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ABSTRACT

Many networks contain community structure which identifies groups of nodes within

which connections are denser than between them. Detecting and characterizing

such community structure, which is known as community detection, is one of the

fundamental issues in the study of network systems. It has received a considerable

attention in the last years. Numerous techniques have been developed for both

efficient and effective community detection. The most popular one has been to

maximize the community quality metric known as Newman’s modularity over all

the possible partitions of a network. This metric measures the difference between

the fraction of all edges that are within the actual community and a fraction of such

edges in a randomized graph with the same number of nodes and the same degree

sequence. It is widely used to measure the strength of the community structure

detected by the community detection algorithms.

However, modularity maximization suffers from two opposite yet concurrent

problems. In some cases, it tends to split large communities into smaller communi-

ties. In other cases, it tends to form large communities by merging communities that

are smaller than a certain threshold which depends on the total number of edges

in the network and on the degree of inter-connectivity between the communities.

The latter problem is well-known in the literature as the resolution limit problem.

To solve these two problems simultaneously, we propose a new community quality

metric, that we termed Modularity Density, as an alternative to modularity. First,

we show modularity decreased by Split Penalty, defined as the fraction of edges that

connect nodes of different communities, resolves the issue of favoring small commu-

nities. Then, we demonstrate that including community densities into modularity

and split penalty eliminates the problem of favoring large communities, namely the

resolution limit problem.

In addition, modularity can only be used to quantify the quality of disjoint

communities. However, it is more realistic to expect that nodes in real-world net-

works belong to more than one community, resulting in overlapping communities.

xiv



In the past few years, several overlapping extensions of modularity were proposed

to measure the quality of overlapping community structure. However, all these ex-

tensions differ just in the way they define the belonging coefficient and belonging

function. Yet, there is lack of systematic comparison of different extensions. To

fill this gap, we overview overlapping extensions of modularity and generalize them

with a uniform definition enabling application of different belonging coefficients and

belonging functions to select the best. In addition, we extend localized modularity,

modularity density, and eight local community quality metrics to enable their usages

for overlapping communities.

We then propose a novel fine-tuned disjoint community detection algorithm

that repeatedly attempts to improve the quality metrics by splitting and merging

the given community structure. This new algorithm can actually be used to optimize

any community quality metric. However, in this thesis, we only consider modularity

and modularity density.

Although community detection is one of the fundamental techniques of network

science, the community structure of networks discovered by community detection

algorithms does not usually represent the reality. The primary reason for this is

incompleteness and inaccuracy of current network data collection methods, which

may cause datasets to appear less modular than the underlying networks really

are. Thus, in this thesis we aim at recovering or improving the network community

structure which may be hidden or impaired because of the missing or incorrectly

identified extraneous edges. To this end, we introduce a method for improving

the network structure. This method uses the scores obtained from different link

prediction techniques to replace a certain fraction of low ranking existing links with

the top ranked predicted links.
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CHAPTER 1

INTRODUCTION

Communities are the basic structures in sociology in general and in social networks

in particular. They have been intensively researched for more than a half of the

century [1]. Community in sociology usually refers to a social unit whose mem-

bers share common values and the identity of the members as well as their degree

of cohesiveness depend on individuals’ social and cognitive factors such as beliefs,

preferences, or needs. The ubiquity of the Internet and social media eliminated spa-

tial limitations on community geographical range, enabling on-line communities to

link people regardless of their physical location. The newly arising computational

sociology relies on computationally intensive methods to analyze and model social

phenomena [2], including communities and their detection.

Analysis of social networks became one of the basic tools of sociology [3] and

has been used for linking micro and macro levels of sociological theory. The classical

example of the approach is presented in [4] that elaborated the macro implications

of one aspect of small-scale interaction, the strength of dyadic ties. Moreover, a lot

of commercial applications, such as digital marketing, behavioral targeting, and user

preference mining, rely heavily on community analysis. With the rapid growth of

large-scale on-line social networks, e.g., Facebook connected a billion users in 2012,

there is a high demand for efficient community detection algorithms that will be

able to handle their evolutionary growth. Communities in on-line social networks

are discovered by analyzing the observed and often recorded on-line interactions

Portions of this chapter previously appeared as: M. Chen, T. Nguyen, and B. K. Szymanski,
“A new metric for quality of network community structure,” ASE Human J., vol. 2, no. 4, pp.
226-240, Sep. 2013.

Portions of this chapter previously appeared as: M. Chen, K. Kuzmin, and B. K. Szymanski,
“Community detection via maximization of modularity and its variants,” IEEE T. Comput. Soc.
Syst., vol. 1, no. 1, pp. 46-65, Mar. 2014.

Portions of this chapter previously appeared as: M. Chen and B. K. Szymanski, “Fuzzy over-
lapping community quality metrics,” Soc. Netw. Anal. Min., vol. 5, no. 1, pp. 1-14, Jul.
2015.

Portions of this chapter have been submitted as: M. Chen, A. Bahulkar, K. Kuzmin, and B.
K. Szymanski, “Improving network community structure with link prediction ranking,” in Proc.
7th Workshop Complex Networks (under review), 2016.
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between people.

In computational sociology, communities are defined as groups of nodes in a

social network within which connections are denser than between them [5]. This

definition has been found useful also in other type of networks, and community

detection became one of the fundamental issues in network science. Communi-

ty detection has been shown to reveal latent yet meaningful structure not only

for groups in online and contact-based social networks, but also in groups of cus-

tomers with similar interests in online retailer user networks, groups of scientists

in interdisciplinary collaboration networks, and in biology in functional modules in

protein-protein interaction networks etc. [6].

Since in most applications the real communities are not known (often due to

the cost of establishing ground truth in large on-line social networks), there is a need

for developing reliable metrics to evaluate detected communities, so these metrics

can be used to rank the quality of community structure discovered by different

community detection algorithms. Such metrics can also be used to develop novel

community detection algorithms that iteratively attempt to improve the metrics by

merging or splitting the given network community structure.

In the last decade, the most popular community detection method, proposed

by Newman [7], has been to maximize the quality metric known as modularity

[5, 8–10] over all the possible partitions of a network. It measures the difference

(relative to the total number of edges) between the actual and expected (in a ran-

domized graph with the same number of nodes and the same degree distribution)

number of edges within a given community. It is widely used to measure the strength

of the community structure detected by the community detection algorithms. How-

ever, modularity maximization has two opposite yet coexisting problems. In some

cases, it favors small communities by splitting large communities. In other cases, it

favors large communities by failing to discover communities smaller than a certain

threshold even when such communities are well defined. The threshold depends on

the total number of edges in the network and on the degree of inter-connectedness

between the communities. The latter problem is well-known in the literature as the

resolution limit problem [11].
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To solve these two problems simultaneously, we propose a new community

quality metric, that we termed modularity density, as an alternative to modularity.

First, we show modularity decreased by split penalty, defined as the fraction of edges

that connect nodes of different communities, resolves the issue of favoring small

communities. Next, we show that including community densities into modularity

and split penalty eliminates the problem of favoring large communities, namely the

resolution limit problem. We demonstrate with proofs and experiments on real-world

dynamic datasets that modularity density is an effective alternative to modularity.

In addition, Newman’s modularity [5, 8–10] can only be used to measure the

quality of disjoint communities. However, it is more realistic to expect that nodes

in real-world networks belong to more than one community, resulting in overlapping

communities [12]. For instance, a researcher may be active in several research areas,

and a node in biological networks might have multiple functions. It is also quite

common that people in social networks are naturally characterized by multiple com-

munity memberships depending on their families, friends, professional colleagues,

neighbors, etc. For this reason, discovering overlapping communities became very

popular in the last few years. Several overlapping extensions of modularity ([13–19])

were proposed to measure the quality of overlapping community structure. Yet, to

date no attempt has been made to systematically compare different overlapping ex-

tensions and propose metric selection criteria for different types of networks. Con-

sequently, we consider several overlapping extensions of modularity and test their

quality on real-world and synthetic networks. We also extend localized modulari-

ty [20], modularity density [21, 22], and eight local community quality metrics for

overlapping communities following the same principles used by the overlapping ex-

tensions of modularity.

We conducted experiments on a large number of real-world networks and syn-

thetic networks using overlapping extensions of modularity, overlapping modularity

density, and eight local metrics. The results show that selecting the product of the

belonging coefficients of two nodes as a belonging function for overlapping exten-

sions yields better results on these networks than using other belonging functions.

The experimental results also give a guidance to researchers on which metrics to
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choose when measuring the quality of overlapping community structure.

We also propose a novel fine-tuned disjoint community detection algorithm

that repeatedly attempts to improve the quality metrics by splitting and merging

the given community structure. We denote the corresponding algorithm based on

modularity (Q) as Fine-tuned Q while the one based on modularity density (Qds)

is referred to as Fine-tuned Qds. This new algorithm can actually be used to op-

timize any community quality metric. However, we only consider modularity and

modularity density in this thesis.

Although community detection is one of the fundamental issues in network

systems and it is expected that many networks, like social and biology networks, have

highly modular subsets or, in other words, community structure, the community

structure discovered by community detection algorithms does not usually represent

the reality. The primary reason for this is that available network datasets are often

incomplete and inaccurate. For example, in the process of collecting, gathering, or

recording information from online social networks, some data can be lost or incorrect

because of complex relations between individuals, privacy constraints, improper

or imprecise sampling methods, etc. Also, in a network representing interactions

between genes in some species edges are typically determined experimentally, so the

number of known edges may be much smaller than in reality. Moreover, random

spatial collocation of some genes may be wrongly interpreted as an active interaction.

Consequently, the networks we derive from available data usually have some noise,

like missing some edges or having some incorrectly identified so extraneous edges,

which may cause the collected datasets to appear less modular than the underlying

networks really are.

Thus, the purpose of this thesis is to propose and evaluate methods of re-

covering or improving the network community structure which may be hidden or

impaired by missing or extraneous edges. Our goal is to make the network more

modular by recovering missing edges and removing extraneous edges. We introduce

a link improvement procedure that removes a certain fraction of existing low ranking

links and replaces them with potential links (e.g., the links of the complete graph

with the same set of nodes as the current graph that do not exist in the current
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graph) ranked highly by a link prediction metric. The proposed method is able to

significantly improve the community structure of the networks we considered.

1.1 Contributions and Organization

1.1.1 Contributions

The contributions of this thesis are as follows:

• This thesis first introduces a new community quality metric, called modularity

density that resolves two well-known issues of modularity, for quantifying the

quality of network community structure. We show that in many cases in which

modularity suffers from limitations while our modularity density does not.

• We overview overlapping extensions of modularity and generalize them with

a uniform definition enabling application of different belonging coefficients

and belonging functions to select the best. In addition, we extend localized

modularity, modularity density, and eight local community quality metrics to

enable their usages for overlapping communities.

• We then propose a novel fine-tuned disjoint community detection algorithm

that repeatedly attempts to improve the community quality metrics by split-

ting and merging the given community structure.

• We introduce an approach to improve the network community structure by

removing a certain fraction of low ranking existing links and replacing them

with highly ranked predicted links.

1.1.2 Organization

The structure of this thesis is as follows. Chapter 2 offers a literature re-

view about the definitions of community structure, the definition of modularity, the

community detection algorithms based on maximizing modularity, the well-known

problems of modularity, and the solutions to resolve these problems. Chapter 3 intro-

duces a new metric, called modularity density, for measuring the quality of network

community structure. Modularity density eliminates the two well-known issues of
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modularity simultaneously. In Chapter 4, we overview overlapping extensions of

modularity and generalize them with a uniform definition enabling application of

different belonging coefficients and belonging functions to select the best. We also

extend localized modularity, modularity density, and eight local community quality

metrics to enable their usages for overlapping community structure. Chapter 5 in-

troduces a novel fine-tuned disjoint community detection algorithm that repeatedly

attempts to improve the quality metrics by splitting and merging the given com-

munity structure. We then introduce an link improvement approach to improve the

network community structure by removing a certain fraction of low ranking existing

links and replacing them with highly ranked predicted links in Chapter 6. Finally,

we conclude and discuss the future work in Chapter 7.



CHAPTER 2

LITERATURE REVIEW

2.1 Community Structure

Community structure is a common feature to many networks, including In-

ternet, citation networks, transportation networks, email networks, and social and

biochemical networks. It has attracted a great deal of interest recently. However,

there is no single, universally accepted definition of a community within a social

network. One popular definition is that a community is a collection of nodes more

strongly connected than would occur from random chance, leading to the definition

of modularity [5].

Community can be defined in a very strict sense as clique which is a complete

connected subgraph. A k-clique community is a subset of k nodes that are adjacent

to each other. However, this definition is so strong that it is rarely fulfilled in real

sparse networks for larger groups [23]. Community can also be defined as k-core. A

k-core is a subgraph in which each node is adjacent to at least k other nodes of the

subgraph [24]. It is weaker than a clique.

Radicchi et al. [25] proposed a quantitative definition for community which

is a subset of nodes of the network such that connections between them are denser

than connections with the rest of the network. In a strong sense, a subgraph c of a

whole graph G = (V,E) is a community if

kin
i > kout

i ,∀i ∈ c, (2.1)

where kin
i and kout

i are the in- and out- degrees of node i. In a strong community, each

node has more connections inside its community than with the rest of the network.

It coincides with the one proposed in [26] in the framework of the identification of

web communities. This strong definition is also similar to the definition of LS -set

Portions of this chapter previously appeared as: M. Chen, K. Kuzmin, and B. K. Szymanski,
“Community detection via maximization of modularity and its variants,” IEEE T. Comput. Soc.
Syst., vol. 1, no. 1, pp. 46-65, Mar. 2014.

7



8

[3], although LS -set is much more stringent. The LS -set is defined as a set of nodes

in which each of its subsets has more connections to its components within the set

than outside. In a weak sense, c is a community if

2|Ein
c | > |Eout

c |, (2.2)

where |Ein
c | is the number of edges between nodes within community c and |Eout

c |
is the number of edges from the nodes in community c to the nodes outside c. In a

weak community, the sum of all degrees within c is larger than the sum of all degrees

toward the rest of the network. It is clear that a community in a strong sense is also

a community in a weak sense, whereas the converse is not true.

Hu et al. [27] introduced alternative definitions for strong and weak commu-

nities. Community c is a strong community if the internal degree of any node in c

is larger than or at least equal to the number of edges that this node shares with

any other community. That is,

kc
i ≥ max

c′∈C,c′ ̸=c
kc′

i ,∀i ∈ c, (2.3)

where kc
i is the internal degree of node i in c, kc′

i is the number of edges between

node i and community c′, and C is the set of communities. Community c is a weak

community if the number of internal edges of c is larger than or at least equal to

the number of edges shared by this community with any other community. Namely,

|Ein
c | ≥ max

c′∈C,c′ ̸=c
|Ec,c′|. (2.4)

where |Ec,c′ | is the number of edges from community c to community c′. Note

that the strong community defined in Equation (2.3) is weaker than that defined

in Equation (2.1) and the weak community defined in Equation (2.4) is also weaker

than that defined in Equation (2.2).

Li, Zhang et al. [28] stated that the average modularity degree d(c) of a
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community c

d(c) = din(c)− dout(c)

=
2 |Ein

c | − |Eout
c |

|c|
,

(2.5)

should be as large as possible for c to be a “valid” community. In the formula,

din(c) is the average inner degree of c (also known as contraction) and dout(c) is the

average outer degree of c (also known as expansion).

Mancoridis et al. [29] suggested that a community c should have as large

as possible intra-density and as low as possible inter-density. In other words, the

difference between the intra-density and the inter-density of a community

dc − dc =
2|Ein

c |
|c|(|c| − 1)

− |Eout
c |

|c||V − c|
(2.6)

should be as large as possible. In the formula, dc denotes the intra-density of com-

munity c while dc is the inter-density.

Goldberg et al. [30] stated that overlapping communities should satisfy a

minimal set of axioms, (1) connectedness: a community should be a connected sub-

graph of the network instead of a disconnected one; (2) local optimality: the density

Ds() of a community cannot be improved with the addition or removal of a single

node. The density function adopted in [30,31] is

Ds(c) =
|Ein

c |
|Ein

c |+ |Eout
c |

. (2.7)

In order to handle sparse areas of a graph, Kelley et al. [32] proposed to use the

following density function

Ds(c) =
|Ein

c |
|Ein

c |+ |Eout
c |

+ λdc, (2.8)

where λ is a parameter to fine tune the detected results. A larger value of λ will

produce smaller groups, leading to a wide variety of resolutions.

Each community definition above is somehow based on certain community



10

quality metrics, like modularity, the number of intra-edges, the number of inter-

edges, contraction, expansion, intra-density, and inter-density. The community can

be similarly defined based on other community quality metrics, such as conductance

[33] and relative density [34]. For a community to be “valid”, its values of metrics

should be as large as possible (or as small as possible), which leads to the idea that

optimizing those community quality metrics can lead to the discovery of community

structure of networks.

All the above definitions, except the ones in Equations (2.3) and (2.4) which

are valid only for disjoint community structure, are applicable both to disjoint and

overlapping community structure. It is worth noting that although modularity is

suitable to measure overlapping community structure, it was originally intended

to disjoint community structure and its value will not be in the range of [−1, 1]
for overlapping community structure. Moreover, the definitions of community in

Equations (2.3) and (2.4) are global definitions because they are related to the com-

munities neighboring the measured community. In contrast, the other community

definitions are local definitions since we can decide whether it is a community based

on its own properties regardless how other communities are defined.

2.2 Review of Modularity Related Literature

In this section, we first review the definition of modularity and the corre-

sponding optimization approaches. Then, we discuss the resolution limit problem of

modularity maximization. Finally, we overview several community quality measures

proposed to resolve this resolution limit problem.

2.2.1 Definition of Modularity

Comparing results of different network community detection algorithms can

be challenging, especially when the community structure is not known beforehand.

A concept of modularity defined in [5] provides a measure of the quality of a par-

ticular partition of a network. Modularity (Q) quantifies the community strength

by comparing the fraction of edges within the community with such fraction when

random connections between the nodes are made. The justification is that a com-
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munity should have more edges between themselves than a random gathering of

people. Thus, the Q value close to 0 means that the fraction of edges inside commu-

nities is no better than the random case, and the value of 1 means that a network

community structure has the highest possible strength.

Formally, for a given community structure C of a network G = (V,E), modu-

larity (Q) can be defined as [5]:

Q =
∑
c∈C

 |Ein
c |
|E|

−
(
2 |Ein

c |+ |Eout
c |

2 |E|

)2
 , (2.9)

where C is the set of all the communities, c is a specific community in C, |Ein
c | is the

number of edges between nodes within community c, |Eout
c | is the number of edges

from the nodes in community c to the nodes outside c, and |E| is the total number

of edges in the network.

Modularity can also be expressed in the following form [8]:

Q =
1

2|E|
∑
ij

[
Aij −

kikj
2|E|

]
δci,cj , (2.10)

where ki is the degree of node i, Aij is an element of the adjacency matrix between

node i and node j, δci,cj is the Kronecker delta symbol, and ci is the label of the

community to which node i is assigned.

Since larger Q means a stronger community structure, several community de-

tection algorithms, which we will discuss in the next section, are based on modularity

optimization.

The modularity measure defined above is suitable only for undirected and

unweighted networks. However, this definition can be naturally extended to apply to

directed networks as well as to weighted networks. Weighted and directed networks

contain more information and are therefore often viewed as more valuable but also

as more difficult to analyze than the undirected and unweighted ones.

The revised definition of modularity that works for directed networks is as

follows [9]:

Q =
1

|E|
∑
ij

[
Aij −

kin
i kout

j

|E|

]
δci,cj , (2.11)
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where kin
i and kout

j are the in- and out- degrees. Or equivalently

Q =
∑
c∈C

[
|Ein

c |
|E|

− (|Ein
c |+ |Eout,c|)(|Ein

c |+ |Ec,out|)
|E|2

]
, (2.12)

where |Eout,c| is the number of edges from the nodes outside community c to the

nodes in c and |Ec,out| is the number of edges from the nodes in community c to the

nodes outside c. For undirected networks, it is clear that |Eout,c| = |Ec,out| = |Eout
c |

and thus the directed modularity is reduced to undirected modularity.

Although many networks can be regarded as binary, i.e. as either having an

edge between a pair of nodes or not having it, there are many other networks for

which it would be natural to treat edges as having a certain degree of strengths or

weights.

The same general techniques that have been developed for unweighted net-

works are applied to its weighted counterparts in [10] by mapping weighted net-

works onto multigraphs. For non-negative integer weights, an edge with weight w

in a weighted graph corresponds to w parallel edges in a corresponding multigraph.

Although negative weights can arise in some applications they are rarely useful in

social networks, so for the sake of brevity we will not discuss them here. It turns out

that an adjacency matrix of a weighted graph is equivalent to that of a multigraph

with unweighted edges. Since the structure of adjacency matrix is independent of

the edge weights, it is possible to adjust all the methods developed for unweighted

networks to the weighted ones.

It is necessary to point out that the notion of degree of a node should also be

extended for the weighted graphs. In this case degree of a node is defined as the

sum of weights of all edges incident to this node.

It is shown in [10] that the same definitions of modularity that were given above

hold for the weighted networks as well if we treat Aij as the value that represents

the weight of the connection. Then, |E| = 1
2

∑
ij Aij is the sum of the weights of

all the edges in the network, |Ein
c | is the sum of the weights of the edges between

nodes within community c, |Eout
c | and |Ec,out| is the sum of the weights of the edges

from the nodes in community c to the nodes outside c, and |Eout,c| is the sum of the
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weights of the edges from the nodes outside community c to the nodes in c.

2.2.2 Modularity Optimization Approaches

In the literature, a high value of modularity (Q) indicates a good community

structure and the partition corresponding to the maximum value of modularity on

a given graph is supposed to have the highest quality, or at least a very good one.

Therefore, it is natural to discover communities by maximizing modularity over

all possible partitions of a network. However, it is computationally prohibitively

expensive to exhaustively search all such partitions for the optimal value of mod-

ularity since modularity optimization is known to be NP-hard (Non-deterministic

Polynomial-time hard) [35]. However, many heuristic methods were introduced

to find high-modularity partitions in a reasonable time. Those approaches include

greedy algorithms [7,36–38], spectral methods [8,39–44], extremal optimization [45],

simulated annealing [46–49], sampling technique [50], and mathematical program-

ming [51]. In this section, we will review those modularity optimization heuristics.

2.2.2.1 Greedy Algorithms

The first greedy algorithm was proposed by Newman [7]. It is a agglomerative

hierarchical clustering method. Initially, every node belongs to its own community,

creating altogether |V | communities. Then, at each step, the algorithm repeatedly

merges pairs of communities together and chooses the merger for which the resulting

modularity is the largest. The change in Q upon joining two communities ci and cj

is

∆Qci,cj = 2

(
|Eci,cj |
2|E|

−
|Eci||Ecj |
4|E|2

)
, (2.13)

where |Eci,cj | is the number of edges from community ci to community cj and |Eci| =
2|Ein

ci
|+|Eout

ci
| is the total degrees of nodes in community ci. ∆Qci,cj can be calculated

in constant time. The algorithm stops when all the nodes in the network are in a

single community after (|V | − 1) steps of merging. Then, there are totally |V |
partitions, the first one defined by the initial step and each subsequent one resulting

from each of the subsequent (|V | − 1) merging steps. The partition with the largest

value of modularity, approximating the modularity maximum best, is the result of
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the algorithm. At each merging step, the algorithm needs to compute the change

∆Qci,cj of modularity resulting from joining any two currently existing communities

ci and cj in order to choose the best merger. Since merging two disconnected

communities will not increase the value of modularity, the algorithm checks only

the merging of connected pairs of communities and the number of such pairs is at

most |E| limiting the complexity of this part to O(|E|). However, the rows and

columns of adjacency matrix corresponding to the two merged communities must

be updated, which takes O(|V |). Since there are (|V | − 1) iterations, the final

complexity of the algorithm is O((|E|+ |V |)|V |), or O(|V |2) for sparse networks.

Although Newman’s algorithm [7] is much faster than the algorithm of New-

man and Girvan [5] whose complexity is O(|E|2|V |), Clauset et al. [36] pointed out

that the update of the adjacency matrix at each step contains a large number of

unnecessary operations when the network is sparse and therefore its matrix has a lot

of zero entries. They introduced data structures for sparse matrices to perform the

updating operation more efficiently. In their algorithm, instead of maintaining the

adjacency matrix and computing ∆Qci,cj , they maintained and updated the matrix

with entries being ∆Qci,cj for the pairs of connected communities ci and cj. The

authors introduced three data structures to represent sparse matrices efficiently: (1)

each row of the matrix is stored as a balanced binary tree in order to search and

insert elements in O(log|V |) time and also as a max-heap so as to locate the largest

element of each row in constant time; (2) another max-heap stores the largest el-

ement of each row of the matrix so as to locate the largest ∆Qci,cj in constant

time; (3) a vector is used to save |Eci| for each community ci. Then, in each step,

the largest ∆Qci,cj can be found in constant time and the update of the adjacency

matrix after merging two communities ci and cj takes O((kci + kcj)log|V |), where
kci and kcj are the numbers of neighboring communities of communities ci and cj,

respectively. Thus, the total running time is at most O(log|V |) times the sum of

the degrees of nodes in the communities along the dendrogram created by merging

steps. This sum is in the worst case the depth of the dendrogram times the sum of

the degrees of nodes in the network. Suppose the dendrogram has depth d, then the

running time is O(d|E|log|V |), or O(|V |log2|V |) when the network is sparse and the
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dendrogram is almost balanced (d ∼ log|V |).
However, Wakita and Tsurumi [37] observed that the greedy algorithm pro-

posed by Clauset et al. is not scalable to networks with sizes larger than 500, 000

nodes. They found that the computational inefficiency arises from merging com-

munities in an unbalanced manner, which yields very unbalanced dendrograms. In

such cases, the relation d ∼ log|V | does not hold any more, causing the algorithm

to run at its worst-case complexity. To balance the merging of communities, the

authors introduced three types of consolidation ratios to measure the balance of the

community pairs and used it with modularity to perform the joining process of com-

munities without bias. This modification enables the algorithm to scale to networks

with sizes up to 10, 000, 000. It also approximates the modularity maximum better

than the original algorithm.

Another type of greedy modularity optimization algorithm different from those

above was proposed by Blondel et al., and it is usually referred to as Louvain [38].

It is divided into two phases that are repeated iteratively. Initially, every node

belongs to the community of itself, so there are |V | communities. In this first

phase, every node, in a certain order, is considered for merging into its neighboring

communities and the merger with the largest positive gain is selected. If all possible

gains associated with the merging of this node are negative, then it stays in its

original community. This merging procedure repeats iteratively and stops when no

increase of Q can be achieved.

After the first phase, Louvain reaches a local maximum of Q. Then, the second

phase of Louvain builds a community network based on the communities discovered

in the first phase. The nodes in the new network are the communities from the first

phase and there is a edge between two new nodes if there are edges between nodes

in the corresponding two communities. The weights of those edges are the sum

of the weights of the edges between nodes in the corresponding two communities.

The edges between nodes of the same community of the first phase result in a self-

loop for this community node in the new network. After the community network is

generated, the algorithm applies the first phase again on this new network. The two

phases repeat iteratively and stop when there is no more change and consequently
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a maximum modularity is obtained. The number of iterations of this algorithm is

usually very small and most of computational time is spent in the first iteration.

Thus, the complexity of the algorithm grows like O(|E|). Consequently, it is scalable
to large networks with the number of nodes up to a billion. However, the results

of Louvain are impacted by the order in which the nodes in the first phase are

considered for merging [52].

2.2.2.2 Spectral Methods

There are two categories of spectral algorithms for maximizing modularity:

one is based on the modularity matrix [8,39,40]; the other is based on the Laplacian

matrix of a network [41–43].

A. Modularity optimization using the eigenvalues and eigenvectors

of the modularity matrix [8, 39,40].

Modularity (Q) can be expressed as [8]

Q =
1

4|E|
∑
ij

(
Aij −

kikj
2|E|

)
(sisj + 1)

=
1

4|E|
∑
ij

(
Aij −

kikj
2|E|

)
sisj

=
1

4|E|
sTBs,

(2.14)

where Aij are the elements of adjacency matrix A and s is the column vector

representing any division of the network into two groups. Its elements are defined

as si = +1 if node i belongs to the first group and si = −1 if it belongs to the

second group. B is the modularity matrix with elements

Bij = Aij −
kikj
2|E|

. (2.15)

Representing s as a linear combination of the normalized eigenvectors ui of B:

s =
∑|V |

i=1 aiui with ai = uT
i · s, and then plugging the result into Equation (2.14)
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yield

Q =
1

4|E|
∑
i

aiu
T
i B

∑
j

ajuj

=
1

4|E|
∑
i

a2iβi,

(2.16)

where βi is the eigenvalue of B corresponding to eigenvector ui. To maximize Q

above, Newman [8] proposed a spectral approach to choose s proportional to the

leading eigenvector u1 corresponding to the largest (most positive) eigenvalue β1.

The choice assumes that the eigenvalues are labeled in decreasing order β1 ≥ β2 ≥
... ≥ β|V |. Nodes are then divided into two communities according to the signs of

the elements in s with nodes corresponding to positive elements in s assigned to one

group and all remaining nodes to another. Since the row and column sums of B are

zero, it always has an eigenvector (1, 1, 1, ...) with eigenvalue zero. Therefore, if it

has no positive eigenvalue, then the leading eigenvector is (1, 1, 1, ...), which means

that the network is indivisible. Moreover, Newman [8] proposed to divide network

into more than two communities by repeatedly dividing each of the communities

obtained so far into two until the additional contribution ∆Q to the modularity

made by the subdivision of a community c

∆Q =
1

2|E|

1
2

∑
i,j∈c

Bij(sisj + 1)−
∑
i,j∈c

Bij


=

1

4|E|
sTB(c)s

(2.17)

is equal to or less than 0. B(c) in the formula above is the generalized modularity

matrix. Its elements, indexed by the labels i and j of nodes within community c,

are

B
(c)
ij = Bij − δij

∑
k∈c

Bik. (2.18)

Then, the same spectral method can be applied to B(c) to maximize ∆Q. The

recursive subdivision process stops when ∆Q ≤ 0, which means that there is no

positive eigenvalue of the matrix B(c). The overall complexity of this algorithm is
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O((|E|+ |V |)|V |).
However, the spectral algorithm described above has two drawbacks. First,

it divides a network into more than two communities by repeated division instead

of getting all the communities directly in a single step. Second, it only uses the

leading eigenvector of the modularity matrix and ignores all the others, losing all

the useful information contained in those eigenvectors. Newman later proposed to

divide a network into a set of communities C with |C| ≥ 2 directly using multiple

leading eigenvectors [39]. Let S = (sc) be an |V | × |C| “community-assignment”

matrix with one column for each community c defined as

Si,c =


1 if node i belongs to community c,

0 otherwise.
(2.19)

then the modularity (Q) for this direct division of the network is given by

Q =
1

2|E|

|V |∑
i,j=1

∑
c∈C

BijSi,cSj,c =
1

2|E|
Tr(STBS), (2.20)

where Tr(STBS) is the trace of matrix STBS. Defining B = UΣUT , where

U = (u1,u2, ...) is the matrix of eigenvectors of B and Σ is the diagonal matrix of

eigenvalues Σii = βi, yields

Q =
1

2|E|

|V |∑
i=1

∑
c∈C

βi(u
T
i sc)

2. (2.21)

Then, obtaining |C| communities is equivalent to selecting |C| − 1 independent,

mutually orthogonal columns sc. Moreover, Q would be maximized by choosing

the columns sc proportional to the leading eigenvectors of B. However, only the

eigenvectors corresponding to the positive eigenvalues will contribute positively to

the modularity. Thus, the number of positive eigenvalues, plus 1, is the upper bound

of |C|. More general modularity maximization is to keep the leading p (1 ≤ p ≤ |V |)
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eigenvectors. Q can be rewritten as

Q =
1

2|E|
(
|V |α + Tr[STU (Σ− αI)UTS]

)

=
1

2|E|

|V |α +
|V |∑
j=1

∑
c∈C

(βj − α)

 |V |∑
i=1

UijSi,c

2
 ,

(2.22)

where α (α ≤ βp) is a constant related to the approximation for Q obtained by

only adopting the first p leading eigenvectors. By selecting |V | node vectors ri of

dimension p whose jth component is

[ri]j =
√
βj − αUij, (2.23)

modularity can be approximated as

Q ≃ Q̃ =
1

2|E|

(
|V |α +

∑
c∈C
|Rc|2

)
, (2.24)

where Rc, c ∈ C, are the community vectors

Rc =
∑
i∈c

ri. (2.25)

Thus, the community detection problem is equivalent to choosing such a division of

nodes into |C| groups that maximizes the magnitudes of the community vectors Rc

while requiring that Rc · ri > 0 if node i is assigned to community c. Problems of

this type are called vector partitioning problems.

Although [39] explored using multiple leading eigenvectors of the modular-

ity matrix, it did not pursue it in detail beyond a two-eigenvector approach for

bipartitioning [8, 39]. Richardson et al. [40] provided a extension of these recur-

sive bipartitioning methods by considering the best two-way or three-way division

at each recursive step to more thoroughly explore the promising partitions. To re-

duce the number of partitions considered for the eigenvector-pair tripartitioning, the

authors adopted a divide-and-conquer method and as a result yielded an efficient

approach whose computational complexity is competitive with the two-eigenvector
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bipartitioning method.

B. Modularity optimization using the eigenvalues and eigenvectors

of the Laplacian matrix [41–43].

Given a partition C (a set of communities) and the corresponding “community-

assignment” matrix S = (sc), White and Smyth [41] rewrote modularity (Q) as

follows:

Q ∝ Tr(ST (W − D̃)S) = −Tr(STLQS), (2.26)

where W = 2|E|A and the elements of D̃ are D̃ij = kikj. The matrix LQ = D̃−W
is called the “Q-Laplacian”. Finding the “community-assignment” matrix S that

maximizes Q above is NP-complete, but a good approximation can be obtained

by relaxing the discreteness constraints of the elements of S and allowing them to

assume real values. Then, Q becomes a continuous function of S and its extremes

can be found by equating its first derivative with respect to S to zero. This leads

to the eigenvalue equation:

LQS = SΛ, (2.27)

where Λ is the diagonal matrix of Lagrangian multipliers. Thus, the modularity

optimization problem is transformed into the standard spectral graph partitioning

problem. When the network is not too small, LQ can be approximated well, up to

constant factors, by the transition matrix W̃ = D−1A obtained by normalizing A

so that all rows sum to one. D here is the diagonal degree matrix of A. It can be

shown that the eigenvalues and eigenvectors of W̃ are precisely 1− λ and µ, where

λ and µ are the solutions to the generalized eigenvalue problem Lµ = λDµ where

L = D −A is the Laplacian matrix. Thus, the underlying spectral algorithm here

is equivalent to the standard spectral graph partitioning problem which uses the

eigenvalues and eigenvectors of the Laplacian matrix.

Based on the above analysis, White and Smyth proposed two clustering algo-

rithms, named “Algorithm Spectral-1” and “Algorithm Spectral-2”, to search for a

partition C with size up to K predefined by an input parameter. Both algorithms

take the eigenvector matrix UK = (u1,u2, ...,uK−1) with the leading K − 1 eigen-

vectors (excluding the trivial all-ones eigenvector) of the transition matrix W̃ as
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input. Those K − 1 eigenvectors can be efficiently computed with the Implicitly

Restarted Lanczos Method (IRLM) [53]. “Algorithm Spectral-1” uses the first k−1

(2 ≤ k ≤ K) columns of UK , denoted as Uk−1, and clusters the row vectors of

Uk−1 using k-means to find a k-way partition, denoted as Ck. Then, the Ck∗ with

size k∗ that achieves the largest value of Q is the final community structure.

“Algorithm Spectral-2” starts with a single community (k = 1) and recursively

splits each community c into two smaller ones if the subdivision produces a higher

value of Q. The split is done by running k-means with two clusters on the matrix

Uk,c formed from Uk by keeping only rows corresponding to nodes in c. The recur-

sive procedure stops when no more splits are possible or when k = K communities

have been found and then the final community structure with the highest value of

Q is the detection result.

However, the two algorithms described above, especially “Algorithm Spectral-

1”, scale poorly to large networks because of running k-means partitioning up to

K times. Both approaches have a worst-case complexity O(K2|V | + K|E|). In

order to speed up the calculation while retaining effectiveness in approximating the

maximum of Q, Ruan and Zhang [42] proposed the Kcut algorithm which recursively

partitions the network to optimize Q. At each recursive step, Kcut adopts a k-way

partition (k = 2, 3, ..., l) to the subnetwork induced by the nodes and edges in each

community using “Algorithm Spectral-1” of White and Smyth [41]. Then, it selects

the k that achieves the highest Q. Empirically, Kcut with l as small as 3 or 4

can significantly improve Q over the standard bi-partitioning method and it also

reduces the computational cost to O((|V |+ |E|)log|C|) for a final partition with |C|
communities.

Ruan and Zhang later [43] proposed QCUT algorithm that combines Kcut and

local search to optimize Q. QCUT stands for modularity (Q) cut (partitioning).

The QCUT algorithm consists of two alternating stages: partitioning and refine-

ment. In the partitioning stage, Kcut is used to recursively partition the network

until Q cannot be further improved. In the refinement stage, a local search strat-

egy repeatedly considers two operations. The first one is migration that moves a

node from its current community to another one and the second one is the merge
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of two communities into one. Both are applied to improve Q as much as possible.

