from source to destination node. There are many key terms used throughout this

text. This chapter outlines those key terms, definitions and variables. The reference

from where the definition is taken is cited. In some instances, there is additional

discussion about the definition in reference to one or more classes of RCN. If there is

no reference next to a particular definition, it is one I formulated to ensure continuity

throughout. This dissertation references some papers that use older definitions.

An example is in [2] that uses IA terms from the older National Security Agency

publications [12], [13] that were superseded by The National Institute of Standards

and Technology (NIST) Special Publication 800-53, Revision 4 [14]. Definitions

from the new government publication are used when there are differences.

2.1 Key Terms and Defintions

2.1.1 RCN Classes

A Resource Constraint Network is any network with a resource constraint(s),

such that significant modification of traditional IA, security, or routing protocols

are required to provide the security services of information availability, integrity,

authentication, confidentiality, and non-repudiation. There are a number of classes

of RCN to include Delay Tolerant, Wireless Sensor, Mobile Ad-Hoc, Ad-Hoc Mesh,

and Vehicular networks. Due to the majority of the dissertation’s focus on DTN, it

has the most rigorous definition. All other network classes are more briefly defined.

2.1.1.1 Delay Tolerant Networks (DTN)

A DTN is broadly defined as a network where nodes are likely to move and

have intermittent connectivity with the network, such that no end-to-end routing

tables are maintained, and that the applications on the network are able to tolerate

7

8

Figure 2.1: Discovery Delay ddisc

some level of delay. This trades higher quality of service for increased end-to-end

delay. To formalize, a DTN is a wireless computer network in which:

1. Nodes have integrated transmitters and receivers to transfer data. They can

use established protocols such at 802.11 or 802.15.

2. Nodes are mobile.

3. No established end-to-end routing table is maintained. This is due to the

overhead to maintain forwarding tables or the sparseness of nodes causing

significant delay.

4. An application running on node k, requiring network connectivity, is able to

withstand some total end-to-end delay ∆k > dtotal, where ∆k is the application

delay threshold and dtotal is the end-to-end delay for a message M . The value

for ∆k can be days for certain applications that transmit data long distances

through space with a limited number of nodes.

5. The delay at each node is dnodal, which consists of the traditional network node

delays of propagation, transmission, queuing, and processing. In addition, a

DTN specific discovery delay is necessary. The total dnodal = dproc + dqueue +

dtrans + dprop + ddisc.

9

6. The discovery delay, ddisc, consists of a number of elements which include

delays for handshake, idle time, and routing protocol computation. Each

delay is described in detail below.

For a particular node, there are a number of types of delay. The processing,

queuing, transmission, and propagation are calculated similar to any other computer

network [15]. The processing is the time it takes to calculate any checksum and read

the header. The transmission is the amount of time it takes to transmit the bits

through the transmitter and is L/R, where L is the length of the message and R is

the speed at which the transmitter sends one bit. The queuing delay is the amount of

time a message M has to wait while other messages are forwarded. The propagation

delay is the distance the signal travels divided by the speed of the transportation

medium. All four of the delays are hardware dependent, but relatively easy to

calculate given hardware specifications.

The additional DTN discovery delay provides more of a challenge and con-

sists of a delay for handshake, idle time, and routing protocol computation ddisc =

dhandshake + didle + dprot. Figure 2.1 illustrates this delay over time. The idle delay,

didle, is the time it takes for two nodes to move into transmission range. The hand-

shake delay, dhand, is the time it takes to create a connection between two nodes.

This consists minimally of transmitting hello messages and establishing a connection

between the nodes; this is protocol dependent, but if WiFi or bluetooth are being

used, the messages sent to establish a connection are standard. The protocol delay,

dprot, is the time it takes to determine if a given node is closer to the destination

and if there are any packets to forward.

Figure 2.2 shows two separate examples to better explain ddisc. The first case

shown in figure 2.2a occurs when node 1 and 2 transfer a message M and node 3 is

the next hop based on routing protocol. Since node 2 and 3 are not in transmitting

range, a delay didle, occurs until the nodes are within range to communicate. Once

the nodes are within range, there is an additional delay, dhandshake, while the nodes

conduct the protocol specific handshake. The final delay, dprot, is the delay while the

node determines, based on routing protocol, if the newly connected node is closer to

the destination. The second case shown in Figure 2.2b occurs when node 1 and node

10

(a) With dhandshake + didle + dprot (b) With only dprot

Figure 2.2: Nodes Movement

2 are in transmitting range and node 2 and node 3 are in transmitting range. In

that case didle + dhandshake = 0 and the only additional delay is the processing delay

required to check if node 3 is closer to the destination. In this scenario, the delay

mimics a traditional network with some minor additional processing delay. In both

cases, it is assumed that node 3 is closer to the destination and that node 2 would

forward M ; however, if that is not the case, then node 2 must wait for another node

increasing didle.

The delay that is likely to have the biggest variance and be the largest is didle.

In certain space based DTNs, it could be days until nodes are within transmitting

range. This makes using centralized authentication, trust management, and encryp-

tion schemes challenging. Given sufficient battery power, and an assumption that in

most cases didle > 0, nodes can use that time to process distributed authentication,

trust management and encryption schemes.

2.1.1.2 Wireless Sensor Networks (WSN)

There are multiple definitions for a WSN. The authors in [16] present a survey

of WSNs and define one as a network consisting of sensor nodes that are densely

deployed. The authors in [17] state that the nodes are limited and that they work

together to gather data in the environment in which they are deployed. The dif-

ference between an ad-hoc network and sensor network is based on hardware and

routing. Sensor nodes are limited in hardware (buffers, processor power, battery,

and transmission range), more densely deployed, prone to failure and use broadcast

communication protocols such as SHR [18], [19] as opposed to point-to-point such

11

as TCP/IP [15]. This has led to many applications such as military [20], natural

disaster [21] or underwater [22].

2.1.1.3 Mobile Ad-Hoc Networks (MANET)

There are two types of wireless mobile networks according to [23]. The first

is infrastructure based. An example of which is a mobile cell network. In such

networks, there is a large number of cellular devices that are mobile and when

carried by individuals interact with a set of deployed cell towers. When a phone

moves and loses the signal of one tower and gains signal from another, the node

switches communication between towers. The second is an infrastructure-less or ad-

hoc network. A Mobile Ad-Hoc Network (MANET) consists of a number of nodes

that are mobile and configure themselves to communicate as they interact with

other nodes. There are a number of routing protocols such as Ad-Hoc On-Demand

Distance Vector (AODV) [24] for use in MANETs.

2.1.1.4 Ad-Hoc Mess Networks

A good overview of wireless mesh networks is in [25], [26]. Similar to the

section above, a number of nodes dynamically self-configure as a mesh to create a

network. There are typically a number of mesh routers that are relatively static

that connect to a gateway/bridge back to conventional routers. The nodes in the

network typically use traditional routing protocols such as TCP/IP.

2.1.1.5 Vehicular Networks (VANET)

There is a growing body of research on Vehicular Ad-Hoc Networks (VANET).

They consist of a class of networks such as Vehicle-to-Vehicle (V2V), Vehicle-to-

Roadside (VRC) and Vehicle-to-Infrastructure (V2I) [27]. The communication is

done using Dedicated Short Range Communication (DSRC) and IEEE Wireless

Access in Vehicular Environments (WAVE) 802.11p [28]. One issue is that these

VANETs consist of very fast moving vehicles that are in broadcast range for a very

short period of time.

12

(a) Hard Security Terms [3] (b) Soft Security Terms [3]

Figure 2.3: Information Assurance Terms

2.1.2 Information Assurance

There many Information Assurance terms and concepts utilized to describe

key services or methods for providing security in a network. Figure 2.3 shows two

different approaches and categorizes them as hard and soft security for use in a

mobile ad-hoc network [3]. Both Subfigures 2.3a and 2.3b are key to providing

security in any class of RCN. The former set of terms outlines security services used

in traditional networks and is the goal for any RCN. The latter set of terms are more

generic and can describe many of the processes used for security in an RCN. For

example, 100% authentication is not possible in an RCN, nor are end-to-end routing

tables available in many classes. This effects information availability. A scheme that

provides a high quality of service level, by reducing an adversaries chance of receiving

a message, and having a minimal end-to-end delay, could be designated as reliable.

2.1.2.1 Availability

Availability [14] : Availability is ensuring timely and reliable access to, and

use of, information.

For a DTN, there are numerous factors that affect availability to include bat-

tery limitations, interactions with other nodes, the environment, and failure. The

fact that nodes are mobile and that end-to-end routing tables are nonexistent make

availability challenging.

A few examples where an advisory can effect availability in a DTN are denial

of service and black hole attacks. It is not hard to imagine that an adversary can

either insert a malicious node or malicious code that causes that node to advertise

13

itself as the best node to forward a packet, based on the metrics associated with a

given DTN network protocol. All that node has to do is accept the packet and then

discard. The effects of one or more nodes doing this could stifle any packet flow.

The denial of service attack could be as simple as a continuous broadcast from one

or more nodes; while this is not elegant and with time can be quickly found, it is

effective. More subtle versions where the battery is drained are just as effective.

2.1.2.2 Integrity

Integrity [14] : Integrity is guarding against improper information modifi-

cation or destruction, and includes ensuring information non-repudiation and au-

thenticity.

For a DTN, this is ensuring that the data received by the destination is both

accurate and complete. This essentially guarantees that the received data is the same

data that was sent by the source, no more and no less. In many of the applications,

especially military and first responder, modifications to data can be catastrophic

such as sending EMS services to the wrong, or a ghost, location.

A few examples where an adversary can affect the integrity of the data are

man-in-the-middle attacks and false packets. A man-in-the-middle attack can be

conducted through the use of malicious code to hijack a node or by the insertion

of a malicious node. That node then acts as any other normal node, potentially

increasing its ability to receive a packet through modifications of the metrics used

to determine forwarding in a DTN network protocol. Once the malicious node

receives the packet, data modification to the packet payload or header can either

cause corrupt data to arrive at the destination or the packet to be dropped or

improperly routed.

2.1.2.3 Confidentiality

Confidentiality [14] : Confidentiality is preserving authorized restrictions

on information access and disclosure, including means for protecting personal pri-

vacy and proprietary information.

Most users of applications with military, emergency, business, or social media

purposes want their traffic kept private. There are a multitude of attack vectors in a

14

DTN. The first is that most DTN protocols have no method to ensure confidentiality

and any node that simply listens with the proper hardware and software can capture

and store all broadcasts within its range. A more sophisticated adversary can either

steal a node or gain access to a node and transfer the data. The most sophisticated

adversary can conduct a type of man-in-the-middle attack, where the node acts like

any other trusted node, but at intervals transfers all the data packets to an out of

DTN storage location.

2.1.2.4 Authentication

Authentication [14] : Authentication is verifying the identity of a user,

process, or device, often as a prerequisite to allowing access to resources in an

information system.

There are a number of challenges to authenticating each time two nodes are

within range and able to transfer data. The first is that time and data transmissions

are required to perform the authentication process. There are numerous methods

and algorithms for authentication on wired and wireless networks; however, most

involve some centralized authentication server or the sharing of predetermined keys.

This poses an issue as the network moves and new nodes are added to a DTN. While

authentication is a worthwhile endeavor in DTNs, the process of authentication be-

tween nodes would likely occur prior to data transmission and would add a constant

cost to the throughput on a DTN.

2.1.2.5 Non-Repudiation

Non-Repudiation [14] : Non-repudiation is protection against an individ-

ual falsely denying having performed a particular action.

It provides the capability to determine whether a given individual took a par-

ticular action such as creating information, sending a message, approving informa-

tion, and receiving a message. Having processes, procedures and protocols in place

that clearly show what person or computer conducted a particular action makes it

easier to find, isolate, and quarantine those devices, malicious code, people or, in

the case of DTNs, nodes.

15

(a) Trust Properties [7] (b) Trust Relationship [30]

Figure 2.4: Trust Overview

An example in wired networks is the use of digital signatures on an e-mail. If

that signature requires a physical object, such as a common access card with a token

and pin to unlock it, it is difficult for a person to say they did not send the e-mail.

Something similar is possible in DTNs; however, the same issues as authentication

come into play. Most methods of non-repudiation require centralized servers and

the ability to check tokens.

2.1.3 Trust and Trust Properties

There are many definitions of trust. The Cambridge Dictionary Online defines

trust as “to have confidence in something, or to believe in someone” [29]. Adelı

provides a broad definition of trust as, “a relationship between a trustor, who we call

Alice, and a trustee, we call Bob” [30]. Different disciples define trust in a multitude

of different methods. Cho et al. conduct a multi-disciplinary analysis of trust and

its definition in [7]. The authors look at how it is defined in sociology, economics,

philosophy, psychology, organizational management and automatic computing in

industry, and systems engineering. They propose a trust metric consisting of the

following taken directly from [7]: “(1) trust should be established based on potential

risks; (2) trust should be context-dependent; (3) trust should be based on each

party’s own interest (e.g., selfishness) (4) trust is learned (i.e., a cognitive process)

(5) trust may represent system reliability.” Figure 2.4a show the trust properties

proposed for use in a MANET and by extension a RCN [7]. Figure 2.4b shows a

trust relationship between two entities or, in the case of a network, nodes [30].

16

2.1.3.1 Trust

Trust : A value between 0.0 and 1.0 that represents the relationship between

node i and node j with a value of 0.0 signifying no belief and a value of 1.0 signi-

fying complete faith in node j’s ability to successfully follow routing and security

protocols.

This definition of trust is used through out this dissertation. Using a value

between 0.0 and 1.0 allows for local management at each node and use in make

routing and security decisions. This definition is based on the trust properties in [7]

and the trust relationships as discussed in [30].

2.1.3.2 Trust Properties

Due to the nature of a Resource Constraint Network, trust is dynamic. Since

nodes are normally mobile, and in many instances not in constant contact, trust can

and does change over time. So the trust values must change over time to match a

nodes ability to successfully route and provide security. These changes can be due

to malicious activity, selfishness, hardware issues, or isolation.

Trust is subjective because nodes base some trust on the actions of other nodes

and each node has a different picture of the network. If node i trusts node j at a

certain level that does not mean that that opposite is true (incomplete transitivity).

As shown in Figure 2.4b, there is a relationship between each node and that

relationship is “in a specific context” or context-dependent. In most networks, there

are different categories of traffic, some is vital and some is best attempt; Chapter 6.2

proposes a message classification. Depending on message classification, forwarding

is more dynamic and nodes with lower trust might receive a message. In certain

circumstances, emergency response as an example, it might be more important to

get the message through and hence you trust everyone. In others, only highly trusted

nodes should be used.

Finally trust is not necessarily transitive (incomplete transitivity). If node i

trusts node j and node j trusts node k, this does not mean that node i must trust

node k to the same degree or at all.

17

2.2 Variable Continuity

Table 2.1 includes all key variables with description and the first location they

appear in the dissertation. This is not an exhaustive list; however, it ensures that

key variables remain consistent over multiple chapters.

Table 2.1: Variable Crosswalk

Variable Description First Referenced

h
Number of hops that a message traveled; if h = 1
then the message came directly from the source

Chapter 4.1

i, j, k, w Used to reference generic nodes Multiple

p
Probability that the next message segment arrives
unchanged

Chapter 4.1

pnx Percentage of Good Nodes in a network Chapter 4.1
n Number of nodes in a network Chapter 4.1
N The set of all nodes in a network |N | = n Chapter 4.1
hc Critical Hop Count Value Chapter 4.1.3
kec Number of Segments for Message Recreation Chapter 4.2
s Number of Segments a Message is broken into Chapter 4.2
M A Generic Message Chapter 4.3
m A message segment of M Chapter 4.3

IT k
A vector storing the indirect trust information
node k has for all other nodes in the DTN

Chapter 5.1.1

DT k
A vector storing the direct trust information node
k has for all other nodes in the DTN

Chapter 5.1.1

AT k
A vector storing the aggregate trust information
node k has for all other nodes in the DTN

Chapter 5.1.1

αa
Aggregate trust weight between direct and indirect
trust information

Chapter 5.1.1

∆t Time period to wait between trust aggregations Chapter 5.1.1
tvi Node i’s trust vector traded upon handshake Chapter 5.1.3.2
αin “Freshness Factor” for Indirect Trust information Chapter 5.1.3.2
β Weight given AT k Chapter 5.1.3.3
γ Weight given older indirect trust information Chapter 5.1.3.3
tmi Node i’s trust matrix traded upon handshake Chapter 6.1

srk(i,j)(Mx)
“Situational Risk” of node k forwarding a segment
to node i

Chapter 6.1.1.1

nc Number of copies of a m forwarded Chapter 6.1.1.1
wnc Weight given nc Chapter 6.1.1.1

CHAPTER 3

Resource Constraint Network Background

This dissertation explores Information Assurance in Resource Constraint Networks.

There is a growing body of research about routing, security, and information as-

surance in multiple classes of Resource Constraint Networks. This chapter gives an

overview of current research in a number of key areas: routing in Delay Tolerant

Networks (DTNs), trust in a RCN and trust management in DTNs.

Because there is a lack of end-to-end routing tables in most wireless sen-

sor network and DTN routing protocols, redundancy allows for successful message

transmission. There are many definitions of redundancy; Curiac et al [8] define

redundancy in a WSN in 13 different sub-areas. Many of the definitions are sensor

network specific such as the ability to sense something from more than one sensor

or estimate something based on data from neighboring nodes. The definitions listed

below are taken from [8]:

1. Redundancy: the provision of additional or duplicate resources, which can

produce similar results.

2. Spatial redundancy: the possibility to obtain information for a specific location

from different sources.

3. Temporal redundancy (time redundancy): performing a specific action more

than once, skewed in time, followed by checking the results in order to increase

reliability.

4. Information redundancy: the use of redundant data, e.g. extra bits, to recon-

struct lost information.

While the authors in [8] were specifically focused on WSNs, the idea that using

redundancy in networks to maintain information availability is not new. Telecommu-

nication companies, businesses, and governments use redundancy in designing net-

works to ensure high availability. Usually this is determined as Ao = (total time−

18

19

down time)/total time. Many companies sell services that guarantee a certain level

of up time such as “five 9s” or 99.999%. The only way to ensure high network

availability in a traditional packet-switched network is to have hardware and phys-

ical path redundancy. This redundancy is required for both the network hardware

(routers, switches, and cabling) as well as the servers that run the required services

such as mail, web, or database. There is also a need for redundancy of data locally

using a RAID/NAS and globally using some technique for distributed dispersal of

information [31]. For military communication planning, the acronym PACE (pri-

mary, alternate, contingency, emergency) is used to ensure multiple communication

methods are available for each mission. For all examples above, redundancy is used

to ensure availability of information.

Resources in a RCN by definition are constrained. For example, in a WSN,

the inability to add a second transmitter on a node due to battery constraints effects

routing protocols and information availability, because a node can only broadcast

or receive at any given time (simplex channel) [18], [19]. This makes the use of

redundancy for routing [4], [32]–[35], malicious node detection [36]–[41], and caching

in a DTN [42] paramount.

The background information presented here reinforces the need for distributed

trust management in a Delay Tolerant Network. It also validates the relevance of

the three main research problems explored in subsequent chapters: direct clues

(Chapter 4), fusion of direct and indirect trust (Chapter 5) and trust based routing

(Chapter 6). Section 3.1 provides background on Information Assurance in a Delay

Tolerant Networks. Specifically, it gives an overview of routing and other protocols

that provide availability, and attempts to use the best nodes as part of any given path

from source to destination. Trust is used as a metric for determining which node

is best in a number of algorithms. Section 3.2 provides background on distributed

trust management in Delay Tolerant Networks. There are three approaches outlined

in [43]–[45] that are further explored below. Each one uses direct and indirect clues

and aggregates those values to manage trust. While only the final example discusses

specifics on how to route, they all discuss how their respective trust values can be

potentially used for security and routing.

20

3.1 Literature Review: Information Assurance in Delay Tol-

erant Networks

Redundancy in a DTN is used for routing and malicious node detection in

order to increase the availability of information. There are numerous papers that

discuss both topics, with two main focus points. The first category uses redundant

information to modify a routing protocol to provide additional IA security services

or properly replicate the data through trusted nodes [33]–[35]. The second approach

is to implement an additional protocol/scheme to assist with IA in order to identify

adversarial nodes or defend against a specific attack vector [36]–[41].

3.1.1 DTN Modified Network/Routing Protocols

There are a number of DTN routing protocols found in literature. Each pro-

tocol fall in the spectrum between flooding the network and utilizing limited copies

of a packet with some replication/forwarding process when nodes meet. There are

trade offs between delivery and node resources. Due to the nature of DTNs, it is

challenging to ensure delivery, data integrity, and confidentiality.

Three network protocols that attempt to provide information assurance are

found in [33]–[35]. Secure Multi-Copy Routing proposes a modification to multi-

copy DTN routing protocols using trusted nodes first in an attempt to reduce the

probability of data compromise [33]. Erasure Coding is a protocol that splits packets

into smaller subpackets through a coding scheme obscuring, and providing a method

to ensure the integrity of, the data when it is received by the destination node [34].

CRISP proposes a routing protocol that uses a credit based scheme to create an

incentive for a node to act truthfully [35]. All three provide some level of information

assurance by increasing the availability of information. More specifics about erasure

coding is in Chapter 4.2. Below is a more formal analysis for multi-copy routing. It

discusses the adversarial model, algorithm, and IA analysis for multi-copy routing.

Secure Multi-Copy Routing:Adversarial Model: Bulut et al. use an

unspecified malicious node adversarial model [33]. They explicitly state concern for

an approach that attempts to determine, isolate, and bypass a node conducting a

specific malicious behavior. Instead, they propose to utilize the trust between nodes

21

and a collective ability to mistrust an adversarial node to isolate and bypass that

node. Additionally, they only consider a message or packet as delivered if, and only

if, it does not pass through an adversarial node.

The protocol proposes a routing method using trusts to more efficiently route

traffic in a compromised DTN [33]. The proposed scheme is an add-on to multi-copy

DTN routing protocols; an example of which is Spray and Wait [4]. The proposal

creates a two period routing approach with different configurable forwarding based

on trust levels.

Secure Multi-Copy Routing: Protocol Overview: The authors define

secure delivery as a message being delivered to its destination if, and only if, the

message is received by the destination before the deadline and before any attacker

receives it [33]. In multi-copy DTN routing, once the destination receives the mes-

sage, it sends out an acknowledgement to inform other nodes that might still have

the message in a buffer, to delete it. Even if the message is received by the des-

tination, a node in the network can still forward the message to an attacker, if it

does so prior to receiving an acknowledgement of successful delivery. Any protocol

wants to limit the number of copies while maximizing throughput potential. The

theoretical limit, disregarding trust, can be found for Spray and Wait [46] as shown

in Equation 3.1 [33].

Lmin = arg min
{

1− e−λLtd ≥ dr
}

=

⌈
ln (1− dr)
−λtd

⌉
(3.1)

The goal of secure routing is to deliver a packet to the destination in a given

time without it being read by a malicious node. This scheme attempts to accomplish

this by sending the message to only trusted nodes in the first attempt. While in the

second spraying period, sending to more risky nodes is allowed. Trusted nodes are

those with a trust probability greater than pt. If the sending node meets an attacker,

it forwards the message to that adversarial node with a probability of p = 1− pt.
Secure Multi-Copy Routing:Algorithm: Only the trusted nodes are used

in the first attempt to transmit the message from the source to the destination. If

22

that fails, because the number of trusted nodes is insufficient to transmit the message

in a timely manner, then the algorithm in Figure 3.1 [33] is used to determine the

optimal number of untrusted nodes to use. The authors prove a number of theorems

necessary for the algorithm to function properly. They are taken from [33] and listed

below.

1. For a given dr, td, λ (rate of exponentially distributed intermeeting time be-

tween nodes), n (number of attackers), and p = 1− pt, the minimum number

of copies that must be distributed to the network is:

Lmin =

⌈
ln (1− dr (pn+ 1))

−λtd (pn+ 1)

⌉
(3.2)

2. When there are Lt trusted nodes carrying the copy of the message in the first

period and Lu partially trusted nodes with the probability p = 1−pt that start

to carry a message copy in the second period (making in total La = Lu + Lt

nodes with a copy), to achieve a given dr (with no td), the start of the second

period, t2, must be larger than a constant, tmin2 , where:

tmin2 =
−ln

(
(1− dr)

(
La
npLu

+ 1
))

λLt
(3.3)

3. For any given delivery deadline, Lu and Lt, the optimal value of t2 that gives

the maximum delivery rate by td is topt2 , where:

topt2 = td +
ln
(

LtnpLu
La(La+npLu−Lt)

)
λ (La + npLu)

(3.4)

4. For a given delivery deadline, td, and desired delivery rate, dr, the optimal

number of untrusted nodes that maximize the overall routing cost which still

achieves dr by td can be computed using the algorithm in Figure 3.1.

Secure Multi-Copy Routing: IA Framework Bulut et al. proposed

scheme has merit, utilizing trusted nodes to transfer messages and only when that

fails will it use untrusted nodes. This will isolate and bypass malicious nodes on the

23

1 Lu = 1

2 Find topt2 (Lu) from Eq. 3.4
3 while Fx2 < dr do
4 Lu = Lu + 1

5 Find topt2 (Lu) from Eq. 3.4

6 if Lt + Lue
−λLttopt2 > dr then

7 Find exact toptexact2 by binary search in
⌊
topt2 (Lu) , td

⌋
8 opt Lu = Lu

9 optcost = Lt + Lue
−λLttoptexact2

Figure 3.1: Find Optimal Routing(Lt, p, n, dr)

network; however, there are a couple of assumptions made that cause issues. The

first is that trust for each node is universally assumed, challenging in a DTN. As

in all networks, trust can change over time, especially if a node is compromised. A

scheme in which to dynamically update trust values in a distributed manner was

identified as a potential future problem. One example of this is presented in [47].

3.1.2 DTN Security Protocols

There are a number of additional add-on security protocols proposed to assist

in finding or determining adversarial nodes. They are being classified as security

protocols because many work irrespective of the underlying network protocol being

used. Some require a class of routing protocol such as single or multi-copy and

most were tested given a single layer III protocol. This could cause issues when

attempting to port to other protocols but theoretically, with modification, could

work with any underlying network protocol.

MUTON [36] uses a number of ferry nodes that move through an area where a

DTN is present and take into consideration the transitive property of the network.

