
EXTENSIBLE SOURCE-LEVEL INSTRUMENTATION
TOOL FOR PERFORMANCE MEASUREMENT

By

Jonathan Chen

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Approved:

Dr. Boleslaw K. Szymanski
Thesis Adviser

Rensselaer Polytechnic Institute
Troy, New York

May 2007

szymansk
Text Box
EXTENSIBLE SOURCE-LEVEL INSTRUMENTATION TOOL FOR PERFORMANCE MEASURMENTS

CONTENTS

LIST OF FIGURES . ii

LIST OF TABLES . iii

ABSTRACT . iv

1. Introduction . 1

1.1 Background . 2

1.2 Motivation and Objectives . 2

2. Previous Work . 3

2.1 AIMS . 3

2.2 Paradyn . 4

2.3 Pablo . 6

3. Instrumentation Tool Implementation . 8

3.1 Usage Overview . 8

3.2 Source code parser . 13

3.3 Instrumentation . 16

3.4 Experiment Definition File . 16

4. Application . 18

4.1 Particle in Cell Simulation Code . 18

4.1.1 Background . 18

4.1.2 Instrumentation . 18

4.1.3 Results . 18

4.2 Improving Spatial Locality of Programs 19

4.2.1 Background . 20

4.2.2 Instrumentation . 20

4.2.3 Results . 21

4.3 Functional Level Memory Optimization Tool 22

4.3.1 Background . 22

4.3.2 Instrumentation . 22

4.3.3 Results . 23

5. Conclusions . 25

ii

LIST OF FIGURES

2.1 AIMS xinstrument with dialog box for type selection 4

2.2 Paradyn Performance Consultant Search through W 3 for Graph Color-
ing Program . 5

2.3 iPablo instrumentation software . 6

3.1 Automated Instrumentation Tool: File selection dialog 9

3.2 Automated Instrumentation Tool: Instrumentation window 10

3.3 Automated Instrumentation Tool: Configuration window 11

3.4 Automated Instrumentation Tool: EDF save dialog 12

3.5 Automated Instrumentation Tool: Completion dialog 13

4.1 Total execution time and CPI time for 3D PIC code 19

4.2 GreedyClustering v/s MCA on PFR . 21

4.3 GreedyClustering v/s MCA on AWSSR 21

iii

LIST OF TABLES

4.1 Apache HTTP server on single processor with 256MB RAM 24

4.2 Apache HTTP server on quad processor with 1GB RAM 24

iv

ABSTRACT

In the area of parallel computing, the complex and computationally demanding

nature of scientific applications as well as the increasing prevalence of parallel com-

puters has dramatically increased the number of parallel applications. As optimizing

parallel code can be time consuming, there are often ineffiencies that are left un-

resolved in parallel application codes. The purpose of this thesis is to describe the

automated instrumentation tool that the author contributed to the Instrumentation

Database (IDB) [8] framework.

The IDB framework is a scalable approach to collect performance data in such

a way that the problem size and run-time environment do not affect the amount of

information collected. In order to collect data, IDB probes must be added to the

program being instrumented. These probes collect information about the control

flow of the program as well as various performance data. The data collected by the

probes is subsequently stored in a database for further visualization and analysis.

Manually inserting probes into existing code can easily be the most tedious

task in the process of using the IDB framework. This thesis focuses on improvements

to the IDB framework by automating the task of source code instrumentation. We

present our reasons for instrumentation at the source code level and demonstrate

its effectiveness through an implementation of the automated instrumentation tool.

We show that our instrumentation tool, when coupled with the IDB framework,

enables easy analysis of parallel codes.

v

CHAPTER 1

Introduction

The complex and computationally demanding nature of scientific applications as

well as the increased prevalence of parallel computers has fueled research in the area

of parallel computing. Moving from conventional uniprocessor systems to multi-

processor systems, and now to multicore architectures in which a single computer

contains many cores (processors), makes designing, developing, testing, tuning, and

maintaining scientific codes much more difficult. These difficulties are counterbal-

anced by the significant speedup that parallel computing can provide. Since the

primary reason for writing parallel codes is speed [15], it comes as no surprise that

performance analysis is a vital part of the development process. Analysis tries to

determine if a given algorithm is as fast as it can be, where the program can be

further optimized, and how efficiently the underlying system is being used. Raj

Jain [3] explains that analysis, for both sequential and parallel systems, can be done

in one of three ways:

• Analytic Modeling, which involves using models of the executing program

and its underlying architecture to derive performance information. While this

technique can yield data quickly, the accuracy of this data is subject to the

number of initial assumptions and complexity of the models used.