The partitioning stage and refinement stage are alternating until Q cannot be in-

creased further. In order to solve the resolution limit problem of modularity, the

authors proposed HQCUT (hierarchical QCUT ) which recursively applies QCUT

to divide the subnetwork, generated with the nodes and edges in each community,

into subcommunities. Further, to avoid overpartitioning, they use a statistical test

to determine whether a community indeed has intrinsic subcommunities.

C. Equivalence of two categories of spectral algorithms for maximiz-

ing modularity [44].

Newman [44] showed that with hyperellipsoid relaxation, the spectral modu-

larity maximization method using the eigenvalues and eigenvectors of the modularity

matrix can be formulated as the spectral algorithm that relies on the eigenvalues

and eigenvectors of Laplacian matrix. This formulation indicates that the above

two kinds of modularity optimization approaches are equivalent. Starting with E-

quation (2.14) for the division of a network into two groups, first the discreteness of

si is relaxed onto a hyperellipsoid with the constraint

∑
i

kis
2
i = 2|E|. (2.28)

Then, the relaxed modularity maximization problem can be easily solved by setting

the first derivative of Equation (2.14) with respect to si to zero. This leads to

∑
j

Bijsj = λkisi, (2.29)

or in matrix notation

Bs = λDs, (2.30)

where λ is the eigenvalue. Plugging Equation (2.29) into Equation (2.14) yields

Q =
1

4|E|
∑
ij

Bijsisj =
λ

4|E|
∑
i

kis
2
i =

λ

2
. (2.31)

Therefore, to achieve the highest value of Q, one should chose λ to be the largest
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(most positive) eigenvalue of Equation (2.30). Using Equation (2.15), Equation (2.29)

can be rewritten as ∑
j

Aijsj = ki(λsi +
1

2|E|
∑
j

kjsj), (2.32)

or in matrix notion as

As = D

(
λs+

kTs

2|E|
1

)
, (2.33)

where k is the vector with element ki and 1 = (1, 1, 1, ...). Then, multiplying the

above equation by 1T results in λkTs = 0. If there is a nontrivial eigenvalue λ > 0,

then the above equation simplifies to

As = λDs. (2.34)

Again, λ should be the most positive eigenvalue. However, the eigenvector corre-

sponding to this eigenvalue is the uniform vector 1 which fails to satisfy kTs = 0.

Thus, in this case, one can do the best by choosing λ to be the second largest

eigenvalue and having s proportional to the corresponding eigenvector. In fact, this

eigenvector is precisely equal to the leading eigenvector of Equation (2.30). Then,

after defining a rescaled vector u = D1/2s and plugging it into Equation (2.34), we

get

(D−1/2AD−1/2)u = λu. (2.35)

The matrix L = D−1/2AD−1/2 is called the normalized Laplacian matrix. (The

normalized Laplacian is sometimes defined as L = I −D−1/2AD−1/2, but those

two differ only by a trivial transformation of their eigenvalues and eigenvectors.)

2.2.2.3 Extremal Optimization

Duch and Arenas [45] proposed a modularity optimization algorithm based on

the Extremal Optimization (EO) [54]. EO optimizes a global variable by improving

extremal local variables. Here, the global variable is modularity (Q). The contribu-

tion of an individual node i to Q of the whole network with a certain community

structure is given by

qi = ki,ci − ki
|Eci|
2|E|

, (2.36)
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where ki,ci is the number of edges that connect node i to the nodes in its own

community ci. Notice that Q = 1
2|E|

∑
i qi and qi can be normalized into the interval

[−1, 1] by diving it by ki

λi =
qi
ki

=
ki,ci
ki
− |Eci|

2|E|
, (2.37)

where λi, called fitness, is the relative contribution of node i to Q. Then, the fitness

of each node is adopted as the local variable.

The algorithm starts by randomly splitting the network into two partitions of

equal number of nodes, where communities are the connected components in each

partition. Then, at each iteration, it moves the node with the lowest fitness from its

own community to another community. The shift changes the community structure,

so the fitness of many other nodes needs to be recomputed. The process repeats until

it cannot increase Q. After that, it generates sub-community networks by deleting

the inter-community edges and proceeds recursively on each sub-community network

until Q cannot be improved. Although the procedure is deterministic when given

the initialization, its final result in fact depends on the initialization and it is likely

to get trapped in local maxima. Thus, a probabilistic selection called τ -EO [54] in

which nodes are ranked according to their fitness and a node of rank r is selected

with the probability P (r) ∝ r−τ is used to improve the result. The computational

complexity of this algorithm is O(|V |2log2|V |).

2.2.2.4 Simulated Annealing

Simulated annealing (SA) [55] is a probabilistic procedure for the global opti-

mization problem of locating a good approximation to the global optimum of a given

function in a large search space. This technique was adopted in [46–49] to maximize

modularity (Q). The initial point for all those approaches can be arbitrary parti-

tioning of nodes into communities, even including |V | communities in which each

node belongs to its own community. At each iteration, a node i and a community

c are chosen randomly. This community could be a currently existing community

or an empty community introduced to increase the number of communities. Then,

node i is moved from its original community to this new community c, which would

change Q by ∆Q. If ∆Q is greater than zero, this update is accepted, otherwise
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it is accepted with probability eβ∆Q where β in [46–48] represents the inverse of

temperature T and β in [49] is the reciprocal of pseudo temperature τ . In addition

in [49], there is one more condition for the move of a node when c is not empty,

shifting node i to c is considered only if there are some edges between node i and the

nodes in c. To improve the performance and to avoid getting trapped in local min-

ima, collective movements which involve moving multiple nodes at a time [48, 49],

merging two communities [46–48], and splitting a community [46–48] are employed.

Splits can be carried out in a number of different schemes. The best performance is

achieved by treating a community as an isolated subnetwork and partitioning it into

two and then performing a nested SA on these partitions [46, 47]. Those methods

stop when no new update is accepted within a fixed number of iterations.

2.2.2.5 Sampling Techniques

Sales-Pardo et al. [50] proposed a “box-clustering” method to extract the

hierarchical organization of networks. This approach consists of two steps: (1)

estimating the similarity, called “node affinity”, between nodes and forming the

node affinity matrix; (2) deriving hierarchical community structure from the affinity

matrix. The affinity between two nodes is the probability that they are classified

into the same community in the local maxima partitions of modularity. The set

of local maxima partitions, called Pmax, includes those partitions for which neither

the moving of a node from its original community to another, nor the merging of

two communities will increase the value of modularity. The sample Pmax is found

by performing the simulated annealing based modularity optimization algorithm

of Guimerá and Amaral [46, 47]. More specifically, the algorithm first randomly

divides the nodes into communities and then performs the hill-climbing search until

a sample with local maximum of modularity is reached. Then, the affinity matrix

is updated based on the obtained sample.

The sample generation procedure is repeated until the affinity matrix has con-

verged to its asymptotic value. Empirically, the total number of samples needed

is proportional to the size of the network. Before proceeding to the second step,

the algorithm assesses whether the network has a significant community structure
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or not. It is done by computing the z-score of the average modularity of the par-

titions in Pmax with respect to the average modularity of the partitions with the

local modularity maxima of the equivalent ensemble of null model networks. The

equivalent null model is obtained by randomly rewiring the edges of the original

network while retaining the degree sequence. Large z-score indicates that the net-

work has a meaningful internal community structure. If the network indeed has a

significant community structure, the algorithm advances to the second step to group

nodes with large affinity close to each other. The goal is to bring the form of the

affinity matrix as close as possible to block-diagonal structure by minimizing the

cost function representing the average distance of matrix elements to the diagonal.

Then, the communities corresponds to the “best” set of boxes obtained by least-

squares fitting of the block-diagonal structure to the affinity matrix. The procedure

described above can be recursively performed to subnetworks induced by commu-

nities to identify the low level structure of each community until no subnetwork is

found to have significant intrinsic structure.

2.2.2.6 Mathematical Programming

Agarwal and Kempe [51] formulated the modularity maximization problem as

a linear program and vector program which have the advantage of providing a pos-

teriori performance guarantees. First, modularity maximization can be transformed

into the integer program

Maximize
1

2|E|
∑
ij

Bij(1− xij)

subject to xik ≤ xij + xjk for all i, j, k

xij ∈ {0, 1} for all i, j,

(2.38)

where B is the modularity matrix and the objective function is linear in the variable

xij. When xij = 0, i and j belong to the same community and xij = 1 indicates

that they are in different communities. The restriction xik ≤ xij + xjk requires

that i and k are in the same community if and only if i, j, and k are in the same

community. Solving the above integer program is NP-hard, but relaxing the last
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constraint that xij is a integer from {0, 1} to allow xij be a real number in the

interval [0, 1] reduces the integer program to a linear program which can be solved

in polynomial time [56]. However, the solution does not correspond to a partition

when any of xij is fractional. To get the communities from xij, a rounding step

is needed. The value of xij is treated as the distance between i and j and these

distances are used repeatedly to form communities of “nearby” nodes. Moreover,

optimizing modularity by dividing a network into two communities can be considered

as a strict quadratic program

Maximize
1

4|E|
∑
ij

Bij(1 + sisj)

subject to s2i = 1 for all i,

(2.39)

where the objective function is the same as Equation (2.14) defined by Newman [8].

Note that the constraint s2i = 1 ensures that si = ±1 which implies that node i

belongs either to the first or the second community. Quadratic programming is NP-

complete, but it could be relaxed to a vector program by replacing each variable si

with |V |-dimensional vector s and replacing the scalar product with the inner vector

product. The solution to vector program is one location per node on the surface of

a |V |-dimensional hypersphere. To obtain a bipartition from these node locations, a

rounding step is needed which chooses any random (|V |−1)-dimensional hyperplane

passing through the origin and uses this hyperplane to cut the hypersphere into two

halves and as a result separate the node vectors into two parts. Multiple random

hyperplanes can be chosen and the one that gets the community structure with the

highest modularity provides a solution. The same vector program is then recursively

applied to subnetworks generated with nodes and edges in discovered communities

to get hierarchical communities until Q cannot be increased. Following the linear

program and vector program, Agarwal and Kempe also adopted a post-processing

step similar to the local search strategy proposed by Newman [8] to further improve

the results.
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2.2.3 Resolution Limit Problem

Since its inception, the modularity has been used extensively as the measure

of the quality of community structure produced by community detection algorithms.

In fact, if we adopt modularity as a quality measure of network partitions, the task of

discovering communities is essentially turned into the task of finding the community

structure with an optimal value of modularity.

However as the properties of modularity were studied, it was discovered that

in some cases it fails to detect small communities. There is a certain threshold

[11], such that a community of the size below it will not be detected even if it is

a complete subgraph connected to the rest of the graph with a single edge. This

property of modularity has become known as the resolution limit.

Although the resolution limit prevents detection of small communities, the

actual value of the threshold depends on the total number of edges in the network

and on the degree of interconnectedness between communities. In fact, the resolu-

tion limit can reach the values comparable to the size of the entire network causing

formation of a few giant communities (or even a single community) and failing to

detect smaller communities within them. It makes interpreting the results of com-

munity detection very difficult because it is impossible to tell beforehand whether a

community is well-formed or if it can be further split into subcommunities.

Considering modularity as a function of the total number of edges, |E|, and the

number of communities, m, makes it possible to find the values of m and |E| which
maximize this function. It turns out that setting m =

√
|E| yields the absolute

maximal value of modularity. Consequently, modularity has a resolution limit of

order
√
|E| which bounds the number and also the size of communities [11]. In

fact, if for a certain community the number of edges inside it is smaller than
√

|E|
2
,

such community cannot be resolved through the modularity optimization. It is also

possible for modularity optimization to fail to detect communities of larger size if

they have more edges in common with the rest of the network. Therefore, by finding

the optimal value of the modularity we are generally not obtaining the best possible

structure of communities.

The above arguments of resolution limit can also be applied to weighted net-
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works. In this case, |E| is the sum of the weights of all the edges in the network,

|Ein
c | is the sum of the weights of the edges between nodes within community c, and

|Eout
c | is the sum of the weights of the edges from the nodes in community c to the

nodes outside c.

By introducing an additional parameter, ϵ, which represents the weight of

inter-community edges, Berry et al. showed in [57] that the number of communities

in the optimal solution is

m =

√
|E|
ϵ
. (2.40)

Correspondingly, any community for which its size

|c| <
√
|E|ϵ
2
− ϵ (2.41)

may not be resolved.

Introduction of ϵ brings some interesting opportunities. If we can make ϵ

arbitrarily small, then we can expect maximum weighted modularity to produce

any desired number of communities. In other words, given a proper weighting, a

much better modularity resolution can be achieved than without weighting. How-

ever, in practice, finding a way to set edge weights to achieve small values of ϵ

can be challenging. An algorithm for lowering ϵ proposed by Berry et al. requires

O(m|V | log |V |) time.

2.2.4 Resolving the Resolution Limit Problem

There have been extensive studies done on how to mitigate the consequences

of the resolution limit of modularity. The main approaches followed are described

below.

Localized modularity measure (LQ) [20] is based on the observation that the

resolution limit problem is caused by modularity being a global measure since it as-

sumes that edges between any pair of nodes are equally likely, including connectivity

between the communities. However, in many networks, the majority of communi-

ties have edges to only a few other communities, i.e. exhibit a local community

connectivity.
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Thus, a local version of the modularity measure for an undirected network is

defined as:

LQ =
∑
c∈C

 |Ein
c |∣∣∣Eneighb

c

∣∣∣ −
2 |Ein

c |+ |Eout
c |

2
∣∣∣Eneighb

c

∣∣∣
2
 , (2.42)

where
∣∣∣Eneighb

c

∣∣∣ is the total number of edges of the subnetwork consisting of commu-

nity c and the neighboring communities of c.

Unlike the traditional modularity (Q), the local version of modularity (LQ) is

not bounded above by 1. The more locally connected communities a network has,

the bigger its LQ can grow. In a network where all communities are connected to

each other, LQ yields the same value as Q. LQ considers individual communities

and their neighbors, and therefore provides a measure of community quality that is

not dependent on other parts of the network. The local connectivity approach can

be applied not only to the nearest neighboring communities, but also to the second

or higher layers of neighbors as well.

Arenas et al. proposed a multiple resolution method [58] which is based on

the idea that it might be possible to look at the detected community structure

at different scales. From this perspective, the modularity resolution limit is not a

problem but a feature. It allows choosing a desired resolution level to achieve the

required granularity of the output community structure using the original definition

of modularity.

The multiple resolution method is based on the definition of modularity given

by Equation (2.9). The modularity resolution limit depends on the total weight 2 |E|.
By varying the total weight, it is possible to control the resolution limit, effectively

performing community detection at different granularity levels. Changing the sum

of weights of edges adjacent to every node by some value r results in rescaling

topology by a factor of r. Since the resolution limit is proportional to
√
r, the

growth of the resolution limit is slower than that of r. Consequently, it would be

possible to achieve a scale at which all required communities would be visible to the

modularity optimization problem.

Caution should be exercised when altering the weights of edges in the network

to avoid changing its topological characteristics. To ensure this, a rescaled adjacency
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matrix can be defined as:

Ar = A+ rI, (2.43)

where A is the adjacency matrix and I is the identity matrix. Since the original

edge weights are not altered, Ar preserves all common features of the network:

distribution of the sum of the weights of the edges incident to each node, weighted

clustering coefficient, eigenvectors, etc. Essentially, introducing r results in a self-

loop of weight r being added to every node in the network.

Optimizing the modularity for the rescaled topology Ar is performed by using

the modularity at scale r as the new quality function:

Qr =
∑
c∈C

2 |Ein
c |+ r |c|

2 |E|+ r |V |
−
(
|Ec|+ r |c|
2 |E|+ r |V |

)2
 , (2.44)

where |c| is the number of nodes in community c and |Ec| = 2|Ein
c |+ |Eout

c |. It yields
larger communities for smaller values of r and smaller communities for larger values

of r. By performing modularity optimization for different values of r, it is possible

to analyze the community structure at different scales.

Parameter r can also be thought of as representing resistance of a node to

become part of a community. If r is positive, we can obtain a community structure

that is more granular than what is possible to achieve with the original definition

of modularity (Q) which corresponds to r being zero. Making r negative zooms out

of the network and provides a view of super communities. Typically, it is not clear

how to choose the correct value for this parameter.

Further studies of the multiple resolution approach revealed that it suffers

from two major issues outlined in [59]. First, when the value of the resolution

parameter r is low, it tends to group together small communities. Second, when the

resolution parameter r is high, it splits large communities. These trends are opposite

for networks with a large variation of community sizes. Hence, it is impossible

to select a value of the resolution parameter such that neither smaller nor larger

communities are adversely affected by the resolution limit. A network can be tested

for susceptibility to the resolution problem by examining its clustering coefficient, i.e.

a degree to which nodes tend to form communities. If the clustering coefficient has
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sharp changes, it indicates that communities of substantially different scales exist

in this network. The result is that when the value of r is sufficiently large, bigger

communities get broken up before smaller communities are found. This applies

also to other multiple resolution methods and seems to be a general problem of the

methods that are trying to optimize some global measures.

The hierarchical multiresolution method proposed by Granell et al. in [60]

overcomes the limitations of the multiple resolution method on networks with very

different scales of communities. It achieves that by introducing a new hierarchical

multiresolution scheme that works even in cases of community detection near the

modularity resolution limit. The main idea underlying this method is based on per-

forming multiple resolution community detection on essential parts of the network,

thus analyzing each part independently.

The method operates iteratively by first placing all nodes in a singe community.

Then, it finds the minimum value of the resistance parameter r which produces a

community structure with the optimal value of modularity. Finally, it runs the

same algorithm on each community that was found. The method terminates when

no more split of communities is necessary, which usually takes just a few steps.

In the study [28] by Li, Zhang et al., a new quantitative measure for the

quality of community structure is introduced. It offers several improvements over

the modularity (Q), including elimination of the resolution limit and ability to detect

the number of communities. The new measure called modularity density (D) is

based on the average degree of the community structure. It is given by:

D =
∑
c∈C

2 |Ein
c | − |Eout

c |
|c|

. (2.45)

The quality of the discovered communities is then described by the value of the

modularity density (D). The larger the value of D is, the stronger the community

structure is.

The modularity density (D) does not divide a clique into two parts, and it can

resolve most modular networks correctly. It can also detect communities of different

sizes. This second property can be used to quantitatively determine the number of
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communities, since the maximum D value is achieved when the network is supposed

to be correctly partitioned. Although as mentioned in [28] finding an optimal value

of modularity density (D) is NP-hard, it is equivalent to an objective function of

the kernel k means clustering problem for which efficient computational algorithms

are known.

Traag et al. in [61] introduced a rigorous definition of the resolution-limit-free

method for which considering any induced subgraph of the original graph does not

cause the detected community structure to change. In other words, if there is an

optimal partition of a network (with respect to some objective function), and for

each subgraph induced by the partitioning it is also optimal, then such objective

function is called resolution-limit-free. An objective function is called additive for a

certain partition if it is equal to the sum of the values of this objective function for

each of the subgraphs induced by the partitioning.

Based on these two definitions it is proved that if an objective function is addi-

tive and there are two optimal partitions, then any combination of these partitions is

also optimal. In case of a complete graph, if an objective function is resolution-limit-

free, then an optimal partition either contains all the nodes (i.e. there is only one

community which includes all nodes) or consists of communities of size 1 (i.e. each

node forms a community of its own). A more general statement for arbitrary ob-

jective functions is also true: if an objective function has local weights (i.e. weights

that do not change when considering subgraphs) then it is resolution-limit-free. Al-

though the converse is not true, there is only a relatively small number of special

cases when methods with non-local weights are resolution-limit-free.

The authors then analyze resolution-limit-free within the framework of the

first principle Potts model [62]:

H = −
∑
ij

(aijAij − bij (1− Aij)) δci,cj , (2.46)

where aij, bij ≥ 0 are some weights. The intuition behind this formula is that a

community should have more edges inside it than edges which connect it to other

communities. Thus, it is necessary to reward existing links inside a community and
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penalize links that are missing from a community. The smaller the value of H is,

the more desirable the community structure is. However the minimal value might

not be unique.

Given the definition of H, it is possible to describe various existing community

detection methods with an appropriate choice of parameters, as well as propose

alternative methods. The following models are shown to fit into H: Reichardt and
Bornholdt (RB), Arenas, Fernándes, and Gómez (AFG), Ronhovde and Nussinov

(RN) as well as the label propagation method. RB approach with a configuration

null model also covers the original definition of modularity. The authors also propose

a new method called constant Potts model (CPM) by choosing aij = wij − bij and

bij = γ where wij is the weight of the edge between nodes i and j, and γ is a

constant. CPM is similar to RB and RN models but is simpler and more intuitive.

CPM and RN have local weights and are consequently resolution-limit-free, while

RB, AFG, and modularity are not.



CHAPTER 3

MODULARITY DENSITY: A NEW COMMUNITY

QUALITY METRIC

In the last decade, the most popular community detection method, proposed by

Newman [7], has been to maximize the quality metric known as modularity [5,8–10]

over all the possible partitions of a network. This metric measures the difference

between the fraction of all edges that are within the actual community and such a

fraction of edges that would be inside the community in a randomized graph with

the same number of nodes and the same degree sequence. It is widely used to mea-

sure the strength of the community structure detected by the community detection

algorithms. However, modularity maximization has two opposite yet concurrent

problems. In some cases, it tends to split large communities into smaller communi-

ties. In other cases, it tends to form large communities by merging communities that

are smaller than a certain threshold which depends on the total number of edges in

the network and on the degree of inter-connectivity between the communities. The

latter problem is known in the literature as the resolution limit problem [11] which

we have discussed in detail in Subsection 2.2.3. Moreover, Good et al. [63] showed

that the range of modularity values computed over all possible partitions of a graph

has a structure in which the maximum modularity partition is typically concealed

among an exponentially large (in terms of the graph size) number of structurally

dissimilar, high-modularity partitions.

To address this resolution limit problem, multi-resolution versions of modular-

ity [58,64] were proposed to allow researchers to specify a tunable target resolution

limit parameter and identify communities on that scale. Typically, it is not clear

how to choose the correct value for this parameter. Furthermore, Lancichinetti and

Portions of this chapter previously appeared as: M. Chen, T. Nguyen, and B. K. Szymanski,
“A new metric for quality of network community structure,” ASE Human J., vol. 2, no. 4, pp.
226-240, Sep. 2013.

Portions of this chapter previously appeared as: M. Chen, T. Nguyen, and B. K. Szymanski,
“On measuring the quality of a network community structure,” in Proc. ASE/IEEE Int. Conf.
Social Computing, Washington, DC, 2013, pp. 122-127.
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Fortunato [59] stated that even those multi-resolution versions of modularity as

well as its original version are not only inclined to merge the smallest well-formed

communities but also to split the largest well-formed communities.

To solve these two problems simultaneously, we propose a new community

quality metric, that we termed Modularity Density, as an alternative to modularity.

The modularity density metric eliminates those two problems of modularity with-

out the trouble of specifying any particular parameter. First, we show modularity

decreased by Split Penalty, defined as the fraction of edges that connect nodes of

different communities, avoids the problem of favoring small communities. Next, we

demonstrate that including community density into modularity eliminates the prob-

lem of favoring large communities. We refer to the resulting metric as modularity

density.

We formally prove that modularity density could resolve the resolution limit

problem. We also discuss our experiments with this metric, modularity, and other

popular community quality metrics, including the number of Intra-edges, Contrac-

tion, the number of Inter-edges, Expansion, and Conductance [33], on two real-world

dynamic networks. The results show that modularity density is different from the

original modularity, but consistent with all those quality measures, which implies

that modularity density is effective in measuring the community quality of networks.

3.1 Modularity Density

In this section, we first illustrate the motivation for modifying modularity

with several simple network examples. Next, we propose a new community quality

metric, called Modularity Density, as an alternative to modularity by combining

modularity with Split Penalty and community density to avoid the two coexisting

problems of modularity. Finally, we define modularity density for different kinds of

networks, including unweighted and undirected networks, weighted networks, and

directed networks, based on the corresponding formulas of modularity.
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(a) Two very well separated communities. (b) Two well separated communities.

(c) Two weakly connected communities. (d) Ambiguity between one and two commu-
nities.

(e) One well connected community. (f) One very well connected community.

Figure 3.1: Six simple network examples that have two different com-
munity structures, one with a single big community containing all eight
nodes and the other with the two small communities each containing four
different nodes.

3.1.1 Motivation for Introducing Split Penalty

In this subsection, we demonstrate the motivation for introducing Split Penal-

ty into modularity by using seven intuitively clear and simple network examples, six
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Table 3.1: Metric values of the example: Two very well separated com-
munities.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.5 0 0.5 0.5
One community 0 0 0 0.245

Table 3.2: Metric values of the example: Two well separated communi-
ties.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.357 0.143 0.214 0.339
One community 0 0 0 0.25

Table 3.3: Metric values of the example: Two weakly connected commu-
nities.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.3 0.2 0.1 0.263
One community 0 0 0 0.249

of which are presented in Figure 3.1. The seventh example is a complete graph with

eight nodes and one big community containing all eight nodes while the alternative

partition consists of the two small communities each containing four different nodes.

We could easily judge that for the first, second, and the third examples, the commu-

nity structure with two small communities is better than the community structure

in which they are merged together. For the fourth example, the two different com-

munity structures are nearly of the same quality. However, for the fifth, sixth, and

the seventh examples, the community structure with one big community is of better

quality than the alternative.

Tables 3.1-3.7 show the metric values of the seven network examples described

above. Tables 3.1-3.3, and Table 3.7 demonstrate that modularity succeeds in mea-

suring the quality of the two different community structure in those four examples.

However, from Tables 3.4-3.6, we could observe that modularity actually fails to

measure the community quality of those three examples because it implies that the

community structure with two small communities is better. In contrast, for the

fifth and the sixth examples, the community structure with one big community is

of better quality. Yet, in this case modularity gives preference to the community



39

Table 3.4: Metric values of the example: Ambiguity between one and
two communities.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.25 0.25 0 0.188
One community 0 0 0 0.245

Table 3.5: Metric values of the example: One well connected community.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.167 0.333 -0.167 0.0417
One community 0 0 0 0.23

structure with two separated small communities, demonstrating that modularity

has the problem of favoring small communities.

To address the drawback of favoring small communities, we propose that the

quality of the community structure should take into account the edges between dif-

ferent communities. We introduceModularity with Split Penalty (Qs) by subtracting

from modularity the Split Penalty (SP ) which is the fraction of edges that connect

nodes of different communities. More formally,

Qs = Q− SP. (3.1)

The intuition here is clear. Modularity measures the positive effect of grouping nodes

together in terms of taking into account existing edges between nodes while split

penalty measures the negative effect of ignoring edges joining members of different

communities. Enlarging community eliminates some split penalty but if there are

only a few edges across current partition, modularity of the merged community could

be lower, negating the benefit of merging. Splitting a community into two or more

communities introduces some split penalty but if there are only a few edges between

those separated communities, an increase of modularity can make such splitting

beneficial. Tables 3.1-3.7 demonstrate that Qs can correctly measure the quality of

the community structure of all seven network examples.
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Table 3.6: Metric values of the example: One very well connected com-
munity.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.0455 0.455 -0.409 -0.239
One community 0 0 0 0.168

Table 3.7: Metric values of the example: One Complete Graph.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities -0.0714 0.571 -0.643 -0.643
One community 0 0 0 0

3.1.2 Modularity with Split Penalty

In this subsection, we extend the formula of Qs to different kinds of network-

s, such as unweighted and undirected networks, weighted networks, and directed

networks, based on the corresponding formulas of modularity presented in Subsec-

tion 2.2.1.

From Subsection 3.1.1, we know that Split Penalty (SP ) is the fraction of

edges that connect nodes of different communities. Thus, for undirected networks,

no matter unweighted or weighted, Split Penalty is defined as

SP =
∑
c∈C

[∑
c′∈C
c′ ̸=c

|Ec,c′|
2|E|

]
. (3.2)

where |Ec,c′| is the number of edges from community c to community c′ for unweight-

ed networks or the sum of the weights of the edges from community c to community

c′ for weighted networks. For directed networks, Split Penalty is given by

SP =
∑
c∈C

[∑
c′∈C
c′ ̸=c

|Ec,c′|
|E|

]
. (3.3)

It can be seen that for each community, the split penalty only takes into account the

outgoing edges from this community to the rest of the network but not the incoming

edges from the rest of the network to this community. It is reasonable to use only

outgoing edges, because in a sense those are friendships of community members.
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Incoming edges may not be apparent. Moreover, considering both outgoing and

incoming edges would only double the value of split penalty because the incoming

edges of a community are the outgoing edges of other communities.

Therefore, for undirected networks, both unweighted and weighted, from E-

quations (2.9), (3.1), and (3.2), Qs is defined as

Qs = Q− SP

=
∑
c∈C

 |Ein
c |
|E|

−
(
2|Ein

c |+ |Eout
c |

2|E|

)2
−∑

c∈C

∑
c′∈C
c′ ̸=c

|Ec,c′|
2|E|



=
∑
c∈C

 |Ein
c |
|E|

−
(
2|Ein

c |+ |Eout
c |

2|E|

)2

−
∑
c′∈C
c′ ̸=c

|Ec,c′ |
2|E|

 .
(3.4)

For directed networks, using Equations (2.12), (3.1), and (3.3), Qs can be expressed

as

Qs = Q− SP

=
∑
c∈C

[
|Ein

c |
|E|

− (|Ein
c |+ |Eout,c|)(|Ein

c |+ |Ec,out|)
|E|2

]
−
∑
c∈C

∑
c′∈C
c′ ̸=c

|Ec,c′|
|E|



=
∑
c∈C

 |Ein
c |
|E|

− (|Ein
c |+ |Eout,c|)(|Ein

c |+ |Ec,out|)
|E|2

−
∑
c′∈C
c′ ̸=c

|Ec,c′|
|E|

 .
(3.5)

3.1.3 Motivation for Introducing Community Density

Modularity and also Qs have two shortcomings. First, they are independent of

the number of nodes in the communities as long as the number of edges is preserved.

Second, modularity has the resolution limit problem that Qs makes even worse.

The first shortcoming is illustrated in Figure 3.2 with two simple networks.

The left subfigure contains two clique communities and the right subfigure includes

two tree communities. In each subfigure, there is one single edge that connects

the two communities and there are six edges within all four communities but the

number of nodes in clique communities is different from the number of nodes in
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(a) Two clique communities. (b) Two tree communities.

Figure 3.2: Two simple network examples with the left one containing two
clique communities and the right one containing two tree communities.
Also, there are six edges within all four communities, but the number of
nodes is different in clique and tree communities.

Table 3.8: Metric values of the example: two clique communities vs two
tree communities.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two clique communities 0.4231 0.07692 0.3462 0.4183
Two tree communities 0.4231 0.07692 0.3462 0.2214

tree communities. As shown in Table 3.8, the values of modularity and Qs of those

two different community structure are the same. However, it is quite obvious that

the two clique communities have better community structure quality than the two

tree communities in terms of node connections. Moreover, this example shows that

the number of nodes of the network and within the communities influences neither

modularity nor Qs.

Second shortcoming, the resolution limit problem, is illustrated in Figure 3.3.

It displays a ring network comprised of thirty identical cliques, each of which has

five nodes and they are connected by single edges. In this case, the modularity of

the community structure with each clique forming a different community, totally

thirty communities, should be larger than that of the community structure in which

two consecutive cliques form a different community, totally fifteen communities.

However, Table 3.9 shows that the relation is reversed since the community structure

with fifteen communities has larger modularity than that of the community structure

with thirty communities. Further, as pointed out in [11], when m(m− 1) + 2 < n,

where n is the number of cliques and m is the number of nodes in each clique,
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Figure 3.3: A ring network example made out of thirty identical cliques,
each having five nodes and connected by single edges.

Table 3.9: Metric values of the example: a ring of thirty cliques, each
having five nodes and connected by single edges.

Modularity (Q) Split Penalty (SP ) Qs Qds

Thirty communities 0.8758 0.09091 0.7848 0.8721
Fifteen communities 0.8879 0.04545 0.8424 0.4305

modularity is higher for the large community with two consecutive cliques instead of

the small community with a single clique. Moreover, Table 3.9 demonstrates that the

difference of Qs for these two community structure is larger than the corresponding

difference of modularity. More specifically, ∆Qs = (0.8424 − 0.7848) = 0.0576 >

∆Q = (0.8879− 0.8758) = 0.0121, which means that Qs makes the resolution limit

problem even worse.

To address the above two shortcomings, it is quite intuitive to introduce com-

munity density into modularity, incorporating both the number of edges and the

number of nodes in the communities and also split penalty. The corresponding new

metric is called Modularity Density (Qds). Table 3.8 implies that the Qds of the two

tree communities is almost half of the Qds of the two clique communities. Moreover,

Table 3.9 shows that the Qds of the community structure in which two consecutive

cliques form a different community is almost half of the Qds of the alternative in

which each clique forms a different community. Hence, in this case, Qds avoids the

resolution limit problem. Furthermore, Tables 3.1-3.7 and Figure 3.1 demonstrate

that Qds correctly measures the quality of the community structure of all seven
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network examples. Even for the network example of Figure 3.1(d) in which there

is ambiguity which community structure is of higher quality, the Qds of the one

big community is only slightly larger than the Qds of the two small communities as

shown in Table 3.4.

3.1.4 Modularity Density

In this subsection, we will give the formulas for Qds for different kinds of

networks, including unweighted and undirected networks, weighted networks, and

directed networks, based on the corresponding formulas of Qs presented in Subsec-

tion 3.1.2.

For undirected networks, regardless whether unweighted or weighted, we define

Qds using Equation (3.4) as follows

Qds =
∑
c∈C

[
|Ein

c |
|E|

dc −
(
2|Ein

c |+ |Eout
c |

2|E|
dc

)2

−
∑
c′∈C
c′ ̸=c

|Ec,c′|
2|E|

dc,c′

]
,

dc =
2|Ein

c |
|c|(|c| − 1)

,

dc,c′ =
|Ec,c′|
|c||c′|

.

(3.6)

In the above, dc is the internal density of community c, dc,c′ is the pair-wise den-

sity between community c and community c′. Note that |Ein
c | in dc and |Ec,c′| in

dc,c′ are unweighted for both unweighted and weighted networks, so that those two

community densities are always less than or equal to 1.0.

For directed networks, using Equation (3.5), Qds is given by

Qds =
∑
c∈C

[
|Ein

c |
|E|

dc −
(|Ein

c |+ |Eout,c|)(|Ein
c |+ |Ec,out|)

|E|2
d2c −

∑
c′∈C
c′ ̸=c

|Ec,c′ |
|E|

dc,c′

]
,

dc =
|Ein

c |
|c|(|c| − 1)

,

dc,c′ =
|Ec,c′|
|c||c′|

.

(3.7)
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3.2 Evaluation and Analysis

In this section, we first prove that modularity density (Qds) resolves the res-

olution limit problem. Then, we introduce two real-world dynamic datasets and

various other popular community quality measurements. Finally, we show the ex-

perimental results that validate Qds ability to avoid the two problems of modularity

(Q) simultaneously.

3.2.1 Proof of Solving Resolution Limit Problem

In this subsection, we test modularity density (Qds) on the examples from

Fortunato and Barthélemy [11]. First, we prove that Qds does not divide a clique

into two or more parts. Then, we verify that Qds will not merge two or more

adjacent cliques connected with a single edge. Finally, we prove thatQds can discover

communities with different sizes.

Modularity Density (Qds) does not divide a clique into two or more

parts. Given a clique withm (m ≥ 3) nodes, we prove that maximizingQds does not

divide this clique into two parts. Consider an arbitrary partition P that divides the

clique into communities c1 and c2 with the number of nodes m1 and m2, respectively.

Then, the number of edges between c1 and c2 is m1m2. Let Qds(single) be the Qds

of the whole clique and Qds(pairs) be the Qds of partition P . By definitions,

Qds(single) = 0,

Qds(pairs) =
(m1 −m2)

2 −m

m(m− 1)
− m2

1 +m2
2

m2
,

then,

Qds(pairs)−Qds(single) =
−2m1m2 − 2m1m2m

m2(m− 1)
< 0.

Hence, Qds will not divide a clique into two parts. A simple generalization of this

proof demonstrates that Qds will not divide a clique into three or more parts.

Modularity Density (Qds) does not merge two or more consecu-

tive cliques in the clique structure ring network. Given a network, see

Figure 3.4(a), comprised of a ring of n (where n ≥ 2 is an even integer) cliques

connected through single edges. Each clique is a complete graph with m (m ≥ 3)
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Figure 3.4: Two clique structure network examples. (a) A clique struc-
ture ring network. There are totally n (where n is an even positive inte-
ger) cliques. Each clique contains m (m ≥ 3) nodes, and two consecutive
cliques are connected by a single edge. (b) A network with two pairs of
identical cliques. One pair of cliques have m (m ≥ 4) nodes, and the other
pair of cliques have p (3 ≤ p < m) nodes.

nodes and m(m− 1)/2 edges. Then, the cycle network has a total of nm nodes and

nm(m− 1)/2+n edges. It is clear that the ring network has a well-formed commu-

nity structure where each community corresponds to a single clique. However, this

community structure cannot be obtained by maximizing modularity [11] since the

community structure with n/2 communities of two adjacent cliques each has higher

modularity. We prove that maximizing Qds finds the right community structure.

