PERFORMANCE OPTIMIZATION OF PARALLEL
DISCRETE EVENT SIMULATION OF SPATIALLY
EXPLICIT PROBLEMS

By
Ewa Deelman
A Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee:

Dr. Boleslaw K. Szymanski, Thesis Adviser

Dr. Thomas Caraco, Member

Dr. Franklin Luk, Member

Dr. David Musser, Member

Dr. Charles Stewart, Member

Rensselaer Polytechnic Institute
Troy, New York

November 1997
(For Graduation December 1997)

PERFORMANCE OPTIMIZATION OF PARALLEL
DISCRETE EVENT SIMULATION OF SPATIALLY
EXPLICIT PROBLEMS

By
Ewa Deelman

An Abstract of a Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
Major Subject: Computer Science

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Dr. Boleslaw K. Szymanski, Thesis Adviser
Dr. Thomas Caraco, Member

Dr. Franklin Luk, Member

Dr. David Musser, Member

Dr. Charles Stewart, Member

Rensselaer Polytechnic Institute
Troy, New York

November 1997
(For Graduation December 1997)

CONTENTS

LIST OF TABLES e e e e v
LIST OF FIGURES e e vi
ACKNOWLEDGMENT e ix
ABSTRACT e X
1. INTRODUCTION e e e e 1
2. PARALLEL DISCRETE EVENT SIMULATION 5
2.1 Discrete Event Simulation 5
2.2 Parallelization 5
2.3 Conservative Approach o o000 7
2.3.1 Lookahead, 7
2.4 Optimistic Approach 9
2.5 PDES Applications oo 9
2.5.1 Research Applications 9
2.5.2 Spatially Explicit Applications 10
253 Mapping oL 11
3. COMPUTATIONAL MODEL 13
3.1 Problem Partitioning Lo oo 13
3.2 Data Structures 16
3.3 StateSaving Lo e 17
3.4 The Structure of a Logical Process 18
3.5 Global Virtual Time Calculation. 22

4. MEMORY MANAGEMENT IN OPTIMISTIC PARALLEL DISCRETE
EVENT SIMULATION e 24
4.1 Memory Reclaiming Lo o0 24
4.1.1 Message Sendback o0 25
4.1.2 Artificial Rollback 25
4.1.3 “All-In-One” Method 26
4.1.4 Probabilistic Synchronization 26

i

4.1.5 Prunebacko o Lo

4.2 Memory Reductiono oo oL
4.2.1 Sparse Checkpointing
4.2.2 Incremental State Saving L.

4.3 Over-optimistic? L
4.3.1 Time Bucket Synchronization
4.3.2 Window-Based Protocols

. CONTINUOUSLY MONITORED GLOBAL VIRTUAL TIME
5.1 Global Virtual Time Algorithms
5.1.1 Tracking Messages in Transit
5.1.2 Cut Based Algorithm
5.1.3 Barrier Synchronization
5.1.4 Computation During GVT Calculation
5.1.5 Target Virtual Time

5.2 Continuously Monitored Global Virtual Time
5.2.1 Main Data Structures
5.2.2 Updateon Send LP; - LP;
5.2.3 Update on Receive LP; — LP;

5.3 Proof of Correctness Lo
54 Example
5.5 Space Complexity
5.6 Three Levels of Knowledge,
5.7 Performance of the Three Versions
5.8 Comparison of CMGVT and SPEEDES

. SPATIALLY EXPLICIT PARALLEL DISCRETE EVENT SIMULATION

AND ITS APPLICATIONS
6.1 Lyme Disease L e
6.2 Individual-Based Modeling
6.3 Initial Simulation oo oo
6.3.1 Mice Simulation Events
6.3.2 Ticks L

6.4 Ecological Results Lo
6.5 Performanceo

il

6.5.1 Multiple Logical Processes per Processor 72

6.5.2 Curbing Optimism oo 73

7. BREADTH-FIRST ROLLBACK 7
7.1 Problem Partitioning o o000 7
7.2 Breadth-First Rollback Approach 79
7.3 Challenges Of The New Approach 81
74 Exampleso 83
7.5 The Performance of Breadth-First Rollback 86
7.5.1 Comparison With The Traditional Approach 86

8. DYNAMIC LOAD BALANCING oo 91
8.1 Impact of Work Load Balance on Performance 91
8.2 Load Balancing for General Problems 92
8.3 Load Balancing in Parallel Discrete Event Simulation 93
8.4 Dynamic Load Balancing in Spatially Explicit Problems 94
8.5 Load Calculation Phase 97
8.6 Calculation of the load distribution 98
8.6.1 Examples of Load Balancing 104

8.7 Load Migration oo 106
8.8 Load Balancing Results. L L. 109

9. CONCLUSIONS AND FUTUREWORK 115
9.1 Computer Science Contributions 115
9.2 Open Problems 000 117
LITERATURE CITED e 118

v

LIST OF TABLES

6.1 Runtime in Seconds for Multiple LPs per Processor 73
6.2 Curbing the Optimism (timeinsec.) 74
6.3 Multiple LPs and Curbed Optimism (time insec.) 75

2.1
2.2
2.3
3.1
3.2
3.3
3.4
3.5
4.1
5.1
5.2
9.3
5.4
9.5
2.6
2.7
0.8
2.9
5.10
5.11
6.1
6.2
6.3
6.4

LIST OF FIGURES

Causality Error in a Two Logical Process System.
Deadlock Situation With 3 LPs Involved.
Two-server Tandem Queue.
Common Lattice Node Shapes.
Common Partitioning Shapes.
Irregular Partitions Shapes as the Result of Load Balancing.
Strip Partitioning.o oL oo
Structure of the Logical Process.
State Saving After Each Event.
Time Diagram With Cut Events.
Time Diagram With 2 Cuts.
Runtime with a Small Number of Messages.
Runtime with a Medium Number of Messages.
Runtime with a Large Number of Messages.
Small Number of Messages. L.
Medium Number of Messages.
Large Number of Messages.
Runtime for a Small Data Set.
Speedup for a Small Data Set.
Runtime for a Large Data Set.
Lyme Disease. e
Time Line of the Simulation.
Even Distribution. Lo oL

Band Distribution.

vi

28
99

61

6.5
6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
7.1
7.2
7.3
7.4
7.5
7.6
7.7
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Possible Events for a Mouse. 66

Distribution of Infected Ticks. The Mice are Distributed Evenly and

Disperse Slowly. Lo 71
Distribution of Infected Ticks. The Mice are Distributed Evenly and

Disperse Fast. 71
Distribution of Infected Ticks. The Mice are Distributed Band-Wise

and Disperse Slowly.o oo 71
Distribution of Infected Ticks. The Mice are Distributed Band-Wise

and Disperse Fast.o o oo 72
Spread of Disease in Various Tick Types. 73
Speedup for a Small Data Set. 74
Speedup for a Large Data Set. 75
Average Number of Rollbacks for 8 Processors. 76
Waves of Rollback. o o oo 80
View of Processed Lists at Three Nodes of the Lattice. 85
Speedup For Small Data Set (about 2,400 nodes). 86
Speedup For Large Data Set (about 32,000 nodes). 87
Running Time for Large Data Set and Multiple LPs per Processor. . . . 88
Speedup with Large Data set and 16LPs. 89

Results: Comparison of Runs With BFR and the Traditional Approach. 90

Speedup for Balanced and Unbalanced Computations. 91
Moving Load between Logical Processes. 96
Counting the Computational Load of a Logical Processes. 97
Original Load Graph. Example 1. 104
Load Balancing for Example 1.00 104
Original Load Graph. Example 2. 105
Load Balancing for Example 2. o000 106
Moving the Load to the Right. 107

vii

8.9

8.10
8.11
8.12

Load Balancing For a Small Problem Size and Two Heavy Processes. .
Load Balancing For a Large Problem Size and Two Heavy Processes. .
Load Balancing For a Small Problem Size and Heavy Lattice Columns.

Load Balancing For a Large Problem Size and Heavy Lattice Columns.

viil

. 111

. 112

113
114

ACKNOWLEDGMENT

This thesis has benefited greatly from the wisdom and guidance of my adviser, Prof.
Boleslaw Szymanski. For his support, his understanding, and his assistance, I am
deeply grateful.

Prof. Tom Caraco of the Department of Biology at The University at Albany
has contributed his expertise and helped ensure that the simulations which moti-
vated this work reflect biological reality. It has been a pleasure to collaborate with
Tom.

I also wish to thank the other members of my committee, Prof. Franklin Luk,
Prof. Dave Musser, and Prof. Charles Stewart, for their comments, suggestions,
and last, but certainly not least, their time.

During my graduate career, I’ve been privileged to have a remarkable group
of friends, who have shared with me their insight, their good humor, occasionally
their apartments, and frequently their Happy Hours. I could not have conducted
this work, let alone finished it, without the help of Andrew, Bill, Bowden, Chak,
Charles, Daveed, Jim, Louis, Mary Anne, Mohan, Nathan, Peter, Teek, Wes, and
many others.

Finally, I thank my family, my mother Teresa, Adam, my father Wojciech, and
Alicja for the support and patience which enabled me to undertake and complete
my studies. At each step, they have been by my side, encouraging me.

Most of all I thank my wonderful and supportive husband Peter, who not only
encouraged me and helped me along the way, but also showed by his example how to
pursue and achieve one’s dreams. This work would never have been written without
his love and caring. Therefore, I would like to dedicate my thesis to Peter Wessel

Deelman.

X

ABSTRACT

The research presented in this thesis describes the simulation of spatially explicit
problems using Parallel Discrete Event Simulation (PDES) with an optimistic pro-
tocol. Spatially explicit problems are characterized by continuous space in which
objects reside and move freely. The space is heterogeneous and the interactions
between objects are frequent and localized. The space is discretized and partitioned
among processes, each simulating an area of space. From the point of view of the
parallel simulation processes, communications are frequent and take place between
nearest-neighbors. These problem characteristics have an impact on three areas
of Parallel Discrete Event Simulation: the Global Virtual Time (GVT) calculation
overhead, the performance cost incurred by rollbacks, and load balance. Improve-
ments are proposed for each of these performance issues.

The bottleneck in PDES is memory. Since the simulation uses large amounts
of memory, the GVT is used to synchronize processes and discard obsolete system
information. In this work a new algorithm, the Continuously Monitored Global
Virtual Time (CMGVT) is presented. Unlike other GVT algorithms, the CMGVT
allows processes to calculate the GVT based on the local information constantly
available to each process. System information, such as the Local Virtual Time of
each process and information about messages in transit, is appended to simulation
messages. Three variants of the CMGV'T algorithm with progressively increasing
overhead are described and their performance is compared.

To address the issue of rollback overhead, a novel approach to rollback pro-
cessing which limits the number of events rolled back as a result of a straggler or
antimessage is described. The method, called Breadth-First Rollback (BFR), is
suitable for spatially explicit problems where the space is discretized and distributed
among processes and simulation objects move freely in the space. BFR uses incre-
mental state saving, allowing the recovery of causal relationships between events
during rollback. These relationships are then used to determine which events need
to be rolled back.

A dynamic load balancing algorithm based on the BFR processing method
is described. Load predictions are determined based on the future events that are
scheduled for a given Logical Process (LP). The information about the load of the
processes is gathered and distributed during the Global Virtual Time calculation.
Each LP calculates the new load distribution of the system. The load is balanced by
moving spatial data between neighboring LPs in one round of communications. In
the class of problems investigated in this thesis, the LPs can be described as being
elements of a ring from the point of view of communication. Under this assumption,
an algorithm that balances the load in a ring and achieves the smallest possible
maximum after-balance load is presented.

The spread of Lyme disease in nature is a spatially explicit problem of current
relevance, involving a number of interacting individuals constrained by differing
spatial /territorial and temporal scales. Experimental data show the performance of
the CMGVT, BFR and the load balancing algorithms when applied to the simulation

of Lyme disease.

xi

CHAPTER 1
INTRODUCTION

This research focuses on performance issues in optimistic Parallel Discrete Event
Simulation (PDES) for spatially explicit problems. PDES is becoming an important
simulation technique whose main advantage is that it allows one to intuitively model
systems that have a discrete temporal nature. The greatest challenge in PDES
is parallelization, since most Discrete Event Simulation systems are sequential in
nature. The driving structure of the simulation is a priority-based event queue
ordered by the time of the occurrence of the events. The simulation progresses as
events are removed from the queue and processed.

The question might be posed: Can an inherently sequential computation be
successfully parallelized? Yes—parallelism can often be extracted from the system,
and speedup can be achieved. Speedup is not the only reason why one would want
to parallelize applications. Parallel computers also increase the amount memory
and cache available to the simulation. The memory of a single processor is usually
not adequate to obtain significant results.

In sequential Discrete Event Simulation (DES) [1, 2|, the physical system is
modeled by a single Logical Process (LP) consisting of the process state, the clock,
and the event queue. When the simulation is brought to a parallel or distributed
architecture, the physical system is decomposed into several LPs, each with its own
state, clock, and event queue. The challenge in managing multiple LPs is to preserve
causality between events. The two main approaches developed to solve this challenge
are based on conservative and optimistic protocols [3, 4]. The former prevents
causality errors by limiting each LP’s progress in time, so, although causality is
guaranteed [5], tight synchronization between LPs is introduced. In Time Warp
(TW) [6], the best known optimistic protocol, causality errors are allowed to occur;
however, recovery requires rolling back the computation to the time just prior to
such an error. Once the rollback is completed, the computation is restarted.

The simulation system described here is based on the Time Warp protocol.

This thesis addresses three research areas in Time Warp-based simulation: effective
synchronization between Logical Processes, minimizing the cost of rollbacks,
and load balancing.

In order to support rollback, it is necessary to save the constantly changing
state information, as well as the incoming and outgoing messages. Therefore, the
major drawback of the optimistic protocol is the amount of memory it requires. One
way to reclaim memory is to determine which data residing in memory are no longer
needed. This may be done by computing the Global Virtual Time (GVT)—the
minimum Local Virtual Time (LVT) of all the LPs and of the timestamps of all the
messages in transit. By definition, there are no events or messages in the system with
a timestamp lower than the GVT, so all information (states and messages saved),
that refers to times lower than the GVT can be removed from the system. A new
GVT algorithm, which continuously computes a GVT estimate, is presented here.
This algorithm, called the Continuously Monitored Global Virtual Time (CMGVT),
keeps track of all messages in transit by appending information about them to
event messages as well as to antimessages (messages used to cancel erroneous event
messages). The algorithm distinguishes itself from other GVT algorithms in that it
does not require special synchronization rounds in order to calculate the GVT. The
CMGVT is computed on each process based on the information constantly available
to it. Three versions of the algorithm have been developed. The difference between
the versions is the amount of information that is sent between the LPs.

Partitioning a problem into Logical Processes is very important in PDES. It
is advantageous to have few Logical Processes, because it facilitates the scheduling
of the LPs and reduces context switching. However, when the size of the state of
LPs is large, the rollbacks can be costly. When a rollback occurs at a given LP, the
state of an entire LP has to be restored to the state just prior to the occurrence
of a causality error. Alternatively, if incremental state saving is used, only the
state variables affected by an event are saved. When a rollback occurs, the events
that have been processed erroneously have to be undone, thus restoring the state
variables. When an LP is large, many unnecessary events are rolled back. The new

Breadth-First Rollback (BFR) presented in this thesis is designed specifically for

spatially explicit problems, where the space is discretized into a lattice. BFR takes
advantage of the scheduling benefits of a small number of LPs by partitioning the
lattice into as many clusters as there are available processors and assigning an LP
to each cluster. To reduce the impact that a rollback has on the cluster, BFR allows
each node of the lattice to be rolled back individually. BFR has a dual view of an
LP (lattice node cluster)—from the point of view of the future, the BFR views the
cluster as one LP, and, from the point of past, each lattice node is viewed as an LP.

The final contribution to Time Warp-based PDES is the design of a load
balancing algorithm. The general approach to load balancing in such simulations has
been to migrate Logical Processes between processors. Here, because the system is
designed exclusively for spatially explicit problems, load balancing can be performed
by migrating space, along with the objects present in that space. The goal of the
algorithm is to distribute the work evenly among the LPs, assuming that there is
a one-to-one mapping between the LPs and the processors. The load migration
makes use of BFR. Since the events at the lattice can be rolled back on a lattice
node-by-node basis, the nodes can be easily migrated from one LP and incorporated
into the next.

Although it is often attractive to choose a well understood problem as the
basis for study of new algorithms, it is nevertheless more exciting to be able to reach
for a “real world” application in the hopes of addressing not only pure computer
science issues, but also practical issues of interest to other scientific fields. The
following criteria were used in deciding on an appropriate application: the problem
had to provide sufficient parallelism to make it interesting from the point of view
of parallelization, as well as to be sufficiently dynamic to warrant the application
and the investigation of various aspects of PDES, such as load balancing techniques.
The simulation of the spread Lyme disease in nature incorporated both issues.

One might ask: Why would one want to use PDES to model Lyme disease?
PDES allows the simulation of the problem in an individual-based manner. This
technique allows one to reason about what kind of events can happen to an indi-
vidual, unlike traditional ecological modeling, where differential equations, which

describe system behavior, are simulated. In the differential equation approach, the

more complicated the system becomes, the more complex the equations become,
sometimes making them too hard to understand or to analyze. Individual-based
simulation is much more intuitive and therefore easier to design and understand.

The goal of the research presented here is to design a PDES framework for
simulating spatially explicit problems such as the simulation of the spread of Lyme
disease in nature and to investigate and design algorithms that optimize the perfor-
mance of such simulations.

Chapter 2 gives a general introduction to Parallel Discrete Event Simulation
and its applications. Chapter 3 describes the simulation system in detail. Chap-
ter 4 gives background in memory management algorithms developed for optimistic
PDES. It describes various algorithms designed to reduce the amount of memory
used by a Logical Process as well as some created to reclaim memory already used.
Chapter 5 explores Global Virtual Time algorithms and describes the Continuously
Monitored Global Virtual algorithm in its three variants. The performance of the
CMGVT is empirically compared to that of a well known GVT algorithm. Chapter
6 describes the general class of spatially explicit problems and the Lyme disease
application in some detail. Results of simulation runs are presented. Chapters 7
and 8 describe the Breadth First Rollback algorithm and its use in load balanc-
ing. The performance of the algorithms versus that of the traditional approach is
demonstrated. Finally, Chapter 9 summarizes the contributions made in the field of
optimistic Parallel Discrete Event Simulation and sketches possible future research

directions.

CHAPTER 2
PARALLEL DISCRETE EVENT SIMULATION

2.1 Discrete Event Simulation

Many systems have a discrete nature. Such systems can contain instantaneous
events such as flipping a light switch or being bitten by an insect. When such
events are part of the modeled system, it is natural to use discrete time modeling
techniques. Looking at the light switch case, the system can be in one of two states:
one indicating that the light is on and the other that the light is off. There are two
events, turning the light on and turning the light off. Each occurrence of the event
may cause a state change. The time of the termination of the event is considered as
the event’s time of occurrence.

The general components of a discrete event simulation system are simulation
objects, events, and a simulation engine, consisting of state variables, an event queue,
and a clock. Events are kept in a priority queue, where the event with the lowest
scheduled time has the highest priority. The simulation is started by introducing
some initial events, which are inserted into the event queue. The simulation pro-
gresses as events are removed from the event queue and processed. The simulation
clock is advanced to the time of the event’s occurrence. When an event is processed,
the system changes from one state to another. For example, if the state of the light
is on, and an event “turn light off” occurs, the state of the light will change to off.
Processing of an event can also trigger new events. When an event is created, the
time of the occurrence can be predicted based on a probability distribution for the
type of the event. The newly created event is then placed in the priority queue

based on the time of its occurrence.

2.2 Parallelization

The general concept of Parallel Discrete Event Simulation (PDES) is similar to
the sequential version. The physical system being modeled is decomposed into sev-

eral Logical Processes (LPs), each of which has its own clock, event queue, and state

Processed Event List

el(2) | e2(3) | e3(4) €3(15)

M essage at time 10
€6(10)

€7(20)|e8(22)

€5(25) |e6(30)

Future Event Queue current event

Figure 2.1: Causality Error in a Two Logical Process System.

variables. LPs communicate with each other via messages. During parallelization
the problem of correctness arises. Each LP in the simulation must process events
in a non-decreasing timestamp order, to preserve the causality relationship between
events. Causality errors can arise because each LP advances at its own pace. Some
LPs may be early in the simulation, some further. When an LP which progresses
fast through the simulation time (local virtual time) and receives an event message
from a “slower” LP, that message will be in its simulated past, indicating a possi-
ble causality error. Figure 2.1 depicts a causality error between two LPs. LP; has
processed events e; ...e; and progressed to local virtual time 10. LP; then sends
an event message (eg with timestamp 10) to LP,. LP, processed its own events
ey ...e3 (now processing e4) and is at local virtual time 20 at the time it receives
the message eg. Since the message is timestamped with time 10, a causality error
occurs. The event contained in the message had to be processed before event e at
LP,.

The two main approaches developed to solve the causality challenge are based
on the conservative and optimistic protocols [3]. The former prevents causality
errors by limiting each LP’s progress in time, so although causality is guaranteed
[5]. As a result, tight synchronization between LPs is introduced. The optimistic
approach allows causality errors to occur; however, recovery requires rolling back the

computation to the time just prior to such error [6]. Once the rollback is completed,

the computation may be safely restarted.

2.3 Conservative Approach

The general idea behind the conservative approach [5, 3] is that LPs do not
process any new events until there is a certainty that no event with a lower timestamp
can arrive. The messages sent between LPs are assumed to be sent in chronological
order. The receiving LP has preallocated buffers for each LP that can be sending it
a message, and it reads off messages from each buffer in a FIFO manner. In order for
the LP to process an event from the event queue, it has to check all incoming buffers.
If all buffers contain messages with timestamps larger than the timestamp of the
event in the event queue, then it is safe to process that event. The major problem
is that two or more LPs can deadlock waiting for the others to send messages with
timestamps sufficiently advanced. Figure 2.2 shows a deadlock situation. Here none
of the LPs has any messages waiting to process. Each LP has a non-empty event
queue, but each is unable to process an event. LP; cannot process event at time 12,
because there might be a message coming from LP; at time ¢t (7 <t < 12). LP,
cannot process the event scheduled for time 17, because there might be an event
coming from LP; at time t (3 < ¢t < 17). Similarly LP; also cannot progress.
Obviously, if one has a global snapshot of the system, LP; has the event with the
smallest timestamp.