• Simulation, which affords more accuracy than analytic modeling. In this

approach, the target system’s response to the executing program is simulated.

It requires fewer assumptions to be made about the execution environment.

The drawback is that simulation quickly becomes too time consuming, and,

in some cases, not feasible as the system complexity or size grows [4].

• Measurement, which involves instrumenting an executing application. This

is the focus of the research described in this thesis. This approach can be time

consuming, but yields the most accurate results since measurements are taken

on the target system [7].

1

2

1.1 Background

Traditional methods of performance instrumentation often rely on hardware

or kernel support to gather performance data. Other performance instrumentation

methods, such as compiler instrumentation, do not allow the programmer to spec-

ify levels of granularity of the experiments, while instrumentations involving binary

modifications are often platform specific. Programmers could always insert cus-

tomized probes in their source code, but the iterative process of performance tuning

makes this process laborious and unscalable for large pieces of code. Manually in-

troducing instrumentation at critical locations is a tedious and time consuming pro-

cess that is also prone to errors. To keep instrumentation cost low, an automated

instrumentation tool is needed to selectively instrument large codes and manage

performance experiments.

1.2 Motivation and Objectives

As part of the Instrumentation Database framework [8], a method is needed

to insert instrumentation probe API calls at critical locations of source code. Since

our instrumentation framework needs to work for large systems, our probe insertion

method must be scalable to large programs, easy to use, as well as error-proof. As

scalability is a primary concern, our instrumentation tool must also allow the user

to select or deselect probes at multiple levels of granularity. Additionally, instru-

mentation of large systems often require multiple test runs of the program, either

with varying inputs to the program or with varying probes within the source code.

To support this, our instrumentation tool must be able to manage multiple exper-

iments on the same program, allowing the user to add or remove arbitrary probes

between test runs. Finally, our instrumentation tool should support instrumentation

of multiple programming languages.

In addition to the IDB research, other activities were ongoing that required a

flexible instrumentation tool to insert custom probes into a variety of existing code

[1]. Since we are creating an instrumentation tool, it became obvious that extending

our automated instrumentation tool to support arbitrary probes would be beneficial.

CHAPTER 2

Previous Work

2.1 AIMS

AIMS, or Automated Instrumentation and Monitoring System [17] [16], is

a tool developed by NASA Ames Research Center. It is a performance analysis

framework and tool suite, including tools for source code instrumentation, run-time

performance monitoring, noise reduction, and trace post-processing.

The source code instrumentation tool within AIMS automate the tedious pro-

cess of source code instrumentation by offering the option to automatically insert

instrumentation at each subroutine and PVM communication call. Finer grain in-

strumentation must be manually configured by adding or removing probes from the

source code by hand. The instrumentation tool within AIMS is also only able to

automatically instrument PVM programs.

As AIMS invokes the preprocessor on the source code before instrumentation,

instrumentation must be done on the platform on which the code will be compiled,

and the trace results from experiments are not as tightly coupled with the source

code as the Instrumentation Database framework. In order to map the collected

run-time data to source code constructs, source level instrumentation is stored in a

flat file that resides at the beginning of run-time instrumentation trace files.

AIMS gathers many performance metrics at every instrumentation point, in-

cluding time stamps, processor ID, event type and additional event-specific data.

These event types include:

• Subroutines, loops, and user specified regions.

• Communication events.

• File I/O.

• Global reduction operations, barrier synchronizations, and blocking events.

3

4

Figure 2.1: AIMS xinstrument with dialog box for type selection

As AIMS keeps track of trace information for every instrumentation point, it

is not scalable. Long running programs can make the trace file very large. While

AIMS uses a powerful noise reduction postprocessor on its trace file outputs, it does

not have a facility to compare or coalesce trace files from different experiments,

which can be useful for comparing performance across different platforms.

