
NETWORK DATA MODELING
VIA GRAMMATICAL STRUCTURES

By

Sahin Cem Geyik

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: COMPUTER SCIENCE

Approved by the
Examining Committee:

Professor Boleslaw K. Szymanski, Thesis Adviser

Professor Christopher D. Carothers, Member

Assistant Professor Sanmay Das, Member

Associate Professor Koushik Kar, Member

Professor Alex Pentland, Member

Rensselaer Polytechnic Institute
Troy, New York

June 2012
(For Graduation August 2012)

c© Copyright 2012

by

Sahin Cem Geyik

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . ix

ACKNOWLEDGMENT . xii

ABSTRACT . xiii

1. Introduction . 1

1.1 Network Data Modeling Techniques in Literature 2

1.1.1 Frequent Pattern Mining . 2

1.1.2 Markov Models . 2

1.1.3 Latent Dirichlet Allocation . 3

1.2 Probabilistic Context Free Grammars 4

1.2.1 Applications of PCFGs in Literature 5

1.3 Rest of the Thesis . 7

2. Inference of Probabilistic Context Free Grammars (PCFG) 8

2.1 Construction of PCFGs in Literature 8

2.2 PCFG Inference Algorithm . 9

2.2.1 Operations Used for Grammar Construction 9

2.2.1.1 Sample Incorporation 9

2.2.1.2 Operators . 10

2.2.2 Evaluation Metric for the PCFG 11

2.2.3 Computation of the Evaluation Metric 13

2.2.3.1 Chunk . 13

2.2.3.2 Merge . 13

2.2.4 Search for the Best Merge and Chunk Arguments 14

2.2.5 Inference Algorithm . 15

2.2.6 Complexity Analysis . 17

2.2.7 Constrained Search for the Merge Arguments 19

2.3 Extensions to the PCFG . 21

2.3.1 Time Tokens . 21

2.3.1.1 Constant Time Representing Time Symbol 21

2.3.1.2 Time Distribution Representing Time Symbol 22

iii

2.3.2 Relative Tokens . 24

2.4 Improvement over Previous Work . 25

2.5 Measuring the Effect of Our Approximations to PCFG Inference . . . 27

2.5.1 Grammar an bn . 28

2.5.2 Grammar [an bn] | [cm d2m] . 31

2.5.3 Grammar [a− z]n . 33

2.6 Conclusions and Future Work . 36

3. PCFGs for Sensor Network Event Recognition 38

3.1 Related Work for Event Recognition in WSN 38

3.2 Real world Scenario and Simulations 39

3.3 The Advantages and Disadvantages of PCFGs for the WSN Domain . 43

3.4 Conclusions and Future Work . 46

4. Mobility Modeling and Synthetic Trace Generation with PCFGs 47

4.1 Literature Review of Mobility Pattern Modeling and Trace Generation 48

4.2 Mobility PCFGs . 50

4.3 Synthetic Trace Generation of Node Mobilities with PCFGs 51

4.4 Advantage of Utilizing PCFGs over Previous Models 52

4.4.1 Expressing Other Mobility Models as PCFGs 52

4.4.1.1 Random-Waypoint to PCFG Transformation 52

4.4.1.2 Markovian Mobility Model to PCFG Transformation 53

4.4.2 Benefits of PCFG-based Modeling 53

4.5 Evaluation of the Trace Generation Method 56

4.5.1 Evaluation of Mobility Modeling Accuracy 56

4.5.2 Complexity Comparison between PCFGs and Markov Models 61

4.6 Conclusions and Future Work . 62

5. Behavior Modeling in Social Networks with PCFGs 64

5.1 Behavior Modeling Efforts in Social Network Analysis 65

5.2 PCFG-based Social Entity Behavior Modeling 67

5.2.1 Manual Inspection of Grammars 68

5.2.2 Classification Results . 74

5.3 Conclusions and Future Work . 77

iv

6. Service Composition in Sensor Networks and Utilization of PCFGs 78

6.1 Service Composition in Sensor Networks 79

6.1.1 Sensor Service Modeling and Composition 82

6.1.1.1 Motivation . 82

6.1.1.2 Modeling Sensor Network Services 84

6.1.1.3 Service Graph of a Sensor Network 85

6.1.1.4 Type Hierarchy of Data Fields 86

6.1.1.5 Cost Formulation of Service Composition in Sensor
Networks . 87

6.1.1.6 Problem Definition 88

6.1.1.7 Service Composition Problem is NP-complete 89

6.1.2 Approaches for Service Composition in Sensor Networks . . . 90

6.1.2.1 Top-down Approach 90

6.1.2.2 Bottom-up Approach 91

6.1.2.3 Complexity and Approximation Ratio Analysis . . . 94

6.1.2.4 Implementing the Composition Decision Algorithm . 95

6.1.2.5 Dynamic Composition 98

6.1.2.6 Mapping from Sensor Nodes to Service Graph 99

6.1.3 Evaluation of Initial Composition via Numerical Experiments 100

6.1.4 Evaluation of Dynamic Composition in ns-2 102

6.1.5 Related Work . 112

6.1.6 Conclusions and Future Work 116

6.2 Utilizing PCFGs for Modeling and Learning Service Compositions in
Sensor Networks . 117

6.2.1 Describing Service Compositions as Strings 118

6.2.2 Modeling Service Composition as a PCFG 121

6.2.2.1 Finding Subcompositions and Alternatives via PCFG
Inference . 122

6.2.2.2 Advantage of the PCFG-based Service Composition
Learning in Sensor Networks 125

6.2.2.3 Utilization of PCFGs to Generate Compositions . . . 128

6.2.3 Evaluation . 130

6.2.3.1 Simulation Setting 131

6.2.3.2 Results . 132

6.2.4 Related Work in Service Composition Learning 135

6.2.5 Conclusions and Future Work 136

v

6.3 Switch Options for Pervasive and Mobile Applications 137

6.3.1 Switch Options Methodology 138

6.3.1.1 Quantifying the Value of a Selection: 138

6.3.1.2 Switch Options Modeling 139

6.3.2 Switch Options for Service Selection 142

6.3.2.1 Real-World Scenario 143

6.3.2.2 Evaluations . 145

6.3.3 Switch Options for Pervasive Security Applications 150

6.3.4 Conclusions and Future Work 153

7. Conclusions and Future Work . 154

LITERATURE CITED . 156

vi

LIST OF TABLES

2.1 Final Grammar’s A Posteriori Log-Probability (Compared to the Ini-
tial Grammar) for All Levels of Approximation in the Grammar an bn

Experiment vs Training Data Size (in Sentences) 29

2.2 Best Grammar’s A Posteriori Log-Probability (Compared to the Ini-
tial Grammar) for All Levels of Approximation in the Grammar an bn

Experiment vs Training Data Size (in Sentences) 30

2.3 Average Time (in Seconds) It Takes to Construct the Final Grammar
(i.e. Inference Process) for All Levels of Approximation in the Grammar
an bn Experiment vs Training Data Size (in Sentences) 31

2.4 Final Grammar’s A Posteriori Log-Probability (Compared to the Initial
Grammar) for All Levels of Approximation in the Grammar [an bn] |
[cm d2m] Experiment vs Training Data Size (in Sentences) 32

2.5 Best Grammar’s A Posteriori Log-Probability (Compared to the Initial
Grammar) for All Levels of Approximation in the Grammar [an bn] |
[cm d2m] Experiment vs Training Data Size (in Sentences) 32

2.6 Average Time (in Seconds) It Takes to Construct the Final Grammar
(i.e. Inference Process) for All Levels of Approximation in the Grammar
[an bn] | [cm d2m] Experiment vs Training Data Size (in Sentences) . . . 33

2.7 Final Grammar’s A Posteriori Log-Probability (Compared to the Initial
Grammar) for All Levels of Approximation in the Random String ([a-
z]n) Experiment vs Training Data Size (in Sentences) 35

2.8 Best Grammar’s A Posteriori Log-Probability (Compared to the Initial
Grammar) for All Levels of Approximation in the Random String ([a-
z]n) Experiment vs Training Data Size (in Sentences) 35

2.9 Average Time (in Seconds) It Takes to Construct the Final Grammar
(i.e. Inference Process) for All Levels of Approximation in the Random
String ([a-z]n) Experiment vs Training Data Size (in Sentences) 36

4.1 Description of the Approximation Levels for Grammar Construction
Utilized in Our Evaluations . 57

4.2 Evaluation Results for DieselNet Dataset 59

4.3 Evaluation Results for the First 500 Routes in Taxi Mobility Dataset . . 59

4.4 Evaluation Results for the Whole Taxi Mobility Dataset 61

vii

5.1 Separation and Classification Results on the Metric Which Roles Go
Together for the Social Roles in MSC-1 Dataset 75

5.2 Separation and Classification Results on the Metric Which Roles Go
Together for the Task Roles in MSC-1 Dataset 76

6.1 NS-2 Simulation Parameters . 106

6.2 Reaction Time Comparison of Centralized and Distributed Approaches
for a Service Processing Cost Change in the Sensor Network 111

6.3 Sound Change Properties for Service Selection Experiment 146

6.4 Security Application Sound Change Parameters 151

viii

LIST OF FIGURES

1.1 Parse Tree for the String b c c . 5

2.1 An Example of Merge Operation . 10

2.2 An Example of Chunk Operation . 11

2.3 Calculation of P(D|G) for Merge Operation 13

2.4 Relative Movement Token Example . 25

3.1 Parking Lot Car Tracking for Event Detection 40

3.2 Car Trajectories for the Real-World Scenario 42

3.3 PCFG for Event Enter and Park . 43

3.4 PCFG for Event Leave Parking . 44

3.5 PCFG for Event Enter and Leave . 44

4.1 A Markovian Mobility Model and Its PCFG Transformation 54

4.2 A Palindromic Mobility Example and the PCFG that Describes It . . . 55

5.1 PCFG for Modeling Which Roles Go Together for Supporter Socio Label 68

5.2 PCFG for Modeling Which Roles Go Together for Attacker Socio Label 69

5.3 PCFG for Modeling Which Roles Go Together for Giver Task Label . . 69

5.4 PCFG for Modeling Which Roles Go Together for Seeker Task Label . . 70

5.5 PCFG for Modeling Who Speaks while a Certain Role is Undertaken
for Supporter Socio Label . 71

5.6 PCFG for Modeling Who Speaks while a Certain Role is Undertaken
for Attacker Socio Label . 72

5.7 PCFG for Modeling Who Speaks while a Certain Role is Undertaken
for Giver Task Label . 73

5.8 PCFG for Modeling Who Speaks while a Certain Role is Undertaken
for Seeker Task Label . 73

6.1 A Composite Service Example . 79

6.2 A Simple Type Hierarchy . 86

ix

6.3 Sending the Collective Cost Information Upstream 92

6.4 Two Cases in which Top-down and Bottom-up Approaches are Better
than the Alternative . 96

6.5 Service Composition Process in the Distributed Algorithm 97

6.6 Cost of Composition Comparison of Top-down and Bottom-up Approaches101

6.7 Cost of Composition Comparison of Best of Bottom-up and Top-down
vs Bottom-up Approach . 102

6.8 Simulated Sensor Network Application 103

6.9 Comparison of Composition Cost for Centralized and Distributed Ap-
proaches with Varying Node Activation Ratios 107

6.10 Service Activation Ratio Comparison of Centralized and Distributed
Approaches for Varying Node Activation Ratios 108

6.11 Overhead Comparison of Centralized and Distributed Approaches for
Varying Node Activation Ratios . 109

6.12 Comparison of Composition Cost for Centralized and Distributed Ap-
proaches with Varying Cost Change Frequencies 110

6.13 An Example to Illustrate the Service Composition Language 120

6.14 Finding Subcompositions via PCFG Inference 123

6.15 Subcomposition Example . 124

6.16 An Example to Present the Advantage of the PCFG-based Service Com-
position over Edge Weights . 126

6.17 An Example to Present the Advantage of the PCFG-based Service Com-
position over Call Paths . 127

6.18 An Example on How to Generate a Composition via the PCFGs Given
the Set of Available Services . 129

6.19 Simulation Application . 131

6.20 A Sample from the Constructed PCFGs 132

6.21 Generalization Results . 133

6.22 Processing Cost Results . 134

6.23 A Parking Garage Example to Explain Switch Options Methodology . . 143

x

6.24 Expected Test Period Results for Parking Garage Monitoring 144

6.25 Comparison of Switch Options in Experiment 1 for All Test Period
Lengths . 147

6.26 Gain from Switch Options in Experiment 1 for Test Period Lengths up
to 3% of the Rest of Simulation Period 148

6.27 Comparison of Switch Options in Experiment 2 for All Test Period
Lengths . 149

6.28 Gain from Switch Options in Experiment 2 for Test Period Lengths up
to 3% of the Rest of Simulation Period 150

6.29 Monetary Loss for All Test Period Lengths 151

6.30 Monetary Loss for Test Period Lengths up to 20% of the Rest of Simu-
lation Period . 152

xi

ABSTRACT

Data modeling in computer networks means finding a compact and faithful repre-

sentation of the data on which network applications work. This data can range from

the information that is being transferred in a wireless network to mobility informa-

tion of nodes in a mobile network, or to the observations of the entity behaviors

recorded by the network, etc. In any kind of application, data modeling holds an

important place if high efficiency is a requirement.

In this thesis, we examine the use of grammatical structures, with a high em-

phasis on probabilistic context free grammars (PCFG), as the modeling framework

for such data. Informally, PCFGs are regular context free grammars where produc-

tion rules are assigned a probability value, representing how likely these rules are

to be used when generating a sentence from this grammar. Utilization of PCFGs

includes initially deriving the grammatical structure from the real world traces, and

later applying the structure for the necessary purposes of the application. These

purposes include saving disk space in space-constrained systems (such as sensor

networks), classification and recognition of observed events, facilitating manual in-

spection (i.e. improving interpretability), etc. The subject matter presented in this

thesis contains both the grammar construction process as well as different domains

to which the grammatical structure can be applied.

The contributions of this PhD thesis can be summarized as follows:

• An automated Probabilistic Context Free Grammar (PCFG) construction al-

gorithm, which lowers the time complexity of the previous approaches. We

also evaluate (both theoretically and empirically) how much of an advantage

we provide over the previous approaches complexity-wise, and the comparison

of the goodness of grammars constructed with multiple methods.

• Application of the PCFG learning and later processing approach to different

domains of Network Data Modeling. These domains include:

xiii

– Event Recognition in Sensor Networks,

– Mobility Modeling and Synthetic Trace Generation for Mobile Networks,

– Behavior Modeling in Social Networks, and,

– Learning of Service Composition Rules for Service Oriented Architecture

in Sensor Networks.

• We also contribute to metric-based service composition in sensor networks, as

well as to application of switch options in pervasive sensor applications.

xiv

CHAPTER 1

Introduction

Data Modeling in Computer Networks (not to be confused with the same term in

Software Engineering) means finding a compact and faithful representation of the

data on which network applications work. This task includes finding a model of

the given data that includes enough features to construct samples synthetically

with the same statistical properties as the input, as well as to decide whether a

future occurrance belongs to the same class as the previously monitored data. The

motivation of such modeling can be presented in the following advantages:

• Saving disk-space in space-constrained systems such as wireless sensor net-

works etc.,

• Processing of the models gives us recognition benefits; i.e. we can detect if a

certain sequence of data is a member of the model or not,

• Decreasing communication cost since we can compress the data that needs to

be transmitted,

• Facilitating manual inspection, i.e. improving interpretability, since data mod-

eling can capture a subset of an event which is significant for a certain purpose.

The focus of this thesis is on data modeling in networking applications by utilizing

grammatical structures, with a special emphasis on Probabilistic Context Free Gram-

mars (PCFG). The introduction of this thesis will firstly provide several modeling

methodologies with their applications in the literature. Later, we will introduce

Probabilistic Context Free Grammars, with a short literature listing on their appli-

cations.

* Portions of this chapter previously appeared as: S. C. Geyik and B. K. Szymanski, “Event
recognition in sensor networks by means of grammatical inference,” in Proc. IEEE INFOCOM,
2009, pp. 900−908.

1

2

1.1 Network Data Modeling Techniques in Literature

In this section we will list the following data modeling techniques (with a short

definition and example applications in the literature): (i) Frequent Pattern Mining,

(ii) Markov Models, and (iii) Latent Dirichlet Allocation.

1.1.1 Frequent Pattern Mining

Frequent Pattern Mining [1]-[3] examines the co-occurrence of items in large

databases. The discovery of items occurring together means that this may have

a semantic meaning (e.g. people who purchase a certain item may buy another

item at the same time more frequently) in certain applications. Such co-occurrence

can be ordered (sequence mining) or independent of the order (itemset mining). A

few common algorithms for the discovery of frequent patterns can be listed as: the

Apriori algorithm [4] (itemset), the ECLAT algorithm [5] (itemset), the FPGrowth

algorithm [6] (itemset), GSP algorithm (sequence, similar to Apriori), SPADE [7]

(sequence), projection-based algorithm [8] (sequence) and Ukkonens Linear Time

Algorithm for suffix trees [9] (sequence).

Frequent pattern mining is applied in several domains such as marketing anal-

ysis [1], web mining [10], [11], computational biology [12], security [13] etc.

1.1.2 Markov Models

Markov Models are probabilistic state transition models which obey the Markov

rule: the next state of the system is only dependent on the previous k-states of the

system. We are focusing on two types of Markov models in this section: (i) Markov

Chains (MC), and (ii) Hidden Markov Models (HMM). Basically, Markov Chains

are systems where the actual state is observable and known, while Hidden Markov

Models are the systems in which only the output is seen, but the actual state is not.

Hence, in HMMs, prediction of the current state is a significant problem, and most

of these systems assume the Markov property (i.e. the system follows a Markov

process), since the actual states cannot be seen.

While the construction of an MC is pretty straight-forward via statistical mea-

surements, more sophisticated algorithms are required in order to process and con-

3

struct HMMs. A very well known algorithm to learn the parameters of an HMM is

Baum-Welch Algorithm [14], which is a special type of the Expectation Maximization

(EM) Algorithm. The parameters to be learned are basically the emission param-

eters which determine the probability of a certain output given the state, and the

transition parameters that provide the probability that the system changes its state

from one given state to the other. Furthermore, the Viterbi algorithm [15] gives the

most likely set of hidden states given a set of outputs, while the Forward-Backward

Algorithm provides the probability of a certain hidden state given a sequence of

outputs.

Markov Models have been applied to many different domains such as language

modeling [16], [17], speech recognition [18], [19], visual recognition [20], mobility

modeling [21], [22], computational biology [23], [24], etc.

1.1.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [25] is a generative model which models

the data from a specific application domain into a set of documents. Each docu-

ment consists of a set of words, created by a topic. Each topic follows a probability

distribution on the set of words that it can generate, and each document has a prob-

ability distribution on the set of topics, which generate the words that it includes.

According to this model, a document is generated as follows [25]:

• Choose the number of words for this document according to a Poisson distri-

bution.

• Choose a Multinomial(θ) topic distribution for this document. Multinomial(θ)

is chosen according to a Dirichlet distribution with the α parameter (Dir(α)).

• For each word (the order is not important for LDA, hence it is based on the

“bag-of-words” assumption), first choose a topic (according to Multinomial(θ)

chosen for this document) that this word is created from. Then, generate

the word from the chosen topic according to the Multinomial distribution of

words (specific to each distinct topic, i.e. every topic has a different probability

4

distribution on the set of words that it can generate) that can be created by

this topic.

As shown in the original paper [25], it is intractable to calculate the parameters of

the model from training data. Approximate methods such as a simple convexity-

based variational approach [25], a Markov chain Monte Carlo algorithm [26], Gibbs

sampling [27], and expectation propagation [28] have been utilized in the literature.

Latent Dirichlet Allocation and its extensions (e.g. Spatial-LTM [29], multi-

level topic model [30], semi-latent topic model [31]) have been used in various appli-

cation domains. To name a few, text mining [25], visual recognition and processing

[29], [31], security [32], [33], social networks [30], [34], [35] (e.g. social role discovery,

classification of human routines and interaction), software analysis [36], etc.

1.2 Probabilistic Context Free Grammars

A Probabilistic Context Free Grammar (PCFG) consists of a five-tuple <St,

Snt, Start, R, Pr> where:

• St is a list of terminal symbols, which form the sentences produced by this

grammar,

• Snt is a list of nonterminal symbols, which are replaced by rules in R during

sentence production,

• Start is the initial nonterminal symbol for any sentence produced by the gram-

mar,

• R is a list of production rules that define how terminal and nonterminal sym-

bols can be generated from nonterminal symbols or, equivalently, how a string

of terminal and nonterminal symbols can be reduced to a nonterminal symbol,

• Pr is a list of probabilities, each assigned to a rule to define the production

probability of that rule as opposed to the other rules which belong to the same

nonterminal.

5

A PCFG is simply a context free grammar with a probability assignment to

the production rules. Production probability of a sentence generated by a PCFG is

calculated by multiplying the probability values on each branch of its parsing tree.

See the following example for a simple PCFG which produces strings of type a bn

or b cn.

Start → a N (0.4) | b M (0.6)

N → b (0.3) | b N (0.7)

M → c (0.4) | c M (0.6)

Figure 1.1 shows the parse tree of the string b c c for the above grammar. As it can

be seen, this string has the probability of 0.6 x 0.6 x 0.4 = 0.144.

START
b

cM

M c

p = 0.6

p = 0.6

p = 0.4

c

b

Figure 1.1: Parse Tree for the String b c c

Next, we will give a short literature survey on the applications of PCFGs in

different domains.

1.2.1 Applications of PCFGs in Literature

Probabilistic Context Free Grammars have many uses in speech recognition

[37], [38], natural language processing [16], computational biology [39], [40] etc.

A major area in network application of PCFGs is the recognition of events in

sensor networks. In [41], the authors use a PCFG to parse the actions of a user

in order to infer higher level behaviors. Furthermore, they take into account the

different combinations of actions for a behavior, hence set the grammars accord-

ingly. Following the work in [42], which introduces Address-Event Imagers (limited

capacity image sensors), the authors present an assisted living application in [43].

6

This paper describes the recognition of domestic activities from the positions of

people and utilizes PCFGs for this purpose. These works do not present or utilize

automated construction of grammars, rather they use manually built PCFGs. Fi-

nally in [44], a human behavior parsing sensor system is described from start to end.

Experimental results are presented together with the grammars themselves, which

are defined in a varying hierarchy of event recognition steps.

Mitomi et al. [45] provides a system to classify a temae into types by using

a two-level system. In the first level, the movements of the host is detected using

a camera, and then this string of movements is assigned to a temae class using

a PCFG. [46] presents a visual system to recognize human gestures and to detect

interactions in a parking lot environment. Authors utilize an Earley-Stolcke parser

[17], [47] along with a probability threshold as well as a sliding window to limit the

number of branches in the parsing process. In [48], complex activities are recognized

in a game of Blackjack. Again, Earley-Stolcke parsing is applied to sequences, and

robustness is achieved by considering only three types of errors: (i) insertion of a

token into the sequence, (ii) substitution of a token from a sequence with another

one, and (iii) deletion of a token from a sequence. Finally, in [49], the authors

transform hierarchical PCFG into a hierarchical Bayesian Network and use deleted

interpolation (DI) [16] to combine two recognition models, one of which is precise

but unreliable while the other is less precise but more reliable. An advantage of

such an approach is its ability to detect overlapping activities.

A last application we would like to list for the use of PCFGs is fault detec-

tion in computer systems. Paper in [50] presents a system called Pinpoint which

provides detection of faults in the application layer of internet services. This de-

tection is realized by constant monitoring of software component interactions and

query component paths (set of components called for a query). The training stage

of the system provides Pinpoint with steady-state behavior of the system while in

the run-time of Pinpoint, faults are recognized due to behavior that is too divergent

from the general case.

7

1.3 Rest of the Thesis

Following the introduction provided in this chapter, the remainder of the the-

sis is organized as follows. The next chapter (Chapter 2) presents our efforts in the

automated construction of PCFGs, which lists our improvement in terms of time

complexity and provides an evaluation of the goodness of the grammars constructed

by our proposed scheme. Chapter 3 gives the application of PCFGs (and the ad-

vantages of automated construction) in the domain of event recognition in sensor

networks. We propose a mobility modeling approach utilizing PCFGs in Chapter

4. Social networks behavior modeling, and service composition learning in service

oriented sensor networks, both via PCFGs, are presented in Chapters 5 and 6, re-

spectively. We also discuss our efforts in metric-based service composition in sensor

networks, as well as our work in application of switch options in pervasive sensor

applications in Chapter 6. Finally, conclusions of the thesis and future work are

discussed in Chapter 7.

CHAPTER 2

Inference of Probabilistic Context Free Grammars (PCFG)

Probabilistic Context Free Grammars (PCFG), the introduction to which is given in

Chapter 1, constitutes the main focus of this thesis. We reserve this chapter to auto-

mated construction of PCFGs from given training data. We will begin with a short

related work section which describes previous efforts in PCFG inference. We will

later present the algorithm which was introduced by us in [51]. We next provide our

extensions to the standard PCFG definition which are required for the application

of PCFGs to different network data modeling domains. We will complete the chap-

ter by providing the improvement of our proposed scheme over previous grammar

inference algorithms, and provide experiments on how our proposed PCFG inference

improvements perform in terms of the goodness of the grammars constructed, and

the time that is spent during this construction process.

2.1 Construction of PCFGs in Literature

There are two different tasks associated with the PCFG inference problem:

(i) setting the probabilities of the already given rules, and (ii) constructing the

whole grammar from training data. For the first case, the well known so-called

inside-outside algorithm [52], [53] serves as the solution.

For the second case, two previous works, which also form the basis for our algo-

rithm, are relevant. The first one [17], [54] uses the two operators (merge and chunk)

as well as initial construction method which we used in our algorithm. Although we

utilize a similar Bayesian formulation to evaluate the grammar, our approach uses

a different and simpler evaluation function and a novel, fast method for computing

the Bayesian metric taking advantage of properties of merge and chunk operations.

This work [17], [54] also focuses on the inference of HMMs and n-gram models

The second work [55] begins with a very general grammar (as opposed to [17]

* Portions of this chapter previously appeared as: S. C. Geyik and B. K. Szymanski, “Event
recognition in sensor networks by means of grammatical inference,” in Proc. IEEE INFOCOM,
2009, pp. 900−908.

8

9

which generalizes and miniaturizes the initial specific grammar with the merge and

chunk operators). Later, this grammar is made specific to the training data with five

operations (concatenation, classing, repetition, smoothing and specialization). The

authors utilize a Bayesian evaluation of the grammar, which we also used in our

algorithm. This evaluation replaced the complex evaluation method in [17] (based

on the symmetrical Dirichlet distribution over the PCFG model parameters) in our

proposed inference algorithm.

2.2 PCFG Inference Algorithm

In this section, we explain how our grammar inference scheme works. We start

by introducing the operations that, step by step, construct a PCFG. Then, we define

the Bayesian metric for PCFG evaluation and describe how to compute it efficiently

by taking advantage of the properties of the operators that are used in the grammar

inference.

2.2.1 Operations Used for Grammar Construction

This section explains the method introduced initially by Stolcke [17]. Gram-

mar construction consists of two steps: sample incorporation, and application of

operators.

2.2.1.1 Sample Incorporation

Sample incorporation is the initial step of constructing the grammar from

training data. The training data is a set of sentences which are assumed to have

been produced by the grammar we are trying to construct. Each sentence is a

string of terminal symbols. These terminal symbols are reduced by the grammar to

nonterminals of the form:

Ni → symboli (frequency of this symbol) ,

where frequency of a rule is the number of times the terminal symbol appears in

the training data. The goal is to separate terminal productions from nonterminal

10

productions. The sentences are reduced in the initial grammar by rules of the form:

START → Ns,1 ... Ns,j (frequency of this sentence).

For operational simplicity, the production frequencies are held, rather than the

probabilities. Later, the maximum likelihood estimate of any rule’s probability can

be calculated as:

P (rulei) =
frequency(rulei)

n
∑

k=1
frequency(rulek)

, (2.1)

where n is the number of rules in the definition of the nonterminal to which that

rulei belongs.

2.2.1.2 Operators

Two operators: merge and chunk [17], are used to build the grammar step by

step. We explain how these two operators work by examples.

