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ABSTRACT

In this thesis we present VOGUE, a new state machine that combines two separate

techniques for modeling complex patterns in sequential data: data mining and data

modeling. VOGUE relies on a novel Variable-Gap Sequence miner (VGS), to mine

frequent patterns with different lengths and gaps between elements. It then uses

these mined sequences to build the state machine. Moreover, we propose two vari-

ations of VOGUE: C-VOGUE that tends to decrease even further the state space

complexity of VOGUE by pruning frequent sequences that are artifacts of other

primary frequent sequences; and K-VOGUE that allows for sequences to form the

same frequent pattern even if they do not have an exact match of elements in all

the positions. However, the different elements have to share similar characteris-

tics. We apply VOGUE to the task of protein sequence classification on real data

from the PROSITE and SCOP protein families. We show that VOGUEs classifi-

cation sensitivity outperforms that of higher-order Hidden Markov Models and of

HMMER, a state-of-the-art method for protein classification, by decreasing the sate

space complexity and improving the accuracy and coverage.
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Chapter 1
Introduction and

Motivation

This chapter’s focus are the motivation, an overview of the proposed method, the

main contributions and the layout of this thesis.

1.1 Motivation

Many real world applications, such as in bioinformatics, web accesses, and

text mining, encompass sequential/temporal data with long and short range de-

pendencies. Techniques for analyzing such types of data can be classified in two

broad categories: pattern mining and data modeling. Efficient pattern extraction

approaches, such as association rules and sequence mining, were proposed, some

for temporally ordered sequences [3, 60, 62, 83, 98] and others for more sophisti-

cated patterns [17, 43]. For data modeling, Hidden Markov Models (HMMs) [75]

have been widely employed for sequence data modeling ranging from speech recog-

nition, to web prefetching, to web usage analysis, to biological sequence analysis

[1, 10, 30, 36, 58, 73, 74, 77, 94].

There are three basic problems to solve while applying HMMs to real world

problems:

1



1. Evaluation: Given the observation sequence O and a model λ, how do we

efficiently compute P (O|λ)?

2. Decoding: Given the observation sequence O, and the model λ, how do we

choose a corresponding state sequence Q = q1q2...qT which is optimal in some

meaningful sense? The solution to this problem would explain the data.

3. Learning: How do we adjust the model λ parameters to maximize P (O|λ)?

Of all the three problems, the third one is the most crucial and challenging to

solve for most applications of HMMs. Due to the complexity of the problem and

the finite number of observations, there is no known analytical method so far for

estimating λ to maximize globally P (O|λ). Instead, iterative methods that provide a

local maxima on P (O|λ) can be used such as the Baum-Welch estimation algorithm

[14].

HMMs depend on the Markovian property, i.e., the current state i in the

sequence depends only on the previous state j, which makes them unsuitable for

problems where general patterns may display longer range dependencies. For such

problems, higher-order and variable-order HMMs [74, 80, 81] have been proposed,

where the order denotes the number of previous states that the current state depends

upon. Although higher-order HMMs are often used to model problems that display

long range dependency, they suffer from a number of difficulties, namely, high state-

space complexity, reduced coverage, and sometimes even low prediction accuracy [23].

The main challenge here is that building higher order HMMs [74] is not easy, since

we have to estimate the joint probabilities of the previous m states (in an m-order

2



HMM). Furthermore, not all of the previous m states may be predictive of the

current state. Moreover, the training process is extremely expensive and suffers from

local optima, due to the use of Baum-Welch algorithm [14], which is an Expectation

Maximization (EM) method for training the model.

To address these limitations, we propose, in this thesis, a new approach to

temporal/sequential data analysis that combines temporal data mining and data

modeling via statistics. We introduce a new state machine methodology called

VOGUE (Variable Order Gaps for Unstructured Elements) to discover and inter-

pret long and short range temporal locality and dependencies in the analyzed data.

The first step of our method uses a new sequence mining algorithm, called Variable-

Gap Sequence miner (VGS), to mine frequent patterns. The mined patterns could

be of different lengths and may contain different gaps between the elements of the

mined sequences. The second step of our technique uses the mined variable-gap

sequences to build the VOGUE state machine.

1.2 VOGUE OVERVIEW

Let’s consider a simple example to illustrate our main idea. Let S be a sequence

over the alphabet Σ = {A, · · · , K}, with S = ABACBDAEFBGHAIJKB. We

can observe that A → B is a pattern that repeats frequently (4 times), but with

variable length gaps in-between. B → A is also frequent (3 times), again with gaps

of variable lengths. A single order HMM will fail to capture any patterns since no

symbol depends purely on the previous symbol. We could try higher order HMMs,

but they will model many irrelevant parts of the input sequence. More importantly,

3



no fixed-order HMM for k ≥ 1 can model this sequence, since none of them detects

the variable repeating pattern between A and B (or vice versa). This is easy to

see, since for any fixed sliding window of size k, no k-letter word (or k-gram) ever

repeats! In contrast our VGS mining algorithm is able to extract both A → B,

and B → A as frequent subsequences, and it will also record how many times a

given gap length is seen, as well as the frequency of the symbols seen in those gaps.

This knowledge of gaps plays a crucial role in VOGUE, and distinguishes it from

all previous approaches which either do not consider gaps or allow only fixed gaps.

VOGUE models gaps via gap states between elements of a sequence. The gap state

has a notion of state duration which is executed according to the distribution of

length of the gaps and the intervening symbols. Figure 1.1 gives an overview about

the motivation and the proposed VOGUE methodology.

The training and testing of VOGUE consists of three main steps:

1. Pattern Mining via the novel Variable-Gap Sequence (VGS) mining algo-

rithm.

2. Data Modeling via our novel Variable-Order state machine.

3. Interpretation of new data via a modified Viterbi method [27], called Variable-

Gap Viterbi (VG-Viterbi), to model the most probable path through a VOGUE

model.

Figure 1.2 provides a flow chart of VOGUE’s steps from pattern extraction

to data interpretation. A more detailed description of these steps are given in the

following chapters.

4



Figure 1.1: (a) Motivation: Pattern Extraction and Data modeling were
separate; (b) Proposed method: VOGUE combines the two.
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Figure 1.2: VOGUE from pattern extraction to data interpretation.
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1.3 Contributions

There are several major contributions of our work:

1. The first major contribution is the combination of two separate but comple-

mentary techniques for modeling and interpreting long range dependencies in

sequential data: data mining and data modeling. The use of data mining for

creating a state machine results in a model that captures the data reference

locality better than a traditional HMM created from the original (noisy) data.

In addition, our approach automatically finds all the dependencies for a given

state, and these need not be of a fixed order, since the mined patterns can be

arbitrarily long. Moreover, the elements of these patterns do not need to be

consecutive, i.e., a variable length gap could exist between the elements. This

enables us to model multiple higher order HMMs via a single variable-order

state machine that executes faster and yields much greater accuracy. This

contribution is composed of:

• a Variable Gap Sequence (VGS) miner, which is a contribution in the area

of pattern extraction. VGS mines frequent patterns with different lengths

and gaps between the elements across and within several sequences. VGS

can be used individually as well as part of VOGUE for pattern extraction.

• a VOGUE state machine that uses the mined variable-gap sequences from

VGS to model multiple higher order HMMs via a single variable-order

state machine.

Moreover, we applied VOGUE to a real world problem, namely, finding ho-
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mologous proteins. Although VOGUE has a much wider applicability, such

as in web accesses, text mining, user behavior analysis, etc, in this work we

apply VOGUE to a real world problem in biological sequence analysis, namely,

multi-class protein classification. Given a database of protein sequences, the

goal is to build a statistical model so that we can determine whether a query

protein belongs to a given family (class) or not. Statistical models for pro-

teins, such as profiles, position-specific scoring matrices, and hidden Markov

models [30] have been developed to find homologs. However, in most biolog-

ical sequences, interesting patterns repeat (either within the same sequence

or across sequences) and may be separated by variable length gaps. There-

fore a method like VOGUE that specifically takes these kind of patterns into

consideration can be very effective. We show experimentally that VOGUE’s

modeling power is superior to higher-order HMMs while reducing the latter’s

state-space complexity, and improving their prediction. VOGUE also outper-

forms HMMER [30], a HMM model especially designed for protein sequences.

2. The second contribution is in the area of data interpretation and decoding.

This contribution is a consequence of the unique structure of VOGUE sate

machine, where the gaps have a notion of duration. Therefore, we adjusted

the widely used Viterbi algorithm, that solves the interpretation problem, to

meet those needs. We call this method Variable-Gap Viterbi (VG-Viterbi). We

optimized VG-Viterbi based on the fact that the transition matrix between

the states of the model is a sparse matrix and so there is no need to model

8



the transitions between all the states.

3. The third contribution is Canonical VOGUE (C-VOGUE) that aims at in-

creasing the already “good” performance of VOGUE by eliminating artifacts

in the extracted patterns, hence reducing the number of patterns to be mod-

eled later on. These artifacts are retained as being frequent patterns but each

one of these patterns is in fact an artifact of another pattern. This contribu-

tion aims at decreasing the state space complexity of the state machine, which

is a major step towards one of the three goals of modeling with state machines

while keeping good accuracy and coverage.

4. VOGUE is adaptable enough to allow for inclusion of domain specific knowl-

edge to better model patterns with higher order structures unlike other tech-

niques that are made specially for 1 dimensional patterns, and perform poorly.

We achieved this by S-VOGUE (Substitution VOGUE), where the mined pat-

terns are chosen not only based on the frequency of exact match items but

also among items that could be substituted by one another according to their

secondary or tertiary structure. This is, in fact, very helpful in protein anal-

ysis where proteins of the same family share common patterns (motifs) that

are not based on exact match but rather on substitutions based on the protein

sequences elements weight, charge, and hydrophobicity. These elements are

called amino acids.
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1.4 Thesis Outline

The rest of the chapters are organized as follows: Chapter 2, provides a lit-

erature review of sequential data mining techniques. Then VGS, our new sequence

mining algorithm used to build the VOGUE state machine, is presented. In Chapter

3, we provide a literature review and definition of HMMs, and we present the Baum-

Welch algorithm. In the same chapter we describe our variable-order state machine,

its parameters and structure estimation via VGS. Moreover, we describe the gen-

eralization of VOGUE to mine and model sequences of any length k ≥ 2. Then,

in Chapter 4, we extend VOGUE to Domain Knowledge VOGUE (K-VOGUE) to

allow for substitutions, and Canonical VOGUE (C-VOGUE) to eliminate artifacts

that exist in the patterns mined by VGS. In Chapter 5, we present a literature

review of the Viterbi algorithm [75] that solves the decoding and interpretation

problem in HMMs. Then VG-Viterbi, our adaptation of the Viterbi algorithm, and

its optimization are presented in the same chapter. In Chapter 6, we present exper-

iments and analysis of VOGUE compared to some state of the art techniques in the

application domain of multi-family protein classification. Chapter 7 concludes this

thesis with a summary and provides some future directions.
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Chapter 2
Pattern Mining Using

Sequence Mining

Searching for patterns is one of the main goals in data mining. Patterns have impor-

tant applications in many Knowledge-Discovery and Data mining (KDD) domains

like rule extraction or classification. Data mining can be defined as “the nontrivial

extraction of implicit, previously unknown, and potentially useful information from

data” [40] and “the science of extracting useful information from large data sets

or databases” [45]. Data mining involves the process of analyzing data to show

patterns or relationships; sorting through large amounts of data; and picking out

pieces of relative information or patterns that occur e.g., picking out statistical in-

formation from some data [31]. There are several data mining techniques, such

as association rules, sequence mining [83], classification and regression, similarity

search and deviation detection [35, 44, 46, 90, 91, 92]. Most of the real world appli-

cations encompass sequential and temporal data. For example, analysis of biological

sequences sush as DNA, proteins, etc. Another example is in web prefetching, where

pages are accessed in a session by a user in a sequential manner. In this type of data

each “example” is represented as a sequence of “events”, where each event might be
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described by a set of attributes. Sequence Mining helps to discover frequent sequen-

tial attributes or patterns across time or positions in a given data set. In the domain

of web usage, a database would be the web page accesses. Here the attribute is a

web page and the object is the web user. The sequences of most frequently accessed

pages are the discovered “frequent” patterns. Biological sequence analysis [37, 101],

identifying plan failures [99], and finding network alarms [47], constitute some of

the real world applications where sequence mining is applied.

In this work, we will explore sequence mining as a mining technique. We

prefer to use sequence mining rather than association mining due to the fact that

association mining discovers only intra-itemsets patterns where items are unordered,

while sequence mining discovers inter-itemsets, called sequences, where items are

ordered [98].

This chapter is organized as follows: in Section 2.1, we provide a definition

of sequence mining, and Section 2.2 provides an overview of related work; and in

Section 2 we present the description of a sequence mining algorithm, cSPADE [97],

that will be used as a base for our proposed algorithm Variable-Gap Sequence miner

(VGS) described in Section 2.5.

2.1 Sequence Mining discovery: Definitions

The problem of mining sequential patterns, as defined in [4] and [83], is

as follows: Let’s consider I = {I1, · · · Im} be the set of m distinct items. An

itemset is a subset of I with possibly un-ordered items. A sequence S, on the

other hand, is an ordered list of itemsets from I (i.e., S = I1, · · · Il where Ij ⊆ I and
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1 ≤ j ≤ l). S can be defined as S = I1 → I2 · · · → Il, where “→” is a “happen after”

relationship denoted as Ii ¹ Ij and i ≤ j. The length of the sequence S is defined as

| S |=
∑

j | Ij |, where | Ij | is the number of items in the itemset Ij. For example,

let’s consider the sequence S = AB → C → DF . This sequence is composed of 3

itemsets, namely, AB, C, and DF , and its length is | S |=| AB | + | C | + | DF |

= 5. The sequence S is then called 5-sequence. We will refer for the remaining of

this proposal to a sequence of length k as k-sequence.

A sequence S ′ = I ′
1, · · · I

′
p is called a subsequence of S, with p ≤| S |, if there

exist a list of itemsets of S, Ii1 , · · · Iip such that Ij ⊆ I ′
ik

, 1 ≤ k, j ≤ p. For example,

the sequence S ′ = A → D is a subsequence of S (described in the previous example),

because A ⊆ AB, D ⊆ DF , and the order of itemsets is preserved. Let D, a set

of sequences, be a sequential database, where each sequence S ∈ D has a unique

identifier, denoted as sid, and each itemset in S has a unique identifier, denoted as

eid. The support of S’, is defined as the fraction of the database sequences that

contain S’, given as σD(s′) =| Ds | / | D |, where Ds′ is a set, contained in D,

of database sequences S such that S ′ ⊆ S. A sequence is said to be frequent if it

occurs more than a user-specified threshold minsup, called minimum support. The

problem of mining frequent patterns is to find all frequent sequences in the database.

This is formally defined in [83] as:

Definition (Sequential Pattern Mining): Given a sequential database D

and a user-specified minsupparameter σ (0 ≤ σ ≤ 1), find all sequences each of

which is supported by at least ⌈σ | D |⌉ of sequences in D.
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Table 2.1: Original Input-Sequence Database

SID Time(EID) items

1 10 AB

1 20 A

1 30 AB

2 20 AC

2 30 ABC

2 50 B

3 10 A

3 30 B

3 40 A

4 30 AB

4 40 A

4 50 B

Definition Fk denotes the set of frequent k-sequences.

Maximal frequent sequence is a sequence that is not a subsequence of any

other frequent sequence.

Table 2.1 shows an example database [97]. It consists of three items (A,B,C),

four input sequences and twelve events. Tables 2.2, 2.3 and 2.4 show the frequent

1-sequences, 2-sequences, and 3-sequences with a min sup of 3, corresponding to

75% of the data, respectively. The maximal sequences are A → A, B → A, and

AB → B.
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Table 2.2: Frequent 1-Sequences (min sup = 3)

A 4

B 4

Table 2.3: Frequent 2-Sequences (min sup = 3)

AB 3

A → A 4

A → B 4

B → A 3

B → B 3

2.2 Sequence Mining discovery: Related Work

It is challenging to find all frequent patterns in a large database where the

search space becomes extremely large. In fact, there are O(mk) possible frequent

sequences of length at most k, where m is the number of different symbols in the

database alphabet.

Many techniques have been proposed to mine temporal data sets to extract the

frequent sequences. However, if the search is unconstrained, it can produce millions

Table 2.4: Frequent 3-Sequences (min sup = 3)

AB 3

AB → B 3
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of rules. Moreover, some constrains might need to be added in some domains. For

example, a user might be interested in searching for sequences occurring close in

time to each other or far apart from each other, those that contain some specific

items, occurring during a specific period of time, or frequent at most a number of

times or at least another number of times in the data set.

Several techniques have been proposed to discover the frequent sequences

[5, 70, 63, 99]. One of the early algorithms that efficiently discovered the frequent

sequences is the AprioriAll [83], that iteratively finds itemsets of length l based on

previously generated (l-1)-length frequent itemsets. In [49] frequent sequences in a

single long input-sequence, called frequent episodes, were mined. It was extended to

discover generalized episodes that allow uniary conditions on individual sequences

itemsets, or binary conditions on itemset pairs [62]. In [3], the Generalized Sequen-

tial Patterns (GSP) algorithm was proposed to extend the AprioriAll algorithm

by introducing user-specified minimum gap and maximum gap time constraints,

user-specified sliding window size, and user-specified minimum support. GSP is

an iterative algorithm that counts candidate frequent sequences of length k in the

k−th database scan. However, GSP suffers from a number of drawbacks, namely, it

needs as many full scans of the database as the longest frequent sequence; it uses a

complex hash structure with poor locality; and it scales up linearly as the size of the

data increases. SPADE [98] was proposed to cope with GSP ’s drawbacks. SPADE

uses a vertical id-list database, prefix-based equivalence classes, and it enumerates

frequent sequences through simple temporal joins. SPADE uses dynamic program-

ming concepts to break the large search space of frequent patterns into small and
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independent chunks. It requires only three scans over the database as opposed to

GSP which requires multiple scans, and SPADE has the capacity of in-memory

computation and parallelization which can considerably decrease the computation

time. SPADE was later on extended to Constraint SPADE (cSPADE ) [97] which

considers constraints like max/min gaps and sliding windows. SPIRIT [42] is a fam-

ily of four algorithms for mining sequences that are a complementary to cSPADE.

However, cSPADE considers a different constraint that finds sequences predictive

of at least one class for temporal classification problems. In fact, SPIRIT mines

sequences that match user-specified regular-expression constraints. The most re-

laxed of the four is SPIRIT(N) that eliminates items not appearing in any of the

user specified regular-expressions. The most strict one is SPIRIT(R), that applies

the constraints, while mining and only outputs the exact set. GenPresixSpan [6] is

another algorithm based on PrefixSpan [72] that considers gap-constraints. Regu-

lar expressions and other constraints have been studied in [53, 43, 101]. In [53], a

mine-and-examine paradigm for interactive exploration of association and sequence

episodes was presented, where a large collection of frequent patterns is first to be

mined and produced. Then the user can explore this collection by using “templates”

that specify what is of interest and what is not. In [68], CAP algorithm was pro-

posed to extract all frequent associations matching a large number of constraints.

However, because of the constrained associations, these methods are unsuitable for

temporal sequences that introduce different kinds of constraints.