The problem of deadlock can be approached in two ways. One is to try to
avoid deadlock, and the other is to recognize the deadlock and to break it. Avoiding
deadlock can be done by sending null messages [5]. The null messages are not
simulation events, they are used only for synchronization purposes. They contain
the smallest possible timestamp of an event an LP can send to another. Of course one
can immediately see that processes might be flooded with null messages. Deadlock

can also be overcome by detecting it and breaking it.

2.3.1 Lookahead

Conservative simulations derive their good performance from lookahead [3],

the ability to predict when an event will occur. Consider the example of a tan-

communication channel

LP

I
N
w
____Y_
[]
3

N N
input message queue event queue
timestamp of event
at head of the event timestamp
LP,
queue of last message

Figure 2.2: Deadlock Situation With 3 LPs Involved.

,,,,,,,,,,,,,,,,,,,,,,

| I I
| P T 1
— _—»
I il ! | ‘
| [| |
: queue | : Queue :
I server ! [server !
\] e I
L P1 on processor #1 L P2 0N Processor #2

Figure 2.3: Two-server Tandem Queue.

dem queuing network (fig.2.3) with two servers s; and s, and two processors. LP;
simulates the behavior of s; and LP, simulates the behavior of s5. When a cus-
tomer ¢; arrives at s; at time t;, and departs by time t5, LP; send a message to
LP, containing the event of arrival of ¢; at time ¢,. The event is then processed
by LP,. In such system, LP; can presample the service times for the customers,
and when a customer arrives, it can immediately send an arrival message to LP;.
This way LP, can find out about the arrival before the customer is serviced at LP;.
This would be particularly useful if L P, could receive customers from other servers,
where LP, would have to decide which event to process next. The major problem
with lookahead is that it is very application specific. In ecological simulations, the
time between events is very small, giving a small lookahead, and resulting in poor

performance. Therefore the conservative approach was not chosen.

2.4 Optimistic Approach

Parallelism can be also achieved by using optimistic methods where causality
errors rather than being avoided, are accepted and resolved using rollback. Each
LP processes events according to their timestamp, and when an event e, with a
timestamp (¢;) smaller than the local clock arrives (that event is also known as
a straggler), the computation is rolled back to time t;. The computation is then
restarted, and the event eg is processed. The best known optimistic protocol is
Time Warp [6]. The name Time Warp was used by Jefferson because the clocks of
the LPs need not agree, and the LPs can go both forward and backward in simulation
time.

There are several aspects to the rollback. To roll back the computation, one has
to restore the system state to the state which was saved with a greatest simulation
time smaller than the timestamp of the straggler. Also, the queue of incoming
messages has to be restored. To support rollback, all the states of the computation
leading up to the causality error, as well as all the messages that have been received
have to be saved. Finally, the messages that have been sent since the time of the
straggler have to be canceled, since they might be invalidated through the restarted
computation. The messages canceling the initial (positive) messages are known as
antimessages. When an LP receives an antimessage, it rolls back the computation
to the time before the corresponding positive message was processed. The positive
message is then canceled. If an antimessage arrives before the positive message has
been processed, the positive message is annihilated. There is no possibility of the
domino effect because the computation can roll back only to the point in time of
the process which sent the initial straggler (the message that caused this particular

rollback to occur).

2.5 PDES Applications
2.5.1 Research Applications

The most widely studied and implemented applications are queuing networks
[7]. They are well suited to PDES because the time of processing an event is small

compared to the overhead of synchronization and state saving. Therefore it is easy

10

to analyze new GV'T and state saving algorithms and to see where their performance
degrades and maybe how to improve it. There are also other synthetic spatial appli-
cations, such as Colliding Pucks [8, 9], which have been used to develop simulation
protocols. In Colliding Pucks, pucks move on a flat surface. The pucks can collide
with each other and with obstacles. The surface is divided into sectors. Each sector
is responsible for the movement of pucks in that sector. The Sharks World prob-
lem is another widely investigated system[10, 11]. Here sharks and fish swim in a
toroidal world. When a shark gets close to a fish it eats it. Sharks can also die when
they are unable to move for some period of time. Both Sharks World and Colliding
Pucks display very dynamic behavior and spatial aspects, which have been used to

analyze and stress test PDES protocols.

2.5.2 Spatially Explicit Applications

There are of course some more practical applications. PDES have been used
to perform combat simulations [12, 13]. Two opposing armies are introduced into
the field. One army is usually the aggressor and seeks out the opponent in order
to attack it; the other army is usually the defender. Their tactics differ in that
the attacker seeks out a weakness in the opponent, whereas the defender spreads
out its troops evenly. When the armies come close to each other, they fight, and
casualties are computed. “Armies” of ants have also been simulated [14]. Sources of
food were distributed in an area. The ants followed the scent of food to its source.
When they found the food, they ate it. New food could be added to continue the
process. The simulation of Personal Communications Services (PCS) is of current
interest [15, 16, 17, 18, 19]. PCS provide communication capabilities to cellular
phone users. A geographical area is divided into small service areas, each of which
has a number of radio ports, each with a certain number of channels. When a mobile
phone customer, talking on the phone, moves from one service area to another, the
call has to be transferred to a new channel in the new service area (a handoff
occurs). The goal of the simulation is to establish how many cells and channels
should be placed in a new area to be able guarantee good cellular phone service.

A similar application is that of the National Airspace System [20]. The system

11

simulates the behavior of the air traffic control system. The space is divided into
three-dimensional sectors, and handoffs occur from one sector to another. Major
airports are themselves sectors. Studying the average delay experienced by aircrafts

is the main goal of this simulation.

2.5.3 Mapping

One issue not addressed thus far is how are the LPs created? What makes
up an LP? How does one determine on which processor should a given LP reside?
These are definitely questions that one has to answer when faced with designing a
model for an application. In queuing systems, part of the answer is rather obvious:
assign an LP to each server. As to how one should distribute LPs among processors,
it is not so clear, so random solutions are often used. Each processor will receive an
even number of randomly selected LPs. When simulating digital circuits, one also
often assigns an LP to each gate. This is appropriate when the number of gates is
small, but when the number increases into 100,000 and more, the idea of one LP
per gate is less feasible. In this case it might be profitable to cluster gates together
to form groups of gates, each of which is represented by a single LP [21]. Strongly
connected components are used to determine such clusters.

A different decomposition and mapping problem appears in spatially explicit
problems such as Colliding Pucks, Shark World, Personal Communication Services,
or combat simulations. Here it is not appropriate to have an LP associated with
each object such as a puck, and let pucks decide when they collide with each other,
because of the complexity involved in each puck trying to figure out if it will collide
with another puck (each puck would have to send its position and speed to all other
pucks, making the communications very expensive). On the other hand, if an LP
is assigned to the space, it becomes a sequential simulation. The solution is to
subdivide the space. In Colliding Pucks the space is divided into sectors. At the
beginning of the simulation each sector is responsible for the pucks and obstacles
present in it. During the course of the simulation, the obstacles stay within their
sectors, but the pucks move. A single puck, which does not encounter any obstacles

or other pucks can move several sectors at a time. This poses a problem—should the

12

pucks be transferred from sector to sector so that each sector is responsible only for
the objects in its sector (this involves data movement); or should the messages go
back to the object’s home sector (this involves heavy communication). In Colliding
Pucks load management heuristics move objects closer to the sectors with which
they communicate with the most.

There are also applications where there are several decompositions, such as
in the National Airspace System. The system simulates the airplane traffic in the
United States. Omne decomposition is to divide the geographical area into cells.
Each cell is then simulated by an LP. The airplanes are the objects moving around
in space. Another decomposition would be to view each airport is an LP and objects
such as airplanes are moved among them. Mapping of LPs onto processors is not
clear due, for example, to different airports with varying traffic. Another issue
making the mapping problem harder, besides different traffic load at the airports,
are the different time zones. At the beginning of the day the airports in the eastern
United States are very active, whereas the West Coast hubs are idle. Through the
day, the air traffic load shifts towards the West. Also bad weather conditions can
unexpectedly unbalance the computation, creating “hot spots” of heavy activity.

Finally, ecological simulations can be classified as spatially explicit problems
[22]. Here, the domain is a geographical area. In that space objects are present (for
example animals). The space is discretized into a lattice (here two-dimensional).
Each node of the lattice can contain local information such as the type and amount
of food or water available, temperature and humidity conditions. The objects move
freely in that space, moving within a node and between them. A specific instance
of the ecological simulation is the simulation of the spread of Lyme disease in the
environment [23]. This application has motivated this work and is described in

detail in chapter 6.

CHAPTER 3
COMPUTATIONAL MODEL

The simulation system is designed in an object oriented way using C++. The target
architecture is the IBM SP2, an MIMD, distributed memory machine. The hardware
configuration used in this work has 32 processors. The processes in that system
communicate by sending and receiving messages. The communications between

processes use the MPI [24] message passing library.

3.1 Problem Partitioning

Without a priori information about the configuration of objects and their
events, an even distribution is assumed. Thus, it is desired that the space being
simulated be divided equally among the Logical Processes. The objects in the space
are assigned to the LP to which the space belongs.

First, the space is discretized into a lattice (in this work, two-dimensional
space is simulated). Then the problem of partitioning the spatial lattice has to
be considered. One approach is to model each lattice node by a single Logical
Process. In that case, the “forward” processing overhead is high due to scheduling
and context-switching costs incurred when the process with the event with the next
smallest time is scheduled. However, there are also benefits of a one-to-one lattice
node to LP mapping. For example, the cost of state saving is low, because only the
state of one lattice node has to be saved at one time. Moreover rollback is also simple,
because the state of only one lattice node has to be restored. A second approach,
which minimizes the overhead in the forward execution, is to cluster lattice nodes.
Each cluster is then mapped onto an LLP. However, state saving is more complex in
this case, because the state of the LP is composed of the states of several lattice
nodes. Also, rollbacks are more costly, because, when a rollback occurs, the state
that needs to be restored is large. Since, ultimately, the size of the simulations could
be in the millions of lattice nodes, and assigning an LP to each node and managing

this number of LPs would be very difficult and costly, the decision was made that

13

14

(a) Hexagonal Shapes (b) Rectangular Shapes

Figure 3.1: Common Lattice Node Shapes.

the lattice nodes would be clustered, with each cluster assigned to an LP. Initially,
the space is divided into as many clusters as there are available processors.

Another issue to consider is how to shape the lattice nodes and the lattice clus-
ters. A possible lattice node shape is that of a hexagon as shown in Figure 3.1(a).
This geometry has been used, for example, in Personal Communication Services
simulations [17]. Hexagonal shapes are attractive, because each element has only
six neighbors (potential communicating processes). The problem is that, when clus-
tered, the edges of the partition become ragged, and determining if a given area
belongs to a given LP is complex. Another possibility for the lattice node shape
is that of a rectangle, or, more specifically, a square as shown in Figure 3.1(b). In
this case, the number of communicating processes grows to 8; however, the edges
are more regular, and, when clustered, determining if a given lattice node is within
a given LP is easy. In this work, the nodes have a square shape.

The issue of the shape of the cluster itself remains. If the lattice is divided
in both dimensions into rectangles—Figure 3.2(a)—the size of the communicating
edges is 4n/p, where p is the number of processors and assuming the space is of
the size n?. This partitioning, however, does not lend itself well to dynamic load

balancing of space assigned to an LP, because the movement of space boundaries will

15

L Pl L P5 L Pl L P5
n LPLL| | eeeeeeeees LP15
L Pll L P15
L P18
L P21 L P25
L P21 L P25
n
(a) Rectangular Partitioning (b) Rectangular Partitioning with

Load Balancing

Figure 3.2: Common Partitioning Shapes.

LPl LP5

L Pll L P15

LP21 LP25

Figure 3.3: Irregular Partitions Shapes as the Result of Load Balancing.

cause irregular shapes—Figure 3.2(b). If the load balancing is performed by resizing
the space for which a given LP is responsible, the following situation can occur: In
Figure 3.2(b), LPg acquired additional space as a result of the load migration.
Therefore, if LPjgy (see Figure 3.3) needs to resize, it can only enlarge either to the
right or to the left to maintain the partitioning shapes. If LP;y wants to grow in
the up or down direction, the partitioning becomes irregular (LPy4 and LP;5 in

Figure 3.3).

16

—LP4

Figure 3.4: Strip Partitioning.

Because load balancing needs to be a part of the simulation system, a strip
partitioning was chosen. The space is divided into strips in the dominant direction
(Figure 3.4). Initially, the number of strips is equal to the number of available pro-
cessors. During load balancing the strips can be easily resized. Another advantage
of this partitioning is that each LP needs to communicate with only two others. The
drawback is that the communication boundaries are larger (2n) than in the case of

rectangular partitioning.

3.2 Data Structures

There are three major groups of objects in the simulation: spatial, mobile,
and temporal (events). Each of these objects has the base class from which new
classes can be derived. The Space object class contains basic information about a
lattice node, such as its size and location, and the mobile objects present. A new
class can be derived from the space object and contain additional information about
that space, for example, the amount of food or water available. The base Mobile
object class contains object location, age, id, and object type. For Lyme disease
simulations, an animal object can be derived from the base class. This object will
contain additional variables such as infection status, ticks present, dispersal status,

and dispersal direction. The base Event object class is composed of:

e the event id

e the scheduled event time—the time at which the event was scheduled to hap-

pen

e the event time—the time of the occurrence of the event

17

o the trigger—the id of the event that caused it to be created
e the pointer to the object that the event will affect

e the location where the event is to occur

e the event status: processed or not

The important virtual functions associated with the FEwvent object are process and
undo. The Move FEvent and local events such as the Kill Fvent are derived from
the base event class. Each of these events has its own process and undo functions
appropriate for that specific class. If an event causes another event to happen, the
triggering event will either keep the id of the dependent event or maintain a pointer
to it. It is also assumed that the dependent event has to be scheduled for a time

strictly greater than that of the triggering event.

3.3 State Saving

There are two possible choices for state saving: full or incremental [25, 26, 27].
In full state saving, the state of the entire LP is saved after each event or after some
number of events (more details are included in Chapter 4). The state can also be
saved incrementally [28, 29]. In the latter case, when an event is processed, the
system saves the state variables this event modifies in its internal data structures.
Upon rollback, the events are undone and the modified variables are restored. The
advantage of incremental state saving is that it requires substantially less memory
than full state saving. The disadvantage is that restoring the state on rollback (by
undoing events) can be expensive.

In spatially explicit simulations, there are two general classes of events: local
and non-local (specifically the Move Fvent). A local event can affect the state of the
object at a given lattice node and the state of that node. The Move Fvent affects
the state of the object and the state of two lattice nodes—the node from which
the object is moving and the node to which the object is moving. Since the space
assigned to an LP is large (at least thousands of nodes), the state of an LP is large,

and a single event does not change much of that state. In the simulation system

18

L ogical Process

M essage Handler

[Message List

Incremental State Saving

Event Handler Space M anager
4 (R
Future Event Queue L attice of Space Objects
- S J
s (R
Processed Event List | Objectinformation |
> (R

Figure 3.5: Structure of the Logical Process.

described here incremental state saving is used, because each event changes only a
small part of the large state.

When a process runs out of memory, it first tries to start a new GV'T calcu-
lation. If the GVT does not reclaim enough memory, then the LP rolls back to the
GVT.

3.4 The Structure of a Logical Process

Each Logical Process is composed of three modules: the Event Handler, the
Message Handler and the Space Manager (Figure 3.5).

The Event Handler contains the Future Event Queue, the Processed Event List,
and the Clock, which keeps track of the Local Virtual Time. The Event Handler is

19

responsible for the processing of all events. In the forward execution, it dequeues an
event from the Future Event Queue and calls the appropriate process function for
that event. When the processing is complete, the event is placed in the Processed
Event List. The saving of modified state variables is made in the process function.

Finally, the simulation clock is advanced to the time of the occurrence of the event.

Event Handler in Forward Execution
e Remove event from the Future Event Queue
e EventPtr->process()

e Put the event on the Processed Event List

e Advance Clock

Upon rollback, the reverse actions are performed. The event is removed from
the Processed FEvent List, and the appropriate undo function is called. If the event
was not canceled by an antimessage, it is placed on the Future Event Queue. The
events that were triggered by the event being undone have to be canceled (removed
from the Future Event Queue), because they are no longer valid. Finally, the simu-

lation clock has to be set back.

20

Event Handler upon Rollback
e Remove event from the Processed Event List

EventPtr->undo ()

Put the event on the Future Event Queue (%if

appropriate

Delete dependent events from the Future Event

Queue

Set back Clock

The Space Manager is responsible for the movement of objects in space. When
a Move Event occurs, the Space Manager removes the object from its current lattice
node. If the object is moving to a lattice node within the same Logical Process,
the object is simply placed at the new lattice node. At that time other information
might be provided by the Space Manager. It can indicate whether the space is
occupied or how much food is available. If the move is not local, the object and
all its future events have to be sent to the new LP. The Space Manager collects
the future events for the object from the Future Event Queue and passes them
along with the object to the Message Handler. The Message Handler is in charge of
sending and receiving messages between LPs. The Space Manager also places the

objects and future events in the Ghost List in case the message has to be canceled.

21

Space Manager: Move Event Forward Execution
e Remove Object from current location
e if the Move is local

— put the object at new location

— return any additional information
e else

— send object and its future events to new LP

— put object and events on the Ghost List

When a Move Event is rolled back, the Space Manager steps in. If the object
is present in the space assigned to the Local Process, the object is removed from the
lattice node. If the object does not belong to the current LP, then the object was
sent out to another process. The object can therefore be found on the Ghost List.
The Space Manager removes the object from the list and restores the future events

to the Future Event Queue. Finally, the object is returned to its previous location.

Space Manager: Move Event upon Rollback
e If the object is local
— remove from current location
e else

— move object from the Ghost List

— restore events from the Ghost List

e Put object in previous location

22

When the Message Handler sends an event message to an LP, it places that
message on the Message List. When a rollback occurs, the Message Handler re-
moves messages from the Message List and sends corresponding antimessages to the
appropriate LP. Then the Event Handler undoes the necessary messages.

This LP decomposition is unique to the work presented in this thesis. Usually,
an LP is treated as a single entity, which has state variables, a priority-based event
queue and a clock. Here, the LP is composed of an Fvent Handler, Message Handler
and a Space Manager. This decomposition allows for the better understanding and
modeling of the spatial aspects of the problem.

An object oriented language was chosen because it fits well with the logical
decomposition of the model. It also facilitates the development a general purpose
simulation engine. Because of the modularity of the program it is easy to incorporate
new algorithms into the existing program. For the same reason the software is easy

to understand and maintain.

3.5 Global Virtual Time Calculation

The Global Virtual Time calculation is a very important part of the simulation
system, because it allows the recovery of memory that is no longer needed. Infor-
mally, the GVT is defined as the earliest event timestamp of an unprocessed event in
the system, if the processes are synchronized. The GVT algorithm discussed here is
based on the algorithm used in SPEEDES [30]. The general idea of this algorithm is
to flush out all the messages that are present in the system. Besides the calculation
phase itself, the LP has to decide when to start the calculation. The calculation
can be scheduled to occur after a certain number of events have been processed, or
after a given amount of simulated time has elapsed, or after some wall clock time
has passed. Each LP can initiate the computation by sending a GV'T message to its
neighbor. Since, in this system, the topology of the LPs is essentially a bidirectional
ring, the message is sent in an arbitrary direction. However, once the direction is
established, the GV'T messages have to follow that direction. The GVT message
contains the number of messages and antimessages sent and received by the LP and

its current Local Virtual Time (LVT). When an LP (other than the initiating LP)

23

receives a GVT message, it adds its own send/receive counts to the incoming infor-
mation, appends its own LVT, and sends the information to its neighbor. When an
LP enters the GVT calculation phase, it stops sending event messages. Antimes-
sages are still sent in order to clear out any impending rollbacks. If the initiating
LP receives the GV'T message, it checks whether the sum of messages sent is equal
to the sum of messages received. If it is, then there are no more messages in the
system, and the GVT is taken to be the minimum of the LVTs in the system. If
the sums do not match, a new round of the GV'T calculation is started. When the
GVT is obtained, it is broadcast to all LPs in the system. When an LP receives the
GVT information, fossil collection is initiated. During this phase, each LP traverses
the lists that hold the past information (the Processed Event List, the Message List,
and the Ghost List), and truncates them.

CHAPTER 4
MEMORY MANAGEMENT IN OPTIMISTIC

PARALLEL DISCRETE EVENT SIMULATION

Time Warp is plagued by three problems: memory, memory, and memory. During

the simulation, the Logical Process allocates dynamic data structured to save the
state of the system, the incoming messages, and the outgoing messages. The LP
consumes memory, increasingly so as the simulation progresses. It is possible the
LP runs out of memory before reaching the end of the simulation. In shared mem-
ory systems, a single LP, running ahead of others can consume the entire memory
available, thus preventing itself and the other LPs from continuing. In distributed
memory systems, if a one-to-one LP-to-processor mapping is used, an LP can run
out of memory, but that will not affect the progress of other LPs in the system. If
a many-to-one LP-to-processor mapping is used (see section 6.5.1), the situation on
a given processor is similar to the case for shared memory systems. In order to deal
with memory problems, several approaches have been devised. They can be divided

into two main groups: memory saving and memory reclaiming techniques.

4.1 Memory Reclaiming

An obvious way to regain memory is based on the Global Virtual Time (GVT)
calculation. The GVT is the minimum virtual time of all the LPs and of the times-
tamps of all messages that have been sent but not yet received, and therefore roll-
backs cannot occur to a time before the GVT. This property implies that all events
that happened before the GVT have been committed, so any information that has
been saved that refers to events before the GV'T can be removed from the system,
thus freeing memory (the process of memory reclaiming is known as fossil collection).
Obviously, the GVT calculation and the subsequent fossil collection are applicable

to both distributed and shared memory systems.