N1 t1 N2 t3 t4 N3 (20)
N2 t5 (34)
N3 t6 t7 (26)

N1 t1 N4 t3 t4 N4 (20)
N4 t5 (34) | t6 t7 (26)

G G’

Merge N2 and N3

Figure 2.1: An Example of Merge Operation

Merge takes two nonterminals and reduces them into a new nonterminal by

combining their rules, as well as the frequencies. See Figure 2.1 for an example,

where nonterminals N2 and N3 are first combined into a new nonterminal N4, and

then they are removed by replacing all of their occurrences in the grammar with

N4. The parentheses in the figure contain the rule frequencies.

Merge is a generalizing operator as the resulting grammar accepts sentences

that do not exist in the training data. It can also create recursion if combining two

nonterminals X1 and X2 when the rule X1 → . . . X2 exists. This is because in such

case the new nonterminal (let’s say Xnew) will contain the rule Xnew → . . . Xnew.

Two special cases might occur during merge, first one when a nonterminal

is merged with START nonterminal. In such a case, the new nonterminal is also

11

called START . The second case happens when one of the nonterminals include the

other one as a rule with a single symbol. In this case that rule is simply removed

from the transformed grammar, since its replacement would be meaningless. For

example, if X1 includes the rule X1 → X2 (while merging X1 and X2), then the

new nonterminal (X3) would contain the rule X3 → X3, which is removed together

with its frequency.

A a F M b F M F b M F M (20) |

F f (102)
M m (110)

G

Chunk: " F M "

F M F M (2) |
a (15)

.

.

.

A a C b C F b M C (20) |

F f (102)
M m (110)

G’

C C (2) |
a (15)

.

.

.

C F M (64)

Figure 2.2: An Example of Chunk Operation

Chunk operator creates a new nonterminal with a single rule which is a string

composed of symbols in the current grammar. Each occurrence of this string is

replaced with the new nonterminal. The frequency of this nonterminal is equal

to the total number of replacements multiplied by the frequency of the rules in

which the replacement takes place. Hence this frequency can be interpreted as

the number of times the corresponding pattern (that is, the single rule in the new

nonterminal) exists in the training data. In Figure 2.2, the pattern F M defines the

new nonterminal C, and the frequency is set according to the number of replacements

of these patterns by C in all the rules.

2.2.2 Evaluation Metric for the PCFG

It is a crucial task to evaluate the goodness of the grammar that is constructed

from the training data D = {d1, d2, . . . }. For this purpose we utilize the a posteriori

probability (P (G|D)) as given in [17], [55]:

P (G|D) =
P (G)P (D|G)

P (D)
, (2.2)

12

and we can remove the prior for the training data from the above formulation. Hence,

the evaluation metric becomes P (G)×P (D|G). Here, P (G) is the grammar a priori

probability which is inversely related to the grammar description length, denoted

as lG. Hence, based on Occam’s Razor principle, the shorter the description length,

the higher the probability. From information theory, we have the following equation

for P (G) (α is used as a coefficient to represent the space of possible grammars, and

does not affect grammar inference process):

P (G) = α . 2−lG . (2.3)

P (D|G) stands for the likelihood of the training data, given the grammar G and

calculated by multiplying the probabilities of all the sentences in D:

P (D|G) =
|D|
∏

i=1

p(di|G). (2.4)

We employ a simple constant bit length (ls for each symbol) representation of the

grammar to calculate lG. For each nonterminal in the system, lG increases by this

length (corresponding to the nonterminal name). For each rule in the nonterminal,

lG increases by ls +((number of symbols in the rule)× ls), which also accounts for

the separation symbol. Different representation schemes can be employed, but the

advantage of our representation is that, as shown later, it limits the scope of search

for the operands to the chunk operation.

Our goal via construction is to find a grammar that is generalized, however also

keeping above a certain a posteriori probability. As we have previously mentioned,

the initial grammar we consider is created by the sample incorporation stage. This

grammar generates only the sentences from the training data D, and is the grammar

that has the maximum likelihood for the training data (P (D|G)). This grammar

is however too specific, and also of largest description length. What we would like

to achieve is to shorten this grammar (by the chunk operator which will decrease

the size and increase a posteriori probability) and make it more generalized (by

the merge operator which will decrease the likelihood and hence the a posteriori

probability). Of course the generality of the grammar should be bounded, e.g. a

13

A x y (2) | y z (3)
B y z (2) | n m (2)

G

Merge A and B

.

.

M x y (2) |
y z (5) | n m (2)

G’

.

.

P(D|G’) = [(2/9)/(2/5)] . [(5/9)/(3/5)] . [(5/9)/(2/4)] . [(2/9)/(2/4)] . P(D|G)
32 22

"x y" in A "y z" in A "y z" in B "n m" in B

Figure 2.3: Calculation of P(D|G) for Merge Operation

grammar that accepts all strings is overgeneralized and is not a good choice for

any application domain. In our work, we tried to achieve the balance between the

generality and the specificity by keeping the a posteriori probability always above

or equal to the initial grammar’s (via the sample incorporation stage) a posteriori

probability. The details of how we achieve this is given in Section 2.2.5.

2.2.3 Computation of the Evaluation Metric

In this section, we describe the methods that we use to calculate the effect of

the operators (Section 2.2.1.2) on the a posteriori probability (Eq. 2.2).

2.2.3.1 Chunk

For any chunk operation, the change in P (G) is easy to calculate via the

modified grammar, furthermore P (D|G) does not change. We demonstrate these

properties on the example presented in Figure 2.2. When F M is chosen as the

chunk nonterminal, each sentence production that uses a rule that is modified by

this chunk now goes to the new rule (consisting of F M) in its parsing tree, but

its probability does not change since this new rule has probability of 1.0. As an

example, if a sentence uses A → F M F M (which has 2/37 probability), it now

uses A → C C and twice C → F M which still has 2/37 probability in total.

2.2.3.2 Merge

Calculating P (G′) is again easy, given the modified grammar G′. However,

P (D|G′) changes whenever merge operation takes place during modification of the

14

grammar from G to G′. A naive and inefficient approach would be to re-parse

the training data to compute P (D|G′) anew. However, if we consider the ratio

P (D|G′)/P (D|G), probabilities of all unchanged rules will cancel out, leaving only

modified rules, so we can look just at the change in the estimated probabilities of

the modified rules and how frequently these rules are used.

As shown on example from Figure 2.3, the frequency of a rule is used as a

power to the change in the rule’s probability. This applies to all rules that have a

probability change, in other nonterminals as well, since a merge of two nonterminals

can affect a third nonterminal (e.g., rules becoming the same due to replacements).

2.2.4 Search for the Best Merge and Chunk Arguments

As discussed in Section 2.2.3.2, since a merge operator can affect many non-

terminals at once, all pairs of nonterminals should be examined for merge, and the

pair that gives the highest a posteriori probability will be chosen. Approximations

of this method to lower time complexity are discussed in Section 2.2.7.

Search for the best chunk argument rapidly becomes expensive with the growth

of grammar size if we check strings of all lengths as arguments. By using the fixed

bit length symbol representation, the length of the strings that need to be considered

can be bounded from above by length of 5. Indeed, chunking a string which occurs

just once cannot shrink the grammar, and at each replacement of a string of length k

with the chunk nonterminal, the grammar gets k− 1 symbols shorter. However, the

chunk nonterminal itself adds k+2 to the grammar length (k symbols + nonterminal

name + separation symbol). This should be made up for by frequent replacements,

and let’s say there are n replacements of the chunk string in the grammar with

the chunk nonterminal. Then we must have n(k − 1) > k + 2 for a chunk to be

advantageous. For any chunk, n ≥ 2, so in the worst case of a chunk string occurring

twice, the length of the string must be at least 5 (k > 4). Of course if there are

no strings up to length 5 that occurs at least twice, then there are no advantageous

chunks. If there are chunks longer than 5 and appears twice or more, these can be

discovered by further chunk argument searches once the previous chunk operator is

applied. For instance, if the repeating string is longer than 8, then its subsequent

15

part will still be chunked, so by using this method we lose only a little in terms of

lost chunk opportunities (potentially strings of length 5k + 1, 5k + 2, 5k + 3, for

k = 1, 2, 3 ...).

Size difference between two grammars (G before and G′ after chunk operation)

is expressed by the following formula:

lG − lG′ = ls[(n− 1)(k − 1)− 3]. (2.5)

2.2.5 Inference Algorithm

In most cases, merge operation decreases a posteriori probability according

to definition of P (G|D) given by Eq. 2.2. When, during merge, we replace a pro-

duction with a small number of alternatives by the one with a larger number of

alternatives, the advantage of the shorter grammar length usually does not compen-

sate for the decrease in P (D|G). In contrast, a chunk operation always decreases the

grammar length and increases its a posteriori probability. Therefore, we expect that

advantageous merge operations will be less likely to be encountered than advanta-

geous chunk operations. Consequently, it is beneficial for a posteriori probability

of the grammar to execute as many chunk operations as possible before applying

any merge operations. Hence, the general form of each of our inference steps is

chunk∗ merge, where we do all the beneficial chunk operations before performing

any merge operation.

Algorithm 1 PCFG Inference Algorithm

posterior = β
while true do
if best chunk shrinks the grammar then
do chunk , posterior ∗ = gain from chunk

else
if (posterior ∗ = gain from best merge) > β then
do merge, posterior ∗ = gain from merge

else
output grammar and quit

end if
end if

end while

16

The outline for this scheme is given in Algorithm 1. As it can be seen, rather

than trying to always find advantageous merge and chunk operators, we try to find

a chunk∗ merge step that keep the a posteriori probability above the one that

the initial grammar (via the sample incorporation stage) had. If the algorithm is

carefully examined, we give the a posteriori probability of β (a random starting value

since we are interested in relative a posteriori differences between grammars) to the

initial grammar, and we keep the grammar a posteriori probability always above

this value (hence in some sense at least as good as the initial grammar). Each chunk

operation increases the a posteriori probability, and even if the most advantageous

merge operator that is found tends to decrease the a posteriori probability, it is

applied if the value is still above β, hence allowing for generalization. This is thanks

to the cushion that is provided by the applied chunk operations. Please note that

different strategies can be applied, which may allow for further generalization, or

keep a posteriori probability always at higher values.

We will next prove that any chunk operation neither eliminates feasible merge

operations (actually may add to them) nor changes their impact on a posteriori

probability of the grammar.

Theorem 1. A chunk operation neither eliminates feasible merge operations nor

changes their impact on the a posteriori probability of the grammar.

Proof. A chunk operation increases the number of nonterminals by introducing a

new nonterminal which consists of a single rule: a string of nonterminals with proba-

bility 1.0. Accordingly, it increases possibilities for merge (as there are more nonter-

minals defined) and any merge possible before the chunk took place is still possible

afterwards. Proving that a merge possible before the chunk is applied changes a

posteriori probability of the grammar the same way, regardless if it is executed be-

fore or after the chunk, requires a careful look into how the grammar is changed by

the chunk operation.

When a chunk operation occurs, the number of times a nonterminal (and

its appropriate rule) is used does not change. Rather, in any parsing tree (which

contains the string of nonterminals that is now a chunk) of any sentence in the

training data, a new node is created with the name of the new nonterminal. From

17

this new nonterminal, however, the parsing continues as it did before the chunking

was applied.

A merge operation combines two nonterminals (and their rules) into a new

nonterminal. This operation effects P (D|G) because production probabilities change

with this new grammar definition. However, any node added to the parsing trees

by the chunk operation has the probability of 1.0. Therefore, it does not affect

P (D|G), hence it does not affect the a posteriori change that a merge causes on the

tree rooted at the new node added by chunk. In short, chunk does not change the

production counts or operation probabilities, the latter can only be changed by the

merge operation.

This concludes the proof that a chunk operation neither eliminates any existing

potential merge operation nor changes the impact of any merge on the a posteriori

probability of the grammar.

It should also be noted that merge operations may create new chunk oppor-

tunities. This is because replacing two different nonterminals with a single name

may make two substrings that were previously different the same, thereby creat-

ing new opportunities for applying chunk. This proof furthermore justifies our

chunk∗ merge choice, which is a distinct diversion from [17], where the step can be

seen as chunk merge∗.

2.2.6 Complexity Analysis

In this section, we examine the complexity of the inference algorithm. First

of all, space complexity is O(D) (we represent the size of the training data by D

as well). In sample incorporation stage, the initial grammar size is D, and each

operator later decreases the size of the grammar, hence the space requirement is

always below or equal to D.

Based on our inference step (chunk∗ merge), our algorithm tries to find best

arguments for a chunk or a merge operator. A straightforward implementation of

chunk argument search basically requires going through the grammar lmax times,

where lmax is the longest chunk that we search for. If it is taken to be the longest

rule (which finds the optimal chunk), then a chunk argument search takes O(lG ×

18

lmax × log(lG)), since to count the frequencies of strings, we need a hash table

with a worst-case time complexity of O(log(lG)) for inserting or finding (to update

frequency) a string. This furthermore can be taken as O(l2G log(lG)) since it is safe

to say lmax is in the order of O(lG). Our improvement over [17] is to look in rules

for repeating strings of length of at most 5, which finds all advantageous chunk

operands, if they exist. This significantly reduces the complexity of the search for

a chunk to O(lG log(lG)). After finding the chunk string, the modification of the

grammar takes O(lG), hence the chunk operator takes an overall O(lG log(lG)) time

with lG = O(D) decreasing over time.

Complexity of themerge operation is defined by the number of steps necessary

to find the best pair of nonterminals to merge. Denoting the number of nonterminals

by nt, we notice that nt is defined by the operations performed. It increases by

one after each chunk operation and decreases by one after each merge operation.

The total number of chunk and merge operations cannot exceed D because each

operation decreases the length of the grammar by at least one from its initial length

of at most D. Likewise, for initial value of nt we have nt ≤ D + 1 so taking into

account that at most D merge operations can be performed, we have in general that

nt is O(D). Considering all pairs of nonterminals, we match each nonterminal with

at most nt−1 others, and since each check takes lG = O(D) (by applying the merge

operator and finding the change in a posteriori probability), we can conclude that

each merge operation takes O(n2
t lG) = O(D3) and this is also the complexity of

each loop in Alg. 1.

Clearly, the number of loop repetitions in Alg. 1 cannot exceed the size of

training data (D) because every merge or chunk operation decreases grammar size

from its initial size of O(D) at the sample incorporation stage. Hence, the worst-

case time complexity can be expressed as TW (D) =
D
∑

i=1
O(D3) = O(D4), where D

denotes the total length of the training data measured in number of symbols.

Although not used for implementation simplicity, the search for a chunk that maximizes the
benefit function f = [(n−1)(k−1)−3] can be done in O(D log(D)) by finding all non-overlapping
repeating chunks in the grammar via building a minimal augmented suffix tree (MAST) [56].
Hence, with the same complexity of O(D log(D)), we can achieve the largest reduction of the
grammar size with a single chunk operation.

19

2.2.7 Constrained Search for the Merge Arguments

In this section, we will show our two approximations on the merge search,

which will lower time complexity of the inference algorithm and are improvements

over [17]. First approximation we propose is to only look at the descriptions of

the nonterminals that are being merged, hence ignoring the merge’s effect on the

rest of the grammar. Let’s examine the complexity of this approach. Denoting by

cj the number of clauses on the right hand side of the definition of nonterminal j,

we have the obvious inequality
∑nt

j=1 cj < lG. Considering all pairs of nontermi-

nals for a merge, we match each nonterminal with at most nt − 1 others. In this

case, since we only look at the right hand sides of the nonterminals that are being

merged (and not the whole grammar as the previously shown exact approach), the

time complexity of checking all nonterminal pairs (hence the merge search) takes
∑nt

j=1

(

cj +
∑nt

k=j+1 ck
)

<
∑nt

j=1 lG = ntlG. By following this scheme, the merge oper-

ation is O(D2) (since nt = O(D) and lG = O(D); furthermore, applying the merge

takes O(D)), and the inference algorithm overall takes O(D3), due to at most D

loops.

The second approximation builds on the first one as follows. When checking

the right hand sides of only the merged nonterminals, if we ignore the rules being

deleted (due to being the same or being equal to the new merge nonterminal), then

choosing the two nonterminals with the smallest total frequency gives the merge with

the highest advantage (or the least disadvantage) on the a posteriori probability of

the grammar.

Suppose that we have two nonterminals X and Y with rule frequencies x1→n

and y1→m respectively (X has n rules and Y has m rules). Let’s also denote the

sums of frequencies as
∑n

1 xi = SX and
∑m

1 yi = SY . Then, the merge of these rules

MX,Y has these rules side by side, making the change in the a posteriori probability

as follows:

P (G|D)new = 2ls × P (G|D)prev ×

(

x1/[SX + SY]

x1/SX

)x1

× ... ×

(

xn/[SX + SY]

xn/SX

)xn

×

20

(

y1/[SX + SY]

y1/SY

)y1

× ... ×

(

ym/[SX + SY]

ym/SY

)ym

= 2ls × P (G|D)prev ×
(

SX

SX + SY

)SX

×
(

SY

SX + SY

)SY

.

We will next prove that to maximize
(

SX

SX+SY

)SX

×
(

SY

SX+SY

)SY

(and get the most

advantageous a posteriori probability change), SX and SY must be chosen as small

as possible.

Theorem 2. Let,

F (n,m) =
(

n

n+m

)n (m

n+m

)m

,

then value of F(n,m) increases if either n or m decreases.

Proof. We prove that if m > 1, then F (n,m) < F (n,m − 1). Let R(n,m) =

F (n,m)/F (n,m− 1) then,

R(n,m) =
(

1−
1

n+m

)n+m−1 m

n+m

(

1 +
1

m− 1

)m−1

=
(

1−
1

n+m

)n m

n+m

(

1 +
n

(n+m)(m− 1)

)m−1

.

But
(

1 + n
(n+m)(m−1)

)m−1
is equal to

1 +
n

n+m
+

m−1
∑

i=2

(

m− 1

i

)

ni

(n+m)i
1

(m− 1)i

and then,

m−1
∑

i=2

(

m− 1

i

)

ni

(n+m)i
1

(m− 1)i
<

m−1
∑

i=2

(m− 1)i

2i−1

ni

(n+m)i
1

(m− 1)i
<

n2

(n+m)2
.

Finally,

R(n,m) <
(

1−
1

n+m

)n (

1−
n

n+m

)

(

1 +
n

n+m
+

n2

(n+m)2

)

<
(

1−
n

n+m

)(

1 +
n

n+m

)

+
n2

(n+m)2
= 1.

21

It immediately follows that also F (n,m) < F (n− 1,m) by just repeating the argu-

ment above with n instead of m decreased by 1.

This reduces the merge search problem to finding two nonterminals with the

smallest total rule frequencies, which can be done in O(lG) steps, which is also the

complexity of merge operation.

In the previous section we had proven that a chunk operation has complexity

O(lG log(lG)). As chunk operator is now the most significant step in the loop of

Algorithm 1 complexity-wise, the overall complexity of the algorithm becomes (we

showed in the previous section that lG is O(D) and it decreases by at least 1 in

chunk or merge operation) Tw(D) =
D
∑

i=1
D log(D) = O(D2 log(D)).

2.3 Extensions to the PCFG

In this section we extend the simple PCFG definition to apply it to certain

domains. First, we introduce time tokens, which represent the temporal properties of

the application domain. The second one is the addition of relative tokens. Relative

tokens basically change the state of a modeled object according to its last state.

They reduce complexity related to high number of terminals.

2.3.1 Time Tokens

To represent the temporal properties of any application domain, we utilize a

special time terminal symbol, t. We are proposing two versions of this time symbol:

(i) A constant time representing time symbol, where each t in the grammar repre-

sents the same amount of time, and different time amounts can be implemented with

a varying number of consecutive t’s, and (ii) A time distribution representing time

symbol, where each symbol t is accompanied by the mean and standard deviation

of the distribution of the time period that it represents.

2.3.1.1 Constant Time Representing Time Symbol

Our first version of the time token t represents a preset time interval specific

to the application domain. For example, a sequence of t’s between two location

terminal symbols represent the temporal property of the node mobility. Suppose

22

that we have three actions A, B and C happening consecutively in an application

domain. Then

A 24 B 42 C

states that once the event A happens, B happens in 24 time units, and C happens in

42 time units (following B). If the time token is chosen to represent a time interval

of 20 time units, the above sequence will be represented (approximately) by the

following sentence:

A t B t t C .

It should be noted that there is a trade-off between the time interval of the time

token (resolution) and the complexity of the grammar, which is related to the length

of the sentences in the training data. In the above example for instance, if we had

set the time interval of the token to be six units, we would have represented the

intervals perfectly, but the sentence would have been much longer. This also affects

the generalization power of the PCFGs.

2.3.1.2 Time Distribution Representing Time Symbol

Our second version of the time token t represents a Normal distribution of the

time that passes between two terminal symbols. Again if we follow the mobility

modeling example, a single t (accompanied by the mean and variance values of the

distribution) between two location terminal symbols represents the distribution of

the time that passes between the movements of a mobile entity between those two

locations. Other distributions can be utilized, however, the calculations regarding

to finding the empirical sample mean and variance do not change if we utilize a

different distribution.

Suppose that similar to the example in the previous section, there are n trips

in the observed data, starting with A, then B and C, made by the same or different

mobile nodes. However, the maximum likelihood average (from n observations) of

the time that takes between A and B is 5.0, and the maximum likelihood variance for

the same parameter is 2.0. Similarly, the average for the movement between B and C

is 4.0 and the variance is 1.3. Please note that we can assume a Normal distribution

for the time that it takes for each movement, and the maximum likelihood mean

23

(µ) and variance (σ2) are the parameters required for this distribution. Then the

movement pattern within the PCFG can be represented as:

A t5.0,2.0 B t4.0,1.3 C .

Such modeling reduces the size of the grammar, however, it also brings the question

of how to calculate these values once the initial grammar has been constructed.

During data incorporation stage, single instances of each trip should be kept in

memory to calculate the rolling variance value (since the mean will be constantly

changing with each new value). Furthermore, we need actual instances as well when

we do chunking operations, since the mean and the variance would change. Let us

give a simple example to demonstrate what we mean by this. The below grammar

provides two types of trips that a mobile node can take with the relative frequencies

in parantheses.

Start → locA t5.0,1.0 locB t4.0,1.0 locC (20) |

locZ t7.0,8.0 locB t3.0,2.0 locC (15) .

In the above grammar, we see that the mobile node’s movement from B to C is a

frequent substring (hence a subtrip, one starting after a visit to locA and one after

locZ), so it can be represented by a new nonterminal (and its occurences can be

replaced by this). While we can easily find the new means from the frequencies (it

is (20×4.0)+(15×3.0)
20+15

), the new variance is impossible to calculate since we do not have

the original observations. To overcome this, we propose to also keep the sum of

squares of all the observations that is in the represented distribution. This way the

sample variance can easily be calculated as: σ̂2 = 1
n

∑n
j=1(tj − µ̂)2 = 1

n

∑n
j=1 t

2
j − µ̂2

(for a given set of n observed time value t1→n).

Let’s give the grammar of the previous example with the new model:

Start → locA t5.0,1.0,520.0 locB t4.0,1.0,340.0 locC (20) |

locZ t7.0,8.0,855.0 locB t3.0,2.0,165.0 locC (15) .

24

Now, if we take the pattern of “locB time locA” as a frequent subtrip and construct

the chunk nonterminal, then the above grammar becomes:

Start → locA t5.0,1.0,520.0 SubBA (20) |

locZ t7.0,8.0,855.0 SubBA (15)

SubBA → locB t3.57,1.67,505.0 locC (35) .

The average, the variance and the sum of squares are calculated as follows. Since the

average of the 20 cases from the first rule is 4.0 and from the 15 cases of the second

rule of Start is 3.0, then the average for the combined 35 cases is (4.0×20)+(3.0×15)
(20+15)=3.57

. The

sum of squares for the 35 cases is just the added value of the sum of squares for the

20 cases of the first rule and the 15 rules of the second rule, hence 340+ 165 = 505.

The variance can be easily calculated afterwards by 1
35

× 505− (3.57)2 = 1.67.

Hence we conclude that keeping the sum of squares is essential to calculate

the new averages caused by the chunk and merge operators, and also takes much

less space than keeping the separate values for all the cases.

2.3.2 Relative Tokens

Relative tokens represent the change in the state of a system relative to the

previous state, which was determined by the previous action (terminal symbol in

the sequence). A simple example of such use arises in modeling the movements of

a mobile node. In such a case, each new terminal symbol moves a node a constant

distance in the direction defined by the relative terminal symbol. See the simple

example on Figure 2.4. The node in this example starts at point A2, and makes

a couple of movements as given in the figure to end up in the square B6. Rather

than giving all the points it has been to, we only give the relative movements to

the previous location of the node. In the figure, U , D, R, UR represents up, down,

right and up-right (cross movement) respectively.

Employing relative tokens have a couple of advantages. First one is the fact

that it decreases the number of distinct terminals, hence the number of nonterminals

in the grammar (due to the inference method). This lowers the complexity of the

25

A

B

C

1 2 3 4 5 6 7 8 9

Movement Sequence: A2 R UR U R R D
Instead of: A2 A3 B4 C4 C5 C6 B6

Figure 2.4: Relative Movement Token Example

grammar, and therefore reduces the time it takes to construct the grammar from the

training data. Furthermore, it makes the detection of subactions easier by increasing

the recurring patterns in the training data, making it easier to find meaningful and

frequent chunks. Again in Figure 2.4, it is easy to define a zig-zag motion as UR DR

(up-right and down-right, i.e. րց). If we represent the sentences by the exact

locations, this motion will not be taken as a frequent one; while in the case of relative

tokens, a zig-zag subaction will be found as a chunk nonterminal no matter what

the exact locations are.

2.4 Improvement over Previous Work

In this section we will describe our improvements over the work presented in

[17] and [55]. First of all, the formulation to score how good a grammar is given in

both of these papers as the Bayesian posterior probability as:

P (G) =
P (G)P (D|G)

P (D)
.

However, this formulation is later replaced in [17], for inference purposes, with the

maximization of the posterior probability for the model structure. This means find-

ing the model which gives the highest likelihood given the data when the parameters

of this model is assigned using a Dirichlet distribution. The reason for this is given

by authors as being a more precise approximation to the Bayes-optimal averaging

26

over the models which represent the grammar. Therefore the search procedure uses

the following posterior and related likelihood calculation [17] (of training data, X,

given a distribution of left-hand side rule probabilites for the nonterminals, θM):

P (MS|X) ∝ P (MS)P (X|MS)

and

P (X|MS) =
∫

θM

P (θM |MS)P (X|MS, θM) dθM .

We however, follow the previous formulation, as also followed in [55], although we

apply the operators as given in [17], namely, merge and chunk. This gives us the

following advantage. In the case of the merge operation, it is easier to calculate

the change in posterior probability, as given in Section 2.2.3.2. This way, we do not

have to reparse the sentences that are in the training data, the changes between

the previous and the current grammar is enough to calculate the change in P (D|G)

(probability of the training data given the grammar). This lowers the calculation

of P (D|G) from O(D3) to O(D) (i.e. from parsing all sentences to looking at only

the new rule that is generated by the merge). Furthermore, this lowers the overall

complexity of the inference algorithm to O(D3). We also show in Section 2.2.7 that

the constrained search for the merge arguments makes the search for the best merge

operation to only O(D).

Our second improvement is in the chunk operator. In Section 2.2.2, we in-

troduce a very simple method on the representation of the grammar which directly

affects the prior probability, P (G), of the grammar (see Eq. 2.3). This simple

method of representation constrains the search for the profitable chunk operation to

strings of length up to five, as given in Section 2.2.4, which further lowers down the

complexity of this search to O(D log(D)) from O(D2 log(D)). As aforementioned,

assuming we use the constrained search for the merge arguments, the constrained

search for the best chunk argument lowers the overall complexity of the inference

algorithm to O(D2 log(D)).

To summarize, our improvements over previous PCFG inference methods can

be listed as:

27

• A simple representation of the grammar for calculating description length.

This limits the search for the chunk operator arguments, reducing the time

complexity of this operation from O(D2log(D)) to O(Dlog(D)).

• A new approach to grammar construction process (i.e. keep a posteriori above

the initial value) where the basic inference step becomes chunk∗ merge.

• A detailed time complexity analysis of the grammatical inference method.