Since cSPADE is an efficient and scalable method for mining frequent se-

quences, we will use it as a base for our new method Variable-Gap Sequence miner
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(VGS), to extract the patterns that will be used to estimate the parameters and

structure of our proposed VOGUE state machine. The main difference, however,

between VGS and cSPADE is that cSPADE essentially ignores the length and sym-

bol distributions of gaps, whereas VGS is specially designed to extract such patterns

within one or more sequences. Note that while other methods can also mine gapped

sequences [6, 43, 101], the key difference is that during mining VGS explicitly keeps

track of all the intermediate symbols, their frequency, and the gap frequency distri-

bution, which are used to build VOGUE.

Before we go into more details about cSAPDE, we will give an overview of

SPADE algorithm in Section 1, since cSPADE is an extension of it. cSPADE tech-

nique will be described in the Section 2. Section 2.5 provides the details of our

proposed method VGS.

2.3 SPADE: Sequential Patterns Discovery using Equivalence

classes

The SPADE algorithm [98] is developed for fast mining of frequent sequences.

Given as input a sequential database D and the minimum support, denoted as

min sup, the main steps of SPADE consists of the following:

1. Computation of the frequent 1-sequences:

F1 = { frequent items or 1-sequences};

2. Computation of the frequent 2-sequences:
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F2 = { frequent items or 2-sequences };

3. Decomposition into prefix-based parent equivalence classes:

ξ = { equivalence classes [X]θ1};

4. Enumeration of all other sequences, using Breadth-First Search (BFS ) or

Depth-First Search (DFS ) techniques, within each class [X] in ξ.

In the above, i-sequences denotes sequences of length i, 1 ≤ i ≤ 2.
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A formal description of SPADE [98] is given in Algorithm 1. The SPADE

algorithm uses the following concepts:

Algorithm 1 SPADE

procedure SPADE(min sup)
P = { parent classes Pi};
for each parent class Pi ∈ P do

Enumerate-Frequent-Seq(Pi);
end for

end procedure
function Enumerate-Frequent-Seq(S)

for all atoms Ai ∈ S do
Ti = ∅;
for all atoms Aj ∈ S with j ≥ i do

R = Ai ∨ Aj;
if Prune(R) == FALSE then

L(R) = L(Ai ∩ L(Aj));
if σ(R) ≥ minsup then

Ti = Ti ∪ {R};] F|R| = F|R| ∪ {R};
end if

end if
end for
if (Breadth-First-Search) then

Enumerate-Frequent-Seq(Ti);
end if

end for
if (Breadth-First-Search) then

for all Ti 6= ∅ do
Enumerate-Frequent-Seq(Ti);

end for
end if

end function

Sequence Lattice: If a sequence S is frequent all subsequences S ′ of S, such that

S ′ ¹ S, are frequent. In fact SPADE considers that the subsequence relation

¹ is a partial order on the set of sequences. Therefore, SPADE finds the

subsequences that are frequent from the most general, single items, to the

most specific, the maximal sequences in either a depth-first-search or breath-
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first-search manner. This is done by looking into the sequence lattice spanned

by the subsequence (¹) relation as shown in Figure 2.1 for the example dataset.

Frequent Sequence Lattice

3
AB->B

3
AB

4
A->B

3
B->B

SID

1

2

4

EID

10

30

30

Intersect A->B and B->B

4
A->A

4
A

3
B->A

4
B

SID

1

2

2

3

4

4

EID

10

20

30

10

30

40

Intersect A and B

SID

1

1

2

4

EID

10

20

30

30

{}

Figure 2.1: Frequent Sequence Lattice and Temporal Joins.

Support Counting: One of the main differences between SPADE and the other

sequence mining algorithms [5, 83] is that the latter ones consider a horizontal

database layout whereas SPADE considers a vertical one. The database in the

horizontal format consists of a set of input sequences which in their turn consist

of a set of events and the items contained in the events. The vertical database,

on the other hand, consists of an a disk-based id-list, denoted L(X) for each
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item X in the sequence lattice, where each entry of the id-list is a pair of

sequence id and event id (sid, eid) where the item occurs. For example, let’s

consider the database described in Table 2.1, the id-list consist of the tuples

{(2, 20), (2, 30)}.

With the vertical layout in mind, the computation of F1 and F2 becomes as

follows:

Computation of F1 : The id-list of each database item is read from disk

into memory. Then the id-list is scanned incrementing the new sid en-

countered. All this is done in a single database scan.

Computation of F2 : Let N = |F1| be the number of frequent items, and

A the average id-list size in bytes. In order to compute F2 a naive im-

plementation will require
(

N
2

)

id-list joins for all pairs of items. Then,

(A×N×(N−1)
2 ) is the corresponding amount of data read; this is

almost N/2 data scans. To avoid this inefficient method two alternate

solutions were proposed in [97]:

1. To compute F2 above a user specified lower bound threshold, a pre-

processing step is used.

2. An on-the-fly vertical-to-horizontal transformation is performed: scan

the id-list of each item i into memory. Then for each (sid, eid) pair

(i, e) is inserted in the list for input sequence S. Using the id-list for

item A from the previous example in Table 2.1, the first pair (1, 15)

is scanned then (A, 15) is inserted in the list for input-sequence 1.

22



Table 2.5 describes the complete vertical-to-horizontal transforma-

tion of the database. To recover the horizontal database, for each

sid, a list of all 2 − sequences is formed in the list, and counts are

updated in a 2 − dimensional array indexed by the frequent items.

Then, as shown in Figure 2.1, the intermediate id-list for A → B is

obtained by a temporal join on the lists of A and B. All occurrences of

A “before” B, that represent A → B are found in an input sequence

and the corresponding eids are stored to obtain L(A → B). In the

case of AB → B, the id-lists of its two generating sequences A → B

and B → B are joined. Because of main-memory limitations, it is not

possible to enumerate all the frequent sequences by traversing the lattice

and performing joins. However, this large search space is decomposed by

SPADE into smaller chunks, called classes, to be processed separately by

using suffix-based equivalence classes.

Definition : Two k-sequences are in the same class if they share a com-

mon k − 1 length suffix.

Therefore, each class is a sub-lattice of the original lattice. It can be

processed independently since it contains all the information to generate

all frequent sequences with the same suffix. SPADE recursively calls the

procedure Enumerate-Frequent that counts the suffix classes starting from

suffix-classes of length one (called parent classes), in the running example

(A, B), then it uses suffix-classes of length two, in the running example
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Table 2.5: Vertical-to-Horizontal Database Recovery

sid (item, eid)pairs
1 (A, 10)(A, 30)(B, 10)(B, 20)(B, 30)
2 (A, 20)(A, 30)(B, 30)(B, 50)(C, 20)(C, 30)
3 (A, 10)(A, 40)(B, 30)
4 (A, 30)(A, 40)(B, 30)(B, 50)

(A → B, AB) and so on. The input to the procedure is a set of items of

a sub-lattice S, along with their id-lists. The id-lists of all distinct pairs

of sequences in each class are joined to generate the frequent sequences

and the results is checked against the user set threshold min sup.

Temporal Joins: A suffix equivalence class [S] can contain either an itemset of

the form XS or a sequence of the form Y → S, where X and Y are items,

and S is a suffix sequence. Assuming that itemsets of a class always precede

its sequences, then joining the id-lists of all pairs of elements extends the class

for the next level. This results in one of the three different frequent sequences

depending on the joined pairs [97]:

1. Joining an Itemset to another Itemset : the resulting sequence is an item-

set. For example, AS with BS the resulting sequence is the itemset

ABS.

2. Joining an Itemset to a Sequence: the resulting sequence is a new se-

quence. For example, AS with B → S results in the sequence B → AS.

3. Joining a Sequence to another Sequence: there are three possible resulting
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sequences considering the sequences A → S and B → S: a new itemset

AB → S, the sequence A → B → S or the sequence B → A → S.

From Figure 2.1, from the 1−sequences A and B we can get three sequences:

the itemset AB and the two sequences A → B and its “reverse” B → A.

To obtain the id-list of itemset AB, the equality of (sid,eid) pairs needs to

be checked and in this case it is L(AB) = {(1, 10), (1, 30), (2, 20), (4, 30)} in

Figure 2.1. This shows that AB is frequent in 3 out of the 4 sequences in the

data set (min sup = 3 which corresponds to 75% of the data). In the case of

the resulting sequence A → B, there is need to check for (sid,eid) pairs where

sid for both A and B are the same but the eid for B is strictly greater in

time than the one for A. The (sid,eid) pairs in the resulting id-list for A → B

only keep the information about the first item A and not B. This is because

all members of a class share the same suffix and hence the same eid for that

suffix.

2.4 cSPADE: constrained Sequential Patterns Discovery us-

ing Equivalence classes

In this section we describe in some detail the cSPADE algorithm [97]. cSPADE

is designed to discover the following types of patterns:

1. Single item sequences as well as the sequences of subsets of items. For example

the set AB, and AB → C in (AB → C → DF ).

2. Sequences with variable gaps among itemsets ( a gap of 0 will discover the
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sequences with consecutive itemsets). For example, from the sequence (AB →

C → DF ), AB → DF is a subsequence of gap 1 and AB → C is a subsequence

of gap 0.

cSPADE is an extension of the Sequential Patterns Discovery using Equivalence

classes (SPADE) algorithm by adding the following constraints:

1. Length and width restrictions.

2. Minimum gap between sequence elements.

3. Maximum gap between sequence elements.

4. A time window of occurrence of the whole sequence.

5. Item constraints for including or excluding certain items.

6. Finding sequences distinctive of at least a special attribute-value pair.

Definition : A Constraint [97] is said to be class-preserving if in the presence

of the constraint suffix-class retains it’s self-containment property, i.e., sup-

port of any k-sequence can be found by joining id-lists of its two generating

subsequences of length (k − 1) within the same class.

If a constraint is class-preserving [97], the frequent sequences satisfying that

constraint can be listed using local suffix class information only. Among all the

constraints stated above, the maximum gap constraint is the only one that is not

class-preserving. Therefore, there is a need for a different enumeration method.

cSPADE pseudo-code is described in Algorithm 2.
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Algorithm 2 cSPADE

procedure cSPADE(min sup)
P = { parent classes Pi};
for each parent class Pi ∈ P do

Enumerate-Frequent-Seq(Pi);
end for

end procedure
function Enumerate-Frequent-Seq(S)

for all sequences Ai ∈ S do
if maxgap join with F2 then

p = Prefix-Item(Ai);
N = { all sequences Aj in class [p]};

else if self-join then
N = { all sequences Aj ∈ S, with j ≥ i};

end if
for all sequences α ∈ N do

if (length(R) ≤ maxl) and width(R) ≤ maxw) and accuracy(R) 6=
100%) then

L(R) = Constrained-Temporal-Join(L(Ai),L(α), min-gap, max-
gap, window);

if σ(R, ci) ≥ minsup(ci) then
T = T ∪ {R}; print R;

end if
end if

end for
end for
Enumerate-Frequent(T );
delete S;

end function

We will describe in some more detail how cSPADE handles each one of those

constraints:

Length and Width restrictions: Without a maximum length allowed for a pat-

tern to be mined, the number of frequent sequences blows up especially in the

case some items are very frequent in highly structured data sets. In cSPADE

this is taken care of by adding the following check [97]: if width(R) ≤ maxw

and if length(R) ≤ maxl, where maxw and maxl are, respectively the max-
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imum width and length allowed in a sequence. This addition is done in the

“Enumerate” method as shown in cSPADE’s pseudo-code. These constraints

are class-preserving since they do not affect id-lists.

Minimum Gap between sequence elements: Patterns, which items are not nec-

essarily immediately consecutive in a sequence, are very important in some

domains such as in DNA analysis. The minimum gap is a class-preserving

constraint. In fact, if we consider that a sequence A → B → S is frequent

with a min-gap of at least δ between each two of its elements, then A and S

are at least δ elements apart and the same goes for B and S. Therefore, by

joining the id-lists of the two sequences A → S and B → S one can determine

if A → B → S is frequent. Hence, adding the constraint minimum gap boils

down to adding a check in SPADE pseudo-code for the minimum gap between

the items of a sequence. If we consider the example data set in Figure 2.1, the

lattice L(A → B) is generated by adding a check on the (sid,eid) pairs in L(A)

and L(B). In fact, for every given pair (c, tb) in L(A) we check if there exist a

pair (c, tb) in L(B) that satisfies the constraint tb 6= ta and tb−ta ≥ min gap. If

that is the case the pair (c, ta) is added to L(A → B). For example, if min gap

is set to 20 then the pair (1, 10) from L(A) can be added to L(A → B) since

there exist a pair (1, 30) that satisfies the constraint [97].

Maximum Gap between sequence elements: This constraint is not class-preserving

since if there is a sequence A → B → S is frequent with max gap = δ, then

the subsequence B → S is frequent with at most max gap = δ between B and
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S but A → S is only frequent at most max gap = 2δ. Therefore, if A → S

could be infrequent with this constraint but yet A → B → S is frequent. To

incorporate maximum gap constraint to the SPADE pseudo-code [97], first a

check needs to be added such that, in the example of Figure 2.1, for a given

pair (c, ta) in L(A), check if a pairs (c, tb) exists in L(B) such that tb 6= ta

and tb − ta ≤ max gap. The second step is to change the enumeration of

the sequences with the maximum gap constraint. A join with F2 is necessary

instead of a self-join because the classes are no more self-contained. This join

is done recursively with F2 until no extension is found to be frequent.

Time Window of occurrence of the whole sequence: In other words, the time

constraint applies to the whole sequence instead of minimum or maximum

gap between elements of the sequence [97]. This constraint is class-preserving

since if a sequence A → B → S is within a time-window δ, then it implies

that A → S and B → S are within the same window and so on for any sub-

sequence. However, including the time-window into the SPADE software is

difficult because the information concerning the whole sequence time is lost

from the parent class. In fact, only the information about the eid of the first

item of the sequence is stored and the one of the remaining items is lost from

one class to the next. The solution proposed in [97] is to keep information

about the difference “diff” between the eid of the first and the last item of the

sequence at each step of the process. This is done by adding an extra column

in the id-list called diff to store that information.
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Item constraints for including or excluding certain items: The use of a ver-

tical format of the data set and the equivalence classes in cSPADE makes it

easy to add constraints on items within sequences [97]. For instance, if the

constraint is excluding a certain item from the frequent sequences, then remov-

ing it from parent classes takes care of that. Therefore, no frequent sequence

will contain that item. The same procedure will apply in the case of including

an item.

Whereas cSPADE essentially ignores the length and symbol distributions of

gaps, the new mining sequence algorithm that we present in the work, VGS (Variable-

Gap Sequences), is specially designed to extract such patterns within one or more

sequences. The next Chapter describes VGS in more details.

2.5 Pattern Extraction: Variable-Gap Sequence (VGS) miner

Variable-Gap Sequence miner (VGS) is based on cSPADE [97]. While cSPADE

essentially ignores the length and symbol distributions of gaps, VGS is specially

designed to extract such patterns within one or more sequences. Note that whereas

other methods can also mine gapped sequences [6, 83, 97, 101], the key difference is

that during mining VGS explicitly keeps track of all the intermediate symbols, their

frequency, and the gap frequency distributions, which are used to build VOGUE.

VGS takes as input the maximum gap allowed (maxgap), the maximum se-

quence length (k), and the minimum frequency threshold (min sup). VGS mines

all sequences having up to k elements, with no more than maxgap gaps between
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Table 2.6: VGS: Subsequences of Length 1

A B C D E F G H I
frequency 4 3 2 2 1 1 1 1 1

Table 2.7: VGS: Subsequences of Length 2

subsequence freq g = 0 g = 1 g = 2
A → C 2 1 1 0
A → B 3 0 1 2
A → D 2 1 0 1
C → B 2 2 0 0
C → D 2 0 1 1
C → A 2 0 1 1
B → D 2 1 1 0
B → A 2 1 1 0
D → A 2 1 0 1

any two elements, such that the sequence occurs at least min sup times in the data.

For example, let S = ACBDAHCBADFGAIEB be an input sequence over the

alphabet Σ = {A, · · · , I}, and let maxgap = 2, minsup = 2 and k = 2. VGS

first mines the frequent subsequences of length 1, as shown in Table 2.6. Those

symbols that are frequent are extended to consider sequences of length 2, as shown

in Table 4.1. For example, A → B is a frequent sequence with frequency freq = 3,

since it occurs once with gap of length 1 (ACB) and twice with a gap of length

2 (AHCB and AIEB). Thus the gap length distribution of A → B is 0, 1, 2 as

shown, in Table 4.1, under columns g = 0, g = 1, and g = 2, respectively. VGS

also records the symbol distribution in the gaps for each frequent sequence. For

A → B, VGS will record gap symbol frequencies as C(2), E(1), H(1), I(1), based
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on the three occurrences. Since k = 2, VGS would stop after mining sequences of

length 2. Otherwise, VGS would continue mining sequences of length k ≥ 3, until

all sequences with k elements are mined.

Before we start describing VGS, we will provide definitions of some terms that

will be used in this section and in the rest of this thesis:

k-seq : sequence of length k, i.e. k elements. For example, A → B is 2-seq where

B occurs after A and A → B → C is a 3-seq and so on.

min sup : minimum support, is the minimum threshold for the frequency count of

sequences.

maxgap : maximum gap allowed between any two elements of a k-seq.

F1 : the set of frequent 1-seq (single items).

Fk : the set of all k-seq which frequency is higher than the minimum threshold

min sup and the gap between their elements is at most of length maxgap.

Ck : the set of candidate k-seq.

The first step of VOGUE uses VGS to mine the raw data-set for variable gap

frequent sequences. It takes as input the maximum gap allowed maxgap between

the elements of the subsequences, the maximum length (k) of the subsequences,

and the minimum frequency threshold (min sup) for sequences to be considered

frequent. The mined subsequences from VGS are of the form A → B if k = 2,

or A → B → C if k = 3, and so on. The frequency of the subsequences is cal-

culated either across the sequences in the data-set and/or within the sequences
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in the data-set, as the application may require. Only those sequences that are

frequent within a gap range of [0,maxgap] are reported. As a running exam-

ple, let S =< A,C,B,D,A,H,C,B,A,D, F,G,A, I, E,B > be a sequence. Let

maxgap = 2, min sup = 2 and k = 2. The results of VGS are shown in Table

4.1. For example, A → B is a frequent sequence with freq = 3, since we have

< A,C,B > for a gap of 1, and < A,H,C,B > and < A, I, E,B > for a gap of 2.

In the table, the columns g = 0, g = 1, and g = 2 show the gap distributions. For

this subsequence we have no occurrences at g = 0, one at g = 1 and two at g = 2.

Table 2.8: Subsequences of length 2 mined by VGS

subsequence freq g = 0 g = 1 g = 2
A → C 2 1 1 0
A → B 3 0 1 2
A → D 2 1 0 1
C → B 2 2 0 0
C → D 2 0 1 1
C → A 2 0 1 1
B → D 2 1 1 0
B → A 2 1 1 0
D → A 2 1 0 1

The key features of our approach are:

1. We use, as in SPADE, a vertical id-list database format, where each sequence

is associated with a list of objects in which it occurs, and its relative time-

stamps.

2. We use a lattice-theoretic approach to decompose the original search space

(lattice) into smaller sub-lattices which can be processed independently in the

main memory. This reduces the I/O cost, since the algorithm requires only
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three scans of the data set. Refer to [22] for a detailed introduction to Lattice

theory.

VGS is, therefore, cost efficient by reducing the dataset scans and using an

efficient depth first search, as described in [98]. We use, as in [98], a vertical database

format, where an id-list for each item in the dataset.Each entry in the id-list is

a(sid, eid) pair. Eid is where the item exists in sequence which id is sid. sid is the

sequence id in the data set and eid is the event id where the item exists.