2.2 Paradyn

Paradyn [6] uses dynamic instrumentation to reduce instrumentation over-

head. Paradyn is ideal for analysis of long running programs. When a program

is instrumented, Paradyn dynamically adds and subtracts probes based on a user

configurable metric-focus grid. This grid specifies the metric to be considered, such

as CPU utilization or memory usage, and the focus of the search, which identifies

the resources of the program that the user is interested in. The user can restrict

the focus in a hierarchical manner to any synchronization objects, portions of the

source code, threads, processors or time. In addition to instrumenting and visualiz-

ing performance, Paradyn attempts to draw analytic conclusions about performance

bottlenecks. Once a performance bottleneck is found, Paradyn can dynamically add

finer grain instrumentation in order to pinpoint the location of the bottleneck.

5

Figure 2.2: Paradyn Performance Consultant Search through W 3 for
Graph Coloring Program

Once instrumentation has been inserted into an application, counters are pe-

riodically sampled by Paradyn’s Data Manager. The data collected can then be

analyzed by the Performance Consultant or visualized through any number of ap-

plications using Paradyn’s visualization interface.

To determine why the application is performing the way it is, Paradyn rep-

resents potential performance problems using hypotheses and tests. Each of these

fundamental high-level hypotheses is validated or dismissed based on collected per-

formance data. If validated, the hypothesis is further refined with respect to where

and when it occurs. To determine where a performance problem occurs, a program

is organized into a hierarchy, where the location of a bottleneck can be refined by

searching a node’s children. Finally, Paradyn determine when a performance bot-

tleneck occurs by focusing on testing the hypotheses during different intervals of

time in a program’s execution. The Why, Where and When questions represent

Paradyn’s W 3 search model.

6

Figure 2.3: iPablo instrumentation software

2.3 Pablo

Pablo [12] [11] is a performance analysis environment that focuses on sup-

porting portability, scalability and extensibility. Pablo supports three classes of

instrumentation events: tracing, counting and time intervals. In order to reduce the

likelihood of malignant perturbations caused by instrumentation probes, the Pablo

trace library can automatically substitute the initially configured probes with less in-

vasive data recording techniques if the event rate exceeds a user specified threshold.

Pablo can also use dynamic statistical clustering techniques to reduce the amount

of data collected. Of particular note is Pablo’s data analysis and presentation soft-

ware, which includes four-dimensional scatter plots seen through immersion in a

virtual world, as well as sonification components, in addition to a myriad of analysis

modules.

Pablo source code instrumentation is done through the iPablo [14] software, a

graphical instrumentation environment that allows users to interactively select rou-

7

tines to instrument. It also allows the user to manually select lines in the source code

for instrumentation. Unlike IDB, iPablo does not distinguish between procedures

that are defined and procedure calls. iPablo also does not highlight other functional

blocks such as loops and synchronization calls. iPablo can parse C source code and

uses the system C preprocessor to aid in parsing. The instrumented files that it

generates are preprocessed.

CHAPTER 3

Instrumentation Tool Implementation

Our instrumentation tool framework includes several functional components. In or-

der to instrument at the source code level, a parser is needed to identify the critical

blocks within the program and to locate the points of code insertion. Additionally, a

user interface component makes adding and removing of probes a trivial task. Fur-

thermore, an Experiment Definition File format is defined to ease the management

of multiple experiments done on the same program. Lastly, a standard probe instru-

mentation library and visualization tool completes the performance instrumentation

suite.

3.1 Usage Overview

The user begins by selecting C, C++ or Java files from the source tree using

the file selection window shown in Figure 3.1. Selected files are then parsed using

the tool’s internal C/C++ or Java parser. The instrumentation window shown in

Figure 3.2 presents the user with several views:

• Function Selection View – Lists all functions and methods defined in the

selected files. In this view, the user can select the functions to be instrumented.

When a function is highlighted, the source code of the function is shown in

the Source Code View. The Loop and Call selection views are also updated to

reflect the loops and function calls in the function highlighted. Left clicking on

the function selects or deselects it for instrumentation, while right clicking on

a function highlights a function without changing its instrumentation state.

• Loop Selection View – Lists all loop structures within the currently high-

lighted function. Here, a user can select the loops to be instrumented. When

a loop is selected, its corresponding source code is highlighted in the source

code view. In addition to turning instrumentation of a loop on and off, a

probe can be designated as internal or external. Internal instrumentation of a

8

9

Figure 3.1: Automated Instrumentation Tool: File selection dialog

loop involves placing the API probe calls within the body of the loop. In this

way, collected statistics account for each iteration. External instrumentation

treats a loop as an atomic event. This avoids incurring overhead from probe

activations on each iteration.