These nodes calculate the packet delivery probability of each observed node and

correlate that to the expected delivery probability to find potential adversarial nodes.

SPoofing by REplica ADjustment (SPREAD) [37] is a scheme to prevent

“black hole” attacks. The goal of the scheme is not to stop, detect, nor isolate

a node that is spoofing an address, but make the network robust enough to bypass

24

and still have the data packet arrive. It does so by slowly increasing the replication

factor (number of packets) sent through the network. If there are enough malicious

nodes, the number of packets slowly increases until it mimics endemic routing.

The authors in [39] propose a method for finding a captured node in a DTN.

An analysis modeling the node capture is found in [48], [49]. The authors in [39]

specifically focus on real world modeling to determine when a node has likely been

captured. These models are largely based on the amount of interaction between

nodes. If the node is isolated or only sees a couple of nodes all other nodes decay its

connectivity until a threshold is met and the node is “blacklisted” on the network.

The goal of all of the protocols is to guard against a category of attacks such

as spoofing, flooding, or non-responsiveness. While there is not a single solution

proposed, each one has merit and can be used for further research.

Claim-Carry-and-Check: Adversarial Model: Li et al. use an adver-

sarial model where a number of compromised nodes attempt to flood the network

[38]. The authors describe two types of flood attacks: the first is a packet flood

attack, where an adversary sends out numerous packets to attempt to use the bat-

tery and buffer capacity of other nodes. The second is a replica flood attack, where

an adversary or selfish node floods the network with replica packets. The authors

acknowledge that authentication could help, but it does not help against insider

threats.

To counter the threat model, the authors propose a scheme to defend against

flood attacks in a DTN [38]. They propose a Claim-Carry-and-Check approach,

where each node claims the number of times that they either sent or replicated a

packet during a configured time frame. This can be checked in a distributed manner

with some probability. Because the network is sparse, a selfish node might attempt

to send a packet multiple times to increase its chances for arrival.

Claim-Carry-and-Check: Protocol Overview: The Claim-Carry-and-

Check scheme relies on the use of rate limiting proposed in [50]. Each node has a

limit on the number of packets that can be generated and the number of packets

that it can replicate in a specified time frame. Each node is responsible for counting

itself and each packet is appended with the count. The only way for a node to go

25

Figure 3.2: Flood Attack Affect on Packet Delivery Ratio

over the count during a time period is to lie. With some probability, a second node

will receive two different packets with the same count. This indicates that a node

is a potential adversary.

The authors break DTN routing protocols into three categories. Single copy

algorithms that forward a copy and then delete it. Multicopy routing where the

protocol sprays a certain number of copies. Propagation routing when the node

finds the appropriate node to forward to by algorithm and replicates, but keeps its

own copy.

Based on the three types of routing protocols, the authors conducted simu-

lations to determine the effect of flooding attacks on DTNs. The specifics can be

found in [38]. The overall results in Figure 3.2 [38] show that all three routing

protocol types are vulnerable to packet flooding attacks, and single and multicopy

protocols are susceptible to replica flood attacks.

Claim-Carry-and-Check: Algorithm The Claim-Carry-and-Check scheme

detects an attacker by attempting to determine if a node violates their rate limit

L. There are multiple ways to determine L proposed in [38]. Ideally, it would be

optimized. If it is too short, then it will not find an adversary and if it is too long,

then it could slow legitimate network traffic. Since no node can monitor all traffic

on the network, [38] proposes a scheme where the node counts itself and shares that

with other nodes by claiming the correct count. Receiving nodes store the claims

and can use them to determine if a node is being truthful. In order for an adversarial

node to replicate or send more packets than authorized in L, it must lie.

There are two types of attacks that Claim-Carry-and-Check focus on; packet

flood and replica flood. Each one requires a different header appended to a network

26

packet. The packet claim count (P-count) is the number of packets a node i generates

in time window T and defends against packet flood. The transmission claim count

(T-count) is the number of times node i replicates a packet in time window T and

defends against replica attacks.

When a source node S sends a new packet m, it generates a P-claim and

appends it to m. If that same node needs to forward a packet, it generates a T-

claim and appends that to the packet (see lines 2-5 in Figure 3.3 [38]). After S

replicates the packet the number of times authorized by the routing protocol, it

should delete the packet.

When a node receives a packet from another node, it conducts a number of

checks. The first check is to verify the signature. The second checks the P-claim

and T-claim against the count. If either fails, the packet is dropped (Figure 3.3,

line 7-8). The node then checks the P-claim and T-claim against previous packets

received. If there is a discrepancy, then the sending node is tagged as an attacker

and put on a blacklist that is propagated throughout the network (Figure 3.3 lines

9-14). If neither of the first conditions are met then the packet is accepted and

stored along with the new P-claim or T-claim.

Claim-Carry-and-Check: IA Framework Li et al. solve for the theoretical

upper and lower probability of detecting an adversarial node based on the number of

timesK that a node sends or replicates a message above the threshold. They conduct

a number of experiments using multiple routing protocols. Based on protocol and

K, the detection rates vary. With a higher K, the detection is higher. This makes

sense because the attacker is pushing more packets into the network for a larger

effect. When K is lower the detection is lower, but so is the effect by the attacker.

There are a number of benefits to this scheme: the first is that all nodes must

identify themselves and sign each packet. This ensures integrity and non-repudiation

and allows for blacklisting when a node attempts to lie about the number of replicas

or packets sent. There is no method for ensuring confidentiality. All nodes within

broadcast range can hear the exchanges.

While the idea of a blacklist is a good one, there is no discussion about using

that as a means of denying one, or all nodes, service. Since nodes are in and out

27

1 Metadata (P-claim and T-claim) exchange and attack detection
2 if Have packets to send then
3 For each new packet, generate P-claim
4 For all packets, generate their T-claim and sign them with a hash tree
5 Send every packet with the P-claim and T-claim attached

6 if Receive a packet then
7 if Signature verification fails or the count value in its P-claim or

T-claim is invalid then
8 Discard this packet

9 Check the P-claim against their locally collected in the same time
interval to detect inconsistency

10 Check the T-claim against those locally collected for inconsistency
11 if Inconsistency is detected then
12 Tag the signer of the P-claim (T-claim, respectively) as an attacker

and add it into a blacklist
13 Disseminate am alarm against the attacker to the network

14 else
15 Store the new P-claim (T-claim, respectively)

Figure 3.3: Protocol Run By Each Node

of contact, an attacker can claim that all or some of the nodes it encounters are

adversaries and have other nodes blacklist them. If that is done to even a small

portion of the network, it can stop all network traffic.

3.2 Literature Review: Trust Management in Resource Con-

straint Networks

There is a number of ongoing research efforts in Resource Constrained Net-

works to establish useful trust mechanisms. Most of the efforts are in Delay Tolerant

and Wireless Sensor Networks. These focus on using directly observable metrics in

combination with referrals, references, or reputation to create a distributed trust

management scheme where each node maintains trust for all other nodes in the

network.

As in situations where people interact, trust of person A in person B is based

on observed actions of person B and what mutual “friends” say about person B.

28

Table 3.1: Trust Characteristics and Properties of a DTN

Characteristic Properties

1) established based on potential risks 1) dynamic
2) context-dependent 2) subjective
3) based on nodes interest 3) not necessarily transitive
4) learned 4) asymmetric
5) may represent system reliability 5) context-dependent

A good overview of trust definitions and metrics is presented in [7] and [30]. The

authors outline how nodes interact and propose a number of characteristics and

properties (Table 3.1 [7]). In a RCN, typical trust verification methods do not

function efficiently and for some constraints do not work at all.

Nodes in RCNs, like people, make trust decisions based on direct and indirect

observations as stated above. Under this set of conditions, the ability to trust at

the proper level leads to better results. Figure 3.4a displays the level of trust node

a has in node b with values ranging from [0.0,1.0). In this figure, the dash line is

the trust given by node a when it is equal to the trustworthiness of node b. While

in the example they are equal, the graph illustrates two key areas. The areas above

and below where they are equal are represented by point a and point b respectively.

Point a shows where node a’s trust level for node b is lower than its trustworthiness.

This can have negative effects on the network leading to node a not forwarding a

message to node b (even if b is closer to the destination) because of trust. Point b

shows where node a puts too much trust in node b. This can have the obvious effect

of passing messages to malicious nodes. Overall Figure 3.4a illustrates the necessity

to converge, as quickly as possible, on a trust value node a has for node b that is as

close to the actual trustworthiness of node b.

Risk in the U.S. Army is codified in ATP 5-19, Risk Management [53]. The

Risk Management (RM) principles consist of: integration of RM into all mission

and operation phases; making risk decisions at the appropriate level; accepting no

unnecessary risk; and applying RM cyclically and continually. Mission Command,

ADP 6-0 [54], explicitly lists “Accept Prudent Risk” as one of the six principles of

29

(a) Trust Level [7], [51] (b) Risk and Trust [7], [52]

Figure 3.4: Trust Figures

mission command. Figure 3.4b shows trust vs. stakes and the risk to the network. If

the stakes are low the nodes with lower trust can be utilized without a large increase

in risk; however, if the stakes are high, the opposite holds.

Combining the two into an integrated trust management scheme is the source

of many new research endeavors. There are three schemes proposed in literature

that integrate direct and indirect node observation and use some of the principles

listed in Table 3.1 to manage trust in a DTN. In [43], the authors use a Bayesian

approach to determine the probability that a node is behaving well. In [44], [55], the

authors creates a bipartite graph and find outliers; the scheme removes nodes with

probabilities outside of a certain value in order to converge on trust values of other

nodes. A third approach, outlined in [45], uses both direct and indirect metrics

and determines good versus bad encounters over four categories to aggregate a trust

value.

In general, there are a few key points that are consistent through all three of

the proposed trust management schemes discussed below. They all become part of

the proposed scheme in Chapter 5. The first is that each uses a direct and indirect

trust component based on positive and negative interactions. Some do not say how

those clues are obtained, but they use them in the data fusion for an aggregate

trust. The second is that each attempts to exclude outliers. The third is that they

decay older interactions and trust associated with those interactions. Finally, they

30

produce a trust value. Not all produce a trust value between 0.0 and 1.0, but they

can be normalized to such a value. The main difference between each is what clues

they use and how the trust values are integrated.

3.2.1 Bayesian Approach

Denko et al. propose a Bayesian learning approach to determine the trust

probability of a given node in a network [43], [56]. The probabilistic trust scheme

uses both direct and indirect trust computations. It takes into account the observed

actions, positive and negative, and updates trust levels for each node.

Equation 3.5 [56] is used to calculate the direct trust between node A and node

B. Each node maintains two parameters about every other node. The number of

good interactions is ns and the number of negative interactions is nu. The authors

use α = ns + 1 and β = nu + 1 for the beta distributions. They also assume that

complete information cannot be collected. The authors compute a trust value using

the beta distribution as shown below.

TA(B) = E(f(x;α, β)) =
α

α + β
=

ns + 1

ns + nu + 2
(3.5)

Modifying for indirect trust computation is done using Equation 3.8 [56]. The

authors calculates indirect trust using a combination of observed interactions and

recommendations from other nodes. Assume that a node has i recommendations

for another node from k different sources. The total number of satisfactory recom-

mendations is nrs =
i∑

k=1

nks and unsatisfactory recommendations is nru =
i∑

j=1

nju. The

authors define α and β as follows.

α = ns + nrs + 1 = ns +
i∑

k=1

nks + 1 (3.6)

β = nu + nru + 1 = nu +
i∑

j=1

nju + 1 (3.7)

Using recommendations modifies Equation 3.5 and makes the updated trust value

31

for TA(B) as follows.

TA(B) =
ns + nrs + 1

(ns + nrs + 1) + (nu + nru + 1)
=

ns +
i∑

k=1

nks + 1

ns + nu +
i∑

k=1

nks +
i∑

j=1

nju + 2

(3.8)

Because recommendations can be false, the authors add a threshold for exclud-

ing or judging recommendations. They first exclude recommendations from nodes

suspected of bad behavior and then find the average trust using recommendations

from valid sources. A threshold is created for trust difference. Each recommendation

is used to compute the trust and if |Tave(B)− TR(B)| > S then the recommendation

is thrown out and Tave(B) is regenerated. This is done until no recommendations

are outside of the threshold. In theory, this would remove all of the false recommen-

dations.

Since a history of interactions and recommendations is maintained for a time

period, there is a decay of weight given to each as time progresses. Older rec-

ommendations receive a lower weight than newer recommendations. Integrating

judging and decaying weight of recommendations and interactions over time pro-

duce a more comprehensive scheme. The authors do simple simulations in [56] and

add in a confidence component and further simulations in [43].

3.2.2 Iterative Trust and Reputation Management Mechanism (ITRM)

Ayday et al. propose a Trust and Reputation Management Mechanism (ITRM)

in [44] and an iterative algorithm based on ITRM for DTN trust management in

[44], [55]. They specifically state their concern for a Byzantine (insider) attack and

define malicious nodes as those that drop, modify, or inject packets into the network

to deny or disrupt network operations. ITRM is a graph based iterative algorithm

with two main goals: computing the reputation of nodes that send a message (author

designate service providers) and determining the trustworthiness of a recommending

node.

The first step for ITRM is to complete a bipartite graph between Service

Providers (SP) and nodes that Recommend (R). Each rater is a check vertex and

32

(a) ITRM Example [44], [55] (b) Feedback mechanism [44], [55]

Figure 3.5: ITRM DTN Trust Figures

each SP is a bit vertex. The authors in [44] compute an initial value of each bit-vertex

j using the following equation.

TRj =

∑
i∈A

Ri × TRij∑
i∈A

Ri

(3.9)

The set A, “is the set of check-vertices connected to the bit-vertex j [44].”

An inconsistency factor is computed for every check-vertex i as follows, “where

Υ is the set of bit vertices connected to the check-vertex i and d(·, ·) is a distance

metric used to measure the inconsistency [47].”

Ci =

[
1

|Υ|

]∑
j∈Υ

d(TRij, TRj) (3.10)

If the inconsistency is greater than τ for any check-vertex(s), the node with the

largest discrepancy is “blacklisted” and all its ratings are deleted. Equation 3.9

is then recalculated minus the “blacklisted” check-vertex and the inconsistency re-

calculated using Equation 3.10 [44]. The inconsistencies are checked again. This

process continues until no check-vertex inconsistency is greater then τ . Figure 3.5a

[44] shows an example of this iterative process.

The trust management scheme for DTNs proposed in [44] transmits packets

33

using a Bloom filter [57] and some sort of ID-Based Signatures (IBS) [58] to secure

direct connections between nodes. Figure 3.5b illustrates the feedback process for

determining good versus bad entries in the rating tables used in the ITRM process.

The example shows three nodes A, B, and C. In this case, A judges the actions of

B. A sends a packet to B which is subsequently sent to C. Later, when A meets

C, it checks on the status of the message sent. It then can make a determination

on the actions of B.

3.2.3 Trust Thresholds - Trust Management Protocol

Chen et al. in [45] propose a trust management and routing protocol that uses

both direct and indirect observations similar to the other two schemes mentioned

above. The authors in [45] use the terms QoS trust and social trust. The former

includes two metrics “connectivity” and “energy” and the latter “unselfishness” and

“healthiness.” A nodes trust level is a real number in the range [0,1], where 1 is

complete trust and 0 is no trust. The trust value node i has for node j at time t is

computed as follows.

Ti,j(t) =
all∑
X

wX × TXi,j(t) (3.11)

The value X is one of the four aforementioned trust properties (connectivity, en-

ergy, unselfishness, and healthiness). The weight given each is wX and the sum

of all weight is 1. The weight values can be application or network configuration

dependent.

To compute a trust value over time for one trust property both direct and

indirect trust are used. To evaluate Ti,j(t), the authors in [45] use the following

notation: “node i is the trustor, node j is the trustee, node m is a newly encoun-

tered node, and node k is a recommender.” The trust value is calculated using the

following:

TXi,j(t+ ∆t) = βT direct,Xi,j (t+ ∆t) + (1− β)T indirect,Xi,j (t+ ∆t) (3.12)

The value for β is in the range from [0,1) and is the significance or weight given to

direct versus indirect observations. Each different trust property has a different β to

34

help ensure proper tuning of trust values. Each encounter with another node triggers

a trust update. It is either direct, if the encountered node is j in Equation 3.12 [45],

or indirect if it is not.

If node i encounters node j and there is enough time for data to be transmitted,

and additional encounter(s) to occur, the trust is updated else there is a small

decay of the last direct trust level. Each trust property has a different method for

updating trust based on the number of encounters, willingness to forward a message

for another node, or battery power levels. Since this is a direct connection, the

indirect trust from node i to node j is decayed.

If node i meets node m then indirect trust is updated for node j. Again if

the time frame is too short to transfer information, the current indirect trust level

decays. Assuming that node m gives recommendations that are within a threshold

they are used to update the indirect trust. This process takes into account the

current trust level that node i has for node j.

Once the direct and indirect trust is updated for each trust property, Equa-

tion 3.11 [45] is used to aggregate the trust for each node. The authors in [45]

conducted an analysis to determine the best weights for each of their trust proper-

ties given the number of malicious nodes in the network.

CHAPTER 4

Direct Observations Through Redundacy

Messages are passed from source to destination in a Delay Tolerant Network (DTN)

based on which nodes meet and trade messages in a given time frame. Those

meetings, and what a node can observe by monitoring broadcasts of other nodes

while not transmitting, limit the type and number of clues for use in detecting

malicious nodes. As previously defined, trust is a value between 0.0 and 1.0 that

represents the relationship between node i and node j with a value of 0.0 signifying

no belief and a value of 1.0 signifying complete faith in node j’s ability to successfully

follow routing and security protocols. In order to maintain that value, some clue or

clues, directly observed by a given node are necessary to modify trust up and down

based on other nodes behavior. Ideally, if a node successfully follows the routing

protocols and successfully passes a message from source to destination, it should

receive an increase in trust and if not, a decrease.

If node i sends a message to node k, and then later observes node k send that

same message to node j, and the payload from node k to node i does not match, then

trust can be modified. If the source sends a message and then later overhears the

same unmodified message, then trust can be modified for both the initial receiving

node and the node that forwarded the message. If the source receives a proper

acknowledgement from the destination, then it can increase trust to the node that

was the first hop on the path. Common in all of these examples is that only those

nodes directly observed cause changes in t rust. Each observation occurs over time

(time delay) and normally from a different locations/perspectives in the network

(nodes moved).

A DTN does not maintain end-to-end routing tables, thus making it chal-

lenging to ensure Information Assurance. Each routing protocol attempt to ensure

Portions of this chapter previously appeared as: T. Babbitt and B. K. Szymanski, “Trust
management in delay tolerant networks utilizing erasure coding,” in 2015 IEEE Int. Conf. on
Commun., Ad-hoc and Sensor Networking Symp., London, United Kingdom, Jun. 2015, pp. 7959-
7965.

35

36

availability of information, by prescribing when and how a message is forwarded,

when two nodes meet as they move in a DTN. Any message from a source node

to a destination node will take redundant paths in space and time. Chapter 3 in-

troduced redundancy in a WSN and provided multiple definitions that apply to a

DTN. The two most applicable are spacial and temporal redundancy. These led to

the idea of using path redundancy, through erasure coding, as a directly observable

clue to be used as a metric to assist in distributed trust management. The scheme

takes advantage of the concept of using path (spacial) redundancy and information

redundancy associated with erasure coding and a checksum to modify trust levels

that are then updated over time (temporal redundancy).

When the source needs to send a message to the destination, it appends a

checksum onto the message and then uses erasure coding to break that message into

segments. All segments are sent through the network and by design and redundancy

take multiple paths to the destination. Based on what arrives at the destination,

trust decisions are made based on whether or not the message can be recreated. This

chapter explores a number of key concepts in order to use path information as a clue

for direct trust. The first is to find the probability that the next segment to arrive

at the destination is good (Section 4.1). This is required for the cost and subsequent

utility functions that determine if it is better for the destination to wait, or request

that a given message is resent, when a bad message segment arrives (Section 4.3.1).

The second concept is an overview of Erasure Coding (Section 4.2). The third idea

is a complete description of how path information, gleaned by using erasure coding,

is utilized as a clue including the aforementioned utility functions proposed for

destination wait versus message resend (Section 4.3). Finally, section 4.4.1 provides

simulations results for the simple trust management scheme proposed for use with

path information as a direct clue.

4.1 Path Probabilities in a Delay Tolerant Network

As discussed in the introduction and in Chapter 3.1, redundancy is used for

information availability for routing and for identification of malicious nodes in lim-

ited scenarios. Most schemes and protocols for a DTN do this in a distributed

37

manner. Each node only has access to information or clues that it directly observes.

Epidemic modeling is used in biology to show how disease spreads, in computer

science to show how viruses spread, and in social settings to show how ideas spread.

A good overview is found in [59]. In reviewing DTN literature, there was no clear

way of determining, with a definitive probability, that a given packet is intact (not

modified, read, or in some other manner tampered with) which, in a fashion, is

finding the probability that a disease spreads along the fastest paths from node i

to node j. Furthermore, given a value for the percentage of malicious nodes in the

network, is there a way to determine the probability that a packet arrives at the

destination intact? Doing so is protocol dependent and requires some assumptions

about a DTN.

4.1.1 Concept Overview and Assumptions

Assuming that node x is the destination, and at time t has estimated trusts

for all other nodes in the network, then the average of those trust values is pnx.

Let pnx denote the percentage of good nodes in the network. Let p represent the

likelihood that the next packet to arrive at the destination is good, and is equal to the

probability along all likely paths from source to destination. In section 4.3.1 below,

this model will be used to determine the utility of waiting for another segment.

The rest of this section discusses how to approximate p using the following

equation

p =
n−1∑
h=1

f
(n)
h × (pnx)

h (4.1)

where n is the number of nodes in the given DTN and f
(n)
h is the fraction of paths

with h hops from the source to destination a segment likely will take. The essential

for p value of f
(n)
h is routing protocol dependent; however, using a simplified and

restrictive routing protocol allows for a reasonable approximation for p. In this

simple protocol, each node maintains a value, ti,j from 0.0 to 1.0 that equates to the

frequency of inter-meetings between nodes i and j. Assume that ti,j = tj,i. Without

loss of generality, assume below that the source is node 1 and the destination node

n. The node currently holding the message segment, i, will pass it to met node j

only if j is the destination (j = n) or if ti,n > tj,n. Also assume that the network

38

is fully connected, and if node j does not meet the destination then tj,n = 0, so it

will never be selected as an intermediate node. This protocol approximates well the

number of hops expected in epidemic routing as it trades number of hops for time

of delivery. The fastest packet reaching the destination in epidemic routing is likely

to traverse the route that segments in this protocol travel.

Let edge (i, n), where 1 ≤ i < n has weight 0 ≤ xi ≤ 1. According to the

routing protocol, an intermediate node 1 < i < n is eligible for passing a message

segment (in short, eligible), if xi > xj, where j is the node currently holding the

message segment. Below outlines our approximation method for determining the

probability of a path having the given hop count and the number of intermediate

nodes n− 2 using the simple routing protocol above. This is used to determine f
(n)
h

in equation 4.1.

Let p
(n)
h denote the probability that a message segment arrives at the desti-

nation along a path with h or fewer hops. Of course 0 < h < n and p
(n)
n−1 = 1

because no message segment is passed to the same node twice. Hence, values of

n > 2 are considered. It is easy to show, by induction, that the value of interest,

f
(n)
h , is defined by the relevant probabilities as

f
(n)
h = p

(n)
h

h−1∏
j=1

(1− p(n)
j) = p

(n)
h (1−

h−1∑
j=1

f
(n)
j) (4.2)

Consequently, once p
(n)
h ≈ 1 the fraction of paths longer than h is negligible.

4.1.2 Exact Solution For h = 1

There are n−2 intermediate nodes, each with a uniformly random edge weight

to the destination, distributed with the same probability distribution. Hence, the

probability that there are j eligible nodes is
∑n−2
j=0

(
n−2
j

)
(1 − x1)jxn−2−j

1 and the

probability that the destination will be chosen with this number of eligible nodes is

x

x+
∑k

i=1
yi

where yi denotes the weight of the edge from the i-th eligible node to the

source. The following n− 1 integrals is the solution:

p
(n)
1 =

∫ 1

0
. . .
∫ 1

0

n−2∑
j=0

(
n− 2

j

)
(1− x1)jxn−1−j

1

x1 +
∑j
i=1 yi

dx1 . . . dyn−2 (4.3)

39

Algebraic solution for n = 3, 4 is simple, and yields:

p
(3)
1 =

∫ 1

0

∫ 1

0

(1− x1)x1

x1 + y1

dy1 + x1dx1 ≈ 0.7046 (4.4)

p
(4)
1 =

∫ 1

0

∫ 1

0

∫ 1

0

(1− x1)2x1

x1 + y1 + y2

dy2 +
2(1− x1)x2

1

x1 + y1

dy1

+ x2
1dx1 ≈ 0.5763 (4.5)

For larger values of n, the numerical integration can be used to get values for vali-

dating simulation results.

4.1.3 Approximation For General Case Of 0 < h < n− 1

After h − 1 hops, there is n − h − 1 intermediate nodes left and each has

probability 1 − xh to be eligible, where xh denotes the edge weight of the current

segment holder to the destination. The expected number of eligible nodes is (1 −
xh)(n−h−1) each with the average edge weight to the source being 1/2. Since each

hop, on average, hits the middle of the previous range, the size of the h range, for

weights of eligible nodes, is (1− x1)/2h−1 so the value of xh is (x1 + 2h−1− 1)/2h−1.

To get a good approximation, compute the expected value over each half of this

range which yields the result:

p
(n)
h = − 2

(n− h− 3)
+

2h(n− h− 1)

(n− h− 3)2
(4.6)

× ln

(1 +
1.5(n− h− 3)

2h

) 1
3
(

1 +
0.5(n− h− 3)

2h

)
≈ 2h ∗ (n− h− 1)

(n− h− 3)2
ln(1 +

n− h− 3

2h
)− 2

(n− h− 3)

The critical value for this function is hc = log2(n). For h > hc, ln(1+(n−h−3)/2h) ≈
(n − h − 3)/2h so the result is nearly 1. For example, it is greater than 15/16 for

h > hc + 1. For h = hc − h′ < hc an approximate value is 1/2h
′ ∗ h′ ∗ ln(2) − 2/n

close to 0. For example, this value is less than 0.1 for h′ > 5.