In our example we have 9 different items {A,B,C,D,E, F,G,H, I}. The

corresponding id-list of A is shown in Table 2.9. This allows checking the frequency

of the sequences via joins of the items. Using our running example, the join of A

and B would be A∨B = {A → B,B → A}; this give us the maximal sub-sequences

existing in the data set formed by A and B with a maximum gap length g of maxgap.

Table 2.9: Id-list for the item A

SID EID
1 1
1 5
1 9
1 13

The main steps in VGS are:

Computation of F1: we compute all frequent 1-seq (single items) in the whole

data set and their frequencies regardless of the minsup. This is done by

reading the id-list of each item and scanning it incrementing the support for

each sid encountered, even if it repeats, for each sid. This is different from
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SPADE where only new sid are taken into considerations to look for patterns

across only the sequences. In VGS we look for patterns within and across the

sequences in the data set.

Computation of F2: we compute all the 2-seq with a gap of length g between

its elements, g ∈ {0, · · · ,maxgap} in which frequencies are greater than the

min sup. g = 0 corresponds to no elements between two main elements of the

k-seq, and g = 1 corresponds to one element between two main elements of

the elements of the k-seq and so on. This computation is done by scanning

the id-list of each item in the alphabet into memory. For each pair (sid, eid)

we insert it in the list for the input sequence whose id is sid. We, then, form

a list of all 2-sequences in the list for each sid, and increment the frequency if

the difference between the two eid events is less than the maxgap allowed.

Enumeration of all other frequent k-seq, with frequency at least min-sup, with

variable gaps between each two of its elements via Depth First Search (DFS)

within each class. For example, the 3-sequence A
g1
−→ B

g1
−→ C has with

gap g1 ∈ {0, · · · ,maxgap} between A and B and gap g2 ∈ {0, · · · ,maxgap}

between B and C. Where “A
g1
→ B” means A is followed by B after g1 elements

in between them. Likewise, “B
g2
→ C” means B is followed by C after g2

elements in between them. The procedure is described in Algorithm 3.

The input to the procedure is a set of items of a sub-lattice S, along with

their id-lists and the min sup and maxgap. The sequences that are found to

be frequent form the atoms of classes for the next level. This process is done
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Algorithm 3 VGS

procedure VGS(min sup,maxgap)
P = { parent classes Pi};
for each parent class Pi ∈ P do

Enumerate-Frequent-Seq(Pi,min sup,maxgap);
end for

end procedure
function Enumerate-Frequent-Seq(S, min sup,maxgap)

for all items vi ∈ S do
Ti = ∅;
for all items vj ∈ S with j ≥ i do

R = new candidate sequence from vi and vj;
L(R) = L(vi) ∩ L(vj); ⊲ with 0 ≤ (vi(eid) − vj(eid)) ≤ maxgap, where

vi(eid) is the event id of vi

if freq(R) ≥ minsup then
Ti = Ti ∪ {R};
F|R| = F|R| ∪ {R};

end if
end for
Enumerate-Frequent-Seq(Ti);

end for
end function

recursively until all the frequent sequences are computed.

2.6 Summary

In this chapter we introduced a new algorithm Variable-Gap Sequence Miner

(VGS). VGS mines frequent patterns with different lengths and gaps between the ele-

ments across and within several sequences. VGS is based on cSPADE [97], a method

for constraint sequence mining. While cSPADE essentially ignores the length and

symbol distributions of gaps, VGS is especially designed to extract such patterns

within one or more sequences. Although other methods can also mine gapped se-

quences [6, 83, 97, 101], the key difference is that, during mining, VGS explicitly

keeps track of all the intermediate symbols, their frequency, and the gap frequency
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distribution. VGS can be used individually or as part of the “pattern extraction”

step in VOGUE. The information that VGS extracts from the mined sequences are

used in the “modeling” step of VOGUE. The next chapter describes how in the

“modeling” step of VOGUE the mined patterns from VGS are used to build a new

state machine that we call Variable-Order State machine.
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Chapter 3
Data Modeling Using

Variable-Order State

Machine

In the late sixties and early seventies, Baum and his colleagues published the basic

theory of Hidden Markov Models (HMMs) [11, 14, 15, 12, 13]. HMMs are a rich

mathematical structure that can be applied to a variety of applications. However,

they only became a popular probabilistic framework for modeling processes that

have structure in time, starting in the mid 80’s. That was mainly because the

basic theory of HMMs was published in mathematical journals that was not read

by engineers.

HMMs quantize a system’s configuration space into a number of discrete states

with probabilities to transit between those states. The current state of the system

is indexed in a single finite discrete variable when the system’s structure is in time

domain. This variable’s value encompasses the past information about the process

and is used later on for future inferences.

HMMs are a powerful statistical tool that have been applied in a variety of

problems ranging from speech recognition, to biological sequence analysis, to robot

planning, to web prefetching. Speech recognition, however, is the area of research
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where a considerable amount of papers and books on using HMM have been pro-

duced [58, 78]. The best description of how HMMs have been used in Speech

recognition is described in the well referenced tutorial by Rabiner [75]. As biologi-

cal knowledge accumulates, HMMs have been used as one of the statistical structures

for biological sequence analysis, a growing field of research, from human genomes to

protein folding problems, [27]. In [29], Profile HMMs have been used for multiple

alignment of conserved sequences. HMMs have been used as well in inferring phy-

logenetic trees [71], and in splice site detection [48]. Partially Observable Markov

Decision Process (POMDP) models have been used in robot planning to allow the

robots to act and learn even if they are uncertain about their current location, [54].

In [74], all Kth Markov model have been used to predict web surfing behavior. A

hidden markov model was defined for each character in a text recognition applica-

tion from grey level images in [1]. In [64], an HMM was used for automatic gait

classification in medical image processing.

3.1 Hidden Markov Model: Definitions

In this section, we will provide a overview on the theory of HMMs based on

Rabiner’s tutorial [75].

The fact that only the sequence of observations is observed, but not the states,

explains why these models are called “hidden” Markov Models. As an example, let’s

consider the coin tossing example in Rabiner’s tutorial [75]. Suppose you are in a

room with a barrier, and another person is performing the tossing experiment, with

the possibility that the coin is biased. You are only given the result of heads and

39



tails without the knowledge of the number of coins used, and whether they are

biased or not. You will have to build an HMM to explain the observed sequence,

O = {o1, · · · , ot, · · · , oT}, of heads and tails. Note that t is the “time step” of

occurrence of the observation ot in the sequence O, where 0 ≤ t ≤ T .

The elements of an HMM are as follows:

• N - the number of hidden states.

• Q - the set of states, Q = {1, · · ·N}

• M - the number of observation symbols

• V - the set of output symbols, V = {v1, · · · vM}

• A = ai,j - the state transition probability matrix, ai,j = P (qt+1 = j|qt = i),

1 ≤ i, j ≤ N , which is the transition probability from state i to state j.

• B = bi(k) - the output symbol emission probability distribution in state qi,

bi(k) = P (vk at time t|qi at tine t), 1 ≤ k ≤ M

• Π = πi - the initial state distribution, πi = P (qi at t = 1), 1 ≤ i ≤ N

• λ - the HMM can be represented by λ = (A,B, Π)

The HMM consists of a finite number, N, of states Q = {1, · · ·N}, a finite

number, M, of output symbols V = {v1, · · · vM} in each state, and transitions be-

tween these states.

At each time step, t, a new state is visited according to a transition probability

distribution, denoted as aij, for 1 ≤ i, j ≤ N , which depends on some of the states
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visited before. Being in state i, if the transition probability is only dependent on the

previous state (i − 1) (the Markov property), the Markov process is said to satisfy

the first order Markov property:

aij = P (qt+1 = j|qt = i, ..., qt−h = l)

= P (qt+1 = sj|qt = si)

(3.1)

where 1 ≤ i, j, l ≤ N , 1 ≤ h ≤ t − 1, 0 ≤ aij ≤ 1 and
N
∑

i=1

aij = 1

On the other hand, if the transition probability is dependent on the previous

k -states, the Markov Process is said to satisfy the kth- order Markov property.

After each transition is made, an output symbol is produced according to a

stationary probability density function (PDF) {bi(k), 1 ≤ i ≤ N , 1 ≤ k ≤ M}. It

models the likelihood of observing symbol vk, 1 ≤ k ≤ M , given that the Markov

process is in state i (i.e., the observed symbol depends only on the current state

“i”), denoted:

bi(k) = P (vk at t|qi at t) (3.2)

and again 1 ≤ i ≤ N , 0 ≤ bi(k) ≤ 1 and
M
∑

k=1

bi(k) = 1.

In addition to the transition probabilities and output symbol probability dis-

tribution, a Markov model also needs a set of initial state probabilities denoted:

πi = P (qi at t = 1), for it to completely determine the probability of observing a

state sequence S = {s1, · · · , st, · · · , sT}:

P (S) = π1

T−1
∏

t=1

ast,st+1 (3.3)
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where π1, the probability of being in state 1 at time t = 1, means that the

sequence was generated by first generating the first symbol s1 from state 1. To

illustrate the generation of an observation sequence from an HMM, let’s consider

the Urn and Ball model described in [75]. We choose N urns, each one containing

M distinct balls (e.g., Red (R), Green (G), Blue (B), Yellow (Y),...). Each urn has,

possibly, a different distribution of colors. The sequence generation algorithm is

described as follows:

1. choose initial urn according to the initial probability distribution Π = πi,

1 ≤ i ≤ N ,

2. Pick a ball, k, from the urn i selected in the previous step according to the

output symbol probability distribution in urn i (state i): bi(k). Record its

color vk and then replace it,

3. Select another urn j (state j ), according to the transition probability of urn

i : ai,j,

4. i = j, repeat 2 and 3 for (T − 1) times.

An observation sequence that might result could be as described in Table 3.1.

The sequence generation algorithm can be generalized to:

1. Pick initial state i based on Π,

2. set t = 1,
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Table 3.1: A sequence of Ball colors randomly withdrawn from T Urns.

step or time 1 2 3 4 · · · T

urn (hidden) state q3q1q1q2 · · · qN−2

ball color (observation) R G B Y · · · G

3. Choose vt according to bi(k),

4. t = t + 1, i = j, according to aij,

5. Repeat steps 3 to 5 while t < T ,

There are three basic problems to solve while applying HMMs to real world

problems:

1. Evaluation: Given the observation sequence O = o1o2 · · · oT , and a model

λ = (A,B, Π), how do we efficiently compute P (O|λ)? The solution to this

problem will enable us to evaluate different models and choose the best one

according to the given observation. The main issue, however, in this problem

is that the hidden states tend to complicate the evaluation. This problem can

be solved using the Forward-Backward algorithm [75].

2. Decoding: Given the observation sequence O = {o1o2...oT}, and the model

λ, how do we choose a corresponding state sequence Q = {q1q2...qT} which

is optimal in some meaningful sense? The solution to this problem would

explain the data. An optimization criterion has to be decided (e.g., maxi-

mum likelihood). An efficient dynamic programming method, as the Viterbi

algorithm [75], is used to solve this problem.
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3. Learning: How do we adjust the model parameters λ = (A,B, Π) to max-

imize P (O|λ)? This problem is about finding the best model that describes

the observation at hand.

Of all the three problems, the third one is the most crucial and challenging

to solve for most applications of HMMs. The work presented in this thesis mainely

focuses on this problem.

3.2 Estimation of HMM parameters

The parameters estimation problem can be divided into two categories:

1. Structure of the HMM: Define the number of states N , how they are

connected, and the number, M , of output symbols in each state.

2. Parameters value estimation: Estimate the transition probability matrix

A, the emission probabilities B, and the initial probabilities Π.

For both categories we will assume that the data at hand is composed of

example sequences (training sequence), denoted as O = {o1, o2 · · · oT}, that are

independent. Thus:

P (O|λ) =
T

∑

t=1

P (ot|λ) (3.4)

Section 3.2.1, will address the theory of parameter estimation problem and

some of the methods that have been developed to solve it. Section 3.2.3 will describe

the topology choice of the HMM that depends heavily on the problem at hand.
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3.2.1 Estimation of HMM parameters

Due to the complexity of the problem and the finite number of observations,

there is no known analytical method so far for estimating λ to globally maximize

P (O|λ). Instead, iterative methods that provide a local maxima on P (O|λ) can be

used such as the frequently used Baum-Welch estimation algorithm [14]. Besides

the well known Viterbi and Baum-Welch methods [75], in [78], the authors used a

gradient descent method to estimate the HMM parameters, and a back-propagation

neural network to determine the states of the HMM. In [66], associative mining was

used to estimate the parameters of an all Kth-order Prediction-by-Partial-Match

(PPM) Markov Predictors. We will look more closely at this method later on and

compare it to the method we present in this work.

3.2.2 Baum-Welch Algorithm

We will describe in more detail the Baum-Weltch algorithm [11, 14, 15, 12, 13],

since we use it as a base against which we compare our method. Recall that we want

to estimate λ = (A,B, Π) to maximize P (O|λ). An overview of the iterative Baum-

Welch algorithm is described in Algorithm 4.

Algorithm 4 Baum-Welch Algorithm

procedure forward-backward(I, min conf)
Start with an initial model λ0

Compute new λ based on λ0 and the observation sequence O = o1, · · · oT

if log P (O|λ) − log P (O|λ0) < ∆ (where ∆ is a predefined threshold) then
stop

else
set λ0 ← λ and goto step 2

end if
end procedure
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The training mechanism, step 2, of the Baum-Welch algorithm uses the Forward-

Backward algorithm [11] to compute the expected number of times each transition

or emission is used, given the training sequence O.

Let’s define, as illustrated in Figure 3.1, the forward variable αt(i) as the

probability of observing the partial sequence (o1, o2, · · · ot) such that the state qt is

i :

αt(i) = P (o1, o2, · · · ot, qt = i|λ) (3.5)

Figure 3.1: Operations for the forward variable α.

By induction [75]:

αt+1(j) = [
N

∑

i=1

αt(i) · aij] · bj(ot+1) (3.6)
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where, 1 ≤ j ≤ N and 1 ≤ t ≤ T − 1.

With the initial value at t = 1, α1(i) = πibi(ot+1), we obtain:

P (O|λ) =
N

∑

i=1

αT (i) (3.7)

This computation is in the order O(N2T ).

Let’s define the backward variable βt(i), shown in Figure 3.2, as the probability

of observing the partial sequence (ot+1, ot+2 · · · oT ) such that the state qt is i :

βt(i) = P (ot+1, ot+2 · · · oT |qt = i, λ) (3.8)

Figure 3.2: Operations for the backward variable β.

By induction:

βt(i) = [
N

∑

j=1

aij] · bj(ot+1 · βt+1(j)) (3.9)
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Figure 3.3: Operations to compute the joint probability of the system
being in state i at time ts and state j at time t+1.

where, 1 ≤ i ≤ N and 1 ≤ t ≤ T − 1.

With the initial value at t = T , βT (i) = 1, we obtain:

P (O|λ) =
N

∑

j=1

bj(o1)β1(j) (3.10)

This computation is, again, in the order O(N2T ).

Now, let’s define ξ(i, j), illustrated in Figure 3.3 as the probability of being

in state i at time t and in state j at time t+1 :

ξ(i, j) = P (qt = si, qt+1 = sj|O, λ)

=
P (qt = si, qt+1 = sj, O|λ)

P (O|λ)

(3.11)

From the formulas of forward and backward variables α and β, the previous
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formula can be rewritten as:

ξ(i, j) =
αt(i) · aij · bj(vt+1) · βt+1(j)

P (O|λ)

=
αt(i) · aij · bj(vt+1) · βt+1(j)

N
∑

i=1

N
∑

j=1

αt(i) · aij · bj(vt+1) · βt+1(j)

(3.12)

We then define, γt(i) as the probability of being in state i at time t, given the

observation sequence:

γt(i) =
N

∑

j=1

ξt(i, j) (3.13)

where:

•
T
∑

t=1

γt(i) is the expected number of times state i is visited.

•
T−1
∑

t=1

ξt(i, j) is the expected number of transitions from state i to state j.

The above formulas are used along with the concept of counting event occur-

rences in Baum-Welch algorithm to estimate the elements of the model λ, Π, A, and

B as follows:

• πi = γ1(i), which is the expected frequency in state i at time t = 1.

• aij =

T−1
∑

t=1

ξt(i, j)

T−1
∑

t=1

γt(i)

, which is (the expected number of transition from state i to

state j )/(expected number of transition from state i).

• bj(k) =

T
∑

t=1
ot=vk

γt(j)

T
∑

t=1

γt(j)

.
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These values are iteratively computed, and converge in a continuous space

until a converging criteria is met, typically stopping when the difference in the log

of likelihood [log(P (O|λ))− log(P (O|λ0))] is smaller than a predefined threshold ∆

or the maximum number of iterations is reached. At each iteration, the log likelihood

of the model λ is increased, converging the model to a local maximum.

As pointed out in the beginning of this section, in a continuous-valued space

there is no known method to get a global optimum, but rather a local maximum can

be reached. The values of the initial parameters, used in the Baum-Welch algorithm,

influence heavily the local maximum that the model converges to. This becomes a

severe problem when dealing with large scale HMMs, which is the case in most of

real-world applications, if not all of them.

3.2.3 Structure of HMM

In the previous section we explored different methods of estimating the param-

eter values of an HMM. We considered a simplified HMM structure that consists

of N states fully connected. This type of HMM is known as ergodic. Formally

speaking, any state of the HMM could be reached by any other state in one step

(i.e., ai,j 6= 0 for ∀ i, j ∈ {1, · · ·N}). These types of HMMs, even though they seem

simple, are computationally expensive and perform poorly in real world problems.

In fact, even with enough training data to estimate all the parameters, an issue with

this type of HMM structure is still the local maximum problem.
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3.3 Hidden Markov Models: Related Work

As stated earlier the ergodic HMMs, even though they seem simple, are com-

putationally expensive and perform poorly in real world problems. In fact, even with

enough training data to estimate all the parameters, the problem with this type of

HMM structure will be the local maximum problem. Therefore, a good structure

for the HMM should be constrained. However, how constrained should it be is not

an easy question to solve, since it depends on the problem at hand.

In speech recognition [9, 50], a left-right model was shown to model the

observed properties of the signal that change over time better than the ergodic

HMM. The states proceed from left to right as time increases. An extension of the

left-right model is a cross-coupled connection of two parallel left-right HMMs which

was proposed in [75]. In [41], the HMM topology adapts to the data by adding and

deleting transitions and states. In [57, 77], a non- parametric state duration density

Pi(d) is considered instead of the self-transition coefficient aii. The transition from

state i to state j is made only after the appropriate number of observations are

generated according to Pi(d). However, this method is computationally expensive

and it increases the complexity of the system by increasing the number of parameters

to be estimated. To cope with this drawback, Guassian families with mean and

standard deviation as parameters to be estimated are used as Pi(d) [56], and in [61]

a path-constrained Viterbi decoding method with a unifrom duration distribution

is used.

In speech recognition [75] as well as in biological sequence analysis [27], another
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type of HMMs is considered where the observations are associated with connections

rather than the states of the model and allowing states to emit no symbols, known

as the Silent or Null states. Another method that has been used to reduce the

complexity of the number of parameters to be estimated, especially when there is

insufficient training data, is parameter Tying [79]. This technique consists of making

up an equivalence relation between the parameters in different states, reducing this

way, the number of independent parameters.

The main problem with HMMs is that they depend on the Markov property,

i.e., the current state depends only on the previous state. In general patterns may

display longer range dependencies, and one needs a higher-order HMM [26] (where

the order denotes the number of previous states the current state depends on) to

model such patterns. Thus, in addition to HMMs (of order 1), there are other

types of Markov models used in prediction. For example, an m−order Prediction-

by-Partial Match (PPM) predictor maintains a Markov model of order j, for all

1 ≤ j ≤ m. This scheme is also referred to as an All-m-Order Markov Model [66].