• Call Selection View – Lists all function calls within the currently highlighted

function. When a function call is selected to be instrumented, probes are

added immediately before and after the function selected by the user. Here,

a user can select instrumentation down to a very fine granularity. Individual

instances of a function call can be selected for instrumentation. Selecting a

function call from this list will also highlight its corresponding source code in

10

Figure 3.2: Automated Instrumentation Tool: Instrumentation window

the source code view.

• Source Code View – Presents a context-sensitive view of application source

code. This view can be constrained to individual functions or files. When

loops or function calls are selected, their corresponding locations in the source

code are highlighted, allowing users to view the code being instrumented in

its context.

In addition to the four main views, the instrumentation window provides a

search feature to allow for keyword search within all selected source files. The Goto

feature also allows for the quick location of a function or loop based on the file name

and line number of the source code. Because the automated instrumentation tool

uses a built in parser that understands pre-preprocessed source code, searches can

be performed on the actual source file and will match macros and comments. Line

numbers of the parsed files are also consistent with their input files.

11

Figure 3.3: Automated Instrumentation Tool: Configuration window

In the instrumentation window, there is also a list of hardware counters. In

addition to the normal collection of control flow data and execution times, IDB can

leverage PAPI [2] for the collection of hardware instrumentation counters. Users

can select from this list the counters they are interested in, and the automated

instrumentation tool will configure IDB to collect the requested counters.

The automated instrumentation tool is designed to work with IDB and will

normally insert IDB probes into the instrumented file. However, it can be configured

to insert arbitrary API calls to meet other needs. As shown in Figure 3.3, settings

in the Configuration screen allow the user to specify the probe API inserts before

and after each instrumented block. Any initialization, finalization calls as well as

12

Figure 3.4: Automated Instrumentation Tool: EDF save dialog

other necessary additions can also be added to an instrumented file.

One strength of the automated instrumentation tool is its ability to save an

Experiment Definition File. The save function in the file menu (figure 3.4) allows a

user to save basic experiment information as well as their instrumentation selections

in an Experiment Definition File. Once the information is saved, the user can then

reload their settings at a later time. This allows a user to tune and refine the

instrumentation after an experiment. Because the automated instrumentation tool

recognizes instrumentable blocks based on functions, loops and function calls, a user

can even reload the same settings on source code that has been modified. Trivial

changes, such as those made to correct performance bottlenecks, often maintain the

same basic structure as the original code, thus the automated instrumentation tool

can automatically locate the same functions, loops and calls and select them for

13

Figure 3.5: Automated Instrumentation Tool: Completion dialog

instrumentation. The Experiment Definition File and its uses are further described

in section 3.4.

Once a user finishes selection of what to instrument, instrumentation is started

by clicking the Next button. The resulting dialog (Figure 3.5) shows the user the

status of the instrumentation, the placement of the instrumented files as well as any

errors that may have occurred during the instrumentation. Once instrumentation

is complete, the instrumented code can then be compiled and ran. Because the

automated instrumentation tool uses an internal parser, the file structure, comments

and line numbers in the original source code are maintained in the instrumented

output. This can be useful if the user needs to further add, subtract or modify

probes after the automated instrumentation tool has generated its output. This

also aids in debugging as the source code associated with the executable is highly

readable to humans.

3.2 Source code parser

Choosing to instrument at the source code level allows a program to be in-

strumented without regard to the hardware platform, operating system or compiler

usage. Unlike binary instrumentation, source code instrumentation allows us to

14

locate important source level language constructs without regard to optimization

settings at the compiler. Instrumentation at the source code level also allows for

the highest possible degree of mapping between performance events and the source

code. While instrumentations at the binary level can be dynamic, they are also more

costly due to the additional overhead incurred by the needed support of dynamic

instrumentation. Source level instrumentation can be easily implemented and is

applicable at variable levels of granularity with minimal impact on the application.

Two source code parsers are included with the automated instrumentation

tool, supporting the C/C++ and Java languages. Both of these parsers are LALR(1)

parsers and are designed to accept as liberally as possible. While it is easier and

more correct to only accept code strictly according to the language definition, this

would require preprocessing of include files and macros to be done prior to our

parsing. To present the programmer with the closest possible view to the original

source, parsing of include files and other preprocessor evaluations are not attempted.

Due to the extensibility of the instrumentation tool framework, additional parsers

could easily be implemented that more robustly parse the existing sets of languages,

as well as to parse new languages.