It is easy to check that the peak of fraction of paths happens around log2(n)−3

40

Figure 4.1: Probability of Using a Path with h Hops

and these fractions are significant only for h’s from hc− 5 to hc + 1. Approximating

again, using hc − 3 as the value for the most common path length and then using

Equation 4.6 produces the following.

p ≈ plog2(n)−3
nx ≈ 1− (log2(n)− 3) ∗ (1− pnx) (4.7)

The final approximation holds only for pnx > 0.8 and moderate 9 < n < 256. In

summary, the average path length grows and the probability p decays slower than

log2(n).

4.1.4 Simulation Results

In order to confirm the mathematical bounds and behavior discussed above,

simulation of the simple routing protocol using a complete graph with n nodes was

created (see Appendix A). Each edge has a random weight selected uniformly in

the range (0.0,1.0]. In order to confirm the approximations from Equations 4.3, 4.6

and 4.7, the likelihood of using all possible paths is determined in order to ultimately

calculate the probability of using a path of h hops. Each simulation was run 50,000

times for each value from n = 3 to n = 100 and the results were averaged.

For 3 ≤ n ≤ 27, the simulation ran through completion with no modifications.

Figure 4.1 shows how the probability of using a path with h hops changes as the

number of nodes in the network increases. Once n > 9, there is a higher probability

of using a path with two hops than with one. A path of length three hops occurs

41

(a) Probability of Using a Path with
h Hops - Truncate Approximation

(b) Probability of Using a Path with
h Hops - Distribute Approximation

Figure 4.2: Path with h Hops: Simulation with Approximations

more often than one hop when n > 17.

Because the number of possible paths is a multiple of n!, checking all possible

path becomes impractical; however, by slightly modifying the simulations all prob-

able paths are calculated. The program recursively calls possible paths increasing h

each time. The residual probability pr, probability of seeing a node with a shorter

path to the destination prior to seeing the destination, of following a given path

slowly erodes until it is minuscule. There are two different approaches for dealing

with pr. The first is to assume that it all goes to ph+1. This is a valid approach

because it will yield a maximum probability of following a path with a lower value

of h. It is more likely that a packet takes a short rather than a longer path. The

second is to spread that probability over a number of values for h so ph+1 = ph+1 + pr
2

and ph+2 = ph+2 + pr
4

. This is continued for a specified number of additional hops.

This has merit because over thousands of iterations there is approximately a 0.5

chance that a node with a higher probability of seeing the destination is met prior

to meeting the destination.

Figure 4.2 show the results of the simulations for 3 ≤ n ≤ 100. The simulations

were run given the same specification as listed above except when pr < .00001 for a

given path that value of pr was dealt with in one of the two methods described in the

previous paragraph. Figure 4.2a shows the results of truncating (ph+1 = ph+1 + pr).

Figure 4.2b shows the results of distributing the trust; this simulation distributes

42

Figure 4.3: Simulation with Approximation Comparison

trust along the next 7 hops.

A comparison of the two approaches is in Figure 4.3. They are identical for

h = 1 and h = 2. As expected, for 3 ≤ h ≤ 6 the truncation approach yields

a higher value for f
(n)
h . For h > 6 the distribution method yields a greater value

for f
(n)
h . A two-samples t-test with a confidence interval of 0.95 was conducted to

compare the results for h = 5 and 3 ≤ n ≤ 100 between the truncate and distribute

method for handling pr. Using a Null Hypothesis: the difference of means for both

methods is equal to 0. Table 4.1 clearly proves the hypothesis demonstrating that

the difference between the methods, using the h = 5, the value with the most

variance (see Figure 4.3), is statistically insignificant.

Equation 4.4 gives our expected value for p
(3)
1 = 0.7046 the simulation results

are p
(3)
1 = 0.7045. Equation 4.5 gives our expected value for p

(4)
1 = 0.5763 the

simulation results are p
(4)
1 = 0.5755. This confirms our intuition about how the

protocol reacts but, as stated above, it is not a practical approach for larger n.

Figure 4.4a shows the approximation for h = 1; Figure 4.4b shows the approx-

Table 4.1: Comparison of Truncate and Distribute Method for h = 5

Approximation Method 95% CI for Mean
Truncate Distribute Difference

M SD n M SD n t df

p
(n)
5 Sim 0.665 0.137 95 0.645 0.148 95 -.0199, .0617 1.011* 188
*p = 0.314; p ≥ 0.05

43

(a) Simulation and Approximation

Results p
(n)
1 = f

(n)
1

(b) Simulation and Approximation

Results p
(n)
2

(c) Simulation and Approximation

Results p
(n)
3

(d) Simulation and Approximation

Results p
(n)
4

Figure 4.4: Approximation Fit for One Through Four Hops

imation for h = 2; Figure 4.4c shows the approximation for h = 3; and Figure 4.4d

shows the approximation for h = 4. The “Approx - Direct Solve” is the values using

the approximation equation and “Approx - Approx Solve” uses the approximation

of the approximation (see Equation 4.6). While the approximation is not exact, it

gives a tight lower bound as n increases. Interesting to note is that for h = 3 and

h = 4 the approximation overestimates the probability for lower values of n. Addi-

tionally, the probability of stopping at h = 3 or h = 4 is higher as n increases than

for h = 1 or h = 2. This makes sense because adding more nodes to the network

will make it more likely to take a path longer than h = 1 or h = 2; however, only

to a point.

44

4.2 Erasure Coding

Erasure coding, as a network protocol, has been studied for use in a DTN [60]–

[62]. It works by breaking a message into a set of message segments. When a

sufficiently large subset of message segments are received, the original message can

be reconstructed. Specifically, erasure coding starts with a message of sizeM and the

the total size of information I = M(1+ε) needed for message recreation. ε is a small

constant that depends on the exact encoding algorithm used. Then, the minimum

number of segments, kec is selected, such that I is divided evenly by kec. Finally, the

total number of segments, s > kec, is chosen and the encoded message is broken into

that many segments. The value r = (1 + ε)s/kec > 1 is called a replication factor as

it defines how much more information is sent to transfer M bytes of a message. For

the purposes of this dissertation the exact encoding algorithm is not important.

When using erasure coding, the key aspect is the replication factor r. To

recreate a message, only s/r of the message segments must arrive at the destination.

In order to transmit the message segments over multiple different paths, an algorithm

similar to srep [61] can be used. In that variation of erasure coding, the generated

message segments are split between s = kecr/(1 + ε) relays. For example if r = 5,

then in order to send a message of M bytes, 5 ×M bytes of data is transmitted,

and if ε = 0.25 and kec = 3 then the number of nodes that receive segments are

s = kecr/(1+ε) = 12. Furthermore, to reconstruct the original message, kec segments

must arrive at the destination. A lower replication factor or multiplier kec reduce

the number of separate message segments that must be transmitted through the

network.

Zakhary et al. use the properties of erasure coding and replication and pro-

pose “Erasure Coding with Replication” (ECR) [34]. This routing protocol uses the

concepts of erasure coding listed above and attempts to increase information avail-

ability. The authors use an adversarial model where multiple nodes are compromised

followed by a “black hole” attack that drops data packets.

45

4.3 Erasure Coding Contribution to Trust Management in

Delay Tolerant Networks

The proposed trust management scheme uses erasure coding (see Section 4.2)

and a checksum to determine the trustworthiness of neighbor nodes. If all message

segments successfully arrive to recreate a complete message, then the trustwor-

thiness of those neighbors increases. If one or more of the segments are corrupt,

maliciously or not, then by analyzing additionally received segments, bad actors

can be determined. This is done by having the source node append a checksum

onto every message sent prior to using erasure coding to segment the message and

send it through the network. The destination is then in a position to validate each

message and make trust decisions. The scheme steps are listed below.

1. Node i needs to send a message M to node j.

2. A Checksum is added toM and s segments using Erasure Coding are generated

such that kec segments are required to recreate M and s > kec.

3. All s segments are sent through the network from i to j.

4. If kec unique segments arrive at the destination, or some intermediate node,

the node recreates M .

5. If M has a valid checksum, the node increases the trust for all nodes that sent

a valid segment and skips to 7, otherwise it continues to 6.

6. The receiving node continues to wait for each additional segment m until

recreating M produces a valid checksum or based on cost the destination

determines it is better to request resending of the message (see section 4.3.1).

If an additional segment m allows M to have a valid checksum, the receiving

node increases the trust for all nodes sending a valid segment and decreases it

for all nodes sending a faulty segment and then continues to 7.

7. The receiving node waits for time T and accepts any addition segments for

M , validity of each is checked against kec − 1 known good segments and trust

along the relevant path is accordingly changed.

46

4.3.1 Utility of Waiting For One More Segment

If the first kec message segments are intact, then all additional segments m

can be used to determine if the sending node of the (kec +m)th segment is truthful,

see step 7 in section 4.3 above. This requires one message creation operation using

kec−1 known good segments and the unknown (kec+m)th segment. If the recreated

message is good then the sending nodes trust is increased, otherwise it is decreased.

The issue is when the first kec segments do not recreate the original message. In

order to conduct the cost benefit analysis below, the probability p that the next

segment arrives intact is necessary (see section 4.1 for complete analysis of p).

4.3.1.1 Cost and Benefit

The total probability of being able to assemble the message from kec + m

segments is as follows:

Pkec+m =
m∑
i=0

pkec+i (4.8)

For m > 0, the change in probability from kec +m− 1 to kec +m can be expressed

as:

∆Pkec+m = pkec+m =
(kec +m− 1)!pkec(1− p)m

(kec − 1)!m!
(4.9)

The justification is simple. Since kec +m− 1 segments were not enough to recreate

the message but kec + m are, the (kec + m)th segment has to be correct and the

kec+m−1 segments received previously must contain exactly kec−1 correct segments.

Thus, pkec defines probability of having kec correct segments, while (1 − p)m is the

probability of having m corrupt segments and the rest of the expression defines the

number of ways kec − 1 correct segments can be chosen from kec + m− 1 segments

previously received.

The cost of being able to assemble the message from kec + m segments is as

follows:

Ckec+m = α
m∑
i=0

ckec+i (4.10)

where α defines the ratio of the cost of computation to the value of increased prob-

ability of being able to recreate the message from additional segments. When the

(kec + m)th segment arrives it is compared to all kec − 1 subsets of kec + m − 1

47

segments already received but not sufficient to recreate the message, hence, for all

m > 0 the change in cost from kec +m− 1 to kec +m can be expressed as follows

∆Ckec+m = α
(kec +m− 1)!

(kec − 1)!m!
(4.11)

4.3.1.2 Utility Functions

There are two options after receiving kec+m−1 segments. The first is to wait

for the kec + m segment. The second is to request sending the message again. To

make this decision, we can use one of the two criteria listed below.

1. The first criterion is to compare the expected gain in probability as expressed

in Equation 4.9 with the cost of Equation 4.11.

2. In the second criterion, the price of receiving the next segment is weight against

the price of resending the message. The expected gain of receiving the message

is Pkec = pkec = pkec at the cost of n ∗ r + α which is the cost of resending nr

plus the cost of unpacking the segments α.

Using the first criterion, wait for the next segment if the gain in probability to

recreate the message is greater than the cost. The second is to receive the best price

per increase in probability. The former is a simplified function while the later is

more comprehensive since it takes into account the cost of resending the message.

The first utility function is Gkec+m = pkec+m− αckec+m. It is beneficial to wait

for the kec + m segment if Gkec+m > 0. Substituting the values from Equation 4.9

and Equation 4.11, the following holds:

pkec(1− p)m > α (4.12)

Equation 4.12 has its merits; however, it is based solely on the increase in probability

of being able to recreate a message with an additional segment being greater than

the cost of this segment processing. The increase in probability shrinks very quickly

limiting the number of segments for which the destination waits before requesting

resend of the message, which intuitively makes sense.

48

The second more complicated utility function takes into account the cost of

having to resend the message a second time. Ultimately, it compares the price in-

crease between waiting for another segment versus that of resending the message.

This gives the inequality of α
ckec+m
pkec+m

<
(kec
r

+α)

pkec
. Since

ckec+m
pkec+m

= 1
pkec (1−p)m , the in-

equality can be reduced to α
(1−p)m < kec

r
+ α. The cost of kec

r
� α so the inequality

can be rewritten as αr
kec

< (1 − p)m. Taking the natural log of both sides gives the

final inequality as follows.

m <
ln

(
αr
kec

)
ln(1− p)

(4.13)

In this inequality, α represent technology factors, as the node processing be-

comes faster and faster at the same price due to the chip technology, α becomes

smaller and smaller. Yet, the value of m grows only logarithmically with this gain.

The erasure coding algorithm parameters r and kec change relatively little for differ-

ent applications, so their impact on m can be ignored. Finally, 1−p, measuring how

“polluted” and to a lesser degree how large (see Equation 4.7) the network is, has a

large impact; the higher the pollution level the larger m the destination should wait

before requesting resend. This again is intuitively clear, as the resend message will

face the same treacherous journey to destination as the original message did.

4.4 EC Trust Management Simulations

In order to test the proposed trust management scheme, a number of simula-

tions were executed using NS3. While it is a very powerful simulation tool, there

are very few extensions of it written for use with Delay Tolerant Networks. This

paper uses the work done by Lakkokorpi et al. in [63]. The available DTN module

for NS3 implements the DTN bundle layer first proposed by the Delay Tolerant Net-

working Research Group (DTNRG) and codified in a number of DTNRG request

for comments [64], [65]. The bundle layer protocol manages application to applica-

tion transportation with each bundle usually being larger than a normal IP packet.

This facilitates complete application interaction between a source and destination

in either one or a small number of bundles. Each bundle has a timer and if it is

not delivered within a specified time it is deleted from a nodes buffer. The point

49

to point connections between nodes can be managed by UDP or TCP. There are

numerous routing protocols proposed for use in DTNs. While most were not written

to use the bundle layer, almost all can be modified to do so.

The DTN module used in this dissertation is compatible with NS3 version

3.18 and includes the implementation of two DTN routing protocols: endemic [66]

and stray and wait [32]. For each protocol a number of duplicate bundles are sent

from source to destination to increase the probability that one will arrive. In the

former protocol, a bundle is send to any node that does not yet have a copy in its

buffer. This has been shown to significantly clog the network and use unnecessary

resources. The latter is a more refined approach and sends a smaller number of

copies and then waits to see if the bundle arrives. It only increases the number

of nodes it forwards to if it does not receive an acknowledgement packet from the

destination in a specified time.

The proposed trust management scheme is built using the concept of erasure

coding to determine which nodes, if any, modify a segment of the data transmission

between the source and destination. The authors in [63] give a good breakdown

of the code they created. The code includes the main DTN module dtn.cc and

the bundle layer encapsulation headers mypacket.cc and mypacket.h. The necessary

modification to simulate EC and the proposed trust management scheme are broken

down into two main categories: simulate erasure coding and simulate trust manage-

ment at the node level. Section 4.4.1 gives an overview of the modifications to allow

for erasure coding. Section 4.4.2 give an overview of the changes to replicate node

trust management. Section 4.4.3 explains the simulations run and Section 4.4.4

presents results.

4.4.1 Erasure Coding Simulation For DTN Module in NS3

In order to simulate Erasure Coding, some modifications to the existing routing

protocols in the DTN module were required. Erasure coding as described above

multiplies a message payload by a replication factor r, this modified message is

divided and each segment is sent from source to destination. Each message segment

is sent as a bundle with its own individual bundle ID. For a given message there

50

is a single message ID. This update in the DTN module is call a PID and is an

addition to the bundle header. When kec unique unmodified bundles arrive at the

destination with the same PID, the message is recreated.

The user provides kec, ε (that for simplicity we assumed to be 0 in the current

simulation) and s (which defines r) as initial input to the simulation setup to allow

for the segmentation of messages into kecr/(1 + ε) bundles. Based on the values for

kec and r, each bundle is scheduled for transmission. For the first hop the source

node will only send one bundle with a particular PID, unless it directly meets the

destination. This forces multiple paths from source to destination.

While currently erasure coding is implemented in an austere manner and uti-

lizes the already implemented endemic routing protocol to move the bundles, it is

useful for showing preliminary results using EC for trust management. Although

currently using epidemic routing, the approximate metrics found in Section 4.3 apply

to the simulation results as explained in that section.

4.4.2 Trust Management Object In NS3 For Use In The DTN Module

Like in many distributed trust management schemes, each node maintains a

structure that includes the trust level for each node it interacts with. Additionally,

many schemes aggregate trust levels with neighbors through periodic comparison of

stored trust values. To simulate such a scheme in NS3, a trust management object

was added. This was created for use with each NS3 DtnApp outlined in [63]. The

DtnTrust object initializes all nodes in the network to a trust level tnode = 0.5,

0.0 ≤ tnode ≤ 1.0. This DtnTrust object tracks the bundles that arrive, and once kec

unmodified unique bundles with the same PID arrive, recreates the original message.

After the successful message recreation, each node that sent an unmodified

segment has its trust level increased to tnode = tnode + .05. For each node that sent a

malicious segment(s), that nodes trust is decremented to tnode = tnode−.05. This can

happen at any node that receives enough unique unmodified bundles to recreate a

message. Generally this only occurs at the destination; however, certain paths might

contain a single node that forwards many bundles that are part of a given message

and such nodes may also compute trust for their neighbors. While the current

51

version uses only a static additive increase or decrease in trust, a modification that

mimics the sliding window size change similar to TCP might bear fruit.

Once a message is recreated at a node, any additional bundles that arrive with

that PID are checked. If the segment sent is unmodified the trust for the sender is

incremented, else the senders trust is decremented. This occurs for a given time or

until all bundles arrive at the destination and anti-packets are sent out that clear

all nodes buffers for that PID.

Currently the trust level is not used to deter sending a bundle to a node;

however, there are functions to allow a node to check the current trust of all other

nodes. An extension is to phase out nodes that do not behave properly. Those

nodes would no longer be allowed to send or receive bundles.

4.4.3 Simulation Overview

The NS3 simulator modified with DTN extensions, is used to conduct the

simulations presented. The threat model against which this scheme is attempting

to protect includes an adversary who either hijacks, reprograms, or adds malicious

nodes to the DTN that modify all packets that arrive prior to sending them on as

per the routing protocol. There are more sophisticated models where the attacker

intermittently modifies packets or where nodes collude. While it is likely this scheme

with full use of the Bundle layers security module [65] would provide useful results,

such extensions are left for future endeavors. This adversarial model is simulated

in NS3 by making x% of the nodes always act maliciously by modifying all bundles

they receive prior to forwarding. The malicious node does not modify bundles when

it is the source or destination.

The NS3 simulation tool provides the user with a number of traffic and mobility

models. Similar to [63], a simple traffic model is used in our simulation. Each node

sends a number of variable sized messages, which are broken into a set of bundles

defined by kec and r, at a random time within each 200 second interval of simulation

run time to another random node. For node to node transmission, the segments are

fragmented into 1500-byte data-grams using UDP, with retransmission, to provide

reliability.

52

(a) 90% Path Trustworthiness (b) 60% Path Trustworthiness

Figure 4.5: Ranking of All Nodes According to Their Trustworthiness

The mobility model used is the Random Way Point (RWP) model, which is

conveniently built into the NS3 simulator. For each simulation, a total of 40 nodes

move in a 2500m x 2500m grid. These nodes are evenly distributed and select

direction and speed at random (uniformly distributed) times. The maximum speed

is 20m/s with a 2 second pause. All nodes pause between each movement. The

simulation is run 10 times each with a different seed and all simulations are run for

1000 seconds.

4.4.4 Simulation Results

The results show that over time the average probability across all nodes in-

crease for good nodes and decrease for bad ones. There is a large contrast in result

when the percentage of good nodes drops from 90% to 60%. This makes sense be-

cause with a higher number of untrustworthy nodes, the likelihood that they would

corrupt a message from source to destination and negatively impact trust for a good

node increases.

4.4.4.1 90% Path Trustworthiness

Figure 4.5a shows the average trust level for each of the 40 nodes sorted in the

decreasing order of their trustworthiness. While the decrease is not steep, the four

untrustworthy nodes that modified all forwarded bundles have the lowest average

trustworthiness among all nodes (those are nodes 35-39 and colored red). The error

bars show the largest and smallest individual run. This gives an idea of the range

of values.

53

(a) Trace of Node 38, 90% Path
Trustworthiness

(b) Trace of Node 10, 60% Path
Trustworthiness

Figure 4.6: Trace of a Given Untrustworthy Node over Time

Figure 4.6a illustrates one malicious node trust evolution over a complete sim-

ulation. This figure shows the change in average trust of node 38 from time 0.0

seconds to time 1000 seconds. The trend is down as expected. At approximately

90 seconds there is an increase in trust. It appears when node 38 is the source of a

message and sends it directly to the destination. In that case, the trust is increased

by the receiving node because in the threat model all messages start without mod-

ification, which make sense because even if the message payload contains malicious

content, the checksum is being generated at the source and it would be correct.

4.4.4.2 60% Path Trustworthiness

Figure 4.5b shows the average trust level for each of the 40 nodes sorted by

their trustworthiness. Due to the number of malicious nodes, 16 in this case, there

is no steep slope, however, the majority of the malicious nodes, colored red, have

the lowest average trust and only three have trust higher than a good node colored

green.

Figure 4.6b illustrates the change of a trustworthy node over time. Its average

trust goes generally up, but lowers and then spikes around 550 seconds due to passing

on a tainted message segment and then sending a number of trustworthy segments.

4.5 Conclusions

This paragraph proposes a novel trust management scheme that uses spacial,

temporal and information redundancy as well as the traits inherent with erasure

54

coding and checksums to modify trust in a distributed manner. Based on the sim-

ulation results, the scheme shows promise and validates the use of redundancy in

RCNs and path information as a clue to help with the information assurance prop-

erties of authentication. The ability to validate a nodes trust is directly related to

the ability to authenticate a node or message in a distributed manner.

Based on the results of the simulations, discussed in the previous section, a

number of additional improvements are merited. They include the expansion of the

threat model to include a larger array of adversaries, sliding trust windows, imple-

mentation and simulation of node exclusion based on changing trust, integration

of a trust sharing extension, implementation and experimentation with the bundle

security module, ability to add and delete nodes from the network, and analysis of

the effects of false positives and false negatives on the network.

A number of potential future research topics are listed above. With modifica-

tions, this scheme can assist in filling the gap in information assurance in resource

constrained networks. Chapter 5 further explores distributed trust management by

expanding the directly observed path clues and exploring the use of sharing trust and

the fusion of direct and indirect trust into an aggregate trust that more efficiently

converges.

CHAPTER 5

Trust Management in Resource Constrained Networks –

Fusion of Direct and Indirect Trust

A number of key observations about a distributed trust management system, for

use in a Delay Tolerant Network, were previously explored in Chapter 3.2. One

observation is that a distributed trust management system must properly fuse trust

gathered from directly observable clues (direct trust) with trust based on recom-

mendations of other nodes (indirect trust). Using direct and indirect trust fusion

is necessary, because each node can only observe part of, and interact with only a

subset of, the total number of nodes in the network. One of the properties of a

Recourse Constrained Network, codified in [7], is that trust is subjective and based

on a particular nodes point of view. As nodes interact, they trade messages. Addi-

tionally, they must trade trust information in order to converge on the actual trust

value for all other nodes in the network. This chapter explores the second research

question: What is the proper method of managing indirect and fusing that with

direct trust to converge on an accurate trust value in order to create a distributed

trust management scheme?

As presented in Chapter 4, path redundancy is a useful clue for observing the

direct actions of other nodes in a DTN. It further shows that using information

about paths and direct observations will identify malicious nodes over time under

a limited threat model. While security and trust are not equivalent, in a DTN or

WSN where the use of centralized servers is not feasible, the ability to trust whether

or not a node is compromised or acting selfish is paramount.

Recent publications include a number of proposals for managing trust in a

Portions of this chapter previously appeared as: T. A. Babbitt and B. Szymanski, “Trust
management in resource constraint networks,” in Proc. 10th Annu. Symp. Inform. Assurance
(ASIA ’15), Albany, NY, Jun. 2015, pp. 51-56.

Portions of this chapter previously appeared as: T. A. Babbitt and B. Szymanski, “Trust
metric integration in resource constrained networks via data fusion,” in 18th Int. Conf. Inform.
Fusion (Fusion 2015), Washington, DC, Jul. 2015, pp. 582-589.

55

56

DTN (Chapter 3.2). None of the aforementioned DTN trust management schemes

take into account directly observable information based on an understanding of

redundant paths. The version presented in the previous chapter detects malicious

nodes; however, it is limited by threat model and only uses those nodes directly

connected to the destination. More details are enumerated below:

1. The scheme only works for a limited threat model (a node that always modifies

a message it receives).

2. A node only takes into account direct observations to manage trust (see Chap-

ter 4.3 and Chapter 4.4).

(a) Using only direct observations can be misleading when only a portion of

the network is taken into account. This can skew trust levels for many

nodes.

(b) The complete path a message takes from source to destination is not

taken into account.

3. Nodes are not “blacklisted” for having a low trust level and routing decisions

are not made based on trust levels.

A more comprehensive distributed trust management scheme is proposed in

this chapter and is it’s main contribution. This scheme continues to take into ac-

count path redundancy but utilizes information about the full path. Additionally,

it integrates an indirect trust sharing scheme. These additions directly address the

first two items listed above. The final item is addressed in Chapter 6.

There are a number of additional building blocks to a successful distributed

trust management scheme. The first additional contribution is the use of path

information to expand direct trust (Section 5.1.2). The second is multiple methods

for trust aggregation between direct and indirect trust (Section 5.1.1). Finally,

multiple means in which to manage indirect trust are presented (Section 5.1.3).

Section 5.2 includes comprehensive simulations showing the utility of the scheme.

57

5.1 Trust Management Scheme Overview

While the schemes listed in Chapter 3.2 use a number of different trust in-

dicators, they all essentially boil down to finding the number of good versus bad

transactions for a given indicator. None of them takes into account the complete

path followed by a message M . All schemes consist of two parts. The first is a

direct trust computation and the second is the use of shared information between

nodes as an indirect trust computation. The two are then combined in some fash-

ion to determine the trust node i assigns to node j at a given time t. Other key

characteristics include a method to eliminate outliers, decay older interactions/trust

associated with those interactions and produce a trust value.