24

25

4.1.1 Message Sendback

When the GVT calculation fails to reclaim memory, which can easily happen
when one LP falls far behind the others, the other LPs keep processing and saving
states, and might eventually use all the available memory. Several solutions have
been proposed [6]. One of them is to send back the messages that have been re-
ceived (message sendback—a shared memory method) [31]. The sending back of the
messages might not only cause the original sender to roll back, but it will also slow
down an LP that might be sending too many messages. Obviously, one cannot send
back messages whose timestamps are earlier than the GVT. When an LP that has
run out of memory sends back a message, this message might roll back the original
sender to the time of the send. If the original sender sent the message at time 20,
progressed to time 100, and then received back its original message, it would have
to roll back to time 20. It would thus free the memory it had used between times
20 and 100, hopefully allowing the LP that ran out of memory to continue. If an
LP uses up all the available memory, and runs ahead, thus sending lots of messages,

this method will slow it down by forcing it into rollback.

4.1.2 Artificial Rollback

One can also artificially roll back [32] (also for shared memory), which means
to undo some computation—preferably enough to let the GVT advance and reclaim
even more memory. The rollback allows reclaiming some memory, because the states
and the output messages that were saved after the time to which the LP is rolling
back can be discarded. The LP that is the farthest in virtual time is rolled back.
How far to roll back is usually considered to be application-dependent, but some
researchers propose to roll back to the time of the second farthest LP. For example,
if there are LPs with virtual times 10, 20, 30, and 100, then the LP with time 100
will roll back to virtual time 30. This process continues until enough memory is
reclaimed. The outcome is that the fastest LP—the one that “ran away”—is slowed
down, and memory is reclaimed. The GVT might advance, because, while the
processes farthest ahead are rolling back, the processes that are behind have time

to catch up. Even if the GVT does not advance immediately, the results can be

26

beneficial, since memory is being reclaimed.

4.1.3 “All-In-One” Method

One can also use a mixture of the techniques described above. The idea
proposed by Gafni [32, 33] picks one of the LP’s resources (an input message, an
output [output in the sense of output to another LP—not output device] message, or
a state) and annihilates it. If an input message is being sent back, it might cause a
local rollback, and maybe the rollback of the receiving process. This is analogous to
message sendback. If an output message is picked, an antimessage is sent to cancel
the positive message previously sent. The sending of an antimessage enables a local
rollback. The sender has to roll back to the time before the event that caused the
original message to be sent. This will free memory (this method is applicable to
distributed memory systems). The antimessage can have either of two effects on the
receiving LP. Tt can cause it to roll back if the original message has already been
processed (thus freeing more memory). If the message is still waiting in the input
queue, it is annihilated, and no further memory is reclaimed. If a state is to be
canceled, the process rolls back to the time when that state was computed. This
might also involve the rollback of other LPs, since, during the rollback, the LP will

most likely send out antimessages corresponding to the original messages sent.

4.1.4 Probabilistic Synchronization

The MIMDIX system [34] is an operating system based on the optimistic pro-
tocol that provides system calls necessary for developing distributed simulations.
Besides the usual system calls, it utilizes a probabilistic synchronization mechanism:
at probabilistically computed intervals, the processes synchronize. When a process
starts the synchronization phase (in this case it broadcasts to other processes), it
sends its local virtual time to all other processes. When a process receives a synchro-
nization message, it discards all positive and negative messages whose timestamp
is larger than that of the sender. This allows easy reclaiming of memory from pro-
cesses that are too far ahead. Probabilistic synchronization is useful both in shared

and distributed memory systems.

27

4.1.5 Pruneback

Another way to deal with a memory stall (running out of memory) is to prune
back some of the states [33]. The characteristic of this approach is that it leaves the
process at its current local virtual ttme, whereas the techniques mentioned above do
not. The choice of the states to delete is not obvious, but the general guidelines are
that one should not remove the current state or the state at which the GVT was
calculated. One of the benefits of this method is that it does not involve rollback.
Memory is reclaimed by throwing away some of the states previously saved. Preiss et
al. claim that the choice of which states to prune is implementation-dependent, but
some of their empirical studies show that one out of every four states of an LP can
be pruned. The disadvantage of this method, when compared to artificial rollback
is that here one needs to prune more states to reclaim the same amount of memory.
This is because artificial rollback, also deletes input and output messages. Preiss
also notes that pruneback seeks to manage memory in an optimistic manner since it
hopes that the states being pruned back will never be needed. However, if a rollback
occurs to time ¢;, and the corresponding state s; has been pruned, the simulation
has to roll back to s; 1 (if it exists), and restart from there. The computation from
state s;_1 to s; is known as coasting forward, since no messages are sent out (all

messages previously sent between states s;_; and s; are correct).

4.2 Memory Reduction

A good place to save on memory is in the reduction of the state information
saving. The question becomes: is there really a need to save the state of the system
after each event? An argument in favor of doing so is that rolling back the system,
to the time before an antimessage or a straggler, can be done quickly. In Figure 4.1,
it can be seen that if an antimessage arrives for the event es, the system state can

be restored to s4 and the computation restarted.

4.2.1 Sparse Checkpointing

If the goal is to save some memory, it is possible, for example, to save only

every fifth state (sg,ss5,519). This cuts the memory requirements by a factor of five,

28

event state saved
\ S| |A(A | 5| |7 | 510
] MM =
el e2 e5 el0

Figure 4.1: State Saving After Each Event.

but, of course, at a price. Now if an antimessage for the event es is received, the
state of the system has to be restored to sy and the simulation has to coast forward
to the time before the event e5. While coasting forward, computation is redone,
but no messages are sent, since these have been previously sent out and are still
correct. Only the state is modified. This method [35] causes more computation to
be redone, and therefore might take more time than the saving of every state. The
problem is a classic time/space tradeoff and research has been done on selecting
the appropriate state-saving interval [36]. It has been shown that under certain
circumstances it is preferable to reduce the amount of state saving even at the cost
of incurring more rollback overhead. This method could be called a “preventive
pruneback,” because it anticipates that the LP might run out of memory, and does
not save all the states of the computation. Pruneback, on the other hand, deletes

states only when a memory problem occurs.

4.2.2 Incremental State Saving

A different approach is used in SPEEDES [25], in which a method called incre-
mental state saving is introduced. Full states are not saved during the computation.
Only the portions of the state that have changed due to the occurrence of the event
are saved. When an event wants to change the state of a variable in the simulation,
it does so by exchanging this variable with a similar variable which is stored in the
data structure of the event. When a rollback occurs, the state of the variable that
was changed by the event is restored. For a banking simulation, the state of the
system would be the balance of every account carried by the bank. Even if some

accounts are inactive, their balance would be saved every time an event occurs (or in

29

the case of a different checkpointing interval, according to a corresponding schedule)
if full state saving is used. That can prove to consume lots of memory, and is in
this case wasteful. Incremental state saving, on the other hand, stores only new
information. Instead of whole states, it only saves the events (or parts of them) in
a rollback queue. When a rollback occurs, events are removed from that queue and
undone. Incremental state saving is obviously very beneficial when changes in the
system state are small. The disadvantage is that one cannot immediately roll back

to the desired state.

4.3 Over-optimistic?

Interestingly, it is not always good to let the LPs process as fast as they can.
As previously mentioned, run-away LPs can cause memory problems by consuming
all the available memory. Another problem is that such “fast” LPs get hit with
lots of rollbacks. If they are at virtual time 1,000 and the other LPs are at around
100, the “slow” LPs will most likely send messages to the “fast” LP and will roll
it back to 100, undoing all the computation between time 100 and 1,000. Also, the
“fast” LP will probably have sent lots of messages, which it will have to follow with

antimessages, and the “slow” LPs will have to do a lot of bookkeeping.

4.3.1 Time Bucket Synchronization

Several methods have been developed that are geared towards reducing the
amount of optimism (number of messages an LP processes into the future). The idea
behind them is to keep the computation “near” the GVT. These methods include
Time Bucket Synchronization [37], where LPs can only process events within a small

interval time T past the GVT before synchronizing.

4.3.2 Window-Based Protocols

In some systems two time windows are used [38]. Dickens et al., who already
had a conservative protocol called YAWNS, tried to improve the system’s perfor-
mance. Optimism was added to the system. The system originally had only a

conservative time window, which started at the GVT and represented the inter-

30

val during which the events could be processed “safely” without the threat of a
straggler. To that window another, this time optimistic, window was added. The
optimistic window extended from the conservative window into the future. At the
end of the optimistic time window, processes had to synchronize. The new win-
dow added the penalty of incurring rollbacks due to stragglers; therefore, a rollback
mechanism had to be added. The size of the optimistic window was determined to
be application-dependent, set by the user. Empirical results have shown that the
optimistic extension to the system performs better than its conservative counterpart
as the number of LPs grows. However, no analysis had been done to show how this
approach compares to the completely asynchronous one. It was pointed out [3] that
windowing mechanisms might not only reduce the amount of incorrect computation

but might actually impede the progress of correct computation.

CHAPTER 5
CONTINUOUSLY MONITORED GLOBAL VIRTUAL

TIME

5.1 Global Virtual Time Algorithms

Since optimistic PDES save a considerable amount of data to support rollback,
the Global Virtual Time algorithm is used to determine which information in the
system is obsolete and can be discarded. The GVT is the minimum local virtual time
of all the LPs and the timestamps of all messages sent but not yet received. There
are two main strategies for finding that minimum. One is to halt the simulation,
synchronize the process, and take the minimum. The second is define a consistent
cut through the local virtual time of the processes and take the minimum of the
messages sent but not yet received and of the local virtual time of the LPs (see
sections 5.1.2). By definition, the computation cannot be rolled back beyond the
GVT, because no events with a timestamp smaller than the GVT can be created or

left unprocessed. Below, several approaches to the GVT calculation are described.

5.1.1 Tracking Messages in Transit

The major difficulty in the GVT calculation involves accounting for messages
in transit. Even though all LPs might have an LV'T > t,, it is possible that a message
with a timestamp ¢,, < t, has been sent but not yet received. Upon receipt of the
message, the receiving LP will have to roll back to the last state saved just prior to
t.m. To keep track of messages in transit, some approaches involve acknowledging
every message received while keeping track of the messages that were sent but not
acknowledged [39]. Each process keeps a list of messages it has sent. Upon receipt of
a message, the receiving LP sends an acknowledgment to the original sender. When
the sender receives the acknowledgment, it removes the corresponding message from
its unacknowledged list. The GV'T is calculated by gathering the local virtual times
and the unacknowledged message list and taking the minimum of all LVTs and the

timestamps of all unacknowledged messages.

31

32

receive event

Internal event
KA. / _

i /

cut event

v

Figure 5.1: Time Diagram With Cut Events.

Another approach used in GVT calculations is to keep lists of messages sent
and received [40]. These lists can be globally gathered and their difference deter-
mined. Then the minimum timestamp of the messages in transit and minimum of
all local virtual times can be computed. Unfortunately, the lists and the messages
carrying them can get very long.

If messages carry sequence numbers, they can be acknowledged by sending the
highest consecutive message number received [41]. For example, assume LP; sends
messages numbered from 1 to 50 to LP,. Assume also that, when LP, receives a
control message that signals the start of the GV'T calculation, it already received
messages numbered from 1 to 45. In such a case, LPs needs only to send an acknowl-
edgment to message 45 informing LP; that messages 46 to 50 are still in transit.
Based on this information, LP; can compute the minimum local virtual time as the

minimum timestamp of unacknowledged messages.

5.1.2 Cut Based Algorithm

There are also ways of calculating the GVT by generating cuts through the
time diagrams [41]. Figure 5.1 shows such a cut. Each horizontal line represents
CPU time on each processor. The cut is generated by inserting cut events into the

LP’s input queue. The cut events are only control events—they are used to signal

33

o
\ o
o ==

C C

Figure 5.2: Time Diagram With 2 Cuts.

the LP that a global snapshot is being taken. Mattern [41] creates two cuts close
together in the time diagram (C' and C”) (Figure.5.2). At time C’,the minimum of
all timestamps sent after C' gives the lower bound on the timestamps in transit at
C'. Initially every process is white. A process is colored red to the right of the cut
C (by the cut event). Every process counts the number of white messages it sends
and receives (the messages are colored with the sender’s color). After cut C' (when
the processors are red), every process remembers the minimum timestamp of all red
messages it sends. At C’ the number of white messages sent and received is gathered,
and the minima of red messages are also collected. If all the white messages that
have been sent have been received, the minimum time of red messages is equal or
less than the GV'T. If not all white messages have been received, another cut has to
be found.

5.1.3 Barrier Synchronization

To aid with the GV'T calculation, an optimistic barrier was presented by Nicol
[42]. The barrier permits optimistic entry, but does not allow processes to go past it
optimistically. This means that a process can enter the barrier based on its currently
processed event having its simulation time equal to or larger than the time of the
barrier. Such a process can then be rolled back by a straggler or an antimessage.
This process is not allowed to go through the barrier unless it has sent and received
all the messages up to the time of the barrier. The algorithm relies on a tree structure
to synchronize processes. First, the processes synchronize pairwise, then the leader

of the pair synchronizes with the leader of another pair and so on until the root of

34

the tree is reached and all processes have been synchronized. Message counts are
kept in order to see if there are any messages in transit. If at any point a process
fails to synchronize, for example if the process did not receive all the messages that
were sent to it, the LP leaves the barrier to receive the outstanding messages. When
the process’s counterpart does not synchronize, a time out is enforced. The process
can leave the barrier, in which case the process can reenter the barrier at the level
it has left it.

A centralized message tracking algorithm was proposed by Bauer [43]. In this
algorithm, the processes send information messages to a central process. The mes-
sages contain information about what messages were sent and received via commu-
nication channels that are predetermined and set at the beginning of the simulation.
The central process combines the available information and redistributes its knowl-
edge back to the processes. This approach, however, suffers from a communication

bottleneck, since one process will be flooded with incoming messages.

5.1.4 Computation During GVT Calculation

In the SPEEDES system, the GVT is calculated, but the simulation is not
halted [30]. When this calculation is initiated, the processes enter a risk free mode,
in which, although they continue to process local events, they do not send any
positive messages; however, antimessages are sent in order to minimize impending
rollbacks. During the GV'T calculation phase a rollback may happen on any process,
and it may cause other processes to roll back. Possibly, a process which has sent
its LVT and unacknowledged message information, receives an antimessage. In this
case, the process will rollback and send out antimessages. However, these rollbacks
would occur anyway, because the antimessages have already been sent or will be sent
after the GVT calculation has been completed. On the other hand, in this phase,
the LPs will not produce new events for the other processes. We have implemented

this algorithm in our system and used it as a basis of comparison with our CMGVT.

5.1.5 Target Virtual Time

Although all the algorithms discussed so far focused on calculating the GVT,
a different point of view was presented in [44], where a TVT (Target Virtual Time)

35

was proposed. The idea is to determine when a process has crossed that time. In
the algorithm, the initiating process sends a Target Event to every other process in
the system. The scheduled time of the event is the TVT. This event is treated as
any other event would be, so that it can be enqueued into the input queue or it
can cause a rollback. When the Target Event is processed, the LP sends a report to
the initiating process. In that report the LP includes the number of messages sent
and received between the previous GVT and the TVT, and the number of rollbacks
incurred. The initiator collects all the reports, and if the sum of all messages sent

equals the sum of all messages received, the TVT becomes the new GVT.

5.2 Continuously Monitored Global Virtual Time
The Continuously Monitored Global Virtual Time (CMGVT) algorithm [45]

is designed to monitor the progress of the simulation by using locally available
information as well as by keeping track of the message traffic. All messages contain
a serial number. Messages are assumed to arrive in the order that they were sent.
For example, if a process A sends two messages (1 and then 2) to process B, then
process B will first receive message 1, then message 2. This assumption holds
true for most message-passing environments. No acknowledgment messages are sent
out. The general idea behind the algorithm is to propagate through the system the
information about the LVT of the processes and about all the messages being sent
and received. This is achieved by making an LP append to the event messages and
antimessages its knowledge about the LVT of the LPs in the system, the number
of messages that were sent by all of them, and the messages in transit. Indirect
knowledge—the knowledge the sender has about the knowledge of the neighboring
LPs about the system is also included. Direct and indirect knowledge is used to
infer which messages are still in the system. Once a process receives a message from
another process, it knows at least as much about the system as the sender does.
The idea of piggy-backing system information has been used before in dis-
tributed systems. The vector clock [46, 47], which consists of a vector with a size
equal to the number of processes, describes the logical progress of each process in

the system. This clock can be used, for example, for causal ordering of messages in

36

a distributed environment. A matriz clock [48, 49], which is represented by a p X p
matrix, where p is the number of processes, describes the knowledge that a particu-
lar process has about the knowledge all the processes in the system have about each
other. The matrix clock is mostly used to discard obsolete system information[50].

These clocks are inadequate for optimistic PDES because they rely on the
assumption that logical clocks can only move forward. In optimistic PDES, the
LVT can also move backward, due to rollback. There is, however, one measure of
the simulation that is monotonically increasing: the number of messages being sent
by each process. The CMGVT’s “logical clock” keeps track of the knowledge of the
number of the messages sent in the system, and, in order to maintain the knowledge
about the LVT of all processes as well as the knowledge of the messages in transit,
an additional data structure, described below, is supported.

The CMGVT uses two basic structures, which are maintained locally by each

process: the Message Matriz and the Table of Forcing Vectors.

5.2.1 Main Data Structures

The Message Matrix (MM): an entry (j,k) in M M;, belonging to LP;,
represents the knowledge that LP; has about the knowledge L P; has about the total
number of messages that LP; has sent. Not all the entries in the MM are present.
Ounly the knowledge each LP has about its logical neighbors is needed (LP’s with
which the process is communicating). Only one row of the matrix contains all the
entries (row ¢ in M M;). This row describes the knowledge LP; has about the entire
system. Thus, the size of the matrix is p + (p — 1) x K, where p is the number
of processes and K is the number of logical connections each process has to others
(usually K < p, and often K = O(1)). For simplicity of explanation, the algorithm
for the case in which K = p is described; i.e., it is assumed below that all processes

are connected with one another.

37

N W ot O
NN O
- o = O

0
0
0
0

The sample MM matrix (Eqn. 5.1) is located on LP; (by convention processes
are counted starting from 0) and is denoted by M M;. The system has only four
LPs. The entry (1,1) with the value 5, denoted by M M;(1,1), indicates that LP;
knows that LP;, (in this case itself) has sent out five messages. LP; also knows that
LP, has sent no messages (MM;(1,0)), LP, two messages (MM;(1,2)), and LP;
one message (MM (1,3)).

The MM also contains the knowledge of the owner process (here LP;) about
the knowledge that other processes had when they last communicated with LP;.
Row 0 describes the knowledge of LP, about processes LP, to LP;. Clearly, here
LP; does not have any information about LP;’s knowledge of the system. However,
M M; provides information about the knowledge of processes LP, and LP;. For
example, LP; knows that LP, knew of three messages sent by LP;(MM;(2,1)),
two messages (M M;(2,2)) sent by itself, and none sent by LPy (M M;(2,0)) or LP;
(MM,(2,3)). The Message Matrix does not provide any information about which
messages have been accounted for. This information is maintained in a Table of
Forcing Vectors (TEV).

A forcing (F(t,n,c)) represents the basic information about a message, and
is composed of three data: the virtual time ¢ at which the event in the message
is scheduled to happen, the identity n of a process sending the message, and the
current outgoing message count ¢ on that process. This tuple was named a forcing,
because, if the message represented by the forcing is received by and LP with an Ivt
higher than the virtual time in the forcing, than that LP will be forced to roll back.
Each process has a table (the TFV) indexed by the LP id. The entries in this table
contain the current known logical virtual time of each LP and the Forcing Vectors

for each process. The forcings form the components of the vectors. If a forcing

38

is placed at entry ¢ in the table, it means the message represented by the forcing
was sent to LP;. It is possible that an LP receives information about an incoming

message before it receives the message itself.

[0 [F(10,1,4), F(10,2,1)]]
17
TFV, = (5.2)
19 [F(7,1,2)]
26 [F(9,1,3)] l

A simple TFV is shown in Eqn. 5.2. This TFV belongs to LP;. Forcing
F(10,1,4) represents a message sent by LP; to LP,; the message has the serial
number 4 and was sent at virtual time 10. The second entry in this row, F(10,2,1)
indicates that LP; also knows that LP, has sent its first message to LF, at time 10.
These messages are unacknowledged, because LP; has no information about LPF,
(see Eqn. 5.1). It can be seen that LP; sent its second message to LP, at time 7
and the third at time 9 to LP;. T F'V; also shows that LP; thinks that LPy’s LVT
is 19 and that LPs’s is 26. Unless LP, rolls back before receiving the message from
LP;, it will have to roll back to the state prior to time 7.

Theoretically, the forcing vectors can grow without limit, but they can be
easily bounded to a finite size at the cost of increased communication. In the
system described here, if the forcing vector gets too long for a certain LP, a query
message is sent to it. Upon receipt of this message, the queried process sends an
answer message containing up-to-date local information.

At the beginning of the simulation the MM has all entries equal to zero, the
LVT for every entry in the table is set to the simulation start time, and no forcings
are present. When a process sends or receives an event message or antimessage, it

updates its MM and TFV.

39

5.2.2 Update on Send LFP;, = LP;
1. MM; (i,1)++

2. add F(¢,,1,MM;(i,i)) to TFV;[j]

3. TFV,[i].1vt = i,

Every time processes communicate, the sender sends along its Message Matrix
and its Table of Forcing Vectors. Since the major cost of sending a message is the
initiation of the send, adding extra information to the message does not considerably
increase the cost of sending the message. The table and the matrix are updated just
before the send operation is performed. When LP; sends a message to LP; with
timestamp ¢, MM;(4,4) is incremented by one. A new forcing is also created—
F(ts,i,c¢), where ¢ is the current outgoing message count (¢ = MM;(4,4)). This
vector is added to the entry j in the T FV;. The current LVT of LP; is inserted into
the TFV; at entry . The M M; and the TFV; are appended to the message being
sent from LP; to LP;.