Adding instrumentation to a syntactically correct program before preprocess-

ing is not a straight-forward process. Several challenges need to be overcome to

ensure maximum usability and correctness of results.

One problem is how to ensure that a probe is stopped before the function or

program terminates. In C, special attention needs to be paid to language constructs

such as break, continue, return() and exit(). Additionally, some library functions

may have side effects that affect program flow and need to be treated specially,

such as fork(), pthread *() or MPI Init(). The automated instrumentation tool will

automatically locate these functions and automatically insert appropriate API calls

around these functions.

Another problem is caused by the fact that inserting API calls at arbitrary

locations in the source may alter program semantic. Consider the following C code

snippet:

if (test)

15

a = foo();

else

b = bar();

Adding a probe around foo() may alter the semantics of the program. The two ways

around this problem is either with the use of the comma operator, or by wrapping

the instrumented code in a new block. Since the use of the comma operator is not

allowed everywhere a semicolon can be (particularly at the end of loops), we put all

Call probes into new blocks:

if (test)

{ PROBE_START; a = foo(); PROBE_END; }

else

{ PROBE_START; b = bar(); PROBE_END; }

Other problems are caused by the fact that we do not preprocess the code prior

to parsing it. As we do not know what preprocessor macros will be defined at the

compile time, we must process all #if and #ifdef blocks – both the positive and the

#else sides (the exception being #if 0, which we always ignore.) As a result, the

programmer must ensure that the source code is syntactically parsable when all sides

of #if blocks are parsed in their written order. When necessary, a programmer may

manually insert blocks of dummy code in #ifdef NEVER DEFINED sections to

manually correct the parsing of the automated instrumentation tool. In practice,

we find that this is rarely necessary.

Another preprocessor difficulty is caused by the use of macros. Since the

automated instrumentation tool does not expand macros, it may fail to parse around

macro invocations that do not conform to the expected syntax of the language at

the context at which the macro was invoked. Parsing difficulties may also arise if

a macro contains an unbalanced open brace or if the invocation of a statement-like

macro is not followed by a semicolon. In most macro use cases, programmers tend

to follow the generic syntax of the language and this is not an issue. The parser is

also often able to automatically recover from such errors and to continue parsing on

its own.

16

Other uses of macros may obscure important elements from the parser, such

as the use of a macro to declare a function or a loop. Additionally, macros may

contain important language constructs such as return(), which will not be properly

recognized by the parser. While an obscured function or loop generally poses very

little problem (probes can always be inserted manually), missed return() and similar

calls may cause a probe to never be closed. Underlying probe libraries, such as IDB

[8], can detect this condition and automatically corrects it.

3.3 Instrumentation

After an input file is parsed and instrumentation is selected, probes are added

to the source code by the automated instrumentation tool. In order to maintain

maximum human readability of generated code, changes from the original file are

kept at a minimum. Macros are not expanded, and comments spacing and inden-

tation are kept intact. When the input file is parsed, information concerning the

character offset of blocks of code is obtained, thus probes can be inserted in the

same line immediately preceding and following the instrumented code. New lines

are in general not added to files, except as required by the language (such as new

#include directives).

3.4 Experiment Definition File

Conducting performance experiments is an iterative process. An iteration is

defined by three steps:

• Instrumentation – Adding, deleting, or moving probes within the program

such that events on the critical path are instrumented.

• Execution – Permuting run-time parameters across multiple systemic execu-

tions of the program.

• Analysis – Processing instrumentation data to localize bottlenecks, form hy-

potheses, and initiate optimizations to the code or run-time environment.

Experiment Definition Files (EDF) provide a formal structure by centralizing infor-

mation for conducting performance experiments. The automated instrumentation

17

tool provides a mechanism where EDF files can be loaded and saved. The informa-

tion contained in an experiment definition file includes:

• Experiment Name – A short name describing the current experiment.

• Analysis Mode – Currently, two modes are supported: COALESCE, which

merges performance data across multiple databases to gauge regularity and

COMPARE which enables selective querying of individual probes across mul-

tiple databases for comparative analysis.

• Application – The name of the executable program.

• Analyst – The name of the person conducting the experiment.

• Database list – A list of databases for storage of results and accompanying

descriptions.

• Database communications parameters – The HOSTNAME, PORT NUM-

BER, USERNAME, and PASSWORD which are required for connecting to

an instrumentation database on a remote server.

• Description – A free-form text description of the current experiment.