5.1.1 Direct and Indirect Trust Aggregation

In order to manage trust, every node k that is part of the DTN, maintains

three vectors of size n. The first is the indirect trust vector IT k that maintains

indirect trust for all other nodes in the network based on trading trust information.

The second is the direct trust vector DT k that maintains the trust based on direct

observations. The final vector is the aggregate trust vector AT k that is the fusion

of the previous two vectors. There are multiple different approaches outlined below

to fuse the direct and indirect trust values. The first uses a fixed weight for the

indirect observations and one minus that weight for direct ones. The second does

so variably based on the current trust of recommending nodes. The third takes into

account decay of direct trust over time. The fourth combines approaches two and

three.

The use of fixed weights minimizes processing requirements. Equation 5.1

updates aggregate trust for all j ∈ N , where N is the set of all nodes in the network.

This is straightforward and depending on the value of αa can give more or less weight

to direct versus indirect observations.

AT kj = (1− αa)DT kj + αaIT
k
j (5.1)

Indirect trust is updated as each node is met or every time period designated as

∆t (see Section 5.1.3). If using ∆t, modification of Equation 5.1, to take into account

58

the current trust of the nodes that provide indirect trust information, decays the

significance of indirect trust as the average trust of nodes making recommendations

decreases. The tracking and fusion of this is detailed in the next section. The

average trust of those nodes providing indirect trust information is designated as

IT kav. Equation 5.2 substitutes αaIT
k
av for αa and makes the aggregate trust update

based on the trust of recommending nodes. If during a given time period ∆t, only

suspect nodes are met, then their recommendations are given less weight.

AT kj =
(
1− αaIT kav

)
DT kj + αaIT

k
avIT

k
j (5.2)

Slightly modifying DT k and making it an n × 2 matrix where DT ki = DT ki,1

is the direct trust value and DT k(i,ts) = DT ki,2 is the last time node i was met allows

for the direct trust value to decay if a given node has not been seen for an extended

period of time. The number of time periods tki is found using Equation 5.3. The

updated value used for trust decisions is found using Equation 5.4 and decays the

weight given the direct trust by increasing the weight given the indirect trust; this

decay is exponential and based on a set value for λ.

tki = b
currentT ime−DT k(i,ts)

∆t
c (5.3)

AT kj =

(
1− α

1

λtk
i

a

)
DT kj + α

1

λtk
i

a IT kj (5.4)

Combining approaches two and three above (Equation 5.2 and 5.3) gives the

following:

AT kj =

(
1−

(
αaIT

k
av

) 1

λtk
i

)
DT kj +

(
αaIT

k
av

) 1

λtk
i IT kj (5.5)

This takes into account the trust of the nodes that give recommendations during a

time period ∆t and the decay of the direct trust for a node that has not been seen

in a number of time intervals.

59

Figure 5.1: Node State Diagram

5.1.2 Trust: Direct Observations/Clues

For the direct component, the primary observed clue is the paths taken to

recreate the message. Figure 5.1 presents a state diagram showing how a node

processes each message M it receives. Chapter 4 provides a complete analysis and

results for using path information as a clue. For clarity, kec is an erasure coding

variable that represents the number of message segments required for a given node

i to recreate message M . The additional contributions in this section are the use of

full path information (Section 5.1.2.1) and the SegMatch function (Section 5.1.2.2).

Assuming node i is the destination for message M , node i starts in state S1

and continues to track message segments m as they arrive. If m is unique, the

segment is stored in node i’s buffer and the message segment ID is saved in set nM .

If m ∈ nM , then the SegMatch function is called. Once kec unique segments arrive,

node i attempts to recreate the message using the SegRec function. This function

checks to see if the checksum matches once the message is recreated and returns

a true or false value. Node i then transitions to either state S2 if it fails or S3 if

successful.

Once in state S2, node i continues to wait for additional segments m. If

m ∈ nM , then SegMatch is called, else SegRec is called. The SegRec function

60

iterates through all permutations of message segments received for M and returns

true for those that successfully recreate the message. When the number of segments

received is kec, as occurs when in state S1, there is only one function call. Once

|nM | > kec, as in state S2, then
(
|nM |
kec

)
iterations are required. If SegRec is successful

for any permutation, then node i transitions to state S3, else it determines if it is

better to wait or resend the message from the source. The utility functions for

waiting are discussed in Chapter 4.3.1 and published in [9]. If it is better to re-

transmit the message, then node i sends a message to node j to resend.

Once in state S3, node i waits prior to sending an Acknowledgment Message

(ACK). This is contrary to most RCN routing protocols that send an ACK right

after a successful delivery to the destination. An ACK clears node buffers and avoids

wasting resources to send a message or segment through the network once it has

been successfully delivered. Taking advantage of path and temporal redundancy

node i accepts additional segments m. It continues to recreate the message using

kec− 1 known good segments and makes trust decisions based on the success of the

message recreation. It will continue to do this for a set time period and then send

an ACK.

5.1.2.1 Expanded Path Information

In Chapter 4.3, each node makes trust modifications based solely on which

nodes directly forward each segment used to recreate M . Figures 5.2a shows an

example of this. Assume that the source is node 1 and the destination is node 10

and the number of segments required to recreate a message M is kec = 3. Each

of the three required segments takes a different path. The three paths taken are

{1, 2, 3, 4, 10}, {1, 5, 6, 10} and {1, 5, 7, 8, 9, 10}. In this case, node 10 will only in-

crease the trust level for nodes 4, 6 and 9 even though there were six other nodes

involved.

Each node along a path can append its ID to each segment as it flows through

the network. Assuming, for now, that a node truthfully adds their node ID, the

destination will know the path that all segments travel. Given that z is the trust

modifier, either static or sliding, then once a message is recreated trust can be

61

(a) Path Trust Distribution
Chapter 4.3 (b) Updated Trust Distribution

Figure 5.2: Trust Distribution Changes

distributed back along the path that each segments followed. In Figure 5.2b, this

is done by giving each directly connected node z increase and then dividing that

value in half for each hop back along a path. If there is a situation where a node,

directly connected to the destination, is along npath multiple paths, such as node 9

(Figure 5.2b), then the trust increase is z × npath. In the example, node 3 receives

z
2

and node 5 receives 3z
8

because it is along two paths, one at hop 3 and the other

at hop 4 from the destination.

Additionally, negative trust can be distributed back along a path. Let’s assume

that message M was recreated and node 10 is is in state S3. A segment of message

M arrives using the red path in Figure 5.2b and SegRec returns false. Negative

trust can be distributed back along the path {1, 2, 3, 4, 10}.

5.1.2.2 Trust Updates Using Segment Matching

Figure 5.1 shows all the states that a node goes through for each message M .

When a new segment m arrives for M and the message either cannot be recreated

because not enough unique segments have arrived (state S1) or attempted recreation

failed (state S2), but the node has seen segment m along a different path, the

SegMatch function is called. This function slightly modifies trust by comparing

the paths that each message segment m took prior to arrival at node i.

In Figure 5.3 node 1 is the source and node 7 is the destination, or some

intermediate node. Node 7 receives m twice with the two paths followed as {1, 2, 5}
and {1, 3, 4}. Assume node 7, from its perspective, maintains a set of “trusted”

nodes consisting of all nodes above a certain threshold and designated as set A. In

62

Figure 5.3: SegMatch Example

Figure 5.3, all of the green nodes are above that threshold, A = {1, 2, 4, 6}. The

set of all nodes along the paths m followed is B = {1, 2, 3, 4, 5}. The set of suspect

nodes is C = B − A = {3, 5}.
When two segments m for message M arrive at node i with the same ID along

different paths, the payloads of m either match or are different. If they do not

match then some small trust deduction is merited; if they are the same then a small

increase is merited.

Equation 5.6 shows how trust is reduced for the nodes in set C. Node i reduces

direct trust for each j ∈ C; the updated direct trust is D̂T ij dec while the value prior

to update is DT ij . The penalty consists of three parts. The first part (1−DT ij) links

the penalty to the direct trust node i has for node j. If a node is more trustworthy

it receives a smaller penalty. The second part z
a
, where a is the number of elements

in C, divides the standard penalty z by the number of possible culprits. Again

the more there are, the more ambiguity, so the smaller the penalty. The final part

(1+PA bad) again takes into account the number of nodes. The value for PA bad is the

probability that a certain number of nodes in set A are bad. This takes into account

both the size of the network and the current trust average for the network, pnx.

Table 5.1 shows the possible values for PA bad given the set B with |B| = 5 similar

to the example in Figure 5.3. The value of PA bad used is based on the number of

nodes in set C.

D̂T ij dec = DT ij −
((

1−DT ij
)
× z

a
× (1 + PA bad)

)
(5.6)

Equation 5.7 shows the original formula for trust increase. Similar to the

63

Table 5.1: Example Table PA bad for Given Figure 5.3 with pnx = 0.9.

|B| |A| Probability Occurring Permutations Norm. Prob. (PA bad)

5 1 (pnx)
(|B|−1)(1− pnx) = 0.06561

(
5
1

)
= 5 0.32805

0.40951
= 0.801

5 2 (pnx)
(|B|−2)(1− pnx)2 = 0.00729

(
5
2

)
= 10 0.0729

0.40951
= 0.178

5 3 (pnx)
(|B|−3)(1− pnx)3 = 0.00081

(
5
3

)
= 10 0.0081

0.40951
= 0.0198

5 4 (pnx)
(|B|−4)(1− pnx)4 = 0.00009

(
5
4

)
= 5 0.00045

0.40951
= 0.0012

5 5 (1− pnx)5 = 0.00001
(

5
5

)
= 1 0.00001

0.40951
= 0.00002

ptot = 5(0.06561) + 10(0.00729) + 10(0.00081) + 5(0.00009) + 0.00001 = 0.40951

penalty there are three parts and D̂T ij inc is the direct trust following the increase

while the value prior to update is DT ij . The first is that the current direct trust is

taken into account. The second, like above, z
a

only gives a small amount of trust.

The third takes into account the network probability pnx.

D̂T ij inc = DT ij +
(
DT ij ×

z

a
× (1 + PA good)

)
(5.7)

There are a couple of issues with Equations 5.6 and 5.7. The first is that the

penalty and the reward result in slightly different values assuming that they occur

in succession at the same node and no other events occur in between. Additionally,

a good node can change to become malicious and in the current reduction scheme

does not get a penalty until its trust is reduced below the given threshold. Since all

nodes can be considered suspect, Equation 5.8 is used to decrease trust.

D̂T ij dec = DT ij −
((

1−DT ij
)
× z

a
×
(
1 + (1− pnx)|B|

))
(5.8)

Solving Equation 5.8 for DT ij results in Equation 5.9. Exchanging DT ij for

D̂T ij inc and D̂T ij dec for DT ij gives the updated trust increase as Equation 5.10.

DT ij =
D̂T ij dec + z

a

(
1 + (1− pnx)|B|

)
1 + z

a

(
1 + (1− pnx)|B|

) (5.9)

D̂T ij inc =
DT ij + z

a

(
1 + (1− pnx)|B|

)
1 + z

a

(
1 + (1− pnx)|B|

) (5.10)

64

This change makes the penalty and reward system equal when two sequential events,

one good and one bad occur, that include the same nodes. While this case is remote

it is best that the process assumes all nodes are suspect and is symmetric.

5.1.2.3 Simulation Results for Direct Trust

In Chapter 4.4, a number of simulations were conducted utilizing NS3. The

simulations done in this section again use the work done by Lakkokorpi et al. in

[63]. Chapter 4.4.2 gives an overview of the NS3 object DtnTrust that was added

to each DtnApp which was part of the original code published in [63]. There are

a number of additions added to the DtnTrust object to include tracking the path

of each message segment, distributing trust along paths, and making incremental

updates when the message segments have the same ID but arrived along different

paths.

The first addition is a method by which to track the path that a particular

message segment m for message M traverses. In practice, this could be done with

an additional header or footer or by modifying a field in one or the other; however,

in NS3 only one header or footer object of the same class can be added to a packet.

This left only one of two choices: make the header longer by adding optional header

fields or add the path information into the packet payload. The latter was chosen

because in the original DTN code, the packet payload is just a string buffer with all

zeros. This approach worked more efficiently than adding more length to the header.

It also made the messages or “packets” the same length between the simulations

reported in this section and in Chapter 4.4. Different lengths likely would make

minimal difference but it makes for a more controlled comparison.

The second addition is to update the DtnTrust object to distribute trust in-

creases and decreases along the paths used to successfully recreate a message M .

Each node stores all message segments m along with the path information. This

is then used to update and distribute trust back along all paths as described in

Section 5.1.2.1.

The final addition is to update trust when a message segment m for message

M previously arrived at a node and that same segment arrives along a different

65

path. Like above, this is updated in the DtnTrust. Each node checks to see if it has

seen the message segment m before and checks to see if the paths are different. If

both conditions, hold then a check is done to see if they are the same. Depending on

the outcome of that comparison, the trust is updated for all nodes along the paths

as described in Section 5.1.2.2.

The same simulations as described in Chapter 4.4 were conducted. The same

number of nodes with the same run times using the same random seeds. The idea is

to show that distributing the positive and negative trust change yields better results

than those obtained in Chapter 4.4.4.

Figure 5.4 shows the power of full path knowledge. Subfigures 5.4a and 5.4b

show the results with the fraction of nodes that act truthfully set to 90%, while Sub-

figures 5.4c and 5.4d show the results with this fraction set to 60%. Subfigures 5.4b

and 5.4d show the results with full path knowledge, while Subfigures 5.4a and 5.4c

are without.

There is a pronounced difference between trust assigned to good and bad nodes

in Figure 5.4b versus those in Figure 5.4a. The drop down of trust from the least

trusted good node and most trusted bad node is multiple times bigger than the

differences between nodes in either group and the range of trust for the malicious

nodes, between simulation runs, is small. Comparing between subfigure sets, the

only negative aspect of the changes is that since full path knowledge is used the

lowest runs for the good nodes are also lower. The results with 60% of trustworthy

nodes are acceptable, but provide smaller differentiation between good and bad

nodes due to the higher pollution created by bad nodes.

The results in this section only look at direct observations and the two pro-

posed updates using path information discussed above. They represent the expected

changes based on using full path information. The integration of indirect trust, dis-

cussed in the next section, as well as reducing network traffic to suspected nodes

discussed in Chapter 6 refine these results.

66

(a) 90% Path Trustworthiness,
Chapter 4.4.4

(b) 90% Path Trustworthiness, Full
Path

(c) 60% Path Trustworthiness,
Chapter 4.4.4

(d) 60% Path Trustworthiness, Full
Path

Figure 5.4: Node Trustworthiness Ranking pnx = 0.6, 0.9

5.1.3 Trust: Indirect Trust Management

Nodes trade trust information as part of the handshake when they first meet

and are in broadcast range. Figure 5.5 shows an example of the trust information

stored in the buffers of node i. When node i meets node j, assuming that the two

nodes are within broadcast range and have sufficient time to transmit, they conduct

a handshake prior to forwarding any messages. During this handshake trust infor-

mation is exchanged. Node i sends its aggregate trust vector (AT i, Section 5.1.1)

that is colored green and labeled “Aggregate” in Figure 5.5 to node j. Node j does

the same thing.

Trading trust information allows each node to update trust based on recom-

mendations from the other. For example, node i maintains a (n+1)×n indirect trust

matrix that consists of trust vectors received from other nodes with an appended

time stamp; the trust vector received from node j is shaded red in Figure 5.5. Each

entry in node i’s indirect trust matrix is a value between 0.0 and 1.0. Since all nodes

claim to be trustworthy, the diagonal contains all 1’s and is ignored for all future

67

Figure 5.5: Storage at Node i

calculations. The column for i in the indirect trust matrix (shown in yellow) is the

indirect trust vector (IT i). In addition there is a direct trust vector in the buffer of

node i. The direct trust vector (DT i) is updated by direct trust observations made

by node i (Chapter 4 and Section 5.1.2). Any trust decision made by node i are

done based on the trust values in AT i.

While indirect trust is utilized by all distributed trust management schemes

in Chapter 3.2, the way in which it is handled varies. Since trust information is

traded at all node meetings during the handshake, there are two ways in which the

receiving node can process that information. The first is instantaneously and the

second after a given time period designation ∆t. Each is discussed in the subsequent

sections. Some of the initial thoughts and concepts appear in [67] and are discussed

in Section 5.1.3.1. Those ideas led to a more robust fusion process, appearing in

[10], spawning two methods for managing indirect trust. The first uses matrices and

is presented in Section 5.1.3.2. Section 5.1.3.3 is an approximation of the matrix

process using vectors, exponential moving averages and a smaller buffer size.

5.1.3.1 Founding Concepts for Indirect Trust

The original concept for managing indirect trust stored one n × n matrix in

the buffers of node i. The column for i stored direct trust information and the

aggregate trust, designated AT i. When node i receives a trust vector from node j,

node i store that information in column j and immediately update column i using

68

the following equation for all node w ∈ N :

AT iw = AT iw −
(
AT ij

)2
·
(
AT iw − tvjw

)
(5.11)

The idea is that the current trust level that node i has for node j is multiplied by

the difference between the current trust node i has for each node w and what node j

sends as it’s trust vector. The current trust value node i has for node j is squared to

give more weight to trusted nodes and the results replace the values in the column

for i in the indirect trust matrix.

There are a couple of issues with the approach outlined above. The most

obvious is that it does not take into account the trust vector of any node other than

j. If there is a big discrepancy between node i and node j trust for some other

node, this trust can be erroneously modified, especially if node j lies. This led to

two key observations. The first was that direct trust and indirect trust needed to be

managed separately prior to aggregation. The second was that more than one node

should be used to modify indirect trust and by extension aggregate trust, which

led to using a time interval for updates designated as ∆t. While waiting to update

indirect trust seems counter intuitive, it allows for a smoother change in trust values

and the ability to identify those values that are outside the norm.

To minimize impact of potential lying and to better take into account dis-

crepancies between node i and the trust vector for node j requires modification to

Equation 5.11. To do this the change is calculated for each node w ∈ N , where N

is the set of all nodes, as follows:

Ci
w =

(
AT ij

)2
×
(
IT iw − tvjw

)
(5.12)

This does not immediately update node i’s indirect trust vector, but is maintained

for a time interval ∆t in the indirect trust matrix IT i. Once the time interval is

complete, the set of nodes from which node i received trust vectors D, is averaged

and node i updates it indirect trust vector using the Equation 5.13.

69

(a) Time to Converge, cf = 0.05 (b) Number of Updates, cf = 0.05

Figure 5.6: Effect of ∆t

IT iw = IT iw + β



|D|∑
f=1

Cf
w

|D|

 (5.13)

In addition, node i updates trust based on any discrepancy between its aggre-

gate trust vector and the trust vector sent by node j directly after concluding the

meeting (does not wait ∆t). When node i receives the trust vector from node j one

of two things occurs. The first happens when all values in the indirect trust vector

for node i are within τ of all values in the trust vector from node j (| (T iw − T jw) | < τ

for all w ∈ N). The second takes place if one or more of such values are not within

τ . For the former case a small increase of trust is given to node j in node i’s indirect

trust matrix. For the later, trust is decreased for all w where | (T iw − T jw) | ≥ τ .

Equation 5.14 defines the change in trust for node j and Equation 5.15 prescribes

the change in trust for all other nodes that are outside τ .

IT ij = IT ij ×
(

1− α× d
2 (|N | − 2)

)
(5.14)

IT iw = IT iw ×
(

1− α

2d

)
(5.15)

The analysis done in this section led to a number of major requirements for

70

indirect trust. The first is that ∆t is important and updating periodically instead

of instantaneously minimizes the effect of nodes that are seen often and are suspect.

The second is that aggregation of indirect trust is not trivial and if done naively

like in Equation 5.11 can present a significant vulnerability. Third that decay is

necessary and needs to be managed for both direct and indirect trust. Fourth that

outliers need to be addressed. Fifth that while Equation 5.14 and 5.15 have merit as

future research into trust pattern analysis there effect on indirect trust is minimal.

All of these led to the changes proposed in the subsequent sections.

Figure 5.6 illustrates the first point above and are the results of a series of

simulations conducted based on the principals in Appendix A. The simulation

specifics are in Appendex B.1.1. Subfigure 5.6a is the convergence time of indirect

trust for various values of ∆t. Subfigure 5.6b shows that the number of updates

required as n increases is linear and the selected value of ∆t has minimal effect.

This suggests that smaller values of ∆t are better.

5.1.3.2 Trust Matrix

The first method for addressing the concerns from the previous section is

to expand the information stored in the buffer for each node allowing for a more

granular approach to managing indirect trust. Each node in the network k maintains

multiple matrices and vectors to manage and update indirect trust. They include

a working and current indirect trust matrix, designated W k and Ck respectively.

Both W k and Ck are n× (n+1) matrices. Each column is used to store trust values

received from other nodes i ∈ N , where n is the number of nodes in set N consisting

of all nodes in the network. The value Ck
(i,j) is the trust recommendation(s) received

from node i about node j. The last time that column i was updated in the current

trust matrix is designated Ck
(i,ts) = Ck

(i,n+1) and the number of interactions with

node i is W k
(i,count) = W k

(i,n+1). The column for node k in Ck is its indirect trust

vector (IT k = Ck
k). Matrix Ck holds the results for previous time periods ∆t and

matrix W k holds values received during the current time period. Both matrices are

initialized with null values equal to −1. The integration of direct trust with indirect

trust is discussed in Section 5.1.1 and the method for obtaining the direct trust

71

Figure 5.7: Meeting Event Between Nodes k and i

value is described in Chapter 4 and expanded on in Section 5.1.2.

There are two types of events. The first occurs when node k meets any node

i ∈ N and is designated as a meeting event. Figure 5.7 shows this type of event.

The second event occurs when the time ∆t expires triggering an update for node

k’s trust based on trust information received during the last time interval ∆t. This

is called an indirect trust update event.

During the handshake that initiates all meeting events node k and node i

exchange trust vectors. This vector for node i is an aggregate trust based on both

direct and indirect metrics and represent node i’s current trust for all other nodes

in the network; this is denoted as tvi, where tvij represents node i’s trust value for

node j. Upon receipt of node i’s trust vector, node k will update the column in its

working trust matrix corresponding to node i’s index for all j ∈ N as follows:

W k
(i,j) =

((
W k

(i,count) − 1
)
W k

(i,j) + tvij
)

W k
(i,count)

(5.16)

This is a simple average. For any given time period ∆t, node i’s trust vector

should not change much and should only be counted once and not multiple times

in the update of the indirect trust that occurs when node k conducts an indirect

trust update. This helps to eliminate ballot stuffing of recommendations where one

person, or in this case node, can have its values count multiple times and overwhelm

72

Figure 5.8: Node k Updates Current Trust Matrix when ∆t Expires

another node.

Once the time ∆t expires for node k, it does a trust update. There are four

steps to a trust update listed below.

1. Update the current indirect trust matrix for node k

2. Update the indirect trust vector for node k

3. Fuse the indirect and direct trust vectors to create the aggregate trust vector

4. Reset working indirect trust vector for node k

Updating the current indirect trust matrix is done by taking the average be-

tween the current trust matrix and update trust matrix, see Equation 5.17. The

value Ck
(i,j) is column i row j in node k’s current trust matrix. This corresponds

to the current indirect trust values being used by node k. It represents historical

values that node k received from node i about all nodes j ∈ N . The value stored

at Ck
i,ts = Ck

(i,n+1) is the last time that column i was updated in the current indirect

trust matrix. This is used to compute αin ∈ [0, 1], a “freshness factor” for the trust

values. There are three cases in Equation 5.17 listed below.

73

Ck
(i,j) =



Ck
(i,j) W k

(i,j) = −1

W k
(i,j) Ck

(i,j) = −1

α
tki
inC

k
(i,j) +

(
1− αt

k
i
in

)
W k

(i,j) Otherwise

(5.17)

1. Case one occurs when node k does not meet node i during the current time

period ∆t. There is no change and Ck
(i,ts) remains the same.

2. Case two occurs when node k meets node i for the first time during the current

∆t time period. This sets the values in the current matrix to the working

matrix for column i. Ck
(i,ts) is updated to the current time.

3. Case three is when node k has previously seen node i and has seen it during

the current time period ∆t. The average between the values in Ck
(i,j) and

W k
(i,j) is computed using the “freshness factor” αin for all j ∈ N . Any value

of αin ≥ 0.5 will initially give more weight to the values in Ck versus W k. For

them to be equal, assuming consecutive time interval meeting between node

k and node i, αin should be set to 0.5. Equation 5.18 will find the number of

time intervals since the last update. Ck
(i,ts) is updated to the current time.

tki = b
currentT ime− Ck

(i,ts)

∆t
c (5.18)

Once Ck is updated based on Equation 5.17, the indirect trust vector Ck
k,j for all

j ∈ N is updated. This is done row by row using Equation 5.19. All values that are

−1 are skipped in the summations in Equation 5.19. When currentT ime = Ck
(i,ts),

that occurs when node i was met during the last time period, the value for tki = 1.

In Equation 5.17, there is no decay. Decay of values occurs after skipping one or

more time periods. This makes older information impact the results less then more

current information.

Ck
(k,j) =

n∑
i=1

(
Ck

(i,j) × α
tki
in

)
n∑
i=1

α
tki
in

(5.19)

74

The thirds step is to fuse direct and indirect values to create an aggregate

trust vector (see Section 5.1.1). The final step of the trust update is to reset W k

to all −1 values. This will ensure that a new running average is collected only for

nodes seen during the next ∆t time window.

5.1.3.3 Vector Approximation: Exponential Moving Average

The previous section uses matrices to track recommendations that node k re-

ceived from a node i ∈ N . That approach works, but in nodes with limited hardware

(battery, buffer, and processing) an approximation that maintains much of the same

information is merited. This is done using four vectors of size n. The current indirect

trust vector is used with the direct trust vector to create an aggregate trust vector

(AT k); see Section 5.1.1. The vectors used for indirect trust include the following:

• Current Trust (CT k): is the current indirect trust vector for node k

• Working Count (WCk): This vector tracks the count used to average the

received information during the current time period ∆t for node k based on

interactions with node i ∈ N .

• Working Sum (WSk): This vector tracks the sum used to average the received

information during the current time period ∆t for node k based on meetings

with node i ∈ N .

• Working Number of Interactions (WNk): This is the number of times that

node k sees a node i during the current time period ∆t.

