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ABSTRACT

As the rates of data acquisition and cost of model evaluation in scientific computing

are far surpassing improvements in processor speed, the size of the computing envi-

ronments required to effectively perform scientific research is increasing dramatically.

As these computing environments increase in size, traditional global optimization

methods, which are sequential in nature, fail to adequately address the challenges

of scalability, fault tolerance and heterogeneity that using these computing systems

entails. This thesis introduces asynchronous optimization strategies which while

similar to their traditional synchronous counterparts, do not have explicit iterations

or dependencies. This allows them to scale to hundreds of thousands of hosts while

not being degraded by faults or heterogeneity. A framework for generic distributed

optimization (FGDO) is presented, which separates the concerns of scientific model

development, distributed computing and developing efficient optimization strategies;

allowing researchers to develop these independently and utilize them interoperably

through simple interfaces. FGDO has been used to run these asynchronous opti-

mization methods using an astroinformatics problem which calculates models of the

Milky Way galaxy on thousands of processors in RPI’s BlueGene/L supercomputer

and to run the MilkyWay@Home volunteer computing project, which currently con-

sists of over 25,000 active computing hosts. A simulation environment was also

implemented in FGDO, which allowed asynchronous optimization to be examined

in a controlled setting with benchmark optimization problems. Results using the

simulated environment show that the asynchronous optimization methods used scale

to hundreds of thousands of computing hosts, while the traditional methods do not

improve or even degrade as more computing hosts are added. Additionally, the

asynchronous optimization methods are shown to be largely unaffected by increasing

heterogeneity in the computing environment and also scale similarly in a computing

environment modeled after MilkyWay@Home. This thesis presents strong evidence

of the need for novel optimization methods for massive scale computing systems and

provides effective initial work towards this goal.

xii



CHAPTER 1

Introduction

The use of massive-scale heterogeneous computing environments is becoming more

widespread through the use of different Internet computing technologies such as the

Berkeley Open Infrastructure for Network Computing (BOINC). Volunteer comput-

ing infrastructures can offer millions of computing hosts, approaching or surpassing

petascale computing power. The low cost and potential computing power of these en-

vironments makes them highly desirable to researchers in a broad range of scientific

disciplines, where the rate of data acquisition and increasing modeling complexity is

far outpacing improvements in processor speed. Even the amount of parallelism on

homogeneous computing environments is reaching massive scales, with supercom-

puters utilizing hundreds of thousands of processors and graphical processing units

approaching thousands of parallel threads.

However, effectively utilizing these computing environments for scientific mod-

eling involves significant challenges. While traditional optimization methods for sci-

entific modeling are more applicable to homogeneous and highly reliable computing

environments, they cannot be applied to heterogeneous and fault prone environ-

ments due to their sequential and iterative nature. Lost or invalid results must

be recalculated before the optimization methods can progress, which drastically

reduces performance and efficiency. Additionally, these optimization methods are

based on evolving populations, which limits their scalability to the population size

and prevents them from being able to utilize massive-scale computing environments.

This thesis examines modifying traditional global optimization methods to

address the challenges in massive-scale computing. Asynchronous versions of differ-

ential evolution, genetic search and particle swarm optimization were implemented

for use on massive-scale computing environments. A generic asynchronous, or non-

iterative, strategy for global optimization is applied to all three search types, result-

ing in variants that can easily scale to hundreds of thousands of computing hosts,

that are automatically load balanced by design, and are unaffected by unresponsive

1
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hosts. Additionally, verification strategies are examined which prevent malicious or

faulty hosts from affecting the progress of the optimization.

The asynchronous optimization methods have also been tested using simulated

environments and challenging benchmark equations to measure the scalability and

the effect of heterogeneity on these methods. When compared on simulated ho-

mogeneous computing environments, representative of supercomputers or graphical

processing units, traditional synchronous methods are shown to generally be unable

to achieve massive scales, while the asynchronous methods are shown to improve

linearly as more hosts are added. In addition, the asynchronous optimization meth-

ods are shown to be resilient to highly heterogeneous computing environments, with

results showing that increasing the heterogeneity of the time it takes for results to

be calculated for an optimization method either has no effect or can even improve

the number of results required to reach a solution.

In addition to simulated environments, the asynchronous optimization meth-

ods have been tested on different actual computing environments using a represen-

tative astroinformatics application which evaluates the fitness of three dimensional

models of the Milky Way galaxy. Optimization has been done on RPI’s CCNI

BlueGene/L supercomputer as well as the MilkyWay@Home volunteer computing

system. MilkyWay@Home currently consists of over 25,000 active computing hosts

from over 15,000 volunteers, providing a highly heterogeneous and fault prone com-

puting environment, and this thesis has enabled the use of this powerful computing

system (currently running at 516 teraflops) to advance knowledge of the structure,

origin and evolution of the Milky Way galaxy. In order to perform effective op-

timization using the MilkyWay@Home volunteer computing project, an efficient

validation strategy was also implemented to prevent incorrect or malicious results

from affecting the optimization.

As computing environments continue to become increasingly distributed and

heterogeneous, even at the processor level, this thesis shows that optimization meth-

ods must embrace an asynchronous and distributed computing ideology to remain

effective and efficient. The results show that the generic asynchronous optimization

strategy developed provides a strong starting point for the development of even more
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efficient and highly scalable distributed optimization methods.

This thesis continues as follows. Chapter 2 discusses related work in global

optimization methods, with background material on different local optimization

methods. Various approaches for distributing these methods are also discussed.

Chapter 3 describes different massive scale computing systems and gives details on

the ones used in this work. Chapter 4 presents the approach and implementation

of a framework for generic distributed optimization (FGDO). A general strategy for

generic asynchronous optimization is given in Chapter 5 and how this was used to

develop asynchronous versions of differential evolution, genetic search and particle

swarm evolution. Chapter 6 describes the extensions to FGDO to allow simula-

tion of different computing environments and describes the different benchmark

optimization problems used for this. A technique for reducing the amount of verifi-

cation required for using asynchronous optimization on actual volunteer computing

systems is presented in Chapter 7. Results are shown examining the synchronous

and asynchronous optimization methods on simulated and actual environments in

Chapter 8. Future work and concluding remarks are given in Chapters 9 and 10,

respectively.



CHAPTER 2

Global Optimization Methods

Global optimization methods have been widely researched. In general, they are all

variations of Monte Carlo search. These approaches can be divided depending on

the type of search space they optimize over. Genetic search (GS), particle swarm

optimization (PSO) and differential evolution (DE) typically operate over a con-

tinuous search space, while simulated annealing (SA) and tabu search (TS) operate

over a discrete (or non-continuous) search space. However, all approaches have been

modified or hybridized for use in either search space. Hybridization is also a very

popular strategy for enhancing the performance of these global search methods, be-

cause while they provide effective methods for exploration, or finding new potential

areas for the global minimum, they suffer in exploitation, or the ability to quickly

converge to a minimum within one of these areas. So while hybridizing GS, PSO

and DE with SA or TA is an effective method to make one type of global search

continuous or discrete, hybridizing these searches with efficient local search methods

such as conjugate gradient descent (CGD), the Nelder-Mead Simplex method and

the proximal bundle method (PBM) proves an effective way to search with both

strong exploration and exploitation capabilities.

The remainder of this chapter proceeds by discussing the different global opti-

mization methods. Differential evolution (DE), genetic search (GS), particle swarm

optimization (PSO), simulated annealing (SA) and tabu search (TS) are discussed

in Sections 2.1, 2.2, 2.3, 2.4, and 2.5, respectively. In particular, for each section the

global search method is first introduced, then hybridization strategies are examined,

and lastly different parallelization approaches are discussed.

2.1 Differential Evolution

Differential evolution is an evolutionary algorithm used for continuous search

spaces developed by Storn and Price over 1994–1995 [84]. Unlike other evolutionary

algorithms, it does not use a binary encoding strategy or a probability density func-

4
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Figure 2.1: A two dimensional example of how an individual moves in
differential evolution.

tion to adapt its parameters, instead it performs mutations based on the distribution

of its population [77]. For a wide range of benchmark functions, it has shown to out-

perform or be competitive with other evolutionary algorithms and particle swarm

optimization [92].

In differential evolution, an initial population is generated randomly, and each

proceeding iteration generates the members of the next population by selecting a

parent individual and modifying this parent using a difference vector calculated by

a set number of other individuals and a recombination operator (Figure 2.1 gives an

example of how an individual moves in two dimensions). The individuals improve

monotonically. If the newly generated individual is more fit than the previous indi-

vidual at its position in the population, the newly generated individual replaces the

previous one, otherwise the new individual is discarded. Differential evolution uses

the following naming strategy: DE/x/y/z, where DE simply means differential evo-

lution, x indicates how the parent is chosen, y is the number of pairs of individuals

chosen to modify that parent and z is the recombination operator (for the rest of

this thesis the DE/ is omitted).

Mezura-Montes et al. study different variants of differential evolution on a

broad range of test functions [62]. In general, a new individual x(l + 1) for a new

population l + 1 is generated from the individual x(l) from the previous population

l. The jth parameter is calculated given p pairs of random individuals from the



6

population l, where r(l)0 6= ... 6= r(l)2p. θ, φ and σ are the user defined parent

scaling factor, recombination scaling factor and crossover rate, respectively. f(x)

is the fitness of individual x. D is the number of parameters in the optimization

function. b(l) is the best individual in the population l. The different variants used

are as follows:

• best/p/bin selects the best member of the population, adds the sum of the

differential between p other pairs of distinct individuals and performs binomial

recombination with an individual to generate its child as follows:

x(l + 1)j =







b(l)0
j + φ

∑p

k=1[r(l)
1k
j − r(l)2k

j ] if r(0, 1) < σ or j = r(0, D)

x(l)j otherwise

(2.1)

Binomial recombination combines the current individual with the parameters

generated by the parent and the pairs by selecting at least one parameter

randomly and performing a weighted average using the recombination scaling

factor.

• rand/p/bin is identical to best/p/bin, however instead of using the best in-

dividual as a parent, it selects a random individual (different from the random

individuals used to form the pairs):

x(l + 1)j =







r(l)0
j + φ

∑p

k=1[r(l)
1k
j − r(l)2k

j ] if r(0, 1) < σ or j = r(0, D)

x(l)j otherwise

(2.2)

• best/p/exp is identical to best/p/bin except it uses exponential recombina-

tion instead of binomial recombination. Instead of selecting random parame-

ters to recombine, exponential recombination selects a random parameter and

all the subsequent parameters:
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x(l+1)j =







r(l)0
j + φ

∑p

k=1[r(l)
1k
j − r(l)2k

j ] from r(0, 1) < σ or j = r(0, D)

x(l)j otherwise

(2.3)

• rand/p/exp is identical to best/p/exp except that the parent is selected ran-

domly, as in rand/p/bin:

x(l+1)j =







r(l)0
j + φ

∑p

k=1[r(l)
1k
j − r(l)2k

j ] from r(0, 1) < σ or j = r(0, D)

x(l)j otherwise

(2.4)

• current-to-best/p uses the best individual as a parent to perform another

differential with the current individual. This and the sum of the differential

of p pairs are added to the current individual without any recombination:

x(l + 1)j = x(l)j + θ[r(l)0
j − x(l)j] + φ

p
∑

k=1

[r(l)1k
j − r(l)2k

j ] (2.5)

• current-to-rand/p is the same as current-to-rand/p however it uses a ran-

dom individual instead of the best individual as the parent:

x(l + 1)j = x(l)j + θ[b(l)0
j − x(l)j] + φ

p
∑

k=1

[r(l)1k
j − r(l)2k

j ] (2.6)

• current-to-rand/p/bin is the same as current-to-rand/p however it also

uses binomial recombination:

x(l + 1)c
j = x(l)j + θ[r(l)0

j − x(l)j] + φ

p
∑

k=1

[r(l)1k
j − r(l)2k

j ] (2.7)

x(l + 1)j =







x(l + 1)c
j if r(0, 1) < σ or j = r(0, D)

x(l)j otherwise
(2.8)
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• rand/p/dir selects a random parent and adds the differentials to this value.

However, the differentials are calculated by subtracting the worse individual

in the pair from the better individual:

x(l + 1)j = r(l)1
j + φ

p
∑

k=1

[r(l)1k
j − r(l)2k

j ] where f(r(l)1k) < f(r(l)2k) (2.9)

The variants were tested using unimodal and separable problems, unimodal

and non-separable problems, multi-modal and separable problems, and multi-modal

and non-separable problems. The variants rand/1/bin, best/1/bin, current-to-rand

/1/bin and rand/2/dir were shown to be the best for unimodal and non-separable

problems, and best/1/bin, rand/1/bin and rand/2/dir provided the best results

for unimodal/non-separable and multi-modal/separable problems. For the hard-

est problem set, multi-modal and non-separable, rand/2/dir performed the best,

followed by rand/1/bin, with the third best results by best/1/bin and current-to-

rand/1/bin. However for the hardest test function, the generalized Rosenbrock’s

function, rand/1/exp had the best performance. It is interesting to note that

best/1/bin performed extremely well for almost all test problems, however the best

performing variant typically varied as the test functions changed.

Mezura-Montes et al. also have examined a modification of rand/1/bin for

constrained optimization [61]. Their approach allows the generation of multiple

offspring, as well as using both the current parent and the best known solution

(similar to PSO) in the generation of offspring. Another modification is that instead

of only using the fitness of the children to determine if the current member of the

population is updated, multiple selection criteria are used. The following calculation

is used to generate a child c for member x(l) of population l:

cj = r(l)0
j + θ1[b(l)j − r(l)1

j ] + θ2[x(l)j − r(l)2
j ] (2.10)

Where θ1 and θ2 are parental scaling factors, and r0 6= r1 6= r2 are different

random individuals from population l. The following selection criteria are used to

determine if a child or parent is selected for the next generation:
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• If both solutions are feasible, the individual highest fitness is selected.

• A feasible individual is selected over an infeasible individual.

• If both individuals are infeasible, the individual with the lowest sum of con-

straint violation is selected.

In addition to this, there is a user defined chance to only use the fitness of an

individual as the selection criteria – in this way, infeasible solutions in promising

areas of the search can remain in the population. For a wide range of test functions,

this approach is shown to competitively converge to the optimum solution.

Rahnamayan et al. have proposed opposition-based differential evolution,

which in addition to evaluating the next population, generates an opposite popu-

lation, and uses the best value of the two to update the current population [73].