This model uses the past j events to compute the probability of next event to come.

Mixed-order HMMs have also been proposed [81]. The main challenge here is that

building higher order HMMs [26] is not easy, since we have to estimate the joint

probabilities of the previous m states (in an m-order HMM). Furthermore, not all of

the previous m states may predict the current state. Moreover, the training process

is extremely expensive and suffers from local optima. This leads us to consider a

novel approach of using variable-order HMMs via data mining. The basic idea is

to use data mining to mine frequent patterns, which may be of different lengths,
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and then use these frequent patterns as the estimates of the joint probabilities,

which can be used to seed the variable-order HMM. There has been almost no

work on variable-order HMMs. The closest work is that of [66], who proposed

using frequent associations for support, confidence and error pruned markov models

(S/C/E-PMMs). However, we plan to use other higher order patterns (sequences)

[98].

In the next section, we describe our proposed Variable Order Gaps state ma-

chine (VOGUE), its parameters and structure estimation via sequence mining using

VGS, described in Chapter 2, as well as some examples to illustrate the method.

Estimating VOGUE’s parameters and structure is deterministic, thanks to the use

of VGS, in contrast to higher-order HMM where the estimation is iterative and

non-deterministic.

3.4 Modeling: Variable-Order State Machine

VOGUE uses the mined sequences to build a variable order/gap state ma-

chine. The main idea here is to model each non-gap symbol in the mined sequences

as a state that emits only that symbol and to add intermediate gap states between

any two non-gap states. The gap states will capture the distribution of the gap

symbols and length. Let F be the set of frequent subsequences mined by VGS, and

let k be the maximum length of any sequence. While VOGUE can be generalized

to use any value of k ≥ 2, for clarity of exposition we will illustrate the working of

VOGUE using mined sequences of length k = 2. We consider the general case in

the next section. Let F1 and F2 be the sets of all frequent sequences of length 1 and

53



2, respectively, so that F = F1 ∪ F2. Thus, each mined sequence si ∈ F2 is of the

form si : vf → vs, where vf , vs ∈ Σ. Let Γ = {vf |vf → vs ∈ F2} be the set of all the

distinct symbols in the first position, and Θ = {vs|vf → vs ∈ F2} be the set of all

the distinct symbols in the second position, across all the mined sequences si ∈ F2.

The VOGUE model is specified by the 6-tuple λ = {Q, Σ, A,B, ρ, π} where each

component is defined below:

Alphabet (Σ): The alphabet for VOGUE is given as:

Σ = {v1, · · · vM} (3.14)

where |Σ| = M is the number of observations emitted by any state. The alphabet’s

size is defined by the number of symbols that occur at least once in the training

data, obtained as a result of the first iteration of VGS, as shown in Table 3.2. For

our example S in Section 2.3 of Chapter 2, we have nine distinct frequent symbols,

thus M = 9.

Set of States (Q): The set of states in VOGUE is given as:

Q = {q1, · · · , qN}, (3.15)

where:

|Q| = N = Nf + Gi + Ns + Gu. (3.16)
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Table 3.2: Subsequences of length 1 mined by VGS

Index Element freq
1 C 2
2 D 2
3 H 1
4 I 1
5 E 1
6 F 1
7 G 1
8 A 4
9 B 3

Here, Nf = |Γ| and Ns = |Θ| are the number of distinct symbols in the first and

second positions, respectively. Each frequent sequence si ∈ F2 having a gap g ≥ 1

requires a gap state to models the gaps. Gi thus gives the number of gap states

required. Finally Gu = 1 corresponds to an extra gap state, called universal gap,

that acts as the default state when no other state satisfies an input sequence. For

convenience let the partition of Q be:

Q = Qf ∪ Qi ∪ Qs ∪ Qu (3.17)

where the first Nf states belong to Qf , the next Gi states belong to Qi, and

so on.

For our example S in Section 2.3 of Chapter 2, we have Nf = 4, since there

are four distinct starting symbols in Table 2.8 (namely, A,B,C,D). We also have

four ending symbols, giving Ns = 4. The number of gap states is the number of

sequences of length 2 with at least one occurrence with gap g ≥ 1. Thus Gi = 8,
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C → B is the only sequence that has all consecutive (g = 0) occurrences. With one

universal gap state Gu = 1, our model yields N = 4 + 8 + 4 + 1 = 17 states.

Transition Probability Matrix (A): The transition probability matrix between

the states:

A = {a(qi, qj)|1 ≤ i, j ≤ N} (3.18)

where:

a(qi, qj) = P (qt+1 = qj|q
t = qi) (3.19)

gives the probability of moving from state qi to qj (where t is the current position

in the sequence). The probabilities depend on the types of states involved in the

transitions. The basic intuition is to allow transitions from the first symbol states

to either the gap states or the second symbol states. The second symbol states

can go back to either the first symbol states or to the universal gap state. Finally

the universal gap state can go to any of the starting states or the intermediate gap

states. We discuss these cases below.

• Transitions from First States: Any first symbol state qi ∈ Qf may tran-

sition to either a second symbol state qj ∈ Qs (modeling a gap of g = 0) or to

a gap state qj ∈ Qi (modeling a gap of g ∈ [1,maxgap]). Let siy : vi → vy ∈ F2

be a subsequence mined by VGS. Let freqg
i (y) denote the frequency of siy for a

given gap value g, and let freqi(y) denote the total frequency of the sequence,
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i.e.:

freqi(y) =

maxgap
∑

g=0

freqg
i (y) (3.20)

Let the fraction of gap-less transitions from qi to qj over all the transitions

from qi to qy ∈ Qs be denoted as:

R =
freq0

i (j)
∑

y∈Qs

freqi(y)
(3.21)

The transition probabilities from qi ∈ Qf are given as:

a(qi, qj) =







































R, qj ∈ Qs

freqi(j)
∑

y∈Qs

freqi(y)
− R, qj ∈ Qi

0, qj ∈ Qf ∪ Qu

(3.22)

• Transitions from Gap States: Any gap state qi ∈ Qi may only transition

to second symbol state qj ∈ Qs. For qi ∈ Qi we have:

a(qi, qj) =















1, qj ∈ Qs

0, otherwise

(3.23)

• Transitions from Second States: A second symbol state qi ∈ Qs may

transition to either first symbol state qj ∈ Qf (modeling a gap of g = 0),

or to the universal gap state qj ∈ Qu (modeling other gaps). Let T =

∑

sx∈F2
freq(sx) be the sum of frequencies of all the sequences in F2. For
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qi ∈ Qs we have:

a(qi, qj) =







































0.99 ×

∑

qy∈Qf

freqj(y)

T , qj ∈ Qf

0.01, qj ∈ Qu

0, qj ∈ Qi ∪ Qs

(3.24)

Transitions back to first states are independent of qi, i.e., the same for all qi ∈

Qs. In fact, these transitions are the same as the initialization probabilities

described below. They allow the model to loop back after modeling a frequent

sequence. Note, that we are primarily modeling the frequent sequences mined

by VGS. However, we need to account for symbols that may appear between

the frequent sequences but are not picked up as frequent. In a statistical model

such as HMM, if a position or a subsequence of positions in an observation

sequence is not present, then the probability of the sequence with respect to

the model will be very small, regardless of how well it may match the rest of

the model.

For example, assume a model built on two frequent subsequences A → B and

C → D. The sequence S ′ = ABRCD should be clearly identified to be a

good match to the model since both subsequences A → B and C → D are

present in it. However, after being in the state that will generate the symbol

B we need to generate the symbol R that is not in any of the two frequent

sequences. Therefore, we need a transition to the universal gap state. However,

since R → B was not identified as being frequent by VGS we need to assign a
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small probability to this transition. Therefore, we assign an empirically chosen

value of 1% to the transition from the “second states” to the universal gap

state. Furthermore, since
N
∑

j=1

a(qi, qj) = 1 we assign the remaining 99% to the

transition to the “first states”.

• Transitions from Universal Gap: The universal gap state can only tran-

sition to the first states or the intermediate gap states. For qi ∈ Qu we have:

a(qi, qj) =







































0.9 ×

∑

qy∈Qf

freqj(y)

T , qj ∈ Qf

0.1 × 1
Gi

, qj ∈ Qi

0, otherwise

(3.25)

Since the first states can emit only one symbol, we allow transitions from

universal gap to intermediate gap states, to allow for other symbol emissions.

For example, assuming, as before, the same frequent sequences are A → B

and C → D that are used to build the model. If we have a new observation

sequence S ′′ = ABRFCD, clearly we need to generate two symbols, R and F ,

between the two frequent sequences A → B and C → D. After generating B

from a second state, we can generate R from the universal gap state however we

need to generate one more symbol, F . F does not belong to any of the frequent

sequence before generating the other frequent sequence C → D. Therefore

there is a need to transit from the gap state to an intermediate gap state since

the first and second symbols can only generate symbols that belong to the

frequent sequences. Moreover, since generating F after R was not identified
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as frequent by VGS, we need to assign a small probability to the transition

from the universal gap to the intermediate gap states. This probability is at

most 10% (empirically chosen) across all the gap states. In the remaining

90% cases, the universal gap transitions to a first state with probabilities

proportional to its frequency.

Figure 3.4 shows transitions between states and their probabilities in VOGUE

for our running example. Note, that each gap state’s duration is considered

explicitly within a state. The notation gi, for example g3, in the graph is

the name of the gap state between the elements of the sequence, in this case

C → D, and not the value of the gap. The symbol states, on the other hand,

are named after the only symbol that can be emitted from them, for example

C is the only symbol that is emitted from the first symbol state.

Symbol Emission Probabilities (B): The symbol emission probabilities are state

specific. We assume that each non-gap state (qi ∈ Qf ∪ Qs) outputs only a single

symbol, whereas gap states (qi ∈ Qi ∪ Qu) may output different symbols. The

emission probability matrix is then given as:

B = {b(qi, vm) = P (vm|qi), 1 ≤ i ≤ N and 1 ≤ m ≤ M} (3.26)

where:

b(qi, vm) = P (vm|qi) (3.27)
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g1

C

 0.31

A

 0.36

D

 0.1

B

  0.21

g2

 0.012

g3

 0.012

g4

 0.012

g5

0.012

g6

0.012

g7

0.012

g8

0.012

g9

0.012

B

  0.33

  0.33  0.33

D

  0.14

C

  0.14

 0.42   0.14   0.14

A

  0.5

  0.5

 0.25 0.25

 0.25 0.25  0.01

 0.31   0.36   0.1  0.2

   0.01 

 0.31  0.1  0.360.2

0.01 

 0.31 0.1  0.36  0.2

  0.01

  0.31 0.1  0.360.2

 1 1 1    1   1  1 1 1

Figure 3.4: VOGUE State Machine for Running Example
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is the probability of emitting symbol vm in state qi. b(qi, vm) differs depending

on whether qi is a gap state or not. Since there is a chance that some symbols that

do not occur in the training data may in fact be present in the testing data, we

assign them a very small probability of emission in the gap states.

• Non-gap States: the emission probability is:

b(qi, vm) =















1, qi ∈ Qf ∪ Qs

0, otherwise

(3.28)

For example, the first and second states are labeled by their emission symbol

in Figure 3.4.

• Universal Gap: For qi ∈ Qu we have:

b(qi, vm) =









freqi(vm)
∑

vm∈Σ

freqi(vm)









× 0.99 + c′ (3.29)

where c′ = 0.01
M .

This means that vm is emitted with probability proportional to its frequency

in the training data. The c′ term handles the case when vm does not appear

in the training set.

• Gap States: If qi ∈ Qi its emission probability depends on the symbol

distribution mined by VGS. Let Σqi
be the set of symbols that were observed
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by VGS in the gap qi. We have:

b(qi, vm) =











∑

g≥1

freqg(vm, qi)

∑

vm∈Σqi

∑

g≥1

freqg(vm, qi)











× 0.99 + c (3.30)

where c = 0.01
|Σqi

|
.

Note that the above summations are for gap ranges g ∈ [1,maxgap], since gap g = 0

is treated as a direct transition from one state to another. Note that the values 0.99

and 0.01 above arise from the pseudo-count approach used for previously unseen

symbols.

In our running example, for the symbol vm = C and the gap state g4 between

the states that emit A and B, we have the frequency of C as 2 out of the total

number (5) of symbols seen in the gaps (see Section 2.3 of Chapter 2). Thus C’s

emission probability is 2
5 × 0.99 + 0.01

4 = 0.385.

Gap Duration Probabilities (ρ): The probability of generating a given number

of gaps from the gap states Qi is given by the gap duration probability matrix:

ρ = {ρ(qi, g)|qi ∈ Qi, g ∈ [1,maxgap]} (3.31)

Let qi be the gap state between a state qx ∈ Qf and a state qy ∈ Qs corresponding

to the sequence s : vi → vy ∈ F2. The gap duration probability is proportional to
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the frequency of observing a given gap value for s, i.e.:

ρ(qi, g) =



























freqg
i (y)

∑

g∈{1,··· ,maxgap}

freqg
i (y)

, qi ∈ Qi

1, qi ∈ Q\Qi.

(3.32)

In our running example, for the gap state g4 between the states that emit A and

B, we have ρ(g4, 2) = 2
3 = 0.67, since we observe twice a gap of 2, out of three

occurrences.

Initial State Probabilities (π): The probability of being in state qi initially is

given by π = {π(i) = P (qi|t = 0), 1 ≤ i ≤ N}, where:

π(i) =







































0.99 ×

∑

qy∈Qf

freqi(y)

T , qi ∈ Qf

0.01, qi ∈ Qu

0, qi ∈ Qi ∪ Qs

(3.33)

We use a small value for the Universal Gap state as opposed to the states in Qf to

accentuate the patterns retained by VGS while still providing a possibility for gaps

after and before them.

Note that the values 0.99, 0.1, 0.01, etc., used in the transition and emission

probabilities, are obtained by using pseudo-counts [18] to allow for symbols that are

unseen in the training data set.
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3.5 Generalization of VOGUE to k ≥ 2

Here, we generalize the model to k ≥ 2. Let S be the set of subsequences

mined by VGS, and let k be the maximum length of any sequence. We denote by

k seq a sequence of length k, such as vi1 , vi2 , · · · , vik . Let Γk(j) be the set of symbols

in the jth position in all subsequences s, s ∈ S, of length up to k, j = 1, · · · , k − 1;

Γk(k) is then the set of different last symbols in all subsequences of length up to k.

Finally, let S(j) be the set of subsequences in S of length at least j.

The VOGUE’s state machine is denoted as λ and is made up of the 6-tuple

λ = {Q, V,A,B, ρ, π} where each component is defined as follows:

• Q = {q1, · · · , qN} – the set of states of VOGUE, where N is the number of

states of VOGUE such that: N = N1 +G1 + · · ·+Ni−1 +Gi−1 + · · ·+Nk +Gk,

where:

– Ni =| Γk(i) | , i = 2, · · · , k − 1. This denotes the number of distinct

symbols in position i over all the sequences. Thus N1 is the number of

distinct first symbols and Nk is the number of distinct last symbols.

– Gi (for i < k) is the number of distinct pairs of symbols in positions i−1

and i. This corresponds to the number of gap states required between

states at positions i − 1 and i.

– Gk = 1, corresponds to an extra gap state, called Universal Gap state,

that will capture elements not captured by any of the above.

For convenience we let:
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–
∑

(Gj) =
∑

l<j(Nl + Gl) for all j ∈ {2, · · · , k} and
∑

(G1) = 0.

–
∑

(Nj) =
∑

l<j(Gj) + Nj for all j ∈ {1, · · · , k}.

The states of VOGUE are, then, given as follows:

– For
∑

(Nj) < i ≤
∑

(Gj+1), qi corresponds to the gap of variable length

between the (j−1)th and jth elements in the subsequences, j ∈ {1, · · · , k−

1}. These states will be called “Gap” states.

– For
∑

(Gj) < i ≤
∑

(Nj), qi corresponds to the elements in Γk(j), j ∈

{1, · · · , k}. These states will be called “Symbol” states.

– For i =
∑

(Gk+1), qi corresponds to the Universal Gap state.

• V = {v1, · · · vM} – the alphabet of the symbols, where M is the number of

observations emitted by a state in Q. It is the number of different subsequences

of length 1 retained by VGS, unless stated differently by the application at

hand.

• A = {ail} – the transition probability matrix between the states in Q. For

convenience we let:

– Rsj(m): frequency of subsequence s, s ∈ S, where m is the index of the

symbol vm ∈ Γk(j) at the jth position of s.

– Wjg(m,m′): frequency of subsequence s, s ∈ S, where m and m′ are,

respectively, the indexes of vm and vm′ . vm is at the jth position of s and

vm′ is at the j + 1th position of s. g is the value of the gap between the

jth and j + 1th positions of s, g ∈ {1, · · · ,maxgap}.
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Each element of the matrix is given as ail = P (qt+1 = l|qt = i), for 1 ≤ i, l ≤ N .

– if
∑

(Gj) < i ≤
∑

(Nj), j ∈ {1, · · · , k − 1}, (Non-Gap (Symbol) states):

ail =































Pmaxgap
g=1 Wjg(m,m′)

P

s∈S Rsj(m)
, if

∑

(Nj < l ≤
∑

(Gj+1));

Wj0(m,m′)
P

s∈S Rsj(m)
, if

∑

(Gj+1) < l ≤
∑

(Nj+1);

0, Otherwise;

(3.34)

where m and m′ are the indexes, respectively, of symbols vm and vm′ ∈ V

such that ∃vl′ ∈ Γk(j) and ∃vl” ∈ Γk(j + 1): (vl′ = vm and vl” = vm′),

and (l′ = i −
∑

(Gj) and l” = l −
∑

(Gj+1)).

– if
∑

(Nj) < i ≤
∑

(Gj+1), j ∈ {1, · · · , k − 1}, (Gap states):

ail =















































0.9, if
∑

(Gi+1) < l ≤
∑

(Ni+1);

0.1
N1+1

if
∑

(Nk) < l ≤
∑

(Gk+1)

0.1
N1+1

if
∑

(G1) < l ≤
∑

(N1)

0, Otherwise;

(3.35)

– if
∑

(Gk) < i ≤
∑

(Nk) (last Symbol states):
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ail =































(
P

s∈S Rsj(mi)
P

m∈Γk(j)

P

s∈S Rsj(m)

)

× 0.9, if
∑

(G1) < l ≤
∑

(N1);

0.1, if l =
∑

(Gk+1);

0, Otherwise;

(3.36)

where Rsj(mi) is as defined earlier and mi is the index of symbol vmi
∈ V

such that ∃vl′ ∈ Γk(j): vl′ = vmi
, and l′ = i −

∑

(Gj).

– if i =
∑

(Gk+1) (Universal Gap state):

ail =















































(
P

s∈S Rsj(mi)
P

m∈Γk(j)

P

s∈S Rsj(m)

)

× 0.9, if
∑

(G1) < l ≤
∑

(N1);

0.1
G

, if
∑

(Nj) < l ≤
∑

(Gj+1), j 6= k;

0, Otherwise;

(3.37)

Note: Since each gap state’s duration is considered explicitly within a state,

there is no self-transition to any state. The state transition probabilities to

the same state is, then, aii, 1 ≤ i ≤ N , are set to 0.

