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ABSTRACT

In this work, I describe two new approaches to providing computer security by way of

intrusion detection. Although the proposed methods find different applications, they both

employ extended uses of finite-state automata. The first method lends itself to the real-

time detection of denial of service computer attacks using time-dependent deterministic

finite automata. Some current network-based intrusion detection systems employ state-

transition based methods as a primary mean to detecting system penetrations and misuse.

However, this work utilizes the time intervals between certain event occurrences (as de-

fined in our automaton) to improve the accuracy of detecting specific denial of service

attacks. The proposed design also lends itself to a distributed detection architecture, sup-

porting non-obtrusive attack signature updates as well as hardware and software platform

portability.

The second method is used for the detection of masquerading, a computer attack in

which an intruder pretends to be a legitimate user. This approach records and processes

sequences of user commands, building probabilistic state finite automata representing

users’ signatures. The signature is used to distinguish between legitimate and invalid user

sessions. The novelty of this approach is the use of transition probabilities in travers-

ing the signature automata. Additionally, a temporal-based method is used to construct

more precise ”variable length” signature traces. In contrast, current computer intrusion

detection systems use state-transitions to detect compromised program states.

vii



CHAPTER 1

Introduction and Historical Review

A growing rate of incidents of computer system break-ins have increased the importance

of information assurance and electronic security. The recent threat of both foreign and

domestic terrorist attacks on vital computer systems has called for accelerated research

and development in securing both commercial and government system vulnerabilities [1].

One of the various solutions that address these concerns is intrusion detection–a software

system that discovers inappropriate or anomalous activity on a computer system.

Traditionally, there have been two main ways to detecting intrusions: anomaly

detection and penetration identification. The former method attempts to differentiate

“anomalous” activity from the established normal operating behavior of a computer sys-

tem, application, or user. The advantage of this model is that it allows “unknown” be-

havior to be identified, so that newer attacks may be caught. A common disadvantage

of this method is that sometimes, legitimate behavior is interpretted as being anomalous.

Penetration identification (often referred to as misuse detection) makes use of an attack

“signature.” After a signature is defined that identifies a manifestation of an attack, the

attack can be discovered in the monitored network traffic (or host-based audit trails). The

advantage with this method is that well-known attacks can be identified in an easier and

quicker manner. However, attacks (or behavior) for which there is no defined signature

may occur undetected.

1.1 Network-Based Intrusion Detection Systems

Traditionally, there have been two main classes of intrusion detection systems:

network-based and host-based. The former type usually monitors the detailed traffic ac-

tivity of a network of computers and other devices (i.e., routers and gateways). To this

end, raw network packet data (usually collected by a utility such as Tcpdump) is ana-

lyzed for signs of attacks such as “code-red” or “denial of service.” We add that while

a network-based system monitors network traffic, it does not necessarily have to monitor

an entire network of devices. A network-based IDS may be deployed on a single host

1
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to monitor just the network activity of that particular machine. While there have been

many different implementations of network-based systems, most are found implemented

as penetration identification systems.

1.1.1 Past works

Due to the increasing complexity of computer networks as well as the growing

sophistication of network-based attacks, network-based intrusion detection has recently

gained more attention from academic, military, and commercial sectors. Consequently,

various IDSs have been implemented that address different aspects of network security

and use different methods of detection. For example, some tools employ artificial neural

networks, trained for misuse detection across a network [7, 2]. Another system, GrIDS,

constructs activity graphs from network traffic data to detect large-scale automated at-

tacks in real-time [29]. EMERALD uses a scalable distribution of surveillance monitors

throughout a network to apply distributed event correlation models in detecting network

intrusions [25]. In [32], the authors describe how DOORS (Distributed Online Object

Repositories) can be used to distribute the functions of an intrusion detection system

via mobile agents to various selected areas of a network. In turn, the DOORs work

spawned [22], which addresses the need for securing mobile agents, further enhancing

the deployment of security mechanisms in a network.

The network-based system we propose shares methodologies similar to those of a

couple of other IDSs. For instance, Snort is a lightweight network-based IDS that utilizes

a rules-based approach, along with network packet-sniffing and logging to perform con-

tent pattern matching and detect a variety of attacks [26]. In comparison, we also use a

rules-based approach in detecting attacks, but we apply it in the form of a deterministic

finite automaton as opposed to the rule chains used in Snort. Another tool comparable to

ours is NetSTAT. NetSTAT is an extension of the original STAT design which models an

attack as a sequence of actions that progressively take a computer from an initial normal

state to a compromised state [14, 33]. NetSTAT applies that design to a networked en-

vironment by modeling both the guarded network and the attacks. Based on this model,

it determines which network events have to be monitored and where in the network they

should be monitored. In our project, we choose to bypass modeling the network and
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instead focus directly on the representation of various denial of service attacks.

1.2 Host-Based Intrusion Detection Systems

A host-based IDS monitors the detailed activity of a particular host in real-time. The

system call traces produced by an auditing mechanism such as the Solaris Basic Security

Module (BSM) typically provides the IDS with the data needed to search for attack signa-

tures [15]. When an analysis of the BSM data shows signs of an intrusion, the IDS alerts

the system administrator of an attack. Host-based detection systems can detect attacks

that network-based detection cannot see. For example, attacks that are made at the key-

board of a critical machine do not travel across the network. More information, including

machine and process state, are available for host-based methods enabling coordination of

multiple data sources in detection.

1.2.1 Past works

Host-based intrusion detection has emerged as a very important part of the infor-

mation assurance and security areas, resulting in development of several research and

commercial tools. STAT (State Transition Analysis Tool) is a misuse detection system

that uses attack signatures to recognize intrusions [14]. Intrusions are represented as a

series of state changes from a secure to compromised state. The system uses audit data

as evidence of state transitions, causing an alert if a compromised state is reached. The

system manager must create state diagrams representing the attacks, so the authors actu-

ally point out that their system is very inefficient in detecting masqueraders, which is the

focus of the IDS outlined in this work.

The Reliable Software Technologies Corporation designed tools to profile the be-

havior of applications. They use techniques ranging from memorization to generaliza-

tion [13]. The former technique, rooted in anomaly detection, uses a simple equality

matching algorithm to flag anomalous behavior. Sequences of BSM events are captured

online and compared against those stored in a database built from the normal program

behavior profile. If the monitored sequence is not found in the database, then an anomaly

counter is incremented, and, after a threshold value is exceeded, an alarm is raised.