The opposite of a population P , OP can be calculated using the minimum and

maximum parameter values of each member of P (Pmin,j, Pmax,j):

OPk,j = Pmin,j + Pmax,j − Pk,j (2.11)

The effect of generating an opposite population was tested for both the ini-

tial randomly generated population, and the proceeding generations generated by

differential evolution. For a set of seven test functions, the initial random popula-

tion had an average fitness improvement from 4% to 70% by selecting the most fit

member between the original and opposite populations. By using a population and

its opposite, the convergence rates improved significantly, requiring 42% to 86% less

function evaluations.

2.1.1 Hybrid Differential Evolution

Zhang and Cai have hybridized differential evolution with orthogonal design,

using it as a recombination operator in conjunction with rand/1/exp [101].

Gong et al. have hybridized differential evolution with particle swarm opti-

mization [44]. Their approach is to first perform an iteration of particle swarm

optimization, then perform differential evolution on the population of best found

particles (for more details about particle swarm optimization, see Section 2.3). By



10

performing DE on the best found particles, the diversity of the particle swarm is

increased and premature convergence of particles to local minima is prevented. This

approach was tested with the Rosenbrock, Rastrigrin and Griewank functions, and

is shown to outperform both traditional DE (rand/1/bin) and PSO.

2.1.2 Parallel Differential Evolution

Tasoulis et al. use parallel virtual machines (PVM) to implement a parallel dif-

ferential evolution algorithm [88]. This algorithm generates a ring of subpopulations,

and for each iteration determines which individuals a subpopulation will migrate to

the next in the ring. Individuals are probabilistically selected for migration via a

user selected migration constant. They test this approach with a number of test

equations: Sphere, Rosenbrock, Step, Quartic, Shekel’s Foxholes, Corana Parabola

and Griewank. In particular, they measure the effect on convergence as the migra-

tion constant changes. Intermediate values of the migration constant result in the

best convergence rates, with values close to 0 or 1 resulting in significant increases in

convergence time. As found in other research, the best/1/bin tended to be the most

efficient on across the test functions, however fine tuning the migration constant

resulted in comparable or better performance for other DE strategies. This work is

further expanded upon by Parsopoulos et al. for multi-objective optimization [66].

2.2 Genetic Search

Genetic search is a population based global optimization method. In the sim-

plest form, an initial population is selected randomly in the search space and follow-

ing this crossover and mutation are used to generate successive populations. For

continuous search spaces, the most common crossover operator is simply to take

two parameter sets in the population and average them. Mutation will typically

take a parameter set, select a single parameter at random from within that set,

and replace it with a perturbation (many select a random point within the range of

possible values, and decreases the range around the point as the search progresses).
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2.2.1 Hybrid Genetic Search

Many hybrid approaches have been used in genetic algorithms. Chelouah

and Siarry examine a hybrid Nelder-Mead simplex and genetic search algorithm

for multi-minima functions [16]. Their approach selects a wide initial population

distributed among the search space in different neighborhoods [14]. In this method,

a large number of initial parameter sets are generated, then different neighborhoods

are chosen, with a center and radius. Parameter sets are then chosen such that

no parameter sets share a neighborhood. Their hybrid method first performs a

diversification step using a genetic search until stopping conditions are met and

a good potential minima is found. Following this there is an intensification step

where the best point in the genetic search is used to generate a simplex and perform

a simplex search. These two steps are repeated until stopping criteria are met. This

search is compared to a various range of other methods such as basic genetic search

and tabu search for 21 classical test functions and is shown to be comparable or

better.

Wei et al. propose another hybrid Nelder-Mead simplex and genetic search

for multi-modal (multi-minima) functions [97]. They use three separate phases to

perform the search. The first is the basic genetic search for generating a population,

doing crossover and mutation. Following this, the population is divided into niches,

which are determined similar to the neighborhood method. N iterations of the

simplex search are performed in each niche, by choosing the best member of the

niche and two other randomly chosen members. After the simplex searches have

been performed in each niche, another simplex is performed by choosing the globally

best member, and two other randomly selected members. These three phases are

repeated until the search has completed. The hybrid search is evaluated using

Schaffer’s function F6, which is one of the most difficult standard test functions,

and it is shown that it has the potential (with correct parameters) to converge

quickly and reliably to the global optimum.

Renders and Bersini propose two methods to hybridize genetic search and hill

climbing methods [74]: interleaving genetic search with hill-climbing and using hill

climbing to create new crossover operators for the genetic search. The interleaving
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approach performs iterations of the simplex search on each individual of the popu-

lation per iteration. However, they focus on utilizing a simplex crossover operator

in addition to an average crossover operator and mutation. The simplex crossover

operator selects N + 1 members of the population and performs an iteration of the

simplex search - first attempting reflection, then expanding or contracting itera-

tively. Both hybrids are shown to outperform the non-hybrids, with the crossover

hybrid performing the best. In further work, Seront and Bersini propose a mixture of

these two methods, utilizing both interleaving and a simplex crossover operator [78],

for even more improved performance by gaining the benefits of both.

Hybrid genetic search/simplex has also been used with success in different

fields of scientific research. Yen et al. [100] also use a hybrid Nelder-Mead simplex

and genetic search to model metabolic systems. Their approach is to perform a

concurrent simplex on the elite members of the population, in addition to traditional

methods of crossover and mutation. As opposed to traditional simplex which starts

with N +1 points, and reflects the worst point through the centroid of the remaining

points, the concurrent simplex starts with N + Ω points, and reflects Ω points

through the centroid of the best N . These new points are evaluated and contraction

is performed as necessary. This allows multiple simplexes to be performed among the

elite members of the population. Their approach is compared to adaptive simulated

annealing, the simplex-GA hybrid developed by Renders-Bersini [74], two variations

of genetic search and a parallel simplex method, and is shown to find better solutions

to the metabolic modeling problem than the others tested.

Satapathy, Katari et al. evaluate genetic search/simplex hybrid and genetic

search/simplex/k-means hybrid approaches for image clustering [75, 48]. K-means

is a clustering method which attempts to create k clusters of vectors (in this case,

parameters or individuals), with each cluster having the minimum possible sum of

squares distance between its vectors. The genetic search/simplex method creates

an initial population of 3N + 1 members, and for each iteration of the population

performs a simplex search with the best N + 1 members, and genetic search with

the remaining ones. The genetic search/simplex/k-means hybrid first performs the

k-means algorithm to determine one member of the initial population, generates the
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rest randomly, then uses the genetic search/simplex hybrid. These approaches are

shown to not be trapped in local minima, which happens with either the non-hybrid

simplex or k-means algorithms. Additionally, seeding the initial population with

the results of the k-means algorithm provides the fastest results.

2.2.2 Parallel Genetic Search

A wide range of parallel genetic algorithms (PGAs) have been examined for

different distributed computing environments. Generally, there are three types of

parallel genetic algorithms: single population (panmictic, coarse-grained), multi-

population (island, medium-grained), or cellular (fine-grained) [13]. Typically, these

approaches are synchronous.

Panmictic GAs create a population, evaluate it in parallel, and use the results

to generate the next population. For this approach, there are three different ap-

proaches to parallelization. For a given population, each of the parameter sets in the

generated population can be evaluated in parallel. This approach allows scalability

up to population size used by the genetic search. Another approach is to parallelize

the function evaluation and perform these iteratively for the whole population. For

expensive and parallelized function evaluations, this allows as much scalability as

the function evaluation can use. Lastly, a hybrid of the two approaches, parallel

function evaluation done in parallel for each parameter set in the population can

be done. This allows the greatest amount of scalability, but can be complicated to

implement. Unfortunately, for non-parallel function evaluations or large scale com-

puting environments none of these approaches may be able to use all the available

resources.

Island approaches use multiple populations of parameter sets called islands.

Typically, after a fixed number of iterations the populations propagate their best pa-

rameter sets to the other populations. In these cases, each island can be parallelized

in the same manner as a panmictic GA, which increases scalability. Additionally,

it has been shown that super-linear speedup can be attained using this method, as

smaller populations can converge to minima quicker than larger populations [4, 10].

However, having populations of different sizes and/or populations running on clus-
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ters of different speeds can have varying negative effects on the performance of the

search.

Cellular algorithms [3, 32] evaluate individual parameter sets, then update

these individual sets based on the fitness of their neighbors. Dorronsoro et al. have

shown that asynchronous cellular GAs can perform competitively and discuss how

the update rate and different population shapes affect the convergence rate [33].

P-CAGE [37] is a peer-to-peer (P2P) implementation of a hybrid multi-island

genetic search built using the JXTA protocol [43] which is also designed for use over

the Internet. Each individual processor (a member of the P2P network) acts as

an island (a subpopulation of the whole) and evolves its subpopulation cellularly.

Every few iterations, it will exchange exterior neighbors of its population with its

neighbors.

There have also been different approaches taken in developing PGAs for com-

putational grids. Imade et al. have studied synchronous island genetic algorithms on

grid computing environments for bioinformatics [46], using the Globus Toolkit [39].

Lim et al. provide a framework for distributed calculation of genetic algorithms and

an extended API and meta-scheduler for resource discovery [55]. Both approaches

use synchronous island-style GAs. Nimrod/O [67] is a tool that provides different

optimization algorithms for use with Nimrod/G [12].

Nimrod/O has been used to develop the EPSOC algorithm [53] which is is a

mixture of a cellular and traditional GA. Populations are generated synchronously

but the elimination of bad members and mutating good ones is done locally. Hybrid

approaches [53, 82] have also been examined.

2.3 Particle Swarm Optimization

Particle swarm optimization was initially introduced by Kennedy and Eber-

hart [49, 34] and is a population based global optimization method based on bio-

logical swarm intelligence, such as bird flocking, fish schooling, etc. This approach

consists of a population of particles, which ”fly” through the search space based on

their previous velocity, their individual best found position (cognitive intelligence)

and the global best found position (social intelligence). The population of particles
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Figure 2.2: A two dimensional example of how a particle moves in particle
swarm optimization.

is updated iteratively as follows, where x is the position of the particle at iteration

t, v is it’s velocity, p is the individual best for that particle, and g is the global best

position (Figure 2.2 shows how a single particle can move in two dimensions):

vi(t + 1) = vi(t) + c1 ∗ rand() ∗ (pi − xi(t)) + c2 ∗ rand() ∗ (gi − xi(t)) (2.12)

xi(t + 1) = xi(t) + vi(t + 1) (2.13)

Two user defined constants, c1 and c2, allow modification of the balance be-

tween local (cognitive) and global (social) search. Later, an inertia weight ω was

added to the method by Shi and Eberhart to balance the local and global search

capability of PSO [80] and is generally used by most modern PSO implementations:
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vi(t + 1) = ω ∗ vi(t) + c1 ∗ rand() ∗ (pi − xi(t)) + c2 ∗ rand() ∗ (gi − xi(t)) (2.14)

Another modification that receives wide use is that of a constriction factor as

introduced by Clerc [18], but this is a special case of the inertia weight, as discussed

by Eberhart and Shi [35]:

vid = K ∗ [vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ rand() ∗ (pgd − xgd)] (2.15)

K =
2

| 2 − ϕ −
√

ϕ2 − 4ϕ |
, ϕ = c1 + c2, ϕ > 4 (2.16)

A wide range of modifications and expansions to the PSO algorithm exist.

Quantum particle swarm optimization (QPSO) is an improvement to PSO with

stronger global convergence properties and is simpler to optimize because there

is only one constant to be specified [86, 85]. Particles move according to a wave

function, as opposed to a combination of their previous velocity, and the local and

global best particles. They define new operators for the local best particle position

and particle movement:

x(t + 1) = p ± β∗ | mbest − x(t) | ∗ ln(1/u) (2.17)

mbest =
1

M
ΣM

i=1Pi = (
1

M
ΣM

i=1Pi1,
1

M
ΣM

i=1Pi2, ...,
1

M
ΣM

i=1Pid) (2.18)

pid = ϕ ∗ pid + (1 − ϕ) ∗ pgd, ϕ = rand() (2.19)

Feng et al. have used QPSO for digital FIR filter design with better perfor-

mance than normal genetic and particle swarm searches [36].

Liu et al. describe a version of QPSO that applies a mutation operator to

each particle which improves convergence to the global minima [57]. In addition to

the new quantum operators for determining the next state of a particle, mutation

is applied to each particle to prevent premature convergence to local minima by

mutating the particles position using a Cauchy distributed random value (f(x) =
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a
π∗(x2+a2)

), with expected value 0. This distribution was chosen over a Gaussian

distribution because it is able to make larger perturbations. Their results show that

for the three test functions used (Rastrigrin, Rosenbrock and Griewank) QPSO

without mutation provides an improvement over basic PSO, and that QPSO with

mutation improves convergence to the global best solution.

Liu and Sun also describe a version of QPSO that applies an operator based

on immune memory and vaccination [56]. Their approach is to generate M particles

according to QPSO with mutation, as described above, and an additional N par-

ticles randomly. Following this, M particles are selected according to an antibody

probability distribution function:

ps(xi) =
ΣN

j=1 | f(xi) − f(xj) |
ΣM

i=1Σ
N
j=1 | f(xi) − f(xj) |

(2.20)

An additional R particles are vaccinated, i.e. they are selected randomly from

the remaining particles, and replaced with the best found R particles. This approach

also provides faster convergence and a higher chance of reaching the global optimum

than GPSO for the Rastrigrin, Rosenbrock and Griewank test functions.

PSO has also been extended with adaptivity. Dingxue et al. have examined

dynamically changing the inertia weight to balance the exploration and exploitation

trade-off, reducing premature convergence to local minima and improving global

convergence speed [31]. They use the following to dynamically update the inertia

weight, with a measure of population diversity F , for any iteration t, with constants

a and b, the inertia weight w is:

wt =
1

a − bFt−1

(2.21)

The population diversity F is calculated as the average distance between a

particles current position and individual best position, scaled between 0 and 1. For

the test functions used (Sphere, Rosenbrock, and Rastrigrin), The adaptive PSO is

shown to converge more quickly to a better result than non-adaptive PSO.

Liang et al. have proposed three new learning strategies for PSO to ensure

swarm diversity, reducing the chance of convergence to local minima [54]. These
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strategies focus on choosing other positions to move particles by, as opposed to

the individual and global best. The three new methods chosen are elite learning

PSO (ELPSO), multi-exemplars learning PSO (MLPSO), and comprehensive learn-

ing PSO (CLPSO). Each of these methods generates a new position for each particle

to be drawn to in each iteration as follows. ELPSO randomly choses m parameters

from the global best, and the rest from the particles individual best. MLPSO choses

dimensions for this particle randomly from the individual best positions of all par-

ticles. CLPSO is based on an analysis of the previous two methods. In this version

m dimensions from the global best, the remaining dimensions are chosen randomly

from the individual best positions of the other particles. These new methods show

increased robustness in finding the global optima when compared to standard PSO.