We let Qds(single) be the Qds of the community structure in which each clique is

a different community, totally n communities, and Qds(pairs) be the Qds of the

community structure with two consecutive cliques forming a different community,

totally n/2 communities. By definitions,

Qds(single) =
m(m− 1)

m(m− 1) + 2
− 1

n
− 2

m3(m− 1) + 2m2
,

Qds(pairs) =
[m(m− 1) + 1]2

[m(m− 1) + 2] [m(2m− 1)]

− 2 [m(m− 1) + 1]2

n [m(2m− 1)]2
− 1

4m3(m− 1) + 8m2
.
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We need to prove the inequality

Qds(pairs) < Qds(single). (3.8)

The first term of Qds(pairs) can be rewritten as

[m(m− 1) + 1]2

[m(m− 1) + 2][m(2m− 1)]
=

m4 − 2m3 + 3m2 − 2m+ 1

m(m2 −m+ 2)(2m− 1)
.

Then, the first and third terms of Qds(single) with the latter combined with the

last term of Qds(pairs) yield

− m2 −m

m2 −m+ 2
+

7

4m2(m2 −m+ 2)
= − m4 −m3 − 1.75

m2(m2 −m+ 2)
.

Combining all these terms, we get

−m5 +m4 + 2m3 − 2m2 + 4.5m− 1.75

m2(m2 −m+ 2)(2m− 1)
.

We move the remaining two terms to the right hand side of Inequality (3.8) that we

are proving getting
1

n

−2m4 + 5m2 − 4m+ 2

m2(2m− 1)2
.

Multiplying both sides by −m2(2m − 1) (and changing direction of inequality) we

get
m5 −m4 − 2m3 + 2m2 − 4.5m+ 1.75

m2 −m+ 2
>

1

4n

m4 − 2.5m2 + 2m− 1

m− 0.5
.

By doing divisions on both sides, we get

m3 − 4m− 2 +
1.5m+ 5.75

m2 −m+ 2
>

1

4n

[
m3 + 0.5m2 − 2.25m+ 0.875− 9

16m− 8

]
.

Since 1.5m+5.75
m2−m+2

≥ 0, and 1
4n
≤ 1

8
for n ≥ 2 and also 9

16m−8
> 0, we just need to

show that

m3 − 4m− 2 >
m3 + 0.5m2 − 2.25m+ 0.875

8
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which simplifies to

7m3 − 0.5m2 − 29.75m− 16.875 > 0 for m ≥ 3,

which is easy to prove either by induction, starting at m = 3, or by inspecting zeros

of the derivative 21m2 −m − 29.75, which are all less than 2.0, showing that this

polynomial is positive for m ≥ 3.

Since Inequality (3.8) holds, Qds will not merge two consecutive cliques in the

ring network. A straightforward extension of the proof shows that Qds will not

merge three or more consecutive cliques.

Modularity Density (Qds) could discover communities with different

sizes. Consider a network, shown in Figure 3.4(b), with two pairs of identical

cliques. The left pair of cliques have m (m ≥ 4) nodes, and the right pair of cliques

have p (3 ≤ p < m) nodes. This network has 2m+2p nodes andm(m−1)+p(p−1)+4

edges. It is obvious that each of the four cliques should be a different community.

However, the authors in [11] found that maximizing modularity will merge the right

two small cliques. Here, we prove that maximizing Qds will not merge them. We

let Qds(single) denote the Qds of the community structure in which each clique

corresponds to a single clique, and Qds(pairs) be the Qds of the community structure

with the right two small cliques merged into one community. Clearly, the Qds of the

left two large cliques will stay the same in those two different community structure

so we denote it as Qds(0). By definitions,

Qds(single) = Qds(0) +
p(p− 1)

m(m− 1) + p(p− 1) + 4

− [p(p− 1) + 2]2

2 [m(m− 1) + p(p− 1) + 4]2

− 1

mp [m(m− 1) + p(p− 1) + 4]

− 1

p2 [m(m− 1) + p(p− 1) + 4]
,
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Qds(pairs) = Qds(0)−
1

mp [m(m− 1) + p(p− 1) + 4]

− [p(p− 1) + 1]2 [p(p− 1) + 2]2

p2(2p− 1)2 [m(m− 1) + p(p− 1) + 4]2

+
[p(p− 1) + 1]2

p(2p− 1) [m(m− 1) + p(p− 1) + 4]
.

The inequality that we need to prove is

Qds(single)−Qds(pairs) > 0. (3.9)

Since

Qds(single)−Qds(pairs)

=
1

m(m− 1) + p(p− 1) + 4
∗
{
p(p− 1)− 1

p2

− [p(p− 1) + 2]2

2[m(m− 1) + p(p− 1) + 4]
− [p(p− 1) + 1]2

p(2p− 1)

+
[p(p− 1) + 1]2[p(p− 1) + 2]2

p2(2p− 1)2[m(m− 1) + p(p− 1) + 4]

}
,

it is clear that the first factor is always positive so it can be removed from consid-

eration and the interior of the second factor can be rewritten as

(p2 − p) +
2[p2 − p+ 1]2[p2 − p+ 2]2 − [p2 − p+ 2]2p2(2p− 1)2

2p2(2p− 1)2[m2 −m+ p2 − p+ 4]

>
1

p2
+

[p2 − p+ 1]2

p(2p− 1)
.

(3.10)

The second term simplifies to

− [p2 − p+ 2]2

2

2p4 − 5p2 + 4p− 2

p2(2p− 1)2[m2 −m+ p2 − p+ 4]
.

Since by induction for p ≥ 3 the polynomial 2p4− 5p2 +4p− 2 is positive, then this
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term is greater than

− (p2 − p+ 2)(2p4 − 5p2 + 4p− 2)

4p2(2p− 1)2

=
1

4

[
−0.5p2 + 0.375− 7.5p3 − 15.625p2 + 10p− 4

4p4 − 4p3 + p2

]
.

It is easy to show that the last fraction of the formula above is less than 0.391 by

using induction or by finding zeros of the fraction derivative, which are all less than

2.5, so we just need to prove that 0.875p2− p− 0.004 is greater than the right hand

side of Inequality (3.10).

The second term of the right hand side of Inequality (3.10) can be rewritten

as

p4 − 2p3 + 3p2 − 2p+ 1

2(p2 − 0.5p)

=0.5p2 − 0.75p+ 1.125− 0.875p− 1

2(p2 − 0.5p)

<0.5p2 − 0.75p+ 1.125,

because 0.875p > 1 and p2 > p for p ≥ 2.

Since 1
p2

< 0.12, the inequality that we need to prove reduces to 0.375p2 −
0.25p > 1.249, but for p ≥ 3, 0.375p2− 0.25p ≥ 2.625, proving Inequality (3.10) and

so Inequality (3.9). Thus, we conclude that maximizing Qds will not merge the right

two small cliques, demonstrating that Qds can discover communities of different size.

In summary, all the above proofs show that in many cases in which Q suffers

from limitations our Qds does not.

3.2.2 Real-world Dynamic Datasets

In this subsection, we introduce two real-world dynamic datasets on which we

conduct experiments in order to validate Qds avoids the two problems of modularity.

Senate Dataset [65, 66]. The Senate dataset is a time-evolving weighted

network comprised of United States senators where the weight of an edge represents

the similarity of their roll call voting behavior. This dataset was obtained from

website voteview.com and the similarities between a pair of senators were calculated
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following Waugh et al. [66] as the number of bills for which the senators of the pair

voted the same way, normalized by the number of bills for which they both voted.

The dataset totally consists of 111 snapshots corresponding to Senate’s activities

over 220 years and includes 1916 unique senators.

Reality Mining Bluetooth Scan Data [67]. This dataset was created

from the records of Bluetooth Scans generated among the 94 subjects in Reality

Mining study conducted from 2004-2005 at the MIT Media Laboratory. In the

network, nodes represent the subjects and the directed edges correspond to the

Bluetooth Scan records while the weight of each edge represents the number of

direct Bluetooth scans between the two subjects. In the experiments, we only used

the records from August 02, 2004 (Monday) to May 29, 2005 (Sunday) and we

divided them into weekly snapshots, so each snapshot represents scans collected

during the corresponding week. There are total of 43 snapshots.

3.2.3 Other Community Quality Metrics

In the discussion of the experimental results we use various community quali-

ty metrics, including the number of Intra-edges, Contraction, the number of Inter-

edges, Expansion, and Conductance [33], which characterize how community-like is

the connectivity structure of a given set of nodes. All of them rely on the intuition

that communities are sets of nodes with many edges inside them and few edges

outside of them. Now, given a network G = (V,E) and given a community or a set

of nodes c, let |c| be the number of nodes in the community c and let |Ein
c | denote

the total number of edges in c for unweighted networks or the total weight of such

edges for weighted networks. We denote the total number of edges from the nodes in

community c to the nodes outside c for unweighted networks or the total weight of

such edges for weighted networks as |Eout
c |. Then, the definitions of the five quality

metrics are as follows:

The number of Intra-edges: |Ein
c |; it is the total number of edges in c or the

total weight of such edges. A large value of this metric is better than a small value

in terms of the community quality.

Contraction: 2|Ein
c |/|c| for undirected networks or |Ein

c |/|c| for directed networks;
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it measures the average number of edges per node inside the community c or the

average weight per node of such edges. A large value of Contraction is better than

a small value in terms of the community quality.

The number of Inter-edges: |Eout
c |; it is the total number of edges from the

nodes in community c to the nodes outside c or the total weight of such edges. A

small value of this metric is better than a large value in terms of the community

quality.

Expansion: |Eout
c |/|c|; it measures the average number of edges (per node) that

point outside community c or the average weight per node of such edges. A small

value of Expansion is better than a large value in terms of the community quality.

Conductance: |Eout
c |

2|Ein
c |+|Eout

c | for undirected networks or |Eout
c |

|Ein
c |+|Eout

c | for directed net-

works; it measures the fraction of the total number of edges that point outside the

community for unweighted networks or the fraction of the total weight of such edges

for weighted networks. A small value of Conductance is better than a large value in

terms of the community quality.

3.2.4 Experimental Results

In this subsection, we report the results of performing community detection

on the two real-world dynamic datasets introduced in Subsection 3.2.2 by using the

dynamic community detection algorithms, LabelRankT [68] and Estrangement [65].

We chose these two algorithms because the second algorithm relies on the modularity

optimization while the first one does not. In the experiments, we adopted the best

parameter of Estrangement but varying the conditional update parameter q ∈ [0, 1]

of LabelRankT from 0.05 to 0.95. As seen in the results, in most cases, the best q

is around 0.7 in agreement with the best value reported in [68]. For the community

structure found by the two algorithms, we calculated the values of modularity (Q),

Qs, modularity density (Qds), and the five community quality metrics described in

Subsection 3.2.3.

Table 3.10 and Table 3.11 present the average metric differences between La-

belRankT with different values of conditional update parameter q and Estrangement

on Senate dataset and Reality Mining Bluetooth Scan data, respectively. That is,
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Table 3.10: The average metric differences between LabelRankT with
different values of conditional update parameter q and Estrangement on
Senate dataset.
LabelRankT q 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Q -0.0534 -0.0462 -0.0408 -0.0538 -0.0714 -0.0848 -0.083 -0.0897 -0.0897 -0.0848 -0.08
Qs -0.166 -0.0802 0.0468 0.0808 0.0969 0.112 0.116 0.115 0.115 0.111 0.106
Qds -0.1638 -0.0787 0.04847 0.08297 0.0995 0.1145 0.1182 0.1183 0.1183 0.1135 0.1083

# Intra-edges -159.102 -32.444 234.296 387.38 510.645 616.855 615.123 624.764 624.764 602.627 580.733
Contraction -6.806 -3.023 2.481 4.553 5.937 7.033 7.065 7.227 7.227 6.927 6.622
# Inter-edges -75.962 -54.098 -123.898 -187.99 -245.198 -299.356 -300.108 -303.043 -303.043 -292.782 -282.442
Expansion 6.448 2.91 -2.428 -4.416 -5.737 -6.847 -6.878 -7.009 -7.009 -6.724 -6.431

Conductance 0.213 0.0851 -0.0886 -0.148 -0.186 -0.214 -0.216 -0.224 -0.224 -0.213 -0.201

Table 3.11: The average metric differences between LabelRankT with
different values of conditional update parameter q and Estrangement on
reality mining bluetooth scan data.
LabelRankT q 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Q -0.161 -0.121 -0.0783 -0.0744 -0.0724 -0.0699 -0.0702 -0.0724 -0.0742 -0.0755 -0.0774
Qs -0.379 -0.244 -0.107 -0.0802 -0.0538 -0.0497 -0.0382 -0.0405 -0.0521 -0.0634 -0.0713
Qds -0.191 -0.0984 -0.0222 -0.017 -0.0116 -0.0116 -0.00318 -0.00826 -0.011 -0.0115 -0.0134

# Intra-edges -1450.893 -956.006 -479.377 -331.371 -230.263 -183.536 -102.94 -78.93 -155.183 -242.287 -333.419
Contraction -86.909 -69.914 -52.543 -46.371 -43.176 -40.567 -35.948 -36.425 -38.006 -41.277 -45.425
# Inter-edges -39.949 -76.524 -159.74 -167.333 -190.947 -190.865 -196.098 -193.123 -188.708 -179.653 -178.96
Expansion 52.529 25.829 6.289 5.76 5.664 7.07 4.881 6.799 6.916 6.117 5.669

Conductance 0.23 0.176 0.114 0.1 0.0934 0.0933 0.0843 0.0955 0.102 0.107 0.104

we first computed the values of the eight metrics above for the community detection

results, detected by Estrangement, of each snapshot. Then, we calculated the eight

metrics values for the community detection results, discovered by LabelRankT for

all q, of each snapshot. Next, we got the metric differences of all eight metrics by

subtracting the metric values of Estrangement from those of LabelRankT for all q’s

over each snapshot. Then, averaging those differences of each metric over all the

snapshots, we obtained the corresponding average metric differences.

Table 3.10 demonstrates that Q gets its largest value when q = 0.2; Qs reaches

the largest value when q = 0.6; Qds, Intra-edges, and Contraction get their largest

values at q = 0.7 and q = 0.8; also, Inter-edges, Expansion, and Conductance reach

their smallest values at q = 0.7 and q = 0.8. Thus, Qds is consistent with the five

metrics introduced in Subsection 3.2.3 on determining the best q for LabelRankT

on Senate dataset while Q and Qs are not consistent with them. Further, we could

observe that Q is always negative which indicates that LabelRankT performs below

Estrangement over all q’s because the goal of Estrangement is to maximize mod-

ularity (Q). However, the other seven metrics imply that LabelRankT performs
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better than Estrangement when q > 0.1. Therefore, we could explicitly observe that

maximizing Q to detect communities has problems in measuring the community

detection quality correctly on Senate dataset.

Table 3.11 shows that six quality metrics get their best (largest or smallest)

values at q = 0.6 while the two exceptions, Q and the number of Intra-edges, reach

their largest values when q = 0.5 and q = 0.7, respectively. Thus, the six metrics,

except Q and the number of Intra-edges, are consistent on determining the best

value of q for LabelRankT on Reality Mining Bluetooth Scan data. This indicates

that on Reality Mining Bluetooth Scan data, maximizing Q to detect communities

has problems.

It is also interesting to observe that for q = 0.05 and q = 0.1 in Table 3.10,

Inter-edges metric implies that LabelRankT performs better than Estrangement

on Senate dataset, which is not consistent with Qs, Qds, Intra-edges, Contraction,

Expansion, and Conductance metrics. Moreover, we could learn from Table 3.11 that

all the metrics, except Inter-edges metric, imply that LabelRankT performs slightly

below the performance of Estrangement over all q’s. Thus, Inter-edges metric has

some problems. Also, as mentioned in the paragraph above, Intra-edges metric is

not consistent with the other six metrics on determining the best q for LabelRankT,

which also means that Intra-edges metric has problems. We conjecture that the

reason for the shortcoming of Intra-edges and Inter-edges metrics is the same as

the case of modularity (Q) which does not consider the number of nodes in the

communities. This reason also implies the superiority of Qds over Q and Qs.

Based on the results presented in the above two tables, we conclude that Qds

eliminates the two problems of modularity. We also conjecture that the difference

between the best values of q for LabelRankT determined by Q and Qs and the

difference determined by Qs and Qds on Senate dataset is a manifestation of the

two problems of modularity maximization, namely favoring small communities and

the resolution limit problem. Moreover, the difference between the best values of q

for LabelRankT determined by Q and Qs on Reality Mining Bluetooth Scan data

indicates that maximizing Q has the problem of favoring small communities. Thus,

Qs and Qds can be used for checking whether finding communities by maximizing
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(a) Senate dataset (q = 0.7).
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(b) Reality Mining Bluetooth Scan data (q = 0.6).

Figure 3.5: The modularity (Q) of the community detection results of
LabelRankT and Estrangement (also, the difference between LabelRankT
and Estrangement) on (a) each snapshot of Senate dataset at q = 0.7 and
on (b) each snapshot of Reality Mining Bluetooth Scan data with q = 0.6.

Q on a specific dataset will suffer any of the two problems.

To make the differences among Q, Qs, and Qds more clear, we plot their values,

in Figures 3.5, 3.6, and 3.7, of the community detection results of LabelRankT and

Estrangement on each snapshot of Senate dataset at q = 0.7 and on each snapshot

of Reality Mining Bluetooth Scan data when q = 0.6. Figure 3.5(a) shows that in

most cases Q is negative, while Qs and Qds are positive as seen in Figure 3.6(a)

and Figure 3.7(a). It indicates that there is large difference between Q and Qs or

between Q and Qds. This is consistent with Table 3.10. Further, it can be observed

from Figure 3.6(a) and Figure 3.7(a) that Qs and Qds are almost the same on each
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(a) Senate dataset (q = 0.7).
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(b) Reality Mining Bluetooth Scan data (q = 0.6).

Figure 3.6: Qs of the community detection results of LabelRankT and
Estrangement (also, the difference between LabelRankT and Estrange-
ment) on (a) each snapshot of Senate dataset at q = 0.7 and on (b) each
snapshot of Reality Mining Bluetooth Scan data with q = 0.6.

snapshot, which is also consistent with Table 3.10. Figure 3.5(b), Figure 3.6(b),

and Figure 3.7(b) demonstrate that Q, Qs, and Qds are negative in most of the

cases, although their values are different in each snapshot. These observations are

consistent with the results shown in Table 3.11.

3.3 Summary

In this chapter, we propose a new community quality metric, called modularity

density, which resolves the problems of modularity of favoring small communities in

some circumstances and large communities in others. We demonstrate with proof-
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(a) Senate dataset (q = 0.7).
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(b) Reality Mining Bluetooth Scan data (q = 0.6).

Figure 3.7: The modularity density (Qds) of the community detection
results of LabelRankT and Estrangement (also, the difference between
LabelRankT and Estrangement) on (a) each snapshot of Senate dataset
at q = 0.7 and on (b) each snapshot of Reality Mining Bluetooth Scan
data with q = 0.6.

s and experiments on real-world dynamic datasets that modularity density is an

effective alternative to modularity.



CHAPTER 4

FUZZY OVERLAPPING COMMUNITY QUALITY

METRICS

Newman’s modularity [5, 8–10] introduced in Subsection 2.2.1 can only be used to

measure the quality of disjoint communities. However, it is more realistic to expect

that nodes in real-world networks belong to more than one community, resulting

in overlapping communities [12]. Therefore, several overlapping extensions of mod-

ularity ([13–19]) were proposed to measure the quality of overlapping community

structure. Yet, to date no attempt has been made to systematically compare differ-

ent overlapping extensions and propose metric selection criteria for different types

of networks. In this chapter, we consider several overlapping extensions of modu-

larity and test their quality on real-world and synthetic networks. We also extend

localized modularity [20], modularity density [21, 22], and eight local community

quality metrics for overlapping communities following the same principles used by

the overlapping extensions of modularity.

We conducted experiments on a large number of real-world networks and syn-

thetic networks using overlapping extensions of modularity, overlapping modularity

density, and eight local metrics (the number of Intra-edges, Intra-density, Con-

traction, the number of Boundary-edges, Expansion, Conductance [21, 22, 69], the

Fitness function [70], and the Average Modularity Degree [71]). The results show

that selecting the product of the belonging coefficients of two nodes as a belong-

ing function for overlapping extensions yields better results on these networks than

using other belonging functions. The experimental results also give a guidance to

researchers on which metrics to choose when measuring the quality of overlapping

community structure.

Portions of this chapter previously appeared as: M. Chen, K. Kuzmin, and B. K. Szymanski,
“Extension of modularity density for overlapping community structure,” in Proc. 2014 IEEE/ACM
Int. Conf. Advances in Social Networks Analysis and Mining, Beijing, China, 2014, pp. 856-863.

Portions of this chapter previously appeared as: M. Chen and B. K. Szymanski, “Fuzzy over-
lapping community quality metrics,” Soc. Netw. Anal. Min., vol. 5, no. 1, pp. 1-14, Jul.
2015.
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Methodology: Below we introduce in steps the methodology we use to eval-

uate overlapping extensions of modularity:

(1) We first give a generalized definition for existing overlapping extensions of

modularity which covers four such extensions, each using one of the two dif-

ferent versions of belonging coefficient and one of the two different versions of

belonging function.

(2) Next, we extend localized modularity, modularity density, and eight local com-

munity quality metrics to be applicable to overlapping community structure

following the same principle as the overlapping extensions of modularity do.

(3) Then, for the generalized definitions of these metrics, we first determine which

version of the belonging coefficient and which version of the belonging function

perform best for each metric.

(4) Moreover, we determine which version of the belonging coefficient and which

version of the belonging function scores the largest number of quality metrics

consistent with each other on determining the best values of parameters of

compared community detection algorithms: the threshold r for SLPA [72,73],

the parameter k for CFinder [23], and the threshold tr for SpeakEasy [74] on

the real-world and synthetic networks.

(5) Finally, we compare the performance of the overlapping metrics with the best

combination of belonging coefficient and belonging function by looking at how

many times each metric is among those that are consistent with each other on

determining the best values of parameters for the same algorithms as used in

step (4).

4.1 Overlapping Definition of Modularity

Newman’s modularity is used to measure the quality of disjoint community

structure of a network. However, it is more realistic that nodes in networks be-

long to more than one community, resulting in overlapping communities [12]. For
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instance, a researcher may be active in several research areas, and a node in biolog-

ical networks might have multiple functions. It is also quite common that people

in social networks are naturally characterized by multiple community memberships

depending on their families, friends, professional colleagues, neighbors, etc. For this

reason, discovering overlapping communities became very popular in the last few

years. Several overlapping extensions of modularity [13–19] were proposed to mea-

sure the quality of overlapping community structure. These extensions are described

below.

If communities overlap, each node can belong to multiple communities, al-

though the strength of this connection can generally be different for different com-

munities. Given a set of overlapping communities C = {c1, c2, ..., c, ..., c|C|} in which

a node may belong to more than one of them, a vector of belonging coefficients

(ai,c1 , ai,c2 , ..., ai,c, ..., ai,c|C|) [14,18] can be assigned to each node i in the network. |C|
is the number of communities. The belonging coefficient ai,c measures the strength

of association between node i and community c. Without loss of generality, the

following constraints are assumed to hold:

0 ≤ ai,c ≤ 1 ∀i ∈ V, ∀c ∈ C

and∑
c∈C

ai,c = 1.

(4.1)

Therefore, the belonging strength is measured as a real value in the range of [0, 1]

and the sum of all belonging coefficients, which is 1, is the same for all nodes in the

network.

Zhang et al. [13] proposed an extended modularity which uses the average of

the belonging coefficients of two nodes as belonging function to measure the quality

of overlapping community structure:

QZ
ov =

∑
c∈C

 |Ein
c |
|E|

−
(
2|Ein

c |+ |Eout
c |

2|E|

)2
 , (4.2)

where |Ein
c | = 1

2

∑
i,j∈c

ai,c+aj,c
2

Aij, |Eout
c | =

∑
i∈c,j∈V−c

ai,c+(1−aj,c)

2
Aij, and |E| =
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1
2

∑
ij Aij. For the case of disjoint communities, QZ

ov reduces exactly to Newman’s

modularity (Q) given by Equation (2.9).

Nepusz et al. [14] considered the belonging coefficient ai,c as the probability

that node i is active in community c. Then, the probability that node i is active

in the same communities as node j is the dot product of their membership vectors,

denoted as sij:

sij =
∑
c∈C

ai,caj,c. (4.3)

The authors also adopted sij as the similarity measure between nodes i and j. By

replacing δci,cj in Equation (2.10) with the similarity measure sij defined above, they

proposed a fuzzified variant of modularity:

QF
ov =

1

2|E|
∑
ij

[
Aij −

kikj
2|E|

]
sij

=
1

2|E|
∑
c∈C

∑
i,j∈c

[
Aij −

kikj
2|E|

]
ai,caj,c.

(4.4)

In case communities are disjoint, there exists only one community c for every node

i for which ai,c = 1. Then, the fuzzified modularity (QF
ov) reduces to exactly the

original modularity (Q) described in Equation (2.10).

Shen et al. [15] proposed an extension of modularity for overlapping commu-

nity structure using Equation (4.4) but defined the belonging coefficients of node i

to be the reciprocal of the number of communities to which it belongs:

ai,c =
1

Oi

, (4.5)

where Oi is the number of communities containing node i. Then, the extended

modularity for overlapping community structure is given by:

QE
ov =

1

2|E|
∑
c∈C

∑
i,j∈c

[
Aij −

kikj
2|E|

]
ai,caj,c

=
1

2|E|
∑
c∈C

∑
i,j∈c

[
Aij −

kikj
2|E|

]
1

OiOj

.

(4.6)

For disjoint community structure, QE
ov reduces to the original modularity (Q) de-
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scribed in Equation (2.10).

Shen et al. [16] proposed another extension of modularity for overlapping com-

munities also using Equation (4.4). In this case, the coefficient of node i belonging

to community c is defined as:

ai,c =
1

ai

∑
k∈c

M c
ik

Mik

Aik, (4.7)

where Mik denotes the number of maximal cliques in the network containing edge

(i, k), M c
ik is the number of maximal cliques in community c that contains edge

(i, k), and ai is a normalization term defined as:

ai =
∑
c∈C

∑
k∈c

M c
ik

Mik

Aik. (4.8)

The maximal clique is a clique that is not a subset of any other cliques. Then, the

extended modularity for overlapping community structure is given by:

QC
ov =

1

2|E|
∑
c∈C

∑
i,j∈c

[
Aij −

kikj
2|E|

]
ai,caj,c. (4.9)

Note that for disjoint communities, this new extension also reduces to Newman’s

modularity shown in Equation (2.10).

Chen et al. [17] also proposed another extension of modularity with the same

Equation (4.4) but with the belonging coefficient defined as:

ai,c =

∑
k∈c Aik∑

c′∈Ci

∑
k∈c′ Aik

, (4.10)

where Ci is the set of communities to which node i belongs. It measures how

tightly node i connects to community c. Consequently, the extended definition of
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modularity for overlapping community structure is given by:

QO
ov =

1

2|E|
∑
c∈C

∑
i,j∈c

[
Aij −

kikj
2|E|

]
ai,caj,c

=
1

2|E|
∑
c∈C

∑
i,j∈c

[
Aij −

kikj
2|E|

] ∑
k∈c

Aik∑
c′∈Ci

∑
k∈c′

Aik

∑
k∈c

Ajk∑
c′∈Cj

∑
k∈c′

Ajk

.

(4.11)

Still, for disjoint community structure, QO
ov reduces to the original modularity given

by Equation (2.10).

Unlike the node-based extensions of modularity presented above, Nicosia et al.

[18] proposed an edge-based extension of modularity for overlapping communities. In

this case, the belonging coefficients represent how edges are assigned to communities.

The coefficient for edge l = (i, j) belonging to community c is βl(i,j),c = F (ai,c, aj,c),

where F (ai,c, aj,c) could be any function (product, average, or maximum) of ai,c and

aj,c. After trying several different functions, the authors stated that the best F is a

two-dimensional logistic function:

F (ai,c, aj,c) =
1

(1 + e−f(ai,c))(1 + e−f(aj,c))
, (4.12)

where f(ai,c) is a simple linear scaling function f(x) = 2px − p, p ∈ R. In papers

[12,75], p was selected to be 30. Then, the expected belonging coefficient of any edge

l = (i, k) starting from node i in community c is given by βe
l(i,k),c =

1
|V |
∑

k∈V βl(i,k),c

running over all nodes in the network. Accordingly, the expected belonging co-

efficient of any edge l = (k, j) pointing to node j in community c is defined as

βe
l(k,j),c = 1

|V |
∑

k∈V βl(k,j),c. Then, the edge-based extension of modularity is given

by:

QL
ov =

1

2|E|
∑
c∈C

∑
i,j∈c

[
rijcAij − sijc

kikj
2|E|

]

=
1

2|E|
∑
c∈C

∑
i,j∈c

[
βl(i,j),cAij −

βe
l(i,k),ckiβ

e
l(k,j),ckj

2|E|

]
,

(4.13)

where

rijc = βl(i,j),c = F (ai,c, aj,c) (4.14)
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and

sijc = βe
l(i,k),cβ

e
l(k,j),c

=

∑
k∈V βl(i,k),c

∑
k∈V βl(k,j),c

|V |2

=

∑
k∈V F (ai,c, ak,c)

∑
k∈V F (ak,c, aj,c)

|V |2
.

(4.15)

In QL
ov, rijc is used as the weight corresponding to the probability of the observed

edge l = (i, j), while sijc is used as the weight of the probability of an edge from

node i to node j in the null model. Note that although for disjoint communities

F (ai,c, aj,c) is practically 1 when both ai,c and aj,c are equal to 1, QL
ov does not

exactly reduce to the original modularity given by Equation (2.10).

Generally, there are two categories of overlapping community structure: crisp

(non-fuzzy) overlapping and fuzzy overlapping [19]. For crisp overlapping commu-

nity structure, each node belongs to one or more communities but without the

corresponding belonging coefficients. That is, the relationship between a node and

a community is binary: a node either belongs to a community or it does not. For

fuzzy overlapping community structure, each node can be a member of multiple

communities, but in general the values of belonging coefficients are different. Fuzzy

overlapping can be easily transformed to crisp overlapping with a threshold param-

eter. Namely, if the belonging coefficient of node i to community c is larger than

the value of the threshold, then node i stays in community c. Otherwise, node i is

deleted from community c. Crisp overlapping can be converted to fuzzy overlapping

by calculating the value of the belonging coefficient using Equations (4.5), (4.7), or

(4.10). However, calculating the belonging coefficient using Equation (4.7) is com-

putationally expensive since it needs to find all the maximal cliques of the network

first. Hence, in this chapter we only consider Equation (4.5) and Equation (4.10)

when converting crisp overlapping to fuzzy overlapping.

Now, we give two general definitions, Qov and Q′
ov, for node-based extensions
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of modularity. First, Qov is given by:

Qov =
∑
c∈C

 |Ein
c |
|E|

−
(
2|Ein

c |+ |Eout
c |

2|E|

)2
 , (4.16)

where |Ein
c | = 1

2

∑
i,j∈c f(ai,c, aj,c)Aij, |Eout

c | =
∑

i∈c
∑

c′∈C
c′ ̸=c
j∈c′

f(ai,c, aj,c′)Aij, and |E| =

1
2

∑
ij Aij. The belonging function f(ai,c, aj,c) can be the average or product of ai,c

and aj,c. That is, f(ai,c, aj,c) = ai,c+aj,c
2

or f(ai,c, aj,c) = ai,caj,c. Clearly, Qov with

f(ai,c, aj,c) =
ai,c+aj,c

2
is very similar to QZ

ov in Equation (4.2). Second, Q′
ov is given

by:

Q′
ov =

1

2|E|
∑
c∈C

∑
i,j∈c

[
Aij −

kikj
2|E|

]
f(ai,c, aj,c). (4.17)

where f(ai,c, aj,c) is the same as that in Equation (4.16). It is worth noting that

Q′
ov with the belonging function f(ai,c, aj,c) = ai,caj,c is actually the same as QF

ov

in Equation (4.4), QE
ov in Equation (4.6), QC

ov in Equation (4.9), and QO
ov in Equa-

tion (4.11). The only difference between these formulas is how the value of ai,c is

calculated.

It is easy to prove that Qov is equivalent to Q′
ov when f(ai,c, aj,c) = ai,caj,c.

From the definition of Qov, we know that |Ein
c | = 1

2

∑
i,j∈c ai,caj,cAij which is in fact

the same as the first term ofQ′
ov. Moreover, it is easy to show that (2|Ein

c |+ |Eout
c |)

2
=∑

i,j∈c kikjai,caj,c (see APPENDIX A.1). Hence, the second term of Qov is the same

as the second term of Q′
ov. Similarly, it can be shown that Qov is not equal to Q′

ov

when f(ai,c, aj,c) =
ai,c+aj,c

2
.

4.2 Localized Modularity Based on Community’s Neighbor-

hood

Newman’s modularity is a global measure which assumes that all pairs of nodes

have equal probability to connect with each other, which reflects the connectivity

among all communities. However, Muff et al. [20] argued that in many complex

networks most communities are connected to only a small fraction of remaining

communities, called local cluster connectivity property. Thus, they modified the
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definition of Newman’s modularity by taking into account local cluster connectivity

only to overcome global network dependency. The resulting measure is called local-

ized modularity. We denote the localized modularity here as NQ because it is based

on the neighborhood of a community. NQ for unweighted and undirected networks

is given by:

NQ =
∑
c∈C

 |Ein
c |

|Eneighb
c |

−
(
2|Ein

c |+ |Eout
c |

2|Eneighb
c |

)2
 , (4.18)

where |Eneighb
c | is the total number of edges in the subnetwork containing the com-

munity c and all its neighboring communities, i.e. the neighborhood of community

c. It means that the contribution of each community c to NQ is calculated based

on the neighborhood of c.

Unlike the traditional modularity (Q), the localized version of modularity

(NQ) is not bounded above by 1. The more locally connected communities a net-

work has, the bigger its NQ can grow. In a network where all communities are

connected to each other, NQ yields the same value as Q. NQ considers individual

communities and their neighbors, and therefore provides a measure of community

quality that is not dependent on other parts of the network.

Similar to the general node-based overlapping definition of modularity Qov

in Equation (4.16), we extend NQ for overlapping community structure as NQov.

The formula for NQov is exactly the same with NQ in Equation (4.18), while the

difference is that |Ein
c |, |Eout

c |, and |Eneighb
c | in NQov should consider the belonging

coefficients of nodes and also the belonging function between pairs of nodes. For

disjoint communities, NQov reduces exactly to NQ.
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4.3 Modularity Density for Overlapping Communities

According to Qov in Equation (4.16), we extendQds for overlapping community

structure as:

Qov
ds =

∑
c∈C

 |Ein
c |
|E|

dc −
(
2|Ein

c |+ |Eout
c |

2|E|
dc

)2

−
∑
c′∈C
c′ ̸=c

|Ec,c′ |
2|E|

dc,c′

 ,
dc =

2|Ein
c |∑

i,j∈c,i ̸=j f(ai,c, aj,c)
,

dc,c′ =
|Ec,c′|∑

i∈c,j∈c′ f(ai,c, aj,c′)
,

(4.19)

where in the formula |Ein
c | = 1

2

∑
i,j∈c f(ai,c, aj,c)Aij, |Eout

c | =
∑
i∈c

∑
c′∈C
c′ ̸=c
j∈c′

f(ai,c, aj,c′)Aij,

|Ec,c′ | =
∑

i∈c,j∈c′ f(ai,c, aj,c′)Aij, and |E| = 1
2

∑
ij
Aij. The belonging function f(ai,c, aj,c)

can be the product or average of ai,c and aj,c. For disjoint communities, Qov
ds reduces

exactly to Qds given by Equation (3.6). Notice that we do not extend modularity

density based on QL
ov since it is too complicated and far from intuitive.

4.4 Evaluation and Analysis

From Subsection 4.1, we know that all node-based overlapping extensions of

modularity can be expressed with Qov in Equation (4.16) using the belonging func-

tion f(ai,c, aj,c) =
ai,c+aj,c

2
or f(ai,c, aj,c) = ai,caj,c. For the edge-based overlapping

extension of modularity (QL
ov), the belonging function is given by Equation (4.12).

Also, the overlapping extension of the localized modularity NQov has the belong-

ing function f(ai,c, aj,c) = ai,c+aj,c
2

or f(ai,c, aj,c) = ai,caj,c. For the overlapping

extension of modularity density (Qov
ds), the belonging function f(ai,c, aj,c) can al-

so be the average or the product of ai,c and aj,c. Thus, there are two versions of

the belonging function for Qov, NQov, and Qov
ds. Therefore, we have Qov(average)

with f(ai,c, aj,c) = ai,c+aj,c
2

, Qov(product) with f(ai,c, aj,c) = ai,caj,c, QL
ov in E-

quation (4.13), NQov(average) with f(ai,c, aj,c) = ai,c+aj,c
2

, NQov(product) with

f(ai,c, aj,c) = ai,caj,c, Q
ov
ds(average) with f(ai,c, aj,c) = ai,c+aj,c

2
, and Qov

ds(product)

with f(ai,c, aj,c) = ai,caj,c. For fuzzy overlapping community structure, ai,c is given
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for each node i to each community c to which it belongs. For crisp overlapping com-

munity structures, we can adopt Equation (4.5) and Equation (4.10) to calculate

ai,c. Consequently, two versions of the belonging coefficient can be used to convert

crisp overlapping to fuzzy overlapping.