• Two approximations to searching the merge operator arguments, which de-

crease the time complexity of the overall algorithm first from O(D4) to O(D3)

and then to O(D2log(D)) (making now chunking the more costly operator).

2.5 Measuring the Effect of Our Approximations to PCFG

Inference

In this section, we will give experimental results on how the approximations

proposed in Sections 2.2.4 and 2.2.7 affect the process of automated PCFG con-

struction. We will give the time it takes to infer a grammar, and the a posteriori

probabilities of the generated grammars for differing training data sizes.

For our evaluations, we are utilizing three grammars to generate a vary-

ing number of sentences as training data so that the PCFG inference algorithm

can process these sets. The grammars we utilize are as follows: (i) an bn, (ii)

[an bn] | [cm d2m], and (iii) [a− z]n (i.e. a random string). We compare six types of

PCFG inference algorithms (in terms of time it takes to construct a grammar, and

P (G|D) of the final grammar, as well as the highest P (G|D) during the inference

process) with varying levels of approximation:

• Approximation Level 0: Merge Search approximation level-0, and Chunk

Search approximation level-0,

• Approximation Level 1: Merge Search approximation level-0, and Chunk

Search approximation level-1.

• Approximation Level 2: Merge Search approximation level-1, and Chunk

Search approximation level-0.

28

• Approximation Level 3: Merge Search approximation level-1, and Chunk

Search approximation level-1.

• Approximation Level 4: Merge Search approximation level-2, and Chunk

Search approximation level-0.

• Approximation Level 5: Merge Search approximation level-2, and Chunk

Search approximation level-1.

Above, level-0 in Merge Search means that all couples of nonterminals and their

effect on all the rest of the grammar are evaluated for merge operand selection.

level-1 means again the consideration of all nonterminal couples, however only their

effect on each other is evaluated. level-2 in Merge Search applies our highest level of

approximation to finding merge nonterminal couples, as presented in Section 2.2.7,

which chooses the two nonterminals with smallest total rule frequencies.

In Chunk Search, the approximation level-0 means the search for the most

advantageous chunk operator, and considering all length. Again, level-1 represent

our highest level of approximation to find the chunk string, as given in Section 2.2.4,

which looks for strings of length up to 5.

For the experiments, we implemented the PCFG inference algorithm and the

approximations in Perl programming language, due to the ease of implementation.

We utilized a very modest system which has an Intel(R) Core(TM)2 Duo T-8100

2.10 GHz processor, with 3GB of RAM, running Windows 7 , to give an idea when

we are presenting the results for the time it takes to construct the PCFGs.

2.5.1 Grammar an bn

In our evaluations of the grammar inference approximations, our first grammar

consists of a number of a’s followed by the same number of b’s. To be specific, we

initially generated a varying number of sentences from the following PCFG:

Start → a Start b (0.9) | a b (0.1)

Windows 7 Enterprise. Copyright c© 2009 Microsoft Corporation. All rights reserved. Service
Pack 1.

29

Table 2.1: Final Grammar’s A Posteriori Log-Probability (Compared to
the Initial Grammar) for All Levels of Approximation in the
Grammar an bn Experiment vs Training Data Size (in Sen-
tences)

Training Appr. Appr. Appr. Appr. Appr. Appr.
Data Size Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

200 108.831 199.138 152.27 187.067 161.772 152.446

400 233.861 293.656 207.656 155.251 138.584 158.947

600 188.542 271.1 183.606 171.601 202.307 178.1

800 197.268 116.211 271.264 215.145 167.524 236.272

1000 289.704 237.013 271.624 221.498 252.29 307.915

1200 389.703 280.732 285.589 250.916 329.623 240.056

1400 258.145 236.454 305.14 227.303 235.116 180.405

1600 351.013 208.378 208.981 219.303 292.768 158.01

1800 384.27 242.476 220.396 252.437 299.687 230.232

2000 385.429 292.603 401.881 363.865 302.53 247.389

We later trained PCFGs with varying approximation levels on the set of sentences

that were generated by the above grammar. The average length (lav) of a sequence

(sentence) generated by this grammar is 20 (i.e. lav = [0.9× (lav + 2)] + [0.1× 2]).

The results of this experiment is given in Tables 2.1, 2.2, and 2.3. We changed

the number of sentences between 200-2000 sentences (in steps of 200) for each train-

ing data, and we ran 10 cases for each size (the results presented here are the

averages) to compare the varying approximation levels of grammatical inference.

Table 2.1 gives the a posteriori log-probability results as compared to the ini-

tially constructed grammar. As aforementioned, Sample Incorporation phase gener-

ates the initial grammar (and we take the a posteriori probability of this grammar

to be β as shown in Algorithm 1), and chunk and merge operators are applied as

long the grammar’s a posteriori does not fall below this initial value. The results

provided in this table are the log2 (logarithm in base 2) of the a posteriori difference

between the initial grammar and the final grammar (i.e. just before the grammar

inference process stops). As it can be observed, in general, the lower approximation

in finding operators brings with higher a posteriori values. This is an expected result

since the heuristic makes better decisions at each step with less approximations.

To look at the a posteriori probability metric in another perspective, we check

the highest a posteriori probability during the inference process in Table 2.2. For

30

Table 2.2: Best Grammar’s A Posteriori Log-Probability (Compared to
the Initial Grammar) for All Levels of Approximation in the
Grammar an bn Experiment vs Training Data Size (in Sen-
tences)

Training Appr. Appr. Appr. Appr. Appr. Appr.
Data Size Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

200 1291.957 1277.4 1291.7 1277.4 1291.7 1277.4

400 1719.9 1702.7 1719.9 1702.7 1719.9 1702.7

600 1999.474 1976.3 1997.5 1976.3 1997.5 1976.3

800 2270.828 2247.8 2268.5 2247.8 2268.5 2247.8

1000 2452.4 2432.6 2452.4 2432.6 2452.4 2432.6

1200 2622.421 2599.9 2620.1 2599.9 2620.1 2599.9

1400 2601.742 2582.8 2601.7 2582.8 2601.7 2582.8

1600 2827.449 2804.4 2826.8 2804.4 2826.8 2804.4

1800 2729.8 2710.2 2729.8 2710.2 2729.8 2710.2

2000 3160.6 3139.6 3160.6 3139.6 3160.6 3139.6

this metric, we see that the grammar inference algorithms which applies highly

approximated methods (proposed in Sections 2.2.4 and 2.2.7) do not perform sig-

nificantly worse than choosing the operators in a brute-force manner. Although

one might argue that the best a posteriori probability during the inference process

does not allow for enough generalizations (which would lower the a posteriori prob-

ability); in purely mathematical sense, the grammar with the highest a posteriori

probability is the “best” grammar, and higher approximation levels also come up

with quite good results for this metric.

Finally, Table 2.3 presents the time it took to construct (in average) a grammar

for different training data sizes. We see that although the final and best a poste-

riori probabilities do not differ so much (as shown in Tables 2.1 and 2.2), higher

approximation schemes provides a tremendously fast way to construct grammar.

Another observation that should be done here is that the time it takes to construct

the grammars does not increase as drastically as it should with increasing training

data size. This is due to the following reason. After the initial construction, the size

of the grammars are nearly the same for each training data size, since the pattern

is a highly regular one (consisting of only a small set of sentences reappearing all

through the training data). Hence, the difference in time that it takes is dependent

on the Sample Incorporation stage, which still increases (as it can be observed) with

31

Table 2.3: Average Time (in Seconds) It Takes to Construct the Final
Grammar (i.e. Inference Process) for All Levels of Approxi-
mation in the Grammar an bn Experiment vs Training Data
Size (in Sentences)

Training Appr. Appr. Appr. Appr. Appr. Appr.
Data Size Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

200 13.466 9.52 7.25 1.433 6.753 0.906

400 18.055 11.927 9.223 1.844 8.629 1.187

600 20.825 17.276 10.437 2.373 9.77 1.467

800 27.982 20.637 13.899 2.526 13.07 1.636

1000 31.826 21.738 15.81 2.788 14.902 1.783

1200 31.17 26.458 13.037 2.142 16.607 1.994

1400 31.341 23.633 11.281 2.161 15.123 2.337

1600 33.461 32.288 14.051 2.773 17.197 2.613

1800 31.588 27.395 13.6 2.522 17.454 2.544

2000 41.852 30.22 17.653 4.221 21.883 2.914

the increasing training data size due to the fact that incorporating larger datasets

into an initial grammar takes longer, but not as drastically as expected.

2.5.2 Grammar [an bn] | [cm d2m]

Our second PCFG experiments work on the expression [an bn] | [cm d2m], which

generates one of two types of strings: a number of a’s followed by the same number

of b’s, or a number of c’s followed by twice of the same number of d ’s. To be specific,

we initially generated a varying number of sentences from the following PCFG:

Start → AB (0.5) | CD (0.5)

AB → a AB b (0.8) | a b (0.2)

CD → c CD d d (0.8) | c d d (0.2)

The average length (lav) of a sequence (sentence) generated by the above grammar

is 12.5 (i.e. lav = (0.5× l1)+(0.5× l2) where l1 = [0.8×(l1+2)]+[0.2×2] and l2 =

[0.8 × (l2 + 3)] + [0.2 × 3]). Again, we trained PCFGs with varying approximation

levels on the set of sentences that were generated by the above grammar.

Similar to Section 2.5.1, we looked at the same three metrics (a posteriori log-

32

Table 2.4: Final Grammar’s A Posteriori Log-Probability (Compared to
the Initial Grammar) for All Levels of Approximation in the
Grammar [an bn] | [cm d2m] Experiment vs Training Data Size
(in Sentences)

Training Appr. Appr. Appr. Appr. Appr. Appr.
Data Size Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

200 84.291 52.733 68.736 61.592 71.617 81.585

400 88.975 54.994 128.377 66.202 110.507 113.578

600 114.345 142.902 129.045 115.171 100.888 149.613

800 158.021 86.888 152.602 169.918 109.907 102.357

1000 163.272 124.98 143.648 140.515 159.317 183.956

1200 149.514 169.892 112.77 180.092 120.341 164.814

1400 171.186 201.313 124.914 177.24 133.348 159.035

1600 195.392 160.302 148.767 160.756 146.528 102.081

1800 149.155 235.616 120.053 195.5 185.97 191.383

2000 200.127 152.654 177.398 179.24 204.37 212.788

Table 2.5: Best Grammar’s A Posteriori Log-Probability (Compared to
the Initial Grammar) for All Levels of Approximation in the
Grammar [an bn] | [cm d2m] Experiment vs Training Data Size
(in Sentences)

Training Appr. Appr. Appr. Appr. Appr. Appr.
Data Size Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

200 589.275 577 589.1 577 589.1 577

400 937.016 920.6 935.8 920.6 935.8 920.6

600 974.5 957.4 974.5 957.4 974.5 957.4

800 1117.706 1101.3 1117.5 1101.3 1117.5 1101.3

1000 1246.541 1223.6 1246 1223.6 1246 1223.6

1200 1358.811 1337 1358.5 1337 1358.5 1337

1400 1422.801 1402 1420.9 1402 1420.9 1402

1600 1574.8 1556.1 1574.8 1556.1 1574.8 1556.1

1800 1651.7 1634.6 1651.7 1634.6 1651.7 1634.6

2000 1638.811 1620.8 1637.7 1620.8 1637.7 1620.8

probabilities of the final and the best grammars, and the time it takes to construct

the final grammar, i.e. grammar inference process) in comparing our approximation

schemes, and the results are presented in Tables 2.4, 2.5, and 2.6.

Tables 2.4 and 2.5 present the a posteriori log-probability difference between

the initial and the final as well as the best grammars during the inference process.

It can be observed although the best grammar’s a posteriori is higher for less ap-

33

Table 2.6: Average Time (in Seconds) It Takes to Construct the Final
Grammar (i.e. Inference Process) for All Levels of Approxima-
tion in the Grammar [an bn] | [cm d2m] Experiment vs Training
Data Size (in Sentences)

Training Appr. Appr. Appr. Appr. Appr. Appr.
Data Size Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

200 9.908 9.657 2.552 1.229 2.141 0.762

400 16.721 19.732 4.467 2.169 3.86 1.177

600 19.172 19.318 4.581 2.106 3.912 1.263

800 21.687 24.872 5.373 2.232 4.669 1.399

1000 25.243 26.532 6.388 2.523 5.513 1.56

1200 29.326 27.389 7.09 2.689 6.154 1.636

1400 29.999 35.094 7.232 2.937 6.151 1.751

1600 36.134 37.938 8.509 3.186 7.513 1.91

1800 39.648 43.15 9.412 3.768 8.168 2.297

2000 37.833 37.562 9.309 3.56 8.372 2.255

proximation in choosing the operators, interestingly, the final grammar’s can be

larger for higher approximation schemes. We can attribute this to the fact that the

lower approximation schemes can come up with a better merge argument for the

last steps which allow for generalization, without going below the initial grammar,

but lowering the a posteriori probability.

The time that it takes in average to construct the final grammar is given in

Table 2.6. Again we see that the approximation brings up tremendous improvement

in terms of speed. Furthermore, we see that Approximation Level 3 (which has Ap-

proximation Level-1 in Merge Search and Approximation Level-1 in Chunk Search)

is faster than Approximation Level 4 (which has Approximation Level-2 in Merge

Search and Approximation Level-0 in Chunk Search) which shows the importance

of fast discovery of frequent substrings to construct the chunk nonterminal during

inference. Finally, again similar to the result in Section 2.5.1, we see an increase in

the time with larger training data, but not so drastically, since the grammar is a

highly regular one.

2.5.3 Grammar [a− z]n

As aforementioned, the previous two experiments do not really represent the

time complexity of the grammar inference task, since the initial grammar (after

34

Sample Incorporation stage), are more or less the same for each dataset size. In

this section, we utilize a random grammar ([a− z]n) to generate a varying number

of sentences as training data to be fed to the inference algorithm. With such a

randomized scheme for each sentence in the training data, our hope is that the size

of the initial grammars constructed will vary due to the differing dataset sizes, and

hence the time that it takes to construct the grammar will change significantly. To

be exact, the PCFG that we utilized to generate the sentences is as follows:

Start → R Start (0.875) | R (0.125)

R → a (0.038) | b (0.038) | ... | z (0.038)

Each sentence from the above grammar generates a sequence of random letters from

the alphabet (each 26 have equal probability, i.e. 1/26 ≈ 0.038), and the average

length (lav) for such a sequence is 8 (i.e. lav = [0.875× (lav + 1)] + [0.125× 1]).

The results of this experiment are given in Tables 2.7, 2.8, and 2.9. Like

the previous experiments, we used the same metrics to compare our approximation

schemes. As is expected, the ability to minimize and generalize is minimal in such a

randomized set of sentences taken as training data. This behavior can be observed

in Tables 2.7 and 2.8 where even for the slightest change in the a posteriori prob-

ability difference from the initial grammar can happen if the number of sentences

is around 100 (this is when there are any advantageous substrings to be taken as

chunk operators etc.). It furthermore can easily be seen that the higher approxima-

tion schemes perform more or less the same (in terms of a posteriori probability)

as compared to no approximations (as represented by Approximation Level 0) when

choosing merge or chunk operators.

In Table 2.9, we present the time results when constructing the grammars, and

can observe the drastic change with the increasing training data size. Please notice

that we use much fewer sentences (since it takes longer and longer to construct the

grammars) than previous experiments and the time values are noticeably higher.

For comparison, in the experiment with grammars an bn and [an bn] | [cm d2m], the

time it took for 2000 sentences with Approximation Level 0 was 41.852 and 37.833

35

Table 2.7: Final Grammar’s A Posteriori Log-Probability (Compared to
the Initial Grammar) for All Levels of Approximation in the
Random String ([a-z]n) Experiment vs Training Data Size (in
Sentences)

Training Appr. Appr. Appr. Appr. Appr. Appr.
Data Size Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

20 0 0 0 0 0 0

40 0.1 0.1 0.1 0.1 0.1 0.1

60 0.1 0.1 0.1 0.1 0.1 0.1

80 0.9 0.9 0.9 0.9 0.9 0.9

100 2.9 2.9 2.9 2.9 2.9 2.9

120 4.608 4.608 5.108 5.108 5.108 5.108

140 4.236 4.236 4.236 4.236 4.236 4.236

160 4.536 4.536 3.699 3.699 4.099 4.099

180 4.113 4.113 3.6 3.6 3.6 3.6

200 5.208 5.208 3.495 3.495 3.895 3.895

Table 2.8: Best Grammar’s A Posteriori Log-Probability (Compared to
the Initial Grammar) for All Levels of Approximation in the
Random String ([a-z]n) Experiment vs Training Data Size (in
Sentences)

Training Appr. Appr. Appr. Appr. Appr. Appr.
Data Size Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

20 0 0 0 0 0 0

40 0.1 0.1 0.1 0.1 0.1 0.1

60 0.1 0.1 0.1 0.1 0.1 0.1

80 0.9 0.9 0.9 0.9 0.9 0.9

100 2.9 2.9 2.9 2.9 2.9 2.9

120 7.7 7.7 7.7 7.7 7.7 7.7

140 7.6 7.6 7.6 7.6 7.6 7.6

160 19 19 19 19 19 19

180 27 27 27 27 27 27

200 44.5 44.5 44.5 44.5 44.5 44.5

seconds (in average) respectively. For the current experiment the time it takes for the

same approximation level is 81.729 seconds (in average) with a training data of only

200 sentences. We furthermore see that the higher approximation levels take much

less time (while not giving worse grammars in terms of a posteriori probability) to

construct a grammar.

36

Table 2.9: Average Time (in Seconds) It Takes to Construct the Final
Grammar (i.e. Inference Process) for All Levels of Approxi-
mation in the Random String ([a-z]n) Experiment vs Training
Data Size (in Sentences)

Training Appr. Appr. Appr. Appr. Appr. Appr.
Data Size Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

20 0.023 0.03 0.076 0.042 0.059 0.056

40 0.095 0.092 0.044 0.047 0.09 0.091

60 0.073 0.097 0.123 0.106 0.098 0.079

80 0.227 0.207 0.257 0.292 0.21 0.227

100 0.582 0.556 0.428 0.483 0.412 0.436

120 1.792 1.786 0.926 0.946 0.864 0.963

140 2.376 2.338 1.238 1.189 1.081 1.088

160 14.305 15.581 2.954 2.874 2.417 2.362

180 29.584 28.508 4.076 4.136 3.172 3.143

200 81.729 81.866 7.033 7.03 4.787 4.796

2.6 Conclusions and Future Work

In this chapter, we have presented our approach to the automated construction

of probabilistic context free grammars (PCFGs). We have extensively utilized pre-

vious work [17], [54], [55] while introducing approximations during the construction

to lower time complexity, which in turn helps with applicability of the method to

larger datasets. Via time complexity analysis and experiments, we showed that our

approximations provide a much faster way to generate PCFGs, while not losing too

much in terms of grammar goodness. We have furthermore presented our additions

to the PCFGs to make them applicable to specific network application domains,

which can be listed as time symbols and relative tokens.

In terms of grammatical inference, we would like to list two directions. The

first of these directions is the branching methodology during the construction of the

grammar. This can be described briefly as follows. While constructing the grammar,

there can be multiple advantageous operations at each step. Rather than choosing

the best one, as we currently do, a multiple of those can be kept (with their resulting

grammars at each step) to evaluate a larger set of grammars to model the training

data in a better way. This has been examined in [17], [54], and it would be very

interesting to see the benefit of our approximation schemes in such a methodology.

37

The second direction is the preprocessing of the training data in terms of fre-

quent substrings. These substrings can be preprovided by the user (hence would be

application specific), or still automatically discovered (via the methods provided in

Frequent Sequence Mining, see Chapter 1). If these frequent substrings are provided

by the user, then it means a manual interference with the grammar construction

process, however can also be useful since a set of sequences which are meaningful in

the application domain provides better modeling of the training data.

CHAPTER 3

PCFGs for Sensor Network Event Recognition

Wireless sensor networks (WSN) are often deployed to collect and process useful

information about their surroundings. They are composed of sensor nodes that

measure the environment, base station(s) collecting information sent by the sensor

nodes and relay nodes which transmit the data efficiently from sensor nodes to the

base station. A detailed survey of wireless sensor networks can be found in [57].

In today’s sensor applications that collect vast amounts of measurement data,

usually too big for manual inspection, it is very important to provide users with a

high level representation of raw measurements. Systems that are capable of summa-

rizing the information into a compact and meaningful form (compared to raw signal

data) are needed. Our purpose in this chapter is to present utilization of PCFGs for

modeling the patterns in sensor network measurements that lead to a certain event.

We will start the chapter by giving previous work on event recognition in sensor

networks. We will next provide a real-world scenario of parking lot monitoring. We

will conclude the chapter with the listing of the advantages that can be gained via

the usage of the PCFGs in the domain of event recognition in sensor networks. We

also list the pitfalls that can occur.

3.1 Related Work for Event Recognition in WSN

We have already listed the many efforts in WSN event recognition via the use

of PCFGs when we introduced the PCFGs in Chapter 1. In this section we would

like to see some other methods applied in this domain.

The first paper we would like to list [58] presents a two layered event recogni-

tion scheme. The initial level detects events from atomic activities using a method

similar to frequent itemset mining. The second level uses a type of string matching

algorithm to recognize event sequences. Another paper [59] utilizes 3D data maps

* Portions of this chapter previously appeared as: S. C. Geyik and B. K. Szymanski, “Event
recognition in sensor networks by means of grammatical inference,” in Proc. IEEE INFOCOM,
2009, pp. 900−908.

38

39

(which can be seen as measurements in 3D space) to recognize events in a sensor

network. The spatio-temporal patterns of the time-series data maps are examined

to recognize events.

Authors of [60] provide a visual system to recognize user activities, and makes

use of Bayesian classifiers as well as finite-state automata to recognize single actor

events. For multiple events, a temporal likelihood is calculated for the two possible

events occuring together. [61] utilizes fuzzy logic as well as the examination of the

sequence of basic operations to recognize events in a resource-constrained sensor

network.

The authors of [62] combine first-order logic with the uncertainty of primitive

action detection into what is called a Markov Logic Network (MLN) [63]. They apply

the MLNmethodology to the visual monitoring of a parking lot. A feature extraction

method to reduce dimensionality is utilized in [64] to classify and recognize human

actions in a distributed way, within the domain of a wearable motion sensor network.

Markov Models are also frequently applied in literature on event detection

[65]-[67]. [65] utilizes hidden Markov Models (HMM), to recognize human actions

from a time-series of images. Their experiments consist of recognizing six types of

tennis strokes. The paper in [66] makes use of coupled HMMs (CHMM) [68] to

recognize actions which are performed by 2 or 3 people. [67] compares the HMMs

and CHMMs on recognizing human behaviors in a visual recognition system, and

concludes with CHMM being the superior method.

3.2 Real world Scenario and Simulations

Following [51], we give an example of how PCFGs can be used in a parking

lot application where events of parking at a spot or leaving a parking spot can be

detected. This is just a demonstration to show the usefulness of the approach.

The main problem in these kind of applications is what kind of sensor to use

and how the terminal symbols should be chosen. A video camera can be used to

monitor the parking area and by using object detection techniques, location of a car

can be detected at any instance. From this information, we can set up the following

simple terminal symbols:

40

• MOVE: Location changes

• STOP: Location does not change

• TURN: Direction changes (this is determined by looking at two previous lo-

cations of a car)

A grammar can be trained by using many examples for different possible events.

Figure 3.1 shows a car tracking example and tracking done to gather symbols from

the camera image.

Figure 3.1: Parking Lot Car Tracking for Event Detection

A simulation based on such a real world scenario is given below. Parking lot

is a 20x20 grid where any car can move one square at any time-unit. A car can go

forward and backwards along its current direction, and it can change its direction

by 45 degrees to the right or to the left of the current one. 90 degree turns are

not allowed for a more realistic motion model. When a car enters the parking lot,

the subsequent entries to the lot are delayed until either there is a new parking

or exit from the parking lot event made by a car (regardless if this is the most

recently entered or some other car). We assume that one-square movement of any

car lasts one time unit. Parking (that is staying in parked state) time is exponentially

distributed with mean of 5000 of the same time units. The interarrival time of cars

is also exponentially distributed but with mean of 5 time units. This does not

congest the traffic in the parking lot because a car cannot enter the parking lot

before the others park or leave it, and parking (or leaving) takes time. Cars that

are not allowed to enter, simply queue up at the parking entrance.

41

Figure 3.2a and Figure 3.2b show the car trajectories associated with different

events in the parking lot simulation. Squares with the letter P in them represent

the parking spots. We have assumed three events:

• Entering the parking lot, finding the closest available parking spot and then

parking there (Enter and Park).

• Entering the parking lot, not being able to find an empty spot and leaving

(Enter and Leave).

• Leaving the parking lot from a parking spot (Leave Parking).

First two of these events and their corresponding actions are shown in Figure 3.2a.

Note that a car can circle around the lot for a few times to find a parking spot

before leaving. In the simulations, we assumed that a car leaves the parking lot

after an unsuccessful circle with probability of 60% and starts another circle around

the parking lot with probability of 40%.

In Figure 3.2b, the movements of a car leaving the parking lot are shown.

Please notice that a car goes first backwards from the parking spot to change its

direction, which is often the case in real-life.

We have run the training data generation program (for feeding into grammar

inference algorithm) with above given parameters for 100000 time units. Size of

training data acquired for each event is: Enter and Park (1468 sentences, 25333

symbols), Leave Parking (1396 sentences, 17698 symbols) and Enter and Leave (952

sentences, 13565 symbols).

Figure 3.3, Figure 3.4 and Figure 3.5 give the grammars inferenced from the

results of our simulations. The values of interarrival and parking times dictate

the probabilities of a single car being in one of the three events. Measured in our

simulations, these probabilities are: Enter and Park (38%), Leave Parking (37%),

and Enter and Leave (25%).

Tokens (smallest action unit) for the grammars are: en (enter), ex (exit), f

(one or more forward actions), b (one or more backward actions), tr (turn right 45

degrees), tl (turn left 45 degrees) and s (stop). Clearly, movement tokens are relative

tokens described in Section 2.3.2. Furthermore, we combine multiple forward and

42

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Entrance

Exit

(a) Car trajectories for the events: Enter

and Park and Enter and Leave

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Entrance

Exit

(b) Car Trajectories for the event Leave

Parking

Figure 3.2: Car Trajectories for the Real-World Scenario

backward movements into a single terminal symbol (f and b) to simplify prepro-

cessing, taking advantage of the fact that a forward or a backward movement does

not change direction.

The grammars fully model the actions of a car representing events shown in

Figure 3.2a and Figure 3.2b. In the listed grammars, nonterminals with names

starting with M (e.g M1) were created by merge operations, while those whose

names begin with C were created by chunk operations. Moreover, the grammar

for the event Enter and Park automatically discovers that the activity is recursive

in the case when there are several circles around the parking lot before the spot is

found. This is achieved by repeating C3 in nonterminalM1 (see Figure 3.3). Careful

examination reveals that nonterminal C3 reduces to 4× (f tl f tl) which completes

a circle around the parking lot (therefore the grammar has recognized a circle as

a sub-event). This illustrates the fact that a grammar can produce more than the

training data contains (generalization) simply by capturing the recursiveness. Input

to the inference algorithm was a set of finite length strings while the output grammar

produces strings of infinite length (however, probability of generating a string gets

smaller as the string gets longer). In the grammar for the event Enter and Leave,

43

−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−

en (1.0)

C3 −−>

N0 −−>

−−−−−−−−−−−−−−−

f (1.0)
−−−−−−−−−−−−−−−

tl (1.0)
−−−−−−−−−−−−−−−

C6 −−>

N1 −−>

N3 −−>

N1 N4 (1.0)

C7 C7 (1.0)

tr (1.0)
−−−−−−−−−−−−−−−

N1 N2 N1 N2 (1.0)

N2 −−>

C2 −−>

−−−−−−−−−−−−−−−
M1 −−>

M1 C3 (0.151)

N0 C2 C3 (0.849)

−−−−−−−−−−−−−−−

s (1.0)

N4 −−>

−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−

C7 −−>

C1 −−>

C1 C1 (1.0)

N1 N3 N1 N3 (1.0)

C5 −−>

C1 C2 C6 (1.0)

START −−>

M1 C6 (0.062)
M1 C5 (0.063)

M1 C3 C5 (0.002)
M1 C7 C5 (0.012)
N0 C2 C5 (0.246)
N0 C2 C7 C6 (0.243)
N0 C1 C6 (0.130)

N0 C2 C7 C5 (0.047)
M1 C3 C7 C6 (0.003)

N0 N1 N2 N1 N3 C2 C6 (0.134)
M1 C7 C6 (0.054)

M1 C3 C6 (0.004)

Figure 3.3: PCFG for Event Enter and Park

the probability of circling again gets too small just after four circles around the

parking lot to recognize potentially recursive circling in this case, as shown by the

definition of START in Figure 3.5.