Van Den Bergh and Engelbrecht present a variant which uses a hybrid of

PSO and cooperation between multiple swarm populations, or cooperative particle

swarm optimization (CPSO) [9]. Their approach is based on cooperation between

multiple populations in genetic algorithms, proposed by Potter and DeJong [70].

Instead of having one swarm optimizing an n dimensional vector, there are n swarms

optimizing one-dimensional vectors. At the end of each iteration, the global best

positions of each swarm are shared with the others. Unfortunately, it is easier

for this approach to become trapped in local minima. To alleviate this problem,

their approach performs one iteration of n swarm optimization and an iteration

of standard PSO with separate populations. First, the n swarm optimization is

done, following this, a vector of the best solutions found is used to overwrite a

random particle in the standard PSO population. Following this, the best particle

is chosen, and the values are used to overwrite the value of a random particle in the

corresponding n population swarm. Their approach is tested for the Rosenbrock,

Griewank, Rastrigrin, Quadrick and Ackley functions. Their results find CPSO to

converge in the least amount of iterations, followed by standard PSO and cooperative

GA based algorithms, and that their hybrid method is very robust in reaching the

global minima, which improves as more particles are used. However, the improved

robustness comes at the cost of a greater time to convergence.
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2.3.1 Hybrid Particle Swarm Optimization

Juang proposes a hybrid genetic search/particle swarm method to automate

the design of recurrent neural/fuzzy networks [47]. Their approach generates the

initial population randomly. Following this, the population is sorted by the fitness

of it’s members. For each iteration, the next population is generated using crossover

and mutation. After this population has been sorted, the best half is marked as elite

and used for particle swarm optimization. The velocities for these elite members

are set to 0 if the member was generated by a crossover operator (i.e., it remains

unchanged), or based off the member’s previous position if it was generated by

mutation or particle swarm. For both types of recurrent neural network optimization

tested, PSO was shown to outperform GS, while the hybrid performed the best.

Koduru et al. test a hybrid particle swarm/simplex approach on several bench-

mark problems and to fitting a gene model with observed data [51]. They define

two types of global search/simplex hybrid, tandem, where in each iteration part

of the population performs the global search and the other part performs the sim-

plex algorithm, and cascade, where in each iteration the entire population performs

an iteration of the global search, then the simplex method on the results. Their

approach uses the cascade method, where for each iteration the particles are first

updated as per particle swarm. Following this, the resulting particles are clustered

using the k-means algorithm, and the simplex method is applied in each cluster.

Their results show that applying the k-means algorithm to cluster the particles im-

proves the effectiveness of the hybrid search, where in most cases using random

clusters results in poor performance. Only one test function performed better using

non-hybrid particle swarm, while in all other cases the hybrid method had the best

performance.

Das et al. expand on this work by adding gradient information to the par-

ticle swarm calculations and compare it to the hybrid particle/swarm simplex ap-

proach [23]. With particle swarm/gradient information hybrid, for each iteration,

k-means is used to cluster the particles, and within each cluster new positions are

calculated in one of three ways: best-centroid, centroid-worst, and best-worst. Best-

centroid uses the distance between the best particle and centroid of the cluster,
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multiplies it by a random value and constant and adds this to the global best and

local best distance as in normal particle swarm. This value is then scaled down by

another constant. Centroid-worst and best-worst do the same thing, except using

the distance between the centroid and worst, and best and worst, respectively. These

approaches are compared in estimating the parameters of a gene network model and

show that this approach reduces the number of evaluations required to reach the

global optimum. Additionally, the best-centroid method is shown to perform the

best of the three.

Petalas et al. describe an entropy-based memetic particle swarm search to

compute periodic orbits of nonlinear mappings [69]. Instead of performing the local

search after a specified number of iterations, as done in other approaches, they use

Shannon’s information entropy (SIE) [79] in order to detect that the improvement

rate of the swarm has degenerated. After this occurs, local search is performed on

the best position of each particle. SIE is a measure of how diverse the population

is, the higher the entropy, the more diverse the population is. It is calculated as the

following, where bi is the best found fitness of particle i:

SIE = −ΣN
i=1pi ∗ log pi (2.22)

pi =
bi

ΣN
j=1bj

(2.23)

When change in entropy for a certain number of iterations is lower than the

threshold, then the Solis and Wets algorithm [83] is performed for local search. This

approach was found to be more robust than PSO, with less chance of falling into

local minima, and could also find the global minimum more efficiently.

Wang et al. utilize a hybrid of simulated annealing and particle swarm opti-

mization to optimize the energy consumption of wireless sensor networks [94]. They

take a cascade approach, as defined by Koduru et al. [51]. First, an iteration of

particle swarm optimization is performed and following this, the best point in the

particle swarm has simulated annealing applied to it (for more details about simu-

lated annealing, see Section 2.4). The process of PSO then simulated annealing is

repeated until stopping conditions are met. The results show that this approach pro-
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vides solutions with significant energy conservation. Ge et al. also use this approach

for Job Shop Scheduling [42].

2.3.2 Parallel Particle Swarm Optimization

Recently, particle swarm optimization has also been used in different parallel

environments. Baskar et al. extend Fitness-Distance-Ratio PSO (FDR-PSO) for

concurrent execution [8, 7]. FDR-PSO is introduced and analyzed by Peram, Veera-

machaneni et al. [68, 90] and is a modification of PSO that only selects a single

other particle to modify a current particle’s direction. The particle chosen is the

one with the highest fitness-distance-ratio FDR between a particles current value

and another particles individual best:

FDR =
f(pj) − f(xi)

| pj − xi |
(2.24)

Peram, Veeramachaneni et al. show FDR-PSO to perform competitively with

regular PSO without requiring social or cognitive terms. Baskar et al.’s approach

makes this concurrent by utilizing two concurrent swarm populations, one using

regular PSO and the other using FDR-PSO. At the end of each iteration, the global

best particle of each population is shared between the two groups. Their results using

optimizing reconfigurable phase differentiated antenna arrays show that FDR-PSO

and their concurrent PSO perform better than regular PSO and genetic search.

Schutte et al. examine parallel synchronous particle swarm for load balanced

analytical test problems and load-imbalanced biomedical system identification [76].

This method evaluates each particle in parallel for each iteration. Their results show

that the parallel synchronous particle swarm performs well for the load balanced test

problems with near linear improvement, however for the load-imbalanced problems,

performance degrades with the parallel version due to each iteration waiting for the

slowest computation. From these results, they suggest that an asynchronous parallel

PSO would be valuable.

Koh et al. implement a parallel asynchronous PSO for heterogeneous net-

works [52] using the Message Passing Interface (MPI) [60]. The algorithm uses an

approach similar to CILK’s work stealing [11], where the master processor contains
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a queue of currently unevaluated particles and slave processors request particles to

evaluate from the master. In this way the search proceeds similar to synchronous

particle swarm, as when the result for a particle is reported to a master, the next po-

sition for that particle is generated and added to the queue of work. This approach

ensures that each particle performs close to the same number of evaluations. The

asynchronous method is shown to achieve nearly identical results to synchronous

parallel PSO for homogeneous clusters, however on their test heterogeneous cluster

of 20 processors, the asynchronous version had a clear advantage in performance,

reducing computation time by 3.5. Venter et al. use a similar asynchronous parallel

PSO and analyze it for the design optimization of a typical transport aircraft wing

with similar results [91].

Cui and Potok propose a distributed particle swarm optimizer that can find a

solution which may be moving in a noisy search space [21]. Their approach works

as a normal particle swarm, except that every time the new position of a particle

is found to be worse than the local best, the fitness of the local best particle is

degraded. In this way, if a particle continuously reaches bad new positions, there is

a greater chance that the environment has changed and it will start performing a

wider search. This is compared to other approaches which reset the particle swarm

fitness every few iterations, and those that use sentry particles to detect when to

reset the swarm fitness. Their approach not only provides more accurate results as

the environment changes, but is more suitable to distributed particle swarm because

the only information it requires broadcasting is the global best particle.

Xu and Zhang use a master-slave model for parallel particle swarm for attribute

reduction [98]. Their method is asynchronous, with each processor being assigned

a particle, and reporting information on new global best positions to the master.

The master will broadcast new global best particles to all the slaves when they are

found. As with other asynchronous approaches, their results show an improvement

in convergence rates, and effective convergence to global minima.

Prez and Basterrechea consider both global and local swarm topologies with

asynchronous and synchronous update for parallel PSO [72]. The asynchronous PSO

used performs as the method described by Koh and synchronous PSO as described
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by Schutte. For the global swarm topology, particles are drawn to the global best

point, which is updated after every particle evaluation in the asynchronous version,

and between iterations for the synchronous version. The local swarm topology uses

a local best (instead of a global best) which is the best of a set of N neighbors,

typically 15% of the swarm size. This work shows that for their example problems

of array synthesis and planar near-field antenna measurements, asynchronous global

PSO clearly outperforms the other versions in terms of time to convergence with an

additional benefit of better utilization of heterogeneous resources, however it should

be noted that the local best approach has a wider search area and is more resistant

to convergence to local minima.

2.4 Simulated Annealing

Simulated annealing is an optimization strategy typically used when parame-

ters are discrete. It starts at a current point, modifies it and moves to the new point

if the fitness is within a certain temperature. As the search progresses, it begins

taking close to random steps and eventually it reaches a point where the current

point will only take a step that improves its fitness.

Yeh and Fu present a parallel adaptive simulated annealing algorithm and

use it for locating the activation area of functional magnetic resonance images

(MRI) [99]. They use an island approach, where each processor has a certain set of

solutions, and generates neighbors for these iteratively either with the classical or

adaptive simulated annealing approaches. After n neighbor evaluations, individuals

are selected with probability Pm and migrated to the neighboring islands. Their re-

sults show that while the parallel approach can produce good results, the scalability

is low - only a factor of 2.63 for adaptive simulated annealing and 2.18 for classical

simulated annealing on a cluster of four processors.

Da and Xiurun utilize a hybrid particle swarm and simulated annealing to

optimize the weights of an artificial neural network for rock engineering [22]. Instead

of only updating the global best particle when a new global best is found, whenever

a new local best is found it replaces the best particle as in simulated annealing, i.e.,

if plb < pgb otherwise with the probability 1− e−
pgb−plb

temp . For their application, this is
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shown to converge to better results than traditional particle swarm, which converges

quicker to local minima.

Miettinen et al. examine different hybrid simulated annealing methods for

global continuous optimization [63]. These methods are based on the proximal bun-

dle method [50]. Using simulated annealing within the proximal bundle method

(i.e., biased proximal bundle method) by having the Metropolis criterion determine

the serious step of the proximal bundle was shown to be inadequate. Their first hy-

brid method does the opposite with the proximal bundle method being used within

simulated annealing by applying the proximal bundle method on candidates ac-

cepted with the Metropolis criterion by simulated annealing. The second method

combines the first method with the biased proximal bundle method (BPBM), us-

ing this instead of the proximal bundle method as in the first method, with the

simulated annealing and BPBM each having their own cooling schedules. The fi-

nal method speeds up the first method by performing the proximal bundle method

with low accuracy, and increasing the accuracy of the stopping conditions as the

search progresses. These methods were compared to simulated annealing with two

different parameters used for temperature reduction Nt = max(100, 5n) and Nt = 5.

Both the first and third methods were shown to be the most reliable, with the third

method being the most efficient. All the hybrids outperformed simulated annealing

in both efficiency and reliability.

Wang et al. use a parallel genetic search/simulated annealing hybrid for multi-

pass milling to optimize cutting parameters [95, 96]. The hybrid method proposed

combines simulated annealing into the crossover operator. Two parents generate

two children, which are the best and worst members found by a Markov chain. This

chain is generated with simulated annealing, with a member being selected to update

the best/worst found if the Metropolis criterion is valid, i.e., min(1, e
fi−fworst

Tt ) ≥ r,

where fi is the current member, fworst is the worst in the chain, Tt is the temper-

ature at time t and r is a uniformly distributed random number between 0 and

1. Their approach to parallelization is hierarchical, with a master node controlling

sub-groups. There is no migration between sub-groups, however there is migration

within nodes of a sub-group. A sub-group consists of eight processors, connected
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using a ladder neighborhood method. After a certain number of iterations, the best

1% of each population is migrated to the processors’ neighbors and replaces the

worst 1%. A sub-group stops searching when the best found member has changed

less than a threshold in a certain number of iterations. Their results show that

this approach finds better solutions faster than normal parallel genetic search, and

simulated annealing.

2.5 Tabu Search

Tabu search (TS) is an iterative search method, similar to simulated annealing.

TS starts from a randomly selected initial solution s, and generates a set of neighbors

s′ for this solution by applying previously defined perturbations to s. The best

solution in s′ becomes the new s, even if it is worse than s. The last m previously

visited s are stored in a tabu list, and s will not move to a neighbor if it is in

that list. The algorithm typically terminates after some number of iterations have

been performed without any improvement. While like simulated annealing, TS has

typically been used for combinatorial problems, or optimization of non-continuous

variables, later work has been done to apply it to continuous variables and global

optimization. Chelouah and Siarry mention distributed tabu search [15], however

no current work on this has been presented to date.

Siarry and Berthiau apply TS to continuous optimization by creating different

perturbation operations to generate neighbors in a continuous space [81]. Neighbors

are generated in a ball around the current solution s. Because typically the number

of neighbors created should be small, simply choosing random parameters would lead

to an inhomogeneous selection of points inside that ball. To overcome this problem,

they propose three different types of partitioning which points are selected within,

geometrical, linear, and isovolume. Geometrical partitioning selects points between

radii that are calculated according to a geometrical progression of ratio 2, linear

partitioning selects points between equally distanced radii from s, and isovolume

partitioning selects points between equally volumed radii from s. Their results find

that for certain problems, continuous tabu search can be comparable to or better

than simulated annealing. Additionally, geometrical and linear partitioning tended
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to be better than isovolume.

Chelouah and Siarry have enhanced their continuous tabu search for global

optimization [15]. This enhanced tabu continuous search (ETCS) improves upon

basic continuous tabu search by first performing diversification to locate promising

regions, then performing tabu search within those promising regions. Additionally,

ETCS uses hyper-rectangles instead of balls, due to the ease of computing neighbors.