A seminal research paper on anomaly-based masquerade detection was written by
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Forrest et al [11]. In this work, the authors model the “normal” behavior of sendmail and

lpr at the system call level. They use a sliding window approach to record what system

calls follow each other. Once a database of these sequences is formed, new traces are

collected, using the same sliding window, and checked against the database. Results are

expressed as a ratio of found mismatches to all possible mismatches. A popular product

implementing some of Forrest’s ideas is ImSafe, an anomaly detection tool that monitors

the system call traces produced by specific applications. It tries to predict the next system

call [10] based on an application profile created during the learning phase. My approach

is similar, except that user behavior is modeled instead of application behavior.

In [8], the authors present a method of masquerade detection based on the Bayesian

model to test a hypothesis that the observed command transition probabilities come from

a profiled transition matrix. In [20], the authors propose the use of the Naive Bayesian

classification algorithm and its variant with a special updating feature. Their system com-

putes the probability of each command appearance in the input of a particular user, based

on the frequency with which that command was seen in the training data. The authors

also compare the performance of their system and the one presented in [27], using the

same dataset.

1.3 Deterministic Finite Automata

Conceptually, a deterministic finite automaton (DFA) is an abstract computational

model designed to represent an idealized computer. Just as a computer changes states

of operation and produces some outputs given particular inputs, so does a DFA. Specif-

ically, DFAs are designed to recognize or accept member strings of a particular regular

language [28]. In this case, we want to recognize the language of DoS attacks (to be

explained in Section 2.3.2). DFAs possess two important properties: they embody a finite

number of states and, they are deterministic, meaning that given a current state and an

input, the automaton “transitions” to only one state (which could be the same state or a

new one).

Formally, a DFA is defined by:

1. A finite set of input characters (its alphabet)
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2. A finite set of states, with one state defined as initial state and a subset of states

distinguished as final states

3. A set of transitions that is Cartesian product of “set of states” times “alphabet”

times “subset of states”

Hence, in referring to the third component of the definition, each transition is a

triple: originating state, transition character, and target state. This represents a move to

the target state that the DFA undertakes when it receives the transition character while

in the originating state. Informally, DFAs are represented by state-transition diagrams.

Circles represent the automaton’s different states and unidirectional arrows labeled with

input characters represent transitions between different states triggered by the specific

character in the input. Typically, final states, in which the entirety of an input string is

accepted, are double-circled. Also, according to the formal definition, for every state and

every input character, there must exist an exiting transition. Fig. 1.1 is an illustration of

a simple DFA which accepts strings from the alphabet � a, b � containing the sub-string

“aba.”

q2 q3 q4q1

a
bb

a

b

b

a

a

Figure 1.1: An example DFA

In this example, q1 is the start state and q4 is the final state. If the DFA is in state

q1 and receives “a” as a current input character, then the DFA moves to state q2. If in

state q2 the DFA receives “b” as an input, it moves to state q3. If an “a” is received by

the DFA in q3, the automaton moves to the final state and the input string is accepted. An

examination of Fig. 1.1 shows that any input disrupting the pattern “aba” moves the DFA

back to a state where it can continue to monitor for the desired substring. While the DFA

in Fig. 1.1 has only one final state, this is not a requirement for DFAs in general; a DFA

can have more than one final state.



CHAPTER 2

Denial of Service Intrusion Detection Using Time-Dependent

Deterministic Finite Automata

2.1 Introduction

The approach described in this chapter focuses on detecting one type of computer

attack: denial of service (DoS). Generally, DoS attacks are classified as a characteristic

set of events (i.e., an intentional flood of unwanted traffic) that diminishes or elimates a

network’s capacity to perform its expected function. As a result, the compromised system

looses the ability to handle legitimate traffic/requests, experiences a loss in available link

bandwidth, and is overall unable to provide normal service to its users. In many cases,

service is denied until the attacker’s address is discovered so that further traffic from that

source can be blocked. However, often the source address is spoofed so that the true

origin of an attack becomes untraceable. A more difficult scenario arises in cases of the

distributed denial of service (DDoS) attacks, in which multiple clients are coordinated

to simultaneously flood a victim machine or network with requests. In this case, more

resources on the targeted system could be in jeopardy and more clients need to be blocked

to recover from an attack. As with other attacks, it is most effective to detect DoS (and

DDoS) attacks as early as possible.

I propose a novel method to the detection of DoS attacks primarily by exploiting the

time-dependent characteristics of DoS attack behavior. Both this method and framework

contribute a computationally efficient, non-obtrusive and scalable solution addressing an

important subset of network security. In this chapter, we will first discuss the specialized

automata-based approach to penetration identification, as well as the motivation for its

use. Following that section will be an overview of the system’s architecture. We will then

present an evaluation of the system’s test results. In keeping with the standard measure

of testing most other intrusion detection systems, the publically available datasets from

both the 1998 and 1999 Defense Advanced Research Projects Agency (DARPA) intrusion

detection evaluations [18, 19] were used for testing. Finally, we will conclude with a brief

discussion of the project’s future applications.

6
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2.2 Time-Dependent Deterministic Finite Automata Approach

2.2.1 Time-Dependent deterministic finite automata

The time-dependent deterministic finite automaton (TDFA) is an extension of the

DFA. This extension enables it to consider more than just the sequence of input characters;

TDFAs also consider the time intervals between receiving input characters in recognizing

members of a language. This becomes very beneficial in the use of automata to recognize

DoS attack signatures since many DoS attacks are dependent upon the time intervals

between arriving network packets. Fig. 2.1 shows an example TDFA. We can think of this

machine as recognizing the pattern “ ���
�����

���
���

.” In other words, the “b” must occur

within five seconds of the initial “a”, and the last “a” must occur within five seconds of the

“b”. All transitions shown without the five second time restraint are default transitions.

If the desired input arrives, but not within the specified time constraint, then the default

transition for the desired input is used. Notice that in our example (Fig. 2.1), the transition

from q1 to q2 is a default transition even though it takes the TDFA closer to the final state.

This is because the currently received “a” may be the first character of the attack pattern;

it does not make sense for it to come within five seconds of some other input.

A TDFA, as defined here, is a non-trivial extension of DFAs, because the input

to the TDFA is a pair consisting of a character from the input alphabet and a time of

this character arrival (which we currently represent as a real number). The Cartesian

product of these two elements of the TDFA input yields an infinite alphabet, so a TDFA

cannot be represented as a product of two DFAs. However, a TDFA uses the actual

difference of arrival times between two input characters (this still leads to an infinite

set of possible differences). Furthermore, TDFAs use these differences to create boolean

values resulting from the comparison of each difference to constant or computed variables

defined in the TDFA, which finally yield the finite input to our automata. Hence, formally,

a TDFA can be represented as a combination of a token arrival time preprocessor and an

ordinary DFA. The token arrival time preprocessor simply yields a boolean value to each

inequality defined in transitions exiting from the current state of the TDFA. The states of

this particular DFA are the same as those of the TDFA. Each transition in the TDFA with

a time constraint is represented by the DFA transition labeled with the same character and

a true boolean value. Each transition in the TDFA without a time constraint is represented
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q4

b

b

b a a

q1
a

b

b<5 a<5

b<5

a

q3q2

Figure 2.1: An example TDFA

by two transitions in the DFA, one with true and the other with false boolean values.