At the start, all of the indirect trust vectors are initialized to all zeros. Simi-

larly to using matrices there are two types of events. The first is when node k meets

node i and the second is when the ∆t expires for node k. During a meeting event

where node k receives node i’s trust vector (tvi) the following occurs:

1. Update the working count (WCk): This is done using the following equation.

WCk
j = WCk

j +

(
AT ki

)β
2WNk

i

(5.20)

75

This will add in the count for each interaction. This is directly connected to

the number of times that a particular node i is seen during ∆t. The first time

WNk
i = 0 adding one to the count. This is reduced exponentially such that if

node i meets with k a large number of times, in a given ∆t time, it still counts

less than twice. Additionally the current trust value that node k has for node

i is taken into account. The β term is used to modify how much to decrease

the reported value based on current trust of node i. As β goes to zero the

numerator in Equation 5.20 goes to 1.

2. Update the working sum (WSk): This is done using the following equation.

WSkj = WSkj +

(
AT ki

)β
2WNk

i

∗ tvij (5.21)

This is similar to the previous step except that the second term is multiplied

by the trust values received from node i.

3. Update the working number of interactions: WNk
i = WNk

i + 1

When ∆t expires for node k, it conducts a trust update. This is done by

updating the indirect trust vector IT k, fusing that with the direct trust vector into

the aggregate trust vector and then resetting the three working vectors to all zeros.

The following equation is used to update the current indirect trust vector.

IT kj = (1− γ) IT kj + γ

(
WSkj
WCk

j

)
(5.22)

Equation 5.22 is used to find the Exponential Moving Average (EMA). The

variable γ is used to determine the weight given to the new information (designated

working here); 1 − γ is the weight given previous EMA values (IT k) and it can

be thought of as the decay of the older values. Another way to look at it is how

many previous values should be used to determine the current value. In economics,

that is the number of days to consider for smoothing price averages [68]. The

smoothing factor is γ = 2
previousV als+1

. Many simulations below use γ = 0.1 this

make previousV al = 19. Depending on the number of previousV al taken into

76

Table 5.2: Simulation and Tuneable Parameter Crosswalk

Aggregate Trust - Direct Indirect Trust Integration (Section 5.1.1)
P Description Sec Fig

αa “Freshness” Factor for Aggregate Vector 5.1.2, 5.2.1 5.9
∆t Time Period between Trust Updates 5.1.3.1 5.6
λ Exponential Decay Factor 5.1.2 N/A

Indirect Trust - Matrix (Section 5.1.3.2)
P Description Sec Fig

αin “Freshness” Factor for Indirect Vector B.1.2.1 B.1, 5.10
Indirect Trust - Vector Approximation (Section 5.1.3.3)

P Description Sec Fig

β Weight given to current trust 5.2.3.1 5.12, 5.13a
γ Weight given to previous time periods for a given node 5.2.3.2 5.12, 5.13b

account γ is increased to reduce the effect of older values and decreased to give

them more weight.

5.2 Simulation Results

A number of simulations show the power of the scheme described above. This

section provides simulation results utilizing a discrete event simulator as described

in Appendix A.2 and fully described in Appendix B.1.2. Table 5.2 describes the

key tuneable parameters (P) discussed in the previous sections and the sections

and figures that show simulation results. Only the figures and their discussion are

presented in this chapter. This is to clearly show the contributions and power of the

proposed fusion method, much of the details for the simulation set-up and simulator

runs are in Appendix B.1.2.

A matrix and a vector approximation discrete event simulator were written

to test the tunable parameters. They both use the the trust aggregation methods

discussed in Section 5.1.1 and listed in the first block of Table 5.2. The matrix version

with specifics and simulation results are in Section 5.2.2 and Appendix B.1.2.1. The

vector approximation is in Section 5.2.3 and Appendix B.1.2.2. A brief comparison

between indirect trust aggregation methods is done in Section 5.2.4.

77

Figure 5.9: The Effect of αa on Convergence Time

5.2.1 Aggregation Parameters

There are three variables used in Equations 5.1, 5.4, and 5.5. They are αa, ∆t

and λ. The first parameter is the weight given to indirect trust in the aggregation

process. The second is the time interval each node waits between trust aggregation.

The final variable decays direct trust, over time, based on the last direct observation

of a given node.

The variable ∆t is discussed in Section 5.1.3.1 and Figure 5.6 shows how var-

ious values modify convergence time for indirect trust. The effect of λ is left for

future work. The goal below is to show that both the matrix and vector approxi-

mation version of indirect trust management, fused with direct trust, will identify

malicious nodes. To that end, Equation 5.1 is utilized to ensure isolation of the

indirect trust variables.

Figure 5.9 shows the results for different values of αa using the discrete event

simulator discussed in the next section. The only modification to the simulator

is that, when each node successfully identifies all bad nodes in the network, the

time is recorded. For identification, a bad node’s trust must be less than 0.25.

The results confirm the intuition that lower and higher values for αa are not ideal.

This makes sense because, if the weight given indirect trust is very low, the only

way to converge is to make direct observations. Unfortunately, this takes time

especially when some nodes are seen irregularly. On the flip side, if to much weight

78

is given recommendations, then trust will either erratically change or bad nodes can

have a more significant impact. The line that represents 60% of the nodes acting

good shows this. In the line representing 90%, this is less pronounced. This follows

because direct and indirect trust are likely to be similar. The results for the following

sections use αa = 0.1. The exact value for observing how trust changes in the long

term is not effected by the exact value of αa. Once this scheme is fully implemented

in a more robust tool, the tuning of key aggregation values αa, ∆t and λ become an

avenue for future work; especially since, different mobility patterns will effect their

values.

5.2.2 Matrix Version

The matrix version of the discrete event simulator is described in Appendix B.1.2.

The network is set up and initialized based on the number of nodes. The values for

all tuneable parameters, network settings, and simulation controls are user defined.

The simulation and network controls include n number of nodes, number of iter-

ations, simulation execution time, threshold for when a node is no longer trusted,

percentage of good nodes, erasure coding variables (kec and s), time before sending

an acknowledgement packet, and percent of time to act bad for a given malicious

node. The direct and indirect trust integration variables of αa, ∆t, and λ and the

indirect trust variable αin are user defined as well.

The only indirect trust variable for the matrix version for tracking indirect

trust is αin. A number of simulations were run to see the effect of αin and the

matrix version as a whole. Appendix B.1.2.1 shows the results of different values of

αin. The expectation was that over the long term they would have minimal effect.

The convergence time is expected to changes based on αi, but that is left for future

work. As stated in Section 5.1.3.2, to give equal weight to consecutive time periods

∆t then αin = 0.5. This is the expectation for most situations and the setting

for all other results presented in this section. Table B.2 shows the settings for the

simulations presented below and specifics about the simulator are in Appendix B.1.2.

79

(a) Percent of Good Nodes = 90%;
Always Act Bad

(b) Percent of Good Nodes = 90%;
Flip Fair Coin

(c) Percent of Good Nodes = 75%;
Always Act Bad

(d) Percent of Good Nodes = 75%;
Flip Fair Coin

(e) Percent of Good Nodes = 60%;
Always Act Bad

(f) Percent of Good Nodes = 60%;
Flip Fair Coin

Figure 5.10: Sim Results: Various Percentage of Good Nodes, αi = 0.5

5.2.2.1 Fraction of Good Nodes = 90%:

Figure 5.10a shows the results where 90% of the nodes are good. There is a

clear distinction between the worst simulation run for a good node and the best

for a bad; in this case the difference is 0.891. This significant difference was ex-

pected because of the limited number of bad nodes. Figure 5.10b shows the results

where each bad node flips a fair coin to decide whether or not to act maliciously.

As expected, the bad nodes have higher trust at the end and the range of their

intermediate trust values is significantly higher then in the previous scenario, with

80

(a) Percent of Good Nodes = 90% (b) Percent of Good Nodes = 75%

(c) Percent of Good Nodes = 60%

Figure 5.11: Sim Results: Bad Node Act Malicious 25% of the Time

the difference between worst good node and best bad is 0.186 versus 0.891. All

malicious nodes are still clearly identifiable.

5.2.2.2 Fraction of Good Nodes = 75%:

Figure 5.10c shows the results where 75% of the nodes are good. There is

still a clear difference, but smaller than above, between the worst simulation run

for a good node and the best for a bad; in this case the difference is 0.525. Again,

the expectation was a significant difference but smaller than the difference for 90%.

Figure 5.10d shows the results where each bad node flips a fair coin to decide whether

or not to act maliciously. As expected, the bad nodes have higher trust at the end.

What was unexpected is that the range of their intermediate trust values is almost

identical to the case when bad nodes always act maliciously. The difference between

worst good node and best bad one is 0.525 in the first case and 0.530 in the latter.

All malicious nodes are still clearly identifiable.

81

5.2.2.3 Fraction of Good Nodes = 60%:

Figure 5.10e shows the results where 60% of the nodes are good. Even when

40% of the nodes are bad, there is still a clear difference between the worst simu-

lation run for a good node and the best for a bad (0.16). As expected, there was

a significant drop from the previous two sections especially since the number of

bad nodes is closing in on 50%. Figure 5.10f shows the results using a fair coin to

decide whether or not to act maliciously. As with 75% (section above), the differ-

ence between worst good and best bad increases from 0.16 to 0.496 when a node

intermittently acts malicious.

5.2.2.4 Conclusions on Variation of Bad Nodes

The decision to include in the penalty and reward update values the current

trust of reporting nodes led to a very interesting and encouraging phenomena. As

shown in Figures 5.10b, 5.10d and 5.10f intermittently bad nodes fare better when

there are more good nodes (90%) than less (75%, 60%). This is because good nodes

have higher trust and their rewards for bad nodes behaving good is therefore higher.

Fewer good nodes usually presents a problem; however, in our scheme, this makes

the good nodes having slightly lower trust and therefore their rewards for bad nodes

acting good are weaker forcing the bad nodes to converge to lower values. Hence,

even in the network quite strongly compromised, and with bad nodes trying to hide

by behaving only intermittently bad, our scheme reliably differentiates between bad

and good nodes.

Additional simulations also confirmed that nodes acting bad 25% of the time

are detectable (see Figure 5.11). Yet due to the distributed nature of trust, the

difference between worst good and best bad becomes negative and the pronounced

drop seen in Figure 5.10 is less apparent in Figure 5.11. As nodes reduce how

often they cheat, the trust difference between good and bad nodes will eventually

converge. A node hides more easily the more often it acts good, but its negative

effect on the network diminish as well.

82

(a) Percent of Good Nodes = 90%;
Always Act Bad

(b) Percent of Good Nodes = 90%;
Flip Fair Coin

(c) Percent of Good Nodes = 75%;
Always Act Bad

(d) Percent of Good Nodes = 75%;
Flip Fair Coin

(e) Percent of Good Nodes = 60%;
Always Act Bad

(f) Percent of Good Nodes = 60%;
Flip Fair Coin

Figure 5.12: Sim Results: Various Percentage of Good Nodes, γ = 0.1, β =
2.0

5.2.3 Vector Approximation

Like in the previous section, the vector approximation version is tested using

a discrete event simulator described in Appendix B.1.2. There are a number of

user defined variables that set up the simulation network and are evaluated. Those

variables are described in Table B.3. The two main variables explored in this section

revolve around the effect of β and γ. The former modifies how much the current

trust of a recommending node affects indirect trust changes (see Section 5.2.3.1).

83

(a) Effect of β (b) Effect of γ

Figure 5.13: Sim Results: Effects of β and γ

The latter is the weight given to older indirect trust values and is discussed in

Section 5.2.3.2.

Figure 5.12 shows the results for various fractions of good nodes (Table B.3

variable good). For these simulations γ = 0.1, which gives exponentially decreasing

significance to the last 19 time periods, and β = 2. The rational for choosing β = 2

is to compare similar values as to those used in the matrix version.

The results for Subfigures 5.12a, 5.12c and 5.12e are a very good approximation

of those in Subfigures 5.10a, 5.10c and 5.10e, in Section 5.2.2, where bad nodes act

malicious 100% of the time. Similar result comparisons hold when a bad node flips a

fair coin to decide whether or not to act malicious (Subfigures 5.12b, 5.12d and 5.12f

versus Subfigures 5.10b, 5.10d and 5.10f).

5.2.3.1 Indirect Variable β

Multiple values for β were used to determine its effect on the discovery of

malicious nodes (Equations 5.20 and 5.21). The simulator in Appendix B.1.2 is used

with one modification. Once all nodes can identify every bad node in the network,

the time stamp is stored. If node k’s trust of node i drops below 0.25, node i is

considered bad from node k’s perspective. Once every node k ∈ N does this, the

time is recorded. Figure 5.13a shows the varying values of β, where gamma = 0.1

is static, and the change in time for both 60% and 90% of the nodes in the network

being good. There is little change; however, in a more polluted network, where 60%

of the nodes are good, the time slightly decreases. This is expected because nodes

with lower trust will be given less weight in the indirect calculations. This will cause

84

Figure 5.14: Comparison Between Vector and Matrix, Percent Good =
60% (Bad Node Flips a Fair Coin to Determine Malicious Action)

good nodes to erode their overall trust more quickly. This would be less pronounced

when fewer bad nodes are in the network.

5.2.3.2 Indirect Variable γ

Similar to the section above, a number of different values for γ are tested.

The simulator is initialized and the time is calculated in an identical manner. Fig-

ure 5.13b show the results. The key range is 0.0 ≤ γ ≤ 0.667. When γ is close to

zero, then an infinite number of previous values are used. When γ = 2
3
≈ 0.667,

then the last two are used. When there is a large number of trust modifications

in the network, as appears in the simulations, putting more weight on older values

slows the convergence process. That is why it is slightly better to use a higher value

for γ in the specific scenarios presented. Due to the random mobility, initialization

of the network, amount of trust change and the limitations of the simulation tool,

fine tuning of γ is left for future work.

5.2.4 Comparison

Figure 5.14 shows an example where a fair coin is flipped to determine if a

bad node acts maliciously. The matrix version and the vector approximation for

indirect trust converge to similar values. As the percentage of good nodes increases,

the difference between the two approaches decreases further. While this does not

conclusively show that the vector approximation, with buffer space saving, performs

85

statistically the same as the matrix version, it strongly suggests that it is and merits

future evaluation in a broader range of environments.

5.3 Conclusions

There are a number of contributions added in this chapter. It proposes a

robust distributed trust management scheme that identifies malicious nodes. These

nodes are even identifiable when they act truthfully 75% of the time. This is done by

expanding the use of path redundancy as a direct clue to include path information

and by properly fusing both direct and indirect trust to produce an aggregate trust

value.

There are two additional proposals that use path information. The first is to

distribute trust increases and decreases along the full path and not just to directly

connected nodes. The second is to use the SegMatch function that compares

segments arriving from different paths and giving a small increase or penalty if a

node receives multiple copies. For this dissertation, it is assumed that all nodes

properly add path information to all segments that flow through them. Additional

direct clues about path information could be identified if nodes are untruthful. This

is a possible direction for future work.

The use of indirect trust is shown to converge as discussed in Section 5.1.3.

The integration of trust is discussed in Section 5.1.1. Two methods for buffering and

integrating indirect trust are proposed. The matrix version keeps more information

and the vector approximation requires less buffer space. Each is shown to manage

indirect trust well.

The simulations in Section 5.2 show that, by using direct and indirect clues and

properly fusing them, malicious nodes are identified. By running the proposed trust

management scheme, each node in a DTN maintains trust for all other nodes. This

trust is dynamically updated based on direct observations and indirect information

through traded trust vectors. This is a value between 0.0 and 1.0 and can be used

to make routing and security decisions. The focus of the next chapter is to propose

such a Trust Based Secure Routing (TBSR) protocol.

CHAPTER 6

Trust Based Secure Routing Protocol (TBSR)

The previous two chapters explored direct observations and their relation to estab-

lishing trust. They also proposed a distributed trust management scheme for use in

Resource Constraint Networks. This chapter utilizes the research done to explore

and propose a Trust Based Secure Routing (TBSR) protocol for use in a RCN, in

general, and DTN in particular. While it uses the trust value obtained through the

trust management process previously discussed (Chapter 5), it is a stand alone pro-

tocol that can work with any distributed trust management scheme that accurately

manages trust as a value between 0.0 and 1.0.

Because there are no end-to-end routing tables in a DTN, all messages are

sent from source to destination with the goal of using the best path possible. An

omniscient node at every hop would pass the message only once to the next node

along the path that ensures the fastest delivery, and not accept a message unless it is

on that path. But even in this unrealistic scenario, where all nodes are omniscient,

that path the provides the fastest delivery is unlikely to require the minimal number

of hops. There is a trade-off between energy use and delivery time. Depending on

the node, energy use could be more important than message delivery time. There is

also a security trade-off. A message that flows through fewer nodes is less likely to

encounter a malicious node. Since global knowledge is unavailable in a distributed

network such as a DTN, in order to maximize message delivery time, endemic rout-

ing, where all node interactions trade all buffered messages, is required. In order to

maximize security and minimize energy use, a routing protocol that only forwards to

the destination, source waits for source-destination meeting (WSDM), is required.

In practice, neither approach allows flexibility. The former, significantly increasing

security and energy use, and the latter reducing delivery time and ratio as some

nodes rarely, if ever, meet.

This chapter is to appear in: T. Babbitt and B. K. Szymanski. “Trust based secure routing
in delay tolerant networks,” in 8th IEEE Int. Workshop on Network Sci. for Commun. Networks
(NetSciCom 2016), San Francisco, CA, Apr. 2016.

86

87

There are a number of approaches to routing in a Delay Tolerant Network

aiming to limit the number of copies of a message by selectively sending that message

to only those met nodes that are either likely to meet the destination earlier then

the sender or are highly trustworthy. Each approach resolves differently the trade-

off between energy and security, on one hand, and message delivery delay time on

the other. Most first generation routing protocols attempted to minimize energy by

limiting the number of messages sent. One such approach is Spray and Wait [46]

where a node sends a limited number of copies of a message. It waits a time period

and then if the message is still undelivered, additional copies of the message are

sent. This approach does limit energy use and has negligible effect on delivery delay

under many mobility scenarios.

Other approaches attempt to determine which nodes are “closer” to the desti-

nation. Many use community structures to make this determination; others attempt

to predict which node will make contact with the destination first. The former has

merit, because nodes in the same community as the destination are more likely to

meet the destination node than those outside. The latter takes the benefit of the

expectation that a node with smaller average meeting time of destination will indeed

meet it before the forwarding node. Hence, these determinations are based on social

structure and node movement patterns, respectively. A number of social structure

based protocols are outlined in [5], [69], and the authors in [70] use friendship rela-

tionships. Many are shown to be able to reduce the number of copies of a message

and limit resource use while marginally affecting deliver rate and time.

Most of the protocols listed above provide some inherent security through

limiting exposure of a message to nodes, but are not based on the use of observations

to build and update trust, which can then be used to make routing decisions. In

addition to the trust management scheme proposed in Chapter 5, Chapter 3.2 gives

an overview of a number of trust schemes proposed for use in a DTN. Any routing

protocol in a network where end-to-end routing tables are unfeasible, such as in a

DTN, can benefit from some trust metric to assist in making distributed routing

decisions. One such approach in [33], [71] uses two time periods per message. Only

those nodes above a certain trust threshold are used during the first time period. If,

88

and only if, a node fails to receive an acknowledgement packet from the destination

prior to the expiration of a given time period are less trusted nodes used.

Using trust as a metric to make forwarding decisions also allows for the use of

different message classifications. Normally these classifications are used to determine

quality of service (QoS). A good discussion on distributed QoS is found in [72], where

the main issue is finding a path that allows for the quickest delivery and giving

preference to messages with a higher QoS classification. Many businesses and the

military use classification of documents to dictate how they are handled (stored,

created, destroyed) and who has access [73]. A message classification system for a

distributed system must take into account both delivery time to destination, and

who potentially should have access to, a given message when determining message

classification and selecting risk parameters.

In theory, the used of trusted nodes first, and less trusted nodes only in a

panic scenario seems appropriate as outlined above and in [33], [71]. This chapter

proposes a protocol that takes a more granular approach to better select forwarding

nodes using trust, estimated time to meet the destination and number of copies of

a message that a given node forwards. The Trust Based Secure Routing (TBSR)

protocol is described in Section 6.1, and a message classification scheme is proposed

in Section 6.2. Simulation comparisons are provided in Section 6.3 and conclusion

and future work discussed in Section 6.4.

6.1 Trust Based Secure Routing Protocol (TBSR)

The Trust Based Secure Routing Protocol for use in Delay Tolerant Networks

is a routing protocol that limits the exposure of a message to nodes by reducing

the copies of a message sent, while ensuring timely delivery by using nodes that

are “closer” to the destination and avoiding using those nodes with low trust that

are therefore more likely to be malicious. TBSR is designed to work with any trust

management scheme that converges to, and maintains, a valid distributed trust.

The trust value should be normalized to a range between 0.0 and 1.0 where 0.0 is

complete lack of trust and 1.0 is complete trust. The lower the value the higher the

likelihood of a node being isolated or bypassed when forwarding decisions are made.

89

Figure 6.1: Trust Information Sharing as Part of Handshake

In a DTN, when node i and node k meet, they first conduct a handshake

to establish a communication link. While TBSR does not put any limitation on

protocol used to establish this link, most implementations create a TCP or UDP

connection between the nodes. Each node party to the meeting must decide which,

if any, messages to forward to the other node. The trust management scheme is

often included as the final part of the handshake. Once a connection is established,

exchange of trust information, often, like in this system, in the form of a trust

vector occurs. This consists of node i′s trust value for all nodes in the network and

vice-verse.

Figure 6.1 depicts the final step of the handshake between node i and node k.

Node i is sending its trust matrix to node k. The trust vector (per Chapter 5.1.3) is

extended to a n× 2 matrix, designated tmi, which includes the estimated times at

which node i will meet all other nodes in the network. An individual time estimate

given by node i is tij for a given node j. With a valid trust and an estimated next

meeting time, node k can make a decision on whether or not to forward a given

message segment Mx to node i. If node k has multiple message segments to forward,

it might decide to forward all or some of them. Estimated time to the destination is

used and defined as the estimation of when a node will directly meet the destination.

Another valid approach that merits additional research is the modification of that

time based on social interaction or network structure, an example being the use of

community affiliation tags.

90

6.1.1 Determining Situation Risk in Forwarding Decisions

Once node k completes the handshake with node i, it then must decide which

message segments it has buffered to forward. This decision is made based on risk

assessment (see Section 6.1.2) and on node k’s trust of i, as well as both nodes esti-

mated destination meeting time. The current trust node k has for node i is a value

between 0.0 and 1.0. The time estimated until node k meets node j, the destination,

is denoted tkj . The time estimate node i takes until it meets the destination is tij.

If node k has low trust for node i, then it should only forward a message if node i

will meet the destination significantly faster than node k. Conversely, if node i has

a low trust of node k, it should limit the number of messages it accepts from node

k.

6.1.1.1 Overview

Node k adjusts all time estimates it receives from node i based on its current

trust of node i (AT ki). Equation 6.1 uses the information that node i provides and

then divides that by the current trust node k has for node i. Since 0.0 ≤ AT ki ≤ 1.0,

node k will increase node i’s destination meeting time estimates. The more node k

trusts node i the smaller the increase.

tkadj(i,j) =
tij

AT ki
2 (6.1)

Once node k calculates trust adjusted meeting time between node i and the

destination, it determines how many times it is better to either wait or forward.

Equation 6.2 returns that value.

tmk
(i,j) =

tkj − tkadj(i,j)
min

(
tkj , t

k
adj(i,j)

) (6.2)

If Equation 6.2 yields negative values, then it is better for node k to wait and

not forward the message. Otherwise, it is generally better to forward the message.

This only takes into account the time multiples, assumes that node i is not lying and

that the expected time to meet node j is valid. Ideally, node k would only forward

a message if it is not likely that the recipient is malicious.

91

(a) AT ki = 0.25 (b) AT ki = 0.5 (c) AT ki = 0.9

Figure 6.2: Time Multiple for Node k Varying Trust of Node i (AT ki)

srk(i,j)(Mx) =



AT ki
wnc·nc+1 −1 ≤ tmk

(i,j) ≤ 1(
AT ki

wnc·nc+1
) 1

tmk
(i,j) tmk

(i,j) > 1(
AT ki

wnc·nc+1
)∣∣∣tmk(i,j)∣∣∣ tmk

(i,j) < −1

(6.3)

Equation 6.3 takes into account three cases and returns a value between 0.0

and 1.0 that is the “Situational Risk ” (SR). The first case is the most likely and

occurs when −1 ≤ tmk
(i,j) ≤ 1. This means that based on trust adjusted time

(Equation 6.1), there is less than one time interval difference between the trust

adjusted and expected time that node i or node k will meet the destination. In

this instance, the trust that node k has for node i is raised to the power equal to

the number of copies of the message node k previously sent, plus one to account

for sending a copy to node i (nc + 1). The number of copies (nc) is multiplied by

a weight 0.0 ≤ wnc ≤ 1.0 that adjusts the effect of the number of copies on SR.

The second case occurs when, based on time difference, it is significantly better to

forward, tmk
(i,j) > 1. This will cause Equation 6.3 to produce the values higher than

the trust, but smaller than 1.0. The final case occurs when tmk
(i,j) < −1 and it is

significantly better to wait causing srk(i,j)(Mx) to be a small fraction of trust and it

tends to zero as trust decreases.

6.1.1.2 Analysis

There are three key, and one supplementary, variables that affect whether node

k forwards a message to node i using Equation 6.3. These include node k’s trust of

node i (AT ki), the number of times node k has forwarded a message (nc) and the

number of time intervals by which the time delay increases or decreases by holding

92

versus forwarding a message segment (Equation 6.2). The weight of the message

count is modified by (wnc). Valid values are 0.0 ≤ wnc ≤ 1.0; the smaller the value

of wnc the less weight is given to the number of copies. When wnc = 0.0 then the

number of copies has no effect on SR. Unless otherwise stated, wnc = 1.0. The first

two key variables are based on information stored in the buffers of node k and while

they ultimately effect the “Situational Risk” (srk(i,j)), they are set values used in

every SR calculation. Equation 6.2 yields significantly different values based on the

times sent during the handshake (Figure 6.1).