We also consider eight local community quality metrics: the number of Intra-

edges, Intra-density, Contraction, the number of Boundary-edges, Expansion, Con-

ductance [21, 22, 69], the Fitness function [70], and the Average Modularity Degree

[71]. These metrics describe how the connectivity structure of a given set of nodes

resembles a community. All of them rely on the intuition that communities are

sets of nodes with many edges inside them and few edges outside of them. We also

extend these metrics to be applicable to fuzzy overlapping community structure in

which nodes are assigned probability of belonging to each community of which they

are part. Two versions of the belonging coefficient and two versions of the belonging

function are considered for each metric. For fuzzy overlapping community structure,

we define the size of a community c as |c| = ∑
i∈c ai,c.

The number of Intra-edges (IE): |Ein
c |; it is the total number of edges in c. A

large value of this metric is better than a small value in terms of the community

quality.

Intra-density (ID): dc in Equation (4.19). The larger the value of this metric,

the higher the quality of the communities.

Contraction (CNT): 2|Ein
c |/|c|; it measures the average number of edges per

node inside the community c. A larger value of contraction means a better commu-

nity quality.

The number of Boundary-edges (BE): |Eout
c |; it is the total number of edges

on the boundary of c. A small value of this metric is better than a large value in

terms of the community quality.

Expansion (EXP): |Eout
c |/|c|; it measures the average number of edges (per node)

that point outside the community c. A smaller value of expansion corresponds to a

better community structure.

Conductance (CND): |Eout
c |

2|Ein
c |+|Eout

c | ; it measures the fraction of the total number

of edges that point outside the community. A smaller value of conductance means
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a better community quality.

The Fitness (F) function: |Ein
c |

|Ein
c |+|Eout

c | ; it is the ratio between the internal degree

and the total degree of a community c. A larger value of F indicates a better com-

munity quality.

Average Modularity Degree (D):
∑

c∈C
2|Ein

c |−|Eout
c |

|c| ; it is the summation of the

average modularity degree of each community. The average modularity degree of a

community (2|E
in
c |−|Eout

c |
|c| ) equals to the average inner degree (2|E

in
c |

|c| ) minus the aver-

age outer degree ( |E
out
c |
|c| ). The larger the value of D, the higher the quality of the

community structure.

In this section, we compare different choices of the belonging coefficient and

the belonging function to be used for Qov, QL
ov, NQov, Qov

ds, and the eight local

community quality metrics in order to see which version of the belonging coefficient

and which version of the belonging function are better. Then, we try to determine

which of the three overlapping extensions of modularity (two kinds of node-based

extensions of modularity and the edge-based extension of modularity) is the best. In

addition, we compare the performance of all these overlapping metrics with the best

combination of belonging coefficient and belonging function to recommend which

metrics to select when measuring the quality of overlapping community structure.

The experiments are done with three community detection algorithms, Speaker-

listener Label Propagation Algorithm (SLPA) [72, 73], Clique Percolation Method

(CFinder) [23], and SpeakEasy [74] which is a label propagation algorithm special-

ized for biology networks, on a large number of real-world networks and synthetic

networks. We vary the threshold parameter r of SLPA [72,73] from 0.05 to 0.5 with

step 0.05. SLPA gets crisp overlapping communities when r < 0.5 and gets disjoint

communities when r = 0.5 (for r > 0.5 SLPA generates the same disjoint communi-

ties as for r = 0.5). For each value of threshold r, we adopt 10 running samples since

the community detection result of SLPA is not deterministic. We vary the parame-

ter k of CFinder from 3 to 20 with step 1 but only when such k-clique-community

is available. It is usually the case that some nodes are not in the final discovered

k-clique-communities so we consider each of these nodes forming a community of

itself. The threshold parameter tr of SpeakEasy is varied from 0.05 to 1 with step
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0.05. SpeakEasy gets crisp overlapping community structure when tr < 1 and gets

disjoint community structure when tr = 1.

Then, for the community detection results of SLPA with different values of

threshold r, the results of CFinder with different values of k, and the results of

SpeakEasy with different thresholds tr on each of these networks, we calculate the

values of Qov, Q
L
ov, NQov Q

ov
ds, and the eight local community quality metrics (twelve

metrics in total) with two versions of the belonging coefficient (BC) and two ver-

sions of the belonging function (BF). For each r of SLPA, the values of all the

metrics are calculated as the average of the 10 runs. For convenience, we denote E-

quation (4.5) and Equation (4.10) as the first and the second version of the belonging

coefficient, respectively. We also denote the belonging function f(ai,c, aj,c) =
ai,c+aj,c

2

as the first version of the belonging function and f(ai,c, aj,c) = ai,caj,c as the second

version of the belonging function. We determine which version of the belonging co-

efficient and which version of the belonging function are better based on the largest

number of quality metrics consistent with each other on determining the best value

of threshold r for SLPA, the best value of parameter k for CFinder, and the best

value of threshold tr for SpeakEasy on all these networks. Finally, we compare the

performance of these overlapping metrics with the best combination of belonging

coefficient and belonging function by looking at how many times each metric is a-

mong those that are consistent with each other on determining the best values of

parameters for the three adopted community detection algorithms.

4.4.1 Real-world Network Datasets

We consider totally 23 real-world network datasets, including friendship net-

work, collaboration networks, co-purchasing networks, biology networks, etc. Ta-

ble 4.1 shows the basic properties of all these datasets. It can be seen that these

networks have different numbers of nodes and different numbers of edges, varying

from very small networks to very large networks. Moreover, edges in some networks

have weights and directions.

Celegans is a metabolic network of C. elegans [45]. Dolphin is an social

network of frequent associations between 62 dolphins in a community living off
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Table 4.1: Basic properties of all real-world network datasets used in the
experiments.

Name #Nodes#Edges Type Description
Celegans 453 2025 Unweighted & Undirected Metabolic network of C. elegans [45]
Dolphin 62 159 Unweighted & Undirected Dolphin social network [76]
Email 1133 5451 Unweighted & Undirected Email network [77]

Football 115 613 Unweighted & Undirected American college football network [78]
Jazz 198 2742 Unweighted & Undirected Jazz musicians network [79]

Karate 34 78 Unweighted & Undirected Zachary’s karate club network [80]
Lesmis 77 254 Weighted & Undirected Characters coappearance network [81]

Netscience 1461 2742 Weighted & Undirected Coauthorship network [39]
PGP 10680 24316 Unweighted & Undirected PGP network [82]

Polblogs 1224 19022 Unweighted & Directed Political blogs network [83]
Polbooks 105 441 Unweighted & Undirected Network of books about US politics [84]
Railway 297 1213 Unweighted & Undirected Indian railway network [85]
Santafe 118 200 Unweighted & Undirected Collaboration network of scientists [78]

Collins cyc 1097 6392 Unweighted & Undirected

Protein-protein interaction networks [74]

Collins cyc w 1097 6392 Weighted & Undirected
Collins mips 734 4778 Unweighted & Undirected
Collins sgd 809 2955 Unweighted & Undirected
Gavin cyc 997 4031 Unweighted & Undirected

Gavin cyc w 997 4031 Weighted & Undirected
Gavin mips 701 2695 Unweighted & Undirected
Gavin sgd 747 2639 Unweighted & Undirected
Amazon 319948 880215 Unweighted & Undirected Amazon product network [33]
DBLP 260998 950059 Unweighted & Undirected DBLP collaboration network [33]

Doubtful Sound, New Zealand [76]. Email is a network of email interchanges be-

tween members of the Univeristy Rovira i Virgili (Tarragona) [77]. Football is a

network that represents the schedule of games between college football teams in a

single season [78]. Jazz is a network of collaborations between jazz musicians [79].

Karate is a network representing the friendships between 34 members of a karate

club at a US university during two years [80]. Lesmis is a coappearance network of

characters in the novel Les Miserables [81]. Netscience is a coauthorship network

of scientists working on network theory and experiment [39]. PGP is the giant

component of the network of users of the Pretty-Good-Privacy (PGP) algorithm

for secure information interchange [82]. Polblogs is a directed network of hyper-

links between weblogs on US politics, recorded in 2005 by Adamic and Glance [83].

Polbooks is a network of books about US politics published around the time of

the 2004 presidential election and sold by the online bookseller Amazon.com [84].

Railway is a network with nodes representing Indian railway stations, where t-
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wo stations are connected by an edge if there exists at least one train-route such

that both stations are scheduled stops on that route [85]. Santafe is the largest

connected component of the collaboration network of scientists at the Santa Fe Insti-

tute during years 1999 and 2000 [78]. Collins cyc, Collins cyc w, Collins mips,

Collins sgd, Gavin cyc, Gavin cyc w, Gavin mips, and Gavin sgd are two

kinds (referred as Collins [86] and Gavin [87] here) of popular high throughput

protein-protein interaction networks derived from measurements obtained by affin-

ity purification and mass spectrometry (AP-MS) techniques [74]. These two kinds

of networks are further refined with three gold-standards for protein complexes, in-

cluding the classic Munich Information Center for Protein Sequences (MIPS) [88]

and the more recent Saccharomyces Genome Database (SGD) [89]. The complete

MIPS dataset as well as partial information from SGD are incorporated into a

third protein complex list known as CYC2008 [90]. Thus, we have Collins cyc,

Collins mips, Collins sgd, Gavin cyc, Gavin mips, and Gavin sgd, respec-

tively. Collins cyc w and Gavin cyc w are respectively the weighted versions of

Collins cyc and Gavin cyc, in which the weight is proportional to the probability

a given interaction pair truly exists. Amazon is a product co-purchasing network

of the Amazon website [33]. The nodes of the network represent products and edges

link commonly copurchased products. DBLP is a scientific collaboration network

where nodes represent authors and edges connect authors that have co-authored a

paper [33].

Tables 4.2-4.4 show the best value of threshold r for SLPA, the best value of

parameter k for CFinder, and the best value of threshold tr for SpeakEasy, respec-

tively, along with the corresponding number of community quality metrics (out of

twelve) that are consistent with each other on determining this best r, this best k,

and this best tr for the four combinations of two versions of belonging coefficient

and two versions of belonging function on all 23 real-world network datasets. For

instance, entry 0.5 (5) in row Dolphin and column (BC,BF)=(1,1) in Table 4.2

means that there are totally five out of twelve community quality metrics showing

that the best value of threshold r for SLPA is 0.5 when adopting the first version of

belonging coefficient and the first version of belonging function. The red italic font
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Table 4.2: The best value of threshold r for SLPA and the corresponding
number of community quality metrics (out of twelve) that are consistent
with each other on determining this best r for the four combinations
of two versions of belonging coefficient and two versions of belonging
function on all real-world network datasets. The best value in each row
is marked by red italic font.

SLPA

Datasets (BC,BF)=(1,1) (BC,BF)=(1,2) (BC,BF)=(2,1) (BC,BF)=(2,2)

Celegans 0.5 (6) 0.05 (4) 0.5 (6) 0.4 (5)

Dolphin 0.5 (5) 0.4 (8) 0.5 (6) {0.05,0.4} (5)
Email 0.5 (8) 0.5 (10) 0.5 (7) 0.5 (8)

Football {0.45,0.5} (9) {0.45,0.5} (11) {0.45,0.5} (8) 0.25 (7)

Jazz 0.5 (10) 0.5 (10) 0.5 (9) 0.5 (9)

Karate 0.5 (8) 0.45 (10) 0.5 (7) 0.45 (10)

Lesmis {0.25,0.5} (4) 0.25 (6) 0.5 (4) 0.15 (5)

Netscience 0.35 (4) 0.5 (4) 0.35 (5) {0.35,0.5} (3)
PGP 0.5 (8) 0.5 (10) 0.5 (7) 0.5 (8)

Polblogs 0.5 (7) 0.5 (8) 0.5 (6) 0.5 (4)

Polbooks 0.5 (7) 0.2 (5) 0.5 (7) 0.2 (4)

Railway 0.5 (8) 0.5 (9) 0.5 (7) 0.5 (7)

Santafe 0.4 (6) 0.4 (7) 0.4 (5) 0.4 (5)

Collins cyc 0.5 (8) 0.5 (5) 0.5 (8) 0.5 (6)

Collins cyc w 0.05 (7) 0.05 (7) 0.05 (6) 0.05 (8)

Collins mips 0.45 (5) 0.45 (6) {0.05,0.45} 4 {0.05,0.45} (4)
Collins sgd 0.5 (4) 0.1 (4) 0.5 (4) 0.1 (6)

Gavin cyc 0.45 (5) 0.45 (6) 0.45 (5) 0.45 (7)

Gavin cyc w 0.35 (5) 0.3 (6) 0.05 (4) 0.3 (5)

Gavin mips 0.5 (9) 0.5 (11) 0.5 (8) 0.5 (6)

Gavin sgd 0.5 (8) 0.5 (9) 0.5 (7) 0.5 (7)

Amazon 0.5 (8) 0.5 (10) 0.5 (6) 0.5 (9)

DBLP 0.5 (7) 0.5 (10) 0.5 (6) 0.5 (8)

in each dataset row of these tables denotes the best combination of the two versions

of belonging coefficient and two versions of belonging function for each dataset. For

example, 0.4 (8 ) in row Dolphin and column (BC,BF)=(1,2) in Table 4.2 indi-

cates that the twelve metrics with the first version of belonging coefficient and the

second version of belonging function is the best since the number of metrics (which

is eight here) consistent with each other on determining the best value of r is the

largest among the four combinations.

It can be observed from Table 4.2 that almost all the networks, except Cel-
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Table 4.3: The best value of parameter k for CFinder and the corre-
sponding number of community quality metrics (out of twelve) that are
consistent with each other on determining this best k for the four com-
binations of two versions of belonging coefficient and two versions of
belonging function on all real-world network datasets. The best value in
each row is marked by red italic font.

CFinder

Datasets (BC,BF)=(1,1) (BC,BF)=(1,2) (BC,BF)=(2,1) (BC,BF)=(2,2)

Celegans 3 (6) 3 (7) 3 (5) {3,9} (4)
Dolphin 3 (11) 3 (12) 3 (7) 3 (7)

Email 3 (10) 3 (10) 4 (4) {3,4,9-12} (3)
Football 4 (6) {3,4} (5) 4 (5) 4 (5)

Jazz 3 (8) 3 (8) 3 (6) 3 (5)

Karate 3 (11) 3 (11) 3 (8) 3 (7)

Lesmis 3 (7) 3 (8) 6 (4) {3,6} (4)
Netscience 3 (11) 3 (12) 3 (9) 3 (9)

PGP 3 (10) 3 (12) 3 (6) 3 (8)

Polblogs N/A N/A N/A N/A

Polbooks 3 (10) 3 (10) 3 (7) 3 (6)

Railway 3 (9) 3 (9) 3 (4) 3 (4)

Santafe 3 (10) 3 (11) 3 (7) 3 (8)

Collins cyc 3 (11) 3 (11) 3 (7) 3 (8)

Collins cyc w N/A N/A N/A N/A

Collins mips 3 (10) 3 (10) 3 (6) 3 (6)

Collins sgd 3 (12) 3 (12) 3 (8) 3 (8)

Gavin cyc 3 (11) 3 (12) 3 (6) 3 (6)

Gavin cyc w N/A N/A N/A N/A

Gavin mips 3 (12) 3 (12) 3 (7) 3 (6)

Gavin sgd 3 (11) 3 (11) 3 (6) 3 (6)

Amazon 3 (11) 3 (11) 3 (6) 3 (6)

DBLP 3 (9) 3 (10) 3 (5) 3 (5)

egans, Netscience, Polbooks, Collins cyc, Collins cyc w, Collins sgd, and

Gavin cyc, imply that (BC,BF)=(1,2) is the best among the four possible com-

binations when using SLPA. Table 4.3 shows that (BC,BF)=(1,2) is the best on

all the networks, except Football, when using CFinder. Results for CFinder on

Polblogs, Collins cyc w, and Gavin cyc w are not provided because it has not

finished running on these three networks for more than two months processing many

potential k-cliques. Similarly, Table 4.4 indicates that (BC,BF)=(1,2) is the best

on all the networks, except Jazz, when using SpeakEasy. We can observe from the
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Table 4.4: The best value of threshold tr for SpeakEasy and the cor-
responding number of community quality metrics (out of twelve) that
are consistent with each other on determining this best tr for the four
combinations of two versions of belonging coefficient and two versions of
belonging function on all real-world network datasets. The best value in
each row is marked by red italic font.

SpeakEasy

Datasets (BC,BF)=(1,1)(BC,BF)=(1,2) (BC,BF)=(2,1) (BC,BF)=(2,2)

Celegans 0.75 (6) 0.75 (7) 0.75 (6) 0.75 (6)

Dolphin 0.4 (3) 0.4 (4) 0.15 (4) 0.7 (4)

Email 0.9 (3) 1 (3) {0.05,0.9} (2) {0.5,1} (3)

Football 0.6 (10) 0.6 (10) 0.6 (10) 0.6 (10)

Jazz 0.75 (5) 0.75 (5) 0.75 (5) 0.75 (6)

Karate 0.45 (5) 0.45 (6) 0.45 (5) 0.45 (6)

Lesmis 0.85 (5) 0.85 (6) 0.85 (4) 0.85 (4)

Netscience 0.7 (4) 0.25 (10) 0.05 (3) {0.15,0.2,0.25,0.7} (2)
PGP 0.85 (5) 0.85 (7) {0.05,0.75,0.85} (3) 0.85 (4)

Polblogs 0.7 (4) 0.7 (4) 0.45 (3) {0.5,0.7,0.8,0.9} (2)
Polbooks 0.95 (5) 0.95 (6) {0.5,0.95} (3) 0.95 (4)

Railway 0.8 (4) 0.8 (5) 0.8 (3) 0.8 (4)

Santafe 0.9 (5) 0.9 (5) 0.9 (4) {0.65,0.9} (4)
Collins cyc 0.9 (8) 0.9 (10) 0.9 (4) 0.9 (6)

Collins cyc w 0.55 (6) 0.55 (9) {0.1,0.55} (3) 0.55 (4)

Collins mips 0.4 (7) 0.4 (10) 0.4 (5) {0.25,0.4,0.6} (3)
Collins sgd 0.8 (7) 0.8 (10) {0.5,0.8} (4) {0.5,0.8} (5)
Gavin cyc 0.7 (6) 0.7 (8) 0.7 (5) 0.7 (6)

Gavin cyc w 0.7 (4) 0.7 (5) {0.05,0.5,0.7,0.95} (2) 0.7 (3)

Gavin mips 0.9 (6) 0.9 (8) 0.9 (5) 0.9 (5)

Gavin sgd 0.8 (5) 0.8 (6) 0.8 (6) 0.8 (6)

Amazon 1 (9) 1 (11) 1 (8) 1 (11)

DBLP 1 (9) 1 (10) 1 (8) 1 (10)

three tables that for each network there are at least two out of three algorithms

(SLPA, CFinder, and SpeakEasy) supporting conclusion that (BC,BF)=(1,2) is the

best. Thus, we determined that the first version of the belonging coefficient is better

than the alternative. It means that to convert crisp overlapping to fuzzy overlap-

ping the belonging coefficient of a node to a community should be the reciprocal

of the number of communities of which this node is a part. When the relationship

between a node and the communities to which it belongs is binary, there is no in-

formation about the strength of the membership. In this case, it is intuitive and
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reasonable to assign a node to its communities using equal belonging coefficients.

We also determined that the second version of the belonging function is better than

the alternative. It means that the probability of the event that two nodes belong

to the same community should be the product, not the average, of their belonging

coefficients to that community. In addition, Qov = Q′
ov when f(ai,c, aj,c) = ai,caj,c

as proved in Subsection 4.1, which is another way of showing that the second ver-

sion of the belonging function is much more suitable for use in the metric than the

first. Therefore, we conclude that the overlapping community quality metrics with

the first version of the belonging coefficient and the second version of the belonging

function are the best among the four possible combinations on all the real-world

network datasets. Tables 1-23 in APPENDIX A.2 contain more detailed results on

these real-world network datasets.

Table 4.5 shows the number of times (maximum three since there are totally

three community detection algorithms adopted) that the community quality metric

is among the quality metrics that are consistent with each other on determining

the best value of threshold r for SLPA, the best value of parameter k for CFinder,

and the best value of threshold tr for SpeakEasy on each real-world network with

(BC,BF)=(1,2). The last row in the table presents on how many networks this metric

got support from all three algorithms and how many times on average (maximum

three; but for Polblogs, Collins cyc w, and Gavin cyc w the maximum value

is two because CFinder has no result for these networks) this metric got support

from each of the 23 real-world networks. This table indicates that the edge-based

overlapping definition is the best overlapping extension for modularity among the

three extensions (two kinds of node-based extensions of modularity and the edge-

based extension of modularity). The fitness function gets the largest values in the

last row and generally local metrics are better than global metrics here which may

imply that local community quality metrics are more applicable for measuring the

quality of overlapping community structure. Note that eight out of twelve metrics

are local metrics, so they are majority here which may impact the selection of the

most consistent metrics. In addition, even though we have already shown in [21,

22, 91] that modularity density simultaneously resolves two opposite yet coexisting
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Table 4.5: The number of times (maximum three since there are total-
ly three community detection algorithms adopted) that the community
quality metric is among those consistent with each other on determining
the best value of threshold r for SLPA, the best value of parameter k
for CFinder, and the best value of threshold tr for SpeakEasy on each
real-world network with (BC,BF)=(1,2). The best value in the last row
is marked by red italic font.

Datasets QovNQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

Celegans 1 1 1 1 3 0 2 0 2 2 3 2

Dolphin 3 2 3 2 2 2 1 1 2 2 1 3

Email 2 2 3 2 3 1 1 1 2 2 2 2

Football 2 1 3 3 3 2 3 2 3 3 3 3

Jazz 2 2 2 2 2 1 1 3 2 2 2 2

Karate 3 3 3 3 2 1 2 1 3 2 2 2

Lesmis 0 2 1 0 2 2 3 0 2 3 3 2

Netscience 3 2 3 2 3 1 1 3 2 2 2 2

PGP 3 2 3 2 2 1 3 2 3 3 2 3

Polblogs 1 1 1 1 1 0 1 1 1 1 1 2

Polbooks 2 1 2 1 2 2 1 0 2 3 3 2

Railway 1 1 1 1 2 1 3 2 2 3 3 3

Santafe 2 2 2 1 1 2 3 0 2 3 3 2

Collins cyc 3 2 3 1 2 3 2 2 2 2 2 2

Collins cyc w 2 1 2 0 2 0 1 1 2 2 2 1

Collins mips 2 3 3 1 2 2 2 1 3 2 2 3

Collins sgd 2 2 2 1 3 2 3 1 2 3 3 2

Gavin cyc 2 2 2 2 2 1 1 2 3 3 3 3

Gavin cyc w 0 0 0 1 1 0 2 0 1 2 2 2

Gavin mips 3 2 3 2 2 2 3 2 3 3 3 3

Gavin sgd 2 3 2 1 2 2 3 1 2 3 3 2

Amazon 3 3 3 3 3 2 3 1 3 2 3 3

DBLP 2 2 3 3 3 2 2 1 3 3 3 3

8
(2)

4
(1.83)

12
(2.22)

4
(1.57)

8
(2.17)

1
(1.39)

10
(2.04)

2
(1.22)

9
(2.26)

13
(2.43)

14
(2.43)

11
(2.35)

problems of modularity, Qov
ds is not highly consistent with majority of other metrics.

This might be because only one other metric consider community density. We will

investigate if adding more community density based metrics can change the above

results.
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4.4.2 LFR Benchmark Networks

LFR (named after the initials of names of authors) benchmark networks [92]

have become a standard in the evaluation of the performance of community detection

algorithms. The LFR benchmark network that we used here has 1000 nodes with

average degree 15 and maximum degree 50. The exponent γ for the degree sequence

varies from 2 to 3. The exponent β for the community size distribution ranges from

1 to 2. Then, four pairs of the exponents (γ, β) = (2, 1), (2, 2), (3, 1), and (3, 2) are

chosen in order to explore the widest spectrum of graph structures. The mixing

parameter µ is varied from 0.05 to 0.95. It means that each node shares a fraction

(1−µ) of its edges with the other nodes in its community and shares a fraction µ of its

edges with the nodes outside its community. Thus, low mixing parameters indicate

strong community structure. The degree of overlap is determined by two parameter-

s. On is the number of overlapping nodes, and Om is the number of communities to

which each overlapping node belongs. On here is set to 10% of the total number of

nodes. Instead of fixing Om, we allow it to vary from 1 to 8 indicating the overlap-

ping diversity of overlapping nodes. By increasing the value of Om, we create harder

detection tasks. Also, we generate 10 network instances for each configuration of

these parameters. Hence, each metric value for a certain configuration of LFR rep-

resents the average metric values of all 10 instances. Since the experimental results

are similar for all four pairs of exponents (γ, β) = (2, 1), (2, 2), (3, 1), and (3, 2), for

the sake of brevity, we only present the results for (γ, β) = (2, 1) here. In addition,

these results are similar for different values of µ and we cannot show all the results

in one page as can be observed from Tables 24-26 in APPENDIX A.3, so here we

only show the results for µ = 0.3, 0.35, and 0.4. We choose µ = 0.3, 0.35, and 0.4 to

better illustrate the results since with µ = 0.3, 0.35, and 0.4 the community struc-

tures generated by LFR are around the boundary of well-separated communities

and well-connected communities. For each node, µ = 0.5 means that the number

of its edges with other nodes in its communities is equal to the number of its edges

with nodes outside its community, which makes the community structure difficult

to discover.

Tables 4.6-4.8 show the best value of threshold r for SLPA, the best value of
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Table 4.6: The best value of threshold r for SLPA and the corresponding
number of community quality metrics (out of twelve) that are consistent
with each other on determining this best r for the four combinations of
two versions of belonging coefficient and two versions of belonging func-
tion on LFR benchmark networks with (α, β) = (1, 2) and µ = 0.3, 0.35, 0.4.
The best value in each row is marked by red italic font.

SLPA

µ Om (BC,BF)=(1,1) (BC,BF)=(1,2) (BC,BF)=(2,1) (BC,BF)=(2,2)

0.3

1 0.5 (7) 0.5 (8) 0.5 (7) 0.5 (6)
2 0.5 (8) 0.5 (5) 0.5 (7) 0.3 (4)
4 0.5 (9) 0.5 (10) 0.5 (8) 0.5 (5)
6 0.5 (9) 0.5 (10) 0.5 (8) 0.5 (6)
8 0.5 (9) 0.5 (10) 0.5 (8) 0.5 (9)

0.35

1 0.25 (5) 0.25 (6) 0.25 (4) 0.25 (5)
2 0.5 (7) 0.45 (7) 0.5 (7) 0.45 (6)
4 0.5 (8) 0.5 (9) 0.5 (7) 0.5 (6)
6 0.5 (8) 0.5 (9) 0.5 (7) 0.5 (8)
8 0.5 (7) 0.5 (9) 0.5 (6) 0.5 (8)

0.4

1 0.5 (6) 0.25 (5) 0.5 (4) {0.2,0.25,0.45} (3)
2 0.5 (8) 0.5 (9) 0.5 (7) 0.5 (5)
4 0.5 (9) 0.5 (10) 0.5 (8) 0.5 (8)
6 0.5 (9) 0.5 (10) 0.5 (9) 0.5 (9)
8 0.5 (8) 0.5 (9) 0.5 (7) 0.5 (8)

parameter k for CFinder, and the best value of threshold tr for SpeakEasy, respec-

tively, along with the corresponding number of community quality metrics (out of

twelve) that are consistent with each other on determining this best r, this best

k, and this best tr for the four possible combinations of two versions of belonging

coefficient and two versions of belonging function on LFR benchmark networks with

(α, β) = (1, 2) and µ = 0.3, 0.35, 0.4. Table 4.6 implies that (BC,BF)=(1,2) is the

best among the four possible combinations on all configurations of LFR networks

except µ = 0.3, Om = 2 and µ = 0.4, Om = 1 when using SLPA. Table 4.7 demon-

strates that (BC,BF)=(1,2) is the best on all configurations of LFR networks when

using CFinder. Table 4.8 indicates that (BC,BF)=(1,2) is the best among the four

combinations on all configurations of LFR networks except µ = 0.35, Om = 6 and

µ = 0.4, Om = 2, 4 when using SpeakEasy. Consequently, we could conclude that the

overlapping community quality metrics with the first version of belonging coefficient

and the second version of the belonging function are the best among the four possi-
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Table 4.7: The best value of parameter k for CFinder and the corre-
sponding number of community quality metrics (out of twelve) that are
consistent with each other on determining this best k for the four com-
binations of two versions of belonging coefficient and two versions of
belonging function on LFR benchmark networks with (α, β) = (1, 2) and
µ = 0.3, 0.35, 0.4. The best value in each row is marked by red italic font.

CFinder

µ Om (BC,BF)=(1,1) (BC,BF)=(1,2) (BC,BF)=(2,1) (BC,BF)=(2,2)

0.3

1 4 (9) 4 (9) 4 (7) 4 (6)
2 {3,4} (5) 4 (6) 3 (5) 4 (5)
4 3 (6) 3 (6) 3 (4) 3 (4)
6 3 (5) 4 (7) {3,4,11} (3) 4 (4)
8 3 (5) 4 (7) {3,4,12} (3) 4 (4)

0.35

1 4 (8) 4 (8) 4 (6) 4 (5)
2 3 (6) 3 (6) {3,8} (4) 4 (4)
4 3 (6) 4 (6) 3 (4) 4 (4)
6 4 (5) 4 (7) 4 (5) 4 (5)
8 4 (6) 4 (7) 4 (4) 4 (5)

0.4

1 4 (6) 3 (6) {3,4,8} (4) 4 (4)
2 3 (6) 3 (6) {3,9} (4) 4 (4)
4 3 (6) 4 (6) {3,9} (4) 4 (4)
6 4 (7) 4 (8) 4 (5) 4 (5)
8 4 (6) 4 (7) 4 (5) 4 (5)

ble combinations on LFR networks. Please refer to Tables 24-26 in APPENDIX A.3

for more detailed results on LFR benchmark networks.

Table 4.9 shows the number of times (maximum three since there are totally

three community detection algorithms adopted) that the community quality metric

is among the metrics that are consistent with each other on determining the best

value of threshold r for SLPA, the best value of parameter k for CFinder, and the

best value of threshold tr for SpeakEasy on each configuration of LFR benchmark

networks with (α, β) = (1, 2) and µ = 0.3, 0.35, 0.4 when (BC,BF)=(1,2). The last

row in the table presents how many different configurations of LFR networks support

this metric across all three algorithms and how many times on average (maximum

three) this metric got support from each of the 15 different configurations. This table

shows results similar with those presented in Table 4.5. Node-based overlapping

extension and edge-based overlapping extension of modularity perform equally well

on LFR networks. The last row shows that the fitness function has the largest values
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Table 4.8: The best value of threshold tr for SpeakEasy and the corre-
sponding number of quality metrics (out of twelve) that are consistent
with each other on determining this best tr for the four combinations of
two versions of belonging coefficient and two versions of belonging func-
tion on LFR benchmark networks with (α, β) = (1, 2) and µ = 0.3, 0.35, 0.4.
The best value in each row is marked by red italic font.

SpeakEasy

µ Om (BC,BF)=(1,1) (BC,BF)=(1,2) (BC,BF)=(2,1) (BC,BF)=(2,2)

0.3

1 0.75 (9) 0.75 (9) 0.75 (9) 0.75 (9)
2 0.8 (7) 0.8 (8) 0.8 (6) 0.8 (7)
4 1 (4) 1 (4) 1 (4) 1 (4)
6 0.95 (4) 0.95 (4) 0.05 (3) {0.35,0.7} (4)
8 0.05 (3) {0.4,0.6} (4) {0.05,0.85} (3) {0.4,0.85} (3)

0.35

1 0.8 (9) 0.8 (9) 0.8 (9) 0.8 (9)
2 0.95 (5) 0.95 (6) 0.95 (4) {0.35,0.95} (3)
4 {0.05,0.95} (3) 0.75 (4) {0.05,0.95} (3) 0.95 (3)
6 0.85 (5) 0.85 (4) 0.85 (4) 0.45 (3)
8 {0.05,0.85} (3) 0.9 (5) {0.05,0.85,1} (3) {0.85,0.9} (3)

0.4

1 0.15 (9) 0.15 (9) 0.15 (9) 0.15 (9)
2 {0.8,0.85,0.95} (3) 0.95 (4) {0.05,0.85,0.95} (3) 0.95 (5)
4 0.95 (5) 0.95 (6) 0.95 (4) 0.95 (4)
6 0.95 (4) {0.65,0.75} (3) 0.75 (4) 0.75 (6)
8 {0.05,0.9,1} (3) 0.4 (5) {0.05,0.95,1} (3) {0.4,0.5} (3)

and generally local metrics are better than global metrics, and still Qov
ds performs

poor. The reason is the same as given for the results in Table 4.5.

4.5 Summary

In this chapter, we determined which versions of the belonging coefficient

and the belonging function are better for measuring quality of fuzzy overlapping

community structure. We found that the first version of the belonging coefficient is

better than the second one, which means that the coefficient of a node belonging to a

community should be the reciprocal of the number of communities to which this node

belongs. In addition, we found that the second version of the belonging function is

better than the first version, meaning that the probability that two nodes belong

to the same community should be the product, not the average, of their belonging

coefficients. Moreover, we proposed overlapping extensions for localized modularity,

modularity density, and eight local community quality metrics analogous to such
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Table 4.9: The number of times (maximum three since there are total-
ly three community detection algorithms adopted) that the community
quality metric is among those consistent with each other on determining
the best value of threshold r for SLPA, the best value of parameter k for
CFinder, and the best value of threshold tr for SpeakEasy on each config-
uration of LFR benchmark networks with (α, β) = (1, 2) and µ = 0.3, 0.35, 0.4
when (BC,BF)=(1,2). The best value in the last row is marked by red
italic font.

µ Om Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

0.3

1 3 2 3 3 1 0 2 0 3 3 3 3
2 3 1 3 2 1 1 2 0 2 1 1 2
4 1 2 1 1 1 3 2 2 1 2 2 2
6 2 1 2 2 0 1 2 0 3 3 3 2
8 3 1 3 2 1 1 3 0 3 3 3 2

0.35

1 3 1 3 2 1 0 2 0 3 2 3 3
2 2 0 2 1 1 2 2 1 1 2 2 3
4 2 2 2 2 0 0 3 0 2 2 2 2
6 2 1 2 2 0 0 2 0 3 3 3 2
8 3 1 3 2 1 0 2 0 3 2 2 2

0.4

1 1 0 1 1 2 1 3 0 2 3 3 3
2 2 1 2 1 1 2 2 0 1 2 2 3
4 3 2 3 2 0 1 3 0 2 2 2 2
6 3 2 3 3 0 1 3 0 2 3 3 1
8 2 1 2 2 1 0 3 0 2 3 3 2

7
(2.33)

0
(1.2)

7
(2.33)

2
(1.87)

0
(0.73)

1
(0.87)

6
(2.4)

0
(0.2)

6
(2.2)

7
(2.4)

8
(2.47)

5
(2.27)

extension of modularity. Based on the experimental results, we recommend using the

edge-based overlapping extension of modularity with the first version of belonging

coefficient and with its own belonging function. We also recommend using the node-

based overlapping extension of modularity and overlapping extension of modularity

density with the first version of belonging coefficient and the second version of

belonging function as the metrics of the global quality of overlapping community

structure.

In the future, we plan to explore local community quality metrics for overlap-

ping community structure and investigate more community quality metrics incor-

porating community density to see whether putting community density into these

metrics will make them perform better.



CHAPTER 5

FINE-TUNED DISJOINT COMMUNITY DETECTION

ALGORITHMS

In this chapter, we propose a novel fine-tuned disjoint community detection algo-

rithm that repeatedly attempts to improve the quality measures by splitting and

merging the given community structure. We denote the corresponding algorithm

based on modularity (Q) as Fine-tuned Q while the one based on modularity densi-

ty (Qds) is referred to as Fine-tuned Qds. Finally, we evaluate the greedy algorithm

of modularity maximization (denoted as Greedy Q), Fine-tuned Q, and Fine-tuned

Qds by using seven community quality metrics based on ground truth communities.

These evaluations are conducted on four real-world networks, and also on the classi-

cal clique network and the LFR benchmark networks, each of which is instantiated

by a wide range of parameters. The results indicate that Fine-tuned Qds is the

most effective method and can also dramatically improve the community detection

results of other algorithms. Further, all seven quality metrics based on ground truth

communities are consistent with Qds, but not consistent with Q, which implies the

superiority of modularity density over the original modularity.

5.1 Maximizing Modularity Density (Qds)

In Chapter 3, we have given the definition of modularity density (Qds). With

formal proofs and experiments on two real-world dynamic datasets (Senate dataset

[66] and Reality Mining Bluetooth Scan data [67]) we demonstrated that Qds e-

liminates the two opposite yet coexisting problems of modularity: the problem of

favoring small communities and the problem of favoring large communities (also

called the resolution limit problem). Moreover, for a given community in Qds de-

fined by Equation (3.6), its internal and pair-wise densities and its split penalty

are local components, which is related to the resolution-limit-free definition in [61].