2.2.2 Denial of service attack representation using time-dependent deterministic

finite automata

The very nature of TDFA models makes them a logical choice in representing DoS

attacks. DoS attacks manifest themselves as a characteristic series of network events or

special packets that progressively render a particular resource inoperable. Therefore, the

transitional arcs of TDFAs are used to represent those characteristic attack events. TDFA

states are used to represent incremental conditions of a system as it reaches a state of

fully successful penetration. The final state(s) of a TDFA then represent state of attack

completion.

Serving as another motivation, I observed that the time scale of the various DoS

attacks differs dramatically. After analyzing a DARPA dataset for a particular week’s

worth of intrusion data, a histogram of the attack durations over a period of several days

(see Fig. 2.2) was derived. In this figure, because of the large variance of the attack

durations, the x-axis is an approximate logarithmic scale of seconds while the y-axis

represents the duration count.

While many of the attacks take place over a very small time period, a significant

number of attacks take over a minute and quite a few take several times longer than that.

DoS detection systems must cope successfully with this wide range of time scales. Incor-

porating a time component into an automaton structure grants the ability to use temporal

differences for accurate detection.

While detection accuracy has traditionally served as a common benchmark for

IDSs, the possible circumstances of detection “inaccuracy” should also merit the atten-
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Figure 2.2: Histogram of attack durations from 10 days of attack data

tion of the intrusion detection community. A recent study showed that on average, vari-

ous commercial IDSs repeatedly “crashed” under the burden of reporting too many false

alarms from an ISP’s network traffic–meaning that frequent amounts of either low priority

or false alarms can cause an IDS to totally miss significant intrusions for which signatures

are defined [24]. This definitely serves as motivation for the use of more intelligent attack

signature models that intrisically respond to only the events and variations defined by the

author of the signature.

Another problem common with most IDSs is the lack of the ability to perform detec-

tion on high-speed links. This makes most network-based IDSs situated only for detection

coverage on an individual node rather than across an entire network. This concern is be-

ing addressed by the development of more intrusion detection appliances (rack-mountable

hardware devices) designed to reliably inspect high-speed IP traffic [23]. Even with the

advent of more robust hardware, poorly designed inspection algorithms can still throt-

tle detection performance, leaving software as the bottleneck. Because automata-based

models are traditioanlly efficient in computation, the proposed detection method should

complement intrusion detection appliances used for high-speed network traffic.

2.3 System Overview

In this section, we discuss the full architecture of the system, including its prime

functions and its various subsystems and their interactions. Before continuing, it would

be useful to note that the system detects DoS attacks occurring in TCP, UDP and ICMP
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Data
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Figure 2.3: Overview of system architecture

network traffic. These are all industry-standard network communication protocols [30].

The following are the key characteristics of the proposed IDS:

� Detects DoS attacks from both real-time and historical data

� Uses time-dependent deterministic finite automata to model and confirm attacks

� Supports the updating of attack models without interruption to other system com-

ponents

Having an option of operating from real-time or historical data offers a couple of

advantages for a site security officer (SSO). Real-time monitoring of TCP/UDP/ICMP

network traffic provides the best level of protection because ongoing attacks may be pre-

vented. However, with the addition of pre-recorded (historical) datasets, off-line operation

still allows the SSO to see if and when attacks might have occurred while the IDS was

down for maintenance. Also, the SSO can use experimental TCP/UDP/ICMP datasets to

test and tune the system for newer attacks. Next, while confirmation procedures will be

discussed in greater detail later, it is important to further note the significance of time-

dependent deterministic finite automata in our system here. Earlier, we discussed how



11

TDFAs serve as an appropriate model for DoS attacks. However, the additional bene-

fit of TDFAs for site security officers is that they permit the storage of both an attack’s

base signature and its variation(s) using only one model construct. A SSO can even use

one TDFA model to represent multiple DoS attacks, as is done in the prototype imple-

mentation. Additionally, using time-based information in attack signatures increases the

accuracy of detecting DoS attacks. Lastly, the ability to update attack models without

disturbing other system components prevents degradation of the system’s performance

during detection. As will be discussed later, this feature also presents the opportunity for

a distributed architecture.

Also worthy of noting is our selected development language, Java v1.2. We chose

this particular language because of its coveted mantra, “write once, run anywhere.” Al-

though the prototype was written for Solaris, it can easily be used on any operating system

with a Java virtual machine installed.

At present, four distinct components make up the IDS:

1. The data filtration unit

2. The event token generator

3. The TDFA transversal unit

4. The TDFA provider

External components with which the IDS interacts include a local area network

(LAN), stored (historical) network traffic data, and a SSO client machine. The connectiv-

ity of the entire system is presented in Fig. 2.3.

2.3.1 Data filtration unit

Network packets carry a wealth of information (i.e., sequence number, header length,

checksum, etc.), some of which may not be needed for the purposes of network-based

IDSs. Since the focus is on DoS attacks, the packet data fields in which we are interested

include those pertaining to such information as source and destination addresses and the

various flag fields (i.e., SYN and ACK). The function of the data filtration unit (DFU) is

to process relevant network packet information for subsequent components of the system
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Table 2.1: Current parsed tcpdump fields

Packet type Timestamp
Source IP address SYN flag

Destination IP address ACK flag
Destination port Echo request

More fragments flag Echo reply
Fragment offset Sequence first

IP length Identification

(according to the IDS flow of data). As seen in Fig. 2.3, network traffic data originates

from either of two sources: a local area network (LAN) or a stored data source. It was

mentioned before how the Solaris BSM utility supplies audit data for host-based IDSs.

However, the utility module that we use here is tcpdmp [16], which can provide a record

of network activity for a particular machine in ASCII text form, delimited into various

fields. The DFU can be manually configured to parse whatever tcpdump fields the user

requests. Table 2.1 lists the fields that were chose for use in the prototype.