Diversification is done by finding promising areas. A new promising area is found

when a neighbor is worse than the current solution by a certain threshold and is not

in the ball of an already found promising area. After a certain number of iterations

for finding promising areas, the best promising area is chosen by first removing all

promising areas with fitness worse than the average fitness of the promising area

solutions. Following this, the hyper-rectangular balls around each promising solution

are halved in size, and the best neighbor of each is chosen if it is better than the

current promising solution. The worst new promising area solution is removed. It

iteratively repeats the reduction in hyper-rectangle size, and removal of the worst

promising area until one remains. Finally it performs the regular continuous tabu

search on the remaining promising area. Results show that ETCS performs better

than other versions of continuous TS for functions of variable length 10 or less, and

competitively for those of larger size.

Chelouah and Siarry later hybridize ETCS with the Nelder-Mead simplex

method [17]. This approach first performs diversification the same as ETCS, how-

ever upon finding the best promising area, a simplex search is performed from that

point. After the local simplex search is completed, the search again performs diver-

sification from this new point. This process repeats until stopping conditions are

met: a maximum number of iterations have been performed or a number of itera-

tions have been performed without improvement. The hybrid is shown to improve

upon the results of ETCS, and outperform basic simulated annealing and genetic

search for problems with small amounts of variables (less than 5).

Wang et al. improve upon Chelouah and Siarry’s ETCS approach by allowing

the evaluation of additional neighbors within the central most hyperrectangle [93],

something which was avoided in their work to enforce the tabu search moving signifi-



27

cantly away from the current solution to avoid convergence to local minima [81, 15].

For the test functions tested, it is shown that the intensification of the search in

the interior hyperrectangle improves the rate to solution by nearly half, without

reducing accuracy.

Franz and Speciale also apply tabu search to global optimization of continuous

problems [40]. They use a dynamically sized grid to determine the neighbors of a

solution s, and refine the grid as the search progresses. To reduce the number of

evaluations performed, a neighbor is chosen by evaluating neighbors above and below

the solution for each variable in the function, which requires only 2n evaluations at

most, instead of 2n evaluations if all possible neighbors were evaluated. Additionally,

the first neighbor that improves upon the current solution is chosen, if one is found,

and after this the next neighbor chosen to evaluate is in the same direction as the

previously selected neighbor. The grid size is reduced when no good neighbors are

found. This makes the algorithm converge to local minima. To escape these, when

the grid size is reduced to a certain threshold, the search will then move to the best

neighbor, even if it is worse, as opposed to the first found better neighbor. The

previous minimum found as well as the previous neighbors are kept in tabu lists

so they will not be selected again. The algorithm will restart itself from a random

starting point if it falls into the basin of a previously found minimum and cannot

improve. This continues until the algorithm has restarted itself a certain number

of times. Their approach is shown to provide good solutions for device parameter

extraction and a suite of test functions, including the Dejoung, Goldstein, Hartman,

Rosenbrock, Shubert, and Zakharov functions.



CHAPTER 3

Massive Scale Computing Systems

Massive scale computing systems are becoming more common as researchers gain ac-

cess to new computational resources and share existing ones. Volunteer computing

grids are also gaining popularity because they provide access to potentially mil-

lions of computing hosts. As these systems reach larger and larger scales, they are

becoming extremely powerful yet increasingly challenging to utilize effectively and

efficiently. These computing systems also come with varying costs, heterogeneity,

communication speeds and volatility. This chapter examines the three main types of

massive computing systems: supercomputers in Section 3.1, computational grids in

Section 3.2, and lastly volunteer computing grids in Section 3.3. These sections also

discuss the representative test environments for each of these used in this research.

3.1 Supercomputers

Supercomputers typically use thousands of lower speed processors connected

with very low latency and high bandwidth links. Applications are typically devel-

oped using vendor specific versions of the Message Passing Interface (MPI) [60].

This allows applications to scale to the large number of processors due to the ex-

tremely low latency, which enables a high communication to computation ratio.

The processors are also homogeneous, which makes load balancing and distribution

easier. Typically resources are dedicated to a single user and batch job scheduling

is used to manage multiple users submitting jobs which are queued and executed in

order of priority and submission time.

Figure 3.1 shows the number of cores in the top 100 supercomputers in the

world based off their computing power rank in the top 500 list 1. The trend shows

dramatically how dependent the computing power of a supercomputer is based on

the number of computing cores, with the most powerful supercomputers having over

100,000 computing cores. As this trend continues, scalability will become one of the

1http://top500.org

28
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Figure 3.1: The number of computing cores in the top 100 supercomput-
ers based on their top 500 list rank.

key issues in developing effective software for supercomputing systems.

3.1.1 CCNI BlueGene at RPI

The supercomputing environment used in this work is RPI’s IBM BlueGene/L

system. Our experiments used one rack of 1024 nodes, each with two 700MHz Power-

PC 440 processors with 1GB RAM, for a total of 1TB RAM across the entire rack.

Inter-node communication is provided by a 3-dimensional torus with 175MBps in

each direction, and 1.5µusec latency. Each node can be run in non-virtual mode,

with one processor performing communication and the other computation, or in

virtual mode, with both processors performing computation and communication.

The current system consists of 5 partitions, one 512 node partition, and four 128

node partitions. This supercomputer provides a very high performance computing
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environment with which to run more traditional optimization algorithms, so they can

be compared to their asynchronous versions on more heterogeneous environments.

3.2 Grid Computing

Computing grids are named after the power grid, with a similar goal in mind.

The intention of grid computing environments is to allow scientists and developers

to easily access globally distributed computing resources, just as people easily access

distributed power sources through electrical outlets. Computational grids usually

span institutions with large geographical distances, and consist of clusters of high

performance processors with low latency connected by high bandwidth but high

latency connections between institutions due to the distances involved. A common

issue for computational grids is dealing with inter-institutional firewalls, scheduling

and accounting details.

Different software packages have been developed to aid in easily using compu-

tational grids. The Globus Toolkit [38] provides a set of tools and discovery services

for applications running on grids. These tools enable users to develop and deploy

applications and obtain information about resource availability. While not provid-

ing an execution environment, Globus does allow grid users to schedule and deploy

applications on a heterogeneous environment by providing the required informa-

tion to determine what type of binaries to run and when to run them. A common

management system used by Globus-enabled grids is Condor, which is a distributed

resource management system that is designed to support high-throughput comput-

ing by harvesting idle resource cycles [41].

In contrast to Globus, which provides a set of tools to enable grid computing,

Legion provides a virtual operating system which operates over a distributed set of

host computing nodes [64, 45]. Legion supports multiple programming languages

and uses a single unified object model and programming-level abstractions to hide

the complexity of the underlying grid from the user and simplify the software devel-

opment process. Legion also provides a web-based user interface for job scheduling,

monitoring and visualization.

Another approach to grid computing is to use distributed programming lan-
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guages and middleware. SALSA is a run-time system provides a distributed execu-

tion environment based on Java, which allows for execution on and communication

between heterogeneous hosts [89]. Additionally, the actor model [2], transparently

provides asynchronous distributed communication through message passing and mi-

gration. Malleability allows for even greater levels of dynamic reconfiguration by

allowing generic reshaping of applications [27, 25]. The actor model facilitates con-

current and deadlock resistent applications, in addition to language and library

based support for reconfiguration by transparent migration, and semi-transparent

malleability.

The Internet Operating System (IOS) [59] is a modular middleware that en-

ables autonomous reconfiguration of distributed applications. IOS is responsible for

the profiling and reconfiguration of applications, allowing an application’s computa-

tional entities to be transparently reconfigured at runtime. IOS interacts with appli-

cations through a generic profiling and reconfiguration interface, and can therefore

be used with different applications and programming paradigms, such as SALSA [24]

and MPI [58]. Applications implement an interface through which IOS can dy-

namically reconfigure the application and gather profiling information. IOS uses

a peer-to-peer network of agents with pluggable communication, profiling and de-

cision making modules, allowing it to scale to large environments and providing a

mechanism to evaluate different methods for reconfiguration.

3.2.1 RPI Grid

The heterogeneous grid environment tested used a Power-PC (PPC) cluster

and two Opteron (OPT) clusters. The PPC cluster consists of two single-processor,

two dual-processor and four quad-processor single-core Power-PC processors run-

ning at 1.7GHz. Each processor has 2GB RAM, for a total of 44GB RAM. Intra-

cluster communication uses 1GB/sec bandwidth, 100µsec latency Ethernet. The

first Opteron cluster (4x2 OPT) consists of 10 dual-core quad-processor machines,

and the second (4x1 OPT) consists of 4 single-core quad-processors, all running at

2.2GHz. The dual-core nodes have 32GB RAM, for a total of 128GB RAM, and the

single-core nodes have 16GB RAM for another 160GB RAM (192GB in all). The



32

OPT processors are running GNU/Linux version 2.6 as the operating system. Com-

munication within and between the OPT clusters is provided by 10GB/sec band-

width, 7µsec latency Infiniband, and 1GB/sec bandwidth, 100µsec latency Ethernet.

The PPC cluster and Opteron clusters are connected over RPI’s wide area network

forming the Rensselaer Grid testbed. The RPI Grid provides a moderately sized

and moderately heterogeneous environment to test asynchronous optimization.

3.3 Volunteer Computing Grids

Volunteer computing enables people across the world to volunteer their com-

puting resources such as processors, graphical processing units (GPUs) and hard

drive space. Popular examples include SETI@Home [5], which was generalized to the

Berkeley Open Infrastructure for Network Computing (BOINC) [6], IBM’s World

Community Grid2 and Stanford’s Folding@Home [65]. Users can even volunteer

non-standard computing units such as gaming consoles like the XBOX 360 and

Playstation 3. These computing frameworks not only provide thousands, or even

millions, of personal computers at the low price of running a server, but also generate

public interest in different scientific computing projects.

However these benefits do come at a price. The computing architectures in-

volved can be extremely different, located world-wide with dramatically different

latencies and are sporadically available at the volunteers whim. The result of this is

that the computing network is highly heterogeneous in terms of computing power,

architecture and latency, as well as extremely volatile as there is no guarantee that

results reported by a volunteered host are correct, or when they will be returned,

if ever. In addition, only client-server communication is allowed which even further

limits synchronization and work sharing between volunteers.

3.3.1 BOINC

BOINC was used in this thesis work for a variety of reasons. First, BOINC

currently has a large existing user base and it is easy for current users to join new

projects. All a user who has already installed the BOINC client needs to do to join

2http://www.worldcommunitygrid.org
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Figure 3.2: Handling of work units by the BOINC server software.

a new project is enter the project’s website to join and start participating. Second,

the code is open source and extensible, which allows easy modification to develop

asynchronous optimization methods.

The BOINC server side software consists of six services that handle work gen-

eration, communication with clients and result verification (see Figure 3.2). Tasks

generated for clients to compute are called work units. The six services work as

follows:

• The Transitioner determines which work units are ready to be validated or

need more results to be calculated. It will resend work to clients if a timeout

has elapsed or an error occured in calculating a result. If a work unit has been

assimilated, it flags that work unit as ready to have its associated files deleted.

• The Feeder maintains a queue of work units that are ready to be sent to
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clients.

• The Scheduler handles incoming and outgoing communication with clients.

New incoming results flag that work unit to be processed by the transitioner.

This spawns CGI scripts which handle connections with clients that send work

units from the ready-to-be-sent queue.

• The Validator is a daemon that verifies the reported results for work units.

When it determines that a certain quorum of results are the same, that work

unit is ready to be handled by the assimilator.

• The Assimilator handles work units that have been verified to be correct.

After a work unit has been assimilated, it will not be sent to clients again.

• The Work Generator is either a daemon or a script which generates new

work units to be sent to clients. After work units are generated they will

eventually place them in the ready to send queue.

3.3.2 MilkyWay@Home

The Milkyway@Home project was developed using BOINC as a volunteer

computing environment for this work. MilkyWay@Home currently consists of over

25,000 active hosts, with various operating systems and architectures. OS X, Linux

and Windows are supported, and the client application is open source so users can

compile their own versions for more obscure architectures. MilkyWay@Home also

supports General-Purpose computing for Graphical Processing Units (GPGPU) with

application versions for ATI and NVIDIA graphics cards [30]. The application’s run-

time is highly heterogeneous: it can take anywhere from around 20-30 seconds on a

high end GPU, to over 8 hours on older CPUs. Round trip time for calculated re-

sults can be even longer, as some computers disconnect midway through calculations

(which are checkpointed) and return results when they re-connect to the project.

This project provides a highly heterogeneous and truly massively distributed com-

puting environment with which to test asynchronous optimization.
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A Framework for Generic Distributed Optimization

(FGDO)

This chapter describes the framework developed for generic distributed optimization

(FGDO). The approach for the developement of this framework is described in

Section 4.1 and implementation details are discussed in Section 4.2.

4.1 Approach

A generic distributed optimization framework should enable scientists to easily

and efficiently analyze different models and hypotheses. A scientist should only need

to plug in the function to be optimized with distribution details, and the framework

should be able to use any appropriate search method and execution environment.

The framework should be able to support the large scale computing environments

available, whether supercomputers, a grid or the Internet. Likewise, fully asyn-

chronous, partially asynchronous and fully synchronous search methods should be

provided as some perform better for certain optimization problems and computa-

tional environments. The framework must support an easy interface between the

search methods and distributed evaluation environment, which will allow further re-

search into asynchronous optimization methods and distributed computing, as the

search methods and distributed evaluation environments can be developed simulta-

neously and plugged into each other using the framework.

The different types of massive scale computing environments can require sim-

ilar parallelism, albeit for different reasons. The main challenges in global opti-

mization for supercomputing environments lies in a scalable function evaluation

and effective partitioning of the problem across the available processors. If the

function evaluation is nondeterministic, then effective partitioning can be especially

difficult, and processing will only proceed as fast as the most expensive partition.

The challenges in grid computing, apart from scalability lie in handling firewalls

between clusters and the heterogeneity of the different clusters. Due to the issue

35
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Figure 4.1: A two level parallelism strategy for computing function eval-
uations. Each worker can calculate the function to be op-
timized in parallel using MPI, compose the result and then
report it to the master via the appropriate communication
protocol.

of firewalls and heterogeneity of architecture and operating systems between clus-

ters, parallelizing function evaluations over multiple clusters can be difficult and

inefficient. The availability of the different clusters also presents challenges if they

become unavaialble during the course of the optimization. Lastly, on internet com-

puting frameworks, such as BOINC, parallelizing the function evaluation between

different volunteer computers is highly difficult, and also requires redundancy in the

case that any computer becomes unavailable. Additionally, the scalability of the

optimization method is critical due to the large amount of volunteers that can be

processing function evaluations concurrently.

All these issues can be addressed by a generic global optimization framework

that utilizes two seperate levels of parallelism, the first in calculating multiple func-
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tion evaluations in parallel and the second in parallelizing these function evaluations

(see Figure 4.1). This dual layer parallelism is an extension to previous work on

GMLE, a generic maximum likelihood evaluator, that unifies GMLE’s previously

presented asynchronous and synchronous modes [26, 87, 28, 29].