The significant range of values for tmk
(i,j) in Equation 6.2 are −10 ≤ tmk

(i,j) ≤
10. As an example, if AT ki = 0.1, a low trust, and tmk

(i,j) = 10 then srk(i,j)(Mx) =

0.794, given node k has never forwarded the segment before (nc = 0). This makes it

likely that node k will forward the message. If AT ki = 0.9, a high trust, and tmk
(i,j) =

−10 then srk(i,j)(Mx) = 0.349, given node k has never forwarded the segment before

(nc = 0). Node k will likely not forward the message.

Figure 6.2 shows a comparison of results for Equation 6.2 where node k has

various trust levels for node i. The x-axis for each heat map is the node k estimate

of the time by which it will next meet the destination node j, and the y-axis is node

i’s estimate of such time. The color is the z-axis that represents time corresponding

to multiple values of (tmk
(i,j)) computed from Equation 6.2. Subfigures 6.2a, 6.2b

and 6.2c show tmk
(i,j) with AT ki = {0.25, 0.50, 0.90} respectively. The area in each

subfigure that is shaded red represents values that will make srk(i,j) smaller, while

the green shaded area contains values that do the opposite. The area shaded yellow

covers values close to tmk
(i,j) = 0 that have minimal effect on srk(i,j).

Any chosen metric that guides forwarding must have the property that the

lower a given nodes trust, the bigger advantage it must have in reduction of delivery

time to the destination. There are a number of reasons for this, to include that

a low trusted node is more likely to lie, or that the link is faulty and there is a

higher chance that the message is lost. Equation 6.3 is designed to have these

properties that become evident when node k’s trust for node i is low (AT ki < 0.5).

Subfigure 6.2a is mostly red and since the trust is low, this ultimately lowers the SR

and essentially eliminates nodes with trust values from this area from contention

93

for forwarding. Even the trust values from the green area are unlikely to result in

forwarding, because node i has to expect approximately 1000 times faster delivery

than node k for forwarding to happen. The motivation for requiring such vast

improvement is that a node with low trust is more likely to lie to get preferential

treatment. Subfigures 6.2b and 6.2c have a larger area that is yellow and only when

a node is significantly faster or slower in meeting the destination is the forwarding

decision affected by the value of sk(i,j). This is the expectation for efficient routing

that should forward data to trustworthy nodes, excluding those that are not likely

to meet the destination more quickly than the sender.

6.1.2 Assessing Risk in Forwarding Decision

The previous section analyzed the “Situational Risk” (SR) associated with

forwarding a given message from node k to node i (SR varies between 0.0 and 1.0).

The higher the value, the lower the risk of forwarding the message. Nodes with low

trust are excluded unless they are significantly better. Nodes with high trust are

likely to receive messages for forwarding unless their expected time to meeting the

destination is larger then that of the sender. This leads to a number of potential

algorithms (Figure 6.3) to decide on whether node k forwards a message to node

i. In all cases, the node starts with determining srk(i,j)(Mx) using Equation 6.3 and

then:

1. uniformly randomly picks a number [0.0,1.0]. If that number is less than

srk(i,j)(Mx) the message is forwarded (Figure 6.3a).

2. if both srk(i,j)(Mx) and node k’s trust for node i (AT ki) is above a threshold

the message is forwarded (Figure 6.3b).

3. a combination of 1 and 2 is used (Figure 6.3c).

The first solution (Figure 6.3a) allows all nodes to have a chance to forward a

message and does not completely “blacklist” a node. This allows for the distributed

trust management scheme to continue to update trust. Thanks to this design,

isolated nodes or nodes with intermittent signal can build or update trust. The

94

Input:
(
tij, t

k
j , Mx

)
, (time i meets dest, time k meet dest, Segment)

Output: Boolean, TRUE to forward and FALSE to wait
1 Solve srk(i,j)(Mx) ; // Equation 6.3

2 r = random(0.0..1.0);
3 if srk(i,j)(Mx) ≥ r then

4 return forward = TRUE ; // Forward

5 else
6 return forward = FALSE ; // Wait

(a) Random Forwarding Decision Algorithm

Input:
(
tij, t

k
j , Mx

)
, (time i meets dest, time k meet dest, Segment)

Output: Boolean, TRUE to forward and FALSE to wait
1 Solve srk(i,j)(Mx) ; // Equation 6.3

2 if srk(i,j)(Mx) ≥ riskThresh then

3 return forward = TRUE ; // Forward

4 else
5 return forward = FALSE ; // Wait

(b) Risk Threshold Forwarding Decision Algorithm

Input:
(
tij, t

k
j , Mx

)
, (time i meets dest, time k meet dest, Segment)

Output: Boolean, TRUE to forward and FALSE to wait
1 Solve srk(i,j)(Mx) ; // Equation 6.3

2 if srk(i,j)(Mx) ≥ Trr and AT ki ≥ Trr then

3 return forward = TRUE ; // Forward

4 else
5 r = random(0.0..1.0);
6 if srk(i,j)(Mx) ≥ Trr and r ≤ Tra then

7 return forward = TRUE ; // Forward

8 else
9 return forward = FALSE ; // Wait

(c) Random Risk Threshold Forwarding Decision Algorithm [11]

Figure 6.3: Algorithms for Forwarding Decisions in TBSR

95

Input:
(
AT ki , Mx

)
Output: Boolean, TRUE to accept and FALSE to clear from buffer

1 r = random(0.0..1.0);
2 if AT ki ≥ Trr or r ≤ Tra then
3 return recieve = TRUE ; // Store in Buffer

4 else
5 return recieve = FALSE ; // Delete From Buffer

Figure 6.4: Algorithm: Message Reception Decisions in TBSR

downside of this approach is that it may give malicious nodes a greater chance of

receiving a message. This disadvantage could easily be mitigated by applying this

approach selectively to messages with low importance.

The second solution (Figure 6.3b) forwards messages to all nodes with trust

above a threshold that are also expected to meet the destination soon. The down-

side is that any node below a set threshold is “blacklisted” and does not have an

opportunity to modify its trust. This can have a significant effect on nodes that are

isolated for a time period. Trust decays over time and that could cause a given node

to go below the trust threshold.

Pseudocode for the third solution is shown in Figure 6.3c and allows for both

a threshold and nodes with lower trust to forward message segments. If the SR is

above a set threshold (Trr), and the trust that node k has for node i is above that

same threshold, then the message is forwarded. If the SR is above the threshold

because node i will meet the destination soon, but node k’s trust in node i is low,

then depending on the adaptive threshold (Tra) the message is forwarded or not.

This gives a node with low trust a chance to increase trust, but it does so in a

manner that limits the overall network risk.

6.1.3 Assessing Risk in Decision to Recieve a Message

Up to this point, the focus of Trust Based Secure Routing Protocol (TBSR)

has been on making the best decision to forward based on “Situational Risk.” In

addition to forwarding, a given node has to decide whether or not to receive a

message. This decision is usually assumed away. If a node is willing to forward

96

then the receiving node is willing to accept it. If the sending node broadcasts that

message then the receiving node will, at a minimum, process it. The decision the

receiving node has is whether or not to buffer the message and forward it. If there

is a high enough chance that it is corrupt, then the message probably should be

ignored.

There are a number of approaches similar to the previous section as follows:

1. Use a threshold and only accept messages from a node with a trust above that

threshold.

2. Randomly choose which nodes to accept messages from based on trust.

3. Combination of both

The first approach creates a good base. Any node below a certain trust thresh-

old should, in most instances, be ignored. The downside is that it “blacklists” all

nodes with lower trust. These trust values can be from malicious activity and hard-

ware/isolation. In order to maintain dynamic trust, some nodes with lower trust

need to interact and be allowed to forward a message.

The purely random approach allows for trusted nodes to be bypassed and,

hence, was not seriously considered. This approach will more likely than not accept

a message from a good node, but it should in all situations. This also gives a chance

that a message from a suspect node is accepted. While this is not an ideal outcome,

a suspect node needs a chance to improve it’s trust and it can only do so if it can

be part of the message flow in the network.

The final approach was implemented and it was a combination of the previous

two. Figure 6.4 gives psuedocode for this approach that automatically accepts mes-

sages from more trusted nodes and, like in the previous section, allows suspected

bad nodes to be utilized. There could be situations where the only path from source

to destination is through a node with lower trust.

6.2 Message Classification Scheme

There are two parts to the proposed message classification scheme. The first is

a security component and the second is a delivery component. The former is based

97

Table 6.1: Message Classification

Security
Delivery

Low Routine High

Top Secret Tra = 0.0, wnc = 1.0 Tra = 0.0, wnc = 0.75 Tra = 0.1, wnc = 0.5
Secret Tra = 0.1, wnc = 1.0 Tra = 0.1, wnc = 0.75 Tra = 0.1, wnc = 0.5

Unclassified Tra = 0.1, wnc = 1.0 Tra = 0.1, wnc = 0.5 Tra = 0.25, wnc = 0.5

on document classifications similar to those in [73] and the latter based on delivery

[72]. For clarity, there are three levels for each. For security, the classifications are

unclassified, secret and top secret. For delivery, they are low, routine, and high.

Table 6.1 presents a proposed method for assigned Tra and wnc based on mes-

sage classification for use in tuning TBSR. The values were chosen based on simula-

tion analysis; however, they are tunable based on different network configurations.

Additional research could provide a more complete analysis on different scenarios

and the proper values to use in those cases. Tra dictates how often untrusted nodes

are used. When that value is zero, no untrusted nodes are utilized. For a message

with high security needs, that is paramount, but it comes at a cost in delivery time.

The parameter wnc is that weight given the number of copies of a message. When

that is zero, then the number of copies has no effect on SR. When more security

is required, wnc should be maximized. Again, there is an inverse relationship with

delivery time. While specific message tracking simulations that utilize this proposed

classification scheme are not implemented, Table 6.1 provide a proposed baseline.

Flushing out the interactions of nodes based on message classification is one proposal

for future work.

6.3 Simulation Comparisons

In order to illustrate the benefits of TBSR, a number of simulations were

conducted to determine improvements in security and the cost of doing so. Using

an endemic routing scheme is expected to produce the lowest delay. Since every

node met receives a copy of the message, the fastest path is used. Of course, the

risk of data compromise is maximized. Any routing protocol that limits the number

of copies of a given message will increase message delay, but lower the risk of data

98

compromise. As long as that delay does not hinder an application, it is better to be

selective in sharing a message segment with met nodes.

Risk increases with each message segment received by a bad node since there

is a chance that it can be used for malicious purposes. Even in a scheme that uses

erasure coding, where multiple segments are required for message recreation, or in

situations where the payload is encrypted, once the adversary has the message it can

potentially break the encryption or glean useful information just knowing about the

source and destination and how often they communicate. Our goal is to limit the

delay, while reducing the number of instances where a bad node receives a message

segment (selective forwarding also decreases the number of broadcasts caused by

message transmission and therefore lowers the energy used for communication, a

positive side effect of this solution). Hence, the solution seeks a trade-off between

security but large average delays due to limited message sharing, and speed but low

security of more promiscuous sharing.

6.3.1 Simulator Overview

A discrete event simulator using the principles outlined in [74] and Appendex A

show the value of TBSR. There are three types of events that are managed by the

simulation event queue: meeting, update and message initiation. A meeting event

occurs when node i and node k are within broadcast range, conduct a handshake and

as protocol dictates, trade message segments. A node update event occurs every ∆t

time period. This is user defined when tuning up performance of trust management.

A message initiation event occurs when a node places a message in it’s buffer for

transmission to another node which is in it’s vicinity. The user can designate how

often a node sends a message. By default, that message is sent randomly to another

node in the network.

6.3.1.1 Simulation and Network Initialization

Each node is initialized with a vector consisting of the Aggregate Trust (AT)

for all other nodes in the network with a value between 0.0 and 1.0. The user

defines the fraction of good nodes in the network. Since our simulation represents a

more mature network, where trust has partially converged due to previous network

99

activity, during simulation initialization the AT for nodes designated as bad are

assigned a trust of 0.25 and those designated as good receive a 0.75 trust.

The event queue is initialized and each node determines when it will meet

all other nodes using a Poisson distribution as defined in Equation A.1. The edge

weight between nodes i and k is designated wi,k and mTimei,k (from Equation A.1)

is the current simulation time; for simulation initialization mTimei,k = 0. Once

the meeting times are calculated, the meeting events are added to the event queue.

For the initial node update event, each node will calculate ∆t ∗ U(0, 1) using the

uniform number generator U . The user selected message send time tms divided in

half becomes the average time in which each node will send a message. Each node

will send its first message at tms ∗ U(0, 1).

6.3.1.2 Simulation Execution

Once the simulated network is initialized, each event is pulled from the event

queue in it’s calendar order and executed. Node update events use the vector ap-

proximation to track and update trust. Message initialization events add another

message to a randomly selected destination at ct+ tms ∗U(0, 1) (ct is current simu-

lation time). Meeting events do the following when nodes i and k meet:

1. Check to see if either node is busy: If one or both are currently broadcasting to

another node, then the event is skipped and the next meeting time is selected

using Equation A.1. This is done to ensure that a single node cannot broadcast

to multiple nodes at the same time. We do acknowledge that nodes can step

on each others signal, but this is less likely to occur in a sparse network and

would only cause slight additional delays.

2. Trade messages: This will use a designated routing algorithm to determine

which messages to forward. The one utilized here is based on Figure 6.3c

and 6.4.

3. Determine Broadcast Time: Based on the number of messages sent during a

100

meeting event, the broadcast completion time is determined using:

bEndi,k = ct+
(4 ∗ n+ 100 + sn ∗ 1000) ∗ 8

100, 000, 000
(6.4)

The numerator is the estimated size of the data to transmit in bits and in-

cludes a handshake of 100 Bytes plus 4 ∗ n to account for the size of the trust

matrix and 1000 Bytes per message segment traded (sn) for the payload. The

denominator is based on network speed; we assume a 100 Mbps connection.

These values are easily modified to represent different network configurations

and message size assumptions.

4. Process new Messages: This is done by each node independently. Each node

will attempt to recreate messages and update trust accordingly based on the

states shown in Figure 5.1. If the node is the destination and this is the first

time this node is able to recreate the message, then the delivery delay time is

calculated and a message initiation Acknowledgment (ACK) packet is put on

the simulation event queue.

5. Determine next meeting: This is done identically to initialization using Equa-

tion A.1. The only modification occurs when mTimei,k ≤ bEndi,k. In this

case, subsequent meeting times are calculated until mTimei,k > bEndi,k. This

minimizes the number of events that are skipped in step 1.

6.3.2 Simulation Results

Using the simulator discussed above, we ran a number of simulation experi-

ments. The results collected include the average of ten iterations for each configu-

ration. Each simulation runs for 1000 time units with trust initialization based on

a node status as described above. Each node sends a message randomly on average

every messageAvg = tms
2

time units. Trust is updated using the trust management

scheme based on [10]. For each simulation, we observed the following:

• Number of Bad Segments (NumBadSeg): This is the number of unmodified

message segments that arrive at a bad node.

101

Table 6.2: Comparison of Routing Protocols

Fraction of Good Nodes = 60% Fraction of Good Nodes = 90%
useTrust SendTo NumBadSeg NumBadMSG EnergyUsed AvgDelay NumBadSeg NumBadMSG EnergyUsed AvgDelay

Yes Closer Nodes 0 0 185,357 0.8462 0 0 493,636 0.6559
No Closer Nodes 153,629 20,805 1,333,175 1.1388 57,660 10,329 774,435 0.7222
Yes All Nodes 0 0 344,620 0.5580 0 0 924,919 0.3993
No All Nodes 226,025 37,610 2,017,515 0.7245 107,374 22,101 1,413,903 0.4715

Wait for Source-Destination Meeting 0 0 69,129 3.4467 0 0 69,129 3.3367
TBSR Tra = 0.0 8,194 991 536,299 0.6410 85 15 905,576 0.4770
TBSR Tra = 0.1 29,852 1,071 579,155 0.7482 3,515 24 905,639 0.4896
TBSR Tra = 0.5 97,521 9,810 743,679 0.7268 15,313 993 945,531 0.4720
TBSR Tra = 1.0 134,310 17,830 892,533 0.7674 24,450 2,751 945,531 0.4582

trustFirst Messd = 2.0 100,588 19,953 810,689 0.5841 23,842 4,599 1,088,652 0.4102

• Number of Bad Messages (NumBadMSG): Since we are using an erasure cod-

ing algorithm, this is the number of messages that a bad node would have

been able to recreate during the simulation. The case when a bad node re-

ceives all segments, enabling it to recreate a given message, even if the message

is encrypted, poses a high security vulnerability.

• Energy Used as a Function of Broadcasts (EnergyUsed): This is the total num-

ber of segments broadcast. While this value does not give a complete account

of energy use, it is it’s good approximation. The more a node broadcasts and

receives, the more energy is drained. Minimizing the number of total segments

sent is an important energy saving consideration.

• Average Delivery Delay (AvgDelay): This is the average time expired from

when a message is created at the source until it is delivered successfully to the

destination.

6.3.2.1 Comparison with Boundaries and trustFirst

Table 6.2 presents results with messageAvg = 50. It consists of five simulation

sets to determine a baseline and enable a better comparison with TBSR. In the first

set, the source waits for source-destination meeting (WSDM). In the other four sets,

we used two flags to establish routing: useTrust and SendTo. If the useTrust flag

is set, only nodes with trust above a threshold Trr send or receive messages. If the

SendTo flag is set, then any node “closer” to the destination will receive a copy of

the message irrespective of trust. Equation 6.5 is used to determine which node is

closer. Each node determines its estimated time to meeting the destination; the one

with the lower time is chosen. If useTrust is not set and SendTo is set to all, then

102

routing is endemic. If both flags are set, then only trusted nodes that are “closer”

to the destination will receive a copy of the message.

tDestik = −
(

1

wi,k
× ln([0, 1])

)
(6.5)

The top five rows of Table 6.2 give the results for a network, where the fractions

of good nodes are 60% and 90% and uses a trust threshold value of Trr = 0.5 when

the useTrust flag is set. We made these choices to compare a more polluted network

to less polluted one and to get hard lower and upper bounds for all four tracked

data points. The source waiting to meet the destination (WSDM) gives the upper

bound for AvgDelay and the lower bound for EnergyUsed. Pure endemic (useTrust

set to no and SendTo set to all nodes) gives the upper bound for NumBadSeg,

NumBadMSG and EnergyUsed. Normally, it would also give the lower bound for

AvgDelay ; however, with our network initialization and trust threshold when SendTo

is set to all nodes and the useTrust flag is set, we are running endemic routing using

only the good nodes. Our expectation was the use of only trusted nodes would reduce

broadcast congestion and would avoid suppressing some potentially useful segment

sharing. Therefore, in a highly polluted network, this protocol may make the average

delay slightly lower than when using pure endemic routing, thus constituting the

lower bound for AvgDelay. The results validate this reasoning. The lower bound

for NumBadSeg and NumBadMSG occurs when the useTrust flag is set regardless

of the value for SendTo and when WSDM is used.

The next four rows in Table 6.2 show the results of using our trust based

secure routing protocol with different risk levels. This risk is defined as adaptive

trust threshold (Tra). The lower this value, the lower the risk. If Tra = 0.0 then all

nodes below the set Trr are “blacklisted” and the results, as expected, are closest to

row 3 (useTrust flag is set and SendTo is set to all nodes). The value for Trr is the

average trust that a given node has at the time it sends a message. This changes

over time as trust is dynamically modified.

As Tra increases, the more nodes with low trust send and receive messages.

When Tra = 1.0, the results are closest to row 2 (useTrust flag is not set and

SendTo is set to “closer” nodes). The motivation for allowing higher risk is to

103

provide the trust management with observations about all nodes, including nodes

currently classified as bad, to maintain high accuracy of trust values. This can be

accommodated by allowing high level risk value for messages of low or fleeting value,

which when compromised, will do little damage (or even using “information empty”

messages to obtain needed observations for trust management).

The final row in Table 6.2 shows the results using the protocol proposed in

[33], [71] and referred to here as (trustFirst). There are two spray periods. The first

sends only to nodes above a trust threshold. This threshold is set at Trr = 0.75.

During the second, period any node receives a message. The message delay time

messd = 2.0. The second period starts when messd
2.0

.

Comparing the results for TBSR with TrustFirst in Table 6.2 shows the power

of using “Situational Risk.” For all values of Tra except where Tra = 1.0, TBSR

significantly reduces the number of bad segments, bad messages, total number of

messages sent (energy estimate) with only a modest increase in delay. For Tra = 0.1,

there is a 70.32% decrease in NumBadSeg, a 94.65% decrease in NumBadMSG and

28.56% decrease in EnergyUsed. The trade-off is an increase of 28.9% in AvgDelay ;

however, in real time, is less than 0.2 time units while the security and energy

decreases are a significant reduction.

6.3.2.2 Congestion Analysis

There were three congestion cases explored to determine how TBSR performed.

The first is when the number of messages in the network is increased. This could

occur during an emergency when additional message traffic is necessary. The second

is when the frequency of nodes meeting increases. This can happen during a protest

or class when many nodes gather in one location. The final is when both events

occur. In many situations, such as emergency response of protests, a large number

of nodes gather and they increase the message traffic.

Appendix B.2 has the results of the simulation (Table B.4). The key take

away is that increasing the frequency of messages increases the number of bad seg-

ments, messages, and total messages sent (energy use). Increasing the frequency of

meetings decreases the delivery time. Real congestion was not observed in any of

104

(a) 60% of Nodes Good (b) 90% of the Node Good

Figure 6.5: Energy, Security and Delivery Time Trade-Off using wnc

the simulation test cases. Since the simulation tool is designed to abstract much of

the network process away to be able to determine how tuneable parameters work,

many network conflicts such as broadcast collisions are minimized. The simulation

does not allow a single node to talk to multiple nodes at the same time; however,

that interaction can cause delays to the point where other node interactions might

not occur. This has been shown to be a good method of estimation that takes

considerably less time to implement. It dictates what might be a good method to

implement in NS3 or some other simulation tool.

6.3.2.3 Effect of Weight on The Number of Message Copies

One of the key tunable variables in Equation 6.3 is the weight given to the

number of copies of a given message segment that a node forwards (wnc). As stated

above, valid values are 0.0 ≤ wnc ≤ 1.0. The motivation is to allow for more

granularity in how TBSR handles the message classifications discussed in Section 6.2.

Giving a weight to the number of message copies limits the number of times each

node forwards a given message, while still allowing for the possibility that a message

is sent to a node that has a high enough trust and/or has a shorter estimated

time to reach the destination. There could be circumstances where the message

Table 6.3: Comparison of wnc

Fraction of Good Nodes = 60% Fraction of Good Nodes = 90%
wnc NumBadSeg NumBadMSG EnergyUsed AvgDelay NumBadSeg NumBadMSG EnergyUsed AvgDelay
0.0 43,466 2,938 640,022 0.6463 5,472 133 981,507 0.4379
0.25 37,610 2,078 616,401 0.6620 4,572 63 950,665 0.4588
0.50 34,687 1,776 604,128 0.6751 3,993 46 919,905 0.4730
0.75 32,949 1,510 589,071 0.7137 3,911 36 913,621 0.4802
1.0 29,852 1,071 579,155 0.7482 3,515 24 905,639 0.4896

105

classification has a fast or high delivery requirement and the number of copies and

subsequent security and energy trade-off is an acceptable risk (secret/high). When

this occurs wnc should be a lower value or equal to zero. When wnc = 0.0, the

number of copies does not effect Equation 6.3, but trust and estimated delivery

time do. The expectation is an inverse relationship between the average delivery

time and security/energy as wnc increases.

Table 6.3 presents the raw results using TBSR with Tra = 0.1 and with each

node sending a message on average every 50 time units. These were run using 60%

and 90% as the percentage of good nodes in the network. There are multiple values

for wnc. As expected, as wnc increases the average delivery time also increases; this

is due to more restrictions on the number of copies being forwarded. In addition,

the number of messages sent to a bad node and the total number of messages sent

decrease. Figure 6.5 shows this inverse relationship. Subfigures 6.5a and 6.5b show

60% and 90% good node density respectively. For all cases, modification of wnc

allows for the trade-off of energy/security and message delivery time.

6.4 Future Work and Conclusion

The Trust Based Secure Routing Protocol is designed to use trust to determine

which nodes to forward or from which to accept messages. Nodes with lower trust

values are more suspect and should be avoided; however, in order to dynamically

maintain trust, and to account for nodes that are rarely seen or become temporarily

isolated, they must not become completely “blacklisted.” By smartly choosing which

nodes to trust based on message classification (Section 6.2) and the subsequent

”Situational Risk” calculations in Equation 6.3, improvements are made over other

protocols that only use trust.

There is a trade-off between average delay, security and energy used. One

extreme is endemic routing which minimizes the average delay but maximizes the

energy use and security risk. The other extreme is to only send the message to the

destination (WSDM) which minimizes security and energy use but maximizes delay.

Neither approach is appropriate for any of the message classifications. TBSR uses

three key values to determine “situational risk” namely trust, the number of copies

106

of a message and the “closeness” between each node that is the estimated time to

meet the destination. The key value in TBSR is the SR, which is likely to be higher

when trust is higher. It is shown to give significant increases in security and energy

use for a modest increase of delivery time over a two spray period trustFirst routing

protocol.

Additional research areas for this include full implementation of TBSR in a

more robust network simulator such as NS3. Further research into different mobility

patterns and adversarial models will help refine the results. Testing and determining

message classification based on different operating environments will aid in tuning

key parameters. Exploring the use of trust patterns as well as trust values can

provide an additional clue for direct and indirect trust.

CHAPTER 7

Conculsions and Future Research

There is a requirement for secure and robust networks in all environments. This

dissertation explored a class of Resource Constraint Networks (RCN) in order to

improve information assurance. It mainly focused on Delay Tolerant Networks but

many of the concepts are portable to the larger class of RCNs. While researching

the topic, it became clear that managing trust in a distributed environment and

using that trust to make secure routing decisions at each node was an interesting

and open topic. This led to three research questions tackled in Chapters 4, 5 and 6.

1. What are the best clues for use in observing and updating direct trust?

2. How to fuse direct and indirect trust to create an aggregate trust value?

3. How to take trust and apply that to routing, in order to as securely as possible

forward a message from source to destination?

Based on the questions enumerated above, this dissertation presents a number

of contributions to trust, security and routing in a DTN.