Live data originating from connected LAN devices are used in real-time detection

while stored data, our second source of extraction, is used in offline mode. As opposed

to the prior source, stored data usually resides in a log file and may be in either ASCII or

binary form. If the data filtration unit receives the process packet information in binary

form, it first converts it to ASCII text for further processing. In this case, the associated

overhead of converting binary data into ASCII form constitutes an irrelevant performance

hit since we are most concerned with penetration threats present in live, not stored, net-

work traffic. Regardless, the end product is a delimited ASCII text message which con-

tains specific network event information (including TCP, UDP and ICMP packet data).

2.3.2 Event token generator

After network event data is processed by the DFU, the corresponding ASCII text

(remaining in a delimited format) serves as input for the event token generator (ETG). The

ETG is then responsible for translating the DFU text messages, each representing a par-

ticular network event, into special tokens. We must note that a relationship between DFU

messages and ETG tokens is not necessarily “one-to-one.” It is quite possible that the
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Table 2.2: Sample ETG tokens and their definitions

Token(s) Definition
S Packet’s SYN flag is checked
F Packet’s MF flag is checked

J � 5 Non-initial ACK packet; time interval
between this and current packet is
greater than 5 seconds

& First ICMP echo reply packet to a
particular destination [address and port]

B
�

60 Not-initial UDP packet to echo
port of particular destination; time
difference between this and previous
is less than or equal to 60 seconds

information in one message will cause the ETG to generate a sequence of tokens. Also,

only a finite amount of ETG tokens was defined, each corresponding to network events

we observed as being characteristic of DoS attacks. Therefore, many DFU text messages

might be ignored by the ETG. In re-addressing the DFU, we are currently researching effi-

cient methods of filtration so as to not only parse out relevant packet information, but also

determine which events to send altogether–reducing message-passing overhead between

components. Moving on, all of the predefined ETG tokens, each being a string of one

or more ASCII characters, compose an alphabet used by our system for recognizing DoS

attacks. The efficiency of domain-independent IDS languages has been shown with such

languages as STATL [9] (used by both USTAT and NETSTAT), which partially serves as

the motivation for using a proprietary language. The other incentive is that it simplifies

the definition of our detection engine: the TDFA transversal unit, which is discussed in

the next section.

The following is a condensed explanation of how the ETG operates. Suppose that

after reading the DFU text message, the ETG determines that the UDP destination port

number of the packet is set to an echo port number (a condition indicative of an UDP

Storm attack). Subsequently, the ETG generates the token “e” and sends it to the TDFA

transversal unit, where it will be used for UDP Storm attack recognition. Table 2.2 high-

lights just a few of the tokens that compose the language for our system.
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Figure 2.4: Experimental TDFA model with a detailed view of the smurf attack
showing time constraints

2.3.3 TDFA transversal unit

Most intrusion detection systems have some distinguishable core component pri-

marily responsible for recognizing attacks. In this system, the TDFA transversal unit

(TTU) acts as the main attack detection engine. The TTU is what actually embodies the

user-defined TDFA that represents the various DoS attacks.

The relationship between the TTU and the previous module, the event token genera-

tor, is best thought of as that between a physician and patient. The ETG (patient) displays

“symptoms” (on behalf of the guarded host) of probable DoS attacks. As discussed ear-

lier, these symptoms materialize themselves as tokens. The intent of the TTU (physician)

is to read the tokens and “diagnose” the host as being under, or not under a state of attack.

It does this by using the ETG tokens as input characters to traverse the supplied TDFA. In

our current prototye, when the TTU finds that its TDFA has reached a final state, it alerts

the site security officer that an attack (specified by its respective final state) has occurred.

As mentioned earlier, it would be beneficial for a SSO to verify the effectiveness

of the IDS using pre-recorded network traffic data containing traces of successful intru-

sions. Specifically, this entails verifying the correctness of the TDFA transversal unit.

To gain insight as how to design the most effective TDFA models, attack-laced network

traffic data provided by the DARPA intrusion detection evaluation was inspected. Since
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Table 2.3: Current DoS attacks for which we have written TDFA signatures

Name of attack Protocol used Effect
Land TCP Operating system loops and eventually freezes

SYN Flood TCP Legitimate service requests are denied as CPU
resources become totally consumed; operating
system may crash or loop

Ping Flood ICMP Network slows down; network connectivity
may be disabled

Process Table TCP Process table is completely filled with network
server instantiations; new processes cannot be
started

Smurf ICMP Host floods both itself and intermediate
network with ICMP echo replies

Teardrop N/A Host may hang or crash
UDP Storm UDP Legitimate service requests are denied as

CPU resources become totally consumed;
network may become congested

this data would be used for our testing purposes, it was an ideal place to start defining

various DoS attack signatures, especially the time-constraints of those signatures. Ad-

ditionally, we consulted Kendall’s work, which contained signature descriptions of the

attacks used in the DARPA 1998 evaluation [17]. Also, variations of the attack signa-

tures were included that would likely cover multiple incarnations of certain attacks due to

varying time durations or distinct packet characteristics. Again, this highlights the added

advantage of using a TDFA to model attack signatures. Fig. 2.4(a) is an abstraction of

the TDFA detection model that was used for experimental purposes. Fig. 2.4(b) shows

a more detailed portion of the TDFA representing a Smurf attack, complete with time

constraints on some of the transitional arcs. Notice the lack of default transitions in the

example TDFA. It is noted later how system administrators need only to define “linear”

attack models, devoid of default arcs. Table 2.3 lists seven DoS attacks for which the

current TDFA was designed to recognize.
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2.3.4 TDFA provider

It is mentioned earlier that this system supports the updating of TDFA attack mod-

els without interruption to the rest of the system. The TDFA provider makes this feature

possible. When a site security officer (client) wants to replace the resident TDFA, it inter-

acts with the TDFA provider and gives it a description of the new TDFA model. However,

models such as those depicted in Fig. 1.1 and Fig. 2.1 are not required. A client has only

to specify the attack “signature,” meaning only those states and transitions that lead di-

rectly to attack acceptance (recognition). All other transitions, such as those moving a

TDFA back to its start state, would automatically be added by the TDFA provider. This is

convenient for the client as he or she needs only to provide a simple, linear attack model.

The TDFA provider then supplies the TDFA traversal unit with the user-defined TDFA de-

scription. The substitution of the previous attack model by the updated attack model can

occur without degradation to other components of the system because the TDFA provider

interacts only with the TDFA transversal unit. It should be noted that at start-up time,

the TDFA transversal unit contains a default TDFA model, so detection is possible before

interjection by the SSO. As will be described with more detail in Section 2.5, this com-

ponent makes it possible to develop a distributed modular architecture permitting a more

automated approach to updating attack signatures.