• B = {bi(m) = P (ot = vm|qt = i), 1 ≤ i ≤ N and 1 ≤ m ≤ M} - the emission

probability of state i. It is defined as follows:

– if
∑

(Gj) < i ≤
∑

(Nj), j ∈ [1, k] (Non-Gap (Symbol) states):
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bi(m) =















1, if ∃vl ∈ Γk(j) s.t: vl = vm and l = i −
∑

(Gj);

0, otherwise;

(3.38)

– if
∑

(Nj) < i ≤
∑

(Gj+1), j ∈ [1, k] (Gap states):

bi(m) =

(

∑MAXGAP
g=1 freqg(m, l)

∑

vm∈Ψj(s)
[
∑MAXGAP

g=1 freqg(m, l)]

)

× 0.99 + c (3.39)

where freqg(m, l) is the frequency of vm such that vm ∈ Ψj(sl), sl ∈ S(j)

and l = i −
∑

(Gj); c = 0.01
Gj

.

– if
∑

(Nk) < i ≤
∑

(Gk+1), (Universal Gap state):

bi(m) =

(

freqi(m)
∑

vm∈V freqi(m)

)

× 0.99 + c′ (3.40)

where freq(m) is the frequency of vm, vm ∈ V and vm is also the 1-seq

retained by VGS; c′ = 0.01
M

.

Note: We will consider that each state, except gap states, generates either

only one symbol from the alphabet V at all times or generates an element from

a subclass of symbols of the alphabet.

• ρ = {ρig =, 1 ≤ i ≤ N, 1 ≤ g ≤ maxgap} - the gap states duration probability

matrix:
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– if
∑

(Gj) < i ≤
∑

(Nj), j ∈ [1, k] (Non-Gap (Symbol) states) and

∑

(Nk) < i ≤
∑

(Gk+1) (Universal Gap state):

ρig =















1, if g = 0;

0, otherwise;

(3.41)

– if
∑

(Nj) < i ≤
∑

(Gj+1), j ∈ [1, k] (Gap states):

ρig = freqgapl(g)
M

∑

g=1

freqgapl(g) (3.42)

where freqgapl(g) is the frequency of sl, sl ∈ S(j) and l = i −
∑

(Gj) ,

such that the gap between the jth and the (j + 1)th elements is equal to

“g”.

• π = {π(i) = P (q0 = i), 1 ≤ i ≤ N}- the initial probabilities are estimated as

follows:

π(i) =































(
P

s∈S Rsj(mi)
P

m∈Γk(j)

P

s∈S Rsj(m)

)

× 0.99, if
∑

(Gj) ≤ i ≤
∑

(Nj), j = 1;

0.01, if i =
∑

(Gk+1);

0, otherwise ;

(3.43)
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where Rsj(m) is as defined earlier and mi is the index of symbol vmi
∈ V such

that ∃vl′ ∈ Γk(j): vl′ = vmi
, and l′ = i −

∑

(Gj)..

3.6 Summary

In this Chapter, we described the “modeling” step of VOGUE by introducing

a new variable Order-Gap state machine. In this step VOGUE models each non-

gap symbol in the mined sequences by VGS as a state that emits only that symbol.

Then intermediate states, called gap states, are added between any two gap states to

model the gap between the elements of the frequent sequences mined by VGS. The

gap states capture the distribution of the gap symbols and length. Although other

methods such as Hidden Markov Model (HMM) [58] are good data modeling tools,

VOGUE’s state machine has several differences. HMM parameters are estimated

using an Expectation Maximization method (Baum-Welch) [58], an iterative method

that suffers from local optimum problem, and its structure is estimated on trial and

error basis. On the other hand, VOGUE’s state machine parameters and structure

are estimated deterministically using the frequent sequences mined by VGS and the

distribution and length of the gaps between the elements of those sequences. This

insures a good coverage of the most frequent patterns and a reduced state space

complexity. We substantiate these claims, in Chapter 6, through real data sets

experimentation by comparing the accuracy, coverage and state space complexity of

variable order-gap state machine as opposed to several Hidden Markov Models. In

the next Chapter, we describe two extensions of VOGUE C-VOGUE and K-VOGUE

before describing in Chapter 5 how data “interpretation” is tackled by the VOGUE
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methodology.
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Chapter 4
VOGUE Variations

In this chapter we describe two variations of VOGUE, namely, Canonical VOGUE

(C-VOGUE), and Knowledge VOGUE (K-VOGUE). C-VOGUE intends to de-

crease even more the state space complexity by pruning frequent sequences mined

by VGS that are artifacts of other “primary” frequent sequences, thus, pruning the

states and transitions from and to those states. Therefore further decreases the

state space complexity. On the other hand, in some domains, such as in biological

sequence analysis, the patterns that are supposed to be frequent do not have an

exact match in all the sequences in the original data set. In fact, some elements of

these patterns could be different, however, they share some common characteristics

and thus called “similar”. Therefore, the sequences in the data set that have a

sequence of elements that are not similar but share some common characteristics

could be incorporated into the model. K-VOGUE is an extension of VOGUE that

takes into consideration these constraints.
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Table 4.1: VGS with k = 2, maxgap = 2 and min sup = 2

Subsequence freq g = 0 g = 1 g = 2
A → B 4 1 1 2
B → A 3 1 1 1

4.1 C-VOGUE: Canonical VOGUE

Some patterns mined by VGS are artifacts of other patterns. For example,

let us consider the sequence S = ABACBDAEFBGHAIJB. Using VGS with

maxgap = 2, min sup = 2 and k = 2, the frequent subsequences are shown in

Table 4.1. For the frequent subsequence A → B, its frequency is freq = 4:

• Once with a gap of length 0: that is (AB).

• Once with a gap of length 1: that is the subsequence (ACB) where A is

followed by B but with one element in between, namely C.

• Twice with a gap of length 2: that is the subsequences (AEFB) where A is

followed by B with two elements, E and F , between them, and the subsequence

(AIJB) where A is followed by B with two elements, I and J , in between.

On the other hand, the frequent sequence B → A was mined by VGS as being

frequent under the constraints maxgap = 2, min sup = 2 and k = 2. In fact, its

frequency is freq = 3:

• Once with a gap of length 0: that is the subsequence (BA) where B is followed

directly by A.

74



Table 4.2: The eid of the different items in S

item (Sid, Eid)
A (1, 1), (1, 3), (1, 7), (1, 13)
B (1, 2), (1, 5), (1, 10), (1, 16)
C (1, 4)
D (1, 6)
E (1, 8)
F (1, 9)
G (1, 11)
H (1, 12)
I (1, 14)
J (1, 15)

• Once with gap length 1: that is the subsequence (BDA) where B is followed

by A with one element, D, between them.

• Once with gap length 2, that is the subsequence (BGHA) where B is followed

by A with two elements, G and H in between.

This frequent subsequence seems to be legitimate under VGS constraints, how-

ever, all the elements, B and A, involved in this sequence are already in the frequent

subsequence A → B. Indeed, this makes B → A not a new pattern but an “arti-

fact” pattern of A → B since A → B is more frequent than B → A. Moreover,

the position of the items involved in B → A are the same as those of A → B.

For instance, in the subsequence (AB), one of the subsequences in the count of the

frequent sequence A → B, the position or eid of A is 1 and the eid of B is 2. While

for the frequent sequence B → A, in the subsequence (BA) the eid of B is 2 and

the the eid of A is 3. Therefore, the B that is at the eid 2 is the same and hence

shared between the two subsequence (AB) and (BA). Table 4.2 shows the items

in S and their eids.
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The items in S that are shared between A → B and B → A in the for-

mat of (items, eid) are {(B, 2), (A, 3), (B, 5), (A, 7), (B, 10), (A, 13)}. Therefore, the

subsequence (BA) is an artifact of (AB) and (ACB). The subsequence (BDA) is

an artifact of (ACB) and (AEFB). The subsequence (BGHA) is an artifact of

(AEFB) and (AIJB). Hence, the frequent subsequence B → A is an “artifact”

pattern of the “primary” pattern A → B.

Figure 4.1 shows the structure of VOGUE State Machine with N = 7 being

the number of states for our example sequence. In fact, Nf = 2 since there are 2

distinct starting symbols in Table 4.1 (namely A and B). We also have 2 ending

symbols giving (namely A and B)Ns = 2. The number of gap states is the number of

sequences of length 2 that has at least one occurrence with gap g ≥ 1, thus, Gi = 2.

Since we have one universal gap Gu = 1, our model yields N = Nf +Gi +Ns +Gu =

2 + 2 + 2 + 1 = 7. We can see clearly that the paths A → B and B → A can

be merged into one path A → B and the information of gap g2 and g3 can be also

contained in one gap state instead of two. In fact, for our example, by eliminating

B → A, and hence the states associated with the path B → A from the frequent

mined sequences to build the Variable-Order state machine the number of states

drops from N = 7 to N = 4. By doing so, we reduce the state space complexity

significantly while conserving the coverage and accuracy as we will show through

experimental results in Chapter 6.

After showing the benefits of pruning the states associated with the artifact

patterns, we need a special pruning mechanism to separate primary patterns from

artifact patterns.
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Figure 4.1: VOGUE State Machine before pruning the artifact “B →
A”for the example sequence S.

We define the constraint that distinguish the “primary” patterns from the

artifact as follows:

Definition: Let ζp = {(e, eid)|e in Sp} be the set of pairs, (e, eid), of elements e

in the “primary” Sp and their corresponding eid in the original sequence S.

Let ζa = {(e, eid)|e in Sa} be the set of pairs, (e, eid), of elements e and their

corresponding eid in the artifact pattern Sa. Therefore, the third constraint

is that for a candidate sequence to be a “artifact” pattern to a “primary”
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pattern the following conditions have to be satisfied as well:

1. ζa ⊂ ζp.

2. ∃ (e′, eid′), (e′′, eid′′) ∈ ζp such that eid′ < eid < eid′′, where (e, eid) ∈ ζa.

This constraint is necessary.

As consequence of this constraint we have the following condition:

Condition 1: The artifact patterns are less frequent than the corresponding pri-

mary ones. In fact, for our running example, the frequency of the primary

pattern A → B is freq = 4, while the frequency of the artifact pattern B → A

is freq = 3.

In the case of when the mined patterns by VGS are of length k = 2, the following

condition is a consequence of the constraint of artifact patterns:

Condition 2: The elements of the primary and the artifact patterns are “mir-

rored”. In fact, let α → β be the primary pattern and κ → ν be the artifact

pattern. On one hand, the first element, κ, in the artifact pattern is the same

as the second last element, β, in the corresponding primary pattern (κ = β).

On the other hand, the last element,ν, of the artifact pattern is the same as

the first element, α, in the corresponding primary pattern (α = ν). In fact,

in our running example, the first element of the artifact pattern B → A is

B, which is the last element in the corresponding primary pattern A → B.

Likewise, the last element of the artifact pattern B → A is A, which is the

first element of the primary pattern A → B. Therefore, we consider that the
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Table 4.3: VGS with k = 2, maxgap = 2 and min sup = 2 for sequence S ′

Subsequence freq g = 0 g = 1 g = 2
A → B 3 1 1 1
B → A 2 1 0 1

artifact pattern B → A is a mirror of the primary pattern A → B.

However, if these two conditions hold they are not sufficient. The necessary

condition is the constraint defined earlier.

In fact, let us assume that the data set in our example consists of the new

sequence:

S ′ = ABRSTACBV DWAEFBGHBIJAKLMBA.

Then the frequent sequences are A → B and B → A under the conditions min sup =

2, maxgap = 2 and k = 2, as shown in Table 4.3.

The frequency of A → Bis freq = 3:

• Once with a gap of length 0: that is the subsequence (AB) where A is followed

directly by B in positions 1 and 2 respectively in sequence S ′.

• Once with gap length 1: that is the subsequence (ACB) where A is followed

by B with one element, C, between them.

• Once with gap length 2, that is the subsequence (AEFB) where A is followed

by B with two elements, E and F in between.

While the frequency of B → Ais freq = 2:
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• Once with a gap of length 0: that is the subsequence (BA) where B is followed

directly by A in the positions 25, 26 respectively.

• Once with gap length 2: that is the subsequence (BGHA) where B is followed

by A with two elements, G and H, between them.

Although B → A is a mirror of A → B and the frequency of B → A is

freq = 2 which is less than the one of A → B (freq = 3), B → A cannot be considered

an artifacts pattern of A → B. This is because the positions or eid of the elements

A and B in A → B are different and far from those in B → A. Therefore, B → A

is not in the span of A → B or vice versa. Indeed, as shown in Table 4.4, the

elements A and B in A → B (ζp = {(A, 1), (A, 6), (A, 12), (B, 2), (B, 8), (B, 15)})

all have eids that are different and less in value than the ones in B → A (ζa =

{(A, 21), (A, 26), (B, 18), (B, 25)}). Note that we are considering patterns with a

maxgap = 2 that is why (A, 21) (B, 25) are not in ζA→B because in this case A is

followed by B with 3 elements in between. Therefore, the two sequences are not

interleaved. On the other hand, as shown in Table 4.2 for the example sequence S,

the set ζa of the pairs of elements and their eids of B → A is:

ζa = {(A, 3), (A, 7), (A, 13), (B, 2), (B, 5), (B, 10)}

and the one of A → B is:

ζp = {(A, 1), (A, 3), (A, 7), (A, 13), (B, 2), (B, 5), (B, 10), (B, 16)}
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. We see clearly that ζa ⊂ ζp. Moreover, B in A → B has an eid that is greater

than any ones identified in ζa, that is (B, 16). Likewise, the element A has an extra

eid in A → B, which corresponds to (A, 1) the smallest eid value in S.

Table 4.4: The eid of the different items in S ′

item (sid, eid)
A (1, 1), (1, 6), (1, 12), (1, 21), (1, 26)
B (1, 2), (1, 8), (1, 15), (1, 18), (1, 25)
C (1, 7)
D (1, 10)
E (1, 13)
F (1, 14)
G (1, 16)
H (1, 17)
I (1, 19)
J (1, 20)
K (1, 22)
L (1, 23)
M (1, 24)
R (1, 3)
S (1, 4)
T (1, 5)
V (1, 9)
W (1, 11)

Figure 4.2 shows the new Variable-Order state machine that results from

this pruning. The path corresponding to the artifact pattern B → A was pruned.

However, the path B → A can be still reproduced. In fact once in state n2 that

produces B, we can go directly to state n1 that produces A. If there is a need to

produce some elements between B and A, then there is a possibility to transit from

state n2 to the universal gap g1, and produce an element or several elements, then

transit to state n1 to produce A.
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Figure 4.2: C-VOGUE State Machine after pruning the artifact “B → A”
for the example sequence S.

The pruning process is added between the Pattern Extraction and the Data

Modeling steps in VOGUE. We call this extension of VOGUE, Canonical VOGUE

(C-VOGUE). As shown in Figure 4.3, all the steps in C-VOGUE except the “Arti-

fact Pruning” process, are the same as in VOGUE. The mined frequent sequences

from VGS that are pruned satisfy the following constraints that summarize the

observations discussed earlier:

1. The artifact sequence is a mirror of the “primary” sequence.
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Figure 4.3: C-VOGUE Flow Chart.

2. If freqa is the frequency of the artifact sequence and freqp the frequency of the

primary sequence, then freqa < freqp.

3. ζa ⊂ ζp, and ∃ (e′, eid′), (e′′, eid′′) ∈ ζp such that eid′ < eid < eid′′

where (e, eid) ∈ ζa.
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4.2 K-VOGUE: VOGUE Augmented with Domain Specific

Knowledge

In some domains such as in biological sequence analysis [25, 27], the pat-

terns that are supposed to be frequent do not have an exact match in all the se-

quences that belong to the same family or class, but instead we need to allow inex-

act matches among some elements. These elements, however, share some common

characteristics and thus called “similar”. In fact, in proteins, the motifs (patterns

or frequent subsequences) that characterize a family or class of proteins is a pat-

tern that is found in all the sequences where some elements could be different. In

this case the pattern or motif looks more like a grammar. For example, given the

motif P ={G[IV T ][LV AC][LV AC][IV T ]D[DE][FL][DNST ]}, the subsequences:

(GICCIDEFD), (GV CLIDEFD), (GV CLIDEFD), (GV V CIDEFD), and (GV V CIDEFD)

can interchange. [IV T ] means that either I, V , or T could be found. The elements

that are grouped together are in general amino acids that have similar structure.

For example, I and V belong to the same subgroup, that is non-polar and hy-

drophobic amino acids group as shown in Figure 4.4, [59].

Regular methods that look for exact matches in subsequences to declare them

frequent will miss a pattern such as the motif P . Therefore, there is a need for

methods that allow for substitutions among similar elements to capture such pat-

terns/motifs. In bioinformatics, substitution matrices, [7, 28], have been used to

estimate the rate at which each possible element in a sequence changes to another

element over time. Substitution matrices are used in amino acid sequence alignment,
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Figure 4.4: Clusters of Amino acids based on their chemistry properties.

[19, 65, 89, 85], where the similarity between sequences depends on the mutation

rates as represented in the matrix. Aligned sequences are typically written with

their elements (amino acids) in columns, and gaps are inserted so that elements

with identical or similar characters are aligned in the successive columns.

Thanks to the adaptability of VOGUE, it can be extended to accommodate

inexact matches. We will extend VOGUE to allow for domain knowledge specific

information to be taken into consideration during the pattern extraction and the

modeling process. The extension of VOGUE that we propose in this section to

allow for substitutions among similar elements is called Knowledge VOGUE

(K-VOGUE) described in Figure 4.5.

The main extensions made to VOGUE to allow for substitutions are as follows:

1. Get the clusters of symbols used in the data set from the domain expert.
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Otherwise, cluster the alphabet symbols into clusters Ci based on similarity

depending on the problem domain at hand using the domain knowledge. The

clustering method we propose is described in some more detail in Section 4.3.

2. Replace each element in the data set that belongs to a cluster Ci, by a symbol

ci that represents the cluster Ci. Therefore, the symbol alphabet now becomes

the set
∑′ = {ci, i{1, · · · , L}}, where L is the number of clusters Ci. Therefore

the alphabet symbol is no longer the original symbol set
∑

but the new symbol

alphabet
∑′.

3. Mine the data set for frequent subsequences using VGS according to a user

defined min sup, maxgap and length k.

4. Modeling the mined patterns could be done in two ways:

(a) Build the variable-order gap state machine directly from the mined pat-

terns by VGS with the symbol states Qf and Qs still emitting only one

symbol with probability 1. In this case, the symbols are the representa-

tives ci of the clusters Ci, i ∈ {1, · · · , L} and not the original alphabet

symbol
∑

. For example, let’s consider the cluster that has been identi-

fied as C1 = {I, V, T} and the representative symbol is c1 = I. In this

case, the symbol states Qf and Qs, in the variable-Order state machine,

produce only one symbol. That symbol is the representative symbol of

one of the clusters Ci. In our example, one of the sates in Qf emits I the

representative of the cluster C1. Therefore, for the Interpretation step

86



we need to replace the elements in the testing data set with the cluster

representatives ci, i ∈ {1, · · · , L} then use VG-Viterbi with the modified

testing data set.

(b) Build a variable-order gap state machine that allows several emissions

from the symbol states Qf and Qs. In order to build the variable-order

state machine, we use the frequent sequences mined by VGS from the

modified data set,but the only difference is that the state symbols Qf and

Qs can emit any symbol, vm, from the corresponding cluster Ci, rather

than emitting only one symbol from the modified symbol alphabet
∑′.

In our running example, a state in Qf can emit any symbol vm from

C1 = {I, V, T}. The emission probability in this case, is computed as

follows:

b(qi, vm) =
freqi(vm)

∑

vm∈Ci
freqi(vm)

(4.1)

Note that only the symbols belonging to the cluster Ci will be emitted.