5.2.3 Update on Receive LP; — LPF,
Updating the Forcing Vector:

For every entry k£ in the TFVj
1. for every Forcing F(t,n,c) in Forcing Vector (TFV[k])
if (MM,;(k,n)> c)
remove I from TFV[k|

(message acknowledged, info given by sender)

2. for every new Forcing F(t,n,c) in Forcing Vector (TFVj[k|)
if (MM;(k,n) < c)
add F to TFV[k]

(message not acknowledged, info provided by receiver)

Upon receipt of a message, the local Message Matrix and the Table of Forcing

Vectors have to be updated based upon the new information received. The TFV

40

is updated first. Updating the TFV involves checking the forcings in each vector
against the Message Matrix. The local forcings are checked against the incoming
Message Matrix, and the incoming vector’s forcings are checked against the local
Message Matrix. Of course, the incoming forcing F'(t, j, c¢) at entry i, where c is the
current message number, is automatically acknowledged since it refers to the current
message. The unacknowledged forcings are entered into the local Table of Forcing
Vectors at the appropriate entries, and the acknowledged forcings are discarded.
The results remain in the local data structures.

Consider the TFV at process ¢ with a non-zero vector length at entry & # ¢
and k£ # j, where LP; is the sender. Let this entry contain a forcing F'(ty,1%, c;).
This means that a message with timestamp ¢, and serial number c, was sent by LP;
to LPy. Since the forcing is still present in TF'V;, LP; does not know if LP; knows
about that message. The question is: Does LP; have any information indicating
that LP; knows about the message (i.e., whether LPj received the message)? To
answer this question, the incoming Message Matrix (M M;) is analyzed. Assume
that M M,(k,i) = ¢, so LP; knows of at least ¢, messages that LP; has sent. If
¢y > ¢4, it implies that L Py, knows of the message described by the forcing F'(t,, %, ¢;).
This forcing can be discarded since it has been acknowledged (indirectly) by LPF;.
If, however, ¢, < ¢, it means that, to LP;’s knowledge, LP; did not receive the
message. The forcing then has to remain in the table.

The LVTs present in the TFV are updated based upon which process has the
most up-to-date information. This is determined based upon the number of messages
of which each process is aware. The more messages a process knows about, the more
recent its information is. The LVT for entry £ is taken from the process which knows

about the most messages sent by the process LP.

41

Updating the Local Virtual Times:

1. TFVj[i].lvt is unchanged since the receiver knows its LVT best.

2. TFVj[jllvt = TFVj[j].lvt, update the sender’s LVT based on the

sender’s information.

3. for all other entries in the TF'V

(if sender knows more about k£ than the receiver)
if (MM;lj, k] > MM;[i, k])
TFVi[k].lvt = TFVj[k].lvt

Updating the Message Matrix:

1. Update what 7 knows about j: MM;(i,j) = MM;(j,7)

2. Update what 7 knows about others based on what ; knows about
others: v0§k<p/\k¢i

M M;(i, k) = maz(M M; (i, k), MM, (4, k))

3. Update the knowledge that ¢ has about the knowledge of others:

Vo<k,i<p,nksi
MM, (k1) = maz(MM;(k, 1), MM; (k, 1))

Next, the local Message Matrix has to be updated. First, LP;’s knowledge
about LP; has to be updated (step 1 above). Then, LP,’s knowledge about other LPs
is compared to LP;’s information about the others (step 2). The rest of the entries
are also updated based upon the most current knowledge (step 3). If LP; knows more
about LP;’s knowledge than LP; knows about it, then MM;(k,z) > MM;(k,z).
Hence, M M;(k,z) is updated to the most recent value (MM;(k,z)). Steps 1-3 are
separated purely for clarity of description. In the implementation all three steps can

be collapsed into one.

42

Most of the work is done in maintaining the MM and TFV data structures.
Thus the GVT calculation is very simple: an LP just takes the minimum of all
the LVTs and the minimum of all the forcings in the TF'V. Obviously, the GVTs
calculated by each of the LPs in the system need not be the same, since their
information about the system will most likely be different. Also, it is up to each LP
to decide when it wants to perform the GVT calculation. It can do so periodically,

or only when on the verge of running out of memory.

5.3 Proof of Correctness

To prove that the CMGVT is a valid estimate of the GV'T, assume that each

process maintains two clocks:

1. a logical clock, ¢, counting the number of sent and received messages. c is
updated each time a new message is sent or received (this is a slight change
from the previous section which just simplifies the description of the proof,

but is otherwise irrelevant for the implementation).

2. a simulation clock, ¢y, which shows the simulated time of the event that was
most recently processed. t; is updated after processing each event or after

sending or receiving a message.

For convenience, we assume that if the message is sent or received, then both
c and t,; are changed at the same instant at which the event, brought in or sent
out by the message, has been processed. With this assumption, it is clear that c is
monotonically increasing and for each value of ¢ there is a sequence of simulation
time values t1(c),... ,tx(c) that are assumed during the simulation (as a result
of processing local events) while the process holds its logical clock at c. Because
causal ordering is preserved during local event processing, then ¢ < j implies that
ti(c) <tj(c). Let t(c) denote the smallest value in this sequence. Then t(c) = t1(c).

Let vector C = [cg,...,Cp_1] represent a state of the simulation. For each
process i there is a set of messages F;(C) that were sent by state C' but not received
at this state yet (more formally, if a message m =< j, c;-, i,ts > from process j to

process 4 is sent with logical clock ¢} and received at logical clock ¢} then m € F;(C)

43

if and only if ¢, < ¢; and ¢} > ¢;). Let fi(C) be the minimum simulation time
carried by messages in F;. The simulation state C corresponds to many different
vectors of simulation time on participating processes. Let mGVT(C) denote the
minimum GVT for all the vectors that can arise in state C. From monotonicity of
the sequence t1(c),. .. ,t(c) it follows that mGVT(C) is the GV'T for the state of
the computation defined by the simulation time vector ¢(C').

Below, we prove that mGVT(C) = ming<;<, 1(t(c:), fi(C)) > LVT(C, 1),
where LVT(C,1i) is an estimate of the GVT produced by the described algorithm

on process ¢. We will proceed by induction over the vector C.

1. For C =0 =10,...,0] we have LVT(0,4) = 0 = ming<;<,_1(t(c:), fi(C)) =
mGVT(0).

2. Assume that the relation holds for state C' = [co, ... , ¢,_1] and that the simu-
lation progresses to a new state C' = [cg, ... ,¢,_;] in which process 4, 0 < i <
p— 1 changes its logical clock, so for all j # i ¢; = ¢; and ¢; = ¢; + 1. By defi-
nition of ming<;<p—1(t(c}), fi(C")) there is a process or an undelivered message
with such a time, so nGVT(C") < ming<;<,—1(t(c}), fi(C")). To prove equality
we just need to show that ming<;<,—1(¢(c}), fi(C")) > ming<;<p—1(t(c;), fi(C)).

Two cases need to be considered:

Process i sent the message. Let the message sent out be m =<4, 7, ¢;, t5 >.
Clearly F;(C") = F;(C)Um and for all other processes (including ¢) their
F sets were not changed. Similarly, for all processes [# i t(c}) = t(c).

Because t(c; + 1) =t, > t(c;) and f;(C') > t; > t(c;), then

. 1 ! > .
oiiin (Ha), i(C) = | min (t(a), i(C))
Process i received the message. Let the received message be
m =< j,i,¢,t; >, where ¢j < ¢;. It is clear that m € F;(C) and
m ¢ F;(C") and no other set F; was changed. Also, i is the only pro-
cess on which ¢(cj;) changed. However, t(c}) > min(t(c;), fi(C)). Let

mGVT;(C) = ming<izi<p—1(t(c), fi(C)). Clearly,

44

mGVT;(C) = mGVT;(C"). Thus,

O<l1¢n_i<n 1(t(cg),fl((}")) = min(t(¢;+1), fi(C"), nGVT;(C)) > gmGVT(C).
<I#i<p—

From inspection of the algorithm it is clear that for all j # ¢, LVT(C',j) =
LVT(C,j). Since mGVT(C') > mGVT(C), as shown above, we need to
consider only the relation of LVT(C',i) to mGVT(C"). If LVT(C'i) =

LVT(C,1) then the inductive step is proven; otherwise, assume that

LVT(C',i) > mGVT(C"). (5.3)

Let k;(c;) be the logical clock of process [known to process i at state ¢; and,
similarly, m;(¢;) be the minimum simulation time of the forcings imposed by
process [and known to process i by time ¢;. From assumption (5.3), for
each | # i t(ki(c)) = t(ki(e;)) > mGVT(C'), and my(c;) > mGVT(C'). By
definition of mGVT(C"), the message not received at state C’ that carries the
smallest simulation time stamp tmy must have tmy < mGVT(C"), and it must
be sent by process ¢. Indeed, assuming otherwise implies that all messages sent
or received by the processes at logical times ¢ € [1, ¢ carry a simulation time
stamp > mGVT(C'), contradicting the definition of mGVT!. By inspecting
the algorithm, it is clear? that such a message must be present in the forcings

of process i so m;(¢;) < mGVT(C'), contradicting assumption (5.3).

5.4 Example

To demonstrate the algorithm in action, consider the following scenario. In
each of the following tables, the first column represents the simulation step on each
LP, the second represents the LVT, and the last represents an activity (e for event
processing, © — y for a message being sent from x to y, and x < y for x receiving

a message from y). The timestamp of each event sent in the message is equal to the

!For messages sent at ¢ € [1,k;(c;)], this follows from forcings known to i, and, for messages
sent at c[k;(c;) + 1, ¢], this conclusion follows from t(k;(c;)) > LVT(C").

2The only messages that are removed from the forcing set of process i are those that are known
to be delivered (see Section 5.2.3).

local LVT.
LP, LP,
step LVT action step LVT action
0 0 e 0 0 e
1 2 0—2 1 1 e
2 3 0—1 2 3 1—=0
3 4 e 3 5 1+-0
4 9 02 4 6 12
LP,

step LVT action

0 0 e

1 10 2—0

2 15 2—1

3 20 20

4 2 e

Let’s look at what is happening on LP;:

45

At step 0 no messages have been sent and the local virtual times are initialized to

0 (Eqn. 5.4).

MM=F00

ﬁoq

000

@

, TFVi= {0
0

(5.4)

At step 2, after sending a message to LFP,, the “1” in the matrix (Eqn. 5.5)

shows one message sent by LP; and the forcing F(3,1,1) at entry 0 represents the

message sent by LP, to LP, at virtual time 3 (and the fact that it is LP;’s first

message sent).

46

00 0 0 F(3,1,1)
MM, =|o 1 o|,TFVi= |3 (5.5)
0 00 0

At step 3, LP; receives a message from LF,. That message contains M M,
and TFV, (Eqn. 5.7). They correspond to the M M, and TFV; at step 2 on LP.
Entry (0,0) in M M, shows that LPy has sent two messages. Since these messages
are not acknowledged, they are represented by the two forcings in T'F'V;. The
local forcings (in TFV;, Eqn. 5.6) are compared to the incoming knowledge (M M,
Eqn.5.7). F(3,1,1) is checked against entry M M;y(0,1) = 0. Since it indicates
that LP, does not know of the first message sent by LP;, the forcing remains in
TFV;. Now the forcings in TFV are compared to the knowledge that LP; has
about the system (MM;). F(3,0,2) is automatically removed, since it represents
the current message. F'(2,0,1) is placed in TFV; because entry M M;(2,0) = 0
shows that LP, knows of no messages sent by 0. The LVTs are also updated based
on the most recent information. Since the message came from LP,, TFV;[0].lvt
is set to TFV;[0].lvt = 3. The coefficients in MM, are just the maximum of the
corresponding coefficients of MM, and M M;. newM M; shows that LP; knows
that LP, sent out two messages. This gives LP; the updated TFV (newT FV;) and
updated MM (newM M) (Eqn. 5.8).

000 0 F(3,1,1)

MM,=1|0 1 0|TFV;= |5 (5.6)
000 0
2 00 3

MMy= {0 0 0| TFVo= |0 F(3,0,2) (5.7)

47

2 0 0]
newMM;, = |2 1 0
00 0]
3 F(3,1,1)]

newTFVy = |5 (5.8)
0 F(2,0,1)

At step 4, after receiving a message from LP,, M M; is as in Eqn. 5.8, and
TFV,, TFVy and MM, are shown in Eqn. 5.9. Updates of MM; and TFV; are
performed. F'(3,1,1) is checked against M M5(0,1) = 0 and F(2,0,1) against
M M,(2,0) = 0. Both forcings stay since neither LPy nor LP, know of these incom-
ing messages. The incoming forcings are compared against the local MM. Comparing
F(10,2,1) against M M;(0,2) leaves it unacknowledged. F'(15,2,2) is the current
message and therefore is automatically acknowledged. The LVT in the TFV;[2].lvt
is updated to the most recent information of 15. M M, contains the maximum of

coefficients of M M, and M M,. The updated structures are shown in Eqn. 5.10.

000 3 F(3,1,1)]
MM, = [0 0 0| TFVi= |6
00 2 0 F(2,0,1)
0 F(10,2,1) |
TFV,= |0 F(15,2,2) (5.9)
15 |

48

2 0 0]
newMM, = {2 1 2
0 0 2]

3 F(3,1,1) F(10,2,1)
newTFVi = | 6 (5.10)
15 F(2,0,1)

Eqn. 5.10 shows that the LVTs provided by the LPs are not sufficient to cal-
culate the GVT—the forcings need to be taken into consideration. In the described

scenario, the GVT is 2, because LP, has a forcing for that time.

5.5 Space Complexity

Obviously, only forcings for communicating processes are ever created. If there
is a forcing F'(t, z, c) at entry y in the T F'V;, it can be removed only when L P, knows
how many messages LP, has sent (M M,(x,y)). This implies that only entries indi-
cating communicating processes are needed in the MM, so there must be K entries
in each row, where K is the connectivity of a process. If, for example, LP; commu-
nicates with LP, the entries MM (1,4) and MM (4, 1) are needed. When processes
do not communicate, the corresponding entries in the matrix are 0. Additionally,
for each LP, the entry M M (x,x) is needed to maintain the number of messages sent
by that process which allows the owner of MM to update what it knows about the
sender. Additionally the full row ¢ in matrix M M; is needed to enable the owner
of MM to update the LVT information. In summary, the Message Matrix is of size
K x (p—1)+p, where K is the connectivity of an LP. In the case of two-dimensional
spatial problems, K is often less or equal to eight.

The size of the TFV is (m+1) x p, where m is the maximum number of forcings
in a vector and is a parameter of the simulation. Thus the size of the additional

overhead introduced by the CMGVT is (K + m + 2) x p — K = O(mp).

49

5.6 Three Levels of Knowledge

To fully explore the effect of the amount of knowledge sent between the LPs
on the quality of the GV'T estimate, three versions of the CMGVT algorithm were
investigated [51]. The algorithm described above contains the TRANSITIVE
knowledge an LP has about the system. The knowledge of the full system is sent
between processes. This allows non-communicating processes to find out about
each other through an intermediary process. In the second version, INDIRECT,
only the knowledge that each LP has about its direct neighbors is gathered and
communicated. Each LP appends the entire MM as above and the LVTs of the
other LPs are also included, but only the forcings for its neighbors are added (in
effect, these are the forcings representing the outstanding messages the LP sent to
its neighbors). This implies that non-communicating processes do not know directly
about their respective outstanding messages. The third version, DTRECT, contains
the least amount of information. Only the LPs knowledge about itself is included.
Here the forcings are maintained locally by the LP, but are not sent. Only the
minimum time of the forcings is sent along with the LVT information. The MM is
now only a vector (row ¢ on LP;), representing the number of messages the sender

is aware of. The performance of these three versions is presented.

5.7 Performance of the Three Versions

First, the runtime differences of the algorithm’s three versions are presented.
Intuitively, the TRANSITIVE version, which contains most information and mes-
sage processing, is expected to take longer to run than the INDIRECT and DI-
RECT versions. This prediction was tested with three different message loads (small,
medium and large). The medium message load is 1.3 times greater than the small
load, and the large load is 2.3 times greater than the small message load. In all
three cases (Figures 5.3, 5.4, 5.5) the DIRECT approach performed best, followed
by the INDIRECT and TRANSITIVE versions. When less than 12 processors are
used, the algorithms performed similarly.

In order to analyze how well the algorithms were able to estimate the GVT,

the closeness of the GVT estimate to the LVT was analyzed. This difference is

a0

significant, because it is directly proportional to the amount of memory needed by
an LP. When the difference is large, significant amounts of memory are necessary
to hold state information. The following curves represent the average difference
between the LVT and the GVT of the system LPs. Again three different message
loads were considered. From Figure 5.6, it can seen that when the LPs commu-
nicate infrequently, the TRANSITIVE version performs best. This is because the
larger amount of information contained in the message allows the GVT to be esti-
mated more accurately. When the message load increases (Figures 5.7 and 5.8), the
differences become smaller.

It is interesting to note that Figures 5.7 and 5.8 indicate that the INDIRECT
and DIRECT versions are not easy to compare. Sometimes the former is better,
other times the latter. Such varied performance is caused by the finite size of the
forcing vectors. In the DIRECT method, an LP that keeps sending messages without
receiving acknowledgments adds forcings to its local data structure. As a result, the
forcing vector grows too long and the LP queries the recipients of the messages
directly. Consequently, such an LP will receive the most up-to-date information
from the recipients and will have a good GVT estimate. When the flow of messages
increases, the need for update diminishes and therefore the performance is more
consistent.

When choosing a version of the CMGVT algorithm, one has to take into ac-
count memory requirements. When there is enough memory available, the DIRECT
approach is the fastest. However, if memory is a constraint, the TRANSITIVE ver-
sion will give better results. Another important factor in the good performance of
the DIRECT method is the fact that the interactions in the simulated system are
local with nearest-neighbor communications. If the communications were farther
reaching, the inference factor of the TRANSITIVE method might play a bigger role
in giving a good GV'T estimate.

5.8 Comparison of CMGVT and SPEEDES

The performance of the DIRECT CMGV'T algorithm is also presented in com-
parison to the algorithm used in SPEEDES described in sections 3.5 and 5.1.4. In

o1

Small Number of Messages
T T T T T T T T T

TRANSITIVE —<—
100 - INDIRECT -+~ 7]
DIRECT -&--

Runtime

12 14 16 18 20 22 24 26 28 30 32
Number of Processors

Figure 5.3: Runtime with a Small Number of Messages.

SPEEDES, the GVT is calculated by flushing the messages out of the system and
then exchanging LVT information among the processes. The CMGV'T does not use
any synchronization rounds; it does not need to interrupt the flow of the simulation.
Instead it relies on the information locally available. In the results presented here,
the computational and communication load is distributed equally among processes.
The one-to-one process to processor mapping is used. Performance of the algorithms
is presented with a medium message load.

Figure 5.9 shows the runtime for both algorithms with a relatively small prob-
lem size (48,000 node lattice and 12,000 mice). The performance of the two methods
is similar; however, there are slight differences. The speedup curves (Figure 5.10)
show that SPEEDES performs slightly better for a small data set. When the number
of processors is increased beyond 20, the performance of both algorithms degrades
because the communication to computation ratio increases (the size of space as-

signed to each process decreases).

52

Medium Number of Messages

T T T T T T T T T
TRANSITIVE ——
100 | INDIRECT -+- 7]
\ DIRECT -8--
m
90 F "\
80
£ 70
=
p=]
x
60
50
40 +
T
30 1 1 1 1 1 1 1 1 1
12 14 16 18 20 22 24 26 28 30 32

Number of Processors

Figure 5.4: Runtime with a Medium Number of Messages.

In order to be able to demonstrate the performance of the algorithms with a
higher number of processors, the problem size has to be increased [52]. Figure 5.11
shows the runtime for SPEEDES and the CMGVT with about 200,000 nodes and
almost 50,000 mice. The graph shows that the SPEEDES algorithm performs better
than the CMGVT up to 20 processors. However when the number of processors
increases to 24, 28 and 32, the runtime of the CMGV'T continues to decrease, whereas
the SPEEDES runtime starts to level off. This shows that the increased message
size due to the additional Message Matrix and the Table of Forcing Vectors has a
smaller detrimental effect on performance than the increased synchronization time
imposed by the larger number of processors.

It is important to mention the role of the number of messages sent in the
system. The above results were obtained for a system in which processes exchange
messages with each of their neighbors continuously throughout the simulation. This

is typical of the spatially explicit problems that are being studied here. However,

93

Large Number of Messages

T T T T T T T T T
TRANSITIVE ~o—
100 T\ INDIRECT —+- 7|
BN DIRECT -&--
90
80
£ 70 b
g
)
[0
60
50
40 ‘n\\‘“:\,ffi\\\—
T
30 1 1 1 1 1 1 1 1 1
12 14 16 18 20 22 24 26 28 30 32

Number of Processors

Figure 5.5: Runtime with a Large Number of Messages.

it is possible to design a system in which processes do not communicate frequently.
In such systems, the SPEEDES algorithm will probably perform better. Since few
messages are being sent, they can be flushed out quickly. In the case of the CMGVTT,
due to the lack of incoming information, the processes have to query each other in
order to be able to update the local data structures. The querying process might
therefore slow down the progress of the simulation.

In conclusion, the SPEEDES GV'T algorithm is suitable for systems where the
processes communicate infrequently. When the processes are communicating with
each other, the CMGVT is an appropriate algorithm to use, especially when more

than 20 processors are used.

LVT -GVT

25

Small Number of Messages

o4

DIRECT -— |
INDIRECT -+-- /
TRANSITIVE -8-

12

14

16 18 20 22 24 26
processors

Figure 5.6: Small Number of Messages.

28

30 32

LVT -GVT

Medium Number of Messages

25 T T T T T T T T T
DIRECT —~—
INDIRECT -+~
TRANSITIVE -8--
20
15
10
T f/
[B
51
0 1 1 1 1 1 1 1 1 1
12 14 16 18 20 22 24 26 28 30

processors

Figure 5.7: Medium Number of Messages.

95

32

LVT -GVT

25

20

Large Number of Messages

o6

TRANSITIVE -8--

DIRECT ——
INDIRECT -+---

12

14

16 18 20 22 24 26
processors

Figure 5.8: Large Number of Messages.