2.4 Evaluation

As stated before, we used datasets from the 1998 and 1999 DARPA intrusion de-

tection evaluations in testing the system.

In total, we used eight tcpdump training data files: five from 1998 and three from

1999. Currently, the system has been tested on all but two of the seven attacks that were

listed earlier (UDP Storm, and Process Table attacks were not present in the data files that

we used from the DARPA web site). The results of the test are presented in Table 2.4. The

third column shows the time of the specified DoS attack, according to the DARPA dataset.

The fourth column shows when our system recognizes the timestamp of the packet final-

izing the specified DoS attack. As is seen in Table 2.4, we were very accurate in detecting

various DoS attacks. However, in one dataset, 1998 week6 fri, the system did fail to de-

tect the SYN Flood attack. The attack was successfully detected in most other datasets,
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Table 2.4: Test results from DoS attacks in 1998 and 1999 DARPA datasets

Dataset Attack DARPA TDFA
Time Time

1998 week4 tues SYN Flood 11:55:38 8:50:15
Ping Flood 20:11:31 20:11:31
Teardrop 23:15:08 23:15:08

1998 week5 mon Teardrop 08:15:02 8:15:02
Smurf 12:53:15 12:53:15
Smurf 15:33:28 15:33:28

1998 week5 fri SYN Flood 17:27:07 17:27:07
Smurf 18:00:15 18:00:17

1998 week6 tues Ping Flood 13:04:56 13:04:56
Land 17:53:49 17:53:49

1998 week6 fri Teardrop 08:32:12 8:32:12
SYN Flood 09:31:52 NO

Smurf 19:12:37 19:16:27
1999 week2 mon Ping Flood 08:50:15 8:50:15

Land 15:57:15 15:57:15
1999 week2 thur SYN Flood 11:04:16 11:04:16

Land 15:47:15 15:47:15
1999 week2 fri Ping Flood 09:18:15 9:18:15

SYN Flood 11:20:15 11:20:15

although there was also a problem with the 1998 week4 tues dataset. We prematurely

detected the SYN Flood attack approximately three hours before it supposedly occurred.

Depending on interpretation, this case can be classified as an early correct recognition or

a “false-positive” at an earlier time and a “false-negative” at the attack time (just as with

the 1998 week6 fri dataset). More detailed information on this attack is needed to see if

indeed the first indication of the attack appeared as early as our IDS reported.

To compare our results with other IDSs on similar datasets, we examine the col-

lective results from the DARPA evaluation documents for the 1998 and 1999 attacks.

Because this system only functions on DoS attacks for which signature automata have

been created, we only focus on the results others have obtained on old (or previously

seen) DoS attacks. One should note that different IDSs and different attacks were used in

the 1998 and in the 1999 evaluations. The five attacks on which the prototype TDFA was

tested constitute a subset of those tested in the evaluations. A small graph summarizing
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Figure 2.5: Graph summary of detection results from DARPA 1998 and 1999 evalu-
ations for DoS attacks

the collective results from the 1998 and 1999 DARPA evaluations is given in Fig. 2.5.

While not perfect, our current results are very competitive when compared to the results

achieved by the systems used in the DARPA evaluations.

2.5 Future Work

It was mentioned earlier the opportunities that the TDFA provider component can

offer in the area of distributed attack detection. Currently, this is the focus of our future

developments pertaining to this system.

The proposed application, as well as other intrusion detection systems, use “sniffed”

network traffic to determine significant intrusion events. However, sniffed data tradi-

tionally can only be obtained from a packet sniffer running on the same network as the

monitored host machines. When the monitored hosts are in different networks, multiple

sniffers are needed. The growing degree of segmentation in networks has caused prob-

lems in many intrusion detection applications relying on network sniffed data [21]. To

facilitate distributed detection, it is important to recall the modular framework of our ap-

plication such as that portrayed in Fig. 2.3. Modularity such as this would be necessary to

distribute the functionality of our system. Our intent is to use the DOORS system (Dis-

tributed Online Object Repositories) in which our detection process would be encoded

into mobile agents and sent to the network in need of monitoring [4, 3]. Fig. 2.6 illus-

trates the topology of such a network middleware architecture. This figure is a portrayal
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Figure 2.6: Overview of distributed modular architecture

of a large network in which smaller LANs are connected by gateway and core routers. In

this case, a host in each monitored network will be equipped with a software “docking

port” to receive an agent containing our TDFA IDS. A site security officer will update

the host running the IDS with a new TDFA structure when necessary by sending a new

TDFA to the TDFA provider module shown in Fig. 2.3. This module would then im-

mediately replace the TDFA structure used by the TDFA transversal unit to recognize

unfolding attacks. We believe that this solution would effectively distribute the detection

while providing a centralized management for continual TDFA updates.

Another area of future development will focus on the Data Filtration Unit. A fully

configurable parser will be developed so that the input source, the output format and the

packet data fields to be captured can all be specified inside a single configuration file. As

was mentioned earlier, the input source can either be an off-line tcpdump file or the real-

time network traffic. Besides sending the output to the ETG, the next version of DFU will

also be able to store the delimited text output into a plain ASCII file or into the database

server for future references and further analyses.

Finally, this would be an appropriate section to discuss actual attack prevention.
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Currently, our prototype has only the ability to detect an attack, but not to actually prevent

it. Therefore, another direction in which we would like to take this project is to either add

DoS attack prevention methods ourselves, or to extend the system’s interface to interact

with currently available tools that can offer preventative measures. Either way, a common

strategy would be to identify probable scenarios of “no return.” In other words, preventa-

tive measures (i.e. blocking requests from an attacker’s address) should be invoked when

the supplied TDFA reaches a state where the probability of attack completion is very high.

2.6 Contributions and Conclusion

My major contributions regarding this project dealt with (or currently deal with)

background research, architecture design, and testing. I performed most of the initial

background research concerning this project, which helped us identify and assess the fea-

sibility of the contributions we could make in network-based intrusion detection. As far

as contributing to the project’s architecture, I helped in deciding the most effective use

of the deterministic finite automata in the detection process. This involved the definition

of default transitions and what states what states of operation they should return the au-

tomata to upon execution. Most importantly, I am invloved in further evaluation of the

prototype. The current results from our system evaluation are encouraging. However, we

are concerned about the lack of SYN flood attack detection in the 1998 datasets which

could have been caused by limitation of our TDFA that currently does not embody all

variations of this attack signatures. I am still studying the DARPA datasets in attempts to

improve our TDFA model. I am also in the process of testing our system for the remaining

attacks present in the DARPA datasets: process table and UDP storm.