• Instrumentation tool state – State information is automatically generated

by the automated instrumentation tool and saved as part of the Experiment

Definition File. These states describe where instrumentations were introduced.

Specifically, it contains a snapshot of which functions, loops, and calls are se-

lected for instrumentation. This allows the user to save a snapshot of the

current work and resume adding or removing instrumentation later. Users

can also use this feature to add, subtract or modify instrumentation between

experiments, or even after modifications to the source code to address a per-

formance problem.

CHAPTER 4

Application

4.1 Particle in Cell Simulation Code

In this chapter, we describe an example of the application of IDB and its

instrumentation tool to a parallel object oriented application. In this example,

we show the benefits of an instrumentation tool that is able to iteratively refine

placements of instrumentation probes, as well as compare instrumentation data

after a refinement to the program.

4.1.1 Background

Particle in cell, or PIC, [10] codes are used to simulate spatial non-linear

kinetic systems. The 3D PIC code in this example [9] models plasma as particles in

a self-consistent electro-magnetic field. In each time-step of its execution, our PIC

code updates each particle position and recomputes their charge / current density.

Then, the electromagnetic field is recomputed based on particle positions computed

in the previous step.

4.1.2 Instrumentation

Our 3D PIC code was instrumented using the automated instrumentation tool.

Since we begin the process with no knowledge of the performance characteristics

of the PIC code, minimal instrumentation was initially added to determine the

scalability of the application. Gradually, probes were added to determine the critical

path and to locate potential bottlenecks. This is done by instrumenting all loops

and function calls within the main event loop, and proceeding further down the

critical path once it is located.

4.1.3 Results

Initial analysis shows that the PIC code is scalable with 99% efficiency when

ran on an IBM SP2 with 32 nodes. Further, investigation down the critical path of

18

19

Figure 4.1: Total execution time and CPI time for 3D PIC code

the program reveals that the plasma advance() function (probe 1400 in figure 4.1)

consumes 92.6% of the execution time. Within that function, there is a main loop

(probe 2000 in figure 4.1) which is executed close to 107 times and consumes almost

half the program’s execution time, with a significant difference between clock time

and CPU time. Our optimization efforts thus focus on this loop. Examination of the

source code within this loop reveals that the pow() function is used multiple times to

square simple mathematical expressions. Replacing the costly function with simple

multiplication results in an 18.1% speedup in the function, which translates to a

6.1% speedup in total execution time.

4.2 Improving Spatial Locality of Programs

The following example, based on [13], demonstrates the use of the automated

instrumentation tool to collect much more data than the original Instrumentation

20

Database tool intended. We can see here the ease of obtaining customized instru-

mentation data by plugging in a different set of instrumentation libraries.

4.2.1 Background

A computer’s main memory is typically fast and relatively small, while the sec-

ondary storage (disk) is slower and larger. Since a large program may not completely

fit in the main memory, performance improvements can be made to a program by

grouping certain functions together within a page. Performance gains can also be

obtained with smaller programs as cache behaves in a very similar way. The exper-

iments described here are designed to find an optimal placement of code within a

binary executable with respect to spatial locality. The algorithms investigated data

mine the temporal locality information from some sample executions as input.

4.2.2 Instrumentation

In addition to the standard “when” and “how long” aggregate probes, our

need for detailed temporal locality information necessitates an execution trace that

includes all functions. A new probe library was written that collects and logs the

necessary information. As the sizes of functions are also needed to determine the

best fit, the symbol table of an uninstrumented executable is consulted for a list

of functions to be instrumented together with their sizes. Using the automated

instrumentation tool, the required probes are then inserted into the start of each

function automatically. The new instrumented executable is then run with a variety

of input parameters to produce a set of function traces.

Once all the traces have been gathered, they are fed into a data mining algo-

rithm to obtain an optimal code placement. Two placement algorithms were tested:

(i) a Greedy Clustering algorithm, which chooses functions to fill the pages based

on the expected contribution towards minimization of page faults per unit byte oc-

cupied by the function in the page; and (ii) a Stochastic Optimization approach,

which attempts to minimize the estimated page fault ratio.

21

Figure 4.2: GreedyClustering v/s
MCA on PFR

Figure 4.3: GreedyClustering v/s
MCA on AWSSR

4.2.3 Results

Two data mining applications were used to validate the placement algorithms

– SPADE [18] and K-metis [5]. Instrumented versions of both of these applications

were ran with a variety of randomly generated input. The output of the instru-

mented code is a sequence of program-specific function identification names/numbers.