Portions of this chapter previously appeared as: M. Chen, K. Kuzmin, and B. K. Szymanski,
“Community detection via maximization of modularity and its variants,” IEEE T. Comput. Soc.
Syst., vol. 1, no. 1, pp. 46-65, Mar. 2014.
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Therefore, it is reasonable to expect that maximizing Qds would discover more mean-

ingful community structure than maximizing Q. In this section, we first illustrate

why the greedy agglomerative algorithm for increasing Qds cannot be adopted for

optimizing Qds. Then, we propose a fine-tuned community detection algorithm that

repeatedly attempts to improve the community quality measurements by splitting

and merging the given network community structure to maximize Qds.

5.1.1 Greedy Algorithm Fails to Optimize Qds

In this subsection, we show why the greedy agglomerative algorithm increasing

Qds fails to optimize it. At the first step of the greedy algorithm for increasing Qds,

each node is treated as a single community. Then, Qds of each node or community

is Qds = −SP . Therefore, in order to increase Qds the most, the greedy algorithm

would first merge the connected pair of nodes with the sum of their degrees being the

largest among all connected pairs. However, it is very likely that those two nodes

belong to two different communities, which would finally result in merging those

two communities instead of keeping them separate. This will result in a much lower

value of Qds for such a merged community compared to Qds for its components,

demonstrating the reason for greedy Qds algorithm failure in optimizing Qds.

For example, in the network example in Figure 5.1, the initial values of Qds

for nodes 1, 2, 4, 6, 7, and 8 with degree 3 are Qds = −SP = − 3
26

while the initial

values of Qds for nodes 3 and 5 with degree 4 are Qds = −SP = − 4
26
. Then, greedy

Qds algorithm would first merge node 3 and node 5, which would finally lead to a

single community of the whole eight nodes. However, the true community structure

contains two clique communities. Accordingly, the Qds of the community structure

with two clique communities, 0.4183, is larger than that of the community structure

with one single large community, 0.2487. So, maximizing Qds properly should have

the ability to discover the true community structure.

5.1.2 Fine-tuned Algorithm

In this part, we describe a fine-tuned community detection algorithm that

iteratively improves a community quality metric M by splitting and merging the

given network community structure. We denote the corresponding algorithm based
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Figure 5.1: A simple network with two clique communities. Each clique
has four nodes and the two clique communities are connected to each
other with one single edge.

on modularity (Q) as Fine-tuned Q and the one based on modularity density (Qds)

as Fine-tuned Qds. It consists of two alternating stages: the split stage and the

merging stage.

In the split stage, the algorithm will split a community c into two subcom-

munities c1 and c2 based on the ratio-cut method if the split improves the value

of the quality metric. The ratio-cut method [93] finds the bisection that minimizes

the ratio
|Ec1,c2 |
|c1||c2| , where |Ec1,c2 | is the cut size (namely, the number of edges between

communities c1 and c2), while |c1| and |c2| are sizes of the two communities. This

ratio penalizes situations in which either of the two communities is small and thus

favors balanced divisions over unbalanced ones. However, graph partitioning based

on the ratio-cut method is a NP-complete problem. Thus, we approximate it by

using the Laplacian spectral bisection method for graph partitioning introduced by

Fiedler [94,95].

First, we calculate the Fiedler vector which is the eigenvector of the network

Laplacian matrix L = D − A corresponding to the second smallest eigenvalue.

Then, we put the nodes corresponding to the positive values of the Fiedler vector

into one group and the nodes corresponding to the negative values into the other

group. The subnetwork of each community is generated with the nodes and edges

in that community. Although the ratio-cut approximated with spectral bisection

method does allow some deviation for the sizes |c1| and |c2| to vary around the

middle value, the right partitioning may not actually divide the community into

two balanced or nearly balanced ones. Thus, it is to some extent inappropriate
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Algorithm 1 Split Communities(G, C)
1: Initialize comWeights[|C|][|C|], comEdges[|C|][|C|], and comDensities[|C|][|C|] which respec-

tively contain #weights, #edges, and the density inside the communities and between two
communities by using the network G and the community list C;

2: //Get the metric value for each community.
3: Mes[|C|] = GetMetric(C,comWeights,comDensities);
4: for i = 0 to |C| − 1 do
5: c = C.get(i);
6: subnet = GenerateSubNetwork(c);
7: fiedlerVector[|c|] = LanczosMethod(subnet);
8: nodeIds[|c|] = sort(fiedlerVector, ‘descend’);
9: //Form |c|+ 1 divisions and record the best one.
10: splitTwoCom.addAll(nodeIds);
11: for j = 0 to |c| − 1 do
12: splitOneCom.add(nodeIds[j]);
13: splitTwoCom.remove(nodeIds[j]);
14: Calculate M(split) for the split at j;
15: ∆M = M(split)−Mes[i];
16: if ∆M(best) < ∆M (or ∆M(best) > ∆M) then
17: ∆M(best) = ∆M ;
18: bestIdx = j;
19: end if
20: end for
21: if ∆M(best) > 0 (or ∆M(best) < 0) then
22: Clear splitOneCom and splitTwoCom;
23: splitOneCom.addAll(nodeIds[0:bestIdx]);
24: splitTwoCom.addAll(nodeIds[bestIdx+ 1:|c| − 1);
25: newC.add(splitOneCom);
26: newC.add(splitTwoCom);
27: else
28: newC.add(c);
29: end if
30: end for
31: return newC

and unrealistic for community detection problems. We overcome this problem by

using the following strategies. First, we sort the elements of the Fiedler vector in

descending order, then cut them into two communities in each of the |c|+1 possible

ways and calculate the corresponding change of the metric values ∆M of all the

|c| + 1 divisions. Then, the one with the best value (largest or smallest depending

on the measurement) of the quality metric ∆M(best) among all the |c|+1 divisions is

recorded. We adopt this best division to the community c only when ∆M(best) > 0

(or ∆M(best) < 0 depending on the metric). For instance, we split the community

only when ∆Qds(best) is larger than zero.

The outline of the split stage is shown in Algorithm 1. The input is a network
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and a community list, and the output is a list of communities after splitting. The

initialization part has O(|E|) complexity. Computing Fiedler vector using Lanczos

method [53] needs O(|E|Kh + |V |K2h + K3h) steps, where K is the number of

eigenvectors needed and h is the number of iterations required for the Lanczos

method to converge. Here, K is 2 and h is typically very small although the exact

number is not generally known. So, the complexity for calculating Fiedler vector

is O(|E| + |V |). Sorting the Fiedler vector has the cost O(|V |log|V |). The search

of the best division from all the |c| + 1 possible ones (per community c) for all

the communities is achieved in O(|E|) time. For the |c| + 1 possible divisions of a

community c, each one differs from the previous one by the movement of just a single

node from one group to the other. Thus, the update of the total weights, the total

number of edges, and the densities inside those two split communities and between

those two communities to other communities can be calculated in time proportional

to the degree of that node. Thus, all nodes can be moved in time proportional

to the sum of their degrees which is equal to 2|E|. Moreover, for Fine-tuned Qds,

computing Qds(split) costs O(|C||V |) because all the communities are traversed to

update the Split Penalty for each of the |c|+1 divisions of each community c. All the

other parts have complexity less than or at most O(|V |). Thus, the computational

complexity for the split stage of Fine-tuned Q is O(|E|+ |V |log|V |) while for Fine-
tuned Qds it is O(|E|+ |V |log|V |+ |C||V |).

In the merging stage, the algorithm will merge a community to its connected

communities if the merging improves the value of the quality metric. If there are

many mergers possible for a community, the one, unmerged so far, which improves

the quality metric the most is chosen. Hence, each community will only be merged

at most once in each stage. The outline of the merging stage is shown Algorith-

m 2. The input is a network and a community list, and the output is a list of

communities after merging. The initialization part has the complexity O(|E|). For
Fine-tuned Q, the two “for loops” for merging any two communities have the com-

plexity O(|C|2log|C|) because calculatingQ(merge) is O(1) and inserting an element

into the red-black tree is O(log|C|2) = O(2log|C|) ∼ O(log|C|) since the maximum

number of elements in the tree is |C|(|C|−1)
2

= O(|C|2). For Fine-tuned Qds, the two
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Algorithm 2 Merge Communities(G, C)
1: Initialize comWeights[|C|][|C|], comEdges[|C|][|C|], and comDensities[|C|][|C|];
2: //Get the metric value for each community.
3: Mes[|C|] = GetMetric(C,comWeights,comDensities);
4: for i = 0 to |C| − 1 do
5: for j = i+ 1 to |C| − 1 do
6: //Doesn’t consider disconnected communities.
7: if comWeights[i][j]==0 && comWeights[j][i]==0 then
8: continue;
9: end if
10: Calculate M(merge) for merging ci and cj ;
11: ∆M = M(merge)−Mes[i]−Mes[j];
12: //Record the merging information with |∆M | descending in a red-black tree
13: if ∆M > 0 (or ∆M < 0) then
14: mergedInfos.put([|∆M |, i, j]);
15: end if
16: end for
17: end for
18: //Merge the community with the one that improves metric’s value the most
19: while mergedInfos.hasNext() do
20: [∆M , comId1, comId2]=mergedInfos.next();
21: if !mergedComs.containsKey(comId1) &&

!mergedComs.containsKey(comId2) then
22: mergedComs.put(comId1,comId2);
23: mergedComs.put(comId2,comId1);
24: end if
25: end while
26: for i = 0 to |C| − 1 do
27: c=C.get(i);
28: if mergedComs.containsKey(i) then
29: comId2 = mergedComs.get(i);
30: if i < comId2 then
31: c.addAll(C.get(comId2));
32: end if
33: end if
34: newC.add(c);
35: end for
36: return newC;

“for loops” for merging any two communities have the complexity O(|C|3) because
calculating Qds(merge) needs O(|C|) steps to traverse all the communities to update

the Split Penalty and inserting an element into the red-black tree is O(log|C|) as

well. The other parts all have complexity at most O(|C|2). Thus, the computational

complexity for the merging stage of Fine-tuned Q is O(|E|+ |C|2log|C|) and for the

merging stage of Fine-tuned Qds is O(|E|+ |C|3).
The fine-tuned algorithm repeatedly carries out those two alternating stages



89

Algorithm 3 Fine-tuned Algorithm(G, C)
1: comSize = |C|;
2: splitSize = 0;
3: mergeSize = 0;
4: while comSize!=splitSize ∥ comSize!=mergeSize do
5: comSize = |C|;
6: C = Split Communities(G, C);
7: splitSize = |C|;
8: C=Merge Communities(G, C);
9: mergeSize = |C|;
10: end while
11: return C

until neither split nor merging can improve the value of the quality metric or until

the total number of communities discovered does not change after one full itera-

tion. Algorithm 3 shows the outline of the fine-tuned algorithm. It can detect the

community structure of a network by taking a list with a single community of all

the nodes in the network as the input. It can also improve the community de-

tection results of other algorithms by taking a list with their communities as the

input. Let the number of iteration of the fine-tuned algorithm be denoted as T .

Then, the total complexity for Fine-tuned Q is O(T (|E|+ |V |log|V |+ |C|2log|C|))
while for Fine-tuned Qds it is O(T (|E| + |V |log|V | + |C||V | + |C|3)). Assuming

that T and |C| are constants, the complexity of the fine-tuned algorithms reduces

to O(|E| + |V |log|V |). The only part of the algorithm that would generate a non-

deterministic result is the Lanczos method of calculating the Fiedler vector. The

reason is that Lanczos method adopts a randomly generated vector as its starting

vector. We solve this issue by choosing a normalized vector of the size equal to the

number of nodes in the community as the starting vector for the Lanczos method.

Then, community detection results will stay the same for different runs as long as

the input remains the same.

5.2 Experimental Results

In this section, we first introduce several popular measures for evaluating the

quality of the results of community detection algorithms. Denoting the greedy

algorithm of modularity maximization proposed by Newman [36] as Greedy Q, we

then use the mentioned above metrics to compare Greedy Q, Fine-tuned Q, and
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Fine-tuned Qds. The comparison uses four real-world networks, the classical clique

network and the LFR benchmark networks, each instance of which is defined with

parameters each selected from a wide range of possible values. The results indicate

that Fine-tuned Qds is the most effective method among the three, followed by Fine-

tuned Q. Moreover, we show that Fine-tuned Qds can be applied to significantly

improve the detection results of other algorithms.

In Subsection 2.2.2.2, we have shown that the modularity maximization ap-

proach using the eigenvectors of the Laplacian matrix is equivalent to the one using

the eigenvectors of the modularity matrix. This implies that the split stage of our

Fine-tuned Q is actually equivalent to the spectral methods. Therefore, Fine-tuned

Q with one additional merge operation at each iteration unquestionably has better

performance than the spectral algorithms. Hence, we do not discuss them here.

5.2.1 Evaluation Metrics

The quality evaluation metrics we consider here can be divided into three cat-

egories: Variation of Information (V I) [63] and Normalized Mutual Information

(NMI) [96] based on information theory; F-measure [97] and Normalized Van Don-

gen metric (NVD) [98] based on cluster matching; Rand Index (RI) [99], Adjusted

Rand Index (ARI) [100], and Jaccard Index (JI) [101] based on pair counting.

5.2.1.1 Information Theory Based Metrics

Given partitions C and C ′, Variation of Information (V I) [63] quantifies

the “distance” between those two partitions, while Normalized Mutual Information

(NMI) [96] measures the similarity between partitions C and C ′. V I is defined as

V I(C,C ′) = H(C) +H(C ′)− 2I(C,C ′)

= H(C,C ′)− I(C,C ′),
(5.1)

where H(.) is the entropy function and I(C,C ′) = H(C) +H(C ′)−H(C,C ′) is the

Mutual Information. Then, NMI is given by

NMI(C,C ′) =
2I(C,C ′)

H(C) +H(C ′)
. (5.2)
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Using the definitions

H(C) = −
∑
c∈C

p(c) log p(c) = −
∑
c∈C

|c|
|V |

log
|c|
|V |

, (5.3)

H(C,C ′) = −
∑

c∈C,c′∈C′
p(c, c′) log p(c, c′)

= −
∑

c∈C,c′∈C′

|c ∩ c′|
|V |

log

(
|c ∩ c′|
|V |

) (5.4)

we can express V I and NMI as a function of counts only as follows:

V I(C,C ′) = − 1

|V |
∑

c∈C,c′∈C′
|c ∩ c′| log

(
|c ∩ c′|2

|c||c′|

)
, (5.5)

NMI(C,C ′) =
−2∑c∈C,c′∈C′

|c∩c′|
|V | log

(
|c∩c′||V |
|c||c′|

)
∑

c∈C
|c|
|V | log

|c|
|V | +

∑
c′∈C′

|c′|
|V | log

|c′|
|V |

, (5.6)

where |c| is the number of nodes in community c of C and |c ∩ c′| is the number of

nodes both in community c of C and in community c′ of C ′.

5.2.1.2 Clustering Matching Based Metrics

Measurements based on clustering matching aim at finding the largest overlaps

between pairs of communities of two partitions C and C ′. F-measure [97] measures

the similarity between two partitions, while Normalized Van Dongen metric (NVD)

[98] quantifies the “distance” between partitions C and C ′. F-measure is defined as

F -measure(C,C ′) =
1

|V |
∑
c∈C
|c|max

c′∈C′

2|c ∩ c′|
|c|+ |c′|

. (5.7)

NVD is given by

NVD(C,C ′) = 1− 1

2|V |

(∑
c∈C

max
c′∈C′
|c ∩ c′|+

∑
c′∈C′

max
c∈C
|c′ ∩ c|

)
. (5.8)

5.2.1.3 Pair Counting Based Metrics

Metrics based on pair counting count the number of pairs of nodes that are

classified (in the same community or in different communities) in two partitions
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C and C ′. Let a11 indicate the number of pairs of nodes that are in the same

community in both partitions, a10 denote the number of pairs of nodes that are

in the same community in partition C but in different communities in C ′, a01 be

the number of pairs of nodes which are in different communities in C but in the

same community in C ′, a00 be the number of pairs of nodes which are in different

communities in both partitions. By definition, A = a11 + a10 + a01 + a00 =
|V |(|V |−1)

2

is the total number of pairs of nodes in the network. Then, Rand Index (RI) [99]

which is the ratio of the number of node pairs placed in the same way in both

partitions to the total number of pairs is given by

RI(C,C ′) =
a11 + a00

A
. (5.9)

Denote M = 1
A
(a11 + a10)(a11 + a01). Then, RI ’s corresponding adjusted version,

Adjusted Rand Index (ARI) [100], is expressed as

ARI(C,C ′) =
a11 −M

1
2
[(a11 + a10) + (a11 + a01)]−M

. (5.10)

The Jaccard Index (JI) [101] which is the ratio of the number of node pairs placed

in the same community in both partitions to the number of node pairs that are

placed in the same group in at least one partition is defined as

JI(C,C ′) =
a11

a11 + a10 + a01
. (5.11)

All three metrics quantify the similarity between two partitions C and C ′.

5.2.2 Real-world Networks

In this subsection, we first evaluate the performance of Greedy Q, Fine-tuned

Q, and Fine-tuned Qds on two small networks (Zachary’s karate club network [80]

and American college football network [78]) with ground truth communities, and

then on two large networks (PGP network [82] and AS level Internet) but without

ground truth communities.
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(a) Ground truth communities.

(b) Communities detected with Greedy Q.

(c) Communities detected with Fine-tuned Q.

(d) Communities detected with Fine-tuned Qds.

Figure 5.2: The community structure of the ground truth communities
and those detected by Greedy Q, Fine-tuned Q, and Fine-tuned Qds on
Zachary’s karate club network.

5.2.2.1 Zachary’s Karate Club Network

We first compare the performance of Greedy Q, Fine-tuned Q, and Fine-tuned

Qds on Zachary’s karate club network [80]. It represents the friendships between 34

members of a karate club at a US university over a period of 2 years. During the
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Table 5.1: Metric values of the community structure discovered by
Greedy Q, Fine-tuned Q, and Fine-tuned Qds on Zachary’s karate club
network (red italic font denotes the best value for each metric).

Algorithm Q Qds V I NMI F -measure NV D RI ARI JI
Greedy Q 0.3807 0.1809 0.7677 0.6925 0.828 0.1471 0.8414 0.6803 0.6833

Fine-tuned Q 0.4198 0.2302 0.9078 0.6873 0.807 0.1618 0.7736 0.5414 0.5348
Fine-tuned Qds 0.4174 0.231 0.8729 0.6956 0.8275 0.1471 0.7861 0.5669 0.5604

observation period, the club split into two clubs as a result of a conflict within the

organization. The resulting two new clubs can be treated as the ground truth com-

munities whose structure is shown in Figure 5.2(a) visualized with the opensource

software Gephi [102].

Table 5.1 presents the metric values of the community structure detected by

the three algorithms on this network. It shows that Fine-tuned Q and Fine-tuned

Qds achieve the highest value of Q and Qds, respectively. However, most of the

seven metrics based on ground truth communities imply that Greedy Q performs

the best with only NMI and NVD indicating that Fine-tuned Qds has the best

performance among the three algorithms. Hence, it seems that a large Q or Qds

may not necessary mean a high quality of community structure, especially for Q

because Fine-tuned Q achieves the highest Q but has the worst values of the seven

metrics described in Subsection 5.2.1. We argue that the ground truth communities

may not be so reasonable because Fine-tuned Q and Fine-tuned Qds in fact discover

more meaningful communities than Greedy Q does. Figures 5.2(a)-5.2(d) show the

community structure of ground truth communities and those detected by Greedy

Q, Fine-tuned Q, and Fine-tuned Qds, respectively. For results of Greedy Q shown

in Figure 5.2(b), we could observe that there are three communities located at the

left, the center, and the right side of the network. The ground truth community

located on the right is subdivided into the central and right communities, but the

node 10 is misclassified as belonging to the central community, while in ground truth

network it belongs to community located on the left. Figure 5.2(c) demonstrates

that Fine-tuned Q subdivides both the left and the right communities into two with

six nodes separated from the left community and five nodes separated from the right

community. Moreover, Figure 5.2(c) shows that Fine-tuned Q discovers the same
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number of communities for this network as algorithms presented in [38,45,49,51]. In

fact, the community structure it discovers is identical to those detected in [45,49,51].

Figure 5.2(d) shows that the community structure discovered by Fine-tuned Qds

differs from that of Fine-tuned Q only on node 24 which is placed in the larger part

of the left community. It is reasonable because node 24 has three connections to the

larger part to which it has more attraction than to the smaller part with which it

only has two connections.

In addition, analyzing the intermediate results of Fine-tuned Q and Fine-

tuned Qds reveals that the communities at the first iteration are exactly the ground

truth communities, which in another way implies their superiority over Greedy Q.

Moreover, NMI and NVD indicate that Fine-tuned Qds is the best among the

three and all the metrics, except Q, show that Fine-tuned Qds performs better than

Fine-tuned Q, supporting the claim that a higher Qds (but not Q) implies a better

quality of community structure.

5.2.2.2 American College Football Network

We apply the three algorithms also to the American college football network

[78] which represents the schedule of games between college football teams in a

single season. The teams are divided into twelve “conferences” with intra-conference

games being more frequent than inter-conference games. Those conferences could be

treated as the ground truth communities whose structure is shown in Figure 5.3(a).

Table 5.2 presents the metric values of the community structure detected by

the three algorithms. It shows that Fine-tuned Qds achieves the best values for

all the nine metrics. It implies that Fine-tuned Qds performs best on this football

network, followed by Fine-tuned Q. Figures 5.3(a)-5.3(d) present the community

structure of ground truth communities and those discovered byGreedy Q, Fine-tuned

Q, and Fine-tuned Qds. Each color in the figures represents a community. It can

be seen that there are twelve ground truth communities in total, seven communities

detected by Greedy Q, nine communities discovered by Fine-tuned Q, and exactly

twelve communities found by Fine-tuned Qds.

Moreover, we apply Fine-tuned Qds on the community detection results of
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(a) Ground truth communities.
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(b) Communities detected with Greedy Q.
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(c) Communities detected with Fine-tuned Q.
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(d) Communities detected with Fine-tuned Qds.

Figure 5.3: The community structure of the ground truth communities
and those detected by Greedy Q, Fine-tuned Q, and Fine-tuned Qds on
American college football network.

Greedy Q and Fine-tuned Q. The metric values of these two community structure

after improvement with Fine-tuned Qds are shown in Table 5.3. Compared with

those of Greedy Q and Fine-tuned Q in Table 5.2, we could observe that the metric

values are significantly improved with Fine-tuned Qds. Further, both improved

community structure contain exactly twelve communities, the same number as the
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Table 5.2: Metric values of the community structure detected by Greedy
Q, Fine-tuned Q, and Fine-tuned Qds on American college football net-
work (red italic font denotes the best value for each metric).

Algorithm Q Qds V I NMI F -measure NV D RI ARI JI
Greedy Q 0.5773 0.3225 1.4797 0.7624 0.6759 0.2304 0.9005 0.5364 0.4142

Fine-tuned Q 0.5944 0.3986 0.9615 0.8553 0.8067 0.1348 0.9521 0.7279 0.6045
Fine-tuned Qds 0.6005 0.4909 0.5367 0.9242 0.9145 0.07391 0.9847 0.8967 0.8264

Table 5.3: Metric values of the community structure of Greedy Q and
Fine-tuned Q improved with Fine-tuned Qds on American college football
network (blue italic font indicates improved score).

Algorithm Q Qds V I NMI F -measure NV D RI ARI JI
Greedy Q improved with Fine-tuned Qds 0.5839 0.4636 0.6986 0.9013 0.8961 0.0913 0.9793 0.8597 0.7714

Fine-tuned Q improved with Fine-tuned Qds 0.5974 0.4793 0.5096 0.9278 0.9166 0.06957 0.9837 0.8907 0.8174

ground truth communities.

5.2.2.3 PGP Network

We then apply the three algorithms on PGP network [82]. It is the giant

component of the network of users of the Pretty-Good-Privacy algorithm for secure

information interchange. It has 10680 nodes and 24316 edges.

Table 5.4 presents the metric values of the community structure detected by

the three algorithms. Since this network does not have ground truth communities,

we only calculate Q and Qds of these discovered community structure. The table

shows that Greedy Q and Fine-tuned Qds achieve the highest value of Q and Qds,

respectively. It is worth to mention that the Qds of Fine-tuned Qds is much larg-

er than that of Greedy Q and Fine-tuned Q, which implies that Fine-tuned Qds

performs best on PGP network according to Qds, followed by Greedy Q.

5.2.2.4 AS Level Internet

The last real-world network dataset that is adopted to evaluate the three

algorithms is Autonomous System (AS) level Internet. It is a symmetrized snapshot

of the structure of the Internet at the level of autonomous systems, reconstructed

from Border Gateway Protocol (BGP) tables posted by the University of Oregon

Route Views Project. This snapshot was created by Mark Newman from data for

July 22, 2006 and has not been previously published. It has 22963 nodes and 48436
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Table 5.4: The values of Q and Qds of the community structure detected
by Greedy Q, Fine-tuned Q, and Fine-tuned Qds on PGP network (red
italic font denotes the best value for each metric).

Algorithm Q Qds

Greedy Q 0.8521 0.04492
Fine-tuned Q 0.8405 0.02206
Fine-tuned Qds 0.594 0.287

Table 5.5: The values of Q and Qds of the community structure detected
by Greedy Q, Fine-tuned Q, and Fine-tuned Qds on AS level Internet
(red italic font denotes the best value for each metric).

Algorithm Q Qds

Greedy Q 0.6379 0.002946
Fine-tuned Q 0.6475 0.003123
Fine-tuned Qds 0.3437 0.03857

edges.

Table 5.5 presents the metric values of the community structure detected by

the three algorithms. Since this network does not have ground truth communities

either, we only calculate Q and Qds. It can be seen from the table that Fine-tuned Q

and Fine-tuned Qds achieve the highest value of Q and Qds, respectively. Moreover,

the Qds of Fine-tuned Qds is much larger than that of Greedy Q and Fine-tuned Q,

which indicates that Fine-tuned Qds performs best on AS level Internet according

to Qds, followed by Fine-tuned Q.

5.2.3 Synthetic Networks

5.2.3.1 Clique Network

We now apply the three algorithms to the classical network example [11],

displayed in Figure 3.3, which illustrates modularity (Q) has the resolution limit

problem. It is a ring network comprised of thirty identical cliques, each of which

has five nodes and they are connected by single edges. It is intuitively obvious that

each clique forms a single community.

Table 5.6 presents the metric values of the community structure detected by

the three algorithms. It shows that Greedy Q and Fine-tuned Q have the same
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Table 5.6: Metric values of the community structure detected by Greedy
Q, Fine-tuned Q, and Fine-tuned Qds on the classical clique network (red
italic font denotes the best value for each metric).

Algorithm Q Qds V I NMI F -measure NV D RI ARI JI
Greedy Q 0.8871 0.46 0.9333 0.8949 0.6889 0.2333 0.9687 0.6175 0.4615

Fine-tuned Q 0.8871 0.46 0.9333 0.8949 0.6889 0.2333 0.9687 0.6175 0.4615
Fine-tuned Qds 0.8758 0.8721 0 1 1 0 1 1 1

Table 5.7: Metric values of the community structure of Greedy Q and
Fine-tuned Q improved with Fine-tuned Qds on the classical clique net-
work (blue italic font indicates improved score).

Algorithm Q Qds V INMIF -measureNV DRIARIJI
Greedy Q improved with Fine-tuned Qds 0.87580.8721 0 1 1 0 1 1 1

Fine-tuned Q improved with Fine-tuned Qds 0.87580.8721 0 1 1 0 1 1 1

performance. They both achieve the highest value of Q but get about half of the

value of Qds of what Fine-tuned Qds achieves. In fact, Fine-tuned Qds finds exactly

thirty communities with each clique being a single community. In contrast, Greedy

Q and Fine-tuned Q discover only sixteen communities with fourteen communities

having two cliques and the other two communities having a single clique. Also,

we take the community detection results of Greedy Q and Fine-tuned Q as the

input to Fine-tuned Qds to try to improve those results. The metric values of

the community structure after improvement with Fine-tuned Qds are recorded in

Table 5.7. This table shows that the community structure discovered are identical

to that of Fine-tuned Qds, which means that the results of Greedy Q and Fine-tuned

Q are dramatically improved with Fine-tuned Qds. Therefore, it can be concluded

from Tables 5.6 and 5.7 that a larger value of Qds (but not Q) implies a higher

quality of the community structure. Moreover, Qds resolves the resolution limit

problem of Q. Finally, Fine-tuned Qds is effective in maximizing Qds and in finding

meaningful community structure.

5.2.3.2 LFR Benchmark Networks

To further compare the performance of Greedy Q, Fine-tuned Q, and Fine-

tuned Qds, we choose the LFR (named after the initials of names of authors) bench-

mark networks [103] which have become a standard in the evaluation of the per-
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Table 5.8: Metric values of the community structure of Greedy Q on the
LFR benchmark networks with (γ, β) = (2, 1).

µ Q Qds V I NMI F -measure NV D RI ARI JI
0.05 0.9021 0.4481 0.2403 0.9767 0.9382 0.0399 0.9959 0.9308 0.8758
0.1 0.8461 0.3546 0.5213 0.9482 0.8539 0.0912 0.9882 0.821 0.7089
0.15 0.7862 0.2604 0.8537 0.9125 0.7604 0.1432 0.9776 0.7042 0.5573
0.2 0.7256 0.1934 1.3601 0.8579 0.6314 0.2173 0.9601 0.5445 0.3911
0.25 0.6612 0.1411 1.7713 0.8093 0.5477 0.2642 0.9444 0.4498 0.309
0.3 0.5959 0.09377 2.1758 0.7493 0.4745 0.3085 0.921 0.3779 0.255
0.35 0.545 0.07237 2.4599 0.7122 0.4182 0.3347 0.9045 0.3206 0.2134
0.4 0.4857 0.05521 2.7444 0.672 0.3745 0.3623 0.8874 0.2766 0.1836
0.45 0.4356 0.04133 3.0108 0.6289 0.327 0.3875 0.8617 0.2288 0.153
0.5 0.3803 0.03016 3.4296 0.5685 0.2874 0.4159 0.8386 0.1885 0.1282

Table 5.9: Metric values of the community structure of Fine-tuned Q on
the LFR benchmark networks with (γ, β) = (2, 1).

µ Q Qds V I NMI F -measure NV D RI ARI JI
0.05 0.8411 0.3875 0.8674 0.8868 0.8137 0.1049 0.9404 0.7503 0.6673
0.1 0.8419 0.3837 0.5195 0.9481 0.8851 0.0695 0.9875 0.8333 0.7408
0.15 0.7886 0.3324 0.6453 0.9358 0.8664 0.0844 0.9858 0.801 0.6921
0.2 0.7221 0.2922 0.9615 0.9022 0.8056 0.1222 0.9725 0.7099 0.6061
0.25 0.6694 0.2502 1.11 0.8833 0.7831 0.137 0.9594 0.7045 0.5939
0.3 0.626 0.2022 1.0722 0.892 0.813 0.1265 0.9811 0.7317 0.5963
0.35 0.5479 0.1516 1.6786 0.8153 0.705 0.1942 0.949 0.5963 0.4629
0.4 0.5044 0.124 1.8382 0.8108 0.6935 0.2111 0.9646 0.5592 0.4118
0.45 0.4274 0.07865 2.5657 0.7274 0.5913 0.2863 0.9463 0.4419 0.3129
0.5 0.3766 0.05808 3.0333 0.675 0.5328 0.3375 0.9366 0.3721 0.2537

Table 5.10: Metric values of the community structure of Fine-tuned Qds

on the LFR benchmark networks with (γ, β) = (2, 1).
µ Q Qds V I NMI F -measure NV D RI ARI JI

0.05 0.845 0.4257 0.8112 0.9186 0.8564 0.09585 0.9736 0.691 0.5717
0.1 0.7934 0.4144 0.5809 0.9447 0.9326 0.0625 0.9915 0.8566 0.7646
0.15 0.7426 0.3605 0.6769 0.9359 0.9172 0.0711 0.9902 0.8303 0.7225
0.2 0.6786 0.337 0.7824 0.9278 0.9195 0.0795 0.9908 0.8186 0.7037
0.25 0.6202 0.2891 1.0244 0.9046 0.8909 0.106 0.9868 0.7575 0.6253
0.3 0.5693 0.235 1.1347 0.8919 0.8874 0.1183 0.9845 0.7372 0.5983
0.35 0.5443 0.2244 0.9401 0.9123 0.9129 0.09585 0.989 0.7984 0.6783
0.4 0.505 0.1964 0.9444 0.9123 0.9091 0.0966 0.989 0.7929 0.668
0.45 0.4536 0.1632 1.1523 0.8925 0.8806 0.1196 0.9834 0.7337 0.6021
0.5 0.3563 0.1196 1.9677 0.8036 0.7489 0.2076 0.9213 0.4984 0.3813

formance of community detection algorithms and also have known ground truth

communities. The LFR benchmark network that we used here has 1000 nodes with

average degree 15 and maximum degree 50. The exponent γ for the degree sequence
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Table 5.11: Metric values of the community structure of Greedy Q
improved with Fine-tuned Qds on the LFR benchmark networks with
(γ, β) = (2, 1).

µ Q Qds V I NMI F -measure NV D RI ARI JI
0.05 0.8743 0.4979 0.2131 0.98 0.9784 0.02195 0.997 0.943 0.895
0.1 0.8246 0.4522 0.2428 0.9773 0.9762 0.02395 0.9967 0.9379 0.8864
0.15 0.7716 0.4013 0.2972 0.9722 0.9719 0.0289 0.9962 0.9269 0.8674
0.2 0.7232 0.384 0.3503 0.9679 0.9664 0.03505 0.9959 0.9163 0.8496
0.25 0.6667 0.3347 0.4474 0.9592 0.9582 0.04485 0.9953 0.9011 0.8243
0.3 0.6094 0.2619 0.6061 0.9432 0.9457 0.05905 0.9934 0.876 0.7856
0.35 0.5584 0.2377 0.691 0.9364 0.94 0.0697 0.9931 0.8615 0.7626
0.4 0.5062 0.199 0.8285 0.9236 0.9247 0.0823 0.9916 0.8376 0.7281
0.45 0.4587 0.169 0.9016 0.9172 0.9222 0.0904 0.9914 0.8252 0.7099
0.5 0.4014 0.1385 1.2004 0.8906 0.8938 0.1215 0.9885 0.7686 0.6326

Table 5.12: Metric values of the community structure of Fine-tuned Q
improved with Fine-tuned Qds on the LFR benchmark networks with
(γ, β) = (2, 1).

µ Q Qds V I NMI F -measure NV D RI ARI JI
0.05 0.8519 0.4463 0.5949 0.937 0.8954 0.0709 0.9781 0.8177 0.7377
0.1 0.8186 0.4397 0.3405 0.9679 0.9615 0.03415 0.9952 0.9125 0.8452
0.15 0.769 0.391 0.4285 0.9597 0.9533 0.0432 0.9946 0.8993 0.8231
0.2 0.7185 0.369 0.4654 0.9571 0.9479 0.04975 0.9943 0.8853 0.8014
0.25 0.6672 0.326 0.5667 0.9477 0.9365 0.05805 0.9936 0.8713 0.7785
0.3 0.6109 0.2598 0.6962 0.9346 0.9372 0.06505 0.9926 0.8609 0.762
0.35 0.5474 0.2297 0.9525 0.9108 0.9175 0.0961 0.9882 0.7963 0.6821
0.4 0.4966 0.1983 1.0601 0.9021 0.9118 0.1029 0.9896 0.7963 0.672
0.45 0.4284 0.1535 1.4754 0.8635 0.8694 0.1486 0.9831 0.6836 0.5362
0.5 0.3654 0.1258 1.9271 0.8192 0.8193 0.1987 0.968 0.5852 0.4423

varies from 2 to 3. The exponent β for the community size distribution ranges from

1 to 2. Then, four pairs of the exponents (γ, β) = (2, 1), (2, 2), (3, 1), and (3, 2) are

chosen in order to explore the widest spectrum of graph structures. The mixing

parameter µ is varied from 0.05 to 0.5. It means that each node shares a fraction

(1 − µ) of its edges with the other nodes in its community and shares a fraction µ

of its edges with the nodes outside its community. Thus, low mixing parameters

indicate strong community structure. Also, we generate 10 network instances for

each µ. Hence, each metric value in Tables 5.8-5.12 represents the average metric

values of all 10 instances. Since the experimental results are similar for all four pairs

of exponents (γ, β) = (2, 1), (2, 2), (3, 1), and (3, 2), for the sake of brevity, we only

present the results for (γ, β) = (2, 1) here.
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Tables 5.8-5.10 show the metric values of the community structure detected

with Greedy Q, Fine-tuned Q, and Fine-tuned Qds, respectively, on the LFR bench-

mark networks with (γ, β) = (2, 1) and µ varying from 0.05 to 0.5. The red italic

font in the table denotes that the corresponding algorithm achieves the best value

for a certain quality metric among the three algorithms. The results in these tables

show that Greedy Q obtains the best values for all the nine measurements when

µ = 0.05, while Fine-tuned Qds achieves the highest values of Qds and the best

values for almost all the seven metrics based on ground truth communities when

µ ranges from 0.1 to 0.5. Also, Fine-tuned Q gets the second best values for Qds

and almost all the seven metrics in the same range of µ. However, for Q the best is

Greedy Q, followed by Fine-tuned Q, and Fine-tuned Qds is the last.