Where in the previous versions either multiple work units were evaluated asyn-

chronously or a single function evaluation was calculated in parallel, this new dis-

tributed evaluation framework supports both which improves its scalability and

efficiency. For example, on a supercomputer, this parallelism strategy allows the

distributed evaluation environment to allow multiple parallelized function evalua-

tions at maximum scalability to execute concurrently. Similarly, each cluster on a

grid can perform parallel function evaluations asynchronously with other clusters,

with the only inter-cluster communication coming from function evaluation requests

which tend to be quite small. While an internet computing environment can have

each volunteered computer process its own individual function evaluations.

Evaluations can either be pulled by workers, as done by the asynchronous

search strategies discussed in Chapter 5 or pushed to workers while the search

method blocks waiting for a result, as is required by synchronous search strategies.

4.2 FGDO Implementation

The FGDO implementation provides a set of three interfaces for use by devel-

opers. The first is an interface for developers of the optimization function to specify

it in a way that allows it to be distributed (shown in Table 4.1). The second al-

lows different optimization methods to easily perform synchronous or asynchronous

evaluations of any optimization function developed with the optimization function

interface (shown in Tables 4.2 and 4.3). The last is an interface that allows users of

FGDO to easily run implemented search methods. The following sections describe

these three interfaces, respectively.

4.2.1 Implementing Optimization Functions

The optimization function interface allows developers to specify how workers

are created, how the optimization function is distributed amongst them, and how
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Scientific Model Worker Interface

void read data (int rank, int max rank)

void calculate integral
(double[] params, int n params int rank,
double[] &result, int &result length)

void compose integral
(double[][] results, int n results, int result length,
double[] &integral)

void calculate likelihood
(double[] params, int n params, int rank,
double[] &result, int &result length)

void compose likelihood
(double[][] results, int n results, int result length,

double &likelihood)

Table 4.1: Scientists provide the read data, calculate likelihood, com-
pose likelihood functions for use by workers in the dis-
tributed evaluation framework. calculate integral and com-
pose integral are optional, only required if an additional inte-
gral calculation needs to be performed in parallel.

Synchronous Distributed Evaluation Framework Interface

double evaluate (double[] params, int n params, double &fitness)

double[] evaluate multiple
(double[][] params, int n params, int n sets,

double[] &fitness)

Table 4.2: A search method can request evaluations to be performed syn-
chronously by evaluate or evaluate multiple which block until
the evaluations have been performed and the fitness reported.

Asynchronous Distributed Evaluation Framework Interface

void enqueue (double[] params, char[] metadata, int n params)

void enqueue multiple
(double[][] params, char[][] metadata, int n params,

int n sets)

void result handler
(double[] params, char[] metadata, int n params,

double fitness)

Table 4.3: Search methods can request for evaluations to be evaluated
asynchronously with enqueue or enqueue multiple. An asyn-
chronous search method must implement a result handler
function which will process reported function evaluations.
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the result is composed, as shown in Figure 4.1. Worker initialize with the read data

function, which is executed in parallel across all subprocessors using MPI if the

worker is parallelized. Otherwise, individual workers on BOINC call the read data

and are initialized with the data passed to them by the BOINC framework.

Fitness of parameter sets is calculated using the calculate likelihood and cal-

culate integral functions (if needed). If worker calculations are done in parallel,

the results from each process are combined using the compose likelihood and com-

pose integral functions. Workers perform work requests and report results via MPI

on a supercomputer or unfirewalled grid, TCP/IP on a firewalled grid, or using the

work requesting framework built into BOINC clients.

4.2.2 Implementing Optimization Methods

Optimization methods can enqueue parameter sets to be evaluated asyn-

chronously with the enqueue work or enqueue multiple functions and results from

these will be used to call the result handler function specified by the set result handler.

For grids and supercomputers, work requests can be queued, which can improve

performance by having parameter sets that need evaluation be pushed to available

workers as soon as they are created. On BOINC, results need to be enqueued so

they can be sent to clients via the BOINC scheduling system, when clients request

work.

Alternatively, optimization methods can evaluate parameter sets synchronously

with the evaluate or multiple parameter sets in parallel, for scalable calculation on

supercomputers or multiple clusters on a grid, with the evaluate multiple function.

Both of these function calls will block until the parameter sets specified have been

evaluated.

4.2.3 Executing Distributed Optimization

A number of different synchronous and asynchronous optimization methods

have been implemented using FGDO. Section 4.2.3.1 describes how to run the asyn-

chronous optimization methods and Section 4.2.3.2 describes how to run the syn-

chronous optimization methods.
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Asynchronous Search Methods

void create search

(char[] search name, int number arguments,
char[][] arguments, int number parameters,
double[] initial point, double[] step size,
BOUNDS* bounds)

void read search (char[] search name, void* &search data)

void generate parameters
(char[] search name, void* search data,
SEARCH PARAMETERS* search parameters)

void insert parameters
(char[] search name, void* search data,
SEARCH PARAMETERS* &search parameters)

Table 4.4: Multiple asynchronous searches are managed through these
four methods by the search manager. New parameters sets
to be evaluated are generated through generate parameters
and results are inserted to managed searches with in-
sert parameters.

4.2.3.1 Asynchronous Optimization

Asynchronous differential evolution, genetic search and particle swarm opti-

mization were implemented using FGDO for both MPI and BOINC. Asynchronous

searches must implement the following methods, shown in Table 4.4. These are

used to create an ASYNCHRONOUS SEARCH struct which is used by an Asyn-

chronous Search Manager to control the operation of asynchronous searches. There

is an implementation of asynchronous search managers for both MPI and BOINC,

and these can control multiple asynchronous searches simultaneously.

Asynchronous searches need to implement read search, create search, gener-

ate parameters and insert parameters methods. create search starts a new search

with the given parameters and name. read search reads a checkpointed search,

which allows the asynchronous search manager to keep persistent information on

long running searches, which is especially important for the BOINC platform. Im-

plemented searches are expected to checkpoint themselves when created and dur-

ing the course of their optimization, so they can be restarted with the read search

method. generate parameters requests new parameter sets to be evaluated from

the search, and insert parameters sends parameters and fitness values to the asyn-

chronous search to update the population. Asynchronous search methods must also

implement a get search method which provides the ASYNCHRONOUS SEARCH
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Synchronous Optimization Methods

synchronous newton method
(int number arguments, char[][] arguments,
int number parameters, double[] initial parameters,
double[] step size)

synchronous gradient descent
(int number arguments, char[][] arguments,
int number parameters, double[] initial parameters,
double[] step size)

synchronous c gradient descent
(int number arguments, char[][] arguments,
int number parameters, double[] initial parameters,
double[] step size)

Synchronous Optimization Arguments

-iterations # Specifies the number of iterations performed.

-min threshold #
Specifies the minimum change in fitness for the
line search.

Table 4.5: This table shows the function calls for starting the syn-
chronous optimization methods and what their different argu-
ments are. initial parameters specfies where the search starts,
and step size determines the step size which the gradient and
hessian are calculated with.

struct that is used by asynchronous search manager. This is done using a reg-

ister search(ASYNCHRONOUS SEARCH search) method. BOUNDS is a struct

that contains the range that parameters are valid within.

4.2.3.2 Synchronous Optimization

Gradient descent, conjugate gradient descent and the newton method have

been implemented using the synchronous implementation of FGDO for MPI. Ta-

ble 4.5 shows how these search methods can be run and the different arguments for

determining how long they run.



CHAPTER 5

Asynchronous Global Optimization

This chapter describes implementing asynchronous versions of differential evolution,

genetic search and particle swarm optimization, as described in Sections 2.1, 2.2

and 2.3, respectively. Figure 5.1 presents a generic asynchronous search methodology

for massive scale computing. A population of parameter sets is kept and used to

generate new parameter sets which are placed in a work queue. Clients connect

asynchronously and request parameter sets to evaluate from this work queue. New

parameter sets are generated using different operations on the population when

they are needed as the queue runs low. This can be used to perform any of the

synchronous methods described in Chapter 2 so long as the results are processed

Figure 5.1: A generic asynchronous search methodology for massive scale
computing systems. A population of the best known indi-
viduals and their fitness is stored and used to generate new
individuals to evaluate. These unevaluated individuals are
kept in a work queue which workers request work from. The
work queue can request more work to be generated from the
population (at any time) to ensure that work requests are
answered. Evaluated individuals are used to evolve the pop-
ulation when their results are reported by the workers.
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synchronously – they are reported in the same order that they were generated.

Otherwise, the general way for extending the asynchronous search is through using

different types of operators to generate new parameter sets to place on the work

queue. For example, in genetic search or particle swarm optimization, the succesive

generation or particles would be placed on the work queue, and when these results

were reported the population would be updated.

The following sections describe modifications to differential evolution, genetic

search and particle swarm optimization to enable them to perform asynchronously

using the discussed strategy.

5.1 Asynchronous Genetic Search

Asynchronous genetic search can most easily model traditional genetic search

and is extremely similar to steady state genetic search. The main difference is that

instead of one parameter set being generated at a time, multiple are generated and

evaluated asynchronously. In fact, asynchronous genetic search as performed by

FGDO on the BlueGene using all processors as a single worker is no different than

steady state genetic search.

Using this strategy, when new members need to be generated, different re-

combination operators are applied to randomly selected members of the population.

When the fitness of a member is reported, it is then inserted in order into the pop-

ulation and the worst member of the population is then removed if the population

size is greater than a fixed value. The member removed can be the member just

reported. The different recombination operators used in this work were mutation,

average, double shot and probablilistic simplex. Children are generated using these

recombination operators as follows:

• Mutation works the same as in traditional genetic search, one parent is se-

lected at random from the population, and one parameter is mutated. Each

parameter typically has defined maximum and minimum values, and the mu-

tation takes place anywhere within this range.

• Average is also a standard operator in traditional genetic search. Two parents
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are selected at random from the population, and a child is generated where

each parameter is the average of its parents parameters.

• Double shot is an extension to the average operator that provides an improve-

ment by converging faster to local minima and also adding an exploratory

component. Two parents are selected at random, but instead of one child,

three are generated. The first child is the average of the two parents, the

second lower child is calculated as follows:

loweri = betteri − (averagei − betteri) (5.1)

and the third child, higher is calculated by:

higheri = worsei + (worsei − averagei) (5.2)

where the ith parameter of the lower and higher children are calculated us-

ing the ith parameter of the better parent and worse parent respectively. In

essence, the lower and higher children are generated outside of the parents,

equally distant from the average and the distance between either parent and

the child outside of it is the same as to the average.

• Probabilistic simplex randomly generates a child along a line calculated

using the simplex method. Different from other operators, this approach can

use a variable number of parents. n parents are selected at random and a

line is created through the worst parent and the centroid (or average) of the

remaining parents. By selecting a random number, rand, between two limits,

l1 and l2, the ith parameter of the child is calculated by:

ci = worsti + rand ∗ (centroidi − worsti) (5.3)

Using this equation, a random value of 1.0 would generate a child that is the

centroid, 0 would be the worst, and 2.0 would be the reflection of the worst

point through the centroid. For the astronomy application, the limits that
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Figure 5.2: A comparison of the different recombination operators for
synchronous and asynchronous genetic search.

have been tested are l1 = −1.5, l2 = 1.5 and l1 = −0.5, l2 = 2.0, with the

second set providing faster convergence.

Figure 5.2 compares the different recombination operators for genetic search.

For all searches mutation was used 30% of the time and the specified recombination

operator otherwise. IGS on the BlueGene is standard iterative genetic search and

used the average recombination operator. AGS on the BlueGene performs identically

to steady state genetic search as every function evaluation was calculated in parallel

on the BlueGene. The MilkyWay@Home project was used to calculate the BOINC

results, as this volunteer computing project was highly heterogeneous and faulty, it

was not possible to run iterative genetic search using it. This figure shows that using

an asynchronous strategy improves convergence rates over the traditional iterative

strategy, and that using the double shot and simplex operators provide even more

benefit.
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5.2 Asynchronous Particle Swarm Optimization

Particle swarm optimization is another population based global optimization

method, which makes it easily applicable to the asynchronous search framework

presented in this chapter. However, as opposed to genetic search, especially the

steady state variant, particle swarm is much more iterative in nature. Where in

genetic search, individuals are easily created and removed from the population,

particle swarm takes a fixed number of particles and updates these iteratively by

moving them in the same previous direction and pulling them towards the globally

best position found, and each particles’ locally best position found. Because of this,

for the particle swarm method to be used by the asynchronous search framework,

some modifications need to be made.

Asynchronous particle swarm works as follows. The search is initialized by

having positions of particles generated at random with zero velocity until there has

been a fitness reported for a possible position of each particle. The server keeps track

of each particle’s current position and current velocity, generating new positions for

particles in a round-robin fashion when work is requested. The newly generated

particle is generated identically to the original particle swarm optimization algorithm

described in Section 2.3, using the current locally best known position for that

particle and the current globally best known position. As opposed to the approaches

discussed in the related work (see Section 2.3) that only process one position per

particle at a time, this approach continues to generate new future positions for

particles and send them to workers, updating a particles current position without

knowing the fitness of the previously generated points. Using this approach, multiple

positions for a single particle can be calculated concurrently, and the search does

not need to wait for un-reported fitnesses. When a worker reports the fitness of

a particle, it also reports the position and velocity of the particle reported. If

the fitness of the reported particle is better than that particle’s locally best found

position, that position is updated, and the velocity of the particle is reverted to the

reported velocity. If the fitness is the globally best found fitness, the position of the

global best particle is updated as well.

In this way, asynchronous particle swarm performs nearly identical to tradi-
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tional particle swarm when the number of processors used is less than the number of

particles and there are no faults, however it can also scale to very large systems by

letting workers evaluate possible future positions of a particle. For a large number of

workers, the search is more exploratory, examining many possible future positions of

a particle assuming the local and global best positions have not been updated. The

approach is also resilient to unreported results, as more future positions of a particle

are generated until one is found which improves that particle’s locally best found

position. Additionally, as many generated positions for particles do not improve

the global best fitness of the swarm, or a particle’s local best fitness, this strategy

in a sense lets the search progress faster by generating multiple future positions of

particles which can be evaluated concurrently.

5.3 Asynchronous Differential Evolution

Differential evolution has similarities between both genetic search and particle

swarm optimization, utilizing multiple parents and recombination (reproduction in

genetic search), as well as local and global population information (cognitive and

social knowledge in particle swarm optimization). Similar to particle swarm opti-

mization, the current value of an individual is used to generate that individual’s

next value, however differential evolution uses a monotonically improving strategy

on an individual basis.