The symbols from the alphabet
∑

that do not belong to the cluster

Ci will be emitted with probability 0. For example, let’s assume that

the frequency of I, V , and T , were 6, 4, and 1 respectively. Then the

emission probability from state q1 for I is b(q1,I) = 6
6+4+1

= 6
11

= 0.54,

for V is b(q1, V ) = 0.36, and for T is b(q1, T ) = 0.09. On the other

hand, for any symbol vm ∈
∑

\C1 its corresponding emission probability

is b(q1, vm) = 0. In this case, the VG-Viterbi will be used directly on the

original testing data set with no replacement.
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Figure 4.5: K-VOGUE from symbol clustering to data interpretation.
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4.3 Symbol clustering

This section describes the clustering method that we use for clustering the

symbols that will be used in K-VOGUE. Sometimes the clusters of the symbols are

available from the expert in the domain at hand and sometimes they are not. In the

latter case where the information from the domain expert is not available, we can

use a clustering method to get the cluster from some domain information. K-means

is one of the most popular clustering algorithms in data mining. A major drawback

to K-means is that it cannot separate clusters that are non-linearly separable in

input space. In many real world problems where we need to cluster the symbols,

the clusters could be non-linearly separable like in the case of amino acids as shown

earlier in Figure 4.4. Therefore, K-means, as it is, will not be a good clustering

algorithm. Two recent approaches have emerged for tracking the problem. One is

kernel K-means, where, before clustering, points are mapped to a higher-dimensional

feature space using a nonlinear function, and then kernel k-means partitions the

points by linear separators in the new space. The second approach is spectral

clustering algorithms, which use the eigenvectors of a similarity matrix to partition

points into disjoint clusters, with points in the same cluster having high similarity

and points in different clusters having low similarity. Spectral clustering has many

applications in machine learning, exploratory data analysis, computer vision and

speech processing [95, 100]. Most techniques explicitly or implicitly assume a metric

or a similarity structure over the space of configurations, which is then used by

clustering algorithms. The success of such algorithms depends heavily on the choice
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of the metric, but this choice is generally not treated as part of the learning problem.

Thus, time-consuming manual feature selection is often a necessary precursor to the

use of spectral methods. Several recent papers have considered ways to alleviate

this burden by incorporating prior knowledge into the metric, either in the setting

of K-means clustering [88, 93] or spectral clustering [95, 100]. Several algorithms

have been proposed in the literature [51, 67, 82], each using the eigenvectors in

slightly different ways. A popular objective function used in spectral clustering is to

minimize the normalized cut [82]. The k-way normalized cut problem is considered

in [96] to partition the data set into k clusters. We will describe in some more

detail the k-way normalized cut spectral clustering since it is the one that we will

be using as clustering technique. If we represent the data set to be clustered as a

graph G = (V , E), where V is the set of vertices representing data points, E is the set

of edges connecting the vertices indicating pair-wise similarity between the points.

The definition of a “good” clustering is that points belonging to the same cluster

should be highly similar while the points belonging to different clusters should be

highly dissimilar. Then represent the similarity graph as a matrix A called edge

similarity matrix, assumed to be nonnegative and symmetric. If n = |E|, then A is

an n×n matrix and Aij is the edge weight between vertex i and j. The eigenvalues

and eigenvectors of the matrix A provide global information about its structure.

Let’s consider v and u as two subsets of V , a link is defined as:

link(u, v) =
∑

i∈u,j∈v

A(i, j) (4.2)
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Then the normalized link-ratio of u and v is:

normallinkratio(u, v) =
links(u, v)

links(u,V)
(4.3)

The k-way normalized cut problem is to minimize the links in a cluster relative

to the total “weight” of the cluster. For k-way partitioning of the vertices, solving

the following problem is of interest:

min
1

k

k
∑

j=1

normalinkratio(Vj,V\Vj). (4.4)

This problem was relaxed in [96] by the following spectral relaxation: Let D

be the diagonal matrix where Dii =
∑

j Aij. Therefore, the normalized cut criterion

is equivalent to:

max
1

k
trace(ZT AZ) (4.5)

where Z = X(XT DX)−1/2, and X is an n × k indicator matrix for the parti-

tions and ZT DZ = Ik.

If we define Z̃ = D1/2Z and relaxing the constraint that X is an indicator

matrix, then the problem becomes a maximization of the trace of Z̃D−1/2AD−1/2Z̃,

where the constraints on Z̃ are relaxed such that Z̃T Z̃ = Ik. This can be solved in

turn by setting the matrix Z̃ to be the top k eigenvectors of the matrix D−1/2AD−1/2.

Therefore the clustering algorithm is described as follows:

1. Pre-processing: Construct the scaled adjacency matrix A′ = D−1/2AD−1/2
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2. Decomposition:

• Find the eigenvalues and eigenvectors of A′.

• Build embedded space from the eigenvectors corresponding to the k

largest eigenvalues.

3. Grouping: Apply k-means to reduced n × k space to produce k clusters.

4.4 Summary

In this chapter we described two variations of VOGUE, namely, Canonical

VOGUE (C-VOGUE) and Knowledge VOGUE (K-VOGUE). C-VOGUE intends

to decrease even more the state space complexity of VOGUE by pruning frequent

sequences mined by VGS, that are artifacts of other “primary” frequent sequences.

K-VOGUE allows for sequences to form the same frequent pattern even if they do

not have an exact match of elements in all the positions. However, the different

elements have to share “similar” characteristics. This type of patterns are common

in some domains such as in protein classification where certain different elements

of the proteins, known as amino acids, share similar functionality. This is useful in

data sets where the information in the sequences themselves is not sufficient for an

accurate classification but the domain knowledge is also necessary. Furthermore, we

propose to use spectral clustering [95, 100], if the clustering of the symbols in the

training data set is not available.

In the next chapter, we describe the “Interpretation” step of VOGUE.
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Chapter 5
Decoding and

Interpretation

After extracting the patterns and modeling the data, the model is ready to be used

to decode or interpret new observation sequences to answer some questions. For

instance in the domain of biological sequence analysis, there is a need to know

whether or not a protein shares similar properties with a number of other proteins.

This is equivalent to asking if that protein contains the same patterns as the proteins

belonging to the same family that is summarized in the model. Another question,

in the domain of image segmentation, could be finding the “best” segmentation of

scanned images of printed bilingual dictionaries [52] against a built model.

These questions are equivalent to finding the best state sequence in the model.

This problem is referred to in HMMs [75] as the decoding problem. This problem

is difficult to solve since it has several possible ways of solving it. In fact, finding

the best state sequence is equivalent to finding the optimal state sequence that

will decode or interpret the new observation sequence. Therefore, there are several

optimality criteria. One possible solution would be to choose individually the most

likely states qt. Let the probability of being in state si at time t, given the observation
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sequence O, and the model λ, be defined as follows:

γt(i) = P (qt = si|λ,O) (5.1)

The partial observation sequence o1o2 · · · ot accounts for αt(i) from the forward-

backward algorithm, see Section 3.2.2 in Chapter 3. On the otherhand, the remain-

der of the observation sequence, ot+1ot+2 · · · oT , accounts for βt(i) given state si at

time t. Therefore, Equation 5.1 can be in terms of the forward-backward variables

as follows:

γt(i) =
αt(i)βt(i)

P (O | λ)
=

αt(i)βt(i)
N
∑

i=1

αt(i)βt(i)

(5.2)

Note that:
N

∑

i=1

γt(i) = 1 (5.3)

Now the most likely state qt at time t can be solved using γt(i) as follows:

qt = arg max
1≤i≤N

[γt(i)], 1 ≤ t ≤ T . (5.4)

Although choosing the most likely state for each time t appears to maximize the

states that will explain the observation sequence O, this could result in a problem

since it looks at the most likely state at each time t and ignores the probability of

occurrence of sequences of the states. For instance, if a model has some transitions

with zero probability between some states, then the optimal sate sequence could

be an invalid, since the transition is not possible. To solve this problem, the opti-
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mization should be on the state sequence or path. This is equivalent to maximizing

P (Q,O | λ). The most widely used method to solve for this optimization problem

is the Viterbi algorithm [39, 87], a technique based on dynamic programming.

For VOGUE, we can use the same concept to answer the question of inter-

pretation. However, because of VOGUE’s unique structure and needs, we modified

the Viterbi algorithm to handle the notion of duration in the states. This is very

important since VOGUE’s gap states have the notion of duration. This changes the

search for the optimal path to traverse the model’s states as opposed to a regular

HMM. We call this new proposed algorithm as, Variable-Gap Viterbi (VG-Viterbi).

The remainder of this chapter is organized as follows: first we give a description

of the Viterbi algorithm since it is the basis for our VG-Viterbi. Then, we describe

our proposed method, VG-Viterbi.

5.1 Viterbi Algorithm

Finding the best sequence of states q∗ for the observation sequence O =

{o1o2 · · · oT} given the model λ, in the Viterbi algorithm [39, 87], is equivalent

to solving:

q∗ = arg max
q

P (q|λ,O) (5.5)

where q∗ = {q∗1, q
∗
2, · · · , q∗T}. Now we need to define the highest probability along

a single path, at time t, which accounts for the first observations in O and ends in
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state si by the quantity:

δt(i) = max
q1q2···qt−1

P (q1q2 · · · qt = i, qt+1 6= i, o1o2 · · · ot|λ) (5.6)

By induction:

δt+1(i) = [max
i

δt(i)aij] · bj(ot+1) (5.7)

To retrieve the best state sequence q∗, the arguments which maximize Equation 5.7

need to be accounted for each t and j. This can be done by using:

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij] (5.8)

The procedure for finding the optimal path (sequence of states) that describes the

observation sequence O, [87] is as follows:

1. Initialization:

δ1(i) = πibi(o1), 1 ≤ i ≤ N (5.9)

ψt(i) = 0. (5.10)

2. Recursion:

δt(i) = max
1≤i≤N

[δt−1(i)aij]bj(ot), 2 ≤ t ≤ T , 1 ≤ j ≤ N (5.11)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij], 2 ≤ t ≤ T , 1 ≤ j ≤ N (5.12)
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3. Termination:

p∗ = max
1≤i≤N

[δT (i)] (5.13)

q∗ = arg max
1≤i≤N

[δT (i)]. (5.14)

4. Path (state sequence) backtracking:

q∗t = ψt+1(q
∗t+1), t = T − 1, T − 2, · · · , 1. (5.15)

5.2 VG-Viterbi: Variable Gap Viterbi

Once VOGUE is built to model a data set, and given a new sequence of

observations O = o1o2 · · · oT , there is a need to know whether this sequence belongs

to the same class/family of the training data sequences. In other words, there is

a need to interpret the new sequence based on the built model λ. This problem is

equivalent to finding the best sequence of states from the model λ and gap state

duration length that will describe the new sequence in an optimal and meaningful

way. That is finding a sequence of states q∗ = {q∗1, q
∗
2, · · · , q∗T} from the model λ

such that:

q∗ = arg max
q

P (q|λ,O) (5.16)

This is equivalent to finding the most probable path to be traversed in λ that

would produce O. The algorithm that is mostly used to solve this problem is the

Viterbi algorithm [39, 87]. Due to the unique structure of VOGUE, where gap

states have a notion of duration, we adjusted the Viterbi algorithm accordingly. We
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will call this method Variable-Gap Viterbi (VG-Viterbi). We start from the basic

formula in Equation5.16 that is used in Viterbi Algorithm and adjust as follows:

Definition Let δt(j) be the highest probability path that produces the subse-

quence Ot = o1o2 · · · ot and terminates in state j at time t:

δt(j) = max
q1···qt−1

P(o1, · · · , ot, q1, · · · , qt−1, qt = j) (5.17)

Equation ( 5.17) is equivalent to:

δt(j) = max
r,s1,··· ,sr−1

g1,··· ,gr

P(o1, · · · , ot, q1 = · · · = qg1 = s1,

qg1+1 = · · · = qg1+g2 = s2, · · · ,

q
1+

r−1
P

h=1
gh

= · · · = q r
P

h=1

gh

= sr = j | λ)

(5.18)

where gh ∈ {1, · · · ,maxgap} is the duration of staying in a state. The maximum of

the probability in Equation(5.18) is taken such that
r

∑

h=1

gh = min(t,maxgap), sh ∈

{1, · · · , N}, h = 1, · · · , r, sl 6= sl+1, l = 1, · · · , r − 1 and 1 ≤ r ≤ min(t,maxgap).

If we omit the qs from Equation(5.18):

δt(j) = max
gr,i6=j,s1,··· ,sr−2

g1,··· ,gr−1

P(o1, · · · , ot, s1, · · · , sr−1 = i,

sr = j, g1, · · · , gr | λ)

(5.19)
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Applying Bayes rule we obtain:

δt(j) = max
gr,i6=j,s1,··· ,sr−2

g1,··· ,gr−1

P(o1, · · · , ot, s1, · · · , sr−2, sr = j, g1, · · · , gr |

sr−1 = i, λ) · P(sr−1 = i | λ)

= max
gr,i6=j,s1,··· ,sr−2

g1,··· ,gr−1

P(o1, · · · , ot−gr
, s1, · · · , sr−2, g1, · · · , gr |

sr−1 = i, ot−gr+1, · · · , ot, sr = j, gr, λ)

·P(ot−gr+1, · · · , ot, sr = j, gr | sr−1 = i, λ)

·P(sr−1 = i | λ)

(5.20)

Applying the “Markovian” assumption, the current state depends only on the

previous state, therefore we obtain :

δt(j) = max
gr,i6=j,s1,··· ,sr−2

g1,··· ,gr−1

P(o1, · · · , ot−gr
, s1, · · · , sr−2,

g1, · · · , gr−1 | sr−1 = i, λ)

·P(ot−gr+1, · · · , ot, sr = j, gr | sr−1 = i, λ)

·P(sr−1 = i | λ)

(5.21)

By combining the first and last terms, and using Bayes’ rule on the second term in
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Equation(5.21), we obtain:

δt(j) = max
gr,i6=j,s1,··· ,sr−2

g1,··· ,gr−1

P(o1, · · · , ot−gr
, s1, · · · , sr−2,

sr−1 = i, g1, · · · , gr−1 | λ)

·P(ot−gr+1, · · · , ot, gr | sr = j, sr−1 = i, λ)

·P(sr = j | sr−1 = i, λ))

(5.22)

Let’s assume that the duration distribution of a state is independent of the ob-

servations of that state. Since
r

∑

h=1

gh = min(t,maxgap) then gr < min(t,maxgap).

Moreover, since the observations are independent from each other given their states,

we obtain:

δt(j) = max
gr<min(t,maxgap)

i6=j

δt−gr
(i) · P(sr = j | sr−1 = i, λ)

· P(gr | sr = j, λ) · [
t

∏

s=t−gr+1

P(os | sr = j, λ)]

= max
gr,i6=j

δt−gr
(i) · βij · ρjgr

· [
t

∏

s=t−gr+1

bjs]

(5.23)

For simplicity we denote gr by g, then we get the following recursive relationship:

δt(j) = max
g<min(t,maxgap)

i6=j

δt−g(i) · βij · ρjg · [
t

∏

s=t−g+1

bjs] (5.24)

where:

βij =















aij, if g < min(t,maxgap)

aNj, if g = min(t,maxgap) or t = 1

(5.25)
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The initialization for VG-Viterbi is:

δ0(j) =















1, if j = N

0, otherwise

(5.26)

ψ0(j) =















j, if j = N

0, otherwise

(5.27)

Therefore VG-Viterbi algorithm is defined as:

1. Initialization:

δ0(j) =















1, if j = N

0, otherwise

(5.28)

ψ0(j) =















j, if j = N

0, otherwise

(5.29)

2. Recursion:

δt(j) = max
g<min(t,maxgap)

i6=j

δt−g(i) · βij · ρjg · [
t

∏

s=t−g+1

bjs] (5.30)

where:

βij =















aij, if g < min(t,maxgap)

aNj, if g = min(t,maxgap) or t = 1

(5.31)

101



5.3 VG-Viterbi: optimization

Since VG-Viterbi is based on the Viterbi algorithm [87], it inherits its ad-

vantages and drawbacks. One of the drawbacks of the Viterbi algorithms is that it

exhaustively searches the state space of the HMM to find the best (optimal) path

of state sequences to describe the observation sequence O. If N is the number of

states of the model λ, and T is the length of O, then the Viterbi algorithm’s time

complexity is O(N2 × T ) [39, 87]. This is obviously expensive when the number of

states N is large and the observation sequence is very long. In fact in some areas like

in biological sequence analysis [27], where the length of a sequence varies between

500 and 1000 elements, and when the HMM is about 900 states the estimated time

complexity of the Viterbi algorithm is on the order of 8 × 108. The time complex-

ity of the VG-Viterbi algorithm is comparable to that of the Viterbi algorithm. In

fact, let N be the number of states in VOGUE, and the length of the observation

sequence O be T . In the case of an exhaustive search of the model λ, for every

element Ot in O (0 ≤ t ≤ T ), we need to check for the highest probability of Ot to

be emitted by a state qi where 1 ≤ i ≤ N . This is done by taking into consideration

the state qj that has the highest probability of emitting Ot−1. Moreover, some of

the states are “gap” states, and they have a notion of duration up to maxgap times.

Hence, we need to explore the number of O’s elements that will be emitted from the

same “gap” state, i.e., “staying” in the same state for up to maxgap. Therefore, the

estimated time is O(N ×N ×maxgap×T ). In order to reduce the time complexity

we need to reduce either N , maxgap or T . Since we cannot reduce T , which is the
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length of the observation sequence, we have to explore reducing either maxgap or

N .

VOGUE is not a fully connected graph, since all the states are not connected

to all the states. In fact, the only possible transitions, whose probability is nonzero

are the following transitions:

• Transitions from the Universal Gap state to the first state symbols qj ∈ Qf

and to the intermediate gap states qj ∈ Qi. Therefore the number of allowed

transitions (nonzero transitions) from the Universal Gap state is | Qf | +

| Qi |.

• Transitions from the first state symbols qi ∈ Qf to a second state symbol

qj ∈ Qs (modeling a gap of g = 0) or to an intermediate gap state qj ∈ Qi.

Therefore the number of allowed transitions (nonzero transitions) from the

first state symbols is | Qs | + | Qi |.

• Transitions from the intermediate gap state qi ∈ Qi to only a second state sym-

bol qj ∈ Qs. Therefore the number of allowed transitions (nonzero transitions)

from the intermediate gap state is | Qs |.

• Transitions from the second symbol state qi ∈ Qs to a first state symbol qj ∈ Qf

(modeling a gap of g = 0) or to the Universal Gap state qj ∈ Qu. Therefore

the number of allowed transitions (nonzero transitions) from the intermediate

gap state is | Qf | + | Qu |.

Therefore the transition matrix A is a sparse matrix as shown in Equation
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5.32. For every observation Ot in O we don’t need to do an exhaustive search of

all the states in VOGUE to find the state that will emit Ot such that δt−g(i) · βij ·

ρjg · [
t

∏

s=t−g+1

bjs] is maximal, as described in Equation 5.30. In fact, not all the

transitions from state qt to the states qj ∈ Q are nonzero.

A =









































































Qf Qi Qs Qu

0 . . . 0 a1,j+1 . . . a1,k a1,k+1 . . . a1,N−1 0

Qf
...

. . .
...

...
. . .

...
...

. . .
...

...

0 . . . 0 aj,j+1 . . . aj,k aj,k+1 . . . aj,N−1 0

0 . . . 0 0 . . . 0 aj+1,k+1 . . . aj+1,N−1 0

Qi
...