3.3 The Advantages and Disadvantages of PCFGs for the

WSN Domain

Probably the biggest advantage of using PCFGs for detecting events in sensor

networks is the ability to utilize recursive grammar rules for repeating action se-

quences. Our real-world scenario provides a perfect example where a car can make

an infinite number of circles around a parking lot with decreasing probability, to

find an empty parking spot. Such a relation is very difficult, if not impossible, to

capture with pure k-level history based models (such as Markov models). Further-

44

b (1.0)
N4 −−>

f (1.0)
−−−−−−−−−−−−−−−

N1 −−>

−−−−−−−−−−−−−−−

START −−>

tl (1.0)
−−−−−−−−−−−−−−−

ex (1.0)
−−−−−−−−−−−−−−−

tr (1.0)
−−−−−−−−−−−−−−−

N3 −−>

N0 −−>

N2 −−>

C1 −−>

N4 N2 N4 N2 N1 N2 N1 C1 N3 N1 N0 (0.333)
N4 N3 N4 N3 N1 N2 N1 C1 N3 N1 N0 (0.339)
N4 N2 N4 C1 N2 N1 N0 (0.172)
N4 N2 N4 N2 N1 C1 N0 (0.156)

N2 N1 N3 N1 (1.0)

Figure 3.4: PCFG for Event Leave Parking

f (1.0)
−−−−−−−−−−−−−−−

tl (1.0)
−−−−−−−−−−−−−−−

tr (1.0)

N1 −−>

N3 −−>

N2 −−>

−−−−−−−−−−−−−−−

START −−>

C3 C4 (0.823)

C3 C2 C2 C4 (0.024)
C3 C2 C2 C2 C2 C4 (0.001)

C3 C2 C4 (0.152)
en (1.0)
−−−−−−−−−−−−−−−

ex (1.0)
−−−−−−−−−−−−−−−

N0 −−>

N4 −−>

C1 −−>

−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−

C4 −−>

C3 −−>

C2 −−>

N1 N3 N1 N3 (1.0)

C1 N1 N4 (1.0)

N0 N1 N2 N1 N2 (1.0)

C1 C1 C1 C1 (1.0)

Figure 3.5: PCFG for Event Enter and Leave

more, PCFGs have the capability to infer subevents too. The scenario provides also

such an example where a nonterminal actually presents the subevent of a car’s single

circle around the parking lot.

Unlike Markov models, PCFGs are perfect for capturing long term relation-

ships between symbols that occur in an event sequence. This discussion can be

based on automata theory also; while a Markov model can be interpreted as a prob-

abilistic finite state automaton (with no stack), a PCFG is a probabilistic pushdown

automaton (with stack). It can be stated that PCFGs can recognize a larger set of

languages, hence have higher modeling capabilities for events.

45

An issue that occurs while using PCFGs is the problem of finding the time

window for the occuring event. A Markov model has a predefined window and hence

there is no further processing to detect the start and the end of an event to recognize

it. However, such a problem can be overcome in PCFGs by setting up time limits

for an event’s length, and working in a window spanning a certain time period.

Markov models are comparably simpler than PCFGs and it is easier to infer

transitions as well as transition probabilities of a Markov model than the production

rules and rule probabilities of a PCFG. A smaller data set is often sufficient to rec-

ognize what type of primitives can follow what primitives and usually give a good

approximation of these transitions’ probabilities in a Markov model. A PCFG’s

production rules are usually complex and have many variations, which usually re-

quire a larger data set to fully infer. Event recognition domain is relatively easy

to collect data of ordinary real-life cases. For example, it is easy to acquire a large

data set of examples of what a normal action sequence for a person in an airport

is. The same is valid for the parking lot monitoring application where a camera can

be deployed to view a parking lot and it can monitor normal parking sequences for

months, producing a very large data set. However, the extreme cases such as a se-

curity breach in an airport does not occur commonly in real life and such cases must

be manually constructed by humans, hence bringing the problem of insufficient size

data sets. For such cases, a rough idea of what the dangerous patterns are could be

implemented by a synthetic data generator, and many cases with small variations

can be created; however the synthetic cases are not usually good indicators of what

a real-life danger would be like. We can conclude that the normal operation of a

system is much more easier to capture by a grammar (later used to detect abnor-

malities), and given its expressivity benefits, it is better to use grammars for such

applications. If we would like to model abnormalities, it is more beneficial to use

simpler models, e.g. Markov models, due to the problem of insufficient amount of

data that can be collected in the event recognition domain.

46

3.4 Conclusions and Future Work

In this chapter, we have presented the applicability of PCFGs in the domain of

sensor network event recognition. We have shown results based on synthetic data,

which demonstrated the generalization capabilities of PCFGs in this domain, and

promise for future utilization. We have also listed the advantages and disadvantages

that the PCFG-based event recognition may bring. As a future work direction in

this domain, we can list the application of PCFG methodology on real-life event data

(which may be noisy, hence require further processing) and evaluate, or improve,

the performance of PCFGs in such settings.

CHAPTER 4

Mobility Modeling and Synthetic Trace Generation with

PCFGs

Mobility of nodes is one of the key attributes of today’s networks. The examples of

networks in which nodes move around most of the time and use wireless communi-

cation are mobile ad hoc networks, delay tolerant networks, robotic networks and

mobile sensor networks.

New protocols and algorithms for wireless mobile networks benefit from their

verification via simulations in their early design stages. However, such simulations

require large amount of realistic mobility behavior data, which are difficult to collect.

Therefore, development of methods which can generate long synthetic mobility data

from sample traces is crucial for proper evaluation of protocols and applications via

simulation.

In this chapter, we present our efforts in modeling the movements of nodes in

a mobile network through the automated construction of PCFGs. Once a PCFG is

constructed from a real world trace, a large set of sentences can be produced from

it, creating a synthetic mobility trace. Our motivation to use this fairly complicated

model is to be able to accurately capture human mobility. Usually, humans move

according to a plan: sometimes simple, when the last location defines possible next

locations, or sometimes more complex, when the next feasible locations depend on

variable depth past, or the times of passages. Some plans may involve palindromic

movements, or recursive movements repeating with decreasing probability etc. Some

of the most sophisticated models of the past, based on Markov Models, do not

consider variable length past. A simple example could be a parent dropping a child

at nursery on the way to work, and picking the child on the way back home. Here,

visits to a nursery are followed predictably by a visit to home or work, depending

what the two previous locations were. PCFGs through use of production rules

* Portions of this chapter previously appeared as: S. C. Geyik, E. Bulut, and B. K. Szymanski,
“PCFG based synthetic mobility trace generation,” in Proc. IEEE Globecom, 2010, pp. 1−5.

47

48

encode in them the smallest needed but still unbounded depth of past necessary to

infer the possible next locations. Even for methods that store the variable length

history from the training data, the modeling capabilities are theoretically bounded

to mobility patterns which follow a regular language, while, as presented in this

chapter, this is not the case for PCFGs. All these and more examples motivate

our choice of PCFGs as a sophisticated mobility model with capabilities far beyond

others that is still computationally feasible for meaningful input data.

The rest of the chapter is as follows. We first provide previous work on mo-

bility modeling. Next, we discuss Mobility PCFGs in Section 4.2, which enable the

grammar to model both spatial and temporal properties of the mobile node move-

ments. This is followed by the synthetic mobility trace generation algorithm which

utilizes the mobility grammars in Section 4.3. Finally, we evaluate the PCFG-based

mobility modeling method. First, we demonstrate the benefits of PCFG-based mo-

bility modeling compared to other models in terms of describing entity movements

in Section 4.4. Next, we provide the evaluation of how close the generated traces are

to the original trace and we compare our method with a generator based on Markov

Models in Section 4.5. We also compare the complexity of building a PCFG versus

building a Markov Model, and discussing if the performance increase in modeling

accuracy makes up for the added time complexity by the PCFGs. We conclude the

chapter and present future work in Section 4.6.

4.1 Literature Review of Mobility Pattern Modeling and

Trace Generation

Mobility modeling is at the core of mobile computing research. It is needed to

generate test data (synthetic trace generation), predict the future locations of nodes

for different applications (e.g. connectivity prediction, data dissemination, target

tracking etc.) and various other purposes. Initial efforts in modeling mobility have

focused on random movement of nodes: e.g. random-waypoint [70], Manhattan [71]

etc., even though real domains often contain obstacles or preset paths. Recent works

that address these challenges include [72]-[74]. In [72], anchor points are used to

describe how a mobile entity can move in an environment with obstacles. Thus, each

49

anchor point acts as a guide for routes in the area that avoid hitting obstacles. [73]

introduces Social Manhattan Mobility Model where the original Manhattan Mobil-

ity Model is supplemented with additional social attraction points. Heterogeneous

Community-based Random Way-Point (HC-RWP) mobility model is presented in

[74]. It takes into account the locations visited and the movement preferences of

different mobile nodes. The authors also propose to use time periodicity where the

movement preferences change in time, and certain preferences periodically reappear.

There have also been many attempts at creating synthetic mobility patterns

based on traditional random movement mobility models, including methods based

on connectivity graphs [75], action profiles [76], terrain and vehicle properties [77],

group behavior [78] and events [79]-[81].

While the methods based on modeling randomized movements are useful due

to their mathematical tractability and simplicity of generating synthetic traces, they

suffer from their inability to closely represent realistic movements. To address this

shortcoming, a set of efforts have been published that work on real world traces

collected at various settings [82], [83]. A time-variant community mobility model is

proposed in [84]. The model utilizes both skewed location visiting preferences and

the periodical reappearance at the given location to generate mobility traces. Urban

pedestrian flows (UPF) based mobility scenarios are discussed in [85]. They gener-

ate mobility traces based on pedestrian densities on streets as well as likely paths

that the pedestrians take. Both [84] and [85] make use of real world traces to build

their models for generating synthetic traces. In [86], a unified relationship matrix

is used to describe social strengths between people within the same community or

in different communities. This in turn determines the colocation of people. Finally,

[87] introduces a graph based mobility model, in which the vertices of the graph

represent geographical locations and the edges represent paths between those loca-

tions. Certain other properties of movement, such as speed, are kept as parameters

within the vertices.

The works closest to ours utilize Markov Models. In [88], transitions between

areas are modeled by their probabilities. Markov Model based mobility predictors

are compared to LZ-based mobility predictors in [89] and the results show that

50

Markov Models perform better. Interestingly, the paper also demonstrates that in

practice, a 2-level Markov Model predictor performs better than a 3-level or 4-level

predictor, hence increasing the depth does not necessarily increase prediction accu-

racy. Markov Models were extended by adding time information through cumulative

time distribution of transitions in [21]. A 2-level Markov Model is used to predict

connectivity and quality of connection to access points in a mobile network in [22].

We compared our PCFG-based synthetic data generation to a 2-level Markov

Model based generator presented in [21]. This is not a memoryless approach and it

has been shown to work better than other methods for mobility prediction. Hence,

intuitively, it is also a good model for capturing properties of the actual traces. Both

PCFG and Markov Models hold more information than classical statistics based

approaches. A PCFG may be seen as a Markov Model with flexible length, since

it models varying length sequences. Furthermore, automated PCFG construction

can achieve generalization, hence capturing more movement patterns than a Markov

Model.

4.2 Mobility PCFGs

The original definition of the PCFGs is not sufficient to fully encapsulate the

mobility properties of nodes. To capture spatial patterns of node movements, a

PCFG can be built when mobility trace consists of terminal symbols representing

the locations at which a mobile node can reside. The probabilities provided in the

PCFG give us the likelihood for movement patterns. Another mobility information

that can be represented by a PCFG is the meeting sequences for mobile nodes. In

this case however, the terminal symbols represent mobile nodes in the network. To

model the temporal properties of the mobile nodes, we utilize time tokens described

in Chapter 2 (see Section 2.3.1). Furthermore, depending on the complexity of the

mobility modeling task (size of the area, variety on the movements etc.), relative

tokens (see Section 2.3.2 in Chapter 2) can also be used.

51

Algorithm 2 Method for creating a random route for a mobile node from the
mobility PCFG given an initial location of this mobile node

init loc =initial location
g =mobility grammar
for each rule r in g.START do
string = r
for each expansion stringi of string with terminal symbol at position 0 do
if stringi[0] == init loc then
list.add(stringi)

else
delete(stringi)

end if
end for

end for
normalize probabilities in list
random = rand()
progressive = 0
for all expansions ei of every string in list do
progressive+ = prob(ei)
if progressive ≥ random then
return ei

end if
end for

4.3 Synthetic Trace Generation of Node Mobilities with

PCFGs

Synthetic trace generation is basically creating a sentence from the constructed

grammar. This sentence gives both the temporal and spatial information for the

single mobile node. Furthermore, once the generated sequence is completed (all the

nonterminals in the sentence are replaced with terminals), a new sentence can be

generated for the corresponding mobile node. Hence, we present a single algorithm

here, which gets as input the mobility grammar and initial location of the mobile

node (can be null for a node that has just begun its journey), and creates a new

sequence beginning in the initial location. Of course, the probabilities of the produc-

tion rules are taken into account when deciding which rule to apply next in sentence

generation process. The silent assumption here is that the input data contain traces

starting at a location that is also the ending location of some trace.

52

In Algorithm 2, the initial stage checks for all possible movement sequences

(hence all possible sentences produced by the PCFG), and keeps only the ones in

which the first terminal symbol is the same as the initial location of the mobile node.

In the case of modeling meetings of mobile nodes, the symbols are the mobile nodes

met, hence although the algorithm stays the same, the meanings of the symbols

produced or matched are different. After the initial elimination, the remaining

productions are chosen according to a probability distribution. Here, since the sum

of all productions before elimination (but not after it) is 1.0, a normalization is done

by multiplying accordingly all the branches of parsing tree of selected sentences.

4.4 Advantage of Utilizing PCFGs over Previous Models

In this section, we first describe how traditional mobility models can be de-

scribed via a PCFG. Then we present our motivation for using PCFGs, and show

its benefits.

4.4.1 Expressing Other Mobility Models as PCFGs

There have been many previous mobility models that can be expressed in a

PCFG-based description. For demonstration purposes, we will show transforma-

tions of the random-waypoint model and a Markovian mobility model to a PCFG

description.

4.4.1.1 Random-Waypoint to PCFG Transformation

A mobile node adhering to the random-waypoint mobility model [70] moves

in steps. In each step, it chooses a random point in the mobility area and then

gets there with a random velocity. For this type of randomized movement, we are

using two randomized nonterminals: LocA and V[f,c]. LocA basically instructs the

grammar to generate a random location within the area A, while V[f,c] instructs the

grammar to generate a random velocity between the values floor (f) and the ceiling

(c). The continuous location and velocity generation is performed iteratively. In this

setting, the random-waypoint grammar can be represented by the following PCFG:

Start → LocA V[f,c] Start (p1) | LocA (p2)

53

LocA → Random Location with a Preset Distribution

V[f,c] → Random Velocity with a Preset Distribution

Thus, at each Start production, the above grammar decides on a new location and

the corresponding node moves there with the random velocity generated in the

previous production. The first production of the nonterminal determines the initial

location of the mobile node. The length of the mobility period for a node is defined

by the choice of probability p1 (since p2 = 1 − p1), which determines how many

times the relocation is expected to occur.

4.4.1.2 Markovian Mobility Model to PCFG Transformation

Markov model based mobility models [21], [88], [89] set a probability for the

next location given the previous location(s) as well as the time that passes be-

tween two visits. We provide a similar mobility model in Figure 4.1 which has three

locations (presented as states: locA, locB and locC) and movement (transition) prob-

abilities between those locations (e.g. pAB is the probability of moving from location

locA to locB) with the distribution of time that passes for each transition (e.g. tAB is

the distribution of time that takes for a node to move from location locA to locB). In

the same figure, we provide the transformation of such a Markovian mobility model

to the PCFG representation. In this case, we create nonterminals for each location

that produces two terminals. The first terminal represents the location. The second

terminal represents the time with the given distribution for transition of the node

from this location to the next, and then does the transition (as the nonterminal of

the new location). The Start nonterminal production in this case lists all possible

initial locations for each node with steady state probabilities (e.g. pA is the prob-

ability of a node being at locA in steady state) assigned to each alternative. Very

similar transformations can be made for any n-level Markovian mobility model (in

which the next location depends on previous n locations).

4.4.2 Benefits of PCFG-based Modeling

We have demonstrated that the PCFGs are sufficient to represent many pre-

viously proposed methods for mobility modeling. Here we will present the benefits

54

locB

locA

locC

p
BA

p
AB

p
CA

t
BA

p
AC

t
AC

t
AB

t
CA

p
BC

t
BC

p
CB

t
CB

Start Loc (p) | Loc (p) | Loc (p)

A

A B B CC

Loc
A

loc T Loc (p) | loc T Loc (p)B CA AB A ACAB AC

BLoc loc T Loc (p) | loc T Loc (p)A CB BA B BCBA BC

CLoc loc T Loc (p) | loc T Loc (p)A BC CA C CBCA CB

AB
T Time amount following distribution t

AB

AC
T Time amount following distribution t

AC

BA
T Time amount following distribution t

BA

BC
T Time amount following distribution t

BC

CA
T Time amount following distribution t

CA

CB
T Time amount following distribution t

CB

Transformation to PCFG

Figure 4.1: A Markovian Mobility Model and Its PCFG Transformation

of using PCFGs both in terms of capturing real world traces, as well as in terms of

expressing certain theoretically distinct mobility properties.

The first advantage of PCFGs is their ability to model time dependencies of

variable nature. Let’s take a Markov model as an example. Depending on the level it

supports, a Markov model can only capture the movement of a mobile node given the

previous n locations (n being the Markov model’s level). PCFGs however are able to

take as input a set of variable length movement sequences and infer the movement

patterns (with temporal information) within these sequences, no matter what the

lengths of the dependence on the previous location are. Efforts in literature to deal

with such shortcomings inherent with Markov models have been Sample Pattern

Matching (SPM) [90], Prediction by Partial Matching (PPM) [91], and LZ-Based

[92], [93] approaches which were mentioned in the previous subsection as replicable

with a PCFG description. Although these methods may work with variable-length

history, the PCFG construction methodology given in Chapter 2 provides additional

advantages. Due to multiple chunk operations (which find frequent movement pat-

terns, hence already helping the understanding of the mobility properties of nodes)

followed by merge operations, the constructed PCFG can introduce generalizations

that provide further information on the mobility properties which may not even

appear explicitly in the training data (an example of this is given for the parking

lot simulation in Chapter 3). Furthermore, these methodologies mainly deal with

the task of prediction, whereas our application of PCFGs in this paper works with

55

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Start g gV VStart
1,1 [f,c] 1,1[f,c]

(p) |
1,1...

g gV VStart
8,14 [f,c] 8,14[f,c]

(p) |
8,14

g
1,1

(p) |
1,1

(p) |
1,1

(p)
8,14

g
8,14

. . . |

Random Speed with a Preset DistributionV
[f,c]

Figure 4.2: A Palindromic Mobility Example and the PCFG that De-
scribes It

full length movement sequences, hence it is a highly accurate generative model (our

comparison with a Markov model based synthetic data generator is given in Sec.

4.5). For a predictive model that looks up to k-length (where k is variable) history,

all that needs to be done is to feed movement subsequences that are seen in the

training data as separate sentences, which we leave for future work.

The last advantage of PCFG-based mobility modeling that we would like to

list here is its expressive capabilities due to Automata Theory. PCFGs, which are

extended versions of Context Free Grammars (via assigning probability values to

rules) are equivalent (in terms of describing languages) to Non-deterministic Push-

down Automata [94], which utilize an unbounded stack. A Markov Model on the

other hand, is equivalent to a Finite Automaton, which can only decribe Regular

Languages. The variable-length MM (or other similar aforementioned methods) still

build a static structure (the variable-length is due to seeing those sequences in the

training data), hence they also can only describe mobility behaviors that adhere to a

Regular Language. In Figure 4.2, we give a mobility example, which is actually very

56

feasible in a real-world application. The nodes in this example obey a palindromic

movement constraint (i.e. they come back to the point they started through the

same route). Examples of such movement include rescue operations (i.e. a fire-

fighter getting into a building, and leaving it), or simply, the daily routines of most

of us (usually the same path is used to go somewhere, and come back home). Such

movement can only be emulated by a PCFG (or a more capable Automata, such as

a Turing Machine), since the language that describes a palindrome is a non-regular

one. Although such non-regular languages are extremely hard to learn from training

data, this example clearly demonstrates the PCFG as a superior modeling method

due to its capabilities for modeling mobility properties.

4.5 Evaluation of the Trace Generation Method

In this section we evaluate the PCFG-based mobility generation method to

a Markov Model based generator as given in [21]. We first give how the mobility

properties are preserved by both methods. The last part of the section compares the

time complexity of constructing the mobility PCFG from a given real-world trace

to the complexity of building a Markov Model from the same trace.

4.5.1 Evaluation of Mobility Modeling Accuracy

In this section, we are measuring similarity between real world traces and

the synthetic mobility traces generated by the proposed method. We utilized two

datasets: the first one [95] contains bus-to-bus meeting data collected in Amherst,

MA (DieselNet - Spring 2006), while the second dataset contains the cab mobility

data collected in San Francisco, CA [96]. To train the PCFG for [95], we have taken

sentences to be the set of buses met during one round of a bus on the route. Each

bus type in this dataset has a set route, therefore we can artificially set a start and

end point (we chose those as the busiest grids in terms of the number of meetings).

Hence we created the synthetic data as a set of rounds. For [96], we have divided

In the figure, the terminals starting with g represent grid-locations, while the probabilities (e.g.
p1,1) are application specific, and depend both on the likelihood of visits to certain grid-locations,
or on the expected length of routes.)

Unlike palindrome language, there are non-regular languages that cannot be described by a
CFG, hence a PCFG as well.

57

the area into 25x25 grid, and taken each sentence to be the set of locations (with

time that passes between) until a driver gets a customer into the taxi, or the trip

that is taken with the customer inside the taxi.

We used the following metrics in the comparison. For DieselNet Dataset, we

have collected what buses are met by a bus on a given route right after a certain

sequence of meetings. For example, the error rate Cons k gives the difference of a

given model from the actual trace in terms of the distributions of which buses are met

after a certain (k-1)-length sequence of buses are met. Hence it can be taken as the

distribution difference of meeting sequences of length k. To calculate the difference,

we used the Euclidean distance between the sequence distributions. In other words,

given that generated data have gi percentage of a meeting sequence i to appear, and

the real world data have ri percentage, we calculate ∆Cons =
√

∑s
i=1(ri . (gi − ri))2

(where s is the number of meeting sequences of length k).

Table 4.1: Description of the Approximation Levels for Grammar Con-
struction Utilized in Our Evaluations

Chunk Search Merge Search
Appr. Level Appr. Level

Appr. Level 0 0 0
Appr. Level 1 1 0
Appr. Level 2 0 1
Appr. Level 3 1 1
Appr. Level 4 0 2
Appr. Level 5 1 2

Another metric is based on the inter-meeting times, in which we calculate the

time it takes for a bus to meet another bus given it has met a certain sequence of

buses. Intern k denotes the time it takes for a bus to meet a kth bus after meeting k-

1 buses in a sequence. We use the weighted Euclidean distance between the average

intermeeting times to calculate errors. In other words, given that generated data

have an average intermeeting time tgi,s for bus bi and the real world data have an

average intermeeting time tri,s for bus bi after meeting a certain bus in the k-length

sequence s, we calculate ∆Intern =
√

∑p
i=1

∑r
s=1(wi,s . (tgi,s − tri,s))2 (where p is the

number of buses, r is the number of meeting sequences that end with bus bi, and

wi,s is the weight of the sequence s ending with bus bi, calculated according to the

58

frequency of meeting sequences). For the taxi mobility dataset, we use the same

metrics, however the buses are replaced with the location grids, hence Cons 3 for

the location distributions means the error on the distribution of three sequences of

locations that a mobile node goes through.

In this section, aside from comparing the PCFG-based mobility modeling to

a Level-2 MM, we also compare the approximation schemes that were introduced

in Chapter 2. Table 4.1 provides a description of what we mean by Appr. Level k.

These were mentioned in Chapter 2 as well, but we would like to repeat these here for

clarity. In the table, level-0 inMerge Search means that all pairs of nonterminals and

their effect on all the rest of the grammar are evaluated for merge operand selection.

level-1 means again the consideration of all nonterminal pairs, however only their

effect on each other is evaluated. level-2 in Merge Search applies our highest level

of approximation to finding merge nonterminal pairs, as presented in Section 2.2.7,

which chooses the two nonterminals with smallest total rule frequencies. In Chunk

Search, the approximation level-0 means the search for the most advantageous chunk

operator, and considering all lengths. Again, level-1 represents our highest level of

approximation to find the chunk string, as described in Section 2.2.4, which looks

for strings of length up to 5.

The results for the DieselNet Dataset [95] are presented in Table 4.2. For the

synthetic trace generation purposes, we utilized the best grammar that was obtained

during the grammar construction process. This means that during the construction,

we also back up the grammar with the highest a posteriori so far. Best Grammar

Construction Time metric in the table represents the last time when this back up

is done (i.e. after this second, the grammar’s a posteriori has gone below, but

the grammar construction process continues, as in Algorithm 1). Furthermore, we

limited the number of consequent merge operations that can be done (between

100 and 500), for reasons of efficiency, since after a certain number of merges on the

grammar, there are no advantages that are gained in terms of grammar goodness. As

it can be observed from Table 4.2, although the grammars take longer to construct

and generate synthetic data, they provide traces that are much closer (up to 93%) to

For our experiments, we implemented the algorithms in Perl, and utilized a PC with 2.8GHz
Intel i7 processor and 8GB of RAM, running Ubuntu.

59

Table 4.2: Evaluation Results for DieselNet Dataset
Appr. Appr. Appr. Appr. Appr. Appr. Markov Model
Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level-2

Construction
Process 147453 11973 2864 3936 1894 154 0.108

Length (sec)
Best Grammar
Construction 9838 397 1604 76.62 1541 79.37 NA
Time (sec)

Synthetic Trace
Generation 94.98 99.12 107.07 104.20 100.44 108.81 31.59
Time (sec)
Cons 2 0.002 0.002 0.002 0.002 0.002 0.002 0.018
Cons 3 0.003 0.002 0.002 0.002 0.002 0.002 0.016
Cons 4 0.004 0.0033 0.003 0.002 0.003 0.003 0.03
Cons 5 0.005 0.004 0.003 0.003 0.003 0.003 0.041
Cons 6 0.004 0.003 0.003 0.003 0.003 0.003 0.041
Intern 2 1.8 1.45 1.47 1.26 1.26 1.28 11.46
Intern 3 3.06 2.56 1.6 1.95 1.88 1.76 9.40
Intern 4 4.74 3.23 1.73 1.89 1.87 2 40.53
Intern 5 5.2 3.84 1.91 1.79 1.98 2 52.62
Intern 6 4.88 3.72 1.82 1.67 1.85 1.68 60.03

Table 4.3: Evaluation Results for the First 500 Routes in Taxi Mobility
Dataset

Appr. Appr. Appr. Appr. Appr. Appr. Markov Model
Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level-2

Construction
Process 26947 7860 281.48 97.93 60.89 20.04 0.014

Length (sec)
Best Grammar
Construction 9690 1685 63.73 6.53 48.67 8.34 NA
Time (sec)

Synthetic Trace
Generation 3.52 3.85 3.87 5.44 3.71 4.79 0.92
Time (sec)
Cons 2 0.008 0.019 0.005 0.005 0.005 0.004 0.099
Cons 3 0.015 0.033 0.006 0.007 0.007 0.007 0.043
Cons 4 0.017 0.024 0.007 0.008 0.008 0.008 0.058
Cons 5 0.018 0.021 0.008 0.01 0.009 0.009 0.071
Cons 6 0.02 0.022 0.009 0.011 0.011 0.011 0.08
Intern 2 46.45 64.12 8.81 8.92 12.37 10.39 58.45
Intern 3 82.76 123.07 14.95 11.98 16.98 16.55 74.74
Intern 4 121.61 136.58 14.5 13.01 16.25 14.51 220.83
Intern 5 151.48 150.01 12.04 10.53 12.15 14.14 269.92
Intern 6 128.6 92.24 12.17 10.89 11.24 14.54 290.57

60

the original trace (as shown by Intern and Cons metrics) than the Markov model.