28

30 32

runtime in seconds

250

200

150

100

50

o7

CMGVT —-—
SPEEDES -+~

4 6 8 10 12 14 16
number of processors

Figure 5.9: Runtime for a Small Data Set.

20

speedup

20

18

16

14

12

10

o8

CMGVT —-—
SPEEDES -+~

2 4 6 8 10 12 14 16

number of processors

Figure 5.10: Speedup for a Small Data Set.

18

20

runtime in seconds

100

90

80

70

60

50

40

30

Comparison of SPEEDES and DIRECT CMGVT with Large Data Size

99

T T T T T T T T T
DIRECT ——
] SPEEDES -+
1 1 1 1 1 1 1 1 1
12 14 16 18 20 22 24 26 28 30
processors

Figure 5.11: Runtime for a Large Data Set.

32

CHAPTER 6
SPATIALLY EXPLICIT PARALLEL DISCRETE EVENT

SIMULATION AND ITS APPLICATIONS

6.1 Lyme Disease

Humans become susceptible to Lyme disease, by acquiring a pathogen, the
spirochete Borrelia burgdorferi, that normally infects small mammals and an insect
vector [53, 54, 55, 56]. The blood-feeding vector is the deer tick Izodes scapularis.
Immature ticks (larvae and nymphs) usually feed on the white-footed mouse Per-
omyscus leucopus. However, immature ticks also may bite a variety of mammals and
birds. Humans bitten by an infectious nymph may subsequently develop Lyme dis-
ease [57]. Adult ticks are less generalized; they feed on white-tailed deer Odocoileus
virginianus [58, 55].

The Lyme disease phenomenon is driven, at its ecological basis, by the cycle of
infection passing from tick to mouse to the next generation of ticks (see Figure 6.1).
Larval I. scapularis hatch during summer. The larvae that obtain a blood meal from
a mouse then overwinter as inactive nymphs. The following spring these nymphs
quest for a second blood meal. Those nymphs that are successful in attacking a
mouse advance to the adult stage. The adults soon attack deer, where they feed
again and also mate. Gravid females drop off the deer that they have parasitized
and they lay their eggs, completing the two-year life cycle [59, 56]. The “inverted”
seasonal abundance of the immature-tick stages maintains the spirochete. Infected
nymphs transmit the pathogen to susceptible mice in the spring. When summer
arrives, newly hatched larvae feed on the same mice, acquire the spirochete, and so
complete the cycle of infection.

The Lyme disease epidemic is ordinarily depicted at the regional geographic
(i.e., spatial) scale and among-year temporal scale [57]. The local spatial scale
implies an area occupied by a single deme of the white-footed mouse. In our model,
individual mice shift their home range within the local area [61]. As they disperse,

mice can experience heterogeneity in numbers of infectious ticks. Furthermore,

60

61

Spring

adult feeds

Fall
Summer
A
nymph feeds Firochete
Spirochete Infected
Mouse
spirochete
) spirochete
Spring Unifected
Infected Ticks Mouse

Cycle Maintaining Disease
in Nature, the trasmission
of spirochete

Figure 6.1: Lyme Disease.
[60]

dispersing mice may carry attached ticks between sites within the local area. Either
the mice or the ticks parasitizing the mice may carry the pathogen. The simulations
extend over the part of the year during which the cycle of infection occurs, the 180
days elapsing between the appearance of questing nymphs and the completion of
feeding by the next generation’s larvae (Figure 6.2).

This computational model is termed “individual-based” [62], because the mouse
population is an ensemble of different individuals. Each individual is tracked ac-

cording to its:
i. age
ii. spatial location on a rectangular lattice,

iii. load of parasitic ticks, and

62

Nymphs Larvae Appear End Simulation
@ e e -
Day 0 Day 90 Day 180 time

Figure 6.2: Time Line of the Simulation.

iv. infection status (susceptible or infected).

At each lattice node the number susceptible and infected ticks in each of the three
developmental stages (larval, nymphal, adult) is counted. The individual-based
model treats population descriptions, such as frequency of infection among mice and
the spread of infected ticks across the lattice, as consequences of events occurring
at the level of individual mice [63]. A single simulation includes mortality and
dispersal, but not reproduction. However, the output of one simulation can be
mapped through natality functions to produce the initial condition for the next

simulation.

6.2 Individual-Based Modeling

Ecological modeling often involves simulating differential equations which de-
scribe various species’ rates of population growth. Increasing system complexity,
however, requires more complex equations making the resulting model hard to un-
derstand or analyze. Individual-based modeling may be an attractive alternative.
One can establish relatively simple rules for events that affect individual organ-
isms. Simulation of the individual-based model allows different individuals to ex-
perience different events; system behavior summarizes the ensemble of individual
demographic histories.

Differential equations represent “homogeneous” behavior of a mass of individ-
uals and require a significant number of individuals at each grid point; therefore,
each grid point represents a relatively large space which is treated homogeneously.
Since individual-based models proceed from simpler assumptions and avoid the de-
mographic averaging of differential equations, they offer important advantages for

theoretical ecology.

63

Individual-based modeling allows one to reason about what kind of events can
happen to an individual. For example, one can think of an animal searching its
home range for a nesting site. One can imagine that the mouse will look randomly
in its own home range, and that, if it finds a suitable location, it will stay there.
The analysis can also be more complex. A single, infected mouse or a group of mice
can be tracked. Individuals with different genetic characteristics can be treated
differently—some may be susceptible to diseases to which the general population is
not susceptible.

The space where mice and ticks reside has a toroidal shape (wrapped in both
directions). This eliminates edge effects. The mice are treated as individuals. Ticks,
because of their density (as many as 1200 larvae/400m?) [64], cannot be treated as
individuals. This means that every node of the spatial lattice will contain a “Tick

Blob”, which consists of several categories of ticks:
e questing larvae
e questing nymphs

e non-questing nymphs (nymphs that have transformed from larvae and are in

an inactive state)

e adult ticks (adults that have transformed from nymphs and are in an inactive

state)

Each tick category is subdivided according to the presence/absence of the spirochete
infection. No transovarial infection is assumed for ticks. Larvae are born without the
infection. They acquire the spirochete when feeding as larvae, which later transform
into non-questing nymphs. Non-questing during our 180 day simulation, they will
become questing the year after. The spirochete can also be spread from an infected
mouse to a feeding nymph (which, in turn, transforms into an adult tick).

The mice can disperse in the environment. They can be bitten by ticks, in-
fected with the spirochete, or infect the feeding ticks with the parasite. The mice
can also die, either as a result of failing to find an open site (lattice node) during

dispersal, or due to some other causes.

64

(a) Day 1 (b) Day 180

Figure 6.3: Even Distribution.

6.3 Initial Simulation

Mouse movements are modeled as follows: the mouse enters the dispersal state
drawn according to a geometric distribution function with expectation 1/6,; days.
If the mouse is to disperse, the animal randomly selects one of eight directions for
dispersal. It moves in that direction with a waiting time derived from the exponential
distribution with expectation 1/6,,. If the first site the animal encounters is open
(no other mouse present), the mouse stops and survives dispersal with certainty.
If the first site is occupied by another mouse, the number of steps (n;) the mouse
has taken since dispersal is updated. The mouse then dies with probability (n,/r)?,
where 7 is the maximum number of steps a mouse can take before dying. If it
survives, it attempts to disperse to the next site in the same direction. After r
unsuccessful steps (n; = r) the mouse dies with certainty.

Figure (6.3) shows mice movements in an environment where the mice are
evenly distributed, with free space available between the nodes occupied by the
mice. There are more mice at the boundaries of processors to show where the strip-
wise space decomposition occurs (the darker vertical lines in part a of the figure).
The simulation starts with 1,560 mice and ends after 180 days with 52.4% of mice
dead due to natural causes, and 0.32% dead due to lack of space. Figure (6.4) shows
the mice movements in an environment where each of the nodes in a “populated
region” is occupied. On the first day there are 1,500 mice in the simulation, and by

the last day 22.2% of the mice die due of lack of space, and another 41.7% die by

65

I::-'_Eu._.-_---'i::_. T m.-ﬁ":";,.
IS:l- ?_r Ao eyt '--||".
'J. ._'. :-' L.r? Y l' '- "': ""--'-'

PR |l—.

(a) Day 1 (b) Day 180
Figure 6.4: Band Distribution.

other causes.

6.3.1 Mice Simulation Events

Many events can affect a mouse. There are several object functions that create
events, which are in turn inserted into the future event queue. Figure 6.5 shows a
diagram of possible events associated with a mouse.

The following object functions are related solely to the mouse:

e Disperse creates a new Disperse Event and enqueues it. The event time is
derived from an exponential distribution with a mean of d days (in these

simulations d = 20 is used).

e Start-moving puts the mouse in a dispersal state (sets dispersal flag), resets

the direction of move, and calls move.

e Mowe picks a new direction (if it is not defined yet), determines when to move
(dictated by an exponential distribution), creates a corresponding Move Event,

and enqueues it.

o Next_move “flips a coin”. If the number is within the death probability, the
function makes a new Kill Fvent (instantaneous) and enqueues it; if, on the

other hand, the mouse survives, move is called.

66

Dispersel Move |

Kill

Tick Bitel I ick Dropl

Figure 6.5: Possible Events for a Mouse.

Events are dequeued from the event queue and processed according to the

following rules defined for each event type:

o Move Event: the Space Manager removes the object from the location where
the object resides. If the object is going out of bounds an event message is
sent to the process to which the object is moving. If the object is not going
out of bounds, the object is placed at the new location. If that location is
already occupied, the number of steps that that object has taken is increased

and next_move is called. If the site is empty, the number of steps that the

67

object has taken is reset to zero, the object’s dispersal status is changed to

non-dispersing, and a new disperse event is created.

o Disperse FEvent: function start_-mouving is called.

e Kill Event: the space where the object is located is found, and the object is
removed from that location. Now, all other events that have been scheduled in
the future for that object are impossible and are removed from the event list
and put along with the object on the ghost list. When an event is processed,

it is inserted into the processed event list.

“Undoing” events is a crucial part of the rollback mechanism. Undoing an
event restores the state of the system to the one just before the time that the event
was processed. Below are the functions used to undo the effects of events occurring

in the system:

e undo Move Event: The current location of the object is found. If that object
is in the space assigned to the LP, the object is removed from that location.
If the LP does not contain that object, it means that the object was sent out
to another LP. Therefore the object and its future events can be found on the
ghost list, and can be restored from it (see section 3.4). In either case the
object is then placed at its previous location. The number of dispersal steps

is decremented.

e undo Disperse FEvent: The dispersal status is changed to non-dispersing and

the direction of dispersal is reset.

e undo Kill Fvent: The object is removed from the ghost list and is put back in
the location where it was killed. All the events that were put along with the
object into the ghost list are restored by being reinserted into the future event

queue.

6.3.2 Ticks

Although ticks are not modeled as individuals, their densities are updated at

the time mouse events occur. Not all individual tick bites are counted, since studies

68

show that there can be as many as five individual larval bites per day. Accordingly,
multiple bites are combined into one: ten larval bites or five nymphal bites at one
time. At the beginning of the simulation only nymphs that have over-wintered are
present. They are then questing nymphs. At about the 90" day eggs hatch, larval
ticks enter the simulation, and the Tick Blobs at each spatial node are updated.
When a mouse is bitten by a Tick Blob, the number of ticks at the lattice node
where the mouse is located is decreased by the number that bit the mouse. When
the Tick Blob drops off the animal, tick densities at the lattice node are increased.
It is also assumed that when the mouse dies, the Tick Blob (if any) present on the
mouse dies. A mouse can be bitten by a Tick Blob as long as there are enough
questing ticks on the node of the lattice. This assumption implies that there is a
threshold for both larval and nymphal ticks beyond which no new bites are noticed.
There are two types of bites: a nymphal bite and a larval bite. They are treated
independently, because they are temporally independent for most of the simulation.

The events involving ticks are:

e Tick Bite: For larvae/nymphs: update the tick densities in the Tick Blob
according to the mortality function which has an exponential distribution
with rates as high as 95% for larvae, and 90% for nymphs. If the number
of larvae/nymphs falls below a certain threshold, exit, otherwise, schedule a
new Tick Drop event with an exponential waiting time and remove the lar-
vae/nymphs from the Tick Blob at the node. For the bite a new Tick Blob
consisting only of larvae/nymphs is created. The ratio of infected /uninfected
larvae/nymphs in the new blob reflects the ratio present in the Tick Blob on
the lattice node. If the mouse is not infected and there are infected ticks in
the new Tick Blob the mouse becomes infected. If the mouse is infected, it

infects the uninfected ticks in the Tick Blob.

e Tick Drop: update the tick densities in the T%ck Blob according to the mortal-
ity function. Add the ticks present in the Tick Blob on the mouse to the den-
sities present in the node. The addition is complex, because the larvae present
on the mouse become non-questing nymphs, and nymphs become non-questing

adults.

69

Undoing the events entails restoring the T%ck blob at the node and restoring the
infection status of the mouse. It can be seen that the tick densities at lattice nodes
will be updated only when a mouse is present in the area, but ticks die even in an
area where no mice are present. The solution used is to update the tick densities
at empty (mice-free) locations during the fossil collection stage (right after the new
GVT calculation).

6.4 Ecological Results

The goal of this simulation is to show that the spread of Lyme disease is
directly related to the dispersal of mice. The simulation was run on an IBM SP2,
a distributed memory MIMD machine. The following graphical results are shown
for four processors. Each of the four processors had about 400 mice and a 100x60
lattice. Each lattice node is assumed to be 400m?2. Initially all mice are uninfected
by the spirochete. Figure 6.3 and Figure 6.4 show the distributions of mice used
in the simulations. Figures 6.6-6.9 represent the presence of the disease in a given
location; if there is at least one infected tick in the Tick Blob at a given location,
the figure will show a data point. The infected ticks can be either questing ticks or
ticks that have had their blood meal. Mice are not explicitly depicted in the figures.
The figures depict simulations at different points in time.

Figure 6.6(a) shows the initial configuration of infected nymphs. The unin-
fected nymphs are placed similarly and the larvae will be added to the simulation
on the 90" day in the same pattern. Notice that the larvae will not be infected,
since no transovarial transmission of disease is assumed. The mice are distributed
evenly as in Figure 6.3. Figure 6.6(b) shows that the disease is dying out due to
the nymphal mortality. It is sustained in places where the nymphs have fed on mice
and dropped off as adult ticks. Figure 6.6(c) shows the presence of the disease at
the end of the 180" day. It shows that initially uninfected larvae fed on infected
mice, received the pathogen, and dropped off as infected non-questing nymphs.

A question is posed: Is the spread of the disease correlated with the mouse
dispersal rate? To answer that the dispersal rate was increased by a factor of

four. The results are depicted in Figure 6.7. The simulation shows that the disease

70

spreads faster among both the questing nymphs (Figure 6.7(a)) and the questing
larvae (Figure 6.7(b)). In comparing the final configurations (Figure 6.6(c) and
Figure 6.7(c)), it can be noticed that the density of the disease-carrying ticks is
much higher when mice are dispersing faster. This is because the faster the mice
disperse, the more area they can cover.

An interesting issue is whether and how the distribution of mice affects the
spread of the disease. To answer that, the mice were distributed band-wise as
depicted in Figure 6.4, and the initial configuration of nymphal and larval ticks
remains the same (Figure 6.8(a)). The disease dies off in the area where no mice are
present (Figure 6.8(b)). This is due to the fact, that the questing nymphs fail to
find a blood meal and therefore die. The final configuration (Figure 6.8(c)) shows
that the spread of the disease is increased by the presence of non-infected larvae.

The next set of figures shows the same configuration for ticks and mice, but the
mice are dispersing four times faster. The disease spreads farther and the spatial
density is higher for faster dispersing mice. The results correspond the current
understanding of the spread of the disease. In Figure 6.10 a graph of the spread of
the disease through the ticks is presented; the decomposition is band-wise and mice
disperse fast. The first two bars represent the total number of questing nymphs and
the number of infected questing nymphs at the beginning of the simulation. The
next two bars depict these nymphs after they took a blood meal and molted into
non-questing adults. The fifth and sixth bars represent the larvae on day 90, and the
last two bars represent these larvae after they have transformed into non-questing
nymphs. The infection ratio might seem high, but the parameters that were chosen

for the model are the most favorable for the spread of the disease.

6.5 Performance

Good speedup was achieved for small data sets: 2,400 lattice nodes with 800
mice initially [65]. The results are shown in Figure 6.11. The speedup grows with
the number of LPs for up to 10 processors. With 12 processors the communication
overhead becomes large, decreasing the overall performance.

When the lattice size is increased to 32,000 nodes and 8,000 mice, with the

71

nage

(a) Day 1 (b) Before Larvae (c) Day 180

Figure 6.6: Distribution of Infected Ticks. The Mice are Distributed
Evenly and Disperse Slowly.

(a) Before Larvae (b) After Larvae (c) Day 180

Figure 6.7: Distribution of Infected Ticks. The Mice are Distributed
Evenly and Disperse Fast.

o B ER Ee e N

(a) Day 1 (b) Before Larvae (c) Day 180

Figure 6.8: Distribution of Infected Ticks. The Mice are Distributed
Band-Wise and Disperse Slowly.

72

Meow B Bor | BN o B Bl | PR i W R

(a) Before Larvae (b) After Larvae (c) Day 180

Figure 6.9: Distribution of Infected Ticks. The Mice are Distributed
Band-Wise and Disperse Fast.

same distribution of mice and ticks, the speedups are less impressive (Figure 6.12).
This is caused by rollbacks whose cost is proportional to the size of the lattice for
which each LP is responsible. With 4 processors, the lattice size per LP is large—
8,000 nodes. When a rollback occurs, all the events that happened in the affected
time in all of the 8,000 nodes have to be rolled back.

Several methods of reducing the possibility and cost of rollbacks were investi-

gated.

6.5.1 Multiple Logical Processes per Processor

First, the number of strips into which the lattice is divided is increased, thus
decreasing the area assigned to each LP. The processes are mapped by the job
scheduler of the IBM SP2; therefore, a process is not aware if processes with which
it exchanges data are run on the same processor as it is running. Hence, it always
calls interprocess communication for such exchanges, slowing down the execution.
The results of dividing the problem into as many as 20 LPs on up to 16 processors
are presented in Table 6.1. The best times for 4 processors are achieved when each
processor has 5 LPs. Still, there is no speedup (the sequential time is 227 sec.). The
speedup with 8 processors and 16 LPs is very small, around 1.6. The speedup with
12 processors is best when 20 LPs per processor are used, and is equal to 2.2. With

16 processors the speedup improves slightly to 2.8.

73

Band-wizse Distribution

total : 1 :
kice are dispersing fast
number of ticks i
gaoon
total - -
OO0 e EEE
40000 |- EEE
Z0000 e R it fiy o] e i
i |nfe;:ted 'tEItEElI infg e fotal -
; ﬂ B : infected ﬂ !
2000 103800 10412 g3z 1.26e+06 0 3035 G350
hymphs, day 0 adults, day 180 larvae, day 0 non-guesting nymphs

day 180

Figure 6.10: Spread of Disease in Various Tick Types.

Table 6.1: Runtime in Seconds for Multiple LPs per Processor
Number of LPs

Processors 8 12 16 20
4 502.8 510.07 289.96 226.85
8 275.76 280.4 139.7 249.29
12 - 149.42 116 103.7
16 - - 82 98.16

6.5.2 Curbing Optimism

Another way to decrease the impact of rollbacks is to curb the optimism by
allowing each LP to process events only within a limited time into the future. This
type of execution throttling was also used by Das [66], where the LPs are allowed
to simulate only a certain amount of time past the GVT. In this research an LP
allowed to advance only by 20 or 30 days ahead of the average LVT of others (this

average can be calculated during the GVT calculation). The results are shown in

74

8 T T T T T
7_ -
6_ -
5_ -

o

>

©

(7]

(7}

o

2]
4+ i
3_ .
2_ -
1 1 1 1 1 1

2 4 6 8 10 12
processors

Figure 6.11: Speedup for a Small Data Set.

Table 6.2. The performance of this method was better than in the previous case

only for 16 processors, with the best speedup of 3.7 for the 30-day time cap.

Table 6.2: Curbing the Optimism (time in sec.)
Processors 20 Days 30 Days

4 769.27 936
8 177.46 224
12 122 128.48
16 > 200 61.79

The combination of both the use of multiple LPs per processor and curbing
the optimism to processing only up to 30 days ahead of the average LVT was inves-
tigated. The results are shown in Table 6.3. The combined method resulted in an
overall improvement over each of the component methods with the most significant
improvement for 12 processors.

The number of rollbacks by using multiple LPs and curbing optimism was

75

speedup
S
T
1

O 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16
number of processors

Figure 6.12: Speedup for a Large Data Set.

Table 6.3: Multiple LPs and Curbed Optimism (time in sec.)
Number of LPs

Processors 8 12 16 20
4 49298 379.37 359.6 242.55
8 224.0 215.23 118.17 188.7
12 - 12848 88.81 100.27
16 - - 61.79 74.49

reduced. The dramatic results of a typical run on 8 processors are shown in Figure
6.13. With the increase of the number of L.Ps, the average number of rollbacks per
LP decreases significantly. However, the number of rollbacks is not the only measure
of performance. For example, the average number of rollbacks for 20 LPs is smaller
than for 16 LPs , but the runtime is higher. This is because an increase in the
number of LPs per processor intensifies the contention for the CPU, which slows
the entire simulation. The average number of rollbacks decreased as the optimism

of the simulation was curbed. For 8 processors, 8 LPs, and an optimism cap of 30

76

350000 T T T T T

300000

250000

200000

150000

average number of rollbacks per LP

100000

50000 1 1 1 1 1
8 10 12 14 16 18 20
number of Logical Processes

Figure 6.13: Average Number of Rollbacks for 8 Processors.

days, there is an average 136,355 rollbacks per LP; for a 20 day cap, the average
was 92,770.

Still, the performance results were not as good as one would like. The cost
of rollbacks is still too high. This led to the design of the new algorithm, the
Breadth-First Rollback algorithm which minimizes the impact of rollbacks on a

Logical Process (see Chapter 7).