. . .
...

...
. . .

...
...

. . .
...

...

0 . . . 0 0 . . . 0 ak,k+1 . . . ak,N−1 0

ak+1,1 . . . ak+1,j 0 . . . 0 0 . . . 0 ak+1,N

Qs
...

. . .
...

...
. . .

...
...

. . .
...

...

aN−1,1 . . . aN−1,j 0 . . . 0 0 . . . 0 aN−1,N

Qu aN,1 . . . aN,j 0 . . . 0 0 . . . 0 0









































































(5.32)

where, j = Qf and k = Qf + Qi.

Considering some of the transitions in VOGUE are non-existent (aij = 0), we
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propose the following Recursion step of VG-Viterbi:

δt(j) =







































































max
g<min(t,maxgap)

Qf <i≤N−1

ωt(g, i), if 1 ≤ j ≤ Qf

max
g<min(t,maxgap)

Qf +Qi≤i≤N−1

ωt(g, i), if Qf < j ≤ Qf + Qi

max
g<min(t,maxgap)
i∈{1,··· ,Qf }∪{N}

ωt(g, i), if Qf + Qi < j ≤ N − 1

max
g<min(t,maxgap)

1≤i≤Qf

ωt(g, i), if j = N

(5.33)

where:

ωt(g, i) = δt−g(i) · βij · ρjg · [
t

∏

s=t−g+1

bjs] (5.34)

and

βij =















aij, if g < min(t,maxgap)

aNj, if g = min(t,maxgap) or t = 1

(5.35)

In this case, we don’t iterate through all the values of i ∈ {1, · · · , N} since

some of the values of aij and hence βij are zero depending on the state qj (i.e.

the value of j in {1, · · · , N}). For example, if 1 ≤ j ≤ Qf , βij 6= 0, only when

Qf < i ≤ N − 1 as shown in the transition matrix A in Equation(5.32).

Therefore, the time complexity of the optimized VG-Viterbi is:

τ = O({[Qf × (Qi + Qs)] + [Qf × Qs] + [Qs × (Qf + 1)]} × T × maxgap) (5.36)
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which becomes:

τ = O({[Qi × (Qf + Qs)] + 2Qs × [Qf + 1]} × T × maxgap)

= O({Qi × (Qf + Qs)} × T × maxgap) + 2O({Qs × (Qf + 1)} × T × maxgap)

(5.37)

Qf and Qs never exceed M the number of observations in VOGUE since they

are the number of “distinct” first and second symbols in the mined sequences by

VGS, respectively. In fact there could be at most M different symbols identified

by VGS. Since M is always a fixed number as opposed to the number of sequences

retained by VGS, reflected by Qi, when N is large Qi large. Therefore, O(Qi×(Qf +

Qs)×T ×maxgap) ≤ O(Qi×2M ×T ×maxgap), and O(Qi×2M ×T ×maxgap) ≃

2MO(Qi × T × maxgap) ≃ O(Qi × T × maxgap). Likewise, O(Qs × (Qf + 1) ×

T ×maxgap) ≤ O(M(M + 1) × T ×maxgap) and O(M(M + 1) × T ×maxgap) ≃

O(T × maxgap).

Therefore, τ ¹ O((Qi + 1) × T × maxgap) ≪ O(N2 × T × maxgap), since

Qi < N .

5.4 Summary

In this chapter, we described the “interpretation” step of VOGUE. In fact,

after extracting and modeling the data, the model is ready to be used to interpret

new observation sequences and identify if the observation sequence belongs to the

“same” class or family as the training data set. This question is equivalent to find-

ing the “best”, or optimal, state sequence in the model that best “interprets” the
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new observed sequence. The most widely used algorithm to solve this optimization

problem is the Viterbi algorithm [39, 87], a technique based on dynamic program-

ming. Because of VOGUE’s unique structure, we modified the Viterbi algorithm.

In fact, the Viterbi algorithm does not account for the notion of duration in the

states that is present in the intermediate gap states in VOGUE. We call this new

proposed algorithm as Variable-Gap Viterbi.

In the next chapter, we show some experimental results on real data sets from

the protein families of VOGUE as opposed to some state-of-the art methods in

protein classification.
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Chapter 6
Experimental Results and

Analysis

Several real world applications, such as in bioinformatics, web accesses, finance, and

text mining, encompass sequential and temporal data with long range dependencies.

The fact that VOGUE has been designed to capture and model such long range

dependency patterns, makes it a very good tool to model some of those applications.

In [2], we developed a toolkit to facilitate the sharing and long term use of different

types of geological data sets across disciplines. Geoscientists are confronted with an

enormous quantity of diverse data types. These data sets include published data,

geological and topological maps, satellite imagery, structural, seismic, geophysical,

petrologic and geochronologic data. The time when the data are added or accessed

by users is recorded. While each piece of data originates at a specific user, each user

is allowed to add new annotations to the data as they wish. Finding where the data

is and what type of data a user should access next is a challenging problem. We use

VOGUE as the core of this toolkit to model user access patterns of the data in the

database. Moreover, it allows a new user to visualize the most common patterns of

use or the latest common patterns of use based on the data set used to construct the
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VOGUE state machine. When a user accesses and adds new data to the database,

he/she starts a new project. A specific project may have multiple patterns of use

at the same granularity corresponding to different research activities or problems

being investigated. We built different VOGUE state machines to accommodate the

multiple views corresponding to different interpretations of the data.

In this chapter, though, we describe several experiments that we conducted to

compare the performance of VOGUE, C-VOGUE and K-VOGUE to those of two

popular techniques in the domain of biological sequence analysis: HMMER and all-

kth-order HMM. We used two data sets, a real data set from the PROSITE database,

a sequential data base of families of proteins, and the SCOP data set, a manually

derived comprehensive hierarchical classification of known proteins structures that

has secondary structure knowledge embedded in the data set.

6.1 Protein modeling and clustering using VOGUE

The completion of the whole genome sequencing of various organisms facil-

itates the detection of many kinds of interesting patterns in DNA and protein

sequences. It is known that the genomes of most plants and animals contain large

quantities of repetitive DNA fragments or, in the case of proteins, Amino Acid frag-

ments. For instance, it is estimated that one third of the human genome is composed

of families of repeating sequences [32, 33, 102]. The amino acids are thus far from

being pieces of random sequences, and a substantial amount of currently unknown

information can be extracted from the sequences in the form of patterns. The abun-

dance and variety of periodic patterns in genome sequences drove a lot of studies on
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genome sequence analysis and mining. In fact, periodic patterns of different lengths

and types are found at both geneomic and proteomic levels. The short three base

pair (bp) periodicity in protein coding DNA [38], and the medium-length repetitive

motifs found in some proteins [21], to the mosaic of very long DNA segments in the

genome of warm-blooded vertebrates [16], are some of these patterns. It is very

important to identify some of these patterns due to their biological significance. For

instance, some repeats have been shown to affect bacterial virulence to human be-

ing [86]. On the other hand, the excessive expansions of some Variable Number of

Tandem Repeats (V NTRs) are the suspected cause of some nervous system diseases

[76]. Therefore, there is a growing need for efficient algorithms to extract periodic

patterns from long sequences.

In recent years, a large amount of work in biological sequence analysis has

focused on methods for finding homologous proteins [27]. Given a database of

protein sequences, the goal is to build a statistical model so that we can determine

whether a query protein belongs to a given family or not. HMMER [30], a profile

HMM, is one of the state-of-the-art approaches to this problem that depends heavily

on a good multiple sequence alignment. It models gaps, provided that they exist in

the alignment of all the training sequences. However, if a family of sequences has

several overlapping motifs, which may occur in different sequences, these sequences

will not be aligned correctly, and HMMER will not perform well. Here, we analyze

the performance of VOGUE compared to HMMER and higher-order HMMs with

various orders k ∈ [1, 10].

Computationally, protein sequences are treated as long strings of characters
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with a finite alphabet of 20 amino acids. Namely, A, C, D, E, F , G, H, I, K, L,

M , N , P , Q, R, S, T , V , W , and Y . There are many patterns depending on the

issues considered, for example the number of periods of the patterns, the maximality

of the patterns, whether errors (insertions, deletions and substitutions) are allowed

and palindromic reverses. In [55], the authors provide a survey on studies to extract

patterns taking into consideration one of the issues mentioned earlier.

In this work, we are particularly interested in extracting patterns that identify

a family of proteins. The first method focuses on extracting those patterns from

the sequences formed of the 20 amino acids and not allowing any substitutions be-

tween them. The second method, extracts patterns while allowing for substitutions

between amino acids that have similar structure and functionality (Hydrophobicity,

Charge, Polarity, etc).

We apply VOGUE, C-VOGUE, and K-VOGUE to a real world problem,

namely, finding homologous proteins. Given a database of protein sequences, the

goal is to build a statistical model so that we can determine whether a query protein

belongs to a given family or not. Statistical models for proteins, such as profiles,

position-specific scoring matrices, and hidden Markov models [27] have been devel-

oped to find homologs. However, in most biological sequences interesting patterns

are periodic with gap requirements. Therefore a method like VOGUE that specifi-

cally takes these kind of patterns into consideration can be very effective. We show

experimentally that VOGUE’s modeling power is superior to higher-order HMMs

while reducing the latter’s state-space complexity, and improving their prediction.

VOGUE also outperforms HMMER [30], a HMM model especially designed for pro-
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tein sequences that takes into consideration insertions, deletions and substitutions

between “omosimilar” amino acids. We will give a an overview of HMMER in

Section 6.1.1. Then, we will describe the scoring and evaluation measure we use

for evaluating the performance of the methods used. Afterwards, we describe the

data sets that we use for our experimentation. Finally, we provide the performance

results of VOGUE, C-VOGUE and K-VOGUE vs HMMER and higher-order HMM.

6.1.1 HMMER

HMMER [30] is a HMM model especially designed for protein sequences that

takes into consideration insertions, deletions and substitutions between “omosimilar”

amino acids. It is called a “Profile” HMM, a well suited HMM for multiple align-

ments of sequences. We will to first describe what a multiple alignment is, and then

describe a “Profile” HMM.

Multiple Alignment : the problem of multiple alignment is described as follows:

Given a set of sequences, produce a multiple alignment which corresponds as

well as possible, to the biological relationships between the corresponding bio-

molecules [27]. Two amino acids should be aligned (on top of each other) in

the following conditions:

• if they are homologous (evolved from the same residue in a common

ancestor).

• if they are structurally equivalent.

To identify whether an alignment is good, a fitness function is used where the
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biological relationships are taken into considerations. For example, assuming

the following three sequences:

I N D U S T R Y

I N T E R E S T I N G

I M P O R T A N T

One alignment could be :

I N − D U − S T R Y −

I N T E R E S T I N G

I M − P O R − T A N T

But the following is not a good alignment based on the biological characteris-

tics of the amino acids:

I N − D U − − S T R Y −

I N T E R E − S T I N G

I M − P O R − − T A N T

For a more detailed description of the multiple alignment process and the

different available methods refer to [69].

Profile HMM : One of the general features of protein family multiple alignment is

that “gaps” tend to line up with each other, leaving solid blocks of either exact

matches or allowed substitutions between the amino acids. These positions are

considered to be the “ungapped” states of the HMM. The emission probability

is based on a position specific score matrix (PSSM). More details can be found
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Figure 6.1: The transition structure of a profile HMM.

in [27]. Thus, the HMM is built with a repetitive structure of states but

different probabilities in each one in a left-to-right manner. The PSSM is a

HMM with a series of identical states, called “match states” (Mj), separated

by transitions of probability 1. Although PSSM captures some conservation

information, it is does not represent all the information in a multiple alignment

of a protein family. Therefore, “Insertion” states (Ij) are introduced in the

HMM, where each of the Ij states is used to match insertion after the element

emitted by the matching state Mj. “Deletion” states (Dj) are also added to

act as silent states that do not emit any symbol. Therefore, it is possible to

use them to “jump” from any “match” state to another one without emitting

any symbol in between. Figure 6.1 describes a Profile HMM [27].

HMMER is a software that is based on building profile HMMs to model pro-

tein families. Figure 6.2 provides an overview of HMMER. The programs used in

HMMER are as follow:
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Building a model the part of HMMER software to build a model are:

• hmmbuild: Form multiple sequence alignment.

Using a model • hmmalign: Align sequences to an existing model (outputs a

multiple alignment).

• hmmconvert: Convert a model into different formats.

• hmmcalibrate: Takes an HMM and empirically determines parameters

that are used to make searches more sensitive, by calculating more accu-

rate expectation value scores (E-values).

• hmmemit: Emit sequences probabilistically from profile HMM.

• hmmsearch: Search a sequence database for matches to an HMM.

HMMs Databases the part of HMMER software to handle either a sequence or

HMM database are:

• hmmfetch: Get a single model from an HMM database.

• hmmindex: Index an HMM database.

• hmmpfam: Search an HMM database for matches to a query sequence.

Other programs Other programs that can be used are:

• alistat: Show some simple statistics about a sequence alignment file.

• seqstat: Show some simple statistics about a sequence file.

• getseq: Retrieve a subsequence from a sequence file.

• sreformat: Reformat a sequence or alignment file into a different format.
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Figure 6.2: HMMER Flow Chart.

6.1.2 Evaluation and Scoring

We built three models for each family, namely VOGUE, HMMER, and k-th

order HMMs, using the training set of that family. We score the test sequences

against the model for each of the nine families, and after sorting the scores in

decreasing order, we use a threshold on the scores to assign a sequence to a given

family.

For evaluation of the classifiers, we use Receiver Operating Characteristic

(ROC) curves [34], that represent the relationship between the false positive rate

and true positive rate across the full spectrum of threshold values. Further, we plot
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the Area Under the Curve (AUC), to evaluate the goodness of the classifiers. The

AUC is calculated using the following equation [34]:

AUC =
1

pn

p
∑

i=1

n
∑

j=1

ϕ(Ri, Rj). (6.1)

Here Ntest = n + p is the number of testing sequences, p is the number of sequences

from a given class and n is the number of sequences that don’t belong to the class.

These sequences are ranked based on their score from 1 to Ntest, assigning 1 to the

testing sequence with the highest score and Ntest to the one with the lowest score.

Ri, i = 1 · · · p represent the rankings of the p sequences and Rj, j = 1 · · ·n represent

the rankings of the n sequences and ϕ(Ri, Rj) is defined as:

ϕ(Ri, Rj) =



















1 if Ri < Rj

0 otherwise

(6.2)

Note that AUC for each class is calculated separately, by treating each class as p,

and the remaining as n.

We score the testing sequences by computing the log-odds score, (i.e., the ratio

of the probability of the sequence using a given model, and the probability of the

sequence using a Null model, given as follows:

Log-Odds(seq) = log2

(

P (seq|Model)

P (seq|Null)

)

. (6.3)

P (seq/Model) is computed using the Viterbi algorithm that computes the
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most probable path through the model) as Viterbi is the default method used for

scoring in HMMER. The Null model is a simple one state HMM that emits the

observations (the amino acids) with equal probability (1/|Σ|). Since we have 20

amino acids the emission probability for each symbol is 1/20. The log-odds ratio

measures whether the sequence is a better match to the given model (if the score

is positive) or to the null hypothesis (if the score is negative). Thus, the higher the

score the better the model.

6.1.3 Datasets

We used in our experiments two different data sets: a set of 9 families down-

loaded from the PROSITE (http://www.expasy.org/prosite) database of protein

family and domains, and SCOP [20] data set, a manually derived comprehensive

hierarchical classification of known protein structures, that are organized according

to their evolutionary and structural relationships.

The PROSITE families that we used are PDOC00662, PDOC00670, PDOC00561,

PDOC00064, PDOC00154, PDOC00224, PDOC00271, PDOC00397, PDOC00443.

We will refer to these families as F1, F2, · · · , F9, respectively. The number

of sequences in each family is, respectively: N1 = 45, N2 = 225, N3 = 85,

N4 = 56, N5 = 119, N6 = 99, N7 = 150, N8 = 21, N9 = 29. The fam-

ilies consists of sequences of lengths ranging from 597 to 1043 characters,

taken from the alphabet of the 20 amino acids: Σ = {A, C, D, E, F, G,

H, I, K, L, M, N, P, Q, R, S, T, V, W, Y }. Each family is characterized

by a well-defined motif. Family F1, for example, shares the consensus motif
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[G] − [IV T ] − [LV AC] − [LV AC] − [IV T ] − [D] − [DE] − [FL] − [DNST ],

which has 9 components. Each component can contain any of the symbols

within the square brackets. For example, for the second component, namely

[IV T ], either I, V or T may be present in the sequences.

We treat each PROSITE family as a separate class. We divided the data set of

each family Fi into two subsets: the training data N i
train consists of 90% of the

data, while the testing data N i
test contains the remaining 10%. For example,

N1
train = 40 and N1

test = 5. There are a total of 103 test sequences across all

families.

The Scop data set is divided into four hierarchical levels: Class, Fold, Superfam-

ily and Family. For SCOP 1.61 (from 2002), the 44327 protein domains were

classified into 701 folds, resulting in an average of 64 domains per fold. The

number of domains per fold varies in SCOP, where some of the folds, such

as TIM barrels, are highly populated, while some of the folds, such as the

HSP40/DnaJ peptide-binding fold that only contain one protein, contain a

few examples. Therefore, the SCOP is an imbalanced data set. This imbal-

anced proportion of examples in each fold contributes to the poor performance

of classical machine learning techniques such as support vector machines and

neural networks [24]. When learning from such data sets, existing machine

learning approaches tend to produce a strong discriminatory classifier or ”high

accuracy” with very low sensitivity or completeness.

We used 10 superfamilies from the SCOP data set (ftp://ftp.rcsb.org/
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pub/pdb/derived data/pdb seqres.txt) namely, family 49417, 46458, 46626,

46689, 46997, 47095, 47113, 48508, 69118, and 81296. We will refer to them

as SF1, SF2, SF3, SF4, SF4, SF5, SF6, SF7, SF8, SF9 and SF10 respectively.

Each family has 10 sequences. We divided each family data set into 90% (9

sequences for each family)for training and 10% for testing (1 for each family

to a total of 10 sequences).

6.2 Performance of VOGUE vs HMMER vs k-th Order

HMMs on PROSITE data

We built VOGUE state machines with different values of minsup correspond-

ing to 50%, 75% and 100% of the number of instances in the training data, and

maxgap (10, 15, 20, 25, 30) but with the constant k = 2 for the length of the mined

sequences in VGS. We then choose the best set of parameters and fix them for the re-

maining experiments. To model the data using HMMER, we first need to align the

training sequences using CLUSTAL-W (http://www.ebi.ac.uk/clustalw). We

then build a profile HMM using the multiple sequence alignment and compute the

scores for each test sequence using HMMER, which directly reports the log-odds

scores with respect to the Null model mentioned above. We also built several

k-th order HMMs for various values of k using an open-source HMM software

(http://www.cfar.umd.edu/∼kanungo/software). We tried different values for

the number of states ranging from the size of the protein alphabet (20) to roughly

the size of VOGUE (500) and HMMER (900). A k-th order HMM is built by
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Table 6.1: Test Sequence Log-Odds Scores for VOGUE, HMMER and
k-th Order HMMs

Seq S1 S2 S3 S4 S5

VOGUE 7081 7877 2880 5763 5949

HMMER 912.4 155 −345 9.8 −21.3

k-th order HMM
k = 1 −4 × 103 −3.4 × 103 −2.2 × 103 −4.7 × 103 −4.7 × 103

M = 20
k-th order HMM

k = 2 −1.3 × 104 −1.3 × 104 −1 × 104 −1.5 × 104 −1.5 × 104

M = 394
k-th order HMM

k = 4 −2.3 × 104 −2.2 × 104 −1.8 × 104 −2.4 × 104 −2.4 × 104

M = 17835
k-th order HMM

k = 8 −2 × 104 −1.9 × 104 −1.6 × 104 −2.2 × 104 −2.2 × 104

M = 20216
k-th order HMM

k = 10 −2.6 × 104 −2.9 × 104 −2.3 × 104 −3.0 × 104 −3.1 × 104

M = 19249

replacing each consecutive subsequence of size k with a unique symbol. These dif-

ferent unique symbols across the training and testing sets were used as observation

symbols. Then we model the resulting sequence with a regular 1st order HMM.