In summary, the seven measurements based on ground truth communities are

all consistent with Qds, but not consistent with Q. This consistency indicates the

superiority of Qds over Q as a community quality metric. In addition, Fine-tuned

Qds performs best among the three algorithms for µ > 0.05, which demonstrates

that it is very effective and does a very good job in optimizing Qds.

We then take the community detection results of Greedy Q and Fine-tuned Q

as the input to Fine-tuned Qds to improve those results. The measurement values

of the community structure after improvement with Fine-tuned Qds are displayed in

Tables 5.11 and 5.12. The blue italic font in Table 5.11 and Table 5.12 implies that

the metric value in these two tables is improved compared to the one in Table 5.8 and

that in Table 5.9, respectively. Then, compared with those of Greedy Q shown in

Table 5.8 and those of Fine-tuned Q shown in Table 5.9, all measurements, except

in some cases for Q, are significantly improved with Fine-tuned Qds. This again

indicates that all the seven metrics described in Subsection 5.2.1 are consistent with

Qds, but not consistent with Q. Interestingly, those results are even better than

those of Fine-tuned Qds itself presented in Table 5.10. Thus, it can be concluded

that Fine-tuned Qds is very powerful in improving the community detection results

of other algorithms.
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5.3 Summary

In this chapter, we propose an efficient and effective fine-tuned algorithm to

maximize Qds. This new algorithm can actually be used to optimize any community

quality metric. We evaluate the three algorithms, Greedy Q, Fine-tuned Q based

on Q, and Fine-tuned Qds based on Qds, with seven metrics based on ground truth

communities. These evaluations are done on four real-world networks, and also on

the classical clique network and the LFR benchmark networks, each instance of the

last is defined with parameters selected from wide range of their values. The re-

sults demonstrate that Fine-tuned Qds performs best among the three algorithms,

followed by Fine-tuned Q. The experiments also show that Fine-tuned Qds can dra-

matically improve the community detection results of other algorithms. In addition,

all the seven quality metrics based on ground truth communities are consistent with

Qds, but not consistent with Q, which indicates the superiority of Qds over Q as a

community quality metric.



CHAPTER 6

APPLICATION OF NEW METRICS FOR COMMUNITY

STRUCTURE WITH LINK PREDICTION RANKING

Many networks, including Internet, citation networks, transportation networks, e-

mail networks, and social and biochemical networks, display community structure

which identifies groups of nodes with more connections inside the group than out-

side [5]. Detecting and characterizing such a community structure, which is known

as community detection, is one of the fundamental techniques of network science.

Community detection has been shown to reveal latent yet meaningful structure in

networks such as groups in online and contact-based social networks, functional

modules in protein-protein interaction networks, groups of customers with similar

interests in online retailer user networks, groups of scientists in interdisciplinary

collaboration networks, etc. [6].

Therefore, it is expected that many networks, like social and biology network-

s, have highly modular subsets or, in other words, community structure. However,

the community structure discovered by community detection algorithms does not

usually represent the reality. The primary reason for this is that available network

datasets are often incomplete and inaccurate. For example, in the process of col-

lecting, gathering, or recording information from online social networks, some data

can be lost or incorrect because of complex relations between individuals, privacy

constraints, improper or imprecise sampling methods, etc. Also, in a network rep-

resenting interactions between genes in some species edges are typically determined

experimentally, so the number of known edges may be much smaller than in reality.

Moreover, random spatial collocation of some genes may be wrongly interpreted as

an active interaction. Consequently, the networks we derive from available data usu-

ally have some noise, like missing some edges or having some incorrectly identified

so extraneous edges, which may cause the collected datasets to appear less modular

Portions of this chapter have been submitted as: M. Chen, A. Bahulkar, K. Kuzmin, and B.
K. Szymanski, “Improving network community structure with link prediction ranking,” in Proc.
7th Workshop Complex Networks (under review), 2016.
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than the underlying networks really are.

Thus, the purpose of this chapter is to propose and evaluate methods of re-

covering or improving the network community structure which may be hidden or

impaired by missing or extraneous edges. Our goal is to make the network more

modular by recovering missing edges and removing extraneous edges. We introduce

a link improvement procedure that removes a certain fraction of existing low ranking

links and replaces them with potential links (e.g., the links of the complete graph

with the same set of nodes as the current graph that do not exist in the current

graph) ranked highly by a link prediction metric, such as the number of common

neighbors (CN), Adamic-Adar (AA) [104], or PropFlow (PF) [105]. We evaluate

this link improvement approach on seven real-world network datasets, including t-

wo friendship networks, two collaboration networks, and a co-purchasing network.

Table 6.1 shows the basic properties of these datasets. The networks vary in size

from dozens of nodes to hundreds of thousands of nodes. After enhancing the net-

works with our link improvement procedure, we run community detection algorithm

SpeakEasy [74] to detect communities on them and then measure the quality of the

discovered community structure with eight community quality metrics, including

two global metrics, modularity [5] and modularity density [21, 22, 91, 106, 107], and

six local metrics.

The results show that the community structure of five out of seven real-world

networks is significantly refined with our link improvement method. We observed

that the best improvement of network community structure was delivered by com-

mon neighbors metric, followed by Adamic-Adar. PropFlow works extremely well

on and only on Gowalla dataset [108]. We believe the reason is that Gowalla is the

only network which is sensitive to geo-distances between nodes, and PropFlow is a

geodesic proximity measure [105]. This demonstrates that a single link prediction

metric cannot perform equally well on all networks. It follows that the performance

of link prediction and improvement methods depends on the meaning of the relation-

ships which define links in the network. Moreover, all three link prediction metrics

perform poorly on Karate [80] and Santafe [78] datasets. The reason is that these

two networks are very small and their members have been together in the same club
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or institute for such a long time that they were able to evolve their links to the

desired state. However, the other five networks are different. They are either very

large or their members do not have a global knowledge about the network structure

or all other nodes. Consequently, each of these networks has many potentially good

matches that are not realized even after evolving over a long period of time [109].

6.1 Related Work

An observation that many real-world datasets are not a complete and accurate

representation of their respective underlying networks was made by Yan and Gregory

in [110]. They proposed a classification of reasons for missing edges which is helpful

in selecting the most suitable link predictor. However, the opposing case when a

dataset might have extra edges (e.g., caused by noisy instrumentation or collection

methods) which are not part of the underlying network was not considered.

The performance of different link prediction methods is assessed in [110] using

a partial network which is simulated by deleting a certain fraction of edges from

the input dataset. Then one of the predictors is applied to the network. A set of

considered predictors comprises CN, Jaccard, meet/min, geometric, AA, resource

allocation index (RA), preferential attachment (PA), hierarchical structure method

(HRG), and stochastic block model (BM). Finally, the results are compared with the

original network based on the value of the area under the ROC (receiver-operating

characteristic) curve (AUC). The quality of the resulting communities is compared

to their true versions which are assumed to be available. Normalized mutual infor-

mation (NMI) [91] is used as a measure of community quality.

In [111] Yan and Gregory designed a framework which guides link prediction

methods based on the results of community detection. The key assumption behind

this approach is that nodes within the same community are more similar than nodes

located in different communities. Therefore, intra-community edges suggested by a

link predictor are added to the network first, followed by inter-community edges.

Experimental verification was performed on the LFR benchmark [103] and six very

small real-world networks using several link predictors (CN, Jaccard, AA, RA, PA,

and HRG) and two community detection algorithms.
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A more detailed analysis of the relation between community structure and

link formation is given in [112]. A Fast Block probabilistic Model (FBM) uses a

greedy strategy to sample the space of possible network partitions. Given an array

of communities produced by FBM, the density of links inside a community and

between any two communities determines the probability of adding a particular

link. A further development of FBM is a local degree blocking model [113] which

uses local structural information of the network for improved performance.

It is reasonable to expect that if knowing the community structure of a network

is helpful in better predicting the missing links, and inverse might also be true.

In other words, modifying a network according to recommendations from a link

predictor might lead to a more distinct network structure and thus improve the

quality of communities. Indeed, a common approach to enhancing the quality of

community detection methods using link prediction techniques is to introduce a

preprocessing step to ameliorate the network by reinforcing its community structure.

Many researchers have come up with solutions which follow this general two-phase

workflow of link prediction followed by community detection. Algorithms mainly

vary in which link prediction and community detection methods are used and how

their results are combined.

An example of such solution is a method proposed by Yan and Gregory in [114].

They observed that community detection and link prediction have a lot in common,

as both problems use node similarity features to unveil the relations between nodes

in a network. During the first phase of the algorithm, link prediction is applied to

assign weights to the existing edges of a network. CN is used as a node similarity

measure. This predictor is based on the local structure of the network and therefore

can be efficiently computed. Only edge weights are modified but no new edge is

added to the network. Then a community detection algorithm is applied to the

weighted network.

The method described in [114] is rather general and can be used with any

link prediction and community detection technique, and applied to unweighted,

undirected, and unipartite networks. However, using appropriate link prediction

and community detection methods can make this approach suitable for weighted
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or bipartite cases. Experimental data are presented for the LFR benchmark and

a selection of small real-world networks using five different community detection

methods. The community quality is judged upon using NMI for synthetic networks

and modularity for real-world ones.

A recent paper [115] of Burgess et al. proposes a more complicated solution

called EdgeBoost which involves running link prediction multiple times on the

same input network thus creating a family of enhanced networks. Community de-

tection is then performed for each network from this family. The final result is

constructed by aggregating community detection results of each individual network.

At the link prediction phase EdgeBoost builds a probability distribution

over predicted edges. By sampling this distribution rather than simply running a

link predictor, the algorithm tries to add mostly intra-community edges and thus

enhance the community structure of the network. The community detection stage

offers six different algorithms to choose from. Combining community detection

results of individual enhanced networks into a single output partition is performed

using a co-community network. This network has the same nodes as the original

graph. The edges are weighted according to the normalized frequency of the number

of times two nodes were assigned to the same community.

EdgeBoost is designed for small and medium scale networks. Its perfor-

mance has been experimentally verified using the LFR benchmark and a selection

of small real-world datasets. The implementation used in the study is limited to

performing only disjoint community detection. A selection of link predictors which

includes AA, CN, and Jaccard has been considered. Interestingly enough, although

no significant difference was found between these three methods, Jaccard slightly

outperformed its competitors and was therefore selected as the link predictor for

EdgeBoost.

6.2 Link Replacing Methodology

Algorithm 4 defines our approach to ranking the existing and potential links

and selecting them for removal and addition. At the first stage, every possible edge

(whether existing or potential) in the network is assigned a rank based on the score
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Algorithm 4 : Link ranking and replacement

Input: Graph G = (V,E), link predictor L, fraction of edges to be replaced f
Output: Graph G′ = (V,E ′) with improved community structure
E ′ ← E
E ← {{u, v} : ∀u ∈ V, ∀v ∈ V , s.t. u ̸= v} \ E
RE ← ()
RE ← ()
for all e ∈ E do
Add (e,L(e)) to RE

end for
Sort RE in the order of ascending rank values
for all e ∈ E do
Add (e,L(e)) to RE

end for
Sort RE in the order of descending rank values
n← ⌊f · |E|⌋
for i = 1 to n do
e← edge from the ith top tuple of RE

E ′ ← E ′ ∪ {e}
end for
for i = 1 to n do
e← edge from the ith top tuple of RE

if ∃ {u, v} ∈ E, s.t. e = {u, v} and (deg(u) = 1 or deg(v) = 1) then
n← n+ 1

else
E ′ ← E ′ \ {e}

end if
end for

returned by a link predictor L. We used LPmade library [116] which is a scalable,

high-performance, and cross-platform software for unsupervised link prediction and

analysis. LPmade offers a comprehensive set of link predictors but we focused on

three of them: CN, AA, and PF. More details about our choice of link predictors

and their features are provided in Section 6.3.1. Edges and their corresponding rank

scores are kept separately for existing and potential edges as required by subsequent

processing logic.

During the second phase of the algorithm edge replacements take place. First,

a number (defined by a certain fraction f(%) of all edges) of the top ranked potential

edges are added to the network. The impact of selecting the value of parameter
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f on performance is discussed in Section 6.3.5. Then, the same number of the

lowest ranked existing edges are removed from the network. In order to prevent the

formation of isolated nodes (i.e. nodes with a degree of 0), no edge is removed if at

least one of its endpoints has a degree of 1. Instead, an existing edge with the next

larger rank is selected for removal.

Although our approach follows a known two-phase pattern of enhancing the

network with link prediction and then performing community detection, there are

substantial differences from other solutions described in Section 6.1. In contrast

to [110], our focus is not to compare the performance of different community de-

tection methods relative to the true network which is often unknown. Instead, we

concentrate on a single community detection method and consider its performance

on a network enhanced with different link prediction procedures. Additionally, we

assume that no sole quality metric could be used on all occasions. We experiment

with different metrics (see Section 6.3.3 for details) and show (see Section 6.3.5)

that depending on the dataset some metrics work better than the others. Thus, it is

advisable to always apply several metrics rather than any particular one. Moreover,

our method accounts for extraneous existing edges that should be removed from the

dataset.

6.3 Evaluation and Analysis

In this section, we evaluate our link improvement procedure introduced in

Section 6.2 on seven real-world network datasets. The evaluation is consisted of the

following steps:

• First, we adopt our link improvement procedure with link prediction metrics being

the number of common neighbors, Adamic-Adar [104], and PropFlow [105] on the

network datasets we considered to remove a certain fraction f(%) of existing low

ranking links and replace them with potential highly ranked predicted links. In

our experiments, we choose f = [0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50] where f = 0

means that there is no change to the original networks.

• Then, we use the community detection algorithm SpeakEasy [74] to detect the

community structure of the networks generated with the link replacing procedure.
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• Finally, we calculate the community quality metric values of the community struc-

ture discovered with SpeakEasy to check the performance of our link improvement

method on improving the quality of network community structure.

6.3.1 Link Prediction Metrics

In this part, we introduce the link prediction metrics adopted in the experi-

ments. Instead of exhaustively testing all the link prediction metrics proposed in

the literatures, we select three local and thus computationally efficient metrics that

are among the best [105, 117, 118]: common neighbors, Adamic-Adar [104], and

PropFlow [105].

6.3.1.1 Common Neighbors

Common neighbors (CN ) measures the number of neighbors that nodes x and

y have in common. In social setting, individuals are more likely to be acquainted if

they have many common acquaintances. It is defined as:

CN(x, y) = |Γ(x) ∩ Γ(y)|, (6.1)

where Γ(x) = {y|y ∈ V, (x, y) ∈ E} is the set of neighbors of node x. The compu-

tational complexity to calculate this score for a network is O(|E|).

6.3.1.2 Adamic-Adar

Adamic-Adar (AA) [104] is a refinement of common neighbors by assigning

the less connected neighbors more weights instead of simply counting all equally. In

social setting, it reflects the observation that being one of many acquaintances of a

person, decreases the chance of being introduced to others by such a person. It is

given by the following formula:

AA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log|Γ(z)|
, (6.2)

The computational complexity to calculate this score for a network is O(|E|).
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6.3.1.3 PropFlow

PropFlow (PF ) [105] measures the geodesic proximity between nodes. It rep-

resents the probability that a restricted random walk starting at x ends at y in l

steps or fewer using link weights as transition probabilities. The restrictions are

that the walk terminates upon reaching y or upon revisiting any node including x.

This produces a score sxy that can serve as an estimation of the likelihood of new

links. In our experiments, we choose l to be 4 to consider neighbors of a node up

to the fourth degree which also enables us to more efficiently calculate the score.

The complexity to calculate this score for a network is O(d4|V |) or O(d3|E|) where
d is the average node degree of the network. For a sparse network, the complexity

is linear in the number of edges.

6.3.2 SpeakEasy

SpeakEasy [74] is a label propagation community detection algorithm which

identifies communities using top-down and bottom-up approaches simultaneously.

Specifically, nodes join communities based on their local connections and also the

global information about the network structure. It adopts consensus clustering to

get robust community structure. That is, the partition with the highest average

adjusted Rand Index [91] among all other partitions obtained from replicate runs is

selected as the representative partition. As shown in [74], SpeakEasy achieved top

performance on both social and biological networks. In our experiments, we choose

the number of iterations of the label propagation procedure to be 50 and conduct 20

replicate runs for consensus clustering to get more robust and deterministic results.

SpeakEasy gets overlapping community structure with threshold parameter from 0

to 1 exclusive, and gets disjoint community structure with threshold to be 1. In the

experiments, we set the threshold to be 1 as we only consider disjoint community

structure in this chapter.

6.3.3 Community Quality Metrics

In our experiments, we adopt two global community quality metrics, modular-

ity [5] and modularity density [21,22,91,106,107], and six local community quality
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metrics to measure the quality of community structure that SpeakEasy discovers on

the networks generated with the link improvement procedure described in Algorith-

m 4.

6.3.3.1 Newman’s Modularity

Modularity [5] measures the difference between the actual fraction of edges

within the community and such fraction expected in a randomized graph with the

same number of nodes and the same degree sequence. For a given community parti-

tion of a unweighted and undirected network G = (V,E) with |E| edges, modularity

(Q) is given by

Q =
∑
c∈C

 |Ein
c |
|E|

−
(
2|Ein

c |+ |Eout
c |

2|E|

)2
 , (6.3)

where C is the set of all the communities, c is a specific community in C, |Ein
c | is

the number of edges between nodes within community c, and |Eout
c | is the number

of edges from the nodes in community c to the nodes outside c.

6.3.3.2 Modularity Density

Modularity density [21, 22, 91, 106, 107] is proposed to simultaneously resolve

the two opposite yet coexisting problems of Newman’s modularity which in some

cases tends to favor small communities over large ones while in others, large com-

munities over small ones. The latter tendency is known in the literature as the

resolution limit problem of modularity [11]. Modularity density introduces two ad-

ditional components, split penalty and community density, into Newman’s modular-

ity given in Equation (6.3). Split penalty is the fraction of edges that connect nodes

of different communities. Community density includes internal community density

and pair-wise community density. The definition of modularity density (Qds) for
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unweighted and undirected networks is given by:

Qds =
∑
c∈C

[
|Ein

c |
|E|

dc −
(
2|Ein

c |+ |Eout
c |

2|E|
dc

)2

−
∑
c′∈C
c′ ̸=c

|Ec,c′|
2|E|

dc,c′

]
,

dc =
2|Ein

c |
|c|(|c| − 1)

, dc,c′ =
|Ec,c′|
|c||c′|

,

(6.4)

where dc is the internal density of community c, |Ec,c′ | is the number of edges from

c to c′, and dc,c′ is the pair-wise density between community c and community c′.

6.3.3.3 Six Local Community Quality Metrics

Modularity and modularity density are two global community quality metrics.

We also consider six local community quality metrics: Intra-density, Contraction,

Expansion, Conductance [21,22,69,119], the Fitness function [70], and the Average

Modularity Degree [71]. These metrics describe how the connectivity structure of a

given set of nodes resembles a community. All of them rely on the intuition that

communities are sets of nodes with many edges inside them and few edges outside

of them.

Intra-density (ID): dc in Equation (6.4). The larger the value of this metric, the

higher the community quality.

Contraction (CNT): 2|Ein
c |/|c|; it measures the average number of edges per

node inside the community c. The larger value of contraction means the higher

community quality.

Expansion (EXP): |Eout
c |/|c|; it measures the average number of edges (per node)

that point outside the community c. A smaller value of expansion corresponds to a

better community structure.

Conductance (CND): |Eout
c |

2|Ein
c |+|Eout

c | ; it measures the fraction of the total number

of edges that point outside the community. A smaller value of conductance means

higher community quality.

The Fitness (F) function: |Ein
c |

|Ein
c |+|Eout

c | ; it is the ratio between the internal degree

and the total degree of a community c. A larger value of F indicates better com-
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Table 6.1: Basic properties of the real-world network datasets used in
the experiments.

Name #Nodes #Edges Description
Gowalla 391,222 2,176,188 Gowalla friendship net. [108]
Amazon 334,863 925,872 Amazon product net. [33]
DBLP 317,080 1,049,866 DBLP collaboration net. [33]
Santafe 118 200 Santa Fe collaboration net. [78]
Football 115 613 College football net. [78]
Dolphin 62 159 Dolphin social net. [76]
Karate 34 78 Zachary’s karate club net. [80]

munity structure.

Average Modularity Degree (D):
∑

c∈C
2|Ein

c |−|Eout
c |

|c| ; it is the summation of the

average modularity degree of each community. The average modularity degree of a

community (2|E
in
c |−|Eout

c |
|c| ) equals to the average inner degree (2|E

in
c |

|c| ) minus the av-

erage outer degree ( |E
out
c |
|c| ). The larger the value of D, the higher the community

quality.

6.3.4 Dataset Description

We consider totally seven real-world network datasets, including two friendship

networks, two collaboration networks, and a co-purchasing network. Table 6.1 shows

the basic properties of all these datasets. The networks vary in size from dozens of

nodes to hundreds of thousands of nodes.

Gowalla, collected from a location-based social networking provider called

Gowalla, includes 391,222 users with public profiles (friends and checkins) from

mid September in 2011 to late October of that year [108]. Edges in this network

indicate friendships between users. Amazon is a product co-purchasing network of

the Amazon website [33]. The nodes of the network represent products and edges

link commonly co-purchased products. DBLP is a scientific collaboration network

where nodes represent authors and edges connect authors that have co-authored a

paper [33]. Santafe is the largest connected component of the collaboration network

of scientists at the Santa Fe Institute during years 1999 and 2000 [78]. Football is

a network that represents the schedule of games between college football teams in

a single season [78]. Dolphin is a social network of frequent associations between
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Figure 6.1: The community quality metric values of the commu-
nity structure that SpeakEasy discovers on the networks generat-
ed from Gowalla using our link improvement method with f =
[0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50].

62 dolphins in a community living off Doubtful Sound, New Zealand [76]. Karate

is a network representing the friendships between 34 members of a karate club at a

US university during two years [80].

6.3.5 Experimental Results

In this part, we show the calculated community quality metric values of the

community structure that SpeakEasy detects on the networks generated from the

seven real-world network datasets by using our link improvement procedure with

the replacing fraction f = [0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50] where f = 0 means that

there is no change to the original networks.
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(d) Contraction.
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(e) Expansion

0 10 20 30 40 50
0.15

0.2

0.25

0.3

0.35

f (%)

C
N

D

 

 

CN
AA
PF

(f) Conductance.

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

f (%)

F

 

 

CN
AA
PF

(g) Fitness.

0 10 20 30 40 50
5

5.5

6

6.5

7

7.5

8

8.5
x 10

4

f (%)

D

 

 

CN
AA
PF

(h) Average modularity degree.

Figure 6.2: The community quality metric values of the commu-
nity structure that SpeakEasy discovers on the networks generat-
ed from Amazon using our link improvement method with f =
[0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50].

Figure 6.1 shows the results for Gowalla dataset. The horizontal line indicates

the metric values of the community structure detected on the original unchanged

network. It can be seen that our link improvement method with common neighbors,

Adamic-Adar, and PropFlow improve the quality of the community structure signif-

icantly according to the eight community quality metrics. With common neighbors,

the maxima or minima (for expansion and conductance) of the community quali-

ty metrics are achieved at f = 10, except for modularity and contraction. With

Adamic-Adar, the maxima or minima are obtained at f = 30, with exception being

again modularity and contraction. PropFlow performs extremely well on Gowalla,

except with expansion. The improvement goes beyond f = 50, excluding modulari-
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ty which reaches its maximum at f = 15. Thus, we can observe that there is a limit

or threshold (varying for different link prediction metrics) of how many links could

be replaced for the purpose of improving community structure of a network. Going

beyond this threshold may lead to higher cost and lower performance. However,

one point worth mentioning is that even going beyond the threshold, the quality

of the obtained community structure may still be better than the quality of the

original community structure yet lower than the optimal one. We could also notice

that common neighbors metric generally performs better than Adamic-Adar and

in some cases better than PropFlow on Gowalla dataset. In most cases, PropFlow

has the best performance, especially according to modularity, modularity density,

intra-density, contraction, and average modularity degree. Figure 6.1(b) shows that

the value of modularity density grows up by about two magnitudes of the original

value with PropFlow. However, as shown later, PropFlow does not work well on

the other six networks. We believe the reason is that Gowalla is the only network

among the seven that is sensitive to geo-distances between nodes, and PropFlow is

a geodesic proximity measure [105].

Figure 6.2 presents the results of Amazon dataset. The horizontal line again

shows the metric values of the community structure detected on the original un-

changed network. We can observe that PropFlow performs poorly on this dataset,

except that modularity and contraction increase slightly from f = 0 to f = 30. In

contrast, common neighbors and Adamic-Adar work well on this network. With

Adamic-Adar, almost all the quality metrics reach their maxima or minima at

f = 25; with common neighbors, modularity gets its maximum at f = 30, modu-

larity density, intra-density, and average modularity degree attain their maxima at

f = 25, while expansion, conductance, and fitness function achieve their minima or

maximum at f = 40. Thus, there is a threshold of how many links could be replaced

on Amazon too. We can also notice that common neighbors metric performs much

better than Adamic-Adar and PropFlow.

Figure 6.3 displays the results of DBLP. It shows that with PropFlow our link

improvement approach improves the quality of community structure according to

modularity (Figure 6.3(a)) and contraction (Figure 6.3(d)), while actually impairs
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(a) Modularity.
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(b) Modularity density.
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(f) Conductance.
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(g) Fitness.
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(h) Average modularity degree.

Figure 6.3: The community quality metric values of the community struc-
ture that SpeakEasy discovers on the networks generated from DBLP us-
ing our link improvement method with f = [0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50].

the quality according to the other six metrics. With common neighbors, modularity

density, intra-density, and contraction generally decrease as the replacing fraction f

increases, while modularity achieves its maximum at f = 30, expansion and fitness

function reach their minimum or maximum at f = 40, and conductance and D

attain their minimum or maximum at f = 15. With Adamic-Adar, modularity,

expansion, conductance, fitness function reach their maxima or minima at f = 20,

and modularity density and average modularity degree achieve their maxima at

f = 15. Thus, there is a limit of how many links could be replaced on DBLP. We

can also notice that common neighbors metric generally performs best, followed by

Adamic-Adar.

Figure 6.4 shows the results of Football dataset. From the figure, we could
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(a) Modularity.

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

f (%)

Q
d

s

 

 

CN
AA
PF

(b) Modularity density.
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(c) Intra-density.
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(d) Contraction.
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(f) Conductance.
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(g) Fitness.
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(h) Average modularity degree.

Figure 6.4: The community quality metric values of the commu-
nity structure that SpeakEasy discovers on the networks generat-
ed from Football using our link improvement method with f =
[0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50].

observe that PropFlow has a poor performance on this dataset. As the replacing

fraction f increases, the quality of community structure declines linearly. In con-

trast, with common neighbors and Adamic-Adar, our link improvement approach

is able to significantly improve the quality of community structure. All the quality

metrics get their maxima or minima at f = 15 or f = 20. Still, there is a limit

of how many links could be replaced on Football dataset. We can also notice that

common neighbors metric performs slightly better than Adamic-Adar.

Figure 6.5 presents the results of Dolphin dataset. It shows again that PropFlow

does not work well on this network. As f increases, the quality of community struc-

ture becomes worse. While with common neighbors and Adamic-Adar, the commu-
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(a) Modularity.
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(b) Modularity density.
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(c) Intra-density.
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(f) Conductance.
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(g) Fitness.
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Figure 6.5: The community quality metric values of the commu-
nity structure that SpeakEasy discovers on the networks generat-
ed from Dolphin using our link improvement method with f =
[0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50].

nity quality metric values improve until a certain value of f is reached. For instance

with common neighbors, the obtained fitness function is larger than the original one

for all values of f and it reaches the maximum at f = 30. So, there is a threshold

of how many links could be replaced on Dolphin. Notice that common neighbors

metric generally performs better than Adamic-Adar.

Figures 6.6 and 6.7 show the results of Santafe and Karate datasets, respec-

tively. From the two figures, we could observe that our link improvement procedure

with all the three link prediction metrics has a poor performance. All the eight com-

munity quality metrics indicate declining quality as f increases. Only with common

neighbors, our link improving method could slightly improve the community quality.



122

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

f (%)

Q

 

 

CN
AA
PF

(a) Modularity.
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(b) Modularity density.
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(c) Intra-density.
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(d) Contraction.
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(e) Expansion
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(f) Conductance.
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(g) Fitness.

0 10 20 30 40 50
5

10

15

20

25

30

35

40

f (%)

D

 

 

CN
AA
PF
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Figure 6.6: The community quality metric values of the community struc-
ture that SpeakEasy discovers on the networks generated from Santafe us-
ing our link improvement method with f = [0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50].

On Santafe, the maxima or minima of the quality metrics are obtained at f = 20.

On Karate, the maxima or minima are achieved at f = 10. The reason for the

poor performance of our method is that these two networks are very small and their

members were in the same club or institute for long time so they were able to e-

volve their links to the desired state. Thus, there is not much that can be done to

improve the community structure of these two networks with our link improvement

approach. In contrast, the other five networks are different, since they are either

very large or their members do not have a global knowledge of the network structure

or all the nodes, hence in each of these network there are many potentially good

matches that are not realized even after a long time evolution [109].

We also draw a table to summarize the performance of our link improvement
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(a) Modularity.
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(b) Modularity density.
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(c) Intra-density.
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(f) Conductance.
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(g) Fitness.
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Figure 6.7: The community quality metric values of the community struc-
ture that SpeakEasy discovers on the networks generated from Karate us-
ing our link improvement method with f = [0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50].

approach with link prediction metrics being common neighbors and Adamic-Adar

on Amazon, DBLP, Football, and Dolphin datasets. We do not show the result

for PropFlow because it works well only on Gowalla dataset. Also, we do not

show the results for Gowalla, Santafe, and Karate since on these datasets, common

neighbors or Adamic-Adar are either not the best or perform poorly. The fraction of

replaced links f cell in the table shows the best f for the corresponding community

quality metric. RI = abs(best value − original)/orignal ∗ 100% is the relative

improvement (RI ) of the corresponding community quality metric attained with

the best f compared to the value of the original unchanged network (f = 0). The

7 in the table indicates that our link prediction method impairs the community

quality according to the community quality metric in that row. This table and all
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Table 6.2: The best replacing fraction f and the corresponding relative
improvement (RI ) of the community quality metric achieved using our
link improvement method with common neighbors and Adamic-Adar on
Amazon, DBLP, Football, and Dolphin.

Datasets
Amazon DBLP Football Dolphin
f RI f RI f RI f RI

CN

Q 30 16.6 30 15.3 15 20.5 20 11.7
Qds 25 27.8 7 7 15 34.1 10 25.7
ID 25 12.6 7 7 10 9.8 10 9.4
CNT 7 7 7 7 15 20.4 25 3.9
EXP 40 52.6 40 53.4 15 43.6 30 52.3
CND 40 36.0 15 13.0 15 41.9 25 42.1
F 40 27.2 40 18.8 15 35.0 30 40.5
D 25 40.8 15 18.5 15 69.2 25 73.0

AA

Q 30 8.9 20 10.4 15 16.9 15 7.1
Qds 25 18.4 15 2.6 15 33.2 10 20.8
ID 25 4.4 7 7 15 9.1 7 7

CNT 15 3.0 7 7 20 19.4 7 7

EXP 25 28.2 20 28.8 20 36.0 20 33.4
CND 25 20.5 20 14.7 20 36.5 30 20.2
F 25 15.6 20 13.6 20 29.1 30 18.8
D 25 26.0 15 22.5 15 60.1 15 40.4

the above figures show that our link improvement procedure is able to significantly

refine the community structure of five out of seven networks we considered.

Generally, our method has the best performance when taking common neigh-

bors as the link prediction metric, followed by Adamic-Adar. We have also tried our

link improvement method with the three link prediction metrics on three protein-

protein interaction networks, however we did not get the expected results. Because

of limited space, we do not show them here. We conjecture that current link pre-

diction metrics or our link improvement approach may not be suitable for biological

networks. A new approach specialized for biological networks might be necessary to

improve the community structure for them. Therefore, we conclude that a single link

prediction metric cannot perform well on every network, because its performance

depends on the meaning of the relationships which define links in the network. Al-

so, each link prediction metric varies its performance on different kinds of networks.
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Thus, our method can be used to predict the performance of link prediction metrics.

If the highly ranked predicted links do not improve quality of communities, they are

unlikely to be formed quickly. We could also observe that there is a limit or thresh-

old (which varies for different link prediction metrics) of how many links could be

replaced for the purpose of improving community structure of a network. Going

beyond this threshold may lead to higher cost and lower performance although the

quality of the community structure may still be better than such quality for the

original unchanged network.

6.4 Conclusion and Future Work

In this chapter, we introduce an approach to improve the network community

structure by removing a certain fraction of low ranking existing links and replacing

them with highly ranked predicted links. The ranks of the added or removed links

are obtained using three link prediction metrics. The proposed method is able to

significantly improve the community structure of the networks we considered. How-

ever, there is a threshold of how many links can be replaced in order to refine the

community structure of a network. Going beyond this threshold may lead to higher

cost and lower performance. In the experiments, we adopted three link prediction

metrics, common neighbors, Adamic-Adar, and PropFlow. Generally, the link im-

provement method with common neighbors has the best performance, followed by

Adami-Adar, while PropFlow performs extremely well only on Gowalla dataset. We

argue that a single link prediction method cannot perform uniformly well on every

network. Some metrics are more suitable for a particular network than others de-

pending on the nature of the links. Finally, we noticed that there is a correlation

between certain network properties and the performance of link prediction and im-

provement. Two influential factors that we observed are the network size and the

degree to which nodes possess global knowledge about the network structure.

In the future, we plan to adopt more link prediction metrics into our link

improvement approach to explore the performance of different link prediction metrics

on different types of networks. We also plan to propose a new link prediction

metric or a new link improvement approach specific for biological networks. In this
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chapter, we only considered disjoint community structure. In the future, we plan to

explore how our link improvement method could refine the quality of overlapping

community structure. Moreover, we will evaluate this approach with ground truth

communities on evolving networks to see whether the improved community structure

is more consistent with the ground truth community structure so that we could

determine whether the improvement is real. In addition, we are considering using

more community detection algorithms to evaluate the performance of link prediction

and improvement methods.



CHAPTER 7

CONCLUSION

In this thesis, we review the definitions of communities, the definition of modularity

and its corresponding optimization approaches. Then, we discuss the two oppo-

site yet coexisting problems of modularity maximization. To solve the two issues

of modularity simultaneously, we propose a new community quality metric, called

modularity density. We also extend modularity density to be able to measure the

quality of overlapping community structure. We then propose a novel fine-tuned

disjoint community detection algorithm that repeatedly attempts to improve the

quality metrics by splitting and merging the given community structure. Finally,

we introduce an link improvement approach to improve the network community

structure by removing a certain fraction of low ranking existing links and replacing

them with highly ranked predicted links. A summary of our findings is given below.

In Chapter 3, we introduce our newly proposed community quality metric,

modularity density. It is able to simultaneously resolve the two opposite yet co-

existing issues of Newman’s modularity which in some cases tends to favor small

communities over large ones while in others, large communities over small ones.

The latter tendency is known in the literature as the resolution limit problem of

modularity. We show with proofs and experiments on real-world dynamic datasets

that modularity density could avoid the two issues at the same time and therefore

is an effective alternative to modularity.

In Chapter 4, we review overlapping extensions of modularity and generalize

them with a uniform definition enabling application of different belonging coeffi-

cients and belonging functions to select the best. We determine which versions of

the belonging coefficient and the belonging function are better for measuring qual-

ity of fuzzy overlapping community structure. We find that the first version of the

belonging coefficient is better than the second one, which means that the coeffi-

cient of a node belonging to a community should be the reciprocal of the number

of communities to which this node belongs. In addition, we find that the second

127
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version of the belonging function is better than the first version, meaning that the

probability that two nodes belong to the same community should be the product,

not the average, of their belonging coefficients. Moreover, we propose overlapping

extensions for localized modularity, modularity density, and eight local community

quality metrics analogous to such extension of modularity. Based on the experimen-

tal results, we recommend using the edge-based overlapping extension of modularity

with the first version of belonging coefficient and with its own belonging function.

We also recommend using the node-based overlapping extension of modularity and

overlapping extension of modularity density with the first version of belonging co-

efficient and the second version of belonging function as the metrics of the global

quality of overlapping community structure.

In Chapter 5, we propose an novel fine-tuned disjoint algorithm to maximize

Qds. This new algorithm can actually be used to optimize any community quality

metric. We evaluate the three algorithms, Greedy Q, Fine-tuned Q based on Q,

and Fine-tuned Qds based on Qds, with seven metrics based on ground truth com-

munities. The evaluation results imply that Fine-tuned Qds performs best among

the three algorithms, followed by Fine-tuned Q. The experiments also show that

Fine-tuned Qds can dramatically improve the community detection results of other

algorithms. In addition, all the seven quality metrics based on ground truth com-

munities are consistent with Qds, but not consistent with Q, which indicates the

superiority of Qds over Q as a community quality metric.

In Chapter 6, we introduce an approach to improve the network community

structure by removing a certain fraction of low ranking existing links and replac-

ing them with highly ranked predicted links. The ranks of the added or removed

links are obtained using three link prediction metrics. The proposed method is able

to substantially improve the community structure of the networks we considered.