The success of our algorithms is measured using two metrics:

• Page Fault Ratio (PFR), where if y is the fraction of code segments in main

memory, then PFR(y) =
pfrdefault(y)

pfroptimized(y)

• Approximate Working Set Size Ratio (AWSSR). Let f(x) be a function, which

returns the minimum number of pages whose cumulative references account

for (1− x) of the total references. As x → 0, f(x) is an approximation to the

working set size:

AWSSR(x) =
fdefault(x)

foptimized(x)

A high PFR implies that the optimized assignment has a considerably lower

PFR and a high AWSSR implies that the optimized assignment has a smaller ap-

proximate working set than the default assignment. As we can see from figures

4.2 and 4.3, the Greedy Clustering algorithm was able to outperform the default

assignment in both of our metrics.

22

4.3 Functional Level Memory Optimization Tool

The final example described here [19] demonstrates the suitability of the auto-

mated instrumentation tool to collect data that is quite different from the original

purpose of the tool. Instead of optimizing a parallel application by examining tim-

ing information and the program control flow graph, in this example we optimize a

single-threaded long-time running program.

4.3.1 Background

Similar to the previous example, the functional level memory optimization

tool seeks to improve performance by rearranging a function’s placement within the

binary executable. In addition to rearranging a function’s placement to improve

temporal locality, this optimizer also attempts to reduce page faults incurred when

loading functions by splitting functions such that they do not span two or more

pages, and also by stuffing the binary executable in such a way that larger functions

begin at page boundaries. Additionally, functions that have a high called frequency

are placed together to improve the effectiveness of paging, thus decreasing frequency

of page faults.

4.3.2 Instrumentation

For this optimizer, the only information needed from a test run of the pro-

gram is the execution trace containing a hierarchical and ordered list of function

calls. As execution speed and perturbations are not a concern, a simple probe li-

brary which wrote to a trace file on every function entry and exit was constructed.

The automated instrumentation tool was then used with these probe parameters to

instrument the source code. Once the instrumented code is ran and a trace file is

obtained, the analysis and function stuffing and splitting applications are then used

to obtain an optimized binary executable.

To show the effectiveness of this optimization tool, the Apache HTTP server

was used as an example of a longer running program. This presents a challenge

to the automated instrumentation tool, as many Apache function prototypes, or

even entire functions, are generated by macros in the source code. To overcome

23

this obstacle, a limited C preprocessor was first ran on all the Apache HTTP server

source code. This preprocessor expanded the troublesome functions and produced

code that the instrumentation tool can understand. Once this initial preprocessing

was done, the automated instrumentation tool proved able to parse and instrument

all the necessary source code.

4.3.3 Results

To determine the effectiveness of the optimizer, Apache access logs were re-

played against both a randomly linked server and a server that was optimized with

the tool. Experiments were done on a single processor computer with 256MB of

memory and a quad processor machine with 1GB of memory. The results show that

for shorter runs on the machine with less memory, the performance improvement

can be significant, while longer runs on the machine with more memory yield less

improvement. The machine with more memory would see less speed up since its

abundant memory means an executable could be paged in to main memory more

rapidly, perhaps all at once at the application’s execution, whereas the weaker ma-

chine may be more conservative at paging in the program. The length of a run also

affects the percentage of the speedup, since memory that is paged in is less likely to

be swapped out when it is used frequently.

24

Size of log file Linking method Runtime (sec)

73,519
Random 26
Optimized 20 (-23%)

519,492
Random 206
Optimized 175 (-18%)

3,451,435
Random 1365
Optimized 1128 (-21%)

Table 4.1: Apache HTTP server on single processor with 256MB RAM

Size of log file Linking method Runtime (sec)

73,519
Random 10
Optimized 9 (-10%)

519,492
Random 62
Optimized 60 (-3%)

3,451,435
Random 441
Optimized 432 (-2%)

Table 4.2: Apache HTTP server on quad processor with 1GB RAM

CHAPTER 5

Conclusions

We have shown that the automated instrumentation tool is useful for performing

both iterative analysis using the IDB framework and to validate performance en-

hancements. Furthermore, the automated instrumentation tool was validated to

work with a number of existing scientific and commercial applications. Designed

using a modular design that was guided by user feedback, our tool also shows po-

tential to be extended to support other instrumentation frameworks that require

source code instrumentation. With this easy to use automated instrumentation

tool, the speed at which a program can be instrumented and the chance of acciden-

tally introducing errors is thus reduced, and the cost of improving performance of

programs is decreased.