The times in the table are consistent with the O(D2 logD) time complexity for

PCFGs, for Appr. Level 5 (O(D4) for Level 0). The complexity for building a

Markov Model is only O(D), since it requires a single pass over the training data

to calculate transition probabilities. Furthermore, as expected, our approximations

significantly cut grammar construction times. An improvement in the goodness of

the data generated is also observed, which is counter-intuitive. This can be explained

by the fact that low-approximation schemes actually find merge operations that are

good for grammar a posteriori, however not beneficial for data generation, since it

generalizes the grammar. This generalization brings movement sequences which are

not seen in training data, which is useful in certain cases (as in our parking lot

example), but not so much in others.

For the Taxi Mobility Dataset [96], we utilized both the whole dataset and the

first 500 routes in it. The processed dataset consists of 460000 routes (a route is

a set of locations and movements, each separated by a length of time), and it was

impossible for us to evaluate all approximation schemes (due to construction time)

on such a large set. However, the ability to deal with large datasets comes with the

approximations, hence we compare the Appr. Level-5 of grammar construction to

the Markov model using the whole dataset. However, we utilize the first 500 routes

to compare all 6 approximation schemes (Appr. Level 0-5) and the Markov model.

The results for the first 500 routes in Taxi Mobility Dataset [96] are shown in Table

4.3. Again, it can be observed that our approximations provide a much much faster

way of grammar construction, while improving in terms of synthetic data closeness

(demonstrated by Intern and Cons metrics). The reasons for this phenomena are

similar to the ones given for the UMASS Bus Data results. Furthermore, as pre-

sented both for the first 500 routes (Table 4.3), and for the whole dataset (Table

4.4), the PCFG-based mobility modeling provide mobility generation much closer

(up to 95%) to the actual trace than the Markov model, although it takes longer to

construct the model and generate traces.

61

Table 4.4: Evaluation Results for the Whole Taxi Mobility Dataset
Appr. Markov Model
Level 5 Level-2

Construction
Process Length (sec) 361983 11.74

Best Grammar
Construction Time (sec) 331092 NA

Synthetic Trace
Generation Time (sec) 1179 1.58

Cons/Intern 2 0.004/41.68 0.076/67.08
Cons/Intern 3 0.006/69.51 0.035/57.78
Cons/Intern 4 0.007/103.92 0.059/125.91
Cons/Intern 5 0.008/137.8 0.078/166.70
Cons/Intern 6 0.01/159.25 0.091/212.57

4.5.2 Complexity Comparison between PCFGs and Markov Models

In Section 2, we have shown the time complexity of our PCFG inference algo-

rithm to be O(D2log(D)), where D is the size of the training data that we construct

the PCFG from (due to at most O(D) applications of the chunk operator which

costs O(D log(D)) with the search). Furthermore, we concluded that the space

complexity is O(D), since the space that the model is kept in does not grow larger

after the initial storing of the training data, which naturally takes O(D) space. Now

we are going to do the similar evaluation for the Markov Models.

The space complexity of a Markov Model is easy to calculate. Please note

that what a simple Markov Chain of preset length holds is a set of patterns with the

distribution of the next symbol to come, i.e. for mobility modeling, two previous

location sets with a distribution on which location will be next. One can see that

for a discretized map of the area, the following locations should be neighbors to each

other, and this way there can be at most nk+1
neigh set of patterns that are being held.

nneigh is the maximum number of neighbors that a mobile entity can go to from one

location, and k is the level of the Markov model, i.e. the history that matters. This

value can be taken to be O(1) since it does not change with the size of the training

data (and nneigh is constant). However, for a generalized Markov Model, outside of

the domain of mobility modeling, even if we always come across different patterns,

the space complexity is O(D), since there can not be more patterns than the size of

the training data.

62

For the time complexity, it is trivial to see that training a Markov Chain

of preset depth (a k-level Markov chain) is like searching for a chunk operator in

our PCFG inference case. Patterns of length k + 1 are held with their frequency

of appearance, which later are used to calculate transition probabilities. Hence,

the time complexity to construct a general k-level Markov Chain is O(D log(D)).

However, as aforementioned, in the case of mobility modeling, since there can be a

maximum number of different patterns, this complexity falls down to O(D), since

we no longer search for a location in the hash table (to keep the frequency of a

pattern being seen) in time which is related to the size of the training data. One

can also argue that even in the case of PCFGs, this mobility restriction makes the

search for the chunk operator take O(D) time, hence the overall time complexity of

automatically constructing a PCFG becomes O(D2). In both cases, we can conclude

that the inference of a PCFG is an O(D) times more costly operation that the

construction of a k-level Markov Chain, in terms of time complexity. In the case

of Hidden Markov Models (HMM), a well known training algorithm, Baum-Welch

[14], exists which is a special case of an Expectation Maximization algorithm. This

algorithm iterates over the parameters of the HMM, and changes them at each

iteration to locally maximize the likelihood of the current parameters given the

training data. The time complexity of this algorithm for each iteration is O(S2D),

where S is the number of hidden states, and D is again the size of the training

data. While one can argue that HMMs are not necessary in our current example

of mobility modeling, in other domains the decision on the number of hidden states

and the number of iterations play a vital part in the complexity of this algorithm.

The trade-off between the representational accuracy and the complexity of

PCFGs and the Markov Models should be taken into account for different application

domains, since both has advantages. We go over these advantages in the other

chapters of this thesis as well.

4.6 Conclusions and Future Work

In this chapter, we have focused on the usefulness of PCFG framework for

modeling mobility properties of nodes in data collected by or generated by a net-

63

work. We provided evaluations based on real world traces for thus domain. The

results allow us to conclude that PCFG modeling is a compact and efficient way

of representing network mobility data without losing their properties. The created

compact representation can be used later to generate the data with the same prop-

erties as the original one, as well as to provide predictions for and insights into the

applications from which the mobility patterns originated.

Our future work in this domain includes the evaluation of the synthetic traces

generated by the PCFG in terms of network metrics, such as congestion, load,

latency etc. As aforementioned, our PCFG-based mobility modeling provides real-

istic generation of movements for mobile nodes, hence the experiments performed on

PCFG-generated mobility traces should give different results as compared to differ-

ent mobility models (random movement-based or others). For this purpose we are

aiming to employ multiple datasets, which may arise from social environments as

well (hence taking into account the movements of entities due to their relationships

to others).

CHAPTER 5

Behavior Modeling in Social Networks with PCFGs

Social networks analysis [97] includes examining the actions of entities in a social

setting. These actions can be either interactions between entities (e.g. talking,

exchanging items etc.), or actions which do not include interactions, but nevertheless

in the social context, hence resulting from the social setting. Such actions often

contain patterns which are specific to the application domain. For example, it is

natural to assume that a brainstorming session often include group discussions which

are not dominated by one person but rather involves dyadic communications. In the

eyes of a single entity however, this application domain means that the opposing

person (hence the interacting entity) changes rapidly.

It is important to understand these patterns to realize the characteristics of a

social setting. A simple example can be given in a company where there is a certain

order in the interactions. If a customer has to go through certain department tables

to accomplish a certain task, the placement of these departments in the commonly

used order saves time and energy for both the customer and the worker. Another

example can be given in the military context. A large community has a certain set

of interaction patterns between its members which can be observed in the long run.

A potential dangerous activity can be recognized from the abnormal patterns that

occur in a community that is being monitored. Such a recognition ability can also be

used in the work environment to predict failures as well as to improve performance

in a business process.

In this chapter, we introduce a novel method for modeling social node behav-

iors through the utilization of PCFGs. Given a set of action sequences in a network

setting, an automatic generation method, which we already presented in Chapter

2, can build a PCFG which concisely holds probabilities for action patterns. This

PCFG can either be used to predict or classify future behaviors, or to understand

* Portions of this chapter previously appeared as: S. C. Geyik, J. Xie, and B. Szymanski,
“Behavior modeling with probabilistic context free grammars,” in Proc. Int. Conf. Information

Fusion, 2010, pp. 1−8.

64

65

these patterns due to its concise nature and appropriateness for manual inspection.

The rest of the chapter is as follows. In the next section, we discuss the recent

developments in behavior modeling subdomain in social network analysis. In Section

5.2, we give the results of our PCFG modeling on the Mission Survival Corpus 1

(MSC-1) dataset [99] owned by Project FBK (Fondazione Bruno Kessler). We

provide grammars constructed for socio and task label categories defined within the

dataset. Furthermore, we present the classification results based on the grammars

acquired from this dataset. Following the results, we finalize the paper with the

conclusions and future work in Section 5.3. We also discuss the usefulness of the

PCFG approach compared to previously applied schemes to the domain of social

network analysis.

5.1 Behavior Modeling Efforts in Social Network Analysis

Let us now provide a short literature survey listing previous behavior modeling

work. A large body of research aims at modeling physical interaction phenomena,

such as utterances, gestures, eye gaze, head position and body motion, from mul-

timodal sensor streams. Instead of providing straight-forward semantic meaning of

the behavior, most of these outcomes serve as higher level features for algorithms

attempting to infer semantic interactions between individuals. For example, [100]

discussed an approach to estimate who was talking to whom based on head positions

of the participants. [101] used gazes, head gestures, and utterances to determine

interactions regarding who responds to whom in multiparty conversations. [102]

proposed a classifier to recognize agreement or disagreement utterances, utilizing

both word-based and prosodic cues. In [103], audio and body motion features are

used to assess interest and attraction level in conversational dyads.

By taking the individual interaction patterns into account, there are quite a

few papers focusing on recognizing the group activities as a whole. [104] investi-

gated a statistical framework for automatic meeting analysis based on various hid-

den Markov models. A set of meeting actions (including monologue, presentation,

white-board etc.) are defined based on turn-taking patterns. A range of audio-visual

features (e.g. speech activity, pitch, speaking rate, head and hand blobs) from each

66

participant are extracted and combined to investigate the group-wise nature of the

actions. More recent work is presented in [105] by utilizing a two-layer HMM frame-

work. [106] introduced a dynamic Bayesian network based model, characterized by

multiple stream processing to segment the group states similar to [104], but with

features including prosody from audio signals, speaker activity and lexical features

from textual transcripts. [107] defined the group states as discussion, presentation

and briefing. A decision tree classifier was trained to estimate group states using

four frequency-based features (including number of overlaps in speech, number of

changes of speakers, number of participants who had spoken and average length

of overlaps). By defining the states as presentation, discussion and break, [108]

presented event-driven multilevel dynamic Bayesian networks (DBNs) to perform

online detection of multilevel events, which coordinates both the multicue-based

bottom-up reasoning and context-based top-down guidance.

In addition to modeling through interactions, the work on automatically iden-

tifying the roles (including functional, social and dominating) in a group has drawn a

lot of attention. [109] used Bayesian methods to recognize functional roles (e.g., the

anchorman, the second anchorman, the guest) in broadcast data. [110] recognized

roles in movies (e.g., hero), based on social network analysis. By combining both

the lexical feature and the social networks describing the interactions between the

meeting participants, [111] discussed an approach to identifying the project man-

ager, the marketing expert, the user interface expert and the industrial designer.

[112] introduced a machine learning approach based on multiclass SVMs with radial

based kernels to recognize roles such as giver, seeker and recorder in meetings by

employing audio-visual features. [113] investigated a new framework for functional

role detection based on the influence model [114], which takes into account the fea-

tures of other participants. [115] proposed an DBN based approach for discovering

influence in a lounge where people played interactive debating games, which auto-

matically determines how much influence a member has on others on a pair-wise

basis. [116] and [117] described models for automatically detecting the team mem-

bers who play a dominating role in a meeting using both support vector machines

and a dynamic Bayesian network with a two-level structure.

67

Different from the above-mentioned methods, we present the utilization of

grammars to model actions based on the social role and the interactions between

group members, which provides a straightforward but more detailed interpretation

of the group behaviors.

5.2 PCFG-based Social Entity Behavior Modeling

We have used Mission Survival Corpus 1 (MSC-1) dataset [99] to show the

applicability of our methods. Basically, we model what type of behavior is followed

by a person that undertakes a certain social or task-functional role. For each role, we

have automatically generated the grammar of the interactions of the holder of this

role with others. Our analysis of the PCFG-modeling on this dataset is two-fold.

First, due to their conciseness, we present the resulting grammars in this section

and present our manual inspection on them, which provides important information

about roles that the social entitites undertake. The second part of our analysis

provides classification results. We first provide how the grammars constructed from

the entire dataset performs in separating the role classes. Later, we utilize part of

the dataset as training data and test on the rest of the data, where we evaluate how

good the grammars perform in classifying the unseen actions of social entities into

the roles they undertake.

The MSC-1 dataset basically contains time-stamped annotations of 11 meet-

ings of people deciding on how to proceed in a disaster scenario. The annotation

includes the socio role label and task role label of each meeting attendant as well as

an indication of who speaks at the time-stamp. Socio roles (supporter, protagonist,

attacker, neutral) mainly represent the attendant’s attitude towards the group’s

function while the task roles (giver, seeker, orienteer, neutral) represent the indi-

vidual’s function and technical skills. Although the role names are self-explanatory,

the interested reader can look up detailed role descriptions in [99]. Furthermore, we

will give brief explanations while we are presenting our results.

In the MSC-1 dataset, we modeled two sets of action patterns (which we also

call the first and second metric):

• Which roles go together: Given a social role (socio label) of an attendant,

68

what task roles are taken (sequence-wise) by this attendant during this social

role? Or vice versa.

• Attendants of which roles are speaking while a certain role is under-

taken: When an attendant of a meeting plays a certain social role, what are

the social roles of the other attendants that speak (hence we assume, inter-

actions while the attendant undertakes this role) during this role? The same

question is valid for the task roles.

The next subsection provides our manual inspection of the grammars acquired

for both metrics. The other subsection of this section provides our classification

results.

5.2.1 Manual Inspection of Grammars

Let us present the grammars constructed for the MSC-1 dataset. The modeling

results for the first metric (Which roles go together) can be seen in the grammars

in Figures 5.1-5.4. The results for the second metric (Who Speaks while a Certain

Role is Undertaken) are presented in Figures 5.5-5.8.

START

C4 N2 (0.01)

N3 (0.08)

N2 (0.18)

C1 (0.06)

N3

o (1)

N2

g (1)

N0 C2 (0.01)

C4 N3 (0.02)

C2 (0.06)

N0 M1 (0.01)

M1 (0.03)

N0 N2 (0.14)

N0 (0.19)

N0 N3 (0.07)

C4 (0.14)

C4

N2 N0 (1)

C1

N0 C4 (1)

M1

M1 N0 (0.31)

s (0.69)

N0

n (1)

C2

N3 N0 (1)

Figure 5.1: PCFG for Modeling Which Roles Go Together for Supporter
Socio Label

Figure 5.1 gives the grammar constructed to model first metric (Which roles

go together) for the supporter socio label. The supporter has a cooperative attitude

and, furthermore, provides resource support to other attendants. This mentality is

69

clear in the given grammar. Orienteer (o) and giver (g) terminals represent mainly

the supporting attitude of the attendant. Among these, giver is probability-wise the

most dominant task-label that can be seen in the grammar. It can also be observed

that seeker (s in the nonterminal M1) is another task-label that can appear in the

supporter interaction sequence. This basically represents the cooperative attitude,

since the conversation (cooperation) between two individuals in a meeting proceeds

by questions (s - seeker terminal) and answers (g - giver terminal).

START

N0 M1 (0.18)

M1 (0.18)

M1 N0 (0.55)

N0 (0.09)

N0

n (1)

M1

s (0.5)

g (0.5)

Figure 5.2: PCFG for Modeling Which Roles Go Together for Attacker
Socio Label

The grammar that models first metric for the attacker socio label can be seen

in Figure 5.2. As the name suggests, the attacker attacks the opinion of another

attendant. Such a behavior can be definitely observed in the grammar since both

seeker (terminal s) and giver (terminal g) has equal probability (as given by M1).

Such information can be easily observed thanks to the concise representation pro-

vided by the PCFG that is automatically constructed from the dataset.

START

N0 N1 (0.13)

C1 (0.12)

M1 (0.07)

N0 (0.34) N1

p (1)N0 C2 (0.04)

C2 (0.06)

N1 (0.14)

N0 M1 (0.04)

C3 (0.06)

C3

N0 C1 (1)

C1

N1 N0 (1)

M1

a (0.04)

s (0.96)

N0

n (1)

C2

M1 N0 (1)

Figure 5.3: PCFG for Modeling Which Roles Go Together for Giver Task
Label

Next, let us examine the grammar in Figure 5.3 constructed for modeling the

70

first metric for giver task label. A giver basically provides factual information. By

the nonterminal M1, a supporter (s) is much more dominant than an attacker (a)

in this situation. The probability of a giver being a protagonist (the attendant that

drives the conversation, denoted by p in the grammars) is quite high (∼40%). Please

note that although such results can be obtained through statistical means, gram-

mars provide much more compact and manually examinable complete information

about the meeting data. Furthermore, certain grammar processing algorithms (e.g.

backward chaining from the terminal to the START nonterminal) can be utilized to

estimate the probabilities with which certain terminals occur in the sentences as well

as the transition probabilities of symbols [54]. This way, such analysis of behaviors

from the grammars does not have to be manual at all. Some extra information about

the giver grammar is the fact that protagonist and attacker or supporter do not ever

occur together. This means that the protagonist socio-label does not usually change

its opinion and then becomes the supporter or attacker of another person. Instead, it

is rather he who is attacked or supported. Furthermore, an attacking or supporting

giver does not try to take control of the conversation. The grammar’s power comes

into attention in such situations, because such comments require the examination

of sequences.

START

N0 M1 N0 (0.02)
N0 M1 (0.06)
M1 (0.08)

M1 N0 (0.05)

N1

p (1)

N0 (0.52)

N1 N0 (0.07)

N0 N1 (0.07)

N1 (0.13)
M1

a (0.22)

s (0.78)

N0

n (1)

Figure 5.4: PCFG for Modeling Which Roles Go Together for Seeker
Task Label

Figure 5.4 shows the grammar that models the first metric for the seeker task

label. Seeker asks questions. However, from nonterminal M1 (created by a merge

operation), we see that a person asking a question is more likely to be a supporter (s)

than an attacker (a). The most dominant socio-label is the neutral (n). The next

one is a supporter who is the main socio-role taken by seekers. It is also remarkable

any significant socio-label (i.e. not neutral) is either followed or preceded (mostly)

71

by the neutral socio-label. This shows two things. For the proceeding case, we see

that seeker either gets satisfied or his supporting status ends after his confirmation

question. For the preceding case however, it can be concluded that for the annotators

(the people that annotated this data by manually observing attendants), it takes a

while to understand whether a person asking question is a supporter or attacker.

Also, it can be seen that the seeker could be a person who answers his own questions,

or drives the conversation by his questions, hence acting as the protagonist (p).

START

N13 (0.03)

C3 N13 (0.03)

N8 N4 N17 (0.03)

C16 (0.03)

N4

p-p (1)

C13 (0.10)

C4 N13 (0.03)

N17 C1 (0.03)

N9 N10 (0.03)

N8

n-p (1)

M1

n-n-p (0.7)

n-p-p (0.3)

N0

n-s (1)

C1

N9 C14 (1)

N9 N17 (0.06)

N9 N13 (0.03)

C14 N17 (0.03)

C6 C1 (0.07)

C2 M1 N8 N17 (0.03)

C1 (0.10)

C13 N17 (0.07)

N9 (0.20)

N17 (0.10)

N9

n (1)

N10

n-n (1)

N13

s (1)

N17

p (1)

C3

N13 N0 (1)

C4

N13 N9 (1)

C2

N17 N8 (1)

C6

C1 N10 (1)

C13

N17 N9 (1)

C14

N10 N9 (1)

C16

C6 N9 (1)

Figure 5.5: PCFG for Modeling Who Speaks while a Certain Role is
Undertaken for Supporter Socio Label

Using the grammar in Figure 5.5, let’s examine who speaks while an attendant

undertakes the socio label role of supporter. As expected of a supporter, the other

attendants that speak while a supporter plays his role is mostly protagonists (p).

For example, from the START nonterminal, it can be seen that N17 is a really

(probabilistically) dominant nonterminal which points to a single speaker, protago-

nist (p). We can see that there can be multiple protagonists speaking at the same

time, given by the nonterminal M1 (e.g. n-p-p means a neutral and two protago-

nists speaking at the same time). However, even from that nonterminal, not looking

72

at the rules of START nonterminal, we can see that it has a lower probability as

compared to a single protagonist. This is given by the probabilities of rules being

0.3 to 0.7 in the nonterminal M1.

START

N11 N4 N3 N11 N4 N3 N11 N8 N11 (0.09)

N8 M1 N6 N8 (0.10)

N1 N3 N1 (0.09)

C1 C1 C1 (0.09)

N1

n (1)

N8 (0.09)

N8 N11 N8 N1 (0.09)

N1 N6 N1 N0 N6 (0.09)

N1 (0.09)

N3

n-n (1)

M1

a (0.5)

p-s (0.5)

N0

n-s (1)

N9 N10 N9 N1 N9 (0.09)

M1 N9 N1 N3 N10 N3 N1 N8 (0.09)

C1 C1 N8 (0.09)

N4

n-n-p (1)

N5

p-p (1)

N6

s (1)

N9

a-n (1)

N10

a-n-n (1)

N8

p (1)

N11

n-p (1)

C1

N8 N5 (1)

Figure 5.6: PCFG for Modeling Who Speaks while a Certain Role is
Undertaken for Attacker Socio Label

Figure 5.6 shows the grammar that models the second metric (Attendants of

which roles are speaking while a certain role is undertaken) for the attacker socio

label. It is worthwhile to notice in the attacker’s grammar that it is either another

attacker (a) or a protagonist (p) who speaks. A protagonist can speak with a

supporter (s) at the same time (as in nonterminal M1). However, we do not see

a supporter and an attacker speaking at the same time. From this information,

we can say that arguments take turns. What may be even more interesting is the

fact that we do not see a protagonist and another attacker speaking in the same

sentence. This is an important finding which strengthens our deduction that people

with opposite ideas take turns.

For Figure 5.7, we can briefly state that the only significant speaker during a

giver ’s turn is another giver, this means a cooperative information providing. While

constructing the grammars, we remove the rules with a probability below 0.001,

which we assumed are insignificant. In the original (uncut) grammar, we were able

to see a seeker (s) as well as orienteer (o) during the role of a giver in the meeting.

These rules were removed when we set the threshold for presentation purposes.

73

START

C12 (0.05)

C28 (0.19)

N5 (0.34)

N10 (0.24)

N12

n-n (1)

C3 (0.09)

C31 (0.09)

C3

N5 N10 (1)

N10

n (1)

N5

g (1)

C4

N12 N10 (1)

C28

N10 N5 (1)

C31

C3 N5 (1)

C12

N10 C4 (1)

Figure 5.7: PCFG for Modeling Who Speaks while a Certain Role is
Undertaken for Giver Task Label

Finally, the second metric grammar for the seeker task label is given in Figure

5.8. A seeker asks questions; hence it is only natural to see that these questions

are satisfied by a giver (g) who provides factual information. This can also be seen

in the grammar as the only significant terminals are including givers. Among the

deleted rules (original grammar), we were able to see orienteers and seekers (since

an orienteer can also contribute to solving problems by organizing meetings, and a

seeker can be the further questioner), but these were removed in the thresholding

process.

START

N8 (0.25)

C3 M1 (0.07)

C1 N8 (0.06)

M1 (0.06)

N5

g-n (1)

N4 (0.28)

C9 C2 (0.06)

N4 C5 (0.06)

C4 (0.10)

N8

n (1)

M1

C3 N8 (0.78)

n-n-n (0.22)

N4

g (1)

C1 (0.06)

C2

N15 N4 (1)

C3

N8 N10 (1)

C4

N8 N4 (1)

C5

C8 N4 (1)

N15

g-g (1)

C1

N4 N5 (1)

N10

n-n (1)

C8

N8 N5 (1)

C9

N4 C2 (1)

Figure 5.8: PCFG for Modeling Who Speaks while a Certain Role is
Undertaken for Seeker Task Label

74

5.2.2 Classification Results

In this section we will provide the classification abilities of our PCFG-based

modeling approach on the MSC-1 dataset [99]. For these purposes we utilize the first

metric (i.e. Which Roles Go Together) to classify the roles of meeting attendants.

We first provide the separation capability of the PCFGs between roles when we

utilize the whole dataset; and then, we separate the dataset into training and test

partitions and evaluate the classification ability of PCFGs on the unseen data.

Table 5.1 presents the classification results for the social roles in MSC-1

dataset. As previously mentioned, the social roles in the dataset are attacker (at-

tacks the opinion of another meeting attendant), neutral (a neutral stance), pro-

tagonist (attendant drives the discussion), and supporter (supports the opinion of

another meeting attendant). We model the task role sequence performed by an

attendant during the undertaking of a social role (as aforementioned for the met-

ric Which Roles Go Together), and classification for a sequence into the four social

roles is done as follows. First, four grammars (belonging to four social roles) are con-

structed automatically, and then we try to parse the sequence that is to be classified

by these four grammars. Similar to a Naive Bayesian Classifier, the classification

metric is calculated as the multiplication of the sequence’s production probability

given a grammar, and the prior probability of the class itself (according to how fre-

quently it is observed in the training data). To account for unseen sequences in the

training data, we inserted a smoothing nonterminal into each grammar (which can

produce any symbol seen so far in the training data), where any nonterminal which

generates a terminal also points to with a very small probability (hence effectively

can replace the terminal it mainly produces with any other terminal during parsing

or production, but this production branch will have a very small probability). This

way, we account for replacement errors, as well as prevent the parsing failure (hence

assignment of zero probability) of future sequences that are still in the class that is

represented by this grammar, but just were not in the training data.

Let us examine Table 5.1. The column Separation Accuracy denotes how well

the sequences in the dataset were classified after the grammars were constructed

with again the whole dataset. Hence both the training and the test data are the

75

Table 5.1: Separation and Classification Results on the Metric Which
Roles Go Together for the Social Roles in MSC-1 Dataset

Separation 2-Fold Cross Val. 10-Fold Cross Val.
Between the Accuracy Classification Classification
Roles of Accuracy Accuracy

Protagonist and Supporter 69.7 % 65.4 % 65.3 %

Neutral and Supporter 71.4 % 69.2 % 66.6 %

Neutral and Protagonist 63.5 % 63.6 % 60.3 %

Attacker and Supporter 94.3 % 92.6 % 93.7 %

Attacker and Protagonist 96.1 % 95.4 % 95.8 %

Attacker and Neutral 97.3 % 97 % 96.9 %

Neutral, Protagonist, 51.7 % 51.1 % 48 %
and Supporter

Attacker, Protagonist, 68.2 % 63.7 % 63.7 %
and Supporter

Attacker, Neutral, 70.1 % 67.8 % 65.2 %
and Supporter

Attacker, Neutral, 62.6 % 62.5 % 59.2 %
and Protagonist

Attacker, Neutral, 51.1 % 50.4 % 47.3 %
Protagonist, and Supporter

same and equal to the MSC-1 dataset (i.e. the processed version where the dataset

is transformed into a set of sequences for each role). We have removed the action

role sequences consisting of only a single neutral symbol (i.e. the sequence “n”) from

the test data, since an attendant that performs no action gives no clues to his/her

social role. The columns 2-Fold Cross Val. Accuracy (Val. is for Validation), and

10-Fold Cross Val. Accuracy provide the classification results where the training

data and test data are separate. To be exact, 2-Fold Cross Val. Accuracy has 50%

of the dataset as training, and 50% of the dataset as test data (an average of two

batches is taken, hence we first use the first half as training and second half as test

data, and then the second half as training and the first half as test data). 10-Fold

Cross Val. Accuracy is similar to 2-Fold Cross Val. Accuracy, where an average of

10 batches is presented, where, for each batch, a different 90% of the dataset is used

as training data, and the rest 10% is used as the test data.