7.1 Path Clues

There are multiple possible clues for use in a DTN. This presents the idea

of using path information to observe and make direct trust updates. Each node

maintains trust, as a value between 0.0 and 1.0, for every other node in the net-

work. Using erasure coding and a check-sum, each message is broken into multiple

segments and forwarded through the network. When the segments arrive at the

destination the message is recreated. Based on the results, trust is increased or

decreased for nodes along the utilized paths. A number of utility functions are pro-

posed to determine when the destination should request a message be resent. For

either utility function to work, in a distributed manner, the probability that the

next segment arrives and is untainted is necessary. This needs to occur at each node

107

108

with only information stored at that particular node. A method for determining

this probability is presented.

Future Work :

There are a number of improvements for future work. Testing the results

on a more robust set of threat models will identify any potential vulnerabilities.

Modifying the trust penalties and rewards to be more adaptive, such as sliding

windows similar to TCP, has the potential to better refine the results. Different

mobility patterns will show situations where the approach is vulnerable or confirm

it’s utility. Further analysis on path flow and the probability of segments arriving

untarnished can lead to further refinement of directly observable path clues in a

distributed environment.

7.2 Managing Indirect Trust

Two methods for managing indirect trust are proposed. Each stores historical

information about recommending nodes. That information is then fused to create

an indirect trust value. This is done at each node independently and decays older

values, takes and gives more weight to the recommendation of more trusted nodes

and aggregates all recommendations about a given node to produce an indirect trust

value. This is done every time period ∆t and is not done in real time, but near real

time. Nodes that are often seen can not overwhelm and significantly modify trust

(ballot stuff). Additionally, based on method, the recommendations from other

nodes decay and time interval to time interval are averaged minus that delay. This

again keeps one node from overwhelming and causing drastic changes.

Future Work :

Additional simulations with different mobility patterns will help tune the in-

direct trust variables to work in different environments.

109

7.3 Trust Aggregation

Trust is aggregated using direct and indirect trust information based on direct

path clues and trading recommendations. The use of weight and decay are not new;

however, the specific interplay presented here is. By aggregating trust, every ∆t

more information is obtained and a more smooth convergence is observed. This

again reduces the effect of one bad node and results in quickly identifying malicious

nodes. Even when a malicious node only acts bad 25% of the time, it is identified.

Future Work :

The complete distributed trust management system works well in a limited

threat model. Additional tests with more robust threat models will help refine the

results. The trust management system should be implemented in NS3, OMNet++ or

some other more powerful network simulation tool. This will allow for the refinement

of tunable parameters as well as the use of more robust mobility models. Changes

in trust or trust patterns overtime might help to create a set of clues for use in more

quickly determining bad nodes.

7.4 Trust Based Secure Routing

This dissertation presents a Trust Based Secure Routing (TBSR) protocol.

TBSR uses trust and the “closeness” that a prospective next hop node is to the des-

tination to make forwarding decisions. Both values are used to determine the risk

associated with forwarding a message. That risk is based on the trust the sender

has in the receiver. If that trust is low, then that node must be “closer” to the

destination to offset that ambiguity. If that trust is higher, then it should receive a

copy of the message, unless it is significantly better to wait. The number of copies of

a message is limited and forwarding is based on the “Situational Risk” (SR), which

directly effects SR. This is shown to reduce the number of copies that are sent to

bad nodes with a minor hit in delivery time.

Future Work :

There is a proposed message classification scheme. More analysis will lead to

110

a better selection of parameters for determining SR. This could be mobility pattern

specific.

REFERENCES

[1] C. Baraniuk. (Sep. 2014). Protesters adore firechat but it’s still not secure,
[Online]. Available: http://www.wired.co.uk/news/archive/2014- 09/30/
firechat-app-hong-kong-protesters (Date Last Accessed, Sep. 30, 2014).

[2] W. V. Maconachy, C. D. Schou, D. Ragsdale, and D. Welch, “A model for
information assurance and integrated approach,” in Proc. IEEE Workshop on
Inform. Assurance and Security, West Point, NY, Jun. 2001, pp. 306–310.

[3] K. Govindan and P. Mohapatra, “Trust computations and trust dynamics in
mobile adhoc networks: a survey,” IEEE Commun. Surveys Tuts., vol. 14, no.
2, pp. 279–298, Feb. 2012.

[4] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and focus: Effi-
cient mobility-assisted routing for heterogeneous and correlated mobility,” in
5th Annu. IEEE Int. Conf. Pervasive Computing and Commun. Workshops,
White Plains, NY, Mar. 2007, pp. 79–85.

[5] Y. Zhu, B. Xu, X. Shi, and Y. Wang, “A survey of social-based routing in
delay tolerant networks: Positive and negative social effects,” IEEE Commun.
Surveys Tuts., vol. 15, no. 1, pp. 387–401, Jan. 2013.

[6] A. Kate, G. Zaverucha, and U. Hengartner, “Anonymity and security in de-
lay tolerant networks,” in 3d Int. Conf. Security and Privacy in Commun.
Networks, Nice, France, Sep. 2007, pp. 504–513.

[7] J.-H. Cho, A Swami, and I.-R. Chen, “A survey on trust management for mo-
bile ad hoc networks,” IEEE Commun. Surveys Tuts., vol. 13, no. 4, pp. 562–
583, Apr. 2011.

[8] D.-I. Curiac, C. Volosencu, D. Pescaru, L. Jurca, and A. Doboli, “Redundancy
and its applications in wireless sensor networks: A survey,” W. Trans. on
Comp., vol. 8, no. 4, pp. 705–714, Apr. 2009.

[9] T. Babbitt and B. K. Szymanski, “Trust management in delay tolerant net-
works utilizing erasure coding,” in 2015 IEEE Int. Conf. on Commun., Ad-hoc
and Sensor Networking Symp., London, United Kingdom, Jun. 2015, pp. 7959–
7965.

[10] T. A. Babbitt and B. Szymanski, “Trust metric integration in resource con-
strained networks via data fusion,” in Proc. 18th Int. Conf. Inform. Fusion
(Fusion ’15), Washington, DC, Jul. 2015, pp. 582–589.

[11] T. Babbitt and B. K. Szymanski, “Trust based secure routing in delay tolerant
networks,” in 8th IEEE Int. Workshop Network Sci. for Commum. Networks
(NetSciCom ’16), San Francisco, CA, Apr. 2016.

111

112

[12] National Security Agency. (Sep. 2000). National information systems security
(infosec) glossary, National Security Agency, [Online]. Available: http://www.
dtic .mil/cgi - bin/GetTRDoc?AD=ADA433929&Location=U2 (Date Last
Accessed, Oct. 15, 2015).

[13] Committee in National Security Systems. (Apr. 2010). National information
assurance (ia) glossary, Committee in National Security Systems, [Online].
Available: http://www.ncsc.gov/publications/policy/docs/CNSSI 4009.pdf
(Date Last Accessed, Oct. 15, 2015).

[14] National Institute of Standards and Technology. (Apr. 2013). Security and
privacy controls for federal information systems and organizations, National
Institute of Standards and Technology, [Online]. Available: http://nvlpubs.
nist .gov/nistpubs/SpecialPublications/NIST.SP.800- 53r4.pdf (Date Last
Accessed, Oct. 15, 2015).

[15] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach, 5th
ed. Boston, MA: Addition Wesley, 2010, pp. 36–45.

[16] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
networks: A survey,” Comput. Networks, vol. 38, no. 4, pp. 393 –422, Mar.
2002.

[17] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Com-
put. Networks, vol. 52, no. 12, pp. 2292 –2330, Aug. 2008.

[18] T. A. Babbitt, C. Morrell, B. K. Szymanski, and J. W. Branch, “Self-selecting
reliable paths for wireless sensor network routing,” Comput. Commun., vol.
31, no. 16, pp. 3799–3809, Oct. 2008.

[19] T. Babbitt, C. Morrell, and B. Szymanski, “Self-selecting reliable path routing
in diverse wireless sensor network environments,” in 2009 IEEE Symp. on
Comput. and Commun. (ISCC ’09), Sousse, Tunisia, Jul. 2009, pp. 1–7.

[20] G. Simon, M. Maróti, A. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap,
J. Sallai, and K. Frampton, “Sensor network-based countersniper system,” in
Proc. 2nd Int. Conf. Embedded Networked Sensor Syst. (SenSys ’04), Balti-
more, MD, Nov. 2004, pp. 1–12.

[21] M. Castillo-Effer, D. Quintela, W. Moreno, R. Jordan, and W. Westhoff,
“Wireless sensor networks for flash-flood alerting,” in Proc. 5th IEEE Int.
Caracas Conf. on Devices, Circuits and Syst., vol. 1, Nov. 2004, pp. 142–146.

[22] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor net-
works: Research challenges,” Ad Hoc Networks, vol. 3, no. 3, pp. 257 –279,
May 2005.

[23] S. Taneja and A. Kush, “A survey of routing protocols in mobile ad hoc
networks,” Int. J. of Innovation, Manage. and Technology, vol. 1, no. 3, p. 279,
Aug. 2010.

113

[24] B.-R. C. Perkins and S. Das. (Jul. 2003). Ad hoc on-demand distance vector
(aodv) routing, [Online]. Available: https://www.rfc-editor.org/rfc/rfc3561.
txt (Date Last Accessed, Nov. 9, 2015).

[25] R. Bruno, M. Conti, and E. Gregori, “Mesh networks: Commodity multihop
ad hoc networks,” IEEE Commun. Mag., vol. 43, no. 3, pp. 123–131, Mar.
2005.

[26] I. Akyildiz and X. Wang, “A survey on wireless mesh networks,” IEEE Com-
mun. Mag., vol. 43, no. 9, S23–S30, Sep. 2005.

[27] S. Zeadally, R. Hunt, Y.-S. Chen, A. Irwin, and A. Hassan, “Vehicular ad hoc
networks (vanets): Status, results, and challenges,” Telecommum. Syst., vol.
50, no. 4, pp. 217–241, Aug. 2012.

[28] IEEE Computer Society. (Jul. 2010). IEEE standard for information tech-
nology, telecommunications and information exchange between systems local
and metropolitan area networks specific requirements; part 11: Wireless lan
me dium access control (mac) and physical layer (phy) specifications; amend-
ment 6: Wireless access in vehicular environments, [Online]. Available: https:
//www.ietf.org/mail-archive/web/its/current/pdfqf992dHy9x.pdf (Date Last
Accessed, Nov. 9, 2015).

[29] Cambridge Dictionary Online. (Oct. 2014). Trust, Cambridge Dictionary On-
line, [Online]. Available: http ://dictionary. cambridge . org/us/dictionary/
american-english/trust (Date Last Accessed, Oct. 15, 2014).

[30] S. Adalı, Modeling Trust Context in Networks. New York, NY: Springer, 2013,
pp. 5–8.

[31] M. O. Rabin, “Efficient dispersal of information for security, load balancing,
and fault tolerance,” J. of the ACM, vol. 36, no. 2, pp. 335–348, Feb. 1989.

[32] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: An ef-
ficient routing scheme for intermittently connected mobile networks,” in Proc.
2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking (WDTN ’05),
Philadelphia, PA, Aug. 2005, pp. 252–259.

[33] E. Bulut and B. K. Szymanski, “On secure multi-copy based routing in com-
promised delay tolerant networks,” in 20th IEEE Int. Conf. Comput. Commu-
niations and Networks, Workshop on Privacy, Security and Trust in Mobile
and Wireless Syst., Kyoto, Japan, Jul. 2011, pp. 1–7.

[34] S. Zakhary and M. Radenkovic, “Erasure coding with replication to defend
against malicious attacks in dtn,” in 7th IEEE Int. Conf. Wireless and Mobile
Computing, Networking and Commun., Shanghai, China, Oct. 2011, pp. 357–
364.

114

[35] U. Sadiq, M. Kumar, and M. Wright, “Crisp: Collusion-resistant incentive-
compatible routing and forwarding in opportunistic networks,” in Proc. 15th
ACM Int. Conf. Modeling, Anal. and Aimulation of Wireless and Mobile Syst.
(MSWiM ’12), Paphos, Cyprus, Oct. 2012, pp. 69–78.

[36] Y. Ren, M.-C. Chuah, J. Yang, and Y. Chen, “Muton: Detecting malicious
nodes in disruption-tolerant networks,” in 2010 IEEE Wireless Commun. and
Networking Conf., Sydney, Australia, Apr. 2010, pp. 1–6.

[37] M. Uddin, A. Khurshid, H. D. Jung, C. Gunter, M. Caesar, and T. Abdelza-
her, “Making dtns robust against spoofing attacks with localized countermea-
sures,” in 8th Annu. IEEE Conf. Sensor, Mesh and Ad Hoc Commun. and
Networks, Salt Lake City, UT, Jun. 2011, pp. 332–340.

[38] Q. Li, W. Gao, S. Zhu, and G. Cao, “To lie or to comply: Defending against
flood attacks in disruption tolerant networks,” IEEE Trans. Dependable Secure
Comput., vol. 10, no. 3, pp. 168–182, Mar. 2013.

[39] M. Conti, R. Di Pietro, A. Gabrielli, L. V. Mancini, and A. Mei, “The smallville
effect: Social ties make mobile networks more secure against node capture
attack,” in Proc. 8th ACM Int. Workshop on Mobility Manage. and Wireless
Access (MobiWac ’10), Bodrum, Turkey, Oct. 2010, pp. 99–106.

[40] M. Conti, R. Pietro, A. Gabrielli, L. V. Mancini, and A. Mei, “The quest for
mobility models to analyse security in mobile ad hoc networks,” in Proc. 7th
Int. Conf. Wired/Wireless Internet Commun., Enschede, The Netherlands,
May 2009, pp. 85–96.

[41] V. Natarajan, Y. Yang, and S. Zhu, “Resource-misuse attack detection in
delay-tolerant networks,” in 30th IEEE Int. Conf Performance Computing
and Commun., Banff, Canada, Sep. 2011, pp. 1–8.

[42] M. J. Pitkänen and J. Ott, “Redundancy and distributed caching in mobile
dtns,” in Proc. 2nd ACM/IEEE Int. Workshop on Mobility in the Evolving
Internet Architecture (MobiArch ’07), Kyoto, Japan, Aug. 2007, 8:1–8:7.

[43] M. K. Denko, T. Sun, and I. Woungang, “Trust management in ubiquitous
computing: a bayesian approach,” Comput. Commun., vol. 34, no. 3, pp. 398–
406, Mar. 2011.

[44] E Ayday, H. Lee, and F Fekri, “Trust management and adversary detection
for delay tolerant networks,” in 2010 IEEE Conf. on Military Commun. (MIL-
COM ’10), San Jose, CA, Nov. 2010, pp. 1788–1793.

[45] I.-R. Chen, F. Bao, M. Chang, and J.-H. Cho, “Dynamic trust management
for delay tolerant networks and its application to secure routing,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 5, pp. 1200–1210, May 2014.

[46] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Efficient routing in inter-
mittently connected mobile networks: The multiple-copy case,” IEEE/ACM
Trans. Netw., vol. 16, no. 1, pp. 77–90, Jan. 2008.

115

[47] S. Adalı, R. Escriva, M. Goldberg, M. Hayvanovych, M. Magdon-Ismail, B.
Szymanski, W. Wallace, and G. Williams, “Measuring behavioral trust in so-
cial networks,” in 2010 IEEE Int. Conf. on Intell. and Security Informatics,
Vancouver, Canada, May 2010, pp. 150–152.

[48] P. Tague and R. Poovendran, “Modeling adaptive node capture attacks in
multi-hop wireless networks,” Ad Hoc Networks, vol. 5, no. 6, pp. 801 –814,
Jun. 2007.

[49] P. Tague, D. Slater, J. Rogers, and R. Poovendran, “Vulnerability of network
traffic under node capture attacks using circuit theoretic analysis,” in 27th
IEEE Conf. Comput. Commun., Phoenix, AZ, Apr. 2008, pp. 664–672.

[50] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C. Sno-
eren, “Cloud control with distributed rate limiting,” in Proc. 2007 Conf. Ap-
plications, Technologies, Architectures, and Protocols for Comput. Commun.
(SIGCOMM ’07), Kyoto, Japan, Aug. 2007, pp. 337–348.

[51] B. Solhaug, D. Elgesem, and K. Stølen, “Why trust is not proportional to
risk?” In Proc. 2nd Int. Conf. Availability, Reliability and Security (ARES07),
Vienna, Austria, Apr. 2007, pp. 11–18.

[52] A. Josang and S. LoPresti, “Analyzing the relationship between risk and trust
(itrust’04),” in 2nd Int. Conf. Trust Manage., Oxford, United Kingdom, Mar.
2004, pp. 135–145.

[53] Department of the Army. (Sep. 2014). Risk management, Department of the
Army, [Online]. Available: http ://armypubs .army.mil/doctrine/dr pubs/
dr a/pdf/atp5 19.pdf (Date Last Accessed, Sep. 30, 2014).

[54] Department of the Army. (Mar. 2012). Mission command, Department of the
Army, [Online]. Available: http://armypubs.army.mil/doctrine/DR pubs/
dr a/pdf/adp6 0 new.pdf (Date Last Accessed, Sep. 30, 2014).

[55] E. Ayday and F. Fekri, “An iterative algorithm for trust management and ad-
versary detection for delay-tolerant networks,” IEEE Trans. Mobile Comput.,
vol. 11, no. 9, pp. 1514–1531, Sep. 2012.

[56] M. K. Denko and T. Sun, “Probabilistic trust management in pervasive com-
puting,” in 2008 IEEE/IFIP Int. Conf. Embedded and Ubiquitous Computing,
Shanghai, China, Dec. 2008, pp. 610–615.

[57] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[58] S. Cui, P. Duan, and C. W. Chan, “An efficient identity-based signature
scheme with batch verifications,” in Proc. 1st Int. Conf. Scalable Inform. Syst.
(InfoScale ’06), Hong Kong, May 2006.

[59] A. Barabasi. (Aug. 2014). Network science, [Online]. Available: http://barabasilab.
neu . edu / networksciencebook / download / network science ch10 ver 19 . pdf
(Date Last Accessed, Aug. 10, 2014).

116

[60] E. Bulut, Z. Wang, and B. Szymanski, “Cost efficient erasure coding based
routing in delay tolerant networks,” in 2010 IEEE Int. Conf. on Commun.,
Cape Town, South Africa, May 2010, pp. 1–5.

[61] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-coding based rout-
ing for opportunistic networks,” in Proc. 2005 ACM SIGCOMM Workshop
on Delay-Tolerant Networking (WDTN ’05), Philadelphia, PA, Aug. 2005,
pp. 229–236.

[62] Y. Lin, B. Li, and B. Liang, “Stochastic analysis of network coding in epidemic
routing,” IEEE J. Sel. Areas Commun., vol. 26, no. 5, pp. 794–808, May 2008.

[63] J. Lakkakorpi and P. Ginzboorg, “Ns-3 module for routing and congestion
control studies in mobile opportunistic dtns,” in 2013 Int. Symp. Perfor-
mance Evaluation of Comput. and Telecomm. Syst., Toronto, Canada, Jul.
2013, pp. 46–50.

[64] K. Scott and S. Burleigh. (Nov. 2007). Bundle protocol specification, [Online].
Available: http://www.ietf .org/rfc/rfc5050.txt .pdf (Date Last Accessed,
Oct. 1, 2014).

[65] S. Symington and S. Farrell. (May 2011). Bundle security protocol specifica-
tion, [Online]. Available: http://www.ietf.org/rfc/rfc6257.txt.pdf (Date Last
Accessed, Oct. 1, 2014).

[66] A. Vahdat and D. Becker. (Apr. 2000). Epidemic routing for partially-connected
ad hoc networks, [Online]. Available: http://www.cs.duke.edu/techreports/
2000/2000-06.ps (Date Last Accessed, Oct. 15, 2015).

[67] T. A. Babbitt and B. K. Szymanski, “Trust management in resource constraint
networks,” in Proc. 10th Annu. Symp. Inform. Assurance (ASIA ’15), Albany,
NY, Jun. 2015, pp. 51–56.

[68] B. Twomey. (Nov. 2015). Simple vs. exponential moving averages, [Online].
Available: http : / / www . investopedia . com / articles / trading / 10 / simple -
exponential-moving-averages-compare.asp?header alt=true (Date Last Ac-
cessed, Nov. 12, 2015).

[69] J. Burgess, B. Gallagher, D. Jensen, and B. Levine, “Maxprop: Routing for
vehicle-based disruption-tolerant networks,” in Proc. 25th IEEE Int. Conf.
Comput. Commun., Barcelona, Spain, Apr. 2006, pp. 1–11.

[70] E. Bulut and B. Szymanski, “Friendship based routing in delay tolerant mo-
bile social networks,” in 2010 IEEE Global Telecommun. Conf. (GLOBECOM
2010), Miami, FL, Dec. 2010, pp. 1–5.

[71] E. Bulut and B. Szymanski, “Secure multi-copy routing in compromised de-
lay tolerant networks,” English, Wireless Personal Commun., vol. 73, no. 1,
pp. 149–168, Jan. 2013.

117

[72] S. Chen and K. Nahrstedt, “Distributed quality-of-service routing in ad hoc
networks,” IEEE J. Sel. Areas Commun., vol. 17, no. 8, pp. 1488–1505, Aug.
1999.

[73] Department of the Army. (Sep. 2000). Department of the army information
security program, Department of the Army, [Online]. Available: http://www.
apd.army.mil/pdffiles/r380 5.pdf (Date Last Accessed, Nov. 4, 2015).

[74] J. Gross and M. Günes, “Introduction,” in Modeling and Tools for Network
Simulation, K. Wehrle, M. Günes, and J. Gross, Eds., Berlin, Germany: Springer-
Verlag, 2010, pp. 1–11.

[75] G. Chen, J. Branch, M. Pflug, L. Zhu, and B. Szymanski, “Sense: A wireless
sensor network simulator,” in Advances in Pervasive Computing and Network-
ing, Springer US, 2005, pp. 249–267.

[76] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. of the ACM,
vol. 33, no. 10, pp. 30–53, Oct. 1990.

[77] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn protocol
evaluation,” in Proc. 2nd Int. Conf. Simulation Tools and Techniques, Rome,
Italy, Mar. 2009, 55:1–55:10.

APPENDIX A

Discreet-Event Simulator

There are three methods for performance evaluation for network protocols and

schemes: mathematical analysis, measurements, and simulations. The first is dis-

cussed in detail throughout this dissertation where mathematical bounds are proven.

The second, based on implementation of the system and numerous factors includ-

ing cost, is best done after scheme or protocols show merit through the other two

methods. The third uses computer simulations. In an ideal world, success in math-

ematical analysis would lead to simulation success and finally, success in real world

applications. The challenge is what to model and then what tool or tools best

evaluate a given scheme or protocol.

A computer simulation imitates a set of real world processes over time. There

are various types of computer simulations that include discrete-event, continuous,

Monte Carlo, spreadsheet, trace-driven etc. For network protocols and schemes

discrete-event simulation is the norm. Wehrle et al. [74] discuss a number of sim-

ulation models and tools. Those tools include ns-3, OMNeT++, IKR Simulation

Library, and openWNS. While these are open source, they are very robust simu-

lation tools with large libraries for simulating many network protocols, schemes,

and models. They are useful for simulation of Resource Constraint Networks, but

were not made with their use in mind. Numerous other tools for use in Resource

Constraint Network simulation have been proposed to fill the gap. One example is

SENSE [75] that is very powerful for simulation of WSN routing protocols. Other

principles are outlined in [76], [77].

This appendix proposes a simulation tool to model trust schemes in a Resource

Constraint Network. This tool approximates or generalizes many network functions

and focuses on the key components for trust management, mainly the transfer of

message and trust information and node calculations done to update and manage

trust. Section A.1 provides discrete-event simulation principals and overview. Sec-

tion A.2 discuses the simulation tool in detail based on the principals of discrete

118

119

Figure A.1: Event Occurrence at time ti

event simulation.

A.1 Principals of Discrete-Event Simulation

The basic concept for discrete-event simulation is to jump from key event to

key event, each event being instantaneous in time, so each event Ei occurring over

time period of t, is represented by two instantaneous events start-Ei at time ti and

end-Ei happening at time t+ ti. Looking back at someones life, it normally consists

of a sequence of key events such as birth, birthdays, graduations, marriage, birth

of children, and major professional accomplishments. While a persons life, like a

network, is not a discrete-event system, a model that represents each key event can

give insight into how someone lived or how well protocol and schemes work for a

network. As each event occurs, the system state changes. Then potential and future

events are generated. While in life those might not be preordained, in a network

situation, one event might trigger another in the future or even at the current system

time. The authors in [74] call these future events “event notices” and the queue of

events “future event list (FEL).” To simplify, I will use, events on the event queue.

There are two features defined for an event : one is the time it will occur and the

other it’s type. Figure A.1 [74, Fig. 1.1] depicts how these events occur. Each one

event occurs at a discrete time and t1 is the time when event 1 occurs. For any given

event i, the time of it’s occurrence is defined and denoted ti. Two things are clear,

looking at the timeline. The first is that the time between events is not constant

and that there are periods of time where no events occur.

In general, there are a number of components required for discrete-event sim-

ulation. They were summarized in [74] and appear below:

120

• System/Network State: This describes the possible states and the transition

between them. It consists of a series of variables.

• Clock: This tracks the time in the simulation.

• Statistical Counter/Log: This can be a set of variables to count key events,

and/or a log file that prints required state variables at key times.

• Event Queue/Timing Routine: This will retrieve the next event.

• Event Routine(s): This is what happens when an event is called and the

particular routine(s) called can be dependent on the network state and event

type.

Figure A.2 [74, Fig. 1.2] shows the basic flow for a discrete-event simulator.

The network state is initialized and then the first event is selected. Based on the

type and network state, a series of routines are called that modify the network state

and update counters and logs. This can be as simple as updating a trust level at a

particular node. This will continue until the simulation terminates. Normally, this

is at a given time, but could be based on network state or total number of events.

A.2 Simulation Tool

The simulation tool proposed here is written in Python and is an approxima-

tion for more robust tools such as ns-3. It disregards node handshakes, broadcast

collisions, broadcast times, noise, and a number of other network communication

details. All of those are important and are implemented in ns-3. This simulator

is a high level approximation used to initially evaluate scheme parameters. More

detailed simulations used to obtain more precise and robust results are expected

to be qualitatively similar to those using this tool. The goal is to confirm or deny

intuitions about the effect of malicious nodes on node and network trust.