Differential evolution also has a large suite of different equations to generate

the next iteration of an individual (see Section 2.1), which shows varying suitability

for different test equations. The rand/1/bin and best/1/bin variants, for example,

seem particularly robust with quick convergence for a wide range of test functions

in both traditional single population DE [62] as well as parallel DE with multiple

populations [88]. However, both these approaches have iteratively updated popu-

lations, so it is an open question whether this will hold true with asynchronously

updated individuals – or if other variants will either be less influenced by asyn-

chronous updates or gain benefit from the increased search area that asynchrony

can provide.

Both best/N/bin and rand/N/bin variants of differential evolution were imple-
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mented for the asynchronous version. The asynchronous algorithm works similarly

to asynchronous particle swarm. New members are generated in a round robin fash-

ion from the population, using the specified recombination strategy (as described

in Section 2.1). Unlike particle swarm optimization, individuals are not changed

when a new member is generated. Individuals are only updated when a member

is reported for that individual with a better fitness value. In this way the indi-

viduals evolve with monotonically improving values, as with traditional differential

evolution.



CHAPTER 6

Simulating Asynchronous Optimization

While there are different computationally intensive applications available that pro-

vide incentive to use this kind of search method and serve as a proof of concept (for

example the MilkyWay@Home project [71]) utilizing these to examine the different

aspects of asynchronous search is far from exhaustive. However, there are a large

number of computationally inexpensive test functions that have challenging search

spaces with multiple local minima – for example the Ackley, Griewank, Rastrigrin,

and Rosenbrock functions as found in related work [57, 31, 9]. The sphere test

function was also used as an easy to solve well formed optimization problem with a

single minimum. The optimization test functions used are as follows:

Ackley(x,y)
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Figure 6.1: The Ackley test function with two input parameters (x, y).
This test function has many local minima and a single global
minimum at 0,0. Unlike the Griewank and Rosenbrock func-
tions, it converges sharply to the global minimum with a flat
external surface.
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Griewank(x,y)
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Figure 6.2: The Griewank test function with two input parameters (x,
y). This test function has many local minima and a single
global minimum at 0,0. This has a shallow curvature with less
pronounced peaks and valleys than the Rosenbrock function.

• The Sphere function is a simple test function. It has a single minimum

with fitness 0 when all input parameters are 0 (see Figure 6.5). The range of

parameters used for this optimization problem was from -100 to 100.

fsphere(~x) =
N

∑

i=1

~x2
i (6.1)

fsphere(0, ..., 0) = 0 (6.2)

• The Ackley function is a more challenging test function with many local min-

ima. There is a single global minimum with fitness 0 when all input parameters

are 0 (see Figure 6.1). It becomes flat near the edges of the problem space

and converges sharply to the global minimum. The range of parameters used

for this optimization problem was from -32 to 32.
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Rastrigin(x,y)
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Figure 6.3: The Rastrigin test function with two input parameters (x,
y). This test function has many local minima and a single
global minimum at 0,0. It has a steeper curvature with more
pronounced peaks and valleys than the Griewank function.

fackley(~x) = 20 + e − 20e−0.2
√

1

N

PN
i=1

~x2

i − e
1

N

PN
i=1

cos(2π~xi) (6.3)

fackley(0, ..., 0) = 0 (6.4)

• The Griewank function is another challenging test function with many local

minima. It has a shallow curvature and a single global minimum with fitness

0 when all input parameters are 0 (see Figure 6.2). The ranges of parameters

used for this optimization problem was from -600 to 600.

fgriewank(~x) =
1

4000

N
∑

i=1

~x2
i −

N
∏

i=1

cos(
~xi√

i
) + 1 (6.5)

fgriewank(0, ..., 0) = 0 (6.6)

• The Rastrigin function is similar to the Griewank function. However, it has
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Rosenbrock(x,y)
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Figure 6.4: The Rosenbrock test function with two input parameters (x,
y). This test function has a long flat valley with a single
minimum at 1,1.

Sphere(x,y)
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Figure 6.5: The sphere test function with two input parameters (x, y).
This is a simple test function with a single minimum at 0,0.
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a less shallow curvature and more pronounced peaks and valleys. The global

minimum has a fitness of 0 when all input parameters are 0 (see Figure 6.3.

The ranges of parameters used for this optimization problem was from −2π

to 2π.

frastrigin(~x) =
N

∑

i=1

[~x2
i − 10cos(2π~xi) + 10] (6.7)

frastrigin(0, ..., 0) = 0 (6.8)

• The Rosenbrock function has no local minima, however it has a very flat

valley with only a single minimum. The minimum has a fitness of 0 when all

input parameters are 1 (see Figure 6.4). The ranges of parameters used for

this optimization problem was from -30 to 30.

frosenbrock(~x) =
N

∑

i=1

[~xi+1 − ~x2
i )

2 + (~xi − 1)2] (6.9)

frosenbrock(1, ..., 1) = 0 (6.10)

To establish more stringent analysis of asynchronous search strategies and the

effect of heterogeneity, the optimization framework presented in Chapter 4 was ex-

tended with a simulated computing environment that can be used in place of the

different distributed computing environments. This environment can simulate asyn-

chrony and quickly evaluate different asynchronous search methods using various

test functions. The simulated computing environment requests parameter sets to

be evaluated then returns those results after a simulated amount of time (or not at

all). In addition to testing the search methods on functions known to be difficult

to find a global optimum for, this also provides a method to evaluate the effect

of asynchrony in a controlled environment. This allows the asynchrony to be con-

trolled, for example, the number of updates to the population that occur before the

result of a parameter set is reported can be generated through different probability

distributions and the minimum and maximum update times for parameter sets can

be fixed. It is also possible to have the simulation discard parameter sets, simulating
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Figure 6.6: The simulated evaluation framework. A simulated environ-
ment is used instead of different distributed computing en-
vironments. Computed results are stored in a heap and in-
serted into the population in order of their simulated report
time.

failures.

The simulation framework consists of two basic parts (see Figure 6.6). The

first allows users to specify templates which control the amount of asynchrony and

fault rates in the system. Users can specify the amount of time it takes for results

to be calculated and the number of faults that occur. The amount of time it takes

for a result to be calculated is probabilistic, specifying the percentage chance for

a result to take the time between a minimum and maximum given time and a

probabilistic distribution function. Currently, uniform and gamma distributions are

implemented. The gamma distribution was chosen because it typically is used to

model waiting times, which is ideal for this type of simulation. Multiple distributions

can be used, which is important in modeling BOINC-like environments which may

have two separate result trip time distributions if different types of hardware are

used, such as CPUs and GPUs (see Section 8.1).
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The other part is the simulated evaluation environment. The simulations run

with a specified number of workers, allowing the size of the simulated computing

environment to be modified. A heap is used to handle results that are currently

being calculated by the simulated environment. This allows insert and removal

of results to be done in O(log(n)) time. The heap is initially populated with a

number of results equal to the number of workers and each is given a report time

that is calculated using the specified distributions in the simulation template. If

a result is determined to be faulty it is assigned a random fitness. Following this,

the minimum value is removed from the heap and inserted into the search and the

current simulation time is set to the report time of that result. A new result is

then generated with a new report time, the current time plus a new time generated

by the simulation template, and inserted into the heap. This essentially simulates

workers reporting a result and requesting a new result.

This simulation framework can represent all the massive scale computing en-

vironments as described in Chapter 3. Clusters, supercomputers and even GPUs

can be simulated by having a large number of workers and a static result report

time. Grids can be simulated by having multiple static report times, each having a

probability corresponding to the proportion of processors in each cluster of the grid,

and a report time equal to the calculation time on those processors plus the latency

to that cluster. Internet computing systems can be simulated by using multiple

probability distribution functions representing the different types of hardware used

and estimated report times for those volunteers.



CHAPTER 7

Improving Validation Techniques

As volunteer computing systems are open to the public, there always is the risk of

malicious users or bad hardware returning false results. This can also be a concern

with applications that may occasionally return incorrect results or applications with

very high reliability requirements. Typical BOINC applications require every work

unit to be verified, and this behavior can be enabled easily within the BOINC

architecture. However, validation of every work unit in an asynchronous search

setting leads to a large amount of wasted computation.

Asynchronous searches only progress when new individuals are inserted into

the population. Individuals with lower fitness are simply discarded. Table 7.1

shows the average number of inserts done over 20 different searches done on Milky-

Way@Home using data from Sagittarius stripe 22. The number of inserts for both

the first and second 25,000 reported results are shown for asynchronous genetic

search, particle swarm optimization and differential evolution (using both best and

random parent selection). It becomes apparent from this information that only a

small number of results ever make it into the population, less than 4% in the first

half of the search and less than 2% in the second half. Additionally, as the searches

progress it becomes more difficult to find new good search areas and the number of

evaluated individuals inserted into the population decreases.

Additionally, through examining result logs at MilkyWay@Home, less than

Search 0...25,000 Evaluations 25,001 ... 50,000 Evaluations

AGS 701 434
APSO 476 208
ADE/Best 551 221
ADE/Rand 533 161

Table 7.1: The average number of individuals inserted into the popula-
tion during the given number of evaluations, averaged over 20
searches with different initial parameters.
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Figure 7.1: The asynchronous optimization strategy updated with vali-
dation. Results are stored in a validation queue and only
inserted into the population when they are verified. When
work is generated, individuals are copied from the verifica-
tion queue at rate v, and through recombination on the search
population otherwise.

1% of verified results are found to be invalid. If every result is validated with a

minimum quorum of one, this means that at least 45% of the work units computed

are validating results that won’t be inserted into the population and would have been

discarded anyways. By ignoring the small number of results that when reported

would not be inserted into the population, but would be after being validated to

something different which potentially could be inserted into the population, we

can dramatically increase the amount of useful work being done. However, it is

important to note that the search will not progress until better individuals are

inserted into its population, so the longer it takes to verify good results, the slower

the search will progress. If too many resources are devoted to the evaluation of new

results, the number of results waiting validation might grow faster than they are

validated or the search may progress extremely slow.

Figure 7.1 describes the changes made to the asynchronous optimization strat-
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egy used for validation. Results that could potentially improve the search population

are stored in a validation queue. When new work is generated, individuals in the

validation queue are copied and sent out at a verification rate, otherwise new indi-

viduals are sent as typically generated by the search from the population. Only after

an individual in the verification queue has been verified by reaching a quorum is it

removed from the verification queue and inserted into the search population. This

strategy makes it possible to tune the amount of resources devoted to verification

by increasing or decreasing the verification rate.

To implement this, the BOINC assimilator and validator needed to be merged,

as in the standard BOINC package they are separate daemons (see Section 3.3.1).

In the asynchronous optimization framework described in Chapter 4, search popu-

lations are controlled by the assimilator which generates new work units from them.

These daemons needed to be merged to allow the validator access to the population

data in order to determine which individuals need to be verified. The merged assim-

ilator and validator not only keep information about various searches populations,

but also their queues of work units awaiting verification. A tunable verification

rate, v, determines the percentage of work units that are generated to verify results

waiting in the queue.

The verification queue can be optimized differently for asynchronous genetic

search than for asynchronous particle swarm optimization and differential evolution.

In order to prevent the verification queue from growing too rapidly, especially in the

early stages of the search where almost every returned result needs to be verified due

to an initially empty population, the verification queue can be trimmed whenever

a new result is verified. In the case of genetic search, when a newly verified result

is inserted into the population, any results waiting to be verified with fitness lower

than the worst value in the population (assuming the population is full) can be

removed, as they will not be inserted into the population even if they are verified.

For asynchronous particle swarm and differential evolution, a verification queue can

be kept for each individual, so when a result is verified, all other results with lower

fitness waiting in an individual’s queue can be removed as they are no longer needed.



CHAPTER 8

Results

Asynchronous optimization was examined using both simulated and real massive

scale computing environments. Section 8.1 details the different simulated environ-

ments used and how asynchronous optimization was affected by heterogeneity and

scalability in these environments. Section 8.2 presents results for using asynchronous

optimization on the MilkyWay@Home volunteer computing project as well as the

effect of the validation strategy presented in Chapter 7.

8.1 Simulation Results

Three different types of environments were simulated to evaluate asynchronous

optimization: a homogeneous environment representative of GPUs or supercomput-

ers in Section 8.1.2, a heterogeneous environment constructed to measure the effect

of widely varying latencies in Section 8.1.3, and a simulated volunteer computing

environment modeled after the MilkyWay@Home volunteer computing project in

Section 8.1.4. The different parameters to the optimization methods and the pa-

rameters used by the test functions are described in Section 8.1.1.

8.1.1 Optimization and Test Function Parameters

While the population size varied for synchronous optimization, for the asyn-

chronous optimization methods examined in this chapter, identical search parame-

ters were used unless otherwise noted. A population size of 100 was used for all the

different search types. For genetic search, a mutation rate of 0.3 was used, and the

simplex recombination method was used, with l1 = −1.5, l2 = 1.5 and 2 parents.

Particle swarm used an inertia weight, ω = 0.5 (as described in Section 2.3 and

Equation 2.14) and c1 = c2 = 2.0. Differential evolution used binomial recombina-

tion with either best or random parent selection, one pair, a recombination scale of

0.5 and a recombination rate of 0.5.

For the different test functions, the Ackley and Sphere problems were opti-
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mized using 10 search parameters, while the Griewank, Rastrigin and Rosenbrock

problems used 5 search parameters. These test functions are described in detail in

Chapter 6.

8.1.2 Simulating Homogeneous Environments

Simulation of a homogeneous environment was done by using a fixed report

time for all results. This imitates executing optimization strategies on homogeneous

environments like clusters, supercomputers and even GPUs where all function evalu-

ations will complete at the same time. Using this environment, the heap used by the

simulation essentially acts in a first-in-first-out manner for an asynchronous search

or will complete a population of a synchronous search at the same time, assuming

the population size is equal to the number of simulated workers.

Using this simulated environment it was possible to compare the scalability

of synchronous and asynchronous searches. To simulate a synchronous search on a

homogeneous environment, the population size was set to the number of simulated

workers, while for asynchronous search the population size was fixed at 100. Fig-

ures 8.1, 8.2, 8.3, 8.4, and 8.5 show average the number of iterations taken for 10

searches to solve the Ackley, Griewank, Rastrigin, Rosenbrock and Sphere functions

(described in Chapter 6) for both synchronous and asynchronous search. A solution

was said to be found when the best fitness in the search was within 10−10 of the

minimum function value, which is 0 in the case of all the test optimization functions.