From Table 5.1, it can easily be observed that the attacker social role is eas-

ily distinguished from the rest of the social roles, while the others are harder to

76

Table 5.2: Separation and Classification Results on the Metric Which
Roles Go Together for the Task Roles in MSC-1 Dataset

Separation 2-Fold Cross Val. 10-Fold Cross Val.
Between the Accuracy Classification Classification
Roles of Accuracy Accuracy

Orienteer and Seeker 63.6 % 66.9 % 67.7 %

Neutral and Seeker 88 % 87.8 % 86.7 %

Neutral and Orienteer 84.4 % 82.1 % 81.3 %

Giver and Seeker 87.9 % 87.2 % 87.4 %

Giver and Orienteer 83.8 % 81.9 % 81.8 %

Giver and Neutral 59.2 % 57.2 % 55.5 %

Neutral, Orienteer, 75.8 % 73.5 % 72.4 %
and Seeker

Giver, Orienteer, 75.3 % 72.9 % 73.1 %
and Seeker

Giver, Neutral, 55.3 % 53.4 % 51.8 %
and Seeker

Giver, Neutral, 54.1 % 51.5 % 49.6 %
and Orienteer

Giver, Neutral, 50.8 % 48.4 % 46.6 %
Orienteer, and Seeker

distinguish according to their action role sequences. We also see that the 10 and

2-fold cross validation results are not much worse than testing on the training data

itself, which demonstrates the classification ability of the PCFG model on unseen

data. Furthermore, the classification always performs better than chance, even when

classifying between all the four social role classes simultaneously.

Table 5.2 presents the classification results for the task roles in MSC-1 dataset

[99]. As aforementioned, there are four task roles in the MSC-1 dataset: giver (pro-

vides facts), neutral (no action), orienteer (attendant organizes the discussion), and

seeker (the attendant asks questions). Under the metric Which Roles Go Together,

we model the social role sequence undertaken by an attendant while performing a

specific task role. The classification experiments as well as the description of the

columns in Table 5.2 is similar to the ones we have for Table 5.1, hence we do not

repeat them here. From the table, it can be observed that the task role classes neu-

tral and giver are easy to distinguish from the task role classes seeker and orienteer

in terms of their social role taking, but the classification performs worse between

77

the classes in these two groups (i.e. neutral is difficult to distinguish from giver, and

seeker is difficult to distinguish from orienteer). The reason why the classification

results for groups that include both giver and neutral are poorer than other groups

is that the frequency of the classes giver and neutral are higher, hence the poor clas-

sification performance between those two classes dominates the overall classification

performance. Finally, we can again observe that the PCFG-based classification al-

ways performs better than chance, even when classifying between all the four task

role classes simultaneously.

5.3 Conclusions and Future Work

In this chapter, we have proposed the use of PCFGs to model actions in the

social network context. We demonstrated this methodology by modeling social inter-

actions as well as role taking in Mission Survival Corpus 1 [99]. From the modeling

results, we can conclude that grammars are a concise way of storing social action

patterns and help with inferences about the application domain’s social properties.

As can be seen, the models we gathered were concise and manageable enough to

even manually detect a set of key properties on the behavioral patterns of meeting

attendants. We have also provided classification results of PCFG-modeling on the

same dataset in separating social entities undertaking different roles. The initial

results are promising as to the applicability of the PCFG-based classification in

this domain. The main contribution of the PCFG modeling, as compared to other

models, is that it includes all the data in a compressed form, hence not losing in-

formation. Furthermore, PCFG is a formal model which can be processed by easy

modifications to the parsing algorithms, such as Earley-Stolcke [17], [47].

Future work directions that can be listed here include various other application

domains within social network context where the PCFGs can be used for prediction

and classification, such as performance evaluation of business processes. Further-

more, although it may affect the context-freeness of the PCFG approach, domain

specific annotations, that can be integrated into the PCFG model, may come up

with a better representation of social network environments.

CHAPTER 6

Service Composition in Sensor Networks and Utilization of

PCFGs

Service modeling and service composition are software architecture paradigms that

have been used extensively in web services where there is an abundance of resources.

They mainly capture the idea that advanced functionality can be realized by com-

bining a set of primitive services provided by the system. Many efforts in web

services domain focused on detecting the initial composition, which is then followed

for the rest of service operation. In sensor networks however, communication among

nodes is error-prone and unreliable, while sensor nodes have constrained resources.

This dynamic environment requires a continuous adaptation of the composite ser-

vice model. The contents of this chapter can be listed as follows. We will first

provide our contributions in the area of service composition in sensor networks. We

have proposed a novel method for modeling a service, as well as heuristics to effi-

ciently combine services in sensor networks [119]. After building the foundations of

the subject as our published work, we will give our work on modeling compositions

in sensor networks, and learning of these compositions via the PCFG construction

mechanism. We will present the methodology as well as simulation-based evalua-

tions of our method. We will conclude the chapter with our recent efforts in switch

options based selection of services in sensor networks and operating modes for per-

* Portions of this chapter previously appeared as, and are to appear in:
S. C. Geyik, B. K. Szymanski, P. Zerfos, and D. Verma, “Dynamic composition of services in sensor
networks,” in Proc. IEEE Int. Conf. Services Computing, 2010, pp. 242−249.
J. Wright et al., “A model-driven approach to the construction, composition and analysis of ser-
vices on sensor networks,” presented at the Annu. Conf. ITA, London, UK, 2010.
B. K. Szymanski, S. Y. Shah, S. Geyik, S. Das, M. Chhabra, and P. Zerfos, “Market mechanisms
for value of information driven resource allocation in sensor networks,” in Proc. IEEE Int. Percom

Workshop Information Quality and Quality of Service for Pervasive Computing, 2011, pp. 62−67.
S. Geyik, B. Szymanski, P. Zerfos, and A. Mowshowitz, “Sensor service selection through switch
options,” in Proc. IEEE Int. Conf. Service Computing, 2011, pp. 717−724.
S. C. Geyik, S. Y. Shah, B. K. Szymanski, S. Das, and P. Zerfos, “Market mechanisms for resource
allocation in pervasive sensor applications,” Elsevier Pervasive Mobile Comput. J., vol. 8, no. 3,
pp. 346−357, Jun. 2012.
S. Geyik, E. Bulut, and B. Szymanski, “Utilizing PCFGs for modeling and learning service com-
positions in sensor networks,” in Proc. IEEE Int. Conf. Service Computing, 2012 (In Press).

78

79

Acoustic Sensor

Service: SS1

Acoustic Sensor

Acoustic Sensor

Service: SS2

Service: SS3

Stream
(Time,Distance,Strength)

Stream
(Time,Distance,Strength)

Stream
(Time,Distance,Strength)

Event Detector Service
EDS1

(Detects when the signal exceeds
the threshold value)

EDS2

EDS3

Triangulation Service

(TS)

Triangulation performed according to the

distances from the sensor locations which
detect the event.

Event Tuple (ET)
(Time,Distance,Strength)

ET

ET

Camera Sensor

Recognition Service (RS)
- Detects Object Type

- Turns camera to given location

Tuple
(Time,Location)

Camera Sensor
Tracking Service (CTS)

- Follows Object

- Changes camera direction

Stream
(Time,Location,Object Type)

Stream
(Time,Location,Object Type)

Figure 6.1: A Composite Service Example

vasive applications.

6.1 Service Composition in Sensor Networks

Due to limited communication bandwidth, node processing and energy re-

sources, sensor network applications are distributed over a collection of nodes. Each

node typically provides a basic functionality for operating on the monitored data,

while the network of sensor nodes collectively provides a composite service (i.e. a

service that is formed through a suitable combination of basic functionalities [120])

to the end-user.

As an example of a composite service, consider the tracking and object iden-

tification application of Figure 6.1: audio measurements are collected from three

acoustic sensors and are used to localize the source of the sound. The localization

information is then transmitted to a camera sensor that identifies the type of the

object that produces the sound. The camera is further used for tracking the object

as it roams in the monitored field. In this example, one can readily identify the

primitive functionalities that are collectively used to provide the more sophisticated

tracking and object identification service.

Service composition, i.e. the process through which composite services are

produced by combining several primitive ones [121], has been the subject of extensive

In this chapter, we use the terms application and service interchangeably.

80

study in the context of web services [120]. However, the unique characteristics of

sensor networks render techniques that were devised for web service composition

inadequate. Unlike the web environment where service provider availability and

ample communication bandwidth is typically assured, sensor networks are highly

dynamic as nodes often fail or become disconnected and wireless communication

capacity is limited. Thus, web service composition approaches (e.g. [122]-[127]) are

susceptible to single-point-of-failure and inefficient in the use of precious wireless

communication bandwidth.

Additionally, the service paradigm exhibits qualitative differences in the web

and sensor network domains: in the web, service consumers are typically concerned

with finding service instances from a plurality of web providers that can accomplish

a given, abstract task or functionality [128], [129]. In sensor network deployments,

the service paradigm is primarily concerned with the assembly of data transforma-

tion pipelines over data flows. In Section 6.1.1, we discuss important implications

that this distinction in the service model have on the optimization of the service

composition process.

Early programming frameworks [130], [131] proposed for the development of

sensor services recognized the need for a component-based design that compartmen-

talizes (at the source-code level) the transformational steps that network collected

data must undertake. Recent advances in sensor network programming further ex-

tend this concept by proposing the use of a high-level language such as Haskell [132],

WaveScript [133] or Prolog [134] to describe the interconnection of application com-

ponents, each of which is implemented in a lower-level, device-specific language.

However, such programming models are also not robust enough for the dynamics

of sensor network environments, neither do they make efficient use of the limited

network resources. There is no provisioning for flexible re-engineering of the sensor

application at runtime should the nodes that provide the services fail or become

disconnected and the service model is not adapted to the ever-changing processing

and energy resources of the nodes.

The objective of the work presented in this section is to introduce a modeling

and composition framework for sensor services that is robust to sensor node and

81

communication failures and efficient in the use of the underlying resources.

In this service-oriented approach, sensor network applications are represented

and viewed as a collection of component services assembled in a data flow graph that

describes the composite service. Each component service provides basic operators for

transforming the data, has typed inputs and outputs, and generates metadata that

provides meta-information on the values that are being transformed, as well as on

the runtime properties of the sensor nodes that implement the service. Such runtime

information may include the cost of processing data at each node and transferring

it between nodes in the network.

The graph-based modeling of sensor services along with the cost information

are used to formulate the process of dynamic sensor service composition as a cost-

optimization problem, which we further prove to be NP-complete. We devised two

heuristic methods to solve this problem, which differ on how the composition pro-

cess proceeds: the top-down approach starts with the high-level specification of the

desired composite service and proceeds in multiple steps of refinement by identi-

fying the primitive component services that can be used to provide its inputs. In

the bottom-up approach, the service graph is topologically sorted, and each service

waits for its candidate input provider services to decide on their own compositions,

then chooses a subset of them to satisfy its own inputs. The motivation behind the

top-down approach stems from the need to provide cost-efficient service composition

graphs due to the limited resources in the network, while the bottom-up approach

is devised due to the requirement for robustness in the face of sensor node and com-

munication failures. Centralized and distributed implementations were evaluated

for both approaches. In summary, the work presented in this section makes the

following contributions:

• a modeling framework for sensor services that follows a data flow graph for-

mulation, which is amenable to analysis,

• a formulation of the dynamic sensor service composition process as a cost-

optimization problem, which is shown to be NP-complete,

• two algorithms that use heuristics for solving the dynamic service composition

82

problem, along with an analysis of their complexity, and

• evaluation of the algorithms using numerical and ns-2 simulations to measure

their costs and robustness to node failures.

The rest of this section is organized as follows. Section 6.1.1 outlines a model of sen-

sor services and formulates the composition process in sensor networks. Section 6.1.2

describes our two approaches to sensor service composition, namely the top-down

and the bottom-up, along with their centralized and distributed implementations.

Simulation results are provided in Section 6.1.4. Section 6.1.5 discusses related work

on modeling and composition of web and sensor services. We present our conclusion

and future work in Section 6.1.6.

6.1.1 Sensor Service Modeling and Composition

In this section, we first motivate the need for a new modeling and composition

framework for sensor network services. We then introduce a new model and describe

a formulation of the composition process within that model as a cost-optimization

problem, which we further show to be NP-complete.

6.1.1.1 Motivation

Service modeling and composition have been extensively studied for web ser-

vices and business processes over a number of years [120], [135]. A number of

standards [136]-[138] have been adopted and widely used in real-world deployments

that developed languages and tools for describing web services, enabling automatic

discovery, composition, enactment, and monitoring of web services. However, in the

sensor network domain, both the unique challenges of the operating environment

as well as the data-driven approach of communication call for a rethinking of the

services paradigm.

To begin, the limited resources of sensor nodes (caused by energy depletion

from batteries , constrained wireless communication bandwidth, low processing ca-

pabilities, etc.) make heavyweight web service modeling languages, protocols and

frameworks such as WSDL [137], BPEL [136], and SOAP [139] inapplicable for sen-

sor networks. For example, while there exists the notion of cost in web services [124],

83

the communication costs incurred through the interaction of the component services,

which is expressed either in terms of number of messages exchanged or consumed

bandwidth, is often not modeled explicitly, as it is not typically a concern in that

domain. Furthermore, as the levels of resources continuously fluctuate in sensor

network deployments, the composite service needs to dynamically adapt to these

changing conditions.

Secondly, while web services are commonly assumed to be always available

as they are provided by always-on servers and robust cloud infrastructures, node

failures and communication disruptions in sensor networks are to be expected and

do occur frequently. Any service composition approach that depends on a single

centralized planner node is prone to such failures, making the process of compos-

ing services less robust. Considering only costs of communication (as in recent

efforts [126]) without taking into account the possibility for node failures is not

sufficient for providing fault-tolerant composition in these environments. To avoid

single-point-of-failures and increase fault-tolerance in the presence of faulty nodes, it

is desirable that the service composition method executes in a distributed manner.

Thirdly, in the web services and business processes case, the service model

follows a process- (or workflow-) oriented paradigm, whereas sensor applications

implement a data-driven model. One important implication of this fundamental

difference lies in the way service composition (and the assorted cost-optimization)

approach evolves: in the former case, composition involves the binding (assignment)

of an abstract service model and its tasks to service component instances [122],

[128]. The latter case is concerned with (potentially partial) matching of the input

data requirements of a service to another’s output data streams, without possessing

an explicit composite service model a priori. Consequently, in web services, QoS-

measures at the local level can be optimized in polynomial time, while for the

sensor environment, as we prove later in Section 6.1.1.7, optimization at even the

local service selection level is NP-hard.

In summary, the dynamically changing (and limited) resources, the frequent

node failures, and the data-driven notion of services in the sensor environment call

for a service composition approach that is cost-efficient, fault-tolerant and suitable

84

for data-driven applications. In what follows, we present such modeling and com-

position framework that possesses these characteristics.

6.1.1.2 Modeling Sensor Network Services

A service si in a sensor network is defined by the input data that it accepts,

the transformation function that it applies on its input, the output data that it

produces, as well as metadata that provide additional information that characterizes

the service and its outputs:

si = {inputi = (inputi,1, ..., inputi,m),

outputi = (outputi,1, ..., outputi,k),

fi(inputi) → (outputi),metadatai(t)} .

Following the above definition, a sensor network, in a service-oriented sense, can be

defined as a set of services, abstracted from the sensor nodes and base station(s)

that form it:

S = {s1, s2, ..., sn}.

It is apparent that a service implemented in a sensor network may be just a source

service; i.e., a service which does not receive any input and only outputs data. Fur-

thermore, we can also define a sink service; i.e., a service which does not output

anything and just receives input. In an application, the end-user requesting infor-

mation is usually represented as a sink service. In the service definition given above,

metadata is the information on the service’s characteristics; i.e., it is the information

shared between services, which gives the properties of the data that are produced

by the service such as levels of reliability, period, etc.

Metadata may also include cost information and certain characteristics of the

service itself, as well as of its inputs and outputs, such as energy consumption per

output data produced, processing delays, number of other services that make use of

its outputs, etc. The metadata of a service depends on time (t), due to the dynamic

It is possible that the output of the end-user service is needed for higher level services, in which
case it is not a sink but an intermediate node in this higher level service.

85

conditions of the underlying sensor network environment. Each specific service

has separate metadata that are transmitted to other services offered by the sensor

network. Metadata information is used in our dynamic composition algorithms

to find which services are most cost-efficient to use for a given composite service

requested by the end-user. Interested readers can check [140] for an approach to the

modeling of metadata in the service oriented architecture (SOA) for sensor networks,

which we also follow. Alternative approaches, e.g. ontologies, for encoding metadata

might also be applicable, however their exact application details is beyond our scope

of study.

6.1.1.3 Service Graph of a Sensor Network

Service graph of a sensor network, GS, consists of vertices representing services

and of directional edges representing possible flow of data between the services. The

edge directed from the vertex of service A to the vertex of service B is created if and

only if the output of A and input of B intersect in some fields. That is, informally,

A can provide some of the data that it generates (output) for use by the service

B through this directional edge. A formal definition of the service graph is given

below:

GS = {V,E} where,

V = {si} (one vertex for each service) and,

E ⊆ V xV, where ei,j =















1 if (outputi ∩ inputj) 6= ∅,

0 otherwise.

Note that, although not stated explicitly in the graph definition, two services can

have an edge between them if and only if the metadata of the service providing some

data as output match with those of the service that is requesting this data as input,

in addition to having compatible input/output. For example, if a service requires

input with reliability of at least a certain level, only the services that can provide

this type of data at the requested reliability level can potentially be connected to

the service description with a directed edge. While the above definition of the

86

Snapshot of Area A
Low Quality

Snapshot of Area A
High Quality

Snapshot of Area B
Low Quality

Snapshot of Area B
High Quality

Wider Snapshot of Area A & B
Low Quality

Wider Snapshot of Area A & B
High Quality

Figure 6.2: A Simple Type Hierarchy

service graph seems to require exact match between input and output fields of two

services to build an edge between them, this requirement can be relaxed by using

type hierarchies for the data fields, as further described in the following section. It

is worth noting that in case one service can provide input to another, the actual flow

of data is a responsibility of the underlying network and routing layers. However,

through the use of metadata, the service model (and the composition algorithms) is

informed of the communication costs involved when such data flow occurs.

6.1.1.4 Type Hierarchy of Data Fields

Figure 6.2 shows a simple example of a type hierarchy, regarding the snapshot

(image) collected by a camera sensor that monitors a certain area. There are two

areas (A and B) and two quality levels (high and low) for a picture. In the graph

that describes the type hierarchy, it can be observed that the information type

High Quality Snapshot of Area A is a subtype of Low Quality Snapshot of Area A,

since it already includes the information that is contained within the latter type.

Another example can be given for High Quality Wider Snapshot of Area A & B,

which includes the information for both areas A and B, hence it is a subtype of

both High Quality Snapshot of Area A and High Quality Snapshot of Area B. More

elaborate type hierarchies can be built for application specific purposes.

Such a type hierarchy enables two services to be linked in the service graph

GS, even though their outputs and inputs might not match exactly. If a service

A’s output field is a subtype of a service B’s input field, then this means that A

87

can provide the information that B requires and possibly more (what is referred

to as “subsumption-based similarity” in [127]). While more complex descriptions

of hierarchy using formal logics might be applicable, we strive for simplicity and a

light-weight approach in our target environment, and do not consider them in this

study.

Furthermore, type hierarchies can be used for replacement of services in an

already constructed composition graph for a composite service S. In such a com-

position, a service A can be used to substitute another service B, if the following

conditions hold: a) each input field of A is a supertype (opposite of subtype) of

each corresponding input field of B, and b) each output field of A is a subtype of

each matching output field of B (hence service A requires less information to run,

and produces more information than B). Such a service substitution will give the

same functionality as the original composition scheme, as long as the properties of

metadata are also satisfied.

6.1.1.5 Cost Formulation of Service Composition in Sensor Networks

There are two basic types of costs related to a composition: first, the processing

cost of each service, i.e., cost incurred by activating an instantiation of a service.

Second, the cost of communication between two services by exchanging information.

This cost is interpreted as the edge costs in the service graph defined in the previous

section. Note that while we refer to such values in an abstract way as costs, different

types of real costs are represented. For example, processing cost of a service can

be the energy spent by the sensor node that provides this service, the delay that is

incurred by this service, etc. The same holds for the communication cost between

services. In that case, we are actually using the cost values that are defined by

the underlying structure of the network. For example, energy spent by sending

information from service A to B includes all the energy spent by the nodes on the

route from A to B. Calculation of such underlying costs is related to the mapping

from the sensor network topology to the service graph. Therefore, a simplified way

of computing this cost could be to find the shortest path between two nodes in the

sensor network and put this value between the services on these two nodes in the

88

service graph. We discuss this subject further in Section 6.1.2.6. Note that it is

also possible to define a cost vector, which accounts for multiple costs incurred at

the same time. Then, compositions can be ordered according to this cost vector, by

using appropriate weights for the cost types.

6.1.1.6 Problem Definition

Service composition requires finding such a set of services SC ⊂ S and data

flows between those services so that every service in SC has its inputs provided by

at least one other service in SC . Furthermore, the union of the outputs of services

in SC must satisfy a user-requested functionality Φ, given as a set of output fields

required by the end-user satisfying certain properties:

Φ = {outputΦ,1, ..., outputΦ,n}.

Service composition may be considered as the task of finding a subgraph of the

service graph (GS) defined in the previous section, wherein only a subset of the

possible edges (data flows) and vertices (services) is used. Moreover, this problem

requires that the cost of the composition is minimized. A formal definition of the

problem is as follows: For given GS = {V,E} and Φ, find the minimum cost VC ⊂ V

and EC ⊂ E, such that,

Φ ⊂
⋃

Vi∈VC

(output of Vi) and,

∀Vi ∈ VC , (input of Vi) ⊂
⋃

Vj where ej,i∈EC

(output of Vj).

As it can be seen, an edge ei,j cannot be chosen in the composition scheme un-

less both Vi (representing service i) and Vj (representing service j) are selected for

the composition. According to this problem formulation, the composition process

may change dynamically, since an optimal composition is dependent on the net-

work conditions at time t. Services learn the network conditions via the metadata

mechanism.

89

6.1.1.7 Service Composition Problem is NP-complete

In a simple version of the above problem formulation of sensor service compo-

sition, we have a set of source services, which only give output, a user-request Φ (a

sink service) and we wish to find a subset of these source services so that their out-

put fields will satisfy the input fields of the user-request, while keeping the service

cost below a certain level. For purposes of illustration, we assume that this cost

is additive, such as the total energy consumed by the services that are used. The

service composition problem is more general than the above formulation, but even

this restricted version is NP-complete by a simple polynomial transformation from

the set cover problem. The set cover problem accepts a set, and a set of subsets of

this set with a cost assigned to each subset. The problem is to find a subgroup of

these subsets so that the original set is covered and cost is below a given value. As

is well-known [141], the set cover problem is NP-complete.

Theorem 1. Service composition is NP-complete.

Proof. We will transform set cover problem to service composition. For any set

cover instance, let Scov denote the set to be covered and for each i ≤ 2|Scov |, let Subi

denote a subset of Scov. For each Subi, we are given the cost ci and the problem is

to find a cover Scov with cost smaller than creq. The required transformation is as

follows:

• Transform Scov to be Φ, the user-request with the required input as the set to

be covered,

• Transform each Subi into a service with no input, and output being the same

as Subi, cost of running this service is ci.

After such a transformation, a procedure finding the composition with the cost lower

than creq will also solve the set cover problem. Therefore the service composition

problem is NP-hard. Next we will prove that it is in NP.

Given a composition solution (chosen services and data flow), it takes linear

time with input to see that the composition satisfies all the input requirements of the

services activated in it and the end-user requirements. The complexity of checking

90

the cost of the solution is O(|V | + |E|), since each edge in the solution will only

be checked once and each vertex will only be traversed once. Indeed, each edge

may incur a cost of transmission and each service incurs a cost of processing. Since

we can check the given solution to a composition problem in polynomial time, we

conclude that service composition problem is in NP.

By showing that the service composition problem is NP-hard and in NP, we

have shown that it is also NP-complete. Note that the decision version of the service

composition problem, which decides if there is a composition below a cost creq is NP-

complete; the optimization problem, which calculates the least cost composition, is

NP-hard, similar to the set cover problem.

6.1.2 Approaches for Service Composition in Sensor Networks

The algorithms that we present in this section aim at achieving cost opti-

mization across the sensor network, while reacting to changing network conditions

by recomposing the service. The two proposed approaches are top-down (similar to

backward chaining), that proceeds with composition down the service hierarchy, and

bottom-up (similar to forward chaining) that proceeds in the opposite direction. To

ensure that the heuristics terminate, we consider only service graphs that are acyclic

and directed. We leave the formulation of service composition costs on more general

graphs to future work.

6.1.2.1 Top-down Approach

The top-down algorithm starts when the user-request (which is represented

by a sink service) is received. It first finds a set of services that satisfy its inputs

and minimize the local cost, which is the sum of the cost of services chosen and

communication costs between those services and user-request. Later, the chosen

services choose their input providers and so on. A key requirement in this scheme

is that the services at the same level should compose one after each other. It is easy

to see that this approach is indeed a breadth-first traversal in the service graph,

GS, which provides us with the ability to identify which services are already used

for composition. However, this breadth-first traversal requirement also makes the

91

top-down approach difficult to implement in a distributed way, since it requires

synchronization among sensor nodes.

At each level, a set of services is chosen such that among all sets that can

supply the inputs to the service under consideration, the chosen set exhibits the

smallest cost. To make such a choice, we use a well-known heuristic for the set

cover problem, which chooses the service that adds the smallest cost per each input

covered. Critical services, which are those that exclusively provide certain input

fields of a service, are also selected. Since these have to be included in any feasible

set of services, they are chosen first, in case they also cover additional inputs that

would have to be provided otherwise by other non-critical services.

A drawback of the top-down approach is that, at any level, it may choose a

set of input providers that cannot be further decomposed (their inputs cannot be

satisfied), since it makes local decisions without knowledge of available services at

the lower levels of the graph. Each service knows only its immediate neighbors in

the service graph.

6.1.2.2 Bottom-up Approach

The bottom-up approach sorts topologically the directed and acyclic service

graph GS. This means that each service waits for its candidate input providers to

decide on which services they will activate, before itself reaches a decision. Algo-

rithm 3 presents a single level algorithm which composes the input that a service

requires assuming that its neighboring services have already run the composition

algorithm separately and know the set of services they would use for satisfying their

respective inputs at a minimum cost. An important point to note in this algorithm

is the presence of a filter function that filters the neighbor list of the service under

consideration according to the conditions set by the user. Metadata of the possible

input providers of a service are considered, and only the neighboring providers that

satisfy certain conditions on the metadata (e.g., service reliability, location of mea-

surements, etc.) are included in the composition graph. Algorithm 3 uses a function

called find comp that selects the set of services with the smallest cost.

If the bottom-up method is implemented in a distributed manner, it incurs

92

Algorithm 3 Service Composition Algorithm with an Abstract Method for Choos-
ing a Set of Services used for Input

method compose service inputs(S)
S.composition cost = 0
inputS = set of inputs of S
NS = filter(neighbor list of S,condition list)
for each neighbor Ni in NS do
inputi = set of outputs of Ni

inputN[i] = inputS ∩ inputi
costN[i] = Ni.composition cost

end for
(S.chosen services , S.composition cost) = find comp(inputS,inputN,costN,S)

significant communication overhead to transfer complete composition subgraphs (the

full list of services used by a possible input provider) among the neighbors of a

service. The alternative approach of only transmitting the additive composition

cost of the service upstream is followed instead. Once a service S chooses the set of

its input providers, only the cost is transmitted further upstream to services that

may utilize S’s output. Sending the cumulative cost information incurs a lighter

traffic load on the system. However, less information is also made available about

the composition of a service’s possible input providers, which does not facilitate

service reusability, and therefore may result in less cost-efficient compositions.