The simulation tool creates a complete graph with n nodes, where node i is

in the set of all nodes i ∈ N . Each edge weight is a random number, uniformly

distributed between [0.0,1.0), that is the inverse of the intermeeting time between

two nodes connected by this edge and denoted as wi,j for the edge weight between

121

Figure A.2: Flow for Discrete-Event Simulation

nodes i and j. Thus, the weight of node edges represent how often a node is likely

to meet with others. If the edge weight is 1.0, then the two connected nodes are in

constant contact, but if it is 0.0 they never meet. By randomly selecting edge weights

in the network, an arbitrary mobility pattern in the network can be simulated.

A.2.1 Network State

The network state is a combination of the location of, and information buffered

at, each node at a given time t. The location of nodes dictates which nodes can trans-

mit messages and if any broadcast conflicts occur. The trust levels and messages

buffered by nodes in broadcast range will determine if any messages are transmitted.

122

This lends itself to two categories of events. The first is a meeting event between

two nodes. The second is a node update event that occurs based on a timer or

conditional.

Figure 2.1 in Chapter 2.1.1.1 depicts the time between meetings in a DTN.

It includes all of the normal networking delays of processing, queuing, transmis-

sion and propagation. The definition of a DTN adds an idle and handshake delay.

Equation A.1 is used to determine when node i and node j meet. It uses a Poisson

distribution and the randomly assigned inverse of the intermeeting time, or edge

weight, between the nodes. By creating meeting events in this manner, it takes into

account the average idle delay between two nodes; however, it does not take into

account any of the other delays. This model assumes that if node i and node j

meet they transmit all information immediately upon being in transmission range

without normal network delays. Additionally, if node i meets node j at tl and node

i meets node k at t(l+1) and t(l+1) − tl is less than the time it would take for node i

to complete it’s transmissions with node j, then either node k would have to wait,

or by broadcasting to node i, disrupt the communication between i and j. The

assumption that there is no network delay beyond that of didle will simulate opti-

mistic results due to ideally fast transmissions that occur in this tool, that will not

occur under normal network operations. This approximation is acceptable. It is

likely that some messages sent in this tool will not be sent in a more robust tool;

however, over a longer time of system operation, even in reality, similar trust results

will occur.

A.2.1.1 Initialization

During the initialization of each run, each edge is uniformly randomly assigned

a weight between [0.0,1.0). Each node has an initialized trust object and message

queue. At a minimum, the trust object contains a vector with the aggregate trust

node i has for all nodes j ∈ N and a structure to track direct and indirect trust. The

values in the aggregate trust vector are initialized as 0.5 and the direct and indirect

trust structures as null. All queues are empty, and depending on the specified

percentage, a number of the nodes are flagged as bad. Those nodes will modify any

123

messages they transfer along a path from source to destination with some probability.

A.2.1.2 Event Types

There are two main types of events. The first is a meeting event between nodes.

This occurs when two nodes are within broadcast range of each other. During this

type of event, nodes trade messages and indirect trust information with which nodes

will update their message buffers and direct trust vectors. The second type of event

is a node trust update event. This occurs when a node’s timer expires after ∆t. A

node will update first it’s indirect trust information and then it’s aggregate trust

vector using both the indirect and direct trust vectors. A subclass of the node event

is a message event. This will either put a new message or acknowledgement into the

buffer for a given node.

A.2.2 Event Queue

The simulation event queue is populated with initial events. For meeting

events, this is done for each node pair i, j ∈ N by sampling meeting times from

Poisson distribution. The variable mTimei,j is set to 0 and then using

mTimei,j = mTimei,j −
(

1

wi,j
× ln([0, 1])

)
(A.1)

to create an initial meeting event time. For node updates, the initial update occurs

at ∆t ∗ [0.0, 1.0]. This will stagger node updates. Each node will add an initial

message event at a time uniformly randomly selected between [0.0, x] with a ran-

domly selected destination node. Once the initial events are added to the simulation

queue, it is sorted by event time and the simulation continues until all events that

can occur prior to the stop time are executed.

A.2.3 Event Routines

There are three categories of event routines: network, message, and trust.

The first category are routines used to manage the network. This category includes

routines that are invoked when nodes meet. The second category includes routines

involved in message transmission. They determine what messages to send once

124

two nodes are in contact, they also include sending acknowledgement packets and

clearing buffers of stale messages. The final are trust routines which update and

manage the trust object at each node. The type of routines called is based on the

type of event executed.

A meeting event between node i and j calls a routing to transmit trust vectors,

check for acknowledgments message and trade message segments. This will update

indirect and direct trust based on received acknowledgement and message segments.

If either node can recreate a message, then a trust update routine is called. A new

acknowledgement will clear the buffers of all messages with that message ID. Finally,

the next meeting between nodes is determined using Equation A.1.

A node update event will call the trust routines required to update indirect

trust and then aggregate that with the direct trust. The details of operation of this

event depend on the exact implementation. Some of the possible solutions of which

are proposed and discussed in Chapter 5.

APPENDIX B

Supplemental Simulation Results by Chapter

There are a number of simulation experiments that test the effect of multiple sce-

narios, cases, and adjustments of tunable parameters. There are also key interim

proposals and simulations that led to further research and experimentation. The

key results and conclusions for each research question are presented in Chapters 4, 5

and 6. This appendix presents supplemental results that either support, or sig-

nificantly contributed to, obtaining those results. They are included here with a

complete description of the simulation set up, as done in either NS3 or a discrete

event simulator as described in Appendix A.

Each one of the sections below gives a complete description of the simulation

tool used, the initialization values and results. There is some overlap in discussion

between this appendix and the corresponding chapter for each simulation experiment

described below. This is done on purpose to avoid having to refer back to the chapter

for details on simulator initialization or run. This is only done for the first set of

multi-case simulations with key changes outlined for all subsequent tests. While this

is meant to present supplemental results, the goal is for each simulation test case to

be fully discussed below.

B.1 Supplemental Simulations: Chapter 5

This section contains additional details on simulations and setup that supports

Chapter 5. There were two different discrete event simulators created. The goal of

the first was to explore how indirect trust converges (based on Chapter 5.1.3.1),

Table B.1: Supplemental Simulations

Purpose Concept Supplemented Chapter Supported
Significance of ∆t Convergence Time and Number of Updates Ch. 5.1.3.1
Comparing αin Comparing αin, Given n = 40 and pnx = 60 Ch. 5.2.2
Test Congestion Effect of Message and Meeting Frequency Ch. 6.3.2.2

125

126

and did not take into account direct trust (Chapter 4 and Chapter 5.1.2) or the

aggregation of trust (Chapter 5.1.1). The goal of the second is to show the power

of the complete trust management system utilizing both direct and indirect trust to

fuse into an aggregate trust value.

B.1.1 Simulation Results for Indirect Trust

In order to test some of the tunable parameters, a simulation engine is proposed

that acts as a discrete event simulator (see Appendix A.2). A complete graph

is created using the number of nodes n in a given network. Each edge weight

is a random number uniformly distributed between [0.0,1.0) and it represents the

intermeeting time between nodes connected by this edge. If the edge weight is

1.0, then the nodes are in constant contact and if it is 0.0, they never meet. This

simulates an arbitrary mobility pattern in the network.

Internal events are those that are node driven and external events are those

driven by the interaction between nodes. The former are based primarily on node

attributes and the latter on edge weights. The only internal event, used for this set

of simulations, is a node trust update associated with the ∆t value. If node i’s timer

expires, set to ∆t, it triggers a node trust update event using Equation 5.13.

The external events are the node meeting events. They are derived from the

intermeeting time between nodes. The next meeting is based on a Poisson distribu-

tion using Equation A.1, where mTimei,j is the current meeting time between node

i and node j, initialized prior to each run using the right hand side of Equation A.1.

The value wi,j is the inverse of the intermeeting time, which is also the weight given

to each edge in the complete graph.

The simulation network is initialized with each node’s indirect trust vector

initialized with values uniformly distributed between [0.0.1.0), and indirect trust

matrix with all zeros. Each simulation consists of 1000 runs for each 3 ≤ n ≤ 50

nodes and returns the average time to converge and the number of node updates

that occur prior to convergence. If the next event on the event queue is a node trust

update, then the selected node updates it’s indirect trust vector using the values in

the indirect trust matrix and Equation 5.13 with β = 1.0. The next update for the

127

node is changed to be the current time plus ∆t. If the next event is a node meeting

event, then the nodes involved trade trust vectors; using equations in Chapter 5.1.3.1

to update indirect trust. Only the last trust vector received for a given node is used.

The run ends when either 10,000 time units expire or all nodes have converged to

the same trust values plus or minus a convergence factor, cf , from the average.

Figure 5.6 illustrates the importance of ∆t and are the results of the simula-

tions described above. Subfigure 5.6a is the convergence time of indirect trust for

various values of ∆t. Subfigure 5.6b shows that the number of updates required as

n increases is linear and the selected value of ∆t has minimal effect. This suggests

that smaller values of ∆t are better.

B.1.2 Simulation Results for Distributed Trust Management System

To test the integration of direct and indirect trust, a second discrete event

simulator based on Appendix A.2 was created. The input for this simulator is a

complete graph of n nodes with edges encoding moving patterns of nodes. Each

edge weight is a random number uniformly distributed between [0.0,1.0) that is the

inverse of the intermeeting time between two nodes connected by this edge, and

denoted as wi,j, for the edge weight between nodes i and j. Thus, the weights of

node edges represent how often a node is likely to meet with others. If the edge

weight is 1.0, then the two connected nodes are in constant contact, but if it is 0.0

they never meet. This simulates an arbitrary mobility pattern in the network.

There are three main types of events. The first is a meeting event between

nodes. This occurs when two nodes are within broadcast range of each other. During

this type of event, nodes trade messages and indirect trust information with which

nodes will update their message buffers and direct trust vectors. The second type

of event is a node trust update event. This occurs when a node’s timer expires after

∆t. A node will update first it’s indirect trust information and then it’s aggregate

trust vector using both the indirect and direct trust vectors. The third type of event

is a message event which is a subclass of the node event. This will either put a new

message, or acknowledgement, into the buffer for a given node.

At the initialization of each run, each edge is uniformly randomly assigned a

128

weight between [0.0,1.0). Each node has an initialized working and current indirect

trust matrix, direct and aggregate trust vector, and message queue. The matrices

are initialized as null values and the vectors are initialized to 0.5. All queues are

empty, and depending on the specified percentage, a number of the nodes are flagged

as bad. Those nodes will modify any messages they transfer along a path from source

to destination.

The simulation event queue is then populated with initial events. For meeting

events, this is done for each node pair i, j ∈ N by sampling meeting times from

Poisson distribution. The variable mTimei,j is set to 0 and then Equation A.1

is run and a meeting event is added. For node updates, the initial one occurs at

∆t∗[0.0, 1.0], thereby staggering node updates. Each node will add an initial message

event at a time uniformly randomly selected between [0.0, 50.0] with a randomly

selected destination node. Once the initial events are added to the simulation queue,

it is sorted by event time and the simulation continues until all events that can occur,

prior to the stop time, are executed.

The simulator runs event by event and disregards node handshakes, broadcast

collisions, broadcast times, noise, and a number of other network communication

details. All of those are important and are implemented in NS3. This simulator is a

high level approximation used to initially evaluate the scheme. Detailed simulations

used to obtain more precise and robust results are expected to be qualitatively

similar to those presented here. As each event in the simulation occurs, new events

are added. For meeting events, that is done using Equation A.1. For update events,

that is accomplished adding ∆t to the current simulation time. For message events,

this is done by randomly selecting a number between [0.0, 50.0] and adding that to

current time. This means, on average, a node will send 4 messages each 200 seconds

of simulation. Once a meeting event results in message recreation, based on erasure

coding, an acknowledgement event is added after a set time period. This is meant

to clear the buffers of all nodes storing the now delivered message.

There are two slight variations to this simulator. The first is a matrix version

and uses the indirect trust updates as described in Chapter 5.1.3.2. The second is

a vector approximation version that uses the indirect trust updates as described in

129

Table B.2: Simulation Setup Matrix Version Indirect Variables

Simulation and Network Control Variables
Variable Description Value

n Number of Nodes in the Network 40
num its Number of Iterations to Run 10
sim time Simulation Run Time 1000
good Percentage of Nodes that are Good {0.6, 0.75, 0.9}
kec Num Segments to Recreate Message 3
s Num Segments Message Broken Into 9
ack wait Time a node Stays in S3 (Figure 5.1) 10.0
act bad Bad Node Acts Malicious Percent {0.5, 1.0}
t thresh Value when a node is no longer trusted 0.25

Aggregate Trust Integration Variables
Variable Description Value

αa “Freshness” Factor for Aggregate Vector 0.1
∆t Time Period Between Trust Updates 2.5
λ Exponential Decay Factor Using Eq 5.1

Indirect Trust Integration Variables (Matrix Version)
Variable Description Value

αin “Freshness” Factor for Indirect Vector {0.125, 0.25, 0.5, 0.75}

Chapter 5.1.3.3. Based on simulation version, there are a series of tunable param-

eters; Table 5.2 outlines them. The two sections below describe the parameters set

for specific simulation runs.

B.1.2.1 Matrix Version

The only indirect trust variable, for the matrix version for tracking indirect

trust, is αin. A number of simulations were run to see the effect of αin and the

matrix version as a whole. Table B.2 shows the simulation configurations for this

set of simulations. These simulations set αin as 0.125, 0.25, 0.5, and 0.75; lower

αin values weaken influence of older indirect trust values on the aggregated trust.

These values of αin were run with various values for the percentage of good nodes

good = {0.6, 0.75, 0.9}.
There are a number of paragraphs below that show some of the key results

based on this set of simulation runs. The first two discuss αin in more detail, and

130

Figure B.1: Comparing αin, Given n = 40 and pnx = 60

subsequent ones discuss the results for the different fraction of good nodes using

various values for how often a bad node acts maliciously.

Effects of αin: For all of the variations of good, the different values of αin had

minimal effect on the outcome of the simulations. Figure B.1 shows an example

of the results for all 40 nodes, given the initial set up and run time, where the

fraction of good nodes = 60% and αi ∈ (0.125, 0.25, 0.50, 0.75). For each of

the nodes, the value for αin makes a negligible difference in the final trust value.

While some variation was expected, this makes sense that, over time, the values

would all converge. When the number of good nodes is high, such as 90%, there

is little volatility in trust and recommendations. When the number of good nodes

is reduced to 60% or 75%, there is likely to be some change in how fast the trust

values converge.

B.1.2.2 Vector Approximation Version

There are two indirect trust tunable parameters when the vector approxima-

tion method of indirect trust management is utilized γ and β. The former is the

weight given to older indirect trust values. The latter modifies how much the current

trust of a recommending node affects indirect trust changes (see Chapter 5.1.3.3).

Table B.3 outlines the values used for these simulations.

131

Table B.3: Simulation Setup Vector Approximation Version

Simulation and Network Control Variables
Variable Description Value

n Number of Nodes in the Network 40
num its Number of Iterations to Run 10
sim time Simulation Run Time 1000
good Percentage of Nodes that are Good {0.6, 0.75, 0.9}
kec Num Segments to Recreate Message 3
s Num Segments Message Broken Into 9
ack wait Time a node Stays in S3 (Figure 5.1) 10.0
act bad Bad Node Acts Malicious Percent {0.5, 1.0}
t thresh Value when a node is no longer trusted 0.25

Aggregate Trust Integration Variables
Variable Description Value

αa “Freshness” Factor for Aggregate Vector 0.1
∆t Time Period Between Trust Updates 2.5
λ Exponential Decay Factor Using Eq 5.1

Indirect Trust Integration Variables (Vec Approx Version)
Variable Description Value

γ Previous Time Interval Weight {0.1, 0.125, 0.167, 0.25, 0.5}
β Current Trust Weight {0.5, 1.0, 2.0, 4.0}

B.2 Supplemental Simulations: Chapter 6

In order to test the effects of congestion on Trust Based Secure Routing

(TBSR), and a two period routing that uses only trusted nodes, in the first time

period prior to sending to all [33], [71], a number of test cases were run using a

discrete event simulator similar to the one described in Appendix A. There are

three types of events that are managed by the simulation event queue: meeting,

update and message initiation. A meeting event occurs when node i and node k

are within broadcast range, conduct a handshake and, as protocol dictates, trade

message segments. A node update event occurs every ∆t time period. This is user

defined when tuning up performance of trust management. A message initiation

event occurs when a node places a message in it’s buffer for transmission to another

node, which is in it’s vicinity. The user can designate how often a node sends a

message. By default, that message is sent randomly to another node in the network.

132

B.2.1 Simulation and Network Initialization

Each node is initialized with a vector consisting of the Aggregate Trust (AT)

for all other nodes in the network with a value between 0.0 and 1.0. The user defines

the fraction of good nodes in the network. Since our simulations represent a more

mature network, where trust has converged due to previous network activity, during

simulation initialization the AT for nodes designated as bad are assigned a trust of

0.25 and those designated as good receive a 0.75 trust.

The event queue is initialized and each node determines when it will meet

all other nodes using a Poisson distribution as defined in Equation A.1. The edge

weight between nodes i and k is designated wi,k and mTimei,k (from Equation A.1)

is the current simulation time; for simulation initialization mTimei,k = 0. Once

the meeting times are calculated, the meeting events are added to the event queue.

For the initial node update event, each node will calculate ∆t ∗ U(0, 1) using the

uniform number generator U . The user selected message send time tms divided

in half becomes the average time in which each node will send a message. Each

node will send it’s first message at tms ∗ U(0, 1). In order to increase the frequency

of meeting, Equation A.1 is modified to Equation B.1. The extra variable meetF

consists of any value 0.0 < meetF ≤ 1.0. The lower the value, the more frequent

nodes meet.

mTimei,j = mTimei,j −
(
meetF

wi,j
× ln([0, 1])

)
(B.1)

B.2.2 Simulation Execution

Once the simulated network is initialized, each event is pulled from the event

queue in it’s calendar order and executed. Node update events use the vector ap-

proximation to track and update trust. Message initialization events add another

message to a randomly selected destination at ct+ tms ∗U(0, 1) (ct is current simu-

lation time). Meeting events do the following when nodes i and k meet:

1. Check to see if either node is busy: If one or both are currently broadcasting to

another node, then the event is skipped and the next meeting time is selected

using Equation B.1. This is done to ensure that a single node cannot broadcast

133

to multiple nodes at the same time. We do acknowledge that nodes can step

on each other’s signal, but this is less likely to occur in a sparse network and

would only cause slight additional delays.

2. Trade messages: This will use a designated routing algorithm to determine

which messages to forward. The one utilized here is based on Figure 6.3c.

3. Determine Broadcast Time: Based on the number of messages sent during a

meeting event, the broadcast completion time is determined using:

bEndi,k = ct+
(4 ∗ n+ 100 + sn ∗ 1000) ∗ 8

100, 000, 000
(B.2)

The numerator is the estimated size of the data to transmit in bits and in-

cludes a handshake of 100 Bytes plus 4 ∗ n to account for the size of the trust

matrix, and 1000 Bytes per message segment traded (sn) for the payload.

The denominator is based on network speed; we assume 100Mbps connection.

These values are easily modified to represent different network configurations

and message size assumptions.

4. Process new Messages: This is done by each node independently. Each node

will attempt to recreate messages, and update trust accordingly, based on the

states shown in Figure 5.1. If the node is the destination and this is the first

time this node is able to recreate the message, then the delivery delay time is

calculated and a message initiation Acknowledgment (ACK) packet is put on

the simulation event queue.

5. Determine next meeting: This is done identically to initialization using Equa-

tion B.1. The only modification occurs when mTimei,k ≤ bEndi,k. In this

case, subsequent meeting times are calculated until mTimei,k > bEndi,k. This

minimizes the number of events that are skipped in step 1.

B.2.3 Results

There were three test cases run. The first increases the frequency that messages

are sent from each node. The second decreases the time in which nodes interact;

134

Table B.4: Congestion Results

Test Case 1: Change in Message Density
Fraction of Good Nodes = 60% Fraction of Good Nodes = 90%

Protocol Message Density NumBadSeg NumBadMSG EnergyUsed AvgDelay NumBadSeg NumBadMSG EnergyUsed AvgDelay
TBSR* messF = 100 29,852 1,071 579,155 0.7482 3,515 24 905,639 0.4896
TBSR* messF = 50 136,431 15,450 1,367,496 0.6926 13,103 765 1,871,278 0.4656
TBSR* messF = 25 389,851 51,844 3,007,822 0.6620 27,471 1,527 3,589,403 0.4693
TBSR* messF = 12.5 914,444 127,906 6,317,443 0.6913 43,174 1,228 6,841,708 0.4826

TrustFirst** messF = 100 100,588 19,953 810,689 0.5841 23,842 4,599 1,088,652 0.4102
TrustFirst** messF = 50 307,317 59,383 1,918,753 0.61111 80,347 15,476 2,244,411 0.4108
TrustFirst** messF = 25 697,095 133,479 4,051,075 0.6212 190,836 36,885 4,576,102 0.4117
TrustFirst** messF = 12.5 1,477,877 281,765 8,335,280 0.6254 405,445 77,462 9,202,060 0.4132

Test Case 2: Change in Node Meeting Density
Fraction of Good Nodes = 60% Fraction of Good Nodes = 90%

Protocol Density Value NumBadSeg NumBadMSG EnergyUsed AvgDelay NumBadSeg NumBadMSG EnergyUsed AvgDelay
TBSR* meetF = 1.0 29,852 1,071 579,155 0.7482 3,515 24 905,639 0.4896
TBSR* meetF = 0.50 31,508 1,269 584,142 0.3679 3,751 23 912,057 0.2428
TBSR* meetF = 0.25 31,143 1,313 576,094 0.1851 3,720 32 902,928 0.1215
TBSR* meetF = 0.125 31,759 1,421 589,825 0.0903 3,725 27 915,594 0.0609

TrustFirst** meetF = 1.0 100,588 19,953 810,689 0.5841 23,842 4,599 1,088,652 0.4102
TrustFirst** meetF = 0.5 66,702 12,176 719,933 0.2949 20,159 3,887 1,070,440 0.2024
TrustFirst** meetF = 0.25 67,397 12,379 718,160 0.1501 21,038 4,062 1,075,540 0.1039
TrustFirst** meetF = 0.125 62,413 11,568 703,331 0.07516 17,960 3,426 1,062,751 0.05207

Test Case 3: Change in Node Meeting and Message Density
Fraction of Good Nodes = 60% Fraction of Good Nodes = 90%

Protocol Den/Mess Value NumBadSeg NumBadMSG EnergyUsed AvgDelay NumBadSeg NumBadMSG EnergyUsed AvgDelay
TBSR* meetF = messF = 1.0 29,852 1,071 579,155 0.7482 3,515 24 905,639 0.4896
TBSR* meetF = messF = 0.50 131,711 14,599 1,345,727 0.3449 13,598 898 1,873,028 0.2325
TBSR* meetF = messF = 0.25 383,357 50,741 2,990,939 0.1715 25,842 1,234 3,555,253 0.1190
TBSR* meetF = messF = 0.125 907,156 125,935 6,330,560 0.0864 41,176 1,015 6,773,886 0.0604

TrustFirst** meetF = messF = 1.0 100,588 19,953 810,689 0.5841 23,842 4,599 1,088,652 0.4102
TrustFirst** meetF = messF = 0.5 257,370 47,734 1,720,359 0.3146 77,096 14,841 2,232,769 0.2072
TrustFirst** meetF = messF = 0.25 633,995 117,763 3,677,474 0.1632 185,905 35,915 4,548,539 0.1041
TrustFirst** meetF = messF = 0.125 1,354,045 249,474 7,575,490 0.08193 394,857 75,864 9,200,409 0.0520

*All TBSR use Tra = 0.1
**All trustFirst use messd = 2.0

causing more frequent interaction. The final did both. It is likely that during an

emergency, protest, or other event message traffic will increase. It is also likely

that more nodes will be closer and interact more often. Realistically, both will

occur at the same time. For each of the three test cases, TBSR has Tra = 0.1

(see Chapter 6.1.2). For trustFirst, the message delivery time is messd = 2.0. The

second period starts when messd
2.0

.

B.2.3.1 Test Case 1: Change in Message Density

For this test case, meetF = 0 in Equation B.1. All other settings, as described

above, remain static except that the values for messF = {100, 50, 25, 12.5}. The

simulations for TBSR and trustFirst consists of the average of 10 runs with 40 nodes

and the percentage of good nodes set as 60% and 90%.

The results are in the top section of Table B.4. As expected, the number

of bad segments and messages increase for each, with TBSR performing better in

all categories than trustFirst. There is not a significant change in delivery time

for either. This suggests that the congestion point has not been met or that the

simulator does not fully support congestion. Likely, it is a combination of both.

135

The discrete event simulator was designed to estimate trust management and later

message flow. Many network collisions are avoided on purpose.

B.2.3.2 Test Case 2: Change in Node Meeting Density

For this test case, meetF = {1.0, 0.5, ; 0.25, 0.125} in Equation B.1 and

messF = 100. All other values remain static as described above. The simula-

tions for TBSR and trustFirst consists of the average of 10 runs with 40 nodes and

the percentage of good nodes set as 60% and 90%.

The results are in the middle section of Table B.4. There is a decrease in the

delivery time by approximately 0.5 for each reduction in meetF for both protocols.

This makes sense because the average meeting time is cut in half. The number of

bad messages and segments does not change for TBSR; however, there is a change

for trustFirst. All of those values are decreased quite a bit on the first reduction, but

then are steady when the percentage of good nodes is lower. When the percentage of

bad nodes is higher, there is a slight decrease for all. It makes sense that trustFirst

would have an increase in security because if nodes meet more often then they are

less likely to panic and send to bad nodes. In a more polluted network, there are

less good nodes so there is a higher chance that a message does not arrive prior to

the second sending period. This also shows that TBSR finds a more ideal balance

between delay and security/energy.

B.2.3.3 Test Case 3: Change in Node Meeting and Message Density

For this test case, meetF = {1.0, 0.5, ; 0.25, 0.125} in Equation B.1 and

messF = {100, 50, 25, 12.5}. In order to mimic a network where both change

at the same rate, the following pairs are used, formatted as (meetF, messF):

{(1.0, 100); (0.5, 50); (0.25, 25); (0.125, 12.5)}. All other values remain static as

described above. The results are in the bottom section of Table B.4. For each, it

consists of the increase based on sending more messages (Test Case 1) and decrease

of delivery time as seen in (Test Case 2).