An iteration was the amount of time it took for every simulated worker to report

their result (which is identical on a homogeneous environment). In this way the

number of iterations to solution was equal to the number of times results were sent

out to all processing units and then reported back to the master in a homogeneous

environment. Using iterations gives both an idea of the time to solution and the

number of evaluations taken to reach the solution, as the time to solution is the

number of iterations multiplied by the function evaluation time plus latency, and

the number of evaluations to solution is the number of workers times the number

of iterations. For all these figures, the number of simulated workers was increased

from 100 to 100, 000.
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For these figures, a lack of data points means that the particular search could

not find a solution, except for genetic search with a population size 100, 000 which

simply performed too slow to find a solution as inserts in genetic search take

O(log(n)) time, as opposed to O(1) time for particle swarm and differential evo-

lution. When a search could not find a solution to a problem, this was due to the

population being stuck in local minima and not being able to escape them to find

the global minima.

It is interesting to note that for the Ackley, Rastrigin and Rosenbrock func-

tions, neither asynchronous nor synchronous differential evolution using the best

member as a parent (ADE/best) could find the solution with a population size of

100, however once the population size was increased to 1, 000 for synchronous search

it was possible to find a solution. For these optimization problems, a population

size of 1000 was used for ADE/best.

In general for all the test functions, asynchronous search scaled significantly

better than synchronous search, which either took a similar number of iterations

to reach a solution as the number of workers increased, or actually took longer to

reach a solution with more workers. Of all the synchronous searches, particle swarm

optimization seemed the best able to scale to larger environments, however except

for PSO in the Rosenbrock test function, asynchronous search took less iterations

to reach a solution as the size of the environment increased.

8.1.3 Simulating Heterogeneous Environments

Simple heterogeneous environments were simulated to see the effect an in-

creased variety of result report times had on the number of evaluations and time

to convergence. A fixed computation time of 1 was assigned for each result, and a

reporting time simulating heterogeneous latency was added to this. For each search,

10, 000 simulated workers were used. The report time range was increased from 1

to 1, 000 and for each result the report time was generated uniformly between 0 and

this range, given the fixed computation time c and the maximum report time range

lrange, and a uniformly distributed random variable between 0 and 1, r, the report

time is calculated:
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Figure 8.1: Number of iterations to solution for different synchronous
and asynchronous optimization strategies for the Ackley test
function. Asynchronous searches used a fixed population size
of 100, except for ADE/best which required a population size
of 1000. Synchronous searches used a population size equal
to the number of processors.
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Figure 8.2: Number of iterations to solution for different synchronous
and asynchronous optimization strategies for the Griewank
test function. Asynchronous searches used a fixed population
size of 100, while synchronous searches used a population size
equal to the number of processors.
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Figure 8.3: Number of iterations to solution for different synchronous
and asynchronous optimization strategies for the Rastrigin
test function. Asynchronous searches used a fixed population
size of 100, except for ADE/best which required a population
size of 1000. Synchronous searches used a population size
equal to the number of processors.
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Figure 8.4: Number of iterations to solution for different synchronous
and asynchronous optimization strategies for the Rosenbrock
test function. Asynchronous searches used a fixed population
size of 100, except for ADE/best which required a population
size of 1000. Synchronous searches used a population size
equal to the number of processors.
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Figure 8.5: Number of iterations to solution for different synchronous
and asynchronous optimization strategies for the Sphere test
function. Asynchronous searches used a fixed population size
of 100, while synchronous searches used a population size
equal to the number of processors.
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time = c + r ∗ lrange (8.1)

Figures 8.6, 8.7, 8.8, 8.9 and 8.10 show how the different asynchronous opti-

mization methods performed with the five test functions as the range of the sim-

ulated latency increased. The results show the average values from 10 different

searches. As expected, the time to solution increased as the report time of the

results increased, however interestingly the number of evaluations taken to reach

a solution decreased as the heterogeneity increased. For some searches this effect

tapered off after reaching a certain result report time range, however in general

further heterogeneity did not begin to increase the number of evaluations taken to

reach a solution.

8.1.4 Simulating MilkyWay@Home

In order to test the scalability of asynchronous optimization on more realistic

environments, the time to report results was examined using data from the Milky-

Way@Home project. Figure 8.11 shows the frequency of report times for a sample of

10, 000 results reported to the MilkyWay@Home server. The different results were

separated into both GPU and CPU results, as GPUs can perform the calculation

orders of magnitude faster than CPUs. The result report time is the time it took

from the moment a parameter set was generated to the time the parameter set was

reported with a result and attempted to be inserted into the search population.

The different points on the chart were found by calculating the frequency of a result

being reported in 250 second bins, and dividing this frequency by the total number

of data points and the bin size.

It was possible to fit the frequency GPU and CPU result times using the

gamma distribution (see Equation 8.2), which is commonly used in probability to

model waiting times. The gamma distribution function for a random variable x takes

two positive input parameters, a shape parameter α and an inverse scale parameter

β:

gamma(x; α, β) =
βα

Γ(α)
xα−1e−βx (8.2)
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Figure 8.6: Number of evaluations and simulation time to solution for
the Ackley test function on a simulated heterogeneous en-
vironment. Results were reported using a base latency of 1
plus a uniformly distributed time within the given range.
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Figure 8.7: Number of evaluations and simulation time to solution for
the Griewank test function on a simulated heterogeneous en-
vironment. Results were reported using a base latency of 1
plus a uniformly distributed time within the given range.
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Figure 8.8: Number of evaluations and simulation time to solution for
the Rastrigin test function on a simulated heterogeneous en-
vironment. Results were reported using a base latency of 1
plus a uniformly distributed time within the given range.
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Figure 8.9: Number of evaluations and simulation time to solution for
the Rosenbrock test function on a simulated heterogeneous
environment. Results were reported using a base latency of
1 plus a uniformly distributed time within the given range.
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Figure 8.10: Number of evaluations and simulation time to solution for
the Sphere test function on a simulated heterogeneous en-
vironment. Results were reported using a base latency of 1
plus a uniformly distributed time within the given range.
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Γ(α) = (α − 1)!, if α is a positive integer (8.3)

Figure 8.11 gives the gamma distributions used to model the GPU and CPU

wait times. These gamma distributions were used to randomly generate result times

with those distributions. As both α and β were integers, random result times could

be generated with those distributions as follows:

randgamma(α,β) =
1

β
Σα

i=1(ln Ui) (8.4)

Where Ui are all uniformly distributed on (0,1] and independent.

As 40% of the results received by MilkyWay@Home were GPU results, the

simulation generated result report times using gamma(3, 1000) 40% of the time and

with gamma(2, 12000) otherwise. This allowed the simulation to test the scalability

of asynchronous optimization on a more realistic heterogeneous volunteer computing

environment.

Figures 8.12, 8.13, 8.14, 8.15 and 8.16 show the simulated time to solution and

number of evaluations to solution for the five test functions using result times gen-

erated with the above gamma distributions. The results show the average results

for 10 searches. As expected, in general as the number of simulated workers in-

creased, the number of evaluations to solution increased because more workers were

computing results from earlier versions of the evolving population. However, as the

number of workers increased, the time to solution decreased, which is a promising

result because it means that in a realistic environment, asynchronous search still

scales well to very large environments.

Apart from this, a few very interesting things happened in the MilkyWay@Home-

like environment. ADE/best, which could not solve the Rastrigin test function with

a population size of 100 was able to solve the test function when the number of work-

ers increased to 100, 000. Not only could it solve the problem, but found solutions

in less time and evaluations than the other optimization methods tested.

Another unexpected result is that while AGS could solve the Sphere and

Griewank problems in both the simulated homogeneous and simple heterogeneous

environments, it could not solve the test function in a MilkyWay@Home-like envi-



74

Figure 8.11: Frequency of time taken to download, calculate and report
results to the MilkyWay@Home server for GPU and CPU
processors.

ronment. This is especially interesting in that the sphere function is well defined

and supposedly easy to solve as there is only one minimum. These results seem

to indicate that a realistic heterogeneous environment may harm the exploitative

ability of asynchronous genetic search.

8.2 Asynchronous Optimization Using MilkyWay@Home

The validation strategy described in Chapter 7 was tested using MilkyWay@Home

on Sagittarius Stripe 22 from the Sloan Digital Sky Survey [1]. This problem involves

calculating how well a model of three streams of stars and a background function fit

a 5 degree wedge of 100,789 observed stars collected along Sagittarian Longitude 55

degrees from Sagittarian Latitude 155 degrees to 230 degrees (for more information

about the fitness function readers are referred to [19, 20]). In total there are 20

parameters to be optimized. This model is calculated by a wide variety of hosts.
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Figure 8.12: Time and number of evaluations to solution for the Ackley
test function using a MilkyWay@Home-like simulated envi-
ronment.
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Figure 8.13: Time and number of evaluations to solution for the
Griewank test function using a MilkyWay@Home-like simu-
lated environment. It should be noted that AGS could solve
this in the other simulated environments.
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Figure 8.14: Time and number of evaluations to solution for the Rast-
rigin test function using a MilkyWay@Home-like simulated
environment. It should be noted that ADE/best could solve
this with 100, 000 simulated workers, but could not in other
simulated environments.
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Figure 8.15: Time and number of evaluations to solution for the Rosen-
brock test function using a MilkyWay@Home-like simulated
environment.
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Figure 8.16: Time and number of evaluations to solution for the Sphere
test function using a MilkyWay@Home-like simulated envi-
ronment. It should be noted that AGS could solve this in
the other simulated environments.
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The fastest high end double precision GPUs can calculate the fitness in under two

minutes. High end CPUs require around an hour, and the slowest CPUs can take

days. At the time these results were gathered, MilkyWay@Home had approximately

55,000 volunteered hosts participating in the experiments.

8.2.1 Heterogeneity Effects

In order to study the effect of heterogeneity on an uncontrolled environment

like MilkyWay@Home, information about the results returned to the server was

profiled. Figure 8.17 shows the percentage of results inserted into the population,

and the average position these results were inserted into the population as the search

progressed for different round trip times. The round trip time was calculated as the

number of results that were reported during the time from when the work unit was

generated until the time its result was reported and inserted into the population.

The population size of the search profiled was 300, so the position inserted ranged

from 0 to 299, with 0 being the best individual in the population and 299 being the

worst.

The results show that in terms of benefit to the convergence of the search, after

the profiling has stabilized, results with all round trip sizes offer similar improvement

to the population. With the exclusion of the slowest results (1600 or more results

reported during their round trip time), the position the results were inserted into

the population had a general trend of improving as the search progressed. It is

possible that the slowest results will eventually begin improving if the profiling was

not performed for long enough to let those results stabilize. The percentage of

results inserted also shows a similar trend of the number of results being inserted

into the population improving as the search progresses, with the exclusion of the

results with the fastest round trip time. However, these fastest results already have

a very high chance to be inserted into the population, and it does not degrade very

much. These are very promising results for using asynchronous optimization on the

MilkyWay@Home project because they mean that even the slowest hosts still have

benefit.
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Figure 8.17: Percentage and position of the results inserted into the pop-
ulation for AGS using probabilistic simplex recombination
on MilkyWay@Home for results with different round trip
times. The round trip time is how many results were re-
ported between the time the work unit was generated and
its result was received.
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8.2.2 Validation Effects and Search Comparison

Asynchronous differential evolution (ADE), asynchronous genetic search (AGS)

and asynchronous particle swarm optimization (APSO) were all tested on Milky-

Way@Home using a 50 member population. ADE was tested using both random

and best parent selection, and 1, 2, and 3 differential pairs. APSO was tested with

inertia weights of 0.2, 0.4, 0.6, 0.8 and 1.0. AGS was tested using 2, 4, 6, 8 and

10 parent individuals as input to the simplex recombination (see Section 5.1 for

an in depth presentation of this method). As input to the simplex recombination,

l1 = −1.5 and l2 = 0.5 were used as these have been shown to be good values for

this problem [87, 29].

Verification rates of 0.3, 0.6 and 0.9 were tested across all these search pa-

rameters for pessimistic validation. For each search parameter and verification rate,

five searches were performed simultaneously and exclusively by the search manager.

This was done to keep the network that the searches were tested on as similar as

possible.

Tables 8.1, 8.2, 8.3 and 8.4 shows the best, average and worst fitness across

these five searches after 25,000 and 50,000 reported individuals, for all combinations

of verification rates and search parameters. Values in boldface represent the best

individual found by each search type with the same verification rate after a certain

amount of reported individuals, values in italics represent the best values found by a

search type over all verification rates. Underlined values show the best fitness found

over all three search types.