In general, we acknowledge that our IDS, being a misuse detection system, has

a significant flaw common to all such systems: it can only detect attacks for which it

knows a signature. Detecting malicious activity by recognizing legitimate use signatures

(patterns), however, has been a widely supported practice. However, misuse systems such

as ours, have much lower numbers of false-positives in the detection process, which is

very important for overall system security.

In general, network-based intrusion detection is still in early stages of development.

As networks increasingly become more complex, the need for sophisticated security tools
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will rapidly grow in importance. While this IDS does not detect all malicious network

penetrations, it does a great job detecting a significant subset of these attacks: denial of

service. DoS attacks are widely publicized as they inflict damage on many substantial

commercial, educational and government web sites. Our IDS detects these attacks in

an accurate and efficient manner and is compact enough to be coupled with other IDSs

(perhaps even anomaly detection systems) to build a complete suite of general attack

detection/prevention tools on multiple platforms.



CHAPTER 3

Host-Based Masquerade Detection Using Probabilistic State Finite

Automata

3.1 Introduction

In this chapter, we focus on detecting masquerade attacks. These are attacks in

which an intruder gains access to another user’s account. Once access is gained, the

intruder will usually find a way for repeated access. These are particularly dangerous at-

tacks because if a user account with high privileges is compromised, sensitive information

and vital business/military components could be exposed. These attacks can also last for a

very long period of time if gone undetected. This chapter proposes a method of detecting

masquerade attacks by generating a “signature” of a user’s normal behavior on a computer

system. We assume that commands entered in a rapid sequence are characteristic for a

typical behavior of a legitimate user of the account and they differ from such sequences

entered by an intruder. Typically, such sequences contain a lot of “navigational” com-

mands (such as listing or changing a directory) that indicate familiarity with an account.

Hence, we create and store a signature of all the frequent (and infrequent) commands that

a user types in a rapid sequence. Future command traces executed in the user’s “account”

are then compared with the stored signature. The novelty of this method lies in the use of

finite automata to represent signatures. First, we use time of the command entry to create

input sequences for a signature automaton. Second, we compute the probability of each

transition in the automaton. As a result, we can build an accurate model of user behavior

and perform dynamic detection algorithms–as described in detail later.

3.2 Probabilistic State Finite Automata Approach

This work outlines an anomaly detection system that generates signatures of nor-

mal behavior for each user of a computer system. The assumption is that rapidly entered

sequences of commands are characteristic for a normal behavior of the legitimate user.

Typically, such sequences include “navigational” commands that indicate a user’s famil-

22
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iarity with a structure of the account. By storing such sequences and comparing them

with the actual input, the belief is that we can discover masquerading attacks quickly and

efficiently.

Anomalous behavior is defined as any behavior that sufficiently deviates from the

model. Thus, the detected anomalies may or may not correspond to an actual intrusion.

In some instances, the user may simply be experimenting with a new set of commands,

or the user’s behavior may be different due to fatigue or stress.

A probabilistic state finite automata (PSFA) can be viewed as an extension of a

finite state machine in which a probability is assigned to each state. An example of a

PSFA is shown in Figure 3.1. For each node � ,
��� ��� , is the probability of reaching �

from the predecessor nodes. It is computed from a sample population while building the

PSFA.

a c fed b

ba c

P(a)

P(f)P(a)P(d) P(e) P(c) P(b)

P(b) P(c)

Figure 3.1: PSFA example

3.3 System Overview

Our system consists of four basic modules as shown in Figure 3.2. The first mod-

ule, the Filter Module, is responsible for extracting user commands from log files and

converting them (including their timestamps) into command traces. The traces are then

either passed to the PSFA Builder, which constructs the PSFA, or to the PSFA Tester for

anomaly detection. The PSFA Provider is responsible for passing the appropriate PSFA

to the PSFA Tester.
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Figure 3.2: PSFA system architecture

3.3.1 Filter module

The proposed system can use either Solaris BSM (Basic Security Module) [31] or

the UNIX acct accounting mechanism [27] for collecting audit data. BSM reports user

sessions at the system call level while acct does the same at the user-typed command

level. The Filter Module parses BSM output (acct output is already in the proper format)

for system calls created by the user actions (typed or entered via a GUI). For every user

action, many system calls are generated. Our system extracts just three system commands:

execve used by the shell to execute most user-entered commands, login and chdir.

The string format produced by the Filter Module contains the timestamp followed

by the name of the command, as shown in Figure 3.3.

���
��������	�
�� =

������ � � � � �
�
������ � � � � �

� ����� ������ � � � � �

where: = space character����
= timestamp at time t

� � = command entered at
����

Figure 3.3: String representation of a user command trace
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3.3.2 PSFA builder

Command traces are formed based on the time intervals between successive com-

mands in the user input. Two successive commands are considered to be in the same

command trace if the difference between their timestamps is less than the predefined

threshold, �  . Figure 3.4 shows a user signature containing � commands.

�������
�

	 � ����	�
�� =

� ���� � � � � �
�
� ���� � � � � �

� ����� � ���� � � � � �

where: �� ����� ��� ����� ��� ��� ������ ������ � � � 
= space character����

= timestamp at time t
� � = command entered at

����

�  = command inter-arrival threshhold

Figure 3.4: String representation of a user signature

The value of threshold �  defines an average command trace length and therefore

strongly impacts the structure of the PSFA. Table 3.1 shows an example of two sets of

command traces derived from the same command listing, based on different command

inter-arrival thresholds.

Time Command
10:00 login
10:01 cd
10:02 vi
10:04 ls
10:05 pico
10:06 mv
10:08 ls
10:09 mail
10:10 exit

!#"
Command Window

[login, cd, vi]�  =1 [ls, pico, mv]
[ls, mail, exit]

�  =3 [login, cd, vi, ls, pico, mv, ls, mail, exit]

Table 3.1: Sample host command dataset

3.3.2.1 Building the PSFA from command traces

The PSFA represents all command traces extracted from the given user log files.

It has a tree structure. Each node represents the user command and each edge shows
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the apperance of the given pair of commands in the command trace. Command traces

are added to the PSFA one after another. Figure 3.5 shows the formation of a PSFA

consisting of the command traces from the Table 3.1 where � ����
. To calculate the

probability
��� ��� during the training stage, we first keep a count of the number of times

the node in the PSFA was reached (Figure 3.5(a)).
��� ��� is computed as a ratio of its

reach count to the sum of reach counts of its siblings in the tree. Figure 3.5(b) shows the

automaton with
��� ��� values computed from the data shown in Figure 3.5(a).

lslogin

cd

vi

pico

mv exit

mail

1 2

1

1

1

1 1

1

(a) Sample PSFA to-
tals created from sam-
ple host data shown in
Table 3.1.