Service A

Service B

Service C

Service D

Service E

Service S Service S’

Transmitted cost = cost (A)
C

Includes communication cost between A and S as

well as cost of the composition sub-graph of A

Transmitted cost = cost (S)
C

cost (S) = cost (C) + cost (E) + act-cost(S)
C C C

+ comm-cost(S S’)

Figure 6.3: Sending the Collective Cost Information Upstream

As an example, in Figure 6.3, service S has five choices that can satisfy its

inputs, and chooses two of them, C and E (double arrows) to utilize. S sends its

93

cost information in its metadata to S ′, as the sum of the collective costs (costC) of

the services it utilizes, its own activation cost (act-cost(S)) and its communication

cost to S ′ (comm-cost(S → S ′)). Such information transfer occurs throughout the

service graph, GS.

Algorithm 4 Algorithm for Choosing Services to Cover Input Set

method find comp(input,output sets,cost set,S)
remaining in = input
remaining out = output sets
chosen services = ∅ , comp cost = 0
while remaining in != ∅ do
if ∃ Sj ∈ remaining out is a critical service then
Smin = Sj

else
for each service Sj in remaining out do

Find Smin where
cost set[S

min
]+comm cost(S

min
→S)

|remaining in ∩ Smin|
is smallest

end for
end if
chosen services += Smin

comp cost += cost set[Smin]+comm cost(Smin→S)
remaining in -= remaining in ∩ Smin

remaining out -= Smin

if remaining out == ∅ then
break

end if
end while
return (chosen services , comp cost)

The find comp function required in Algorithm 3 is presented in Algorithm

4, and follows the heuristic for the set cover. At each step, it attempts to find

the neighboring service that has the smallest cost per new input field that it can

provide. The cost is calculated by adding the composition cost of the neighbor

node (see Figure 6.3) and communication cost between the neighbor and the service

that is being composed. As in the top-down approach, critical services are always

included first due to the input fields that they exclusively provide.

In the evaluation section, we will show that the bottom-up approach achieves

lower cost than the top-down approach, and, if there is a satisfying composition

solution, it always finds it. The disadvantage of the bottom-up approach is that it

94

requires an acyclic service graph GS to terminate, hence the respective assumption.

6.1.2.3 Complexity and Approximation Ratio Analysis

The time complexity for the top-down and bottom-up algorithms can be com-

puted as follows: for the top-down algorithm, each service looks at only its imme-

diate input providers, or neighbors, and each service can have at most |V | of them,

where |V | is the total number of services in the system. Since each service makes

input checks as well as cost checks, O(|V |2) operations are performed at each step to

choose a set of input providers using the greedy algorithm to minimize cost. Since

only a fraction of services could be choosing the best service among the remaining

ones, the top-down approach takes O(|V |3) time to complete.

In the bottom-up algorithm, for each service (Algorithm 3), there is a single

call to find comp (Algorithm 4) to find its respective set of input providers. This

algorithm furthermore is just an implementation of the set cover heuristic, which

takes O(|V |2) as in the case of top-down approach. Since find comp is called once

for each service, the complexity of the overall bottom-up algorithm is |V | times the

complexity of find comp, i.e. O(|V |3), which is the same as the top-down approach.

As it was previously shown, sensor service composition problem is NP-complete

and we proposed two approaches that use heuristics. We will now give a brief

discussion on their approximation ratio. Feige has proven that the lower bound for

approximation of set cover problem is (1 − o(1)) lnn [142] unless there are quasi-

polynomial algorithms for the problems in NP (n is the size of the set to be covered).

This lower bound is achieved by the greedy search that chooses the subset that covers

the uncovered elements of the set by choosing the smallest cost per element at each

step. This algorithm has a O(lnn) approximation ratio and the method find comp

based on this greedy solution is given in Algorithm 4.

In conclusion, the greedy algorithm finds a composition of cost at most logn.opt

at each step of composition, for each service. In the formulation, opt is the cost of

the optimal solution and n is the number of input fields that should be satisfied by

a service. From this analysis, the overall composition that satisfies an end-user’s

request can be at most lognk.opt, where k is the furthest distance from any source

95

service in a composition graph to the final output formed by this composition. k

can be at most the depth of the acyclic service graph GS.

6.1.2.4 Implementing the Composition Decision Algorithm

The decision for composition can be made either in a centralized way, at a

central decision node by receiving information from all services, or distributedly,

wherein each service separately chooses (locally at the sensor node that they reside

on) which services it will use to satisfy its inputs. The details of these two approaches

are discussed next.

Centralized Implementation The centralized approach makes use of a cen-

tral decision making node where metadata from each service is first collected. Once

metadata is received from each service, the decision maker can run either the top-

down or bottom-up algorithms and decide on the services to be activated. In our

implementation, we use both algorithms and select the composition with lowest cost.

In the example of Figure 6.4, two sets of services are shown, along with their

service graphs. In the first case (Figure 6.4a), the top-down algorithm will perform

better. The service user-request will choose both A and B to satisfy its input.

Then, A will choose C and D, and B will choose F . Since D is already chosen, B

will also choose D to satisfy the input set {k, l}. The bottom-up approach however,

would choose E for service B since it has lower cost, resulting in the utilization of

two separate services for the same input fields ({k, l}). Note that B cannot check

if D is already being used, since it cannot know whether the service that utilizes

it will be chosen for the composition or not. For the second case of Figure 6.4b,

the bottom-up approach will give a better solution since the top-down approach

will choose service B, not knowing that, to satisfy B’s input, service E has to be

activated as well, which exhibits high cost.

Distributed Implementation In the distributed implementation, each ser-

vice decides independently on which services it will activate in order to receive its

inputs. Please note that what we mean by distributed composition is not to cal-

culate the composition in a parallel manner among several nodes. This would still

require the collection of all service information at one central node. Rather, each

96

User Request

Input: a, b, c, d, e

Service A
Output: a, b
Input: j, k, l
Cost: 20

Service B
Output: c, d, e
Input: k, l, m

Cost: 15

Service C
Output: j
Cost: 25

Service D

Output: k, l

Cost: 30

Service E
Output: k, l

Cost: 40

Service F
Output: m

Cost: 40

Cost: 20Cost: 20

Cost: 10

Cost: 60 Cost: 50

Cost: 40

Cost: 10 Cost: 30

(a) Top-down Approach Gives a Lower Cost Solution

User Request

Input: a, b

Service A
Output: a, b
Input: j, k, l
Cost: 20

Service B
Output: a, b
Input: k, l, m

Cost: 15

Service C
Output: j
Cost: 25

Service D
Output: k, l

Cost: 30

Service E
Output: m

Cost: 40

Cost: 20Cost: 20

Cost: 10

Cost: 10

Cost: 40

Cost: 10

(b) Bottom-up Approach Gives a Lower Cost Solution

Figure 6.4: Two Cases in which Top-down and Bottom-up Approaches
are Better than the Alternative

97

Step 1 Step 2

Service 1
Outputs: a, b, c
Inputs: n, m

Service 2
Outputs: n, m
Inputs: d, e, g

Service 3
Outputs: n
Inputs: k

Service 4
Outputs: e, g
Inputs: None

Service 5
Outputs: d, k
Inputs: None

Service 6
Outputs: e, k
Inputs: None

Service 1
Outputs: a, b, c
Inputs: n, m

Service 2
Outputs: n, m
Inputs: d, e, g

Service 3
Outputs: n
Inputs: k

Service 4
Outputs: e, g
Inputs: None

Service 5
Outputs: d, k
Inputs: None

Service 6
Outputs: e, k
Inputs: None

Service 1
Outputs: a, b, c
Inputs: n, m

Service 2
Outputs: n, m
Inputs: d, e, g

Service 3
Outputs: n
Inputs: k

Service 4
Outputs: e, g
Inputs: None

Service 5
Outputs: d, k
Inputs: None

Service 6
Outputs: e, k
Inputs: None

Dotted arrows denote

activate signal to

the used services

Solid arrows denote

neighborhood and

possible data flow

Dashed arrows denote

composition graph

USER asks for a, b, c USER USER

Figure 6.5: Service Composition Process in the Distributed Algorithm

service receives the input/output information (and other properties included in the

metadata) of its potential input providers (sent to it again by these potential input

providers), to choose a subset of them and hence satisfy its inputs locally, on the

sensor node it resides on (hence removing the need for a centralized decision maker).

The advantage of this scheme is its robustness to network faults and the quick re-

action to a change in the network conditions. For a composition to change, services

do not have to send their information to a centralized decision making point, which

might constitute a single point of failure and bottleneck. The composition process is

performed from bottom to top. In the distributed algorithm, a service will only have

information about its own neighbors, i.e. the services which could provide input to

itself. This information is all part of the metadata that the service received from its

potential input providers, as described in Section 6.1.1.

When a composition process starts, messages are sent from the end-user re-

questing service (considered to be at the top level of the service graph) to lower level

services. User-requested data has certain properties that are provided at the time

of the request. According to these properties, a set of services whose outputs can

satisfy the request will be considered neighbors of the user-request. This process

repeats until this information is disseminated downstream to all the source services,

which do not have any incoming edges, i.e. any inputs. Once this information has

reached the source services, the reverse dissemination process takes place, in which,

at each stage, the service composition algorithm is executed. Once every service

is aware of its smallest composition cost, backward messaging takes place, where

certain services are activated. This finalizes the composition graph. In Figure 6.5,

98

a distributed composition example is presented. The solid arrows denote the pos-

sibility of information flow between services in the service graph GS, for which the

intersection of the input and output sets is not empty. The dotted arrows denote the

activation decision of services after running the distributed composition algorithm.

The dashed arrows denote the final composed graph, which is activated for oper-

ation. Since the composite service depends on primitive services whose execution

might be affected by the dynamically changing network conditions, the composition

graph can change during the operation lifecycle of a composite service. However,

the service graph (denoted by solid arrows) will not change as long as the properties

of the data that the user requests do not change.

6.1.2.5 Dynamic Composition

In a sensor network environment, the conditions of services can change fairly

frequently. Hence it is important to be able to dynamically change service compo-

sition. For this purpose, we rely on metadata information exchange throughout the

network.

For the centralized implementation, dynamic composition is very similar to

producing the initial one: for each change in the system (e.g. change of a service’s

cost, or availability), the composition process is re-executed due to the new costs

and available service set. The notification of the changes in the network conditions

are sent to the centralized decision maker to make such recomposition possible.

In the distributed case, each service will decide on its new input providers

based on the updates in its neighbors (i.e. candidate services to provide input to this

service). When a service updates its own information (e.g. activation/deactivation,

change of processing cost), it also notifies the other services that may utilize its

output, so that they may change their respective compositions (i.e. which services

they utilize to satisfy their inputs) if they choose to do so. Furthermore, if a service

(or a link of a service) is not utilized anymore by the currently activated composition,

a signal will be sent to this service to stop itself or one of its links. If the service

is stopped altogether, due to not being used by any services currently in the active

composition, this service also sends stop signal to every service it utilizes to form

99

its input. This way the current composition (the subset of services in the network

chosen to satisfy a user requirement) can be locally updated by the services that are

in this composition. Of course such a distributed scheme can fall into local minima,

as opposed to recomposition done from scratch in centralized implementation (we

show this effect in our evaluations). Furthermore, if a service goes down (due to

faults in the network) before it can send a signal to its neighbors, this could affect

the dynamic composition. Such a problem can be solved by having services send

periodic active signals to their neighbors, and once such a signal cannot be received

for a certain time frame, the service can be assumed inactive.

Finally, an issue that we should take a close look at in dynamic composition

is the frequency of the updates between services. Some of the metrics, such as

energy left on the nodes on which the services are implemented, change constantly.

Therefore a dynamic composition solution will be constantly at work, giving a high

overhead. Such a situation can be prevented by setting up a composition update

period, or an updating scheme. A service can furthermore wait for significant (e.g.,

threshold on reliability) changes in its condition before notifying the central decision

maker or the neighboring services. These changes are application specific, so should

be set by the user.

6.1.2.6 Mapping from Sensor Nodes to Service Graph

So far we have worked with services on an abstract level assuming that the

services graph had already been given to us. The mapping of sensor nodes to service

graph however is not trivial. Assume that there are k instances of a service A which

can be instantiated on k sensors. Naturally, each of those instantiations correspond

to a node in the service graph. Hence, two instances of the same service may have

different communication costs if they are implemented on different nodes.

It is easy to create the service graph for the centralized implementation since

each and every node will be sending its information to the centralized decision maker

who can just generate the graph from the global information. The information sent

by the sensor node is the set of its services (and their metadata) as well as its

communication costs to its neighboring nodes. In fact, this information can be

100

reduced just to a list of neighboring nodes since that lists all edges originating in

the node and the cost is roughly the same for all neighbors assuming that similar

amount of information is sent through each single hop. The neighbors are basically

found by having each node broadcast a message once. The change of the topology

can be detected by either a signal from the node whose state changes, or by lack of

a signal if a continuous sequence of periodic active signals is organized.

It is harder to construct the service graph in the distributed case. Finding

which services can send their information to which other services and at what costs

requires every node to have global information of the entire network. Hence, there

should be a distribution of service metadata between nodes. Once each service

knows its neighbor services (which may be on different nodes, hence an edge in the

service graph does not necessarily mean that the nodes on which those services are

implemented are neighbors), the changes in the costs can be exchanged between the

services since now the nodes know the route from one service to another. This way,

distributed composition (bottom-up approach) can be accomplished. To disseminate

service information of all nodes to all other nodes in the sensor network, a simple

protocol like flooding can be used. Furthermore, such a scheme can also help to

eliminate certain links between services. For example, if the node on which service

A is implemented is more than α hops away from another service B, then B may

not acknowledge A as a neighbor at all. By putting a time to live information into

the packets searching for services, a virtual service graph in the sensor network with

a time or hop limit can easily be constructed.

6.1.3 Evaluation of Initial Composition via Numerical Experiments

We have created 10000 cases to evaluate composition performance of our al-

gorithms. There are 40 basic cases, each with unique number of services varying

from 1 to 40 services. We further created 250 variants of each basic case. In each

variant, we assigned each service a uniformly distributed cost between 0 and 40 and

communication cost between services uniformly distributed between 0 and 50. We

first create the acyclic graph and then assign inputs and outputs according to the

created edges. We also choose a random user-request from the set of inputs and

101

0 5 10 15 20 25 30 35 40
40

60

80

100

120

140

160

of Services

C
os

t o
f C

om
po

si
tio

n

Composition Cost vs # of Services for Top−down and Bottom−up Approaches

Bottom−up
Top−down

Figure 6.6: Cost of Composition Comparison of Top-down and Bottom-
up Approaches

outputs defined in the graph. Later, we run our algorithms on this setting and

collect the performance results. Please note that this section provides the numeric

evaluation of how the top-down and bottom-up approaches perform in creating a

low cost composition, hence the cases are more likely theoretic than belonging to

real world applications.

Results: In Figure 6.6, it can be seen that the bottom-up approach constructs

lower cost compositions for the given cases in average, compared to the top-down

approach. Such an evaluation can be misleading however, leading one to use always

bottom-up approach. In the next figure (Fig. 6.7), we show that the approach

of using the best of top-down and bottom-up in the centralized implementation is

a clever choice, and gives lower cost compositions. This is due to the fact that

although the bottom-up gives much better results than top-down in average, the

best of both gives better results since top-down approach performs better in certain

cases. We provided one example of such cases in Figure 6.4a.

102

0 5 10 15 20 25 30 35 40
40

50

60

70

80

90

100

110

120

130

of Services

C
os

t o
f C

om
po

si
tio

n

Composition Cost vs # of Services for
Bottom−up vs Best of Top−down and Bottom−up Approaches

Bottom−up
Best of Bottom−up and Top−down

Figure 6.7: Cost of Composition Comparison of Best of Bottom-up and
Top-down vs Bottom-up Approach

6.1.4 Evaluation of Dynamic Composition in ns-2

To evaluate the dynamic composition capabilities of the distributed and cen-

tralized schemes under changing network conditions and node faults, we imple-

mented a composite sensor service application scenario in the ns-2 simulator. The

centralized implementation uses the best of bottom-up and top-down approaches

while the distributed implementation uses only the bottom-up approach, which

sends only the collective cost upstream. We present the overhead of both approaches,

the cost of the compositions they provide over the simulation period, the activation

ratio for a feasible composite service and the time it takes for both approaches to

react to changing network conditions.

Application Scenario: Figure 6.8 illustrates the application scenario that serves

as the basis for the simulations. It assumes a monitored field consisting of six

areas labeled A to F . In each area, there are three types of source services: low,

medium and high quality visual monitoring (e.g. A High Quality). There are also

intermediate fusion services that receive input from two area services and provide an

The top-down approach implemented in a distributed manner requires synchronization among
nodes.

103

A High Quality

A Medium Quality

A Low Quality

B High Quality

B Medium Quality

B Low Quality

C High Quality

C Medium Quality

C Low Quality

D Low Quality

D Medium Quality

D High Quality

E Low Quality

E Medium Quality

E High Quality

F Low Quality

F Medium Quality

F High Quality

Combine A & B

Combine A & D

Combine B & C

Combine C & F

Combine E & FCombine D & E

Combine All - 1
Combine All - 2

USER REQUEST

A

D

B C

E F

Figure 6.8: Simulated Sensor Network Application

intermediate result whose exact functionality is not important for the purposes of

the simulation (e.g. Combine A & B). It is assumed that these intermediate services

also come in three variants (e.g. Combine A & B High Quality), not all of which are

shown in the figure, for simplicity. There are also several final fusion services that

use the output of the three intermediate services to provide a result for the whole

area, e.g. Combine All - 1. The user request is submitted through one of the fusion

services.

The processing and communication costs have been set according to the size

of the outputs produced. For example, the processing cost of the source services

were set as 20, 30 and 40 cost units for Low, Medium and High Quality respectively,

following the size of the outputs of these services that was set to 4, 8 and 12 size

units. We also assume that the communication cost per hop and size unit is 5.

For example, transmitting the output of a high quality source service between two

104

sensor nodes over a single hop would cost 5× 12 = 60 cost units. The intermediate

fusion services that process High, Medium and Low Quality have processing costs of

20, 30 and 40 cost units respectively. The size of their output is set to 6 size units.

Lastly, each fusion service has a processing cost of 15 cost units, and an output size

of 3.

Implementation in ns-2: The proposed service composition schemes are imple-

mented in ns-2 as an application-layer protocol, independent of the exact underlying

routing and MAC layers used for the messaging among nodes. For our simulations,

we used AODV and 802.11 MAC as provided by the ns-2 distribution in version

2.34.

Our ns-2 implementation consists of two application layer agents: ServMeta

and ServHolder. ServMeta agent represents a service description, and includes the

properties of the service (i.e. the service metadata). A new instantiation of a

ServMeta agent is defined for each distinct service (i.e. each service type has a

ServMeta agent in the ns-2 script file). ServHolder agent on the other hand is

assigned to each and every node on the network, and is a container agent which

the ServMeta agents belong to. ServHolder agents message between each other to

transmit the information of the services assigned to themselves (i.e. the services

that are assigned to the nodes they reside on).

Services are assigned to nodes as follows: each source service is assigned ran-

domly to one of the nodes in its relevant area of monitoring, and there is one instance

for each level of quality. Two instances of each intermediate and final fusion service

are activated and a single instance of user request is assigned to a sensor node,

which never gets deactivated throughout the simulation time. Additionally, for the

centralized implementation, we assign a decision maker to one of the nodes that gets

deactivated just like the other nodes, to quantify the effect of single-point-of-failure.

After service assignment, the composition protocol for both the centralized

and distributed approaches starts with the service discovery phase: each node floods

metadata (cost, type and size of outputs/inputs) of the services that reside on it to

every other node. This way each service discovers what other services exist in the

network, and if they are neighbors in the services graph (i.e. can provide input to

105

or receive output from them). It also learns the hop-distance between nodes, which

is needed to calculate communication cost between services. Messaging cost for this

discovery stage is O(n|S|) where n is the number of nodes in and |S| is the number

of services that reside on the sensor network (since the messaging is between the

ServHolder agents of the nodes that contain the descriptions of these services and

not between the services, i.e. ServMeta agents, themselves).

In the centralized composition approach, following the service discovery phase,

the centralized decision making node broadcasts a request for service metadata

information including hop-distance between every node in the network. Based on

the global knowledge that is collected, it then composes the service graph that

satisfies the user request and sends a notification to all services that have been

selected during the composition phase. The process is repeated whenever a service

changes its activation status or processing cost, which is made known by the node

that it runs on by sending appropriate status notification messages to the centralized

decision making point. The composition process can also be delayed if the node on

which the composition process runs (centralized decision maker) becomes inactive

(i.e. single-point-of-failure).

The distributed composition scheme starts with the service that is assigned

with the user request sending compose-request messages to its neighbors, after the

service discovery phase. These neighbors in turn propagate this request to their

neighbors and this process repeats itself. A service composes itself (i.e. chooses

its input providers) once it receives notifications from all its neighbors that they

themselves have completed their composition (chosen a subset of their own possible

input providers to satisfy their requirements) with their additive cost (Figure 6.3),

at which point it proceeds to choose its input providers. Once the service with

the user request composes itself, a backward messaging procedure takes place, as

described in the example of Figure 6.5 to notify the services that have been selected.

In case of change of activation status of a node, a notification message is sent to

the immediate neighbors of the services that run on that node to perform a local

recomposition (similarly for a service that has its processing cost changed). If the

local recomposition is not feasible, then the request is propagated upstream in the

106

Table 6.1: NS-2 Simulation Parameters
Parameter Value

Field Size 120x80

Area Size 40x40

of Areas in Field 6

Comm. Radius 50

Node Activation Ratio 60%–100%

Node Inactivity Time 160–240 secs
(uniformally distributed)

Service Processing Cost Every 20–400 secs
Change Frequency

Service Processing Cost 1600–2400 secs
Change Period (uniformally distributed)

Service Processing Cost + 0%–40 %
Change Percentage (uniformally distributed)

of Nodes 30 (5 per area)

Total Simulation Time 20,000 secs

service composition graph, until a valid composition is achieved.

Simulation Setup: The parameters of the simulation experiments run in ns-2 for

the aforementioned application scenario are shown in Table 6.1. Node Activation

Ratio is used to calculate the expected amount of time a node remains inactive (with

the services that run on it being unavailable) compared to the expected time it stays

active for the duration of the simulation, which is 1−activation ratio
activation ratio

. Node Inactivity

Time denotes the amount of time a node remains inactive, once it changes its status

to being so. We also present the results of an experiment where the activation ratio

was kept at 100% and we looked at the effect of cost changes for services in the

network. Service Processing Cost Change Frequency represents the inter-arrival

time of events when we increase the cost of a random service in the network by

0%-40% (Service Processing Cost Change Percentage). The service goes back to its

original cost in 1600-2400 seconds (Service Processing Cost Change Period).

Results: Our first experiment, the results of which are given in Figures 6.9, 6.10

and 6.11, looks at the effect of activation ratio of each node in the sensor network

during the simulation period (the processing costs for services are kept same for

these experiments to see the effect of node faults) as given in Table 6.1. These ex-

periments evaluate the usefulness of centralized and distributed composition scheme

107

implementations in the erroneous conditions of the sensor network.

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100
500

520

540

560

580

600

620

Activation Ratio for Each Node (Percentage)

C
om

po
si

tio
n

C
os

t

Composition Cost vs Node Activation Ratio
for Centralized and Distributed Approaches

Distributed
Centralized

Figure 6.9: Comparison of Composition Cost for Centralized and Dis-
tributed Approaches with Varying Node Activation Ratios

In Figure 6.9, the composition costs of the centralized and distributed ap-

proach as a function of the activation ratio of each node in the sensor network

during the simulation period is shown. Each value represents the average of 10 runs

for each activation ratio, and the cost is calculated only for those times during the

simulation when a feasible composite service existed. It can be seen that, overall,

the centralized approach performs better than the distributed approach as it gen-

erates composition graphs that exhibit lower total processing and communication

cost. This is due to two factors: first, the centralized implementation chooses the

best of top-down and bottom-up approaches. Second, the recomposition process

of the distributed scheme is performed locally, hence it can fall into local optima

during the simulation. Centralized composition recomposes the service each time

a change in the status of a node takes place. From the figure, it is also clear that

there is a decreasing trend for both approaches in terms of composition cost as the

node activation ratio increases, since the more service instances become active con-

currently, the higher the probability that a solution is found with a lower cost that

would require fewer recompositions. It should also be noted that the centralized

108

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100
30

40

50

60

70

80

90

100

Activation Ratio for Each Node (Percentage)

A
ct

iv
at

io
n

R
at

io
 o

f t
he

 C
om

po
si

te
 S

er
vi

ce
(P

er
ce

nt
ag

e)

Composite Service Activation Ratio vs Node Activation Ratio
for Centralized and Distributed Approaches

Distributed
Centralized

Figure 6.10: Service Activation Ratio Comparison of Centralized and
Distributed Approaches for Varying Node Activation Ra-
tios

implementations applied by previous work (such as [126]) can perform with coming

up as efficient compositions as our centralized scheme does, provided the similar

algorithms are applied. Our one advantage even for the centralized implementation

is that we choose the best of top-down and bottom-up approaches.

Figure 6.10 shows the service activation ratio, defined as the percentage of

simulation time when there was a feasible, active composite service, of the central-

ized and distributed approaches. It can be seen that due to the local recomposition

process, the distributed implementation is more resilient than the centralized ap-

proach, due to its higher service activation ratio. Furthermore, it is more robust

to the single-point-of-failure of the decision making node that plagues the central-

ized approach, which becomes deactivated once such a failure occurs. Please note

that any composition scheme, including the logical programming based approaches

described in the related work section, can perform no better than the centralized

version we apply in terms of activation ratio. The distributed decision making we

propose in this section brings higher robustness in a highly erroneous environment

such as a sensor network, hence is an improvement over previous work.

109

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100
0

1

2

3

4

5

6
x 10

4

Activation Ratio for Each Node (Percentage)

C
om

po
si

tio
n

O
ve

rh
ea

d
(#

 o
f M

es
sa

ge
s)

Composition Overhead vs Node Activation Ratio
for Centralized and Distributed Approaches

Distributed
Centralized

Figure 6.11: Overhead Comparison of Centralized and Distributed Ap-
proaches for Varying Node Activation Ratios

The respective comparison regarding the messaging overhead, measured as the

number of messages that are exchanged between two nodes is shown in Figure 6.11.

The plot also includes the overhead caused by messaging during the flooding phase.

Clearly, the distributed scheme exhibits much higher overhead than the centralized

one because changes of a service have to be broadcasted to all of its neighbors as

opposed to a single centralized decision making node. Note that there exists a certain

trade-off between the activation ratio versus the composition cost and overhead

between centralized and distributed approaches, making the choice between these

two schemes application-specific. For example, an application that can afford low

activation ratios but has to be energy-efficient may run the centralized composition

scheme, while a mission critical service that requires to quickly recompose upon

a node/service failure would be more efficiently composed under the distributed

implementation.

Our second experiment keeps the node activation ratio at 100% to solely look

at the effect of processing cost changes for services in the sensor network. As afore-

mentioned, in this section, we use an abstract notion of cost (processing and com-

munication), which can be interpreted as both quality of service metrics, or actual

110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
500

510

520

530

540

550

560

570

580

590

Cost Change Frequency (x20 sec/service)

C
om

po
si

tio
n

C
os

t

Composition Cost vs Cost Change Frequency
for Centralized and Distributed Approaches

Distributed
Centralized

Figure 6.12: Comparison of Composition Cost for Centralized and Dis-
tributed Approaches with Varying Cost Change Frequencies

costs, such as energy spending. The results of this experiment are given in Figure

6.12 and Table 6.2. These experiments compare the centralized and distributed

composition scheme implementations in the face of changes in the sensor network

conditions.

In Figure 6.12, we compare the distributed and the centralized composition

implementations in terms of the cost of the compositions constructed, where the

frequency of service cost changes varies between every 20-400 seconds in steps of 20

seconds. For example, if the x-axis shows 12 (i.e. 12x20 = 240 secs), this means

that every 240 secs (actually every 216-264 secs with uniform distribution, with

mean of 240 secs), a random service in the sensor network is chosen to increase its

processing cost by 0%-40% (uniform). This service goes back to its original cost in

1600-2400 secs (uniform). For each frequency level, we ran 10 cases, each running

for 20000 seconds. As expected, Figure 6.12 shows that increase frequency brings

higher cost compositions for both approaches. Centralized implementation again

performs slightly better, and the reasons for this are similar to the aforementioned

experiment with changing activation ratios.