However, there is a threshold of how many links can be replaced in order to refine

the community structure of a network. Going beyond this threshold may lead to

higher cost and lower performance. In the experiments, we adopt three link predic-

tion metrics, common neighbors, Adamic-Adar, and PropFlow. Generally, the link

improvement method with common neighbors has the best performance, followed
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by Adami-Adar, while PropFlow performs extremely well only on Gowalla dataset.

We argue that a single link prediction method cannot perform uniformly well on

every network. Some metrics are more suitable for a particular network than others

depending on the nature of the links. Finally, we notice that there is a correlation

between certain network properties and the performance of link prediction and im-

provement. Two influential factors that we observe are the network size and the

degree to which nodes possess global knowledge about the network structure.

To summarize, we propose a new community quality metric, modularity densi-

ty, for measuring the quality of both disjoint and overlapping community structure,

and then maximize modularity density in order to find meaningful communities.

Moreover, we apply this new metric to evaluate a link improvement approach that

we introduce to improve or recover the network community structure with link pre-

diction ranking.
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APPENDIX A

APPENDIX OF CHAPTER 4

A.1 Proof of the Equivalence between Qov and Q′ov

Here, we prove that the second term of Qov, Equation (4.16), is equal to the

second term of Q′
ov, Equation (4.17).
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(A.1)

A.2 Real-world Network Datasets

A.2.1 C. elegans Metabolic Network

This is the metabolic network of C. elegans [45] with 453 nodes and 2025 edges.

Table A.1 shows the best value of threshold r for SLPA [72, 73], the best value of

parameter k for CFinder [23,120], and the best value of threshold tr for SpeakEasy

[74] determined by the twelve community quality metrics with four possible com-

Portions of this chapter previously appeared as: M. Chen and B. K. Szymanski, “Fuzzy over-
lapping community quality metrics,” Soc. Netw. Anal. Min., vol. 5, no. 1, pp. 1-14, Jul.
2015.

140



141

Table A.1: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on C. elegans metabolic network. The best value
for subcolumn of the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.5 0.3 0.3 0.35 0.05 0.5 0.05 0.5 0.5 0.5 0.05 0.5 0.5 (6)
(1,2) 0.3 0.3 0.3 0.4 0.05 0.5 0.05 0.5 0.4 0.05 0.05 0.4 0.05 (4)
(2,1) 0.5 0.3 0.45 0.4 0.05 0.5 0.05 0.5 0.5 0.5 0.05 0.5 0.5 (6)
(2,2) 0.4 0.4 0.45 0.4 0.05 0.35 0.05 0.35 0.4 0.05 0.05 0.4 0.4 (5)

CFinder

(1,1) 9 3 4 3 3 4 4 7 7 3 3 3 3 (6)
(1,2) 4 3 4 4 3 4 3 7 3 3 3 3 3 (7)
(2,1) 7 3 4 3 3 4 4 9 9 3 3 9 3 (5)
(2,2) 5 9 4 4 3 4 3 9 9 9 3 3 {3,9} (4)

SpeakEasy

(1,1) 0.75 0.8 0.75 0.75 0.05 0.8 0.05 1 0.75 0.9 0.75 0.75 0.75 (6)
(1,2) 0.75 0.8 0.75 0.75 0.75 0.8 0.9 0.35 0.75 0.9 0.75 0.75 0.75 (7)
(2,1) 0.75 0.8 0.75 0.75 0.05 0.8 0.05 1 0.75 0.9 0.75 0.75 0.75 (6)
(2,2) 0.75 0.8 0.75 0.75 0.75 0.8 0.9 0.35 0.75 0.5 0.9 0.75 0.75 (6)

binations of the two versions of belonging coefficient and two version of belonging

function for this network. The last column in this table (and all the following tables)

is the best value of threshold r for SLPA, the best value of parameter k for CFinder,

or the best value of the threshold tr for SpeakEasy along with the corresponding

number of community quality metrics (out of twelve) that are consistent with each

other on determining this best r, this best k, and this best tr for each combination of

belonging coefficient and belonging function. The table shows that the first version

of belonging function is better than the second version of belonging function when

using SLPA. For CFinder and SpeakEasy, it implies that (BC,BF)=(1,2) is the best

among the four possible combinations of two versions of belonging coefficient and

two versions of belonging function. In conclusion, two out of three algorithms show

that (BC,BF)=(1,2) is the best on C. elegans metabolic network.

A.2.2 Dolphin Social Network

This is a social network of frequent associations between 62 dolphins in a com-

munity living off Doubtful Sound, New Zealand [76]. There are 62 nodes and 159

edges. Table A.2 shows the best value of threshold r for SLPA, the best value of pa-

rameter k for CFinder, and the best value of threshold tr for SpeakEasy determined

by the twelve community quality metrics with four possible combinations of the two
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Table A.2: The best value of threshold r for SLPA, the best value of pa-
rameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two ver-
sion of belonging function on dolphin social network. The best value for
subcolumn of the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.5 0.4 0.4 0.4 0.05 0.5 0.05 0.5 0.5 0.45 0.5 0.45 0.5 (5)
(1,2) 0.4 0.4 0.4 0.4 0.05 0.4 0.05 0.5 0.4 0.4 0.05 0.4 0.4 (8)
(2,1) 0.5 0.4 0.05 0.4 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.45 0.5 (6)
(2,2) 0.4 0.4 0.05 0.4 0.05 0.3 0.05 0.3 0.4 0.05 0.05 0.4 {0.05,0.4} (5)

CFinder

(1,1) 3 3 3 3 3 3 3 4 3 3 3 3 3 (11)
(1,2) 3 3 3 3 3 3 3 3 3 3 3 3 3 (12)
(2,1) 3 3 3 4 3 3 3 5 5 5 3 4 3 (7)
(2,2) 3 3 3 4 3 3 3 5 5 5 3 4 3 (7)

SpeakEasy

(1,1) 0.4 0.55 0.4 0.2 0.15 0.85 0.05 0.7 1 0.45 0.45 0.4 0.4 (3)
(1,2) 0.4 0.2 0.4 0.2 0.4 0.85 0.45 0.7 1 0.45 0.45 0.4 0.4 (4)
(2,1) 0.15 0.8 0.15 0.8 0.15 0.85 0.15 0.7 0.7 0.45 0.45 0.7 0.15 (4)
(2,2) 0.4 0.8 0.15 0.8 0.4 0.85 0.45 0.7 0.7 0.7 0.45 0.7 0.7 (4)

versions of belonging coefficient and two version of belonging function on dolphin

social network. We could learn from the table that all the three algorithms demon-

strate that (BC,BF)=(1,2) is the best among the four combinations of belonging

coefficient and belonging function.

A.2.3 Email network

This network represents email interchanges between members of the Univeristy

Rovira i Virgili (Tarragona) [77]. It has 1133 nodes and 5451 edges. Table A.3 shows

the best value of threshold r for SLPA, the best value of parameter k for CFinder,

and the best value of threshold tr for SpeakEasy determined by the twelve commu-

nity quality metrics with four possible combinations of the two versions of belonging

coefficient and two version of belonging function on email network. It can be ob-

served from this table that all three algorithms demonstrate that (BC,BF)=(1,2) is

the best among the four combinations of belonging coefficient and belonging func-

tion.

A.2.4 American College Football Network

The network represents the schedule of games between college football teams

in a single season [78]. There are 115 nodes and 613 edges. Table A.4 shows the best
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Table A.3: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on email network. The best value for subcolumn
of the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.5 0.5 0.5 0.35 0.1 0.4 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.35 0.5 0.5 0.5 0.5 0.5 (10)
(2,1) 0.5 0.5 0.3 0.4 0.1 0.4 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.5 0.5 0.3 0.5 0.5 0.4 0.5 0.35 0.4 0.5 0.5 0.5 0.5 (8)

CFinder

(1,1) 4 3 3 3 3 3 4 3 3 3 3 3 3 (10)
(1,2) 4 3 3 3 3 3 4 3 3 3 3 3 3 (10)
(2,1) 4 5 3 4 3 3 4 10-12 9 10-12 4 8 4 (4)
(2,2) 4 7 3 5 3 3 4 9-12 9-12 9-12 4 7 {3,4,9-12} (3)

SpeakEasy

(1,1) 0.3 0.85 1 0.8 0.05 0.75 0.05 0.7 0.55 0.9 0.9 0.9 0.9 (3)
(1,2) 1 0.85 1 0.8 1 0.75 0.85 0.7 0.5 0.9 0.9 0.5 1 (3)
(2,1) 0.3 0.85 1 0.8 0.05 0.75 0.05 0.7 0.95 0.9 0.9 0.5 {0.05,0.9} (2)
(2,2) 1 0.85 1 0.8 1 0.75 0.85 0.7 0.5 0.5 0.9 0.5 {0.5,1} (3)

Table A.4: The best value of threshold r for SLPA, the best value of pa-
rameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve quality metrics with four possible combinations
of the two versions of belonging coefficient and two version of belonging
function on American college football network. The best value for sub-
column of the last column is marked by red italic font.
Algorithm (BC,BF) Qov NQov QL

ov Qov
ds

IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.4 0.45,0.50.45,0.50.45,0.5 0.05 0.45,0.5 0.05 0.45,0.50.45,0.50.45,0.50.45,0.50.45,0.5 {0.45,0.5} (9)
(1,2) 0.4 0.45,0.50.45,0.50.45,0.50.45,0.50.45,0.50.45,0.50.45,0.50.45,0.50.45,0.50.45,0.50.45,0.5 {0.45,0.5} (11)
(2,1) 0.4 0.45,0.5 0.3 0.45,0.5 0.05 0.45,0.5 0.05 0.45,0.50.45,0.50.45,0.50.45,0.50.45,0.5 {0.45,0.5} (8)
(2,2) 0.4 0.45,0.5 0.3 0.45,0.5 0.25 0.45,0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 (7)

CFinder

(1,1) 4 5 4 4 3 4 3 9 4 3 3 4 4 (6)
(1,2) 4 5 4 4 3 4 3 9 3 3 3 4 {3,4} (5)
(2,1) 4 6 4 4 3 4 3 9 9 9 3 4 4 (5)
(2,2) 4 6 4 4 3 4 3 9 9 9 3 4 4 (5)

SpeakEasy

(1,1) 0.1,0.6 0.75 0.6 0.1,0.6 0.1,0.6 0.75 0.1,0.6 0.1,0.6 0.1,0.6 0.1,0.6 0.6 0.1,0.6 0.6 (10)
(1,2) 0.1,0.6 0.75 0.6 0.1,0.6 0.1,0.6 0.75 0.1,0.6 0.1,0.6 0.1,0.6 0.1,0.6 0.6 0.1,0.6 0.6 (10)
(2,1) 0.1,0.6 0.75 0.6 0.1,0.6 0.1,0.6 0.75 0.1,0.6 0.1,0.6 0.1,0.6 0.1,0.6 0.6 0.1,0.6 0.6 (10)
(2,1) 0.1,0.6 0.75 0.6 0.1,0.6 0.1,0.6 0.75 0.1,0.6 0.1,0.6 0.1,0.6 0.1,0.6 0.6 0.1,0.6 0.6 (10)

value of threshold r for SLPA, the best value of parameter k for CFinder, and the

best value of threshold tr for SpeakEasy determined by the twelve community quality

metrics with four possible combinations of the two versions of belonging coefficient

and two version of belonging function on American college football network. It can

be observed from this table that SLPA performs best with (BC,BF)=(1,2), CFinder

implies that (BC,BF)=(1,1) is the best, while SpeakEasy has no preferences.
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Table A.5: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on jazz musicians network. The best value for
subcolumn of the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.5 0.5 0.5 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (10)
(1,2) 0.5 0.5 0.5 0.5 0.1 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 (10)
(2,1) 0.5 0.5 0.4 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (9)
(2,2) 0.5 0.5 0.4 0.5 0.1 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 (9)

CFinder

(1,1) 14 3 10 10 3 8 3 3 3 3 3 3 3 (8)
(1,2) 10 3 10 10 3 8 3 3 3 3 3 3 3 (8)
(2,1) 14 10 8 10 3 8 3 3 3 18 3 3 3 (6)
(2,2) 10 17 8 10 3 8 3 3 19,20 19,20 3 3 3 (5)

SpeakEasy

(1,1) 0.75 0.5 0.75 0.75 0.1 0.85 0.1 0.75 0.75 0.55 0.55 0.8 0.75 (5)
(1,2) 0.75 0.5 0.75 0.75 0.75 0.85 0.7 0.75 0.5 0.55 0.55 0.5 0.75 (5)
(2,1) 0.75 0.5 0.75 0.75 0.1 0.85 0.1 0.75 0.75 0.55 0.55 0.8 0.75 (5)
(2,2) 0.75 0.5 0.75 0.75 0.75 0.85 0.7 0.75 0.75 0.8 0.55 0.8 0.75 (6)

A.2.5 Jazz Musicians Network

This is a network with 198 nodes and 2742 edges of collaborations between

jazz musicians [79]. Table A.5 shows the best value of threshold r for SLPA, the best

value of parameter k for CFinder, and the best value of threshold tr for SpeakEasy

determined by the twelve community quality metrics with four possible combinations

of the two versions of belonging coefficient and two version of belonging function

on jazz musicians network. From this table, we could see that the first version

of belonging coefficient is better than the second version when using SLPA and

CFinder, while SpeakEasy demonstrates that (BC,BF)=(2,2) is the best among

the four combinations. In summary, two of the three algorithms support that the

first version of belonging coefficient is better than the second one on jazz musicians

network.

A.2.6 Zachary’s Karate Club Network

This network represents the friendships between 34 members of a karate club

at a US university during two years [80]. It has 34 nodes and 78 edges. Table A.6

shows the best value of threshold r for SLPA, the best value of parameter k for

CFinder, and the best value of threshold tr for SpeakEasy determined by the twelve

community quality metrics with four possible combinations of the two versions of
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Table A.6: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve quality metrics with four possible combinations
of the two versions of belonging coefficient and two version of belonging
function on Zachary’s karate club network. The best value for subcolumn
of the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.5 0.5 0.45 0.5 0.1 0.35 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.45 0.45 0.45 0.45 0.15 0.35 0.45 0.45 0.45 0.45 0.45 0.45 0.45 (10)
(2,1) 0.5 0.5 0.45 0.5 0.1 0.35 0.05 0.5 0.5 0.5 0.5 0.45 0.5 (7)
(2,2) 0.45 0.45 0.45 0.45 0.15 0.35 0.45 0.45 0.45 0.45 0.45 0.45 0.45 (10)

CFinder

(1,1) 3 3 3 3 3 3 3 5 3 3 3 3 3 (11)
(1,2) 3 3 3 3 3 3 3 5 3 3 3 3 3 (11)
(2,1) 4 3 3 3 3 3 3 5 5 5 3 3 3 (8)
(2,2) 4 4 3 3 3 3 3 5 5 5 3 3 3 (7)

SpeakEasy

(1,1) 0.45 0.45 0.45 0.45 0.2 0.95 0.05 0.7,0.75 0.45 0.65 0.65 0.65 0.45 (5)
(1,2) 0.45 0.45 0.45 0.45 0.45 0.95 0.65 0.15 0.45 0.65 0.65 0.65 0.45 (6)
(2,1) 0.45 0.45 0.15 0.45 0.2 0.95 0.05 0.9 0.45 0.65 0.65 0.45 0.45 (5)
(2,2) 0.45 0.45 0.15 0.45 0.2 0.35 0.65 0.9 0.45 0.45 0.85 0.45 0.45 (6)

Table A.7: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on Les Miserables network. The best value for
subcolumn of the last column is marked by red italic font.
Algorithm (BC,BF) Qov NQov QL

ov Qov
ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.35 0.5 0.25 0.35 0.05 0.5 0.05 0.5 0.5 0.25 0.25 0.25 {0.25,0.5} (4)
(1,2) 0.35 0.5 0.25 0.35 0.15 0.5 0.25 0.35 0.25 0.25 0.25 0.25 0.25 (6)
(2,1) 0.35 0.5 0.15 0.4 0.05 0.5 0.05 0.5 0.5 0.25 0.25 0.25 0.5 (4)
(2,2) 0.35 0.5 0.15 0.35 0.15 0.5 0.15 0.35 0.25 0.15 0.15 0.25 0.15 (5)

CFinder

(1,1) 6 3 4 4 3 3 5 8 3 3 3 3 3 (7)
(1,2) 5 3 4 5 3 3 3 4 3 3 3 3 3 (8)
(2,1) 6 6 4 6 3 3 5 9 9 9 3 6 6 (4)
(2,2) 6 6 4 6 3 3 3 9 9 9 3 6 {3,6} (4)

SpeakEasy

(1,1) 0.65 0.85 0.65 0.6 0.850.85 0.1 0.55,0.95 0.55 0.85 0.85 0.6 0.85 (5)
(1,2) 0.65 0.85 0.65 0.6 0.850.85 0.85 0.55,0.95 0.55 0.85 0.85 0.6 0.85 (6)
(2,1) 0.65 0.7 0.65,0.8 0.6 0.850.85 0.1 0.95 0.55 0.85 0.85 0.6 0.85 (4)
(2,2) 0.65,0.8 0.7 0.65,0.80.45,0.60.850.85 0.85 0.45,0.95 0.55 0.95 0.850.45,0.6 0.85 (4)

belonging coefficient and two version of belonging function on Zachary’s karate club

network. It can be observed from this table that all three algorithms show that

(BC,BF)=(1,2) is the best among the four combinations of belonging coefficient

and belonging function.

A.2.7 Les Miserables Network

This is a coappearance network of characters in the novel Les Miserables [81].

It has 77 nodes and 254 edges. Table A.7 shows the best value of threshold r for
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Table A.8: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve quality metrics with four possible combinations
of the two versions of belonging coefficient and two version of belonging
function on Network Science coauthorship network. The best value for
subcolumn of the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.4 0.5 0.35 0.05 0.4 0.05 0.5 0.5 0.35 0.35 0.35 0.35 (4)
(1,2) 0.5 0.4 0.5 0.4 0.5 0.4 0.25 0.5 0.35 0.2 0.15 0.35 0.5 (4)
(2,1) 0.05 0.4 0.35 0.35 0.05 0.4 0.05 0.5 0.5 0.35 0.35 0.35 0.35 (5)
(2,2) 0.5 0.4 0.35 0.35 0.15 0.4 0.25 0.5 0.5 0.2 0.15 0.35 {0.35,0.5} (3)

CFinder

(1,1) 3 3 3 3 3 3 3 7 3 3 3 3 3 (11)
(1,2) 3 3 3 3 3 3 3 3 3 3 3 3 3 (12)
(2,1) 3 3 3 3 3 3 3 11-20 11-20 11-20 3 3 3 (9)
(2,2) 3 3 3 3 3 3 3 9-20 9-20 9-20 3 3 3 (9)

SpeakEasy

(1,1) 0.05 0.25 0.25 0.25 0.05 0.7 0.05 1 1 0.7 0.7 0.7 0.7 (4)
(1,2) 0.25 0.25 0.25 0.25 0.25 0.7 0.7 0.25 0.25 0.25 0.25 0.25 0.25 (10)
(2,1) 0.05 0.3 0.15 0.25 0.05 0.7 0.05 0.85 1 0.25 0.7 1 0.05 (3)
(2,2) 0.15 0.3 0.15 0.25 0.25 0.7 0.7 0.4 0.2 0.2 0.9 1 {0.15,0.2,0.25,0.7} (2)

SLPA, the best value of parameter k for CFinder, and the best value of threshold

tr for SpeakEasy determined by the twelve community quality metrics with four

possible combinations of the two versions of belonging coefficient and two version

of belonging function on Les Miserables network. The table shows that for all three

algorithms (BC,BF)=(1,2) is the best among the four combinations of belonging

coefficient and belonging function.

A.2.8 Network Science Coauthorship Network

This is a coauthorship network of scientists working on network theory and

experiment [39]. There are 1461 nodes and 2742 edges. Table A.8 shows the best

value of threshold r for SLPA, the best value of parameter k for CFinder, and

the best value of threshold tr for SpeakEasy determined by the twelve community

quality metrics with four possible combinations of the two versions of belonging

coefficient and two version of belonging function on Network Science coauthorship

network. We can observe from this table that SLPA shows that (BC,BF)=(2,1) is

the best among the four combinations, while CFinder and SpeakEasy indicate that

(BC,BF)=(1,2) is the best. Thus, we could conclude that (BC,BF)=(1,2) is the best

on Network Science coauthorship network.
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Table A.9: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on PGP network. The best value for subcolumn of
the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.5 0.5 0.5 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.5 0.5 0.5 0.05 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 (10)
(2,1) 0.05 0.5 0.2 0.5 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.45 0.5 0.2 0.5 0.05 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 (8)

CFinder

(1,1) 4 3 3 3 3 3 3 13 3 3 3 3 3 (10)
(1,2) 3 3 3 3 3 3 3 3 3 3 3 3 3 (12)
(2,1) 4 3 3 6 3 3 3 18 18 19 3 13 3 (6)
(2,2) 3 3 3 6 3 3 3 18 18 14,15 3 3 3 (8)

SpeakEasy

(1,1) 0.05 0.25 0.85 0.9 0.05 0.7 0.05 0.75 0.85 0.85 0.85 0.85 0.85 (5)
(1,2) 0.85 0.25 0.85 0.9 0.85 0.7 0.85 0.75 0.85 0.85 0.25 0.85 0.85 (7)
(2,1) 0.05 0.8 0.85 0.9 0.05 0.7 0.05 0.75 0.75 0.85 0.85 0.75 {0.05,0.75,0.85} (3)
(2,2) 0.85 0.8 0.85 0.9 0.85 0.7 0.85 0.6 0.75 0.75 0.2 0.75 0.85 (4)

A.2.9 PGP Network

This is the largest connected component of the network of users of the Pretty-

Good-Privacy (PGP) algorithm for secure information interchange [82]. It has 10680

nodes and 24316 edges in total. Table A.9 shows the best value of threshold r for

SLPA, the best value of parameter k for CFinder, and the best value of threshold

tr for SpeakEasy determined by the twelve community quality metrics with four

possible combinations of the two versions of belonging coefficient and two version of

belonging function on PGP Network. It can be seen from the table that all three

algorithms show that (BC,BF)=(1,2) is the best among the four combinations of

belonging coefficient and belonging function.

A.2.10 Political Blogs Network

This is a directed network of hyperlinks between weblogs on US politics, record-

ed in 2005 by Adamic and Glance [83]. There are 1224 nodes and 19022 edges.

Table A.10 shows the best value of threshold r for SLPA and the best value of

threshold tr for SpeakEasy determined by the twelve community quality metrics

with four possible combinations of the two versions of belonging coefficient and two

version of belonging function on political blogs network. Results for CFinder are

not provided because it has not finished running on this network for more than two
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Table A.10: The best value of threshold r for SLPA and the best value of
threshold tr for SpeakEasy determined by the twelve community quality
metrics with four possible combinations of the two versions of belonging
coefficient and two version of belonging function on political blogs net-
work. The best value for subcolumn of the last column is marked by red
italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.5 0.5 0.5 0.4 0.5 0.35 0.3 0.4 0.45 0.5 0.5 0.5 0.5 (7)
(1,2) 0.5 0.5 0.5 0.4 0.5 0.4 0.5 0.15 0.4 0.5 0.5 0.5 0.5 (8)
(2,1) 0.5 0.5 0.05 0.4 0.5 0.4 0.3 0.4 0.45 0.5 0.5 0.5 0.5 (6)
(2,2) 0.25 0.25 0.05 0.25 0.5 0.4 0.5 0.05 0.35 0.5 0.5 0.3 0.5 (4)

SpeakEasy

(1,1) 0.85 0.45 0.85 0.7 0.9 0.35 0.05 0.7 0.7 0.25 0.45 0.7 0.7 (4)
(1,2) 0.85 0.45 0.85 0.7 0.9 0.35 0.9 0.7 0.7 0.25 0.45 0.7 0.7 (4)
(2,1) 0.85 0.45 0.45 0.7 0.9 0.35 0.05 0.7 0.5 0.25 0.45 0.5 0.45 (3)
(2,2) 0.8 0.8 0.45 0.7 0.9 0.35 0.9 0.7 0.5 0.4 0.6 0.5 {0.5,0.7,0.8,0.9} (2)

months processing many potential k-cliques resulting from dense connections. It can

be seen from the table that both SLPA and SpeakEasy imply that (BC,BF)=(1,2)

is the best among the four combinations of belonging coefficient and belonging func-

tion.

A.2.11 Political Books Network

This is a network of books about US politics published around the time of

the 2004 presidential election and sold by the online bookseller Amazon.com [84].

It has 105 nodes and 441 edges in total. Edges between books indicate frequent

copurchasing of books by the same buyers. Table A.11 shows the best value of

threshold r for SLPA, the best value of parameter k for CFinder, and the best value

of threshold tr for SpeakEasy determined by the twelve community quality metrics

with four possible combinations of the two versions of belonging coefficient and two

version of belonging function on political books network. We could learn from the

table that SLPA shows that the first version of belonging function is better than

the second version, CFinder implies that the first version of belonging coefficient is

better than the second one, and SpeakEasy indicates that (BC,BF)=(1,2) is the best

among all four combinations. In summary, there are two out of three algorithms

support that (BC,BF)=(1,2) is the best on political books network.
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Table A.11: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on political books network. The best value for
subcolumn of the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.5 0.5 0.2 0.4 0.05 0.4 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(1,2) 0.5 0.5 0.2 0.4 0.1 0.4 0.1 0.4 0.2 0.2 0.2 0.2 0.2 (5)
(2,1) 0.5 0.5 0.1 0.4 0.05 0.4 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.5 0.5 0.1 0.4 0.1 0.4 0.1 0.4 0.2 0.2 0.2 0.2 0.2 (4)

CFinder

(1,1) 4 3 3 3 3 3 3 6 3 3 3 3 3 (10)
(1,2) 3 3 3 4 3 3 3 6 3 3 3 3 3 (10)
(2,1) 4 4 3 4 3 3 3 6 6 3 3 3 3 (7)
(2,2) 4 4 3 4 3 3 3 6 6 6 3 3 3 (6)

SpeakEasy

(1,1) 0.95 1 0.5 0.95 0.25 0.95 0.05 0.5 0.9 0.95 0.95 0.9 0.95 (5)
(1,2) 0.95 0.55 0.5 0.95 0.95 0.95 0.9 0.5 0.9 0.95 0.95 0.9 0.95 (6)
(2,1) 0.5 1 0.5 0.95 0.25 0.95 0.05 0.5 0.85 0.9 0.95 0.9 {0.5,0.95} (3)
(2,2) 0.5 0.55 0.5 0.95 0.95 0.95 0.9 0.5 0.85 0.85 0.95 0.9 0.95 (4)

Table A.12: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on Indian railway network. The best value for
subcolumn of the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.15 0.5 0.5 0.5 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.35 0.5 0.5 0.05 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 (9)
(2,1) 0.05 0.5 0.15 0.5 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.5 0.35 0.15 0.5 0.05 0.45 0.5 0.35 0.5 0.5 0.5 0.5 0.5 (7)

CFinder

(1,1) 6 3 4 5 3 3 3 3 3 3 3 3 3 (9)
(1,2) 6 3 4 5 3 3 3 3 3 3 3 3 3 (9)
(2,1) 6 6 4 5 3 3 3 10 10 10 3 4 3 (4)
(2,2) 6 6 4 6 3 3 3 10 10 10 3 4 3 (4)

SpeakEasy

(1,1) 0.55 0.8 0.45 1 0.05 0.7 0.05 0.95 0.95 0.8 0.8 0.8 0.8 (4)
(1,2) 0.45 0.7 0.45 1 0.8 0.7 0.8 0.95 0.55 0.8 0.8 0.8 0.8 (5)
(2,1) 0.55 0.8 0.45 1 0.05 0.7 0.05 0.95 0.95 0.8 0.8 0.55 0.8 (3)
(2,2) 0.45 0.8 0.45 1 0.8 0.7 0.8 0.95 0.55 0.55 0.8 0.55 0.8 (4)

A.2.12 Indian Railway Network

This network consists of nodes representing Indian railway stations, where

two stations are connected by an edge if there exists at least one train-route such

that both stations are scheduled stops on that route [85]. There are 297 nodes and

1213 edges. Table A.12 shows the best value of threshold r for SLPA, the best

value of parameter k for CFinder, and the best value of threshold tr for SpeakEasy

determined by the twelve community quality metrics with four possible combinations

of the two versions of belonging coefficient and two version of belonging function
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Table A.13: The best value of threshold r for SLPA, the best value of pa-
rameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve quality metrics with four combinations of the
two versions of belonging coefficient and two version of belonging func-
tion on Santa Fe Institute collaboration network. The best value for
subcolumn of the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.4 0.5 0.4 0.5 0.05 0.5 0.05 0.5 0.4 0.4 0.4 0.4 0.4 (6)
(1,2) 0.4 0.5 0.4 0.5 0.1 0.5 0.4 0.5 0.4 0.4 0.4 0.4 0.4 (7)
(2,1) 0.4 0.5 0.1 0.5 0.05 0.5 0.05 0.5 0.4 0.4 0.4 0.4 0.4 (5)
(2,2) 0.4 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.4 0.4 0.4 0.4 0.4 (5)

CFinder

(1,1) 3 3 3 3 3 3 3 5 4 3 3 3 3 (10)
(1,2) 3 3 3 3 3 3 3 4 3 3 3 3 3 (11)
(2,1) 3 3 3 4 3 3 3 5 5 5 3 5 3 (7)
(2,2) 3 3 3 3 3 3 3 5 5 5 3 4 3 (8)

SpeakEasy

(1,1) 0.1 0.9 0.65 0.65 0.05 0.9 0.05 1 0.95 0.9 0.9 0.9 0.9 (5)
(1,2) 0.55 0.9 0.65 0.35 0.35 0.9 0.9 1 0.95 0.9 0.9 0.35 0.9 (5)
(2,1) 0.1 0.9 0.1 0.65 0.05 0.9 0.05 1 0.95 0.9 0.9 0.65 0.9 (4)
(2,2) 0.1 0.9 0.1 0.65 0.35 0.9 0.9 0.65 0.65 1 0.9 0.65 {0.65,0.9} (4)

on Indian railway network. It can be seen from the table that all three algorithms

show that (BC,BF)=(1,2) is the best among the four combinations of belonging

coefficient and belonging function.

A.2.13 Santa Fe Institute Collaboration Network

This is the largest connected component of the collaboration network of sci-

entists at the Santa Fe Institute, an interdisciplinary research center in Santa Fe,

New Mexico [78]. It has 118 nodes and 200 edges. Nodes in this network represent

scientists in residence at the Santa Fe Institute during any part of calendar year

1999 or 2000 and their collaborators. An edge is drawn between a pair of scientists

if they coauthored one or more articles during the same time period. The network

includes all journal and book publications by the scientists involved, along with all

papers that appeared in the institutes technical reports series. Table A.13 shows the

best value of threshold r for SLPA, the best value of parameter k for CFinder, and

the best value of threshold tr for SpeakEasy determined by the twelve community

quality metrics with four possible combinations of the two versions of belonging

coefficient and two version of belonging function on Santa Fe Institute collaboration

network. We could learn that all three algorithms show that (BC,BF)=(1,2) is the

best among the four combinations of belonging coefficient and belonging function.
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Table A.14: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on Collins cyc. The best value for subcolumn of
the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.5 0.5 0.4 0.1 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.45 0.5 0.5 0.2 0.5 0.2 0.5 0.4 0.2 0.2 0.4 0.5 (5)
(2,1) 0.05 0.5 0.5 0.4 0.1 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(2,2) 0.5 0.5 0.5 0.5 0.2 0.5 0.2 0.5 0.4 0.2 0.2 0.4 0.5 (6)

CFinder

(1,1) 3 3 3 5 3 3 3 3 3 3 3 3 3 (11)
(1,2) 3 3 3 5 3 3 3 3 3 3 3 3 3 (11)
(2,1) 3 9 3 6 3 3 3 18 18 20 3 3 3 (7)
(2,2) 3 3 3 6 3 3 3 17-20 17-20 17-20 3 3 3 (8)

SpeakEasy

(1,1) 0.05 0.9 0.9 1 0.9 0.9 0.05 0.8 0.9 0.9 0.9 0.9 0.9 (8)
(1,2) 0.9 0.9 0.9 1 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 (10)
(2,1) 0.05 0.55 0.9 0.95 0.05 0.9 0.05 0.8 0.95 0.9 0.9 0.95 0.9 (4)
(2,2) 0.9 0.7 0.9 0.95 0.9 0.9 0.9 0.8 0.25 0.25 0.9 0.95 0.9 (6)

A.2.14 Protein-protein Interaction Networks

We consider eight protein-protein interaction networks in the experiments.

Collins cyc,Collins cyc w,Collins mips,Collins sgd,Gavin cyc,Gavin cyc w,

Gavin mips, and Gavin sgd are two kinds (referred as Collins [86] and Gavin [87]

here) of popular high throughput protein-protein interaction networks derived from

measurements obtained by affinity purification and mass spectrometry (AP-MS)

techniques [74]. These two kinds of networks are further refined with three gold-

standards for protein complexes, including the classic Munich Information Center

for Protein Sequences (MIPS) [88] and the more recent Saccharomyces Genome

Database (SGD) [89]. The complete MIPS dataset as well as partial informa-

tion from SGD are incorporated into a third protein complex list known as CY-

C2008 [90]. Thus, we have Collins cyc, Collins mips, Collins sgd, Gavin cyc,

Gavin mips, and Gavin sgd, respectively. Collins cyc w and Gavin cyc w

are respectively the weighted versions of Collins cyc and Gavin cyc, in which the

weight is proportional to the probability a given interaction pair truly exists.

Tables A.14-A.21 show the best value of threshold r for SLPA, the best val-

ue of parameter k for CFinder, and the best value of threshold tr for SpeakEasy

determined by the twelve community quality metrics with four possible combi-

nations of the two versions of belonging coefficient and two version of belonging
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Table A.15: The best value of threshold r for SLPA and the best value of
threshold tr for SpeakEasy determined by the twelve community quality
metrics with four possible combinations of the two versions of belonging
coefficient and two version of belonging function on Collins cyc w. The
best value for subcolumn of the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.35 0.05 0.35 0.05 0.25 0.05 0.5 0.05 0.05 0.05 0.2 0.05 (7)
(1,2) 0.05 0.35 0.05 0.35 0.05 0.25 0.4 0.05 0.05 0.05 0.05 0.35 0.05 (7)
(2,1) 0.05 0.35 0.05 0.35 0.05 0.25 0.05 0.5 0.5 0.05 0.05 0.2 0.05 (6)
(2,2) 0.05 0.5 0.05 0.35 0.05 0.25 0.05 0.05 0.05 0.05 0.05 0.2 0.05 (8)

SpeakEasy

(1,1) 0.1 0.55 0.55 0.9 0.1 0.65 0.1 0.95 0.55 0.55 0.55 0.55 0.55 (6)
(1,2) 0.55 0.55 0.55 0.9 0.55 0.65 0.55 0.95 0.55 0.55 0.55 0.55 0.55 (9)
(2,1) 0.1 0.4 0.55 0.9 0.1 0.65 0.1 0.95 0.8 0.55 0.55 0.45 {0.1,0.55} (3)
(2,2) 0.55 0.4 0.55 0.9 0.55 0.65 0.55 0.8 0.8 0.8 0.7 0.45 0.55 (4)

Table A.16: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on Collins mips. The best value for subcolumn of
the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.15 0.45 0.45 0.45 0.05 0.5 0.05 0.5 0.45 0.15 0.05 0.45 0.45 (5)
(1,2) 0.45 0.45 0.45 0.45 0.05 0.5 0.15 0.5 0.45 0.05 0.05 0.45 0.45 (6)
(2,1) 0.15 0.45 0.05 0.45 0.05 0.5 0.05 0.5 0.5 0.45 0.05 0.45 {0.05,0.45} 4
(2,2) 0.45 0.5 0.05 0.45 0.05 0.5 0.15 0.5 0.45 0.05 0.05 0.45 {0.05,0.45} (4)

CFinder

(1,1) 4 3 3 5 3 3 3 3 3 3 3 3 3 (10)
(1,2) 4 3 3 5 3 3 3 3 3 3 3 3 3 (10)
(2,1) 4 7 3 7 3 3 3 19 19 20 3 3 3 (6)
(2,2) 4 7 3 7 3 3 3 16-20 16-20 16-20 3 3 3 (6)

SpeakEasy

(1,1) 0.05 0.4 0.4 1 0.4 0.4 0.35 0.6 0.7 0.4 0.4 0.4 0.4 (7)
(1,2) 0.4 0.4 0.4 1 0.4 0.4 0.4 0.6 0.4 0.4 0.4 0.4 0.4 (10)
(2,1) 0.05 0.4 0.25 1 0.4 0.4 0.35 0.6 0.75 0.4 0.4 0.75 0.4 (5)
(2,2) 0.25 0.95 0.25 1 0.4 0.4 0.4 0.6 0.6 0.6 0.25 0.75 {0.25,0.4,0.6} (3)

function on the eight protein-protein interaction networks. Results for CFinder on

Collins cyc w and Gavin cyc w are not provided because it has not finished run-

ning on Collins cyc w and Gavin cyc w for more than two months processing

many potential k-cliques associated with intensity larger than the intensity threshold

[120].