1

2

1

2

1

3

2

3

lslogin

cd

vi

pico

mv exit

mail

1

1 1 1

(b) The PSFA with
probabilities in
the nodes of the
automata.

Figure 3.5: Formation of PSFA from sample data in Table 3.1 where � ���� .

The probability of a command trace,
���

, is simply the product of the probabilities
��� ��� of nodes encountered during the PSFA traversal induced by this trace. We also

compute the average probability,
�	�

, from all of the
��� ��� values associated with each

node we encounter. We use
�
�

and
�
�

to distinguish frequently seen command traces

from infrequent ones. Significantly low
���

and
�
�

indicate that the tested command

trace is anomalous.
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3.3.2.2 Updating the probabilities using standard deviation

The use of
� �

and
�
�

as described above introduces an unintentional bias against

two types of advanced users.

� Case 1: PSFA for users who frequently use a large variety of commands yield small

probabilities for each individual command and yield low
�	�

and
�
�

values.

� Case 2: PSFA for users who type commands quickly yield long command traces

that have low
�
�

.

To address this bias, we introduced a standard deviation based indicator. For each

trace, we compute
� � � ��� for each node. This value measures how many standard de-

viations is the probability of reaching that node away from the average probability of

reaching all the children of the parent node. The exact formula is shown in Equation 3.1.

� � � ��� �
������ �����
���	� � 
�
 � �������� ��� � ������� �� ��� ��� � �
����� � ���
���	��� 
 � � � �"! ����� ��� � ������� �� ��� ��� � �
����� � ���
� #�%$ � �'& � � �

(3.1)

��� ��� the probability for a particular state� � � ��� standard deviation-based probability for a particular state� � 
�
 � �� reward coefficient��� 
 � � � �"! penalty coefficient�
����� � ��� the average breadth probability found in the level and branch of
��� ���( the standard deviation found in the level and branch of

��� ���
For very long traces, we compute an additional reward based on the average trace

length. Specifically, this reward is based on how many standard deviations away is the

current trace’s length from the average trace length. The formula for computing this

reward is shown in Equation 3.2.

) �%* %$,+ �-� � �  � ��� �.� � 
�
 � ����0/ � ��� � / �����( � 
 � �� / � ��� � / ����� (3.2)
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) �%* %$,+ �-� � �  � ��� the offset used to account for fast users

/ � ��� length of the particular trace� � 
�
 � �� reward coefficient

/ ����� the average length of traces in the PSFA( � 
 � the standard deviation of trace lengths

3.3.2.3 Mutation events

If the next command entered, while traversing the PSFA, matches none of the com-

mands in the next level of the PSFA, a mutation event has occurred. This action may be

the sign of a new mutation of the same signature. Therefore, traversal of the PSFA does

not stop. We simply determine a probabilistic value for the command in question and

proceed to the next command. When developing a probabilistic value for the command

missing from the signature, the goal is to make a distinction between commands which

the user rarely or never uses and those the user uses frequently. To do this we keep all of

the commands the user uses in a table, along with the number of times the command was

entered. A probabilistic value is returned reflecting the frequency of the command’s use.

3.3.3 PSFA tester

Once a PSFA is created for a specific user, future command traces can be tested

against the PSFA to determine if the behavior is anomalous or not. The traversal of the

PSFA for testing proceeds as follows:

� Get the next command from the test command trace and look for a transition con-

taining the command in the next level of the automaton. In the beginning, this

would be the first command in the trace and the first level of the automaton.

– If there is an associated transition, follow the transition and keep track of the

probability
� � � ��� at the encountered node.

– If there is no transition for the command, assign it a probability of its usage

by the given user (or a default low value if it is the first use).

3.4 Evaluation

To evaluate the performance of our method, the IDS was tested on data used by

Maxion and Townsend [20]. The dataset was created by Schonlau et al. [27] and has thus
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been named the SEA dataset.

3.4.1 The SEA dataset

The masquerade detection dataset consist of user commands captured by the UNIX

acct accounting mechanism. To protect privacy, only command name and user fields were

used. 70 users were monitored and their first 15,000 commands were recorded. For some

very active users, 15,000 commands were generated in only a few days, whereas other

users took months to generate the necessary number of commands. The data was then

organized into blocks of 100 commands, creating 150 blocks of data for each user.

After recording the library of commands for each user, 50 (of the 70) users were

randomly chosen as intrusion targets. The remaining 20 users served as masqueraders

whose data were interspersed into the data of the 50 targets. The first 50 blocks (5000

commands) of all users remained unaltered to serve as a training dataset. The next 100

blocks of intrusion target datasets were contaminated.

While the exact values of the new masquerade and continuing masquerade proba-

bilities were arbitrary, they reflect the author’s three requirements: (1) there should be an

arbitrary number of masqueraders in the data (including the possibility of none), (2) the

length of the actual masquerading attack should be varied, and (3) most of the user data

should not be contaminated.

3.4.1.1 Conforming to the test data

As mentioned earlier, the SEA dataset used captured user commands from the

UNIX acct accounting system. From this accounting system, only the command and user

names were recorded. However, this method is built on temporal differences in the data.

With no timestamps given in the SEA dataset, we had to adjust our method slightly. In-

stead of a command trace being comprised of all commands entered within a certain time

�  of each other, we had to fix the length of the command trace to an arbitrary number of

commands. To this end, all command traces lengths were fixed to be five commands (us-

ing a non-overlapping windowing method), making each user block contain 20 command

traces.

If timestamps were available, we would expect our technique to generate more ac-



30

curate results. However, testing on the SAE dataset can still give us an idea of how our

method performs and present a basis for comparison with other methods which never

consider the temporal variance of command entries in their techniques.

3.4.2 Results

Figure 3.6: Performance with varying threshold values

Figure 3.6 shows the results of running our method on the SEA dataset for different
�
�

threshold values. This graph shows that the hit percentage achieved by most of our

methods were in the high 60th percentile (with the exception of the very high hit percent-

age of 83% achieved when using 0.19 as the threshold value). This graph also shows that

the false alarm rate for our methods is between 4% and 6% (except for the case with the

threshold value of 0.19, which got a very large false alarm rate of around 16%).