For APSO, the average best point converged the fastest with v = 0.3, while

the average worst point converged the fastest with v = 0.6. The average average

point initially converged faster with v = 0.6 for the first half of the search, but then

converged faster for the remainder of the search with v = 0.3. For ADE (best and

random) the average best point converged fastest with v = 0.6, and the average

average point first converged faster with v = 0.3 and then v = 0.6. For DE/best,

the average worst point converged fastest with v = 0.3 and for DE/rand the average

worst point converged fastest with v = 0.6. For AGS, the average best point first

converged fastest with v = 0.3 for the first half of the search, but for the rest faster
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Asynchronous Particle Swarm

25,000 results reported
best average worst

w = 0.2 -3.169272 -3.170184 -3.170872
w = 0.4 -3.169807 -3.170349 -3.170816

v = 0.3 w = 0.6 -3.169887 -3.170272 -3.170420
w = 0.8 -3.169913 -3.170747 -3.172100
w = 1.0 -3.171184 -3.172528 -3.174188
w = 0.2 -3.169545 -3.173018 -3.170252
w = 0.4 -3.169694 -3.169936 -3.170110

v = 0.6 w = 0.6 -3.169505 -3.169815 -3.170221
w = 0.8 -3.170305 -3.170817 -3.171458
w = 1.0 -3.171372 -3.172507 -3.173307
w = 0.2 -3.170161 -3.171611 -3.173086
w = 0.4 -3.169895 -3.170542 -3.171397

v = 0.9 w = 0.6 -3.170182 -3.171695 -3.175657
w = 0.8 -3.171230 -3.172986 -3.177449
w = 1.0 -3.170701 -3.173401 -3.175725

50,000 results reported
best average worst

w = 0.2 -3.169037 -3.169355 -3.169679
w = 0.4 -3.167358 -3.169100 -3.170081

v = 0.3 w = 0.6 -3.169128 -3.169579 -3.169930
w = 0.8 -3.169243 -3.169965 -3.170665
w = 1.0 -3.170732 -3.171247 -3.171778
w = 0.2 -3.168843 -3.169197 -3.169487
w = 0.4 -3.169073 -3.169405 -3.169650

v = 0.6 w = 0.6 -3.168870 -3.169142 -3.169374
w = 0.8 -3.169647 -3.169900 -3.170217
w = 1.0 -3.171011 -3.172153 -3.173089
w = 0.2 -3.169592 -3.170143 -3.171253
w = 0.4 -3.169333 -3.169583 -3.170070

v = 0.9 w = 0.6 -3.169506 -3.169807 -3.170136
w = 0.8 -3.170344 -3.171061 -3.171553
w = 1.0 -3.170329 -3.171741 -3.173602

Table 8.1: This table shows the best, average and worst of the best in-
dividuals found by five asynchronous particle swarm searches
after 25,000 and 50,000 results reported. Best results for each
verification rate (v) and inertia weight (w) are in italics, and
best across all verification rates are in boldface. Best across
all search methods are underlined.
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Asynchronous Differential Evolution (Best)

25,000 results reported
best average worst

p = 1 -3.169597 -3.170029 -3.170256
v = 0.3 p = 2 -3.169617 -3.170124 -3.170683

p = 3 -3.169983 -3.170449 -3.171080
p = 1 -3.169339 -3.169851 -3.170350

v = 0.6 p = 2 -3.170782 -3.171203 -3.171679
p = 3 -3.170180 -3.170787 -3.171470
p = 1 -3.170371 -3.171670 -3.172434

v = 0.9 p = 2 -3.171098 -3.172052 -3.172852
p = 3 -3.170929 -3.173074 -3.176117

50,000 results reported
best average worst

p = 1 -3.168608 -3.168977 -3.169291
v = 0.3 p = 2 -3.169447 -3.169550 -3.169741

p = 3 -3.169701 -3.169892 -3.170067
p = 1 -3.168580 -3.169043 -3.169805

v = 0.6 p = 2 -3.169779 -3.169916 -3.170125
p = 3 -3.170093 -3.170259 -3.170539
p = 1 -3.169025 -3.170066 -3.171049

v = 0.9 p = 2 -3.170224 -3.170627 -3.171035
p = 3 -3.169846 -3.170455 -3.171027

Table 8.2: This table shows the best, average and worst of the best
individuals found by five asynchronous differential evolution
searches after 25,000 and 50,000 results reported. Best re-
sults for each verification rate (v) and number of pairs (p) are
in italics, and best across all verification rates are in boldface.
Best across all search methods are underlined.

with v = 0.6. The average worst point converged fastest with v = 0.3 and the

average average point with first v = 0.3 then v = 0.6. Over all searches, v = 0.9

provided the worst convergence results.

The validation rate, v, had the most dramatic effect on search convergence,

compared to all other search parameters. These results show that for this validation

strategy, with the exclusion of APSO, generally the best convergence rates were

found devoting a rather significant amount of resources (v = 0.6) to quickly validate

newly found results. Even for APSO, setting v = 0.6 resulted in similar convergence
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Asynchronous Differential Evolution (Random)

25,000 results reported
best average worst

p = 1 -3.170270 -3.170390 -3.170761
v = 0.3 p = 2 -3.170443 -3.170859 -3.171600

p = 3 -3.170553 -3.171094 -3.172143
p = 1 -3.169534 -3.170287 -3.170973

v = 0.6 p = 2 -3.170319 -3.171231 -3.172264
p = 3 -3.170887 -3.172007 -3.173013
p = 1 -3.172570 -3.173701 -3.174941

v = 0.9 p = 2 -3.172753 -3.175244 -3.179046
p = 3 -3.173753 -3.175168 -3.177439

50,000 results reported
best average worst

p = 1 -3.169623 -3.169835 -3.169986
v = 0.3 p = 2 -3.169560 -3.169835 -3.170295

p = 3 -3.169967 -3.170279 -3.170547
p = 1 -3.169510 -3.169770 -3.169956

v = 0.6 p = 2 -3.169852 -3.170183 -3.170319
p = 3 -3.170253 -3.170701 -3.171349
p = 1 -3.171026 -3.171628 -3.172018

v = 0.9 p = 2 -3.170894 -3.171979 -3.173157
p = 3 -3.170615 -3.171978 -3.172903

Table 8.3: This table shows the best, average and worst of the best
individuals found by five asynchronous differential evolution
searches after 25,000 and 50,000 results reported. Best re-
sults for each verification rate (v) and number of pairs (p) are
in italics, and best across all verification rates are in boldface.
Best across all search methods are underlined.

rates to v = 0.3. This tends to show that updating the population as fast as possible

has a very strong effect on the convergence of the search.
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Asynchronous Genetic Search

25,000 results reported
best average worst

p = 2 -3.171410 -3.173042 -3.174443
p = 4 -3.170200 -3.171203 -3.171817

v = 0.3 p = 6 -3.171318 -3.171887 -3.172633
p = 8 -3.170104 -3.171009 -3.172346
p = 10 -3.169374 -3.170770 -3.172604
p = 2 -3.171732 -3.173018 -3.174762
p = 4 -3.170204 -3.171466 -3.173090

v = 0.6 p = 6 -3.170994 -3.173666 -3.175648
p = 8 -3.170366 -3.171647 -3.172820
p = 10 -3.169655 -3.171382 -3.173527
p = 2 -3.171128 -3.175371 -3.181739
p = 4 -3.174878 -3.177981 -3.183386

v = 0.9 p = 6 -3.172288 -3.178447 -3.185784
p = 8 -3.173696 -3.176495 -3.179121
p = 10 -3.182238 -3.182855 -3.183472

50,000 results reported
best average worst

p = 2 -3.170022 -3.170320 -3.170653
p = 4 -3.169413 -3.169697 -3.170042

v = 0.3 p = 6 -3.170146 -3.170519 -3.171506
p = 8 -3.169340 -3.169903 -3.170603
p = 10 -3.169057 -3.169980 -3.171557
p = 2 -3.170036 -3.170656 -3.171376
p = 4 -3.168789 -3.169626 -3.170054

v = 0.6 p = 6 -3.169242 -3.171014 -3.172707
p = 8 -3.169572 -3.170106 -3.170700
p = 10 -3.169431 -3.170073 -3.170988
p = 2 -3.169240 -3.172969 -3.177777
p = 4 -3.171966 -3.174694 -3.180511

v = 0.9 p = 6 -3.170294 -3.176296 -3.184854
p = 8 -3.172342 -3.175242 -3.178753
p = 10 -3.180842 -3.181347 -3.181852

Table 8.4: This table shows the best, average and worst of the best in-
dividuals found by five asynchronous genetic searches after
25,000 and 50,000 results reported. Best results for each ver-
ification rate (v) and number of parents (p) are in italics, and
best across all verification rates are in boldface. Best across
all search methods are underlined.



CHAPTER 9

Future Work

The work in this thesis is far from exhaustive and also provides a strong foundation

for further research in asynchronous optimization. The following sections describe

possible avenues of future work to improve the effectiveness and usability of asyn-

chronous optimization.

9.1 Metaheuristics and Hybrid Methods

As shown by the related work, using hybrid methods is a popular strategy for

enhancing global optimization methods. Hybridization of genetic search and the

simplex method has already been shown to be effective for the astroinformatics ap-

plication in an asynchronous framework. With knowledge of the different attributes

and strengths of the different asynchronous searching methods presented in this

chapter, hybridizing them could provide further benefit both in terms of traversing

the search space in different ways, which would enhance the searches’ ability to find

the global optimum, and also by enhancing the searches’ convergence to the optima

with improved local searching capabilities.

Unfortunately, the complexity of having multiple searches, each with multiple

tuning parameters, such as the number of parents used to generate new parameter

sets, line search limits, and mutation rate for genetic search, as well as social (global),

cognitive (local) weights, and inertia weights for particle swarm optimization, can

become prohibitive as manually tuning so many parameters becomes extremely time

consuming as typically these are fixed for an entire search. Even optimizing the

search parameters for a single search method is time consuming, and can dissuade

scientists from using an optimization method for their research. Additionally, it has

also been shown that the best values for these parameters may change dynamically

over the course of the search [29, 28, 87], so a fixed value still may not provide the

best convergence.

With a large pool of operators to choose from, each with different parameters

87
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to tune, dynamically adapting the search as it progresses - metaheuristics - become

of particular interest. The FGDO framework is already able to profile the benefit

of parameter sets based on how they were generated and how long it took for them

to be reported [29]. By utilizing this information, a metaheuristic should be able

to tune the parameters of the different operators and select which operators to

use. This becomes possible in part because of the computational complexity of

function evaluations for these environments allowing the search to take more time

in generating new parameter sets.

Previous analysis of the benefit of parameter sets was based on where they

were inserted into the population, which determines how much that parameter set

improved the population, and chance a generated parameter set had to be inserted

into the population depending on how it was generated. These metrics only provide

information corresponding to the convergence of the search, not necessarily how well

the search is exploring new areas. To help determine the exploratory quality of the

proposed operators, profiling the distance of the inserted parameter sets from the

population would also be beneficial.

9.2 Simulation and Scheduling

The simulation framework implemented in this work can be used for more

than examining the effects of different computing environments by controlling the

heterogeneity, size and latency of the simulated workers involved. Of particular

interest is studying different scheduling strategies for asynchronous optimization

which may improve the time to solution and optimize utilization of resources by

assigning certain types of individuals to certain types of workers. For example, it

has been shown that certain individuals generated by asynchronous optimization

can be more exploratory, looking for new potentially valid areas in the search space,

while others are more exploitative, trying to find the minima within an area of the

search space. Examining different scheduling strategies in simulated environments

may show that there is benefit to sending exploratory individuals to slower less

reliable hosts and exploitative individuals to faster more reliable hosts. It also may

make sense to initially send exploratory individuals to faster hosts and change this
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over time as the search needs to explore less and exploit more.

Scheduling can also play an important role in improving verification strategies.

Using the verification strategy presented in this thesis, asynchronous optimization

only progresses as fast as results are verified, because the population new individuals

are generated from consists only of verified individuals. This strategy could be

improved by only sending results that need to be verified to fast reliable hosts,

increasing the turnaround rate for validation and reducing the number of duplicate

individuals that need to be calculated.

9.3 Validation

The validation strategy presented in this thesis is pessimistic, assuming every

individual that could potentially improve the search population is invalid and only

using them to update the search population when they have been verified. As such,

the search methods can only evolve as fast as results are validated. Typically, in

distributed systems while there are incorrect and malicious results that need to be

handled, typically they comprise of a very small portion of all the results in the

system. For example, the MilkyWay@Home project reports less than 1% of the

results received as invalid.

It may be possible to further improve the time to solution and further reduce

the amount of resources dedicated to validation by using an optimistic strategy.

Instead of keeping a queue of individuals which require validation, all reported

results can be inserted into the search population, and validated individuals can

be placed in a backup population. In this way new individuals can be generated

from the most up to date population, although this population may contain a few

incorrect members. When a member of the search population is found to be invalid,

it can be replaced with a previously validated individual from the backup population.

This should reduce the amount of resources required to handle validation and allow

the search to progress without waiting for any individuals to be validated. The

question remains if the possible invalid members in the search population harm the

population enough to make these benefits not worthwhile.



CHAPTER 10

Discussion

This thesis describes the implementation of a framework for generic distributed

optimization (FGDO). This framework allows optimization problems, optimiza-

tion methods and different distributed computing platforms to be researched and

developed independently and used interoperably through simple interfaces. This

framework has been used to perform distributed optimization on various massive

scale computing environments, such as RPI’s CCNI BlueGene/L and the Milky-

Way@Home volunteer computing project. Due to the interoperable nature of this

framework, it was possible to examine different optimization strategies, implement

a simulation environment to test these strategies on representative benchmark op-

timization problems with controllable computing environments, and implement a

strategy to reduce the amount of result validation required by computing projects

which utilize unreliable hosts, such as MilkyWay@Home.

Traditional optimization methods, such as differential evolution, genetic search

and particle swarm optimization are iterative, or synchronous in nature. They gen-

erate a population of potential solutions (or individuals), and based on that pop-

ulation generate a new population to be evaluated. This limits their scalability

to size of these populations. This work introduces asynchronous optimization, a

novel approach which separates the scalability of an optimization method from its

population size. Additionally, asynchronous optimization does not have any depen-

dencies between evaluated individuals. In traditional parallel optimization methods,

if there is a fault with one member of the population, it must be recalculated which

slows down the evolution of the populations. If the calculation of the optimization

function is nondeterministic, or the computation environment is heterogeneous, the

search has to wait for the slowest processor and individual to complete calculation

before progressing. Asynchronous optimization can generate any number of new in-

dividuals based on its currently known population, and only inserts results to that

population when and if they are reported. In this way asynchronous optimization

90
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is naturally scalable, fault tolerant and load balanced, as it does not need to wait

for slow or unresponsive hosts.

Differential evolution, genetic search and particle swarm optimization were

all modified to asynchronously generate individuals and update their populations

using this strategy. Results show that asynchronous versions of these optimiza-

tions can scale to hundreds of thousands of computing hosts, while the traditional

synchronous versions do not benefit from additional computing hosts as the larger

population sizes required reduce their ability to quickly find a solution. In some

cases, synchronous optimization even decreases in time to solution as more comput-

ing hosts are added. Additionally, the asynchronous versions are largely unaffected

by increasing heterogeneity in the computing system, in some cases requiring less

results to reach a solution. Even on a complex simulated computing environment

modeled from the MilkyWay@Home computing project, the asynchronous searches

were shown to scale well.

The validation strategy implemented allows the amount of resources devoted

to validation of results to be modified. The effect of this validation rate was ex-

amined on the MilkyWay@Home computing project using asynchronous differential

evolution, genetic search and particle swarm optimization with various search pa-

rameters. As opposed to the default implementation of validation in the BOINC

volunteer computing framework, which requires every result to be validated against

at least one other duplicated computation, the validation strategy here shows that

the amount of redundant computation can be reduced to 30% and potentially less

of the results calculated for asynchronous differential evolution and particle swarm.

Asynchronous genetic search performed better with a larger amount of computation

devoted to validation, around 60%.

This works shows that as computing systems continue to increase in size and

heterogeneity, traditional optimization methods need to evolve to deal with new

challenges in scalability, heterogeneity and fault tolerance. The asynchronous opti-

mization methods and validation strategies presented here provide strong prelimi-

nary work for scalable, fault tolerant optimization strategies that can easily be used

on heterogeneous environments. The simulation environment implemented will al-
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low for future detailed analysis of the effects of heterogeneity, scale and faults to

further improve optimization for massive scale computing systems. Finally, this

work has enabled over 25,000 computing hosts to further scientific research in as-

troinformatics with the MilkyWay@Home volunteer computing project.
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