CHAPTER 7
BREADTH-FIRST ROLLBACK

The method of rollback processing presented here is applicable to spatially explicit
simulations. Incremental state saving techniques [25] are used to detect dependencies
between events. Typical implementations of a rollback in such a setting (used in
our previous implementation [45]) is to roll back the entire area assigned to the LP.
In Breadth-First Rollback (BFR) [67], the novel approach, the rollback is contained

to the area that has been directly affected by the straggler or antimessage.

7.1 Problem Partitioning

Two inter-related issues have arisen in optimizing optimistic protocols for
PDES. One is the need to reduce the overhead of rollbacks, and the other is to
limit the administrative overhead of partitioning a problem into many “small” LPs
(as performed, for example, in digital logic simulations). To address both of these
issues, clustering of LPs is often used.

Lazy re-evaluation [3] has been been used to determine if a straggler or an-
timessage had any effect on the state of the simulation. If, after processing the
straggler or canceling an event, the state of the simulation remains the same as be-
fore, then there is no need to re-execute any events from the time of the rollback to
the current time. The problem with this approach is that it is hard to compare the
state vectors in order to determine if the state has changed. It is also not applicable
to the protocols using incremental state saving.

The Local Time Warp (LTW) [68] approach combines two simulation protocols
by using the optimistic protocol between LPs belonging to the same cluster and by
maintaining a conservative protocol between clusters. LTW minimizes the impact
of any rollback to the LPs in a given cluster.

Clustered Time Warp (CTW) [69, 70] takes the opposite view. It uses con-
servative synchronization within the clusters and an optimistic protocol between

them. The reason given for such a choice is that, since LPs in a cluster share the

7

78

same memory space, their tight synchronization can be performed efficiently. Two
algorithms for rollback are presented: clustered and local. In the first case, when a
rollback reaches a cluster, all the LPs in that cluster are rolled back. As a result,
the memory usage is efficient, because events that are present in input queues and
that were scheduled after the time of the rollback can be removed. In the local
algorithm, only the affected LPs are rolled back. Restricting the rollback speeds
up the computation, but increases the size of memory needed, because entire input
queues have to be kept.

The Multi-Cluster Simulator [71], in which digital circuits are modeled, takes
a different look at clustering. First, the cluster is not composed of a set of LPs;
rather, it consists of one LP composed of a set of logical gates. These LPs (clusters)
are then assigned to a simulation process.

In the case of spatially explicit problems, the issue of partitioning the space be-
tween LPs is also of importance. Discretizing the space results in a multi-dimensional
lattice for which the following question arises: Should one LP be assigned to each
lattice node (which results in high simulation overhead) or should the lattice nodes
be “clustered” and the resulting clusters be assigned to LPs? The original imple-
mentation of Lyme disease used the latter approach and assigned spatially close
nodes to a single LP, with TW used between the LPs. This was similar to the
CTW, except that our implementation did not have multiple LPs within a cluster,
to simulate space more efficiently. Unfortunately, this approach did not perform as
well as one would hope, especially when the problem size grew larger, because when
a rollback occurred in a cluster, the entire cluster had to roll back.

To improve performance, the nodes of the lattice belonging to an LP (cluster)
are allowed to progress independently in simulation time; however, all the nodes
in a cluster are under the supervision of one LP. When a rollback occurs in an
LP/cluster, only the affected lattice nodes are rolled back, thanks to a breadth-first
rollback strategy, explained in Section 7.2. This approach can be classified as an
inter-cluster and intra-cluster time warp (TW).

The main innovation in BFR is that all future information is global to an LP,

and information about the past is distributed among the nodes of the spatial lattice.

79

The future information is centralized to facilitate scheduling of events, and the past
information is distributed to limit the effects of a rollback. One could say that, from
the point of view of the future, a partition is treated as a single LP, whereas, from
the point of view of the past, the partition is viewed as a set of LPs (one LP per
lattice node). The performance of the new method yields a speedup which is close

to linear.

7.2 Breadth-First Rollback Approach
Breadth-First Rollback is designed for spatially explicit, optimistic PDES. The

space is discretized and divided among LPs, so each LP is responsible for a set of
interconnected lattice nodes. The speed of the simulation is dictated by the efficiency
of two steps: the forward event computation and the rollback processing. The
forward computation is facilitated when the event queue is global to the executing
LP, so that the choice of the next event is quick. The impact of a rollback is reduced
when the depth of the rollback is kept to a minimum: the rollback should not reach
further into the past than necessary, and the number of events affected at a given
time has to be minimized. For the latter, one can rely on a property of spatially
explicit problems: if two events are located sufficiently far apart in space, one cannot
affect the other (for certain values of the current logical virtual time (lvt) of the LP
and the time of the rollback), so at most one of these events needs to be rolled back
when a causality error occurs.

Events can be classified as local or non-local. A local event affects only the
state of one lattice node. A non-local event, for example the Move Event, which
moves an object from one location to the next, affects at least two nodes of the
lattice. Local events are easy to roll back. Assume that a local event e at location
x and time ¢ triggers an event e; at time ¢; and the same location z (by definition
of a local event). If a rollback then occurs which impacts event e, only the state
of location x has to be restored to the time just prior to time t. While restoring
the state, e; will be automatically “undone”. If, however, the triggering event e is
non-local and triggers an event e; at location z; # x, then restoring the state of

location z is not sufficient—it is also necessary to restore the state of location x

80

=~ Origina
o Impact point
of arollback
(location x)

/

Potential 1st, 2nd and 3rd waves of the rollback

Figure 7.1: Waves of Rollback.

just prior to the occurrence of event e;. Regardless of whether an event is local or
non-local, the state information can be restored on a node-by-node basis.

To show the impact of a rollback on an LP, consider a straggler or an an-
timessage arriving at a location x, marked in the darkest shade in Figure 7.1. The
rollback will proceed as follows. The events at = will be rolled back to time t,,
the time of the straggler or antimessage. Since incremental state saving is used,
events have to be undone in decreasing time order to enable the recovery of state
information. The rollback involves undoing events that happened at z. Each event
e processed at that node will be examined to determine if e caused another event
(call it ey) to occur at a different location z; # = (non-local event). In such a case,
location x; has to be rolled back to the time prior to the occurrence of e;. Only
then is e undone (this breath-first wave gave the name to the new approach).

In the Lyme disease simulation, objects can move only from one lattice node to
a neighboring one, so that a rollback can spread from one site only to its neighbors.
The time of the rollback at the new site must be strictly greater than the one at site
x, because there is a non-zero delay between causally-dependent events. In general,
the breadth of the rollback is bounded by the speed with which simulated objects

move around in space.

81

Figure 7.1 shows potential waves of a rollback, from the initial impact point
through three more layers of processing. In practice, the size of the affected area is
usually smaller than the shaded area in Figure 7.1, because events at one site will
most likely not affect all their neighboring nodes. Obviously, if an event at location
x created messages for a neighboring LP, antimessages have to be sent.

It is interesting to note that each location belonging to a given LP can be at
a different logical time. In fact, there is no need to process events in a given LP
in an increasing-timestamp order. If two events are independent, an event with a
higher timestamp can be processed ahead of an event with a lower timestamp. A
similar type of processing was mentioned briefly in [26] as CO-OP (Conservative-
Optimistic) processing. The justification is that the requirement of processing events
in timestamp order is not necessary for provably correct simulations. It is only
required that the events for each simulation object be processed in a correct time
order.

Due to this type of processing, when an event is processed (in the forward
execution), the logical time of the node where the event is scheduled has to be
checked. If the logical time is greater than the time of the event, the node has to
roll back.

7.3 Challenges Of The New Approach

In order to implement BFR, some changes had to be made not only to the
simulation engine, but also to the model. The past information, which includes the
processed event list, is distributed among the lattice nodes. Therefore, a change
needed to be made to the Move Event. The question arose: If an object is mov-
ing from location (z,y) to location (z1,y;), where should the object be placed as
“processed”? If it is placed in location (z,y), and location (x1,y;) is rolled back,
there would be no way of finding out that the event affected location (x, ;). If it
is placed at location (x1,%1), and location (z,y) is rolled back, a similar difficulty
arises. Placing the Move Event in both processed lists is also not a good solution,
because, in one case, the object is moving out of the location, and, in the other case,

it is moving into the location. This dilemma motivated us to split the Move event

82

into two: the MoveOut and Moveln events. Hence, when an object moves from
location (z,y) to location (z1,y;), the MoveOut is placed in the processed event list
at (x,y) and the Moveln at location (x1,y;). The only exception is when location
(x1,y1) belongs to another LP. When the move is non-local, (location (z1,y;) be-
longs to another LP), the Moveln is placed in the processed event list at location
(x,y). The Moveln event is then sent to the appropriate process. When this event
is received and processed, it will be placed at location (z1,y;).

Upon rollback, if a MoveOut to another LP is encountered, an antimessage is
sent. The result of such a treatment of antimessages, coupled with the breadth-first
processing of rollbacks, gives us an effect of lazy cancellation [72]. An antimessage
is sent together with a location (z,y) to which the original message was addressed,
to avoid searching the lattice nodes for this information.

Since the MoveOut Event indicates when a message has been sent, no message
list is necessary. Another affected structure is the ghost list. In the original approach,
objects and their events were placed on the list in the order that objects left the
partition. Now the time order is not preserved; objects are placed on the list in any
timestamp order, because the nodes of the lattice can be at different times. The
non-ordered aspect of the ghost list poses problems during fossil collection. The
list cannot merely be truncated to remove obsolete objects. The solution, again,
is to distribute that list among the nodes. This is useful for load balancing, as
described in the chapter 8. However, the ghost list is relatively small (compared to
the processed event list), so it might not be necessary to distribute the list if no load
balancing is performed. It is sufficient to maintain an order in the list based on the
virtual time at which the object is removed from the simulation.

Additionally, event triggering information must be preserved. In the original
implementation, when an event was created, the identity of the event that caused
it was saved in one of the tags (the trigger) of the new event. When an event was
undone, the dependent future events were removed by their trigger tags from the
event queue. In BFR, it is possible that the future event is already processed, and
its assigned location has not been rolled back yet. It is prohibitively expensive to

traverse the future event list and then each processed event list in the neighborhood

83

in search of the events whose triggers match the given event tag. The solution is to
create dependency pointers from the trigger event to the newly created events. This
way, a dependent event is easily accessed, and the location where it resides can be
rolled back. Pointer tacking has been previously implemented for shared memory
[3] to decide whether an event should be canceled or not. In our approach, we also
need to know if a dependent event has been processed or not, in order to be able to
quickly locate it either in the event queue or in a processed event list.

One more change was required for the random number generation. In the
original simulation, a single random number stream was used for an LP. These
numbers are used, for example, in calculating the time of occurrence of new events.
Now, since the sequence of events executed on a single LLP can differ from run to run,
the same random number sequence can yield two different results! Obviously, result
repeatability is important, so we chose to distribute the random number sequence
among the nodes of the lattice. Initially, a single random number sequence is used to
seed the sequences at each node. From there, each node generates a new sequence.

Since time is not uniform across the space, the global virtual time calculation
cannot be invoked based upon the distance of the local virtual time from the previous
GVT (as in the original version). The GVT is invoked after a certain number of

messages has been received from other processes since the previous GV'T.

7.4 Examples
The following code constitutes the skeleton of the Breadth-First Rollback (un-

optimized, for clarity).

rollback_space(t,x,y) // rollback location x,y to time t {
For every event E processed at x,y after and including time t {
// the events are undone in the order opposite
// to the one in which they were processed
// update the local virtual time (1lvt)
if (E.eventTime < 1lvt) {

lvt = E.eventTime;

84

// make sure to undo the dependent events first
while there exists an unprocessed dependent event {
// (E triggered D)
if (D is at location (x1,y1) != (x,y)) {

if (time of (x1,y1) >= D.eventTime) {

rollback_space(D.eventTime, x1, yl);

}
}

if (E.event_type == MOVE_OUT_EVENT) {
if the new location is outside_bounds {
send out an anti-message for event E
Obj = object affected by E
// restore events that were scheduled for Obj when
// message was sent

restore_events_from_ghost_list(Qbj, t);

}

undo_event (E) ;
insert_event (E) ; // into the event queue
// remove events that E triggered (from event queue)

remove_scheduled_events(E.id) ;

}
}

To demonstrate the behavior of the BFR algorithm, let’s consider the example
in Figure 7.2. The figure shows processed lists at three different lattice nodes:
(0,0),(0,1), and (0,2). The event MO is a MoveOut event, M I a Moveln event, and
X can be any local event.

If we have a rollback for location (0,1) at time Tp, the following will happen:
First M I3 is undone and placed on the event queue. The same is done to X5. When

MO, is being considered, the dependence between it and M1, is detected, and a

85

A Most Recent
Past

causality
relation

causality
relation

Past
(0,0 0,1 (0,2 locations

X could be any event
MI- Moveln event
MO- MoveOut

Figure 7.2: View of Processed Lists at Three Nodes of the Lattice.

rollback for location (0,2) and time 75 is performed. This rollback needs to roll back
all events up-to and including time 73, which would result in a rollback of location
(0,2) to time T5. As a result, X3 is undone and M1, is undone. Both are placed
on the event queue. Next MO, is undone, which causes M1, to be removed from
the event queue. MO, is examined, and (0,0) is rolled back to time T7. My, X;
and M, are undone and placed on the event queue. MO, is undone and M1I; is
removed from the event queue.

If the rollback occurs at location (0,0) for time 773, then the three most recent
events at location (0,0) would be undone and placed on the event queue, and no
other location would be affected during the rollback. It is possible that the other
locations would be affected when the simulation progresses forward. If, for example,

an event MO, was scheduled for time 75 on (0,0) and triggered an event MI, on

86

speedup

1 1 1 1 1 1
2 4 6 8 10 12
processors

Figure 7.3: Speedup For Small Data Set (about 2,400 nodes).

(0,1) for time T3, then location (0,1) would have to roll back to time T3.
Interesting aside: suppose location (z,y) is at simulation time ¢, and the next
event, is scheduled for time ¢; and location (z1,y;) is processed. If an event comes in
from another process for time t, (¢ < to < t1), there does not necessarily need to be
a rollback. If the event is to occur at location (z,y), then no rollback will happen.
If, however, it is destined for location (zi,y;), localized rollback will occur. As a
result, comparing the timestamp of an incoming event to the local virtual time is

not enough to determine if a rollback is necessary.

7.5 The Performance of Breadth-First Rollback
7.5.1 Comparison With The Traditional Approach

To demonstrate improvements in performance, the results are compared to
those of the model of the initial simulation, which did not use the BFR method (see
chapter 6).

87

speedup
N
T
1

O 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16
number of processors

Figure 7.4: Speedup For Large Data Set (about 32,000 nodes).

Initial results obtained for a small-size simulation using the traditional ap-
proach were encouraging (Figure 7.3); however, the speedup was not impressive for
larger simulations (Figure 7.4). The performance degradation is caused by the large
space allocation to individual processes resulting from the increased problem size.
When a rollback occurs, the entire space allocated to an LP is rolled back. To
minimize the impact of the rollback, the space was divided into more LPs, while
keeping the same number of processors. Figure 7.5 shows the runtime improvement
achieved with this approach. For the given problem size, the ultimate number of
LPs was 16 (Figure 7.6), and the best efficiency was achieved with 8 processors.

Figure 7.7 shows the performance of BFR and illustrates almost linear speedup.
The running time of the BFR is considerably shorter than that of the traditional
approach. Looking at the new algorithm, we observe several benefits. The most
important one is that, when a rollback occurs, not all the events belonging to a

given LP need to be rolled back. Only the necessary events are undone. In the

38

Run Time with Multiple Logical Processes
90 T T T T T

16 LPs —<—
12 LPs —+-

80

70 -

run time in seconds

50 |

30 1 1 1 1 1
0 2 4 6 8 10 12
number of processors

Figure 7.5: Running Time for Large Data Set and Multiple LPs per Pro-
cessor.

traditional approach, the number of events that needed to be rolled back was ulti-
mately proportional to the number of lattice nodes assigned to a given LP. When a
rollback occurred, all the events that happened in that space had to be undone. On
the other hand, when a rollback occurs in the BFR version, the number of events
being affected by a rollback is proportional to the length of the edges of the space
that interface with other LPs. In the case of the space divided into strips, the num-
ber of events affected by a given rollback is proportional to the length of the two
communicating edges. Therefore, when the size of the space assigned to a given LP
increases (when the number of LPs for a given problem size decreases), the num-
ber of events affected by a rollback in the case of BFR remains roughly constant.
In the traditional approach, that number increases proportionally to the increased
length of the non-communicating edges. Consequently, we observe that the number
of events rolled back using BFR is an order of magnitude smaller than that in the

traditional approach.

89

Best Speedup
4 T T T T T T T

25 b

speedup

15 F b

l 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16
number of processors

Figure 7.6: Speedup with Large Data set and 16LPs.

There are also fewer antimessages being sent as a result of the hybrid lazy
cancellation. In general, having one LP per processor eliminates on-processor com-
munication delays, and context switches are minimized. There are, of course, some
drawbacks to the new method. Fossil collection is much more expensive (because
lists are distributed); therefore, it is done only when the Global Virtual Time has
increased by a certain amount from the last fossil collection. It is harder to maintain
dependency pointers than triggers, because, when an event is undone, its pointers
have to be reset. The pointers have to be maintained when events are created,
deleted, and undone, whereas triggers are set only once. There must also be code
to deal with multiple dependents. There is no aggressive cancellation, but, as can
be seen from the results, that does not appear to have an adverse impact on perfor-

mance.

90

Comparison of Run Times Between Approaches

90 T T T T T T T

= breadth-first <~—
old approach -+~

80

70 |

60 -

50

40

run time in sec

30

20 -

10

0 2 4 6 8 10 12 14 16
number of processors

Figure 7.7: Results: Comparison of Runs With BFR and the Traditional
Approach.

CHAPTER 8
DYNAMIC LOAD BALANCING

8.1 Impact of Work Load Balance on Performance

Up to now, the empirical results presented in this thesis have been obtained
with the load evenly distributed among processes. However, in most applications,
such an assumption is frequently unrealistic. For example, in ecological simulations,
objects occasionally concentrate into a small areas, which are referred to as “hot
spots” of activity. If the simulation’s load per Logical Process is uneven, its perfor-
mance suffers. Figure 8.1 illustrates this degradation for a case in which odd LPs

have one and a half times more load than even ones.

Comparison of Speedup in Balanced and Unbalanced Computations
16 T T T T T T T

balanced load <—
uneven load -+~

10 —

speedup

2 4 6 8 10 12 14 16
number of processors

Figure 8.1: Speedup for Balanced and Unbalanced Computations.

91

92

8.2 Load Balancing for General Problems

Load balancing is often used in parallel computation to improve program per-
formance. When the load is not evenly distributed, processes proceeding quickly
through the computation might need to wait for the slower processes, thus slowing
down overall system performance. If there is a priori knowledge about the distribu-
tion of data in the program, static load balancing can be applied to the processes in
the system prior to the actual computation. The new load distribution can even be
computed on a sequential machine before the start of the parallel execution. Fre-
quently, however, a priori knowledge is not available, or the problem is dynamic.
That is, even if the load is initially distributed evenly, it may become imbalanced
during the computation. In such situations, dynamic load balancing is often ad-
vantageous or even necessary. Dynamic load balancing monitors or calculates the
load of the system during the computation and shifts the load between processors
while the program is running. This method of load balancing also involves making
decisions about how frequently to balance the load or to monitor the balance.

Dynamic load balancing algorithms can be divided into nearest-neighbor tech-
niques, in which load is moved between neighboring processors, and global tech-
niques, in which load can be moved from one processor to any other processor in
the system [73]. Nearest-neighbor algorithms are, by nature, iterative; thus, a few
iterations of the algorithm may be required to load-balance the entire system. It-
erative techniques can use the diffusion, dimension exchange, or gradient models to
decide how the load should be moved. In the diffusion model [74], each processor
“diffuses” some of its load to its neighbors, while simultaneously requesting some
load from other neighbors. The dimension exchange method [75] is similar to the
diffusion method, but the processor balances its load with that of its neighbors one
by one dimension in multidimensional grids or hypercubes. The gradient method
restricts the movement of the load in the direction of the “heaviest” processor [76].

In addition to deciding which processes should participate in the load balanc-
ing, it is also necessary to decide how the load will be measured, which, in turn,
dictates what load should be moved. In models where there is one process per pro-

cessor, the amount of data belonging to a process is the indicator of a processor’s

93

load. The amount of data, its distribution, and any of its characteristics that might
influence inter-processor communications, are taken into consideration when decid-
ing how much and which data to move between processors. In models where there
is a many-to-one process-to-processor mapping, it is natural to migrate processes
between processors in order to achieve an even load distribution in the system. The
challenge of this approach is to estimate the “weight” of a given process. Also, inter-
process communications have to be examined in order to keep the communication
costs low. For example, if two processes are communicating frequently with one

another, it is often advantageous to keep them on the same processor.

8.3 Load Balancing in Parallel Discrete Event Simulation

Generally, CPU utilization is a good measure of how much load a given pro-
cessor has; however, in PDES, this measure is meaningless. If, for simplicity, there
is one LP per processor, it is possible that that processor has a high CPU utilization
but that it is continuously processing forward ahead of the others and then rolling
back, thus performing no useful work. A metric often used in PDES is the number
of committed events (events with timestamps smaller than the GVT). Much work in
load balancing for PDES has been done using the many-to-one process-to-processor
mapping; therefore, process migration algorithms have been the most frequently
researched. Both static and dynamic algorithms have been designed.

In static techniques the simulation is run once. Data about the number of
events that each LP has processed, as well as the number of messages each has
sent, are gathered. This data is used in three different load balancing algorithms.
The first algorithm (LBallocl) places the LPs in an ordered list according to the
processing time [77]. This list is then traversed, and the heaviest, unplaced LP is
assigned to the processor with the smallest cumulative load. The second algorithm
places the LPs in a chain which is then partitioned into as many subchains as there
are processors [78]. The goal of the linearization is to keep heavily communicating
processes next to each other in the chain. The last algorithm improves on the
previous method by assuring that there will not be either two heavily loaded or two

lightly loaded LPs next to each other in a chain [77]. This algorithm reduces the

94

possibility of many heavy processes being placed on the same processor.