25

26

[1] B. Bouchra, C. Carothers, M. Zaki, and B. Szymanski. Understanding

Filesystem Performance for Data Mining Applications. In Proceedings of the

6th International Workshop on High Performance Data Mining: Pervasive

and Data Stream Mining (HPDM:PDS’03) at the Third International SIAM

Conference on Data Mining, San Francisco, CA, May 2003.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable

programming interface for performance evaluation on modern processors. The

International Journal of High Performance Computing Applications,

14(3):189–204, Fall 2000.

[3] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling.

Wiley-Interscience, 1991.

[4] W. Kaplow, P. Tannenbaum, B. Szymanski, and V. Decyk. Run Time

Reference Clustering for Cache Performance Optimization. In Proc. Second

Aizu Int. Symposium on Parallel Algorithms/Architectures Synthesis,

Aizu-Wakamtsu, Japan, pages 42–49, Los Alamitos, CA, March 1997. IEEE

Computer Science Press.

[5] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning.

Proceedings of the 36th ACM/IEEE conference on Design automation, pages

343–348, 1999.

[6] Barton P. Miller, Mark D. Callaghan, Joanthan M. Cargille, Jeffrey K.

Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna

Kunchithapadam, and Tia Newhall. The paradyn parallel performance

measurement tool. IEEE Computer, 28(11):37–46, November 1995.

[7] S Moore, D Cronk, F Wolf, A Purkayastha, P Teller, R Araiza, M Aguilera,

and J Nava. Performance Profiling and Analysis of DoD Applications using

PAPI and TAU. In Proceedings of the DoD High Performance Computing

Modernization Programs User Group Conference, Nashville, TN, June 2005.

IEEE.

27

[8] Jeffrey Nesheiwat and Boleslaw Szymanski. Instrumentation database system

for performance analysis of parallel scientific applications. Parallel

Computing, 28(10):1409–1449, August 2002.

[9] M. Nibhanapudi, C. Norton, and B. Szymanski. Plasma simulation on

networks of workstations using the bulk-synchronous parallel model. In Proc.

Int. Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA’95), pages 13–22, November 1998.

[10] C. Norton, B. Szymanski, and V. Decyk. Object-oriented parallel

computation for plasma simulation. Communication of the ACM,

38(10):88–100, October 1995.

[11] Daniel A. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Kieth A.

Shields, , and Bradley W. Schwartz. An overview of the Pablo performance

analysis environment, 1992.

[12] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Phillip C. Roth, Keith A.

Shields, Bradley W. Schwartz, and Luis F. Tavera. Scalable performance

analysis: the pablo performance analysis environment. In Proceedings of the

Scalable Parallel libraries Conference, 1993., pages 104–113. IEEE Computer

Society, October 1993.

[13] Karlton Sequeira, Mohammed Zaki, Boleslaw Szymanski, and Christopher

Carothers. Improving spatial locality of programs via data mining. In

Proceedings of the ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD-03), pages 649–654, August

2003.

[14] Keith A. Shields. iPablo User’s Guide, November 1992.

[15] Boleslaw Szymanski. Scalable computers. In A. Kent and J.G. Williams

(exec. edts), editors, Encyclopedia of Computer Science and Technology,

volume 39, pages 211–228. Marcel Dekker Inc., New York, 1998.

28

[16] Jerry Yan, Melisa Schmidt, and Cathy Schulbach. The Automated

Instrumentation and Monitoring System (AIMS) Version 3.2 Users’ Guide.

Technical Report NSA-97-001, NASA Ames Research Center, January 1997.

[17] Jerry C. Yan. Performance Tuning with AIMS – An Automated

Instrumentation and Monitoring System for Multicomputers. In Proceedings

of the Twenty-Seventh Annual Hawaii International Conference on System

Sciences, volume II, pages 625–633, January 1994.

[18] Mohammed J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent

Sequences. Machine Learning Journal, special issue on Unsupervised Learning

(Doug Fisher, ed.), pages 31–60, 2001.

[19] Lizhuang Zhao. A Functional Level Memory Optimization Tool – The Slicer.

Master’s thesis, Rensselaer Polytechnic Institute, July 2004.