Score Comparison: We first compare VOGUE with k-order HMMs and HMMER.

Table 6.1 shows the comparison on the 5 test sequences for family F1 when scored

against the model for F1. For VOGUE we used minsup = 27 (75%) and maxgap =

20. For k-th order HMMs we tried several values of the order k (shown as k = 1,
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Table 6.2: Run Times

VOGUE HMMER k = 1 k = 2 k = 4 k = 10
4.6s 34.42s 2s 5.29s 6.40s 11.46s

k = 2, k = 4, k = 8 and k = 10) in the table with 20 states for each k-th order

HMM. The number of observations M for the k = 1 case was set to 20 since it

is the number of amino acids. M = 394; 17835; 20216; 19249 were the number of

observations used for k = 2; 4; 8; 10, respectively. These values were obtained from

a count of the different new symbols used for each value of k.

The best score for each sequence is highlighted in bold. Looking at the scores

in Table 6.1, we find that in general k-th order HMMs were not able to model

the training sequences well. All their scores are large negative values. HMMER did

fairly well, which is not surprising, since it is specialized to handle protein sequences.

Moreover, for all the 5 testing sequences VOGUE vastly outperforms HMMER. This

is a remarkable result when we consider that VOGUE is completely automatic and

does not have explicit domain knowledge embedded in the model, except what is

recovered from relationship between symbols in the patterns via mining.

Time Comparison: In Table 6.2, we show the execution time for building the

three models for family F1. The time for VOGUE includes the mining by VGS, and

for HMMER, the alignment by CLUSTAL-W. In general, for VOGUE, the higher

the minimum support, the lower the running time, and the higher the maximum

gap, the higher the running time; the running time of VOGUE varied from 2.6s (for
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Figure 6.3: VOGUE: Number of States for Different Parameters.

minsup = 36,maxgap = 10) to 4.6s (minsup = 18,maxgap = 30). We can see

that VOGUE’s execution time is in general much better than HMMER and is also

better than higher-order HMMs (except for k = 1). Thus not only is VOGUE more

accurate in modeling the input, it also executes faster.

Size Comparison: We also compared the state space complexity of the three

methods. The number of states in HMMER was N = 971, while for higher-order

HMMs it ranged from 500 to 900. VOGUE on the other hand was able to reduce

the state space complexity by only modeling the mined sequences and not the full

data set thus eliminating noise. Figure 6.3 shows the number of states in VOGUE
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for various maxgap and minsup values. We find that varying the parameters for

VOGUE does not alter the state space complexity considerably. The biggest number

of states, N = 425, is for minsup = 18 and maxgap = 9; and the smallest, N = 274,

for minsup = 36 and maxgap = 2. This follows from the fact that the higher the

minsup the less the frequent sequences mined by VGS, and vice versa.

Full Comparison (ROC Curves and AUC): Figures 6.4, 6.5 and 6.6 present

the ROC curves of the 9 families generated from all the testing sequences. Here

we focus on comparing HMMER and VOGUE, since k-th order HMMs gave highly

negative scores for all the testing sequences. The ROC curves represent the trade-

off between coverage (TPR on the yaxis) and error rate (FPR on the xaxis) of

a classifier. A good classifier will be located at the top left corner of the ROC

graph, illustrating that this classifier has high coverage of true positives with few

false positives. A trivial rejector will be at the bottom left corner of the ROC graph

and a trivial acceptor will be at the top right corner of the graph. Each one of

the graphs in Figures 6.4, 6.5, and 6.6 has two ROC curves for VOGUE and

HMMER, respectively, for different threshold values. The total AUC for the two

methods is given in the Figure legend. VOGUE was run with typical parameter

values of minsup = 75% and maxgap = 20; there were some minor variations to

account for characteristics of different families. The ROC curves of all the families

show clearly that VOGUE improved the classification of the data over HMMER

because the AUC of VOGUE is constantly higher than HMMER. In the case of

family F9 the AUC of both VOGUE and HMMER were comparable. In two cases,

for families F1 and F6, the AUC was 1 for VOGUE showing that VOGUE was able
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Figure 6.4: ROC Curve of VOGUE and HMMER for the families F1, F2

and F3.
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Figure 6.5: ROC Curve of VOGUE and HMMER for the families F4, F5

and F6.
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Figure 6.6: ROC Curve of VOGUE and HMMER for the families F7, F8

and F9.
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to capture the patterns of those families perfectly. Moreover, in 6 out 9 families

the AUC for VOGUE was higher than 0.9 as opposed to HMMER whose AUC

was greater than 0.9 in only 3 out of 9 families. This again shows that VOGUE

outperforms HMMER.

6.3 Performance of VOGUE vs C-VOGUE vs HMMER on

PROSITE data

In this section, besides the models of VOGUE and HMMER from the previous

section, we also built a C-VOGUE state machine for the PROSITE data set. We

first run VGS on the training data set with different values of minsup corresponding

to 50%, 75% and 100% of the number of instances in the training data set, and

maxgap (10, 15, 20, 25, 30) but still with the constant k = 2 as the length of the

mined sequences by VGS. Then we prune the “artifacts” from the set of frequent

sequences and we build the new model C-VOGUE. We then choose the best set of

parameters, and fix them for the remaining of the experiments. We then compare

C-VOGUE to VOGUE and to HMMER. The results of C-VOGUE as opposed to

VOGUE and HMMER are shown in Figures 6.7, 6.8 and 6.9.

These figures show clearly that VOGUE’s and C-VOGUE’s ROC curves over-

lap for all 9 families, hence have the same AUC. Therefore, C-VOGUE also out-

performs HMMER. This experiments reinforces the claim that C-VOGUE keeps a

good coverage and an increased accuracy. Concerning the state space complexity,

Table 6.3 shows the number states using VOGUE and C-VOGUE for the 9 families.
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Figure 6.7: ROC Curve of VOGUE, C-VOGUE and HMMER for the
families F1, F2 and F3.
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Figure 6.8: ROC Curve of VOGUE, C-VOGUE and HMMER for the
families F4, F5 and F6.
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Figure 6.9: ROC Curve of VOGUE, C-VOGUE and HMMER for the
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Table 6.3: The number of states N using VOGUE vs C-VOGUE for the
9 PROSITE families

Family VOGUE C-VOGUE

F1 421 305
F2 350 252
F3 421 301
F4 423 309
F5 375 268
F6 408 290
F7 298 222
F8 421 318
F9 420 319

The number of states of the families models using C-VOGUE is clearly smaller

by 27% than that of the families models using VOGUE. Therefore, these experiments

show the benefit of pruning using C-VOGUE in reducing the state space complexity

while preserving the good coverage and accuracy of VOGUE.

6.4 Performance of K-VOGUE vs VOGUE vs HMMER on

SCOP data

In this section we conducted experiments on the SCOP data set on VOGUE

and K-VOGUE vs HMMER. We first collected clusters of the 20 amino acids from

the expert in the field based on several chemical characteristics. Afterwards, we

checked the efficiency of the clustering of the symbols by using the spectral clustering

method described in Chapter 4.
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Table 6.4: The 9 Clusters for the amino acids provided by the domain
expert

Cluster Elements Description

C1 H, R, K Positively charged

C2 A, L, V, I, M Aliphatic. M is the exception,

but it is hydrophobic and

can fit here

C3 F, Y, W Aromatic amino acids

C4 D, E Negatively charged

C5 P Aliphatic with a pseudo ring

C6 S, T With hydroxyl side chains

C7 Q, N Polar uncharged

C8 C Sulphur containing, slightly charged

C9 G Smallest and the most flexible

6.4.1 Clustering Suggested by expert

The clusters of the 20 amino acids suggested by the expert were 9 cluster as

given in Table 6.4.

6.4.2 K-Mean Clustering

In order to check the efficiency of the clustering of the symbols in case the ex-

pert’s clustering is not available, we used the spectral clustering method described in

Chapter 4. As domain knowledge we input the amino acids specifications described

in Table 6.5. This table groups the amino acids in 3 groups based on the following

five criteria:
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1. Hydrophobicity: an amino acid can be either polar, neutral or hydrophobic.

2. Polarity: if the polarity of an amino acid ranges from 4.9 to 6.2 it belongs to

the group 1, if it ranges from 8.0 to 9.2 it belongs to group 2 and if it ranges

from 10.0 to 13.0 it belongs to group 3.

3. Polarizability: If the polarizability of the amino acid ranges from 0 to 0.108

it belongs to the group 1, if it ranges from 0.128 to 0.180 it belongs to group

2 and if it ranges from 0.210 to 0.409 it belongs to group 3.

4. Charge: an amino acid could be either positive, negative or carrying a small

charge or no charge, called other.

5. Normalized Van Derwaals volume: if the volume of the amino acid ranges

from 0 to 2.8 it belongs to the group 1, if it ranges from 2.95 to 4.0 it belongs

to group 2 and if it ranges from 4.43 to 8.08 it belongs to group 3.

We used K-means with different values of the number of clusters K(5, 6, 7, 9).

The best results of the clustering was for K = 9 and is shown in Figure 6.10. The X

axis represents the K eigenvectors that correspond to the K largest eigenvalues. The

last column represents the cluster index in color to which the amino acid belongs

to. The Y axis represents the amino acid index. The amino acids indexes are

represented from 1 to 20 as described in Table 6.6.

Clustering using the spectral clustering using eigenvectors and K-means with

K = 9, we obtained the following 9 clusters as described in Table 6.7.
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Table 6.5: Amino Acids Grouping

Group 1 Group 2 Group 3
HYDROPHOBICITY polar neutral hydrophobic

R K E D Q N G A S T P H Y C V L I M F W

POLARITY 4.9 to 6.2 8.0 to 9.2 10.0 to 13.0

L I F W C M V Y P A T G S H Q R K N E D

POLARIZABILITY 0 to 0.108 0.128 to 0.186 0.219 to 0.409

G A S D T C P N V E Q I L K M H F R Y W

CHARGE positive negative other

H R K D E M F Y W C P

N V Q I L N

NORMALIZED VAN 0 to 2.8 2.95 to 4.0 4.43 to 8.08

DERWAALS VOLUME G A S C T P D N V E Q I L M H K F R Y W

Table 6.6: Amino acids indexes

A C D E F G H I K L M N P Q R S T V W Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 6.11 shows the amino acid indexes sorted to group the amino acids

belonging to the same cluster together. For example the last cluster whose color is

dark red corresponds to the cluster C1 that contains the amino acids (H,K,R).

This clustering is very close to that of the expert. In fact, clusters C1, C5, C7, C8

were exact match with the experts clusters. Clusters C2, C3, C4, and C6 were partially

identified correctly. In fact, L and I were identified to belong to the same cluster

C2. F,W were identified as belonging to the same cluster C3. S, T were identified to

belong to the same cluster C6, while G, Y , A, M , and V were misclassified. There-

fore,in the absence of the expert’s clustering we can use cluster the alphabet
∑

’s
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Figure 6.10: Eigenvectors before sorting with K = 9 and using the Amino
Acids Grouping.

symbols using domain information (knowledge) and Spectral clustering as described

in Chapter 4.

6.4.3 K-VOGUE vs HMMER Performance

Once we have the clusters of amino acids from the expert, we transform the

data set by replacing the amino acids belonging to one cluster with the representative

of that class. For example, for the cluster C1 = {H,K,R}, we replace any instance

of K, R, H in the data set with the representative of the class which is H. We built

136



Table 6.7: The 9 Clusters for the amino acids from K-means clustering

Cluster Elements Indexes of elements

C1 H, K, R (7, 9, 15)

C2 I, L (8, 10)

C3 F, M, W (5, 11, 19)

C4 D, E, V (3, 4, 18)

C5 P (13)

C6 A, G, S, T (1, 6, 16, 17)

C7 N, Q (12, 14)

C8 C (2)

C9 (Y ) (20)

K-VOGUE state machines with different values of minsup corresponding to 50%,

75% and 100% of the number of instances in the training data, and maxgap (10,

15, 20, 25, 30) but with the constant k = 2 for the length of the mined sequences

in VGS. We then choose the best set of parameters and fix them for the remaining

experiments. To model the data using HMMER, we first align the training sequences

using CLUSTAL-W (http://www.ebi.ac.uk/clustalw). We then build a profile

HMM using the multiple sequence alignment and compute the scores for each test

sequence using HMMER, which directly reports the log-odds scores with respect to

the Null model mentioned above.

Score Comparison: We first compare K-VOGUE HMMER. Table 6.8 shows the

comparison on the 10 testing sequences from all the 10 families when scored against

the model for families SF2 and SF5. For K-VOGUE we used minsup = 6(75%) and

maxgap = 20.
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Figure 6.11: Eigenvectors after sorting with K = 9 and using the Amino
Acids Grouping.

The best score for each sequence is highlighted in bold. Note that a negative

score mean does not belong to the family and that a positive score means that it

belongs to the family. Therefore, a very low negative score for sequence S2 on model

of family SF10 means it does not belong. Thus the smaller that score it is the better

it is. Looking at the scores in Table 6.8, we find that in general HMMER did well

since it classified all the sequences as not belonging to family SF2 (all scores were

negative). However, sequence S2 should have a positive score (S2 belonging to SF2)

but it has a negative score of −4.20. Moreover, for all the 10 testing sequences K-
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Table 6.8: Test Sequence Log-Odds Scores for K-VOGUE and HMMER

Seq HMMER K-VOGUE HMMER K-VOGUE
SF2 SF2 SF5 SF5

S1 −87.20 −4760.38 −166.70 −4,286.09
S2 −4.20 537.62 −141.60 −1,896.44
S3 −44.70 −1709.69 −76.70 −4,523.37
S4 −31.60 −1903.78 −74.50 −4,525.66
S5 −32.50 −1.42 95.80 197.39
S6 −46.70 −259.53 37.70 −20.37
S7 −89.50 −2210.78 −140.60 −220.44
S8 −268.60 −704.71 −348.80 −13,520.02
S9 −108.40 −940.51 −179.00 −4,642.94
S10 −66.20 −1764.22 −113.90 −6,367.38

VOGUE vastly outperforms HMMER for family SF2. All the scores by K-VOGUE

were better than those of HMMER in this case, except for sequence S5. The score of

S5 (−1.42) was higher than that of HMMER (−32.50) but still negative classifying

S5 as not belonging to SF2. Concerning family SF5, K-VOGUE again outperformed

HMMER, since it only classified S5 as belonging to SF5 but the remaining of the

testing sequences not belonging. HMMER classified correctly all the sequences but

sequence S6. With a score of 37.70, sequence S6 was classified as belonging to family

SF5.

Full Comparison (ROC Curves and AUC): Figures 6.12 and 6.13 present the

ROC curves of 6 families generated from all the testing sequences. Here we focus on

comparing HMMER and K-VOGUE. A good classifier will be located at the top left

corner of the ROC graph, illustrating that this classifier has high coverage of true
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Figure 6.12: ROC Curve of K-VOGUE and HMMER for the families SF1,
SF2 and SF3.
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Figure 6.13: ROC Curve of K-VOGUE and HMMER for the families SF4,
SF5 and SF6.
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positives with few false positives. A trivial rejector will be at the bottom left corner

of the ROC graph and a trivial acceptor will be at the top right corner of the graph.

Each one of the graphs in Figures 6.12, 6.13 has two ROC curves for K-VOGUE

and HMMER, respectively, for different threshold values. The total AUC for the

two methods is given in the legend. K-VOGUE was run with parameter typical

values of minsup = 75% and maxgap = 20; there were some minor variations to

account for characteristics of different families. The ROC curves of all the families

show clearly that VOGUE improved the classification of the data over HMMER

because the AUC of VOGUE is constantly higher than HMMER.

6.5 Summary

In this Chapter, we conducted several experiments on real data sets from the

PROSITE and SCOP data sets. We compared the performance of VGOUE to that of

HMMER and higher-order HMM on the PROSITE data set. The results proved that

VOGUE has a higher prediction power and accuracy over HMMER and higher-order

HMM while keeping a relatively low state complexity. Moreover, we conducted simi-

lar experiments using C-VOGUE and we found that C-VOGUE’s results are similar

to those of VOGUE while reducing the latter’s state space complexity even fur-

ther. Finally, we compared the performance of K-VOGUE and HMMER on SCOP

data set. The results showed that K-VOGUE outperformed HMMER. Therefore,

VOGUE and its variations are a good modeling tool that increase the accuracy and

prediction while reducing the state space complexity.
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Chapter 7
Conclusions and Future

Work

We introduced a new state machine called VOGUE to discover and interpret tem-

poral dependencies in the analyzed data. We formally defined the two steps of this

technique, where the first step uses a new and efficient sequence mining algorithm,

Variable-Gap Sequence mining (VGS), to mine frequent patterns, and the second

step uses these mined sequences to build VOGUE. An important contribution of

our new technique is that we are able to simultaneously model multiple higher-order

HMMs due to the inclusion of variable length gaps allowed in the mined sequences.

Once the model is built, it can be used to interpret new observation sequences. Ther-

fore, we modified the widely used Viterbi algorithm into VG-Viterbi, to take into

consideration the special topology of VOGUE. We showed experimentally, using real

protein sequence data, that VOGUE’s modeling power is superior to higher-order

HMMs, as well as a domain-specific algorithm HMMER.

We further generalized VOGUE to any length, k ≥ 2, of the sequences mined

by VGS. Furthermore, some patterns mined by VGS are artifacts of other patterns,

for example, if A → B is frequent, then there is a good chance that B → A will be
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frequent as well. We developed a special pruning mechanism, called, C-VOGUE, to

separate primary patterns from artifacts.We showed through experimental results

that, C-VOGUE reduces further the state space complexity of VOGUE while main-

taining a good coverage and accuracy. Moreover, there are applications where there

isn’t always an exact match for the subsequences to be mined, such as in bioinfor-

matics or in user data access. We extended VOGUE to K-VOGUE, to allow for

approximate matches for the mined sequences and states. K-VOGUE takes into

consideration that some elements in the alphabet Σ share similar characteristics

and hence are similar. These elements are clustered either by a domain expert or

by using domain information and spectral clustering as clustering technique. Then,

VGS looks for frequent patterns whose elements belong to the same cluster instead

of an exact match between the elements.

We used pseudo-counts in the transition, emission and duration probabilities,

to account for the symbols that were not present in the training data set but might be

present in the testing data sets. The values of these pseudo-counts were heuristically

chosen but they were fixed for all the symbols. We need to automate this process

and allow for pseudo-count values that reflect the overall distribution of the symbols.

In fact, a symbol might have higher occurrences than others and hence its pseudo-

count should be higher. Moreover, we need to understand what is the impact of the

chosen pseudo-count value on the performance of VOGUE.

We showed that VOGUE and its variations were able to outperform the state-

of-the-art techniques in biological sequence clustering and analysis. VOGUE can

be further used in other applications such as user access behavior [2], web prefetch-
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ing [8], security [84], and many more interesting and challenging real world problems.
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