Another load measure used in dynamic load balancing is the simulation ad-
vance rate [79], defined as the rate at which a process advances its LVT as a function
of the amount of CPU time it is given. The goal is to make the LPs progress evenly
in the simulation time. The slower LPs have proportionally more CPU time dynam-
ically assigned to them then the faster LPs. Process migration has been proposed for
cases in which the load imbalance is too great and cannot be accommodated by CPU
time slice adjustment. This method is applicable only to distributed memory sys-
tems, where the many-to-one LP-to-processor mapping is used. The load balancing
is implemented by background processes running on each processor. This approach,
however, might be too system-intrusive and might be difficult to implement outside
of a simulated parallel system [79].

Finally, since LPs are often clustered on processors (see section 6.5.1), dynamic
techniques have been designed specifically for such systems [69]. In such cases entire
clusters of LPs are moved between processors. The load of a cluster can be defined
as the number of events that have been processed by all the LPs in a given cluster
since the last load balancing calculation. In addition to event messages, stragglers
and rolled back events are counted. The load balancing algorithm matches up the
heaviest and lightest processors, and attempts to migrate the clusters so that the
load of the processors is approximately equal. This process is done iteratively until
the system is balanced within a predefined tolerance. This algorithm also takes into
account communication costs. When a cluster is targeted from the heavily loaded
processor, the cluster which would generate the least communication overhead is

picked for migration.

8.4 Dynamic Load Balancing in Spatially Explicit Problems

In the research presented in this thesis, a different approach to dynamic load
balancing is used. Since the best performance results were obtained using the
Breadth-First Rollback algorithm with a one-to-one LP-to-processor mapping, the
load balancing algorithm is designed to be used with that model. Therefore, no pro-

cess migration is performed. Instead, data belonging to the LPs is migrated between

95

processes. Since data are being moved rather then processes, the load metrics used
in process-migration-oriented load balancing cannot be expected to apply here. In
this thesis, a load balancing algorithm is presented that requires knowledge of loads
on all processors (which can be achieved either by load broadcast or centralized
load gathering) and assumes nearest-neighbor load migration (this assumption is
motivated by the dynamical changes in the load distribution during the simulation
run).

It is important to decide how to calculate and move the load. There are several
metrics that can be used to determine the load of a given LP. One possibility is to
count the number of objects in the space assigned to a given LP. The advantage of
this method is that this count can be easily obtained. A possible disadvantage is
that this metric may not give an accurate representation of the load. If, for example,
there are many objects in a given space, but there are no events scheduled for these
objects, then the LP will not have much work. It is also possible that an LP could
contain few but “very active” objects, and it will be busy. A better approach would
be to count the number of events that are scheduled for a given LP. Here, also, some
considerations have to be taken into account. It is possible that an LP (say LP;) has
few events scheduled for the immediate future but many events scheduled for the far
future, and another LP (call it LP;) has many events to process soon. Even if the
event count is equal for the two LPs, the workload is not equal, because LP; will
process events far into the future and incur rollbacks, thus performing useless work.
Meanwhile, LP, will be simulating immediate events. It would be more profitable
to distribute the events in such a way that both LPs will work on the immediate
future.

In the research presented here, events are counted in order to determine the
computational load of an LP. To differentiate between events that are scheduled to
happen at different times, events are weighted according to the distance in time of
the event from the beginning of the simulation. The primary advantage of counting
the weights of future events instead of counting processed events, as in previously
described load balancing algorithms, is that this algorithm bases its load estimate on

the future of the LP rather than on its past performance. Doing so is valuable when

96

Move
Load

LP1 LP2

Figure 8.2: Moving Load between Logical Processes.

dealing with “hot spots.” In the previous approaches, the LP would have to be in the
midst of the “hot spot” computation before the additional load would be discovered.
However, since new events are constantly created, the future events represent only
an estimate of the future load of an LP. The algorithm cannot, for example, judge
if a given “hot spot” will be persistent or not. It is possible that the algorithm
will balance the load so that the load of a “hot spot” is evenly distributed, only to
discover that that concentration of events has dissipated, and a new rebalance is
called for.

Another issue to consider is how to move the load between LPs. To reduce
communication overhead, it is necessary to move lattice nodes along with the objects
that are present in them and together with the events scheduled for these objects
and lattice nodes.

An advantage of BFR is that it lends itself well to load balancing the space
along with the objects and events, since the local (at the node level) history tracking
facilitates load movement. An overloaded LP can “shed” layers of space in order to
balance the load. For the remainder of this chapter, it is assumed that the spatial
lattice of the problem is strip-divided in the horizontal dimension. Thus, the LP can
send lattice columns to another LP (see Figure 8.2) without compromising the shape

of the partition. The columns have to be moved in an organized fashion—from the

97

<— | oad Buffer

Columns of L attice nodes

Figure 8.3: Counting the Computational Load of a Logical Processes.

outer edge toward the inside. Moving columns in any other way would result in a
fragmented space and would increase the communication overhead. Although the
communication cost is not explicitly included in the load calculation, it is implicit in
the type of load migration (space, objects, and events versus object-only migration)
and in the type of space allowed to be moved (only contiguous space layers). The
load balancing algorithm is integrated with the centralized GV'T algorithm used in
SPEEDES (see section 3.5). Hence, this implementation gathers the load informa-
tion together with the Local Virtual Time from all the LPs and then distributes this

information back to LPs.

8.5 Load Calculation Phase

Each LP keeps track of the events occurring in each column of lattice nodes

assigned to it (Figure 8.3). When an event is created, the cost of the event (defined

98

below) is added to the load buffer with the index of the column in which the event
is scheduled to occur. When the event is processed, sent out, or canceled, the cost

of the event is subtracted from the load buffer. The load at each LP; is calculated

load; = Z E;,

L<j<R

as follows:

where, j is the column number, and L, and R are the space boundaries. E; =
> 0<k<n() o(~time(e(k)) 'wwhere n(7) is the number of events in column j, and time(e)
is the time of the occurrence of the event e.

Each LP calculates its own load at the time of the GVT calculation. This
information is sent along with the message counts during the GVT calculation.
When the GVT is calculated, the LP which initiated and concluded the calculation
broadcasts the new GVT along with the loads of all the LPs in the system.

8.6 Calculation of the load distribution

Each LP performs exactly the same algorithm. In order to minimize commu-
nications, only one round of communication is used. Each LP is permitted to send
its load to at most two other LPs and to receive load from only two other LPs.
Nearest-neighbor communications are also enforced, because one would like to keep
the space assigned to a given LP contiguous in order to minimize inter-process com-
munications. Since the space is strip-divided, the topology of the LPs is a ring. The
algorithm finds the dominant (“heaviest”) consecutive processes in the ring, since
they contain most of the load to be given away. The load balance is performed on
that chain. The algorithm is then repeated on the remaining elements of the ring
until all the load has been balanced. The following paragraphs describe the details
of the algorithm.

Consider a ring of n processes: pg, p1,--. ,Pn_1- Each process p; in the ring has
the pre-balance load a; > 0 and post-balance load b;. One-step, nearest-neighbor
communications is used for load balancing during which each process sends data
to at most two neighbors and then receives data from at most two neighbors. Let

x; denote data exchanged between process p; and process p;p1 with the convention

99

that x; > 0 means that process p; sends data and z; < 0 signifies that process p;
receives data®. Accordingly, —a;e1 < 7; < a; and b; = a; — x; + Tio1.

Let @ = Y1y ai/n = i~y bi/n be the average load of the processes in the
ring. The quality of the load balance can be measured by the load of the most loaded
processes whose progress in the simulation will be slowest, so they will force under-
loaded processes to roll back, resulting in wasted CPU time. Hence, the dynamic
load balancing can be formulated as the following min-max problem:

Min-Max Problem: Given a ring of n processes with each process p; pro-
cessing load a; > 0, for each pair of processes p;, p;p1 find a load transfer x; that
minimizes:

n—1

malx(ai — x; + T;jo1), under the constraints: (V0 <i <n: —aip < 2; < ;).
1=

This problem can be solved by the O(n?) algorithm presented below [80].

Let b,y denote the optimum value of the maximum, post-balance load for the
ring. That is by = max?;ol b;, for optimal post-balance loads b;. A chain ¢, in
the ring is a sequence of processes pg, Pro1s - - - s Preo(-1) starting at process py and
of length [. A chain ¢y is a subchain of a chain ck g iff for some i, k = K @ 1,
0<i< L,and [< L —1.

Definition: The load s;; of a chain c¢;;, where 2 < | < n is defined as s;; =
e ai/l.

Let byas = MaXo<k<n2<i<n Sk, A chain ¢, is called maximal iff s ; = byan
and dominant if it is the longest maximal chain.

Note that the load that can be transferred out of a chain, denoted here by
Ok, is located at its end-processes (pr and prg—1)), S0 0k < ax + Grgie1- Hence, it
is clear that bop; > bpqs, because for the dominant chain ¢y, bop > Z;gel bj/l =
Z?Sllcel a;/l — opy > Zfiallc?azl a;/l = bmag-

Theorem: b,,; = max(a, bmaz)-
Below, the theorem is proved constructively by providing an algorithm that de-

fines valid load transfers to achieve the maximum post-balance load of max(@, byez)-

3In the following, operations @ and © denote integer addition and subtraction in modulo n
arithmetic.

100

First, it should be noticed that there are at most n? distinct subchains within a ring
of size n, so by simple enumeration b,,,, and the dominant chain of the ring are

found in O(n?) steps.

/* avg denoted the average load */
0. avg=al[0]/n; bmax=a[0]/3; ldominant=3; kdominant=n-1;
/* find maximal chains of length 3 */
1. for k=1 to n-1
avg=avg+al[k]/n
if (alk]/3>bmax)
bmax=a[k]/3
kdominant=k-1
/* now go through longer chains */
2. load=a[n-1]
for 1=2 to n-2
load+=a[1-2]
/* try all possible positions */
for k=0 to n-1
load+=(a[(k+1-1)mod nl-a[(k-1)mod n])
if (load>=bmax*(1+2)
bmax=1oad/ (1+2)
ldominant=1+2
kdominant=(k-1) mod n

/* end of algorithm */

By simply renumbering the nodes if necessary, it can be assumed without
loss of generality that the dominant chain is ¢; jgominant; With length ldominant. If
there is imbalance, then the computation of load transfers necessary to improve
load balance depends on relation of the average load @ and the load of the dominant
chain.

Case 1: b,,,; > 0.

The load transfers are defined as follows:

101

1. For processes in the dominant chain the following loads are calculated:

To = —Q1; Tidomn = Qdom; Ti = @; — bypae + i1 fori=1,... , ldom — 1.

2. The setting of the post-balance load to b,,,, extends iteratively beyond the
right end of the chain:

x; = max(a; + T; 1 — bpaz, —@ig1) While b; = by,

and an index of the last defined load transfer is denoted as re, so by definition

bre@l = O

3. If re < n—1, then another extension is defined iteratively through the chain’s

left end as:

x; = min(bpez — Gig1 + Tig1, a;) While b; = bpgg fori =n—1,n—-2,....

Similarly as in the previous case, an index of the last defined load transfer is

denoted as le.

If le > re + 2 then the algorithm is applied recursively to the (newly created)
ring Pre+1, - - - , Pre in which the pre-balance loads on processes re + 1 and le is

changed to 0. Otherwise z,, = 0.

4. To avoid unnecessarily underloaded processes, a simple adjusting step for pro-
cesses outside the dominant chains can be performed. Each process sending
out the load may check if the post-load at the destination will become big-
ger then its own and then change its transfer to have the post-loads equal.
This step does not change the theoretical optimality of the algorithm but may
slightly improve its performance and is inexpensive to execute. Note that this

adjusting step preserves the correctness of the solution.

It follows directly from the transfer definition that for 0 < 2 < n, b; < byes
and by = a1 < byqg, because chain ¢ jgom+1 1s not maximal. Hence, the correctness

of the above algorithm is established by the following lemma.

102

Lemma 1: The load transfers defined in the above algorithm satisfy all conditions
of the min-max problem.
Proof: It has to be shown that —a;11 < z; < a;.

First, let’s consider the processes in the chain and process 0 (i.e., 0 < i <
Idom). From the iterative definition of x; in the algorithm it follows that z; =
2222 aj — @ % bygz. The inequality —a;41 < x; holds for ¢+ = 0 and ¢ = ldom by
definition. Assume that this inequality holds for ¢ — 1 and consider transfer z; for
0 < i < ldom — 2. From the load in chain ¢;11 1dom—i We have byaz > (Idom * bpey —
Z;HQ a;)/(ldom — i), so ZJ T, a; > 0% by, and 2222 aj — @ % bpag > —a;+1 which
proves that x; > —a;;1. We also have 2451 = ldom * bygy — (ldom — 1) * bpay =
brmaz > —0dom as Well as Tigom-—2 = 2 * byaz — Qdom-1 = —Oidom—1 Which completes
proof of this property.

Since o = —a1, we have 11 = —b,0: < 0 < aq; also Zigom < Gigom- Assume
that this inequality is true for all integers less than 7, where 2 < 7 < ldom and
consider a subchain ¢;;. From the load in chain ¢;; we have Z a0 = 1% 81; <
i%bmag. Hence, z; = Z; ,a
the proof that the transfers 1n51de the dominant chain are correct.

— % bag = az+zj — 0 —1%bree < a;. This completes

Now, consider a transfer x;, where ldom < ¢ < re. By definition, z; > —a;q:-
It needs to be shown that z; < a; for ldom < ¢ < re which, from the definition
of transfers for this case, is equivalent to proving that x;_; < b,4,. To this end
consider chain ¢; ;. Since it cannot be maximal, we have 23;12 a; = 1%81; < 1% by
However, z; 1 < ZJ 50 — (1 — 1) % byag < bag, proving this property for this case.

If necessary, the same argument applies to le < 7 < n and the transfers for
re < 1 < le are correct by recursive application of the algorithm. O
Case 2: @ > byz-

In this case, the transfers are defined as:
i—1
To = m1n Zaz =a;+x;1—afori=1,2,...n—1.
J=0

It is clear that for all 0 < 7 < n: b; = @, therefore the correctness of the above

algorithm is established by the following lemma.

103

Lemma 2: The load transfers defined in the above equations satisfy all conditions
of the min-max problem and the post-balance load at process 0 is a.
Proof: From the iterative definition of transfers, we have x; = 22:1 a; +xo—1i*a,
S0 by =ag — Tg+ Tp_1 = —x0+29:3aj+x0— (n—1)*a=a.

By definition, zy < ag and zy < i*d—Z;;ll aj, so also x; = Zj-:l aj+ro—ixa <
a;. It needs to be shown that x; > —a;q; for all 0 < ¢ < n, or, equivalently, that
Ty > —Qig1 +i*xa — 22:1 ai. Assume that for some 0 < i < n this inequality does
not hold and because x, is defined as min;-‘;&(aj +j*xa— Zizl ax), then for some
0 <7 <n we also have zg = a; + j*a — 1:1 ar. As a result, it is assumed that

for some %, j the following inequality holds:

j i
aj+j*6—2ak<—ai@l—i-i*a—Zak. (8.1)
k=1 k=1

If i < j < i®2 then inequality (8.1 simplifies to a;+a;e1+(j—i)*a@ < Zi:@l ax
contradicting the assumption that a; > 0 for all 0 < ¢ < n and its corollary that
a > 0.

If j > i+ 2, then consider chain ¢;y1 ;. Inequality (8.1) simplifies in this
case to (j —i)ax < ch;i o Ok, contradicting the assumption that @ > by

Finally, if 4 > j, then inequality (8.1) becomes Z;f'ilj < (1 — j) * @, again
contradicting the assumption that @ > b0y > Sipngj—i(n+j —1). O

Since this algorithm is performed by all the LPs, each will know how the
load is being distributed. A structure indicating load movement between neighbors
is maintained. Since there is only one round of load migration, a few iterations
may be required to distribute the load of a “hot spot”. On the other hand, that
spot might dissipate by the next load calculation due to the dynamic nature of the
simulation.

Some tolerances must be allowed. That is, if the load of all LPs is within some
percentage of the mean, then there is no need to perform the load balancing. The
percentage of imbalance is a parameter of the simulation. The tolerance also pre-
vents load “thrashing”—endless shifting of load between two almost evenly loaded

neighboring processes.

104

Figure 8.4: Original Load Graph. Example 1.
100

1

50 150

=3
o)
‘ -E.

100

Figure 8.5: Load Balancing for Example 1.

8.6.1 Examples of Load Balancing

It is important to note that, although the algorithm described above calculates
the necessary load movements, the actual sending and receiving of the load is not
done until later, after all the calculations have been completed. Consider the load
distribution as depicted in Figure 8.4. The system contains 4 LPs and the figure
shows the load at each LP. The ring represents the communication connections
between the LPs. During the first phase of the load calculation the loads of the LPs
are gathered. The total load (loadsysterm) is determined to be 600, making the average

105

|p4

S
2

NV

Figure 8.6: Original Load Graph. Example 2.

load (load) 150. Now bynq; is calculated. The dominant chain is 0 — 300 — 200 — 100,
giving baz = (300 4+ 200)/4 = 125. The length of that chain is lypminant = 4 and it
starts at Kgominant = 3. Here, the dominant chain encompasses the entire ring. Now
the chain is renumbered (to ¢, 4) to be able to calculate the loads, with index 1 now
indicating the old ps (giving a chain starting with index 0, 100 —0— 300 —200. Since
bmax < load, the second case applies. The following flows are calculated:zy = 100,
1 =a1+x9g—avg = 04+100—150 = =50, 29 = as+x1 —avg = 300—50—150 = 100,
and x3 = ag+2x2—avg = 200+100—150 = 150. The flows are depicted in Figure 8.5.
After load migration, each LP will have the same amount of load (150).
Sometimes, it is impossible to load balance a system fully in one round of
communications. Figure 8.6 shows just such a system (50 — 0 — 0 — 0 — 50), for
which load = 100/5 = 20. Here, the dominant chain starts at index Egominantant = 3
and has a length of ldominant = 4; b4, is 25. The chain is renumbered, giving
the chain 0 — 50 — 50 — 0, starting with index 1. Since bpe; > load, the first

case applies. The following flows are calculated: g = —a; = 0, x4 = a4 = 0,

106

25 N
[pO
I

Ip4 P

2
2

NSV

Figure 8.7: Load Balancing for Example 2.

I =a1—bmm+x0 =0-254+0= —25, $2:a2—bma$+$1 :50—25—25:0,
and 3 = a3 — bypar + 2 = 50 — 25 4+ 0 = 25. The flows are shown in Figure 8.7.
The best load balance that can be achieved in this ring is 25 — 25 — 0 — 25 — 25.

Load—Column Mapping So far, the load movement was calculated by the LPs.
Now that each LP knows how much load it has to give away, it needs to calculate
which columns of space it will actually send. It scans the load buffer of event costs.
It should err on the side of giving too little rather than too much. An error exists
with the projection of a one-dimensional structure (the load buffer) onto a scalar—
load that needs to be moved. As a result, the movement of columns will generally

not give an exact load balance.

8.7 Load Migration

Now the load migration has to be performed. Since a process cannot send and

receive load simultaneously, a schedule has to be chosen. For example, LPs with

107

total columns (T)

cols

ghost fpr sender

LP1

. -0
ghost far receiver —— — |

! T

0 T-cols

Figure 8.8: Moving the Load to the Right.

odd ids start sending the load to their neighbor, and LPs with even ids start by

receiving load from their neighbor. Then the roles are reversed.

When sending load, columns of lattice nodes will be sent, in addition to all the
objects in that space and the events associated with these objects. Since each lattice
node contains a list of processed events, these lists are sent, as well. The sending
LP will have a new space boundary. Let’s assume that LP; is sending columns of
space to the right, as shown in Figure 8.8. On the right, the new boundary for LP;
is T'— cols — 1, where T is the initial, total number of columns, and cols is the
number of columns being sent.

It is possible that there were events already processed that involved the move
of an object from column T — cols — 1 to column 7" — cols. In that case, a new ghost
has to be created and placed on the ghost list, so that when the MoveOut event is
undone (which will now be a move out of the local space), the object and its future
events can be restored. When a ghost is created, the appropriate processed event
lists and the Future Event Queue have to be scanned to retrieve future events for
the object.

When the local ghost list is updated, columns of space are sent to the neighbor.
Next, the objects present in that space need to be sent. It is also possible that an

object was in the middle of a move when the load balancing started. In other words,

108

an object was removed from the old location but not yet placed at the new location.
In that case, the Moveln event is still in the Future Event Queue. These objects
have to be sent, as well.

There are also events in the Future Event Queue that are not associated with
an object, but rather with a lattice node (placing of ticks at a node, for example).
These types of events, which are scheduled to happen in the space being sent, have
to be sent, as well.

There might also have been some objects which moved across the new bound-
ary between the receiver and the sender (from 7 — cols to T — cols — 1). These
objects have to made into ghosts for the receiving LP. These ghosts, along with the
ghosts of the objects killed in the space being sent—columns:[T-cols,T)—are sent

to the receiver. Finally, the processed events from that space are sent.

Load LP; — LP;
e build ghost for sender (LP;)
e send space objects
e send objects
e send future events for space objects
e build ghost for receiver (LF;)

e send ghosts

e send processed events

Receiving the space is straightforward: the space objects are received first,
then the objects, the future events, the ghosts, and finally the processed events.
There is some processing on the receiving side due to the restructuring of the space.
For example, the processed events have to be placed at the appropriate lattice nodes,

the objects have to be placed in the space, and the future events have to be inserted

109

in the Future Event Queue.

Receive Load LP; <— LP;
e receive space objects
e receive objects
e receive future events for space objects

e receive ghosts

e receive processed events

It is also possible to avoid sending “past” information associated with the
space, such as processed event lists or ghosts, by rolling back the space being sent

to the GVT and then sending that space.