From Table A.14 we could see that on Collins cyc SLPA implies that the first

version of belonging function is better than the second version, CFinder indicates

that the first version of belonging coefficient is better than the second one, and

SpeakEasy demonstrates that (BC,BF)=(1,2) is the best among all four combina-

tions. In summary, there are two out of three algorithms show that (BC,BF)=(1,2)
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Table A.17: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on Collins sgd. The best value for subcolumn of
the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.5 0.35 0.45 0.05 0.5 0.05 0.5 0.5 0.35 0.35 0.45 0.5 (4)
(1,2) 0.35 0.45 0.35 0.45 0.1 0.5 0.1 0.5 0.35 0.1 0.1 0.45 0.1 (4)
(2,1) 0.05 0.5 0.1 0.45 0.05 0.5 0.05 0.5 0.5 0.35 0.35 0.45 0.5 (4)
(2,2) 0.35 0.5 0.1 0.45 0.1 0.3 0.1 0.5 0.1 0.1 0.1 0.4 0.1 (6)

CFinder

(1,1) 3 3 3 3 3 3 3 3 3 3 3 3 3 (12)
(1,2) 3 3 3 3 3 3 3 3 3 3 3 3 3 (12)
(2,1) 3 3 3 6 3 3 3 16-20 16-20 16-20 3 3 3 (8)
(2,2) 3 3 3 6 3 3 3 16-20 16-20 16-20 3 3 3 (8)

SpeakEasy

(1,1) 0.1 0.8 0.8 0.75 0.05 0.8 0.05 0.5 0.8 0.8 0.8 0.8 0.8 (7)
(1,2) 0.8 0.8 0.8 0.75 0.8 0.8 0.8 0.35 0.8 0.8 0.8 0.8 0.8 (10)
(2,1) 0.05 0.8 0.35 0.5 0.05 0.8 0.15 0.5 0.5 0.8 0.8 0.5 {0.5,0.8} (4)
(2,2) 0.35 0.8 0.35 0.5 0.8 0.8 0.8 0.5 0.5 0.5 0.8 0.5 {0.5,0.8} (5)

Table A.18: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on Gavin cyc. The best value for subcolumn of the
last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.45 0.5 0.45 0.05 0.5 0.05 0.5 0.5 0.45 0.45 0.45 0.45 (5)
(1,2) 0.5 0.45 0.5 0.45 0.15 0.5 0.2 0.5 0.45 0.45 0.45 0.45 0.45 (6)
(2,1) 0.05 0.45 0.2 0.45 0.05 0.5 0.05 0.5 0.5 0.45 0.45 0.45 0.45 (5)
(2,2) 0.45 0.45 0.2 0.45 0.15 0.5 0.2 0.5 0.45 0.45 0.45 0.45 0.45 (7)

CFinder

(1,1) 3 3 3 3 3 3 3 4 3 3 3 3 3 (11)
(1,2) 3 3 3 3 3 3 3 3 3 3 3 3 3 (12)
(2,1) 3 4 3 5 3 3 3 13 13 18-20 3 4 3 (6)
(2,2) 3 4 3 5 3 3 3 11-20 11-20 11-20 3 4 3 (6)

SpeakEasy

(1,1) 0.25 0.95 0.7 0.85 0.05 1 0.05 0.7 0.7 0.7 0.7 0.7 0.7 (6)
(1,2) 0.7 0.95 0.7 0.85 0.7 1 1 0.7 0.7 0.7 0.7 0.7 0.7 (8)
(2,1) 0.1 0.95 0.7 0.85 0.05 1 0.05 1 0.7 0.7 0.7 0.7 0.7 (5)
(2,2) 0.7 0.95 0.7 0.85 0.7 1 1 0.7 0.7 0.85 0.7 0.85 0.7 (6)

is the best onCollins cyc. Also, SLPA in Table A.15 implies that (BC,BF)=(2,2) is

the best, while SpeakEasy shows that (BC,BF)=(1,2) is the best on Collins cyc w.

It can be seen from Table A.16 that all three algorithms support the conclusion that

(BC,BF)=(1,2) is the best among the four combinations on Collins mips. In ad-

dition on Collins sgd (Table A.17), SLPA shows that (BC,BF)=(2,2) is the best,

CFinder implies that the first version of belonging coefficient is better than the

second version, and SpeakEasy indicates that (BC,BF)=(1,2) is the best among

the four combinations of belonging coefficient and belonging function. Thus, two
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Table A.19: The best value of r for SLPA and the best value of tr for
SpeakEasy determined by the twelve community quality metrics with
four combinations of belonging coefficient and belonging function on
Gavin cyc w. The best value for subcolumn of the last column is marked
by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.4 0.35 0.3 0.05 0.35 0.05 0.5 0.45 0.35 0.35 0.35 0.35 (5)
(1,2) 0.35 0.4 0.35 0.3 0.05 0.35 0.3 0.45 0.3 0.3 0.3 0.3 0.3 (6)
(2,1) 0.05 0.45 0.05 0.3 0.05 0.35 0.05 0.5 0.5 0.35 0.35 0.45 0.05 (4)
(2,2) 0.3 0.45 0.05 0.3 0.05 0.35 0.3 0.45 0.5 0.5 0.3 0.3 0.3 (5)

SpeakEasy

(1,1) 0.05 0.4 0.45 0.65 0.05 0.65 0.1 0.95 0.7 0.7 0.7 0.7 0.7 (4)
(1,2) 0.45 0.4 0.45 0.65 0.7 0.65 0.7 0.95 0.45 0.7 0.7 0.7 0.7 (5)
(2,1) 0.05 0.7 0.45 0.5 0.05 0.65 0.1 0.95 0.95 0.5 0.7 1 {0.05,0.5,0.7,0.95} (2)
(2,2) 0.45 0.7 0.45 0.65 0.7 0.65 0.7 0.95 0.95 0.9 0.4 1 0.7 (3)

out of three algorithms conclude that (BC,BF)=(1,2) is the best among the four

combinations on Collins sgd.

It can be observed from Table A.18 that on Ganvin cyc SLPA shows that

(BC,BF)=(2,2) is the best, while CFinder and SpeakEasy indicate that (BC,BF)=(1,2)

is the best. Hence, two out of three algorithms support that (BC,BF)=(1,2) is the

best among the four combinations on Ganvin cyc. From Tables A.19-A.21, we

could learn that all three algorithms show that (BC,BF)=(1,2) is the best among

the four combinations on Ganvin cyc w, Ganvin mips, and Ganvin sgd.

From the analysis above, we could conclude that (BC,BF)=(1,2) is the best

among the four possible combinations of the two versions of belonging coefficient

and two versions of belonging function on protein-protein interaction networks.

A.2.15 Amazon Product Network

This is a product co-purchased network of the Amazon website [33]. If a prod-

uct pi is frequently co-purchased with product pj, the graph contains an undirected

edge from pi to pj. There are 319948 nodes and 880215 edges. Table A.22 shows the

best value of threshold r for SLPA, the best value of parameter k for CFinder, and

the best value of threshold tr for SpeakEasy determined by the twelve community

quality metrics with four possible combinations of the two versions of belonging

coefficient and two version of belonging function on Amazon product network. We

can see that all three algorithms show that (BC,BF)=(1,2) is the best among the

four combinations of belonging coefficient and belonging function.
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Table A.20: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on Gavin mips. The best value for subcolumn of
the last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.5 0.5 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (9)
(1,2) 0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 (11)
(2,1) 0.05 0.5 0.25 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(2,2) 0.5 0.45 0.25 0.5 0.1 0.4 0.3 0.5 0.35 0.5 0.5 0.5 0.5 (6)

CFinder

(1,1) 3 3 3 3 3 3 3 3 3 3 3 3 3 (12)
(1,2) 3 3 3 3 3 3 3 3 3 3 3 3 3 (12)
(2,1) 3 3 3 4 3 3 3 12 12 18-20 3 4 3 (7)
(2,2) 3 4 3 4 3 3 3 11-20 11-20 11-20 3 4 3 (6)

SpeakEasy

(1,1) 0.05 0.4 0.9 0.7 0.05 0.95 0.1 0.9 0.9 0.9 0.9 0.9 0.9 (6)
(1,2) 0.9 0.4 0.9 0.7 0.9 0.95 0.9 0.4 0.9 0.9 0.9 0.9 0.9 (8)
(2,1) 0.05 0.95 0.9 0.7 0.05 0.95 0.1 0.9 0.9 0.9 0.9 0.4 0.9 (5)
(2,2) 0.9 0.95 0.9 0.7 0.9 0.35 0.9 0.4 0.4 0.4 0.9 0.4 0.9 (5)

Table A.21: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve community quality metrics with four possible
combinations of the two versions of belonging coefficient and two version
of belonging function on Gavin sgd. The best value for subcolumn of the
last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.5 0.5 0.5 0.1 0.35 0.1 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.5 0.5 0.5 0.1 0.35 0.5 0.35 0.5 0.5 0.5 0.5 0.5 (9)
(2,1) 0.05 0.5 0.15 0.5 0.1 0.35 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.5 0.45 0.15 0.5 0.1 0.35 0.5 0.35 0.5 0.5 0.5 0.5 0.5 (7)

CFinder

(1,1) 3 3 3 4 3 3 3 3 3 3 3 3 3 (11)
(1,2) 3 3 3 4 3 3 3 3 3 3 3 3 3 (11)
(2,1) 3 4 3 5 3 3 3 13 13 13 3 4 3 (6)
(2,2) 3 4 3 5 3 3 3 11-17 11-17 11-17 3 4 3 (6)

SpeakEasy

(1,1) 0.05 0.8 0.45 0.5 0.8 0.8 0.15 0.7 0.45 0.8 0.8 0.45 0.8 (5)
(1,2) 0.45 0.8 0.45 0.5 0.8 0.8 0.8 0.7 0.45 0.8 0.8 0.45 0.8 (6)
(2,1) 0.05 0.8 0.8 0.5 0.8 0.8 0.15 0.7 0.45 0.8 0.8 0.45 0.8 (6)
(2,2) 0.45 0.8 0.8 0.5 0.8 0.8 0.8 0.7 0.45 0.45 0.8 0.45 0.8 (6)

A.2.16 DBLP Collaboration Network

The DBLP computer science bibliography provides a comprehensive list of

research papers in computer science. In this DBLP co-authorship network, two

authors are connected if they publish at least one paper together [33]. It has 260998

nodes and 950059 edges in total. Table A.23 shows the best value of threshold r for

SLPA, the best value of parameter k for CFinder, and the best value of threshold

tr for SpeakEasy determined by the twelve community quality metrics with four

possible combinations of the two versions of belonging coefficient and two version
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Table A.22: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve quality metrics with four combinations of the
two versions of belonging coefficient and two version of belonging function
on Amazon product network. The best value for subcolumn of the last
column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.5 0.5 0.5 0.1 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (10)
(2,1) 0.05 0.5 0.3 0.45 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (6)
(2,2) 0.5 0.5 0.3 0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 (9)

CFinder

(1,1) 3 3 3 3 3 3 3 7 3 3 3 3 3 (11)
(1,2) 3 3 3 3 3 3 3 5 3 3 3 3 3 (11)
(2,1) 3 4 3 4 3 3 3 7 7 7 3 5 3 (6)
(2,2) 3 4 3 4 3 3 3 7 7 7 3 4 3 (6)

SpeakEasy

(1,1) 0.1 1 1 1 0.1 1 0.1 1 1 1 1 1 1 (9)
(1,2) 1 1 1 1 1 1 1 1 1 0.95 1 1 1 (11)
(2,1) 0.1 1 0.95 1 0.1 1 0.1 1 1 1 1 1 1 (8)
(2,2) 1 1 0.95 1 1 1 1 1 1 1 1 1 1 (11)

Table A.23: The best value of threshold r for SLPA, the best value of
parameter k for CFinder, and the best value of threshold tr for SpeakEasy
determined by the twelve quality metrics with four combinations of the
two versions of belonging coefficient and two version of belonging function
on DBLP collaboration network. The best value for subcolumn of the
last column is marked by red italic font.

Algorithm (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

SLPA

(1,1) 0.05 0.5 0.5 0.45 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(1,2) 0.5 0.5 0.5 0.5 0.5 0.45 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (10)
(2,1) 0.05 0.5 0.3 0.45 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (6)
(2,2) 0.5 0.5 0.3 0.5 0.15 0.45 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (8)

CFinder

(1,1) 4 3 3 3 3 3 3 18 7 3 3 3 3 (9)
(1,2) 4 3 3 3 3 3 3 9 3 3 3 3 3 (10)
(2,1) 4 5 3 6 3 3 3 20 19 20 3 16 3 (5)
(2,2) 4 5 3 5 3 3 3 20 19 20 3 9 3 (5)

SpeakEasy

(1,1) 0.1 1 1 1 0.1 1 0.1 1 1 1 1 1 1 (9)
(1,2) 1 0.95 1 1 1 1 0.95 1 1 1 1 1 1 (10)
(2,1) 0.1 1 0.95 1 0.1 1 0.1 1 1 1 1 1 1 (8)
(2,2) 1 1 0.95 1 1 1 0.95 1 1 1 1 1 1 (10)

of belonging function on DBLP collaboration network. We can see that all three

algorithms show that (BC,BF)=(1,2) is the best among the four combinations of

belonging coefficient and belonging function.

A.3 LFR Benchmark Networks

LFR (named after the initials of names of authors) benchmark networks [92]

have become a standard in the evaluation of the performance of community detection
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algorithms. The LFR benchmark network that we used here has 1000 nodes with

average degree 15 and maximum degree 50. The exponent γ for the degree sequence

varies from 2 to 3. The exponent β for the community size distribution ranges from

1 to 2. Then, four pairs of the exponents (γ, β) = (2, 1), (2, 2), (3, 1), and (3, 2) are

chosen in order to explore the widest spectrum of graph structures. The mixing

parameter µ is varied from 0.05 to 0.95. It means that each node shares a fraction

(1−µ) of its edges with the other nodes in its community and shares a fraction µ of its

edges with the nodes outside its community. Thus, low mixing parameters indicate

strong community structure. The degree of overlap is determined by two parameter-

s. On is the number of overlapping nodes, and Om is the number of communities to

which each overlapping node belongs. On here is set to 10% of the total number of

nodes. Instead of fixing Om, we allow it to vary from 1 to 8 indicating the overlap-

ping diversity of overlapping nodes. By increasing the value of Om, we create harder

detection tasks. Also, we generate 10 network instances for each configuration of

these parameters. Hence, each metric value for a certain configuration of LFR rep-

resents the average metric values of all 10 instances. Since the experimental results

are similar for all four pairs of exponents (γ, β) = (2, 1), (2, 2), (3, 1), and (3, 2), for

the sake of brevity, we only present the results for (γ, β) = (2, 1) here. In addition,

there results are similar for different values of µ, so here we only show the results

for µ = 0.3, 0.35, and 0.4. We choose µ = 0.3, 0.35, and 0.4 to better illustrate the

results since with µ = 0.3, 0.35, and 0.4 the community structure generated by LFR

are around the boundary of well-separated communities and well-connected com-

munities. For each node, µ = 0.5 means that the number of its edges with other

nodes in its communities is equal to the number of its edges with nodes outside its

community, which makes the community structure difficult to discover.

Tables A.24-A.26 respectively show the best value of threshold r for SLPA,

the best value of parameter k for CFinder, and the best value of threshold tr for

SpeakEasy determined by the twelve community quality metrics with four possible

combinations of the two versions of belonging coefficient and two version of belong-

ing function on LFR benchmark networks with (α, β) = (1, 2) and µ = 0.3, 0.35, 0.4.

Table A.24 implies that (BC,BF)=(1,2) is the best among the four possible combina-
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Table A.24: The best value of threshold r for SLPA determined by the
twelve community quality metrics with four possible combinations of the
two versions of belonging coefficient and two version of belonging function
on LFR benchmark networks with (α, β) = (1, 2) and µ = 0.3, 0.35, 0.4. The
best value for subcolumn of the last column is marked by red italic font.

µ Om (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

0.3

1

(1,1) 0.3 0.5 0.5 0.5 0.05 0.45 0.05 0.45 0.5 0.5 0.5 0.5 0.5 (7)
(1,2) 0.5 0.5 0.5 0.5 0.05 0.45 0.2 0.45 0.5 0.5 0.5 0.5 0.5 (8)
(2,1) 0.3 0.5 0.2 0.5 0.05 0.5 0.05 0.45 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.5 0.5 0.2 0.5 0.05 0.5 0.2 0.45 0.5 0.2 0.2 0.5 0.5 (6)

2

(1,1) 0.05 0.5 0.5 0.25 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.5 0.5 0.5 0.3 0.5 0.3 0.45 0.4 0.3 0.3 0.4 0.5 (5)
(2,1) 0.05 0.5 0.3 0.25 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.4 0.5 0.3 0.4 0.15 0.5 0.3 0.45 0.35 0.3 0.3 0.35 0.3 (4)

4

(1,1) 0.05 0.5 0.5 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (9)
(1,2) 0.5 0.5 0.5 0.5 0.15 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.5 (10)
(2,1) 0.05 0.5 0.3 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(2,2) 0.45 0.5 0.3 0.5 0.15 0.5 0.35 0.5 0.4 0.4 0.5 0.4 0.5 (5)

6

(1,1) 0.05 0.5 0.5 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (9)
(1,2) 0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (10)
(2,1) 0.05 0.5 0.3 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(2,2) 0.4 0.5 0.3 0.45 0.1 0.5 0.2 0.45 0.5 0.5 0.5 0.5 0.5 (6)

8

(1,1) 0.1 0.5 0.5 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (9)
(1,2) 0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (10)
(2,1) 0.1 0.5 0.2 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(2,2) 0.5 0.5 0.2 0.5 0.1 0.5 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (9)

0.35

1

(1,1) 0.25 0.5 0.25 0.4 0.05 0.5 0.15 0.5 0.5 0.25 0.25 0.25 0.25 (5)
(1,2) 0.25 0.5 0.25 0.4 0.1 0.45 0.15 0.45 0.25 0.25 0.25 0.25 0.25 (6)
(2,1) 0.2 0.5 0.15 0.4 0.05 0.45 0.05 0.5 0.25 0.25 0.25 0.25 0.25 (4)
(2,2) 0.25 0.5 0.15 0.4 0.05 0.45 0.15 0.45 0.25 0.25 0.25 0.25 0.25 (5)

2

(1,1) 0.05 0.5 0.45 0.3 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(1,2) 0.45 0.5 0.45 0.45 0.15 0.45 0.3 0.45 0.45 0.3 0.3 0.45 0.45 (7)
(2,1) 0.05 0.5 0.3 0.25 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.45 0.5 0.3 0.45 0.15 0.45 0.15 0.45 0.45 0.3 0.3 0.45 0.45 (6)

4

(1,1) 0.05 0.5 0.5 0.5 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.5 0.5 0.5 0.15 0.45 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (9)
(2,1) 0.05 0.5 0.3 0.5 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.5 0.5 0.3 0.45 0.1 0.45 0.5 0.45 0.45 0.5 0.5 0.5 0.5 (6)

6

(1,1) 0.05 0.5 0.5 0.45 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.5 0.5 0.5 0.1 0.45 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (9)
(2,1) 0.05 0.5 0.25 0.45 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.5 0.5 0.25 0.5 0.1 0.45 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (8)

8

(1,1) 0.35 0.5 0.5 0.45 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(1,2) 0.5 0.5 0.5 0.5 0.05 0.45 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (9)
(2,1) 0.4 0.5 0.2 0.45 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (6)
(2,2) 0.5 0.5 0.2 0.5 0.05 0.45 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (8)

0.4

1

(1,1) 0.25 0.5 0.5 0.45 0.05 0.45 0.1 0.5 0.5 0.25 0.5 0.5 0.5 (6)
(1,2) 0.5 0.45 0.5 0.45 0.1 0.4 0.25 0.4 0.25 0.25 0.25 0.25 0.25 (5)
(2,1) 0.2 0.5 0.2 0.45 0.05 0.45 0.05 0.5 0.5 0.25 0.25 0.5 0.5 (4)
(2,2) 0.45 0.45 0.2 0.45 0.1 0.4 0.2 0.4 0.25 0.2 0.25 0.25 {0.2,0.25,0.45} (3)

2

(1,1) 0.05 0.5 0.5 0.3 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.5 0.5 0.5 0.15 0.5 0.5 0.4 0.45 0.5 0.5 0.5 0.5 (9)
(2,1) 0.05 0.5 0.3 0.3 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.45 0.5 0.3 0.5 0.15 0.4 0.5 0.35 0.45 0.5 0.5 0.45 0.5 (5)

4

(1,1) 0.1 0.5 0.5 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (9)
(1,2) 0.5 0.5 0.5 0.5 0.2 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 (10)
(2,1) 0.1 0.5 0.3 0.5 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(2,2) 0.5 0.5 0.3 0.5 0.15 0.5 0.5 0.4 0.45 0.5 0.5 0.5 0.5 (8)

6

(1,1) 0.5 0.5 0.5 0.45 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (9)
(1,2) 0.5 0.5 0.5 0.5 0.05 0.5 0.5 0.45 0.5 0.5 0.5 0.5 0.5 (10)
(2,1) 0.5 0.5 0.5 0.45 0.05 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (9)
(2,2) 0.5 0.5 0.5 0.5 0.05 0.45 0.5 0.4 0.5 0.5 0.5 0.5 0.5 (9)

8

(1,1) 0.5 0.5 0.5 0.4 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (8)
(1,2) 0.5 0.5 0.5 0.5 0.1 0.45 0.5 0.4 0.5 0.5 0.5 0.5 0.5 (9)
(2,1) 0.5 0.5 0.25 0.4 0.05 0.45 0.05 0.5 0.5 0.5 0.5 0.5 0.5 (7)
(2,2) 0.5 0.5 0.25 0.5 0.05 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 (8)
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Table A.25: The best value of parameter k for CFinder determined by the
twelve community quality metrics with four possible combinations of the
two versions of belonging coefficient and two version of belonging function
on LFR benchmark networks with (α, β) = (1, 2) and µ = 0.3, 0.35, 0.4. The
best value for subcolumn of the last column is marked by red italic font.

µ Om (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

0.3

1

(1,1) 4 4 4 4 3 3 4 10 4 4 4 4 4 (9)
(1,2) 4 4 4 4 3 3 4 10 4 4 4 4 4 (9)
(2,1) 4 5 4 4 3 3 4 10 10 4 4 4 4 (7)
(2,2) 4 5 4 4 3 3 4 10 10 10 4 4 4 (6)

2

(1,1) 4 5 4 4 3 3 3 9 4 3 3 4 {3,4} (5)
(1,2) 4 5 4 4 3 3 4 9 4 3 3 4 4 (6)
(2,1) 4 5 4 4 3 3 3 9 9 3 3 4 3 (5)
(2,2) 4 6 4 4 3 3 4 9 9 9 3 4 4 (5)

4

(1,1) 4 5 4 4 3 3 3 12 4 3 3 3 3 (6)
(1,2) 4 5 4 4 3 3 3 12 4 3 3 3 3 (6)
(2,1) 4 6 4 4 3 3 3 12 12 12 3 9 3 (4)
(2,2) 4 6 4 4 3 3 3 12 12 12 3 7 3 (4)

6

(1,1) 4 5 4 4 3 3 4 11 5 3 3 3 3 (5)
(1,2) 4 5 4 4 3 3 4 11 4 4 4 3 4 (7)
(2,1) 4 7 4 5 3 3 4 11 11 11 3 7 {3,4,11} (3)
(2,2) 4 7 4 5 3 3 4 11 11 11 4 7 4 (4)

8

(1,1) 4 5 4 4 3 3 4 12 6 3 3 3 3 (5)
(1,2) 4 5 4 4 3 3 4 12 4 4 4 3 4 (7)
(2,1) 4 6 4 5 3 3 4 12 12 12 3 7 {3,4,12} (3)
(2,2) 4 6 4 5 3 3 4 12 12 12 4 6 4 (4)

0.35

1

(1,1) 4 4 4 4 3 3 3 10 4 4 4 4 4 (8)
(1,2) 4 4 4 4 3 3 4 10 4 3 4 4 4 (8)
(2,1) 4 4 4 4 3 3 3 10 10 10 4 4 4 (6)
(2,2) 4 7 4 4 3 3 4 10 10 10 3 4 4 (5)

2

(1,1) 4 4 4 4 3 3 3 8 4 3 3 3 3 (6)
(1,2) 4 4 4 4 3 3 3 8 4 3 3 3 3 (6)
(2,1) 4 5 4 4 3 3 3 8 8 8 3 8 {3,8} (4)
(2,2) 4 7 4 4 3 3 4 8 8 8 3 7 4 (4)

4

(1,1) 4 5 4 4 3 3 3 10 4 3 3 3 3 (6)
(1,2) 4 4 4 4 3 3 4 10 4 3 3 3 4 (6)
(2,1) 4 6 4 4 3 3 3 10 10 10 3 9 3 (4)
(2,2) 4 8 4 4 3 3 4 10 10 10 3 7 4 (4)

6

(1,1) 4 5 4 4 3 3 4 11 5 4 3 3 4 (5)
(1,2) 4 5 4 4 3 3 4 11 4 4 4 3 4 (7)
(2,1) 4 6 4 4 3 3 4 11 11 11 4 8 4 (5)
(2,2) 4 7 4 4 3 3 4 11 11 11 4 7 4 (5)

8

(1,1) 4 5 4 4 3 3 4 11 6 4 4 3 4 (6)
(1,2) 4 5 4 4 3 3 4 11 4 4 4 3 4 (7)
(2,1) 4 6 4 5 3 3 4 11 11 11 4 6 4 (4)
(2,2) 4 6 4 4 3 3 4 11 11 11 4 6 4 (5)

0.4

1

(1,1) 4 4 4 4 3 3 3 8 4 3 3 4 4 (6)
(1,2) 4 4 4 4 3 3 3 8 4 3 3 3 3 (6)
(2,1) 4 4 4 4 3 3 3 8 8 8 3 8 {3,4,8} (4)
(2,2) 4 7 4 4 3 3 4 8 8 8 3 7 4 (4)

2

(1,1) 4 4 4 4 3 3 3 9 4 3 3 3 3 (6)
(1,2) 4 4 4 4 3 3 3 9 4 3 3 3 3 (6)
(2,1) 4 5 4 4 3 3 3 9 9 9 3 9 {3,9} (4)
(2,2) 4 7 4 4 3 3 4 9 9 9 3 7 4 (4)

4

(1,1) 4 4 4 4 3 3 3 9 5 3 3 3 3 (6)
(1,2) 4 4 4 4 3 3 4 9 4 3 3 3 4 (6)
(2,1) 4 5 4 4 3 3 3 9 9 9 3 9 {3,9} (4)
(2,2) 4 7 4 4 3 3 4 9 9 9 3 7 4 (4)

6

(1,1) 4 4 4 4 3 3 4 10 5 4 4 3 4 (7)
(1,2) 4 4 4 4 3 3 4 10 4 4 4 3 4 (8)
(2,1) 4 5 4 4 3 3 4 10 10 10 4 10 4 (5)
(2,2) 4 7 4 4 3 3 4 10 10 10 4 7 4 (5)

8

(1,1) 4 5 4 4 3 3 4 10 5 4 4 3 4 (6)
(1,2) 4 5 4 4 3 3 4 10 4 4 4 3 4 (7)
(2,1) 4 5 4 4 3 3 4 10 10 10 4 9 4 (5)
(2,2) 4 6 4 4 3 3 4 10 10 10 4 6 4 (5)
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Table A.26: The best value of threshold tr for SpeakEasy determined
by the twelve community quality metrics with four possible combina-
tions of the two versions of belonging coefficient and two version of be-
longing function on LFR benchmark networks with (α, β) = (1, 2) and
µ = 0.3, 0.35, 0.4. The best value for subcolumn of the last column is
marked by red italic font.

µ Om (BC,BF) Qov NQov QL
ov Qov

ds IE ID CNT BE EXP CND F D

0.3

1

(1,1) 0.75 0.2 0.75 0.75 0.75 0.8 0.75 0.8 0.75 0.75 0.75 0.75 0.75 (9)
(1,2) 0.75 0.2 0.75 0.75 0.75 0.8 0.75 0.8 0.75 0.75 0.75 0.75 0.75 (9)
(2,1) 0.75 0.2 0.75 0.75 0.75 0.8 0.75 0.8 0.75 0.75 0.75 0.75 0.75 (9)
(2,2) 0.75 0.2 0.75 0.75 0.75 0.8 0.75 0.8 0.75 0.75 0.75 0.75 0.75 (9)

2

(1,1) 0.05 0.85 0.8 0.6 0.8 0.4 0.8 0.9 0.8 0.8 0.8 0.8 0.8 (7)
(1,2) 0.8 0.85 0.8 0.6 0.8 0.25 0.8 0.4 0.8 0.8 0.8 0.8 0.8 (8)
(2,1) 0.05 0.85 0.8 0.6 0.8 0.4 0.8 0.9 1 0.8 0.8 0.8 0.8 (6)
(2,2) 0.8 0.85 0.8 0.6 0.8 0.25 0.8 0.4 1 0.8 0.8 0.8 0.8 (7)

4

(1,1) 0.05 1 0.7 0.95 0.05 1 0.05 1 1 0.8 0.8 0.95 1 (4)
(1,2) 0.7 1 0.7 0.95 0.2 1 0.6 1 1 0.65 0.65 0.6 1 (4)
(2,1) 0.05 1 0.7 0.95 0.05 1 0.05 1 1 0.8 0.8 0.95 1 (4)
(2,2) 0.25 1 0.7 0.45 0.2 1 0.6 1 1 0.45 0.65 0.2 1 (4)

6

(1,1) 0.05 0.85 0.5 1 0.05 0.65 0.05 0.7 0.95 0.95 0.95 0.95 0.95 (4)
(1,2) 0.35 0.85 0.5 0.5 0.35 0.65 0.35 0.6 0.95 0.95 0.95 0.95 0.95 (4)
(2,1) 0.05 0.85 0.35 1 0.05 0.65 0.05 0.7 0.7 0.95 0.95 1 0.05 (3)
(2,2) 0.35 0.85 0.35 0.5 0.35 0.65 0.35 0.7 0.7 0.7 0.95 0.7 {0.35,0.7} (4)

8

(1,1) 0.05 1 0.4 0.85 0.05 0.95 0.05 0.9 0.9 0.6 0.75 1 0.05 (3)
(1,2) 0.4 1 0.4 0.85 0.4 0.95 0.4 0.35 0.6 0.6 0.6 0.6 {0.4,0.6} (4)
(2,1) 0.05 1 0.4 0.85 0.05 0.95 0.05 0.9 0.85 0.6 0.75 0.85 {0.05,0.85} (3)
(2,2) 0.35 1 0.4 0.85 0.4 0.95 0.4 0.35 0.85 0.7 0.6 0.85 {0.4,0.85} (3)

0.35

1

(1,1) 0.8,0.9 0.75 0.8 0.8,0.90.8,0.90.450.8,0.90.450.8,0.90.8,0.90.8,0.90.8,0.9 0.8 (9)
(1,2) 0.8,0.9 0.75 0.8 0.8,0.90.8,0.90.450.8,0.90.450.8,0.90.8,0.90.8,0.90.8,0.9 0.8 (9)
(2,1) 0.8,0.9 0.75 0.8 0.8,0.90.8,0.90.450.8,0.90.450.8,0.90.8,0.90.8,0.90.8,0.9 0.8 (9)
(2,2) 0.8,0.9 0.75 0.8 0.8,0.90.8,0.90.450.8,0.90.450.8,0.90.8,0.90.8,0.90.8,0.9 0.8 (9)

2

(1,1) 0.05 0.85 0.95 1 0.05 0.9 0.05 0.9 0.95 0.95 0.95 0.95 0.95 (5)
(1,2) 0.95 0.85 0.95 1 0.35 0.9 0.95 0.5 0.75 0.95 0.95 0.95 0.95 (6)
(2,1) 0.05 0.85 0.35 1 0.05 0.9 0.05 0.9 0.95 0.95 0.95 0.95 0.95 (4)
(2,2) 0.35 0.85 0.35 1 0.35 0.9 0.95 0.5 0.75 0.75 0.95 0.95 {0.35,0.95} (3)

4

(1,1) 0.05 0.95 0.9 1 0.05 0.95 0.05 0.95 0.9 0.75 0.75 1 {0.05,0.95} (3)
(1,2) 0.9 0.95 0.9 1 0.65 0.95 0.75 0.95 0.9 0.75 0.75 0.75 0.75 (4)
(2,1) 0.05 0.95 0.65 1 0.05 0.95 0.05 0.95 0.9 0.75 0.75 0.9 {0.05,0.95} (3)
(2,2) 0.9 0.95 0.65 1 0.65 0.95 0.75 0.95 0.6 0.6 0.75 0.9 0.95 (3)

6

(1,1) 0.05 1 0.8 0.85 0.05 1 0.05 1 0.85 0.85 0.85 0.85 0.85 (5)
(1,2) 0.8 0.95 0.8 0.45 0.3 1 0.3 0.1 0.85 0.85 0.85 0.85 0.85 (4)
(2,1) 0.05 1 0.45 0.85 0.05 1 0.05 1 0.9 0.85 0.85 0.85 0.85 (4)
(2,2) 0.45 0.95 0.45 0.45 0.3 1 0.3 0.35 0.9 0.9 0.85 0.85 0.45 (3)

8

(1,1) 0.05 1 0.9 0.8 0.05 0.85 0.05 1 0.95 0.85 0.85 0.9 {0.05,0.85} (3)
(1,2) 0.9 1 0.9 0.8 0.9 0.85 0.85 0.3 0.9 0.85 0.85 0.9 0.9 (5)
(2,1) 0.05 1 0.9 0.8 0.05 0.85 0.05 1 1 0.85 0.85 0.95 {0.05,0.85,1} (3)
(2,2) 0.9 1 0.9 0.8 0.9 0.85 0.85 0.3 0.2 1 0.85 0.95 {0.85,0.9} (3)

0.4

1

(1,1) 0.15 0.75 0.15 0.15 0.15 0.75 0.15 0.75 0.15 0.15 0.15 0.15 0.15 (9)
(1,2) 0.15 0.2 0.15 0.15 0.15 0.75 0.15 0.75 0.15 0.15 0.15 0.15 0.15 (9)
(2,1) 0.15 0.75 0.15 0.15 0.15 0.75 0.15 0.75 0.15 0.15 0.15 0.15 0.15 (9)
(2,2) 0.15 0.2 0.15 0.15 0.15 0.75 0.15 0.75 0.15 0.15 0.15 0.15 0.15 (9)

2

(1,1) 0.05 0.85 0.95 0.8 0.1 0.85 0.05 0.85 0.95 0.8 0.8 0.95 {0.8,0.85,0.95} (3)
(1,2) 0.95 0.85 0.95 0.75 0.8 0.85 0.75 0.85 0.95 0.8 0.8 0.95 0.95 (4)
(2,1) 0.05 0.85 0.95 0.75 0.05 0.85 0.05 0.85 0.95 0.8 0.8 0.95 {0.05,0.85,0.95} (3)
(2,2) 0.95 0.85 0.95 0.75 0.8 0.85 0.75 0.6 0.95 0.95 0.8 0.95 0.95 (5)

4

(1,1) 0.05 1 0.95 0.9 0.15 1 0.05 0.9 0.95 0.95 0.95 0.95 0.95 (5)
(1,2) 0.95 1 0.95 0.9 0.5 1 0.95 0.9 0.75 0.95 0.95 0.95 0.95 (6)
(2,1) 0.05 1 0.95 0.9 0.05 1 0.05 0.9 0.9 0.95 0.95 0.95 0.95 (4)
(2,2) 0.95 0.9 0.95 0.9 0.5 1 0.95 0.9 0.7 0.7 0.95 0.7 0.95 (4)

6

(1,1) 0.1 0.95 0.75 0.75 0.15 0.95 0.1 0.95 0.95 0.9 0.9 0.8 0.95 (4)
(1,2) 0.75 0.95 0.75 0.75 0.15 0.95 0.65 0.45 0.8 0.65 0.65 0.8 {0.65,0.75} (3)
(2,1) 0.05 0.95 0.75 0.75 0.05 0.95 0.1 0.95 0.75 0.9 0.9 0.75 0.75 (4)
(2,2) 0.75 0.95 0.75 0.75 0.15 0.95 0.65 0.45 0.75 0.75 0.65 0.75 0.75 (6)

8

(1,1) 0.05 1 0.9 0.8 0.05 1 0.05 1 0.9 0.95 0.95 0.9 {0.05,0.9,1} (3)
(1,2) 0.9 1 0.9 0.8 0.4 1 0.4 0.45 0.9 0.4 0.4 0.4 0.4 (5)
(2,1) 0.05 1 0.9 0.8 0.05 1 0.05 1 0.8 0.95 0.95 0.95 {0.05,0.95,1} (3)
(2,2) 0.9 1 0.9 0.8 0.4 1 0.4 0.45 0.5 0.5 0.4 0.5 {0.4,0.5} (3)
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tions on all configurations of LFR benchmark networks except µ = 0.3, Om = 2 and

µ = 0.4, Om = 1 when using SLPA. Table A.25 demonstrates that (BC,BF)=(1,2)

is the best on all configurations of LFR benchmark networks when using CFinder.

Table A.26 indicates that (BC,BF)=(1,2) is the best among the four combinations

on all configurations of LFR benchmark networks except µ = 0.35, Om = 6 and

µ = 0.4, Om = 2, 4 when using SpeakEasy. Consequently, we could conclude that

the overlapping community quality metrics with the first version of belonging coef-

ficient and the second version of the belonging function are the best among the four

possible combinations on LFR benchmark networks.