Figure 3.7 shows the functional relationship between the hit rate and the false alarm

rate in a graph called a ROC (Relative Operating Characteristic) curve. In this curve, the

higher and more leftward a point is, the better the corresponding method is. Deciding

which metric is more important, the vertical height or the horizontal length, is based on

the preference of the application. For example, if an application needs to have a very

small number of false alarms, it may choose not to employ the PSFA(0.19) method even

though the method has the highest hit rate. On the other hand, if the goal is to discover all

possible intrusions, this would be the method of choice.
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Figure 3.7: Relative operating characteristic curve

Following [20], we use the cost formula shown in Equation 3.3 to compare our

method with others. � # ���� ���� � ���� � � (3.3)

� miss multiplier ( � � � in Maxion evaluation)� number of attacks that were missed�
the total number of attacks

� false alarm multiplier ( � �
	 in Maxion evaluation)
� the number of times the alarm was raised on the normal user session�

the total number of sessions (
�

=10,000 for SEA data)

Figure 3.8 shows the cost of our detection methods as well as other masquerade

detection methods outlined in [20] and [27]. We should point out that setting � ��	

places a large bias against false alarms. In a more realistic environment, the penalty for

false alarms may not be quite so high. However, even with value of � , although we are

not the top method, we do occupy 2 of the top 3 places and 3 of the top 5 places as shown

in Figure 3.8.

Another comparison could be based on the following observation. There is a certain

cost of missing an attack as well as another cost of a false alarm that interrupts users and

system managers work unnecessarily. In our opinion, a ratio, let us call it � , of the first
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Figure 3.8: Cost of different host-based methods

cost to the second one, can range from about 10 to 100. Hence, we propose the following

in Equation 3.4.

� � � � � � � � � �
�
� � �� (3.4)

The advantage of the new formula is that it does not depend on the frequency of attacks,

as the Maxion formula does, but only on the relative cost of missing an attack versus false

alarm. Indeed, let
� ���� be attack frequency. In Equation 3.5 we express Maxion’s cost

formula in terms of the new cost formula and � from Equation 3.4.

���
� � ���� � �

���� � � ���� � � � � �
�
� � � ��� � � � � � �� � � � � � ���� � � �

� � � �
� � � � � �� � � �

� � � (3.5)

Note in Equation 3.5, � is computed to be 	 � � ��
 �
� . The � and � compunents of � are

both constent coefficients, leaving the dominating factors of � to be � � ��
 �
 . Noticing that

� � ��
 �
 � �
 for
� � � �

and
� � �

for
�

close to 1, we see that the Maxion formula changes

the relative cost of missing an attack depending on the frequency of attacks, from about 	
�
for infrequent attacks to about 	 � � ��
 �� . Less frequent attacks are more costly, compared to
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the cost of raising a false alarm, then more frequent ones. In contrast, our formula keeps

the ratio of costs of missing attacks to those of false alarms independent of frequency of

attacks or false alarms.

To evaluate the other methods according to the new cost formula we needed to deter-

mine the number of attack blocks used in the SEA dataset. To develop an expected value

for this statistic, a detailed analysis of how the dataset was formed must be conducted.

Recall the details of the SEA dataset’s block organization described in Section 3.4.1. Ev-

ery user had 100 blocks of possibly contaminated data for testing purposes. A block of

user data has a 1% chance of being contaminated. If the current block is contaminated, the

next block will be contaminated with an 80% probability. Adding attack blocks extends

the total number of blocks for a particular user, however the user’s data remains capped

(in many cases, truncated) at 100 blocks. This dependant distribution leads us to compute
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the expected value for the attack frequency in a particular dataset in Equation 3.6.

� � � � � ��� � � � �
����� ��� �	� �������
 � ��� � � � � ��� � ��� � � � �

� ��� � � � � � (3.6)

To use Maxion’s evaluation coefficients in our new cost formula, we would compute
� according to Equation 3.7.

� �
� � � � � �
� � �

� � � � � �	 � �
� � � � � � � � �	 ��� � � � �

� �#� � 	 	� (3.7)

Figure 3.9 shows the new cost comparison for the top 8 methods using varing values of � .

Note that all methods may be close at low values of � , but as the importance of insuring

that a minimal number of missed attacks grows, the cost of different methods becomes

more pronounced.

3.5 Future Works

A direction we would like to pursue is to classify users into distinct groups. Most

likely, these user groups can be defined to reflect the policies and/or hierarchy of a guarded

organization (e.g., a group of senior level programmers might constitute one group). We

believe that while a user’s behavior will eventually deviate from his normal activity, it is

least likely to deviate from that of the group whose job functions are overall very simi-

lar. This could be one possible method of reducing false-alarm rates, a serious problem

amongst most anomaly detection tools.

3.6 Contributions and Conclusion

Similar to the project outlined in Chapter 1, I contributed much in the way of back-

ground research and testing. I conducted the majority of the historical review for this

project, once again helping us identify what advancements we could make in the mas-

querade detection community. My background research also lead to the discovery of

Schonlau’s experimental data. Schonlau’s data was essential in collecting early test re-

sults because the time-stamped data we needed to test the novel features of our project

did not yet exist or was (and still is) under restriction from use. The tests I designed
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allowed us to prompty evaluate our system’s performance against other published works

and under various operational configurations (i.e., using different trace lengths or using

overlapping windows). Although the SEA datasets provide a solid basis for the evalu-

ation and comparison of masquerade detection systems, we require datasets containing

both the user commands and their timestamps. Datasets using this specific format along

with information of exactly which command trace locations are contaminated (similar to

the SEA datasets) will enable effective testing of our method. Another important exten-

sion of our work would be to enable our tool to process unsuccessful as well as successful

user commands (e.g., the mkdir command accidently typed as mkdor). I am currently

pursuing both of these objectives.

Additionally, I am in the process of further evaluating the system using different an-

alytical models. I am employing different mathematical formulas to detect intrusions with

the same (or greater) amount of accuracy while lowering the amount of false-positives.

We do this by considering the frequency of occurence of a command which causes a

particular command trace to score low. Such a command should not cause a user to be

heavily penalized because its misplacement in the command trace should not carry great

significance, since it is rarely seen in the training data. Most of this work speaks to the

mutaion events discussed earlier in the chapter.

Another extension to this work which I am helping to pursue involves the applica-

tion of bioinformatics to the masquerade detection process. Various genomic algorithms

are used to identify similarities between multiple gene sequences. Viewing our command

traces as gene sequences, we can apply genomic algorithms, such as Smith Waterman,

to measure similarities between a user’s training data and his or her test data. This tech-

nique has not been widely published, thus may serve as yet another novel contribution in

masquerade detection.

In this chapter, we have presented a host-based masquerade detection tool which is

very successful at identifying anomalous user behavior. The strength of the tool results

from the way it creates and stores the signatures of the frequent commands and their order.

These signatures provide accurate models of typical user behavior. Any user behavior that

clearly detours from the signature will raise an alarm.
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