8.8 Load Balancing Results

Several load balancing experiments were conducted. For the first two ex-
periments, two adjacent processes were made “heavy” by assigning twice as many
objects to the space belonging to these processes as were assigned to the remaining
processes. Figure 8.9 shows the performance of the load balanced computation as
compared to the unbalanced computation. A relatively small problem size of ap-
proximately 10,000 lattice nodes and 2,000 objects were used, and a tolerance of
30% was applied. For this configuration, the results are inconclusive. Apparently,
the benefits of good load distribution are negated by the cost of load balancing.
The problem was then increased to 40,000 lattice nodes and approximately 4,000
objects. The results are shown in Figure 8.10 for a series of tolerances ranging from
10 to 40 percent. For all the levels of tolerance used for this particular problem,
the algorithm performs well. Also, for 20 or more processors, the load balanced

algorithm outperforms the unbalanced version. It should be pointed out that the

110

load imbalance decreases as the number of processors increases, because the size of
the space assigned to each LP decreases (with only two LPs heavily loaded). So, in
fact, the load is highly imbalanced in the 16 processor case, and the cost of the load
movement overpowers the benefits of an even load distribution.

Figures 8.11 and 8.12 illustrate the results of experiments for which the load
was kept constant by making 100 (25% of columns for small problem size and 12.5 %
for large problem size) of the middle columns of spaces “heavy” —containing twice as
many objects as other columns. Figure 8.11 shows the results for the small problem
size. Again, for that problem size, the results are not impressive. It is interesting
to note that although the load balancing does better with 8 and 12 processors, it
does not perform well with 4 or 16 processors. For 4 processors, the amount of load
that has to be moved might take too long, and for 16 processors, the problem size
might be too small to overcome the cost of load calculation. With the large problem
size (see Figure 8.12), the load balancing algorithm performs well from 16 to 28
Processors.

In conclusion, dynamic load balancing can be useful, but it needs to be applied
discriminately. Results indicate that load balancing is most worthwhile when the
problem size is large. Also, given the same level of load imbalance, systems with
larger numbers of processors appear to perform better, because more of the load

can be moved in parallel.

runtime in seconds

12

11

Load balancing for a small problem size

111

balanced -o—
no balcing -+--

8 10 12
number of processors

Figure 8.9: Load Balancing For a Small Problem Size and Two Heavy

Processes.

112

Load balancing for a large problem size

14 T T T T T
10% —-—
20% -+~
13 30% -8-- 7]
X 40% -5
A no balancing —&---
12)
11
8 A
c 10 o
S -~
[S]
()
7]
£ 9r
()
£
s 8y
7 -
6 -
5 -
4 | | | | |
16 18 20 22 24 26 28

number of processors

Figure 8.10: Load Balancing For a Large Problem Size and Two Heavy
Processes.

113

Load balancing for a small problem size
7 T T T T T

balanced -o—
no balancing -+~

runtime in seconds

2 1 1 1 1 1

4 6 8 10 12 14 16
number of processors

Figure 8.11: Load Balancing For a Small Problem Size and Heavy Lattice
Columns.

114

Load balancing for a large problem size
8 T T T T T

balanced -o—
no balancing -+~

75T b

6.5 |-]

runtime in seconds

5.5 |- i

45 | | | | |
16 18 20 22 24 26 28
number of processors

Figure 8.12: Load Balancing For a Large Problem Size and Heavy Lattice
Columns.

CHAPTER 9
CONCLUSIONS AND FUTURE WORK

9.1 Computer Science Contributions

Important simulation domains such as battlefield, air-traffic-control, or eco-
logical simulations can be categorized as spatially explicit problems. In such simu-
lations, it is vital to capture the spatial complexity in order to be able to simulate
the problem correctly and efficiently. Parallel Discrete Event Simulation lends itself
well to this class of problems, because PDES enables the simulation engine to adapt
to the heterogeneous aspect of spatially explicit simulations. It is important to be
able to design simulation algorithms that are designed to optimize the performance
of this general class of problems.

The work presented in this thesis focused on spatially explicit problems which

are characterized by
e a continuous space in which objects reside and move

e anon-homogeneous environment which leads to the development of “hot spots”

of activity

e local interactions between objects, which leads to nearest-neighbor communi-

cations between processes
e a small delay between events

Based on these characteristics of spatially explicit problems, the research presented
here described and implemented algorithms that improve the performance of sim-
ulations for this class of problems. The performance benefits were obtained by
developing three new algorithms for optimistic Parallel Discrete Event Simula-
tion. A new Global Virtual Time calculation algorithm has been created—the
Continuously Monitored Global Virtual Time (CMGVT) algorithm. The CMGVT

algorithm is designed to make use of the messages being sent between Logical Pro-

cesses. It appends to the messages Local Virtual Time information along with es-

115

116

sential information about the outstanding messages in the system. This algorithm
performs well when compared to a well-known GVT algorithm. Three versions of the
algorithm were described and shown to perform well under various circumstances.
Some variants were better suited for systems where memory is an issue, and some
gave better performance when memory is not restricted.

A new algorithm, Breadth-First Rollback, was designed to minimize the im-

pact of rollbacks. The simulated space is discretized and divided into as many areas
as there are processors. Each area is simulated by an LP, each with a dual nature.
From the point of view of the future, the LP is viewed as a single entity, but from
the point of view of the past each LP is a cluster of LPs, each simulating a different
unit of space. In this algorithm, if a rollback affects a given spatial area, the events
that occurred in that area are examined, and their impact on the neighboring loca-
tions is analyzed. If there are no dependencies between locations, only the events
in the initial space are rolled back. BFR reduces the number of events that are
rolled back in a given LP, resulting in a significant performance improvement and a
close-to-linear speedup.

A dynamic load balancing algorithm was designed for spatially explicit prob-

lems. The load is balanced between the LLPs by sending the space, the objects, and
the future events of the objects between LPs. The load balancing algorithm uses
information about the future events scheduled for the LPs to predict the load of the
LPs. Events closer to the beginning of the simulation are given more weight than the
events farther into the future. A centralized algorithm is integrated into the GVT
calculation phase and is used to determine the load of the system and the necessary
load movements. The load itself is migrated between neighboring processes.

A simulation system has been designed to support spatially-explicit, ecological
simulations. In particular, simulating the spread of Lyme disease in nature has
been implemented. The goal of this system is to provide an understanding of the
mechanisms that drive the disease at the level of its basic components—mice, deer,

and ticks.

117

9.2 Open Problems
Although the Continuously Monitored Global Virtual Time algorithm is used

for a class of problems where interactions are localized, it might be interesting to
investigate how the three variants of the algorithm behave for long-range interac-
tions. It might be the case that inferences made by the TRANSITIVE version of
the algorithm give a better GV'T estimate than the DIRECT method, where only
knowledge about neighboring processes is exchanged.

The Breadth-First Rollback algorithm proved to be successful in the simulation
of spatially explicit problems. It is believed that this method might achieve good
performance in other problem domains, such as the simulation of digital circuits
[81]. When an LP simulates a sub-circuit composed of several logical gates, it might
not be necessary to roll back the entire LP—only the affected gates need to be
rolled back. From the point of view of the future, one LP would simulate the entire
sub-circuit, but from the point of view of the past, each gate would be an LP. The
dependencies in this case are directed from the output of one gate to another.

The load balancing algorithm was designed in a centralized way. An attrac-
tive area to explore would be to integrate load balancing with the asynchronous
CMGVT calculation. Load information can be added to the GVT information in
the messages, and neighboring LPs could exchange load between one another if
an imbalance is detected. The advantage of the decentralized approach would be
improved scalability and minimized synchronization between processes.

It would be interesting to design and integrate into the simulation engine
an interactive module which would allow the user to interact with the simulation.
Allowing the user to view the simulation as it evolves, to be able to add or to
remove events, or to zoom in on a given area of space, might help the user to
better understand the issues involved in a given application. A related idea is to
incorporate “rewinding”. It might be illuminating for a user to stop the simulation
at a given point in simulated time and “rewind” a bit to see how a given result came
about. The rewind capability can be easily supported by the rollback mechanism,

which is already an integral part of the system.

1]

2]

3]

[4]

[5]

[6]
[7]

8]

[9]

[10]

[11]

[12]

LITERATURE CITED

C.G. Cassandras. Discrete Event Systems: Modeling and Performance
Analysis. 1993.

U. W. Pooch and J.A. Wall. Discrete Fvent Simulation: A practical Approach.
CRC Press, 1993.

R. M. Fujimoto. Parallel Discrete Event Simulation. Communications of the
ACM, 33(10):31-53, 1990.

R. M. Fujimoto. Parallel and Distributed Simulation. Winter Simulation
Conference, pages 118-125, 1995.

K. M. Chandy and J. Misra. Distributed Simulation: A Case Study in Design
and Verification of Distributed Programs. IEEE Transactions on Software
Engineering, 5:440-452, 1979.

D.R. Jefferson. Virtual Time. Trans. Prog. Lang. and Syst., 7:404—-425, 1985.

R.M. Fujimoto. Parallel and Distributed Discrete Event Simulation

Algorithms and Applications. Winter Simulation Conference, pages 106114,
1993.

B. Beckman, M. DiLoreto, K. Sturdevant, P. Hontalas, L. Van Warren,

L. Blume, D. Jefferson, and S. Bellenot. Distributed simulation and Time
Warp Part 1: Design of Colliding Pucks. Distributed Simulation, pages 56—60,
1988.

P. Hontalas, B. Beckman, M. DiLoreto, L. Blume, P. Reiher, K. Sturdevant,
L. Van Warren, J. Wedel, F. Wieland, and D. Jefferson. Performance of the
Colliding Pucks simulation on the time warp operating systems. Distributed
Stmulation, pages 3-7, 1989.

D.M. Nicol and Scott E. Riffe. A “conservative” Approach to Parallelizing the
Sharks World Simulation . ICASE Report No. 90-67, 1990.

R.V. Hanxleden and L.R. Scott. Load Balancing on Message Passing
Architectures. Journal of Parallel and Distributed Computing, pages 312—323,
1991.

F. Wieland, L. Hawley, A. Feinberg, M. Di Loreto, L. Blume, P. Reiher,

B. Beckman, P. Hontalas, S. Bellenot, and D. Jefferson. Distributed combat
simulation and time warp: The model and its performance. Distributed
Stmulation, pages 14-20, 1989.

118

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

119

J. B. Hiller and T. C. Hartrum. Conservative Synchronization in
Object-Oriented Parallel Battlefield Discrete Event Simulations. Workshop on
Parallel and Distributed Stmulation, pages 12-19, 1997.

M. Ebling, M. Di Loreto, M. Presley, F. Wieland, and D. Jefferson. An ant
foraging model implemented on the time warp operating system. Distributed
Simulation, pages 21-26, 1989.

Y.B. Lin and P.A. Fishwick. Asynchronous Parallel Discrete Event
Simulation.

C.D. Carothers, R.M. Fujimoto, and Y.B. Lin. A Case Study in Simulating
PCS Networks Using Time Warp. Workshop on Parallel and Distributed
Stmulation, pages 87-94, 1995.

A. G. Greenberg, B. D. Lubachevsky, D. M. Nicol, and P. E. Wright. Efficient
Massively Parallel Simulation of Dynamic Channel Assignment Schemes for
Wireless Cellular Communications. Workshop on Parallel and Distributed
Stmulation, pages 187-194, 1994.

B. A. Malloy and A. T. Montroy. A Parallel Distributed Simulation of a
Large-Scale PCS Network: Keeping Secrets. Winter Simulation Conference,
pages 571-578, 1995.

R. Bagrodia, M. Gerla, L. Kleinrock, J. Short, and T.C. Tsai. A Hierarchical
Simulation Environement for Mobile Wireless Networks. Winter Simulation
Conference, pages 1354-1361, 1994.

F. Wieland, E. Blair, and T. Zukas. Parallel Discrete-Event Simulation
(PDES): A Case Study in Design, Development, and Performance Using
SPEEDES. Workshop on Parallel and Distributed Simulation, pages 103-110,
1995.

R. Schlagenhaft, M. Ruhwandl, C. Sporrer, and H. Bauer. Dynamic load
balancing of a multi-cluster simulator on a network of workstations.
Workshop on Parallel and Distributed Simulation, pages 175-180, 1995.

K. Glass, M. Livingston, and J. Conery. Distributed Simulation of Spatially
Explicit Ecological Models. Workshop on Parallel and Distributed Simulation,
pages 60—63, 1997.

E. Deelman, T. Caraco, and B. K. Szymanski. Parallel Discrete Event
Simulation of Lyme Disease. Pacific Biocomputing Conference, pages
191-202, 1996.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI. The MIT Press, 1994.

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

120

J. S. Steinman. Incremental State Saving in SPEEDES using C++. Winter
Stmulation Conference, pages 687-696, 1993.

J. S. Steinman. SPEEDES: A Unified Approach to Parallel Simulation.
Workshop on Parallel and Distributed Simulation, pages 75-84, 1992.

J. S. Steinman. SPEEDES: Synchronous Parallel Environment for Emulation
and Discrete Event Simulation. Workshop on Parallel and Distributed
Stmulation, pages 95-103, 1991.

R. Ronngren, J. Montagnat M. Liljenstam, and R. Ayani. Transparent
Incremental State Saving in Time Warp Parallel Discrete Event Simulation.
Workshop on Parallel and Distributed Simulation, pages 70-77, 1996.

Automatic Incremental State Saving. D. West and K. Panesar. Workshop on
Parallel and Distributed Stmulation, pages 78-85, 1996.

J. S. Steinman, C. A. Lee, L. F. Wilson, and D. M. Nicol. Global Virtual
Time and Distributed Synchronization. Workshop on Parallel and Distributed
Stmulation, pages 139-148, 1995.

Y .B. Lin. Memory Management Algorithms for Optimistic Parallel
Simulation. Workshop on Parallel and Distributed Simulation, pages 43-52,
1992.

S.R. Das and R.M. Fujimoto. A Performance Study of the CancelBack
Protocol for Time Warp. Workshop on Parallel and Distributed Simulation,
pages 135-142, 1993.

B.R. Preiss and W.M. Loucks. Memory Managment Techniques for Time
Warp on a Distributed Memory Machine. Workshop on Parallel and
Distributed Stmulation, pages 30-39, 1995.

V. K. Madisetti and D. A. Hardaker. The MIMDIX Environment for Parallel
Simulation. Journal of Parallel and Distributed Computing, 18:473-483, 1993.

S. Bellenot. State Skipping Performace with the Time Warp Operating
System. Workshop on Parallel and Distributed Simulation, pages 53-61, 1992.

Y.B. Lin, B.R. Preiss, W.M. Loucks, and E.D. Lazowska. Selecting the
Checkpoint Interval in Time Warp Simulation. Workshop on Parallel and
Distributed Simulation, pages 3—-10, 1993.

J. S. Steinman. Breathing Time Warp. Workshop on Parallel and Distributed
Stmulation, pages 109-118, 1993.

P.M. Dickens, D.M. Nicol, P.F. Reynolds, and J.M Duva. Analysis of
Optimistic Window-based Synchronization. ICASE Report No. 94-27, 1994.

121

[39] G. Tel. Topics in distributed algorithms. Cambridge University Press, 1991.

[40] T. Lai and T. Yang. On distributed snapshots. Inform. Process. Lett.,
25:153-158, 1987.

[41] F. Mattern. Efficient Algorithms for Distributed Snapshots and Global
Virtual Time Approximation. Journal of Parallel and Distributed Computing,
18:423-434, 1993.

[42] D.M. Nicol. Global Synchronization for Optimistic Parallel Discrete Event
Simulation. Workshop on Parallel and Distributed Simulation, pages 27-34,
1993.

[43] H. Bauer and C. Sporrer. Distributed Logic Simulation and an Approach to
Asynchronous GVT-Calculation. Workshop on Parallel and Distributed
Simulation, pages 205-208, 1992.

[44] A.IL Tomlinson and V.K. Garg. An Algorithm for Minimally Latent Global
Virtual Time. Workshop on Parallel and Distributed Simulation, pages 35-42,
1993.

[45] Ewa Deelman and Boleslaw K. Szymanski. Continuously Monitored Global
Virtual Time in Parallel Discrete Event Simulation. Technical Report 96-18,
Department of Computer Science, Rennselaer Polytechnic Institute, 1996.

[46] C. Fidge. Logical time in distributed computing systems. IEEE Computer,
pages 28-33, 1991.

[47] L. Lamport. Time, Clocks, and the Ordering of Events in Distributed
Systems. Communications of the ACM, pages 558-565, July 1978.

[48] M. Raynal and M. Singhal. Logical Time: Capturing Causality in Distributed
Systems. IEEE Computer, pages 49-56, February 1996.

[49] M. Raynal. About Logical Clocks and Distributed Systems. Operating System
Review, 26:49-55, January 1992.

[50] S. K. Sarin and N. A. Lynch. Discarding Obsolete Information in Replicated
Database System. IEEFE Transactions on Software Engineering, pages 39-47,
January 1987.

[51] Ewa Deelman and Boleslaw Szymanski. System Knowledge Acquisition in
Parallel Discrete Event Simulation. Proceedings of the 1997 IEEE
International Conference on Systems Man and Cybernetics, 1997.

[52] Ewa Deelman and Boleslaw Szymanski. Continuously Monitored Global
Virtual Time Event Simulation. Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications, pages
1-10, 1997.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

122

A. Spielman, M.L. Wilson, J.F. Levine, and J. Piesman. Ecology of Ixodes
dammini-borne human babesiosis and Lyme disease. Annual Rev.
Entomology, 30:439-460, 1985.

R.S. Lane, J. Piesman, and W. Burgdorfer. Lyme borreliosis: relation of its
causative agent to its vectors and hosts in North America and Europe.
Annual Review of Entomology, 36:587-609, 1991.

S. Sandberg, T.E. Awerbuch, and A. Spielman. A comprehensive multiple
matrix model representing the life cycle of the tick that transmits the agent of
Lyme disease. J. Theor. Biol., 157:203—-220, 1992.

H.S. Ginsberg. Ecology and Environmental Management of Lyme Disease,
chapter Geographical spread of Ixodes dammini and Borrelia burgdorferi.
Rutgers Univ. Press, New Brunswick, 1993.

D.J. White, H.G. Chang, J.L. Benach, E.M. Bosler, S.C. Meldrum, R.G.
Means, J.G. Debbie, G.S. Birkhead, and D.L. Morse. The geographic spread
and temporal increase of the Lyme disease epidemic. Journal of the American
Medical Association, 266:1230-1236, 1991.

M.L. Wilson, A.M. Ducey, T.S. Litwin, T.A. Gavin, and A. Spielman.
Microgeographic distribution of immature Ixodes dammini ticks correlated
with that of deer. Medical and Veterinary Entomology, 4:151-159, 1990.

A. Barbour and D. Fish. The biological and social phenomenon of Lyme
disease. Science, 260:1610-1616, 1993.

F.S. Kantor. Disarming Lyme Disease. Scientific American, pages 34-39,
September 1994.

J.O. Wolff, K.I. Lundy, and R. Baccus. Dispersal, inbreeding avoidance and
reproductive success in white-footed mice. Animal Behavior, 36:456-465, 1988.

O.P. Judson. The rise of the individual-based model in ecology. Trends in
Ecology and Evolution, 9:9-14, 1994.

E. McCauley, W.G. Wilson, and A.M. deRoos. Dynamics of age-structured
and spatially structured predator-prey interactions: individual-based models
and population-level formulations. American Naturalist, 142:412-442, 1993.

R.S. Ostfeld, K.R. Hazler, and O.M. Cepeda. Temporal and Spatial Dynamics
of Izodes scapularis (Acari: Ixodidae) in a rural landscape. Journal of Medical
Entomology, 33:90-95, 1996.

E. Deelman and B. K. Szymanski. Simulating Lyme Disease Using Parallel
Discrete Event Simulation. Winter Simulation Conference, pages 1191-1198,
1996.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

123

S. R. Das. Estimating the Cost of Throttled Execution in Time Warp.
Workshop on Parallel and Distributed Simulation, pages 186-189, 1996.

E. Deelman and B. K. Szymanski. Breadth-First Rollback in Spatially
Explicit Simulations. Workshop on Parallel and Distributed Simulation, pages
124-131, 1997.

H. Rajaei, R. Ayani, and 1. Thorelli. The Local Time Warp Approach to
Parallel Simulation. Workshop on Parallel and Distributed Simulation, pages
119-126, 1993.

H. Avril and C. Tropper. The Dynamic Load Balancing of Clustered Time
Warp for Logic Simulations. Workshop on Parallel and Distributed
Stmulation, pages 20-27, 1996.

H. Avril and Carl Tropper. Clustered time warp and logic simulation.
Workshop on Parallel and Distributed Simulation, pages 112-119, 1995.

R. Schlagenhaft, M. Ruhwandl, C.Sporrer, and H. Bauer. Dynamic Load
Balancing of a Multi-Cluster Simulation of a Network of Worstations .
Workshop on Parallel and Distributed Simulation, pages 175-180, 1995.

Y. Lin and E. D. Lazowska. A Study of Time Warp Rollback Mechanisms.
ACM Transactions on Modeling and Computer Stmulations, pages 51-72,
1991.

C. Xu and F. C. M. Lau. Load Balancing in Parallel Computers: Theory and
Practice. Kluwer Academic Publishers, 1997.

G. Cybenko. Load Balancing for Distributed Memory Multiprocessors.
Journal of Parallel and Distributed Computing, 7:279-301, 1989.

S. Ranka, Y. Won, and S. Sahni. Programming a Hypercube Multicomputer.
IEEFE Software, 5:69-77, 1988.

F. C. H. Lin and R. M. Keller. The Gradient Model Load Balancing Method.
IEEFE Transactions on Software Engineering, 13:32—-38, 1987.

L. F. Wilson and D. M. Nicol. Experiments in Automated Load Balancing.
Workshop on Parallel and Distributed Simulation, pages 4-11, 1996.

L. F. Wilson and D. M. Nicol. Automated Load Balancing in SPEEDES.
Winter Simulation Conference, pages 590-596, 1995.

D. W. Glazer and C. Tropper. On Process Migration and Load Balancing in
Time Warp. Workshop on Parallel and Distributed Simulation, pages
318-327, 1993.

124

[80] B. K. Szymanski. private communication.

[81] R. Bagrodia. private communication.