In Table 6.2, we show the average reaction times of both approaches to a

111

Table 6.2: Reaction Time Comparison of Centralized and Distributed
Approaches for a Service Processing Cost Change in the Sen-
sor Network

Distributed Centralized

First Reaction (sec) 0.0751 0.0080

Last Reaction (sec) 0.3198 0.8036

change of processing cost in the sensor network. The first reaction time represents

the time it takes for an initial reaction (recomposition, adding or removal of a service

to/from the current composition etc.) to a service’s cost change in the system. We

see that the centralized implementation performs better for this metric. The reasons

for this behavior can be listed as follows. When a service changes its processing

cost, there is only a single message sent to the centralized decision maker in the

centralized implementation, while in the distributed implementation, each service

that may utilize this service’s (the one whose processing cost is changed) outputs

receives a message. This leads to more initial messaging and the high load (and

possibly congestion) leads to later arrival of messages to services which react to this

processing cost change. However, we see that for the metric of last reaction, the

distributed scheme performs better. To be exact, the last reaction represents the

time when the last action is processed by the network (again, such as recomposition,

adding or removal of a service to/from the current composition etc.), hence indicates

the time when the composition is stable again. The lower last reaction time given by

the distributed implementation shows that it comes up with faster recompositions,

due to the local recomposition (whereas the alternative decides at the centralized

node, and notifies the services that belong to the new composition scheme), as

aforementioned. For erroneous and unstable environments such as sensor networks,

this is the metric that matters, and the distributed implementation performs better,

as expected. This result is also an indicator of distributed composition’s robustness

when the nodes deactivate, by showcasing its capabilities to react quickly to changes

in the network conditions.

112

6.1.5 Related Work

Service composition has attracted constant interest in web services domain,

where there are no constraints on resources and there is high user interactivity. The

latter helps with semi-automated and manual composition approaches, reducing the

need for automated composition techniques. Although there are detailed surveys on

web services and composition [135], [143] as well as sensor networks programming

[144], [145], below we discuss some papers that are more closely related to our work.

In the domain of web services, many works have focused on the subject of QoS-

aware web services composition [122], [123], [127]-[129], where an abstract service

composition graph is provided to the system, and the problem is to bind actual

services to the abstract services on this graph. If the system tries to optimize an

aggregate QoS function [146], comprised of different metrics, then this problem turns

out to be a variation of the multi-variable assignment problem, hence it is NP-hard.

Of the references given above, Mao et al. [129] proposes Automatic Path

Creation service (APC), which is a centralized dynamic web service composition

method that considers quality of service (QoS) and network characteristics. This

method looks for a shortest path from the end-user to the primitive services, but

does not consider the case where a subset of the outputs of a service can be used as

input to another service.

One of the main methods utilized in the literature to optimize the metrics

considered in web service composition is genetic algorithms. In [122], the authors

solve the problem of assigning (binding) concrete services to the abstract services in

the already given service composition graph according to QoS measures via using

the genetic programming approach. When the QoS values deviate, their method

applies a recomposition, i.e. rebinding of the services. The authors of [127] utilize

the functional metric, semantic quality fit of services, as well as QoS optimization

(which is mainly a mixture of non-functional metrics) in assigning services to tasks

in a composition. Again, a genetic algorithm based solution is applied to optimize

the combined metric.

Another method applied in QoS-aware web services composition is the inte-

ger programming approach. In [123], integer programming is utilized in assigning

113

concrete services to the abstract services provided in the task graph. Furthermore,

the authors provide negotiation techniques to reach a feasible solution when the

constraints set by the user are severe. Finally, a mixed solution to the problem of

assigning services to the task graph is given in [128], where both local (i.e. where

assignments to tasks are considered separately) and global (i.e. where assignments

are considered together) optimization is considered to maximize QoS in web services

composition. Please note that the assignment is polynomial time solvable for local

optimization for QoS-aware web services composition (this is NP-complete in our

case). For global optimization of QoS metrics, [128] utilizes integer programming

techniques.

The problem we focus on in this section is inherently different from QoS-aware

web services composition in many aspects. First of all, we do not bind services to

tasks whose connections are already given in the pre-provided task graph (i.e. service

composition graph). In our problem, the user presents a set of outputs that should

be provided by the overall system, and the composition graph is generated due to

the services at hand. It is not always possible to replace services (since the same

information can be provided by different services on the sensor network, and the

rest of the output provided by these services can be different), and as we proved,

even the local optimization of cost is NP-complete. Our second difference lies in

the composition mechanism. Previous work in QoS-aware web services composition

provides centralized decision making, which can lead to frequent single-point failures

in the domain of sensor networks. We provide a distributed decision making scheme,

where each service in the sensor network decides its input providers locally. We

show in the evaluations section (Sec. 6.1.4) that such distributed making leads

to faster recomposition of services and therefore increases activation ratio of the

composite service, hence increases robustness, which is a vital component in faulty

environments such as sensor networks.

The works that are closest to ours apply logical programming, where the ser-

vices are described as a set of pre- and post-conditions [124], [126], [147]-[149]. Fur-

thermore, the methods of forward and backward chaining (similar to our bottom-up

and top-down methods, relatively) are applied to satisfy the conditions set by the

114

user.

Of the above papers, [124] proposes OWLS-Xplan which is a logical plan-

ner that utilizes the service definitions given in OWL-S (Web Ontology Language

- Services) language. This way the conditions can be set by the user and satisfied

according to the pre- and post-conditions of the services. Another logical program-

ming solution is provided in [126]. This is a similar work to ours in that it uti-

lizes forward chaining (similar to our bottom-up approach), and uses an aggregated

QoS measure to choose provider services at each point of composition, and utilizes

pre-/post-conditions, both on the properties and the types of inputs/outputs that

match between services. Significant differences from our approach can be listed as

follows: (i) we allow for distributed decision making (i.e. each service chooses its

input providers locally on the node they reside on), which is crucial for sensor net-

works, (ii) we apply a mixture of top-down (i.e. backward chaining) and bottom-up

(i.e. forward chaining) algorithms, which produces better results in the centralized

composition scheme, (iii) we show the NP-completeness of even the local optimiza-

tion problem (which is valid for this domain as well) and provide an approximate

solution, and (iv) we address the communication costs and activation ratios due

to services activating or deactivating, which is a crucial factor in sensor networks.

These differences also apply to other logical programming based approaches.

Another example which is given in [147] provides a logical programming based

composition of services based on pre-/post-conditions of services, however, it does

not take into account the QoS or cost measures. In [148], MARIO (Mashup Au-

tomation with Runtime Orchestration and Invocation) is introduced, which utilizes

tags chosen by the user to provide possible composition schemes. Each tag rep-

resents a functional goal and can be interpreted as a query. Type hierarchies are

used to connect outputs of a service to compatible inputs of another service in the

composition decision process. This work however, does not take into account the

changes in the network for performing a re-composition.

Use of the OWL-S language to describe the web services with their inputs

and outputs is discussed in [149]-[151]. The first paper introduces the methods

for translating services described in OWL-S to SHOP2 compatible descriptions (a

115

logical planner) to compose a user-request. The planner makes use of pre-/post-

conditions of described services. The paper however does not take into account any

type of distributed decision making, and also does not consider the maximization

of QoS as some previous work did, or minimization of cost, as we do. Furthermore,

in [150] and [151], the presented methods are user supervised in the sense that, at

each step, a set of possible matches for the user functionality needs are presented to

the user who selects one or more services for use.

In mobile networks, the authors of [152] propose the use of service (both seman-

tical and syntactical) equivalence in order to replace services where the connections

between nodes are changing rapidly. [152] again assumes a pre-provided composi-

tion graph for the initial operation, hence the replacement occurs with other services

that can function as well as the current services in the graph. Furthermore, other

approaches for service composition, such as Petri-Nets [153] (this work does not take

into account any cost or QoS measures), have also been applied in literature.

In sensor networks, few approaches have been proposed for service compo-

sition. A significant one is [134] in which the authors provide a method based on

logical programming through backward chaining for combining services. They model

services as statements whose truth depends on their predicates and they set certain

statements true when these predicates are satisfied. These statements are further

used by other services as predicates. The method is used for automated inference in

sensor networks. Another paper in the sensor networks domain [154] tries to iden-

tify the service composition that is less likely to be invalid in the near future due to

nodes going to sleep mode etc. The goal is to minimize the recomposition cost at a

later time. In [155], the authors propose components for a network of sensors and

actuators from which the complex desired services can be composed. However, the

composition process is entirely user-driven.

In [156], the authors propose a dynamic flow control solution, applicable to

sensor networks, which uses filters and wires between services. By using filters

on the wires (which are logical conditions), the user manually blocks data flow

whenever such blocking is needed for the functionality desired in the current net-

work conditions. Their system still requires user interaction. Another programming

116

framework, EnviroSuite [157], abstracts external environmental elements into ob-

jects hence simplifies sensor network implementations. EnviroSuite is appropriate

for implementing the service modeling we propose in this section, however it does not

include automated composition, which to our knowledge is novel in sensor networks

domain.

A model similar to our service graph can be found in [158], which proposes

abstract task graphs that consist of abstract tasks and abstract channels. These are

mapped to services (nodes) and possible connections (edges) in the service graph,

respectively. However, this paper does not address automatic composition construc-

tion or cost measures. A final work worth mentioning is that of [159]. The authors

present MiLAN, which is a middleware for sensor applications. MiLAN receives

the application requirements in terms of the information needed and chooses a set

of sensors that can provide this information according to certain quality of service

requirements. However, MiLAN does not provide composition of services in which

outputs of services are combined to provide inputs of other services.

6.1.6 Conclusions and Future Work

In this section, we have described a novel method of service modeling and

dynamic composition which is appropriate for the unreliable and unstable sensor

network environment. We have introduced two algorithms for composition of sensor

services. These can be classified according to the direction that they follow on the

service graph during composition. We also presented centralized and distributed

approaches and their advantages and disadvantages, as shown by the dynamic com-

position evaluations. We furthermore discussed implementation details of the service

model and the composition algorithm.

Our future work includes the realization of the algorithms on an actual sensor

network application. Furthermore, we are planning to follow a game theoretic ap-

proach to choosing services with minimal cost. In such a scheme, each sensor node

will aim to lower its load by utilizing services implemented on other sensors rather

than itself. We believe that such a scheme will lead to lower cost solutions, after

the initial composition is done with our current algorithms.

117

6.2 Utilizing PCFGs for Modeling and Learning Service

Compositions in Sensor Networks

In the previous section of this chapter, we proposed a methodology on repre-

senting a composition as a graph of connection of services and how to automatically

combine services in an efficient way. While such an automated scheme improves

energy efficiency of the solution, during composition creation this scheme suffers

from communication overhead and a security problem because metadata about ser-

vices are exchanged between all potential services (to be included in a composition)

in the network. Since the metada may include mission critical information, in do-

mains such as military applications, the user may not want such information to be

moved around freely. A possible solution, which has also been followed in the liter-

ature, is the manual connection of services by the user. However, such a method is

error-prone to the degree increasing with the composition size.

The current section addresses the above problems of security, high overhead

and performance involved with service composition in sensor networks. To be able

to create high performance service compositions with low overhead, we propose to

use probabilistic context free grammars (PCFGs) to learn the composition schemes

in a sensor network. We assume that the efficient initial compositions of services

are available, for example by creating compositions, evaluating their performance

and collecting the most efficient one. They are used to create a PCFG such that

each initial efficient composition for the given network is a sentence belonging to the

language defined by this grammar. We also provide a method on how to generate a

string representing a service composition. Each PCFG constructed via our method is

specific to a single sensor network instance with predefined set of elementary services

and possible information flows between them. In such a PCFG, a production rule

with high probability assigned to it represents a highly efficient subcomposition

step. The hidden assumption here is that the frequently used service combinations

appear in the intial set of efficient compositions for a reason, because they are

more advantageous than the alternatives. Hence, the constructed PFCG defines

a language for efficient service compositions. In a future work we will consider

creating PCFGs from the poorly performing compositions to learn also inefficient

118

service combinations to avoid them.

The contributions of the current section can be summarized as follows:

• A PCFG and its corresponding language to represent efficient service compo-

sitions as strings in this language,

• A methodology for generating a PCFG from previous compositions,

• A method for finding frequently used subcompositions in PCFG sentences,

which in turn can be represented as synthetic services, improving efficiency of

the service design,

• Amethod to utilize the PCFGs for creating efficient compositions and reducing

the commmunication and computational overhead of this process.

The rest of the section is organized as follows. We first explain the language

for describing a service composition as a string, which basically is a way to represent

a service composition graph. Then, in Section 6.2.2, we discuss the basics of our

methodology. We provide a way of finding subcompositions while constructing a

PCFG. We also explain why generating PCFGs is a better solution than just statis-

tically inferring the connection probabilities, or simply examining one level service

usage sequences. We also discuss how a composition is created from the constructed

PCFG as the system runs. In Section 6.2.3, we compare the PCFG based compo-

sition methodology to our previously presented automated composition technique

[119] (see Section 6.1) in terms of performance, as well as the previously examined

modeling/learning techniques for this application. Next, we talk about previous

work on service composition learning techniques in Section 6.2.4. We finalize the

section with our conclusions and outline of future work in Section 6.2.5.

6.2.1 Describing Service Compositions as Strings

As aforementioned, we define service composition as a data flow graph where

the directed edges represent the input being provided from the service at the start

of the edge to the service at the end of the edge. Each service is represented as

a vertice in the composition graph. To describe a composition graph as a string,

119

we place service names within the parentheses to represent the services used as

input providers. Hence, the following grammar for the language to desribe service

composition graphs can be used, assuming that there are n elementary services

defined in the given sensor network:

<composition> → <service name>(<composition list>) | <service name>

<composition list> → <composition> | <composition>,<composition list>

<service name> → service1 | service2 | ... | servicen

Hence, each node in the data flow graph is represented in the string by its name

followed by the list, enclosed within parentheses, of nodes in the subgraph rooted in

it. In the above graph grammar, we have just four tokens: left and right parantheses

which encapsulate the set of services used by a service whose name preceeds the

matching parantheses, commas to separate compositions, and service names. Such

a grammar of course can only represent service compositions which are acyclic (i.e.

the composition string is finite).

To give an example, we use the application from [160] which requires the

composite Camera service. In Figure 6.13, the services LOBR (with indices to dis-

tinguish them) give a measurement (LOBR stands for Line of Bearing Report) of

the acoustic sensor’s distance from a source of sound regarded as an event. Later,

these measurements from three acoustic sensors are sent to the LOBR2LOCR ser-

vice which uses triangulation to detect the location of the event (LOCR stands for

Location Report), and sends this information to the camera sensor (another service),

which then starts monitoring the event. The LOBR services require no input, so

they use the “<composition> → <service name>” rule of the language given above

for their composition. However, LOBR2LOCR uses services LOBR1, LOBR2 and

LOBR3, hence its composition is like a function call, which starts with the service’s

own name (LOBR2LOCR) and is followed by the set of services (with their corre-

sponding composition strings) that are used to satisfy its inputs. Finally, the service

Camera uses composite LOBR2LOCR service, so its composition string contains

both LOBR2LOCR and its composition subgraph.

120

Acoustic Sensor
(LOBR Service)1

Acoustic Sensor
(LOBR Service)3

Acoustic Sensor
(LOBR Service)2

Event

Distance

Distance

Distance

Sensor Network Node

(LOBR2LOCR Service)1

LOBR Information

LOBR Information

LOBR Information

Camera Node
(Camera Service)

LOCR Information

Camera Node
(Camera Service)

Acoustic Sensor
(LOBR Service)

1

Acoustic Sensor
(LOBR Service)2

Acoustic Sensor
(LOBR Service)3

Sensor Network Node

(LOBR2LOCR Service)1

To Composition Graph

To Composition String

Camera(LOBR2LOCR (LOBR ,LOBR ,LOBR))1 2 31

Figure 6.13: An Example to Illustrate the Service Composition Language

A simple parser can extract the links from the given composition. Further-

more, as mentioned in the introduction, our methodology uses the strings of the

previously run compositions to encompass in the PCFG the rules of combining

services efficiently. Thus, the constructed grammar can be used to either create

efficient compositions automatically, or to check the validity of the compositions for

correctness and efficiency.

Let’s provide a simple PCFG based on the example from Figure 6.13. For

disambiguation, we are representing nonterminals with uppercase letters and termi-

121

nals with lowercase letters. For our purposes, let’s assume the camera service can

be composed in two ways: “camera (lobr2locr1 (lobr1 , lobr2 , lobr3))” with 0.8

probability, and “camera (lobr2locr1 (lobr4 , lobr5 , lobr6))” with 0.2 probability.

Then a PCFG corresponding to such a case can be provided as below:

Start → camera (LOBR2LOCR) (1.0)

LOBR2LOCR → lobr2locr1 (lobr1 , lobr2 , lobr3) (0.8) |

lobr2locr1 (lobr4 , lobr5 , lobr6) (0.2)

In the above grammar, Start and LOBR2LOCR are nonterminals, the numbers in

parentheses are the usage probabilities of the rules that they follow, and finally,

‘lobr2locr1’, ‘lobr1’ . . . ‘lobr6’, ‘camera’, ‘(’, ‘)’ and ‘,’ are terminal symbols.

6.2.2 Modeling Service Composition as a PCFG

In this section, we provide the details of how the PCFG can encapsulate ser-

vice composition information and patterns specific to a sensor network instance with

predefined set of services integrated on the sensors. Based on the way to describe ser-

vice compositions as strings (Section 6.2.1), we describe how a PCFG that describes

a language for the efficient compositions can be constructed from a set of strings

representing previous compositions. We also decribe how frequent subcompositions

(or composition alternatives) can be inferred during the PCFG construction and

how to use them to improve the service composition construction.

Although there is a lack of previous efforts on learning the service compositions

in sensor networks or web applications, a similar problem of learning in component

based systems has been widely studied in recognizing the causes for system errors.

The most relevant paper on error detection that also utilizes PCFGs, was written by

Kiciman et al. [50]. It presents a system called Pinpoint that detects faults in the

application layer of internet services. The detection algorithm constantly monitors

software component interactions. The training stage of the system provides Pinpoint

with steady-state behavior of the system while in the run-time, faults are recognized

due to behavior that is too divergent from the general case. The first of the two

122

main methods used in Pinpoint is the weighted graph that models the frequency

of the component (service) interactions in the system (each component is a vertice

in the weighted graph). The second method uses PCFGs to model the order in

which other services are used. Hence, every service is a nonterminal that points to

an ordered set of other services. In this section, we also give a simple example of

advantages resulting from our methodology compared to [50]. This is to show that

globally available composition information for the system allows for generation of

PCFGs with better composition capabilities.

We finalize the section with the method of regenerating service compositions

according to the availability of services during the application lifetime, and what ad-

vantages such regeneration provides compared to our previous efforts on automated

composition [119] (see Section 6.1).

6.2.2.1 Finding Subcompositions and Alternatives via PCFG Inference

In our PCFG inference efforts, we have adopted the usage of a chunk operator

as a means of shortening the constructed grammar. This operator basically looks

for frequently appearing patterns in the grammar and replaces them with a new

nonterminal, which in turn generates this pattern. In this section, we are using

a similar methodology to find subcompositions which are used frequently, so in

practice, it would be advantageous to encapsulate them as black-box services.

A subcomposition is a part of the connections and services that are utilized

for a composition. Furthermore, we assume that any subcomposition describes how

an intermediate service is composed down to the source services (i.e. services that

do not require any input from other services) and is complete (i.e. all inputs and

outputs are satisfied). This is the main difference of the frequent subcomposition

inference from graph mining. We do not find a frequent subgraph of the previously

seen composition graphs, but rather we find a frequent composition scheme of one

of the services used in previously seen composition graphs (down to services that do

not require any input from other services to execute). The example in Figure 6.14a

shows two types of frequent structures that have been marked in two composition

schemes for the service A.1. Elevating a subgraph as a subcomposition depends on

123

A.1

C.2 B.3

D.1 E.4 F.2 M.1 N.6

A.1

C.2 B.3

D.1 E.4 F.2 M.1 N.7

SubcompositionSubcomposition Subgraph

(a) Subcomposition Example

Compositions

A.1 (C.2 (D.1 , E.4 , F.2) , B.3 (M.1 , N.6))
A.1 (C.2 (D.1 , E.4 , F.2) , B.3 (M.1 , N.7))

6 times
2 times

Initial PCFG (only with frequencies)

Start s_A.1 (s_C.2 (s_D.1 , s_E.4 , s_F.2) , s_B.3 (s_M.1 , s_N.6)) [6] |
s_A.1 (s_C.2 (s_D.1 , s_E.4 , s_F.2) , s_B.3 (s_M.1 , s_N.7)) [2]

Chunk: s_C.2 (s_D.1 , s_E.4 , s_F.2)

Start s_A.1 (Ch_C.2 , s_B.3 (s_M.1 , s_N.6)) [6] |
s_A.1 (Ch_C.2 , s_B.3 (s_M.1 , s_N.7)) [2]

Ch_C.2 s_C.2 (s_D.1 , s_E.4 , s_F.2) [8] Can be taken as
a black-box service

(b) Subcomposition Discovery by the Chunk Operator

Figure 6.14: Finding Subcompositions via PCFG Inference

the frequency of its use.

In the previous subsection, we have described how a composition scheme can

be represented as a parenthesized string. In such a language, a subcomposition

consists of all the services (hence further subcompositions too) within two match-

ing parentheses. Such a subcomposition describes how the service name preceding

the matching parentheses is composed by a set of other services. During the PCFG

inference from the set of compositions, we check for the frequency of each subcompo-

sition and compare it to a threshold before assigning to it a nonterminal representing

a new black-box service. This threshold is application specific, and depends on the

size of the training data. Figure 6.14b shows an example of such a replacement,

124

Compositions

A.1 (C.2 (D.1 , E.4 , F.2) , B.3 (M.1 , N.6))
A.1 (C.2 (D.4 , E.6 , F.3) , B.3 (M.1 , N.7))

5 times
4 times

Initial PCFG (only with frequencies)

Start s_A.1 (s_C.2 (s_D.1 , s_E.4 , s_F.2) , s_B.3 (s_M.1 , s_N.6)) [5] |
s_A.1 (s_C.2 (s_D.4 , s_E.6 , s_F.3) , s_B.3 (s_M.1 , s_N.7)) [4] |

Chunk: s_C.2 (s_D.1 , s_E.4 , s_F.2)

Start s_A.1 (Ch_1_C.2 , s_B.3 (s_M.1 , s_N.6)) [5] |
s_A.1 (Ch_2_C.2 , s_B.3 (s_M.1 , s_N.7)) [4] |

Ch_1_C.2 s_C.2 (s_D.1 , s_E.4 , s_F.2) [8]

A.1

C.2 B.3

D.1 E.4 F.2 M.1 N.6

A.1

C.2 B.3

D.4 E.6 F.3 M.1 N.7

A.1

C.2 B.3

D.1 E.4 F.2 M.1 N.8

5 times 4 times 3 times

A.1 (C.2 (D.1 , E.4 , F.2) , B.3 (M.1 , N.8)) 3 times

s_A.1 (s_C.2 (s_D.1 , s_E.4 , s_F.2) , s_B.3 (s_M.1 , s_N.8)) [3]

Chunk: s_C.2 (s_D.4 , s_E.6 , s_F.3)

s_A.1 (Ch_1_C.2 , s_B.3 (s_M.1 , s_N.8)) [3]

Ch_2_C.2 s_C.2 (s_D.4 , s_E.6 , s_F.3) [4]

Merge: Ch_1_C.2 and Ch_2_C.2
(since they both represent how C.2 is composed)

Start s_A.1 (Mer_C.2 , s_B.3 (s_M.1 , s_N.6)) [5] |
s_A.1 (Mer_C.2 , s_B.3 (s_M.1 , s_N.7)) [4] |

Mer_C.2 s_C.2 (s_D.1 , s_E.4 , s_F.2) [8] |

s_A.1 (Mer_C.2 , s_B.3 (s_M.1 , s_N.8)) [3]

s_C.2 (s_D.4 , s_E.6 , s_F.3) [4]

Probabilities are 0.66 and 0.33 respectively
furthermore, the merge nonterminal can also
be presented as a black-box service

Figure 6.15: Subcomposition Example

where the example from Figure 6.14a is presented as a PCFG. The numbers in the

brackets show how many times the composition has been used. The subcomposition

shown in Figure 6.14a is assigned the chunk nonterminal (Ch C.2), which can later

be advertised in the system as a black-box service.

Once the subcompositions are found, the probabilities of alternative subcom-

positions can be found by the merge operator in PCFG inference. As aforemen-

tioned, merge operator basically combines the rules of two nonterminals into a new

nonterminal, and replaces the occurrences of both these nonterminals with the newly

constructed nonterminal. During the PCFG construction, this operator combines

only nonterminals that are the subcompositions of the same service. Consider the

125

example in Figure 6.15. In this case, two frequent subcompositions for the service

C.2 are combined into a new nonterminal, which can be provided later to the end-

user as a single black-box service. The probabilities of the rules are of course directly

related to how many times each has been used in the training data.

The advantage of the process of finding subcompositions and the alternatives

for such subcompositions are two-fold. First, the efficiency of composing services

improves. Being able to detect efficient compositions from previous requests for

services (hence never directly composing them) saves processing time. Second, the

service space is reduced because certain elementary services which are used only in

frequent subcompositions can be removed and treated as separate entities.

6.2.2.2 Advantage of the PCFG-based Service Composition Learning in

Sensor Networks

An example in Figure 6.16 illustrates why training a PCFG on service com-

positions yields better results than the weighted interactions of Kiciman et al. [50].

In the figure, rectangles represent services and the circles represent the sensor nodes

while the links between the circles represent the logical communication connections.

In the example, the service C1 uses two types of services to receive its required in-

puts: an instance of A, and an instance of B, each indexed to distinguish between

their different instances. In this sample network, if A1 and B1, or A2 and B2 are

chosen together, then their data flows meet at two nodes (Node 5 and Node 6, re-

spectively), causing congestion. Hence, the efficient compositions use either A1 and

B2, or A2 and B1 together to provide the inputs to C1. PCFG will store and utilize

this pattern. However, approach similar to [50] that stores the edge weights will

assign equal usage probabilities to A1, A2, B1 and B2. Consequently, the usage of

pair (A1, B2) has the same probability (0.25) as of pair (A2, B2) even though the

latter causes the congestion, while the former does not.

The remedy proposed by Kiciman [50], is to use the list of other components

that are called by a component. Although this remedy works for the given example,

it fails with minimal extension of the example shown in Figure 6.17 where services

A2 and B1 are able to utilize the services D1 or D2 and E1 or E2, respectively.

126

Node_1

A1
Node_2

B 1

Node_3

A2

Node_4

B 2

Node_5 Node_6

Node_7

C 1

After Learning Period

Manually Built Compositions

C (A ,B) - Half of the Time1 2 1

C (A ,B) - Half of the Time1 1 2

No Congestion in Both Cases

Possible Compositions

PCFG Learned
START C (A ,B) (0.5) |1 1 2

C (A ,B) (0.5)1 2 1

Edge Weights

C
A

A

C
B

B

and

1

1

1

2

1

2

0.5

0.5

0.5

0.5

PCFG Edge Weights

C (A ,B) - (0.5)1 2 1

C (A ,B) - (0.5)1 1 2

No Congestion

C (A ,B) - (0.25)1 1 1
C (A ,B) - (0.25)1 1 2
C (A ,B) - (0.25)1 2 1
C (A ,B) - (0.25)1 2 2

- Congestion !!!

- Congestion !!!

Figure 6.16: An Example to Present the Advantage of the PCFG-based
Service Composition over Edge Weights

Since the call paths are only examined at a local level, the remedy will choose a

composition with A2 using E1 and B1 using D2 at the same time (hence causing

a congestion at Node 9, since their data flow routes intersect there). However, we

train PCFGs from entire compositions, so our method knows that in no efficient

composition E1 and D2 have ever been used together.

In the previous subsection, we have presented how the chunk and merge oper-

ators help with the discovery of subcompositions and the alternatives for a frequent

subcomposition. It can easily be argued that such a process will suffer from the same

127

Node_1

A1
Node_2

B 1

Node_3

A2

Node_4

B 2

Node_5 Node_6

Node_7

C 1

After Learning Period

Manually Built Compositions

C (A (E),B (D)) - 0.1661 2 1

C (A ,B) - 0.51 1 2

No Congestion in Any Cases

Possible Compositions

Node_9

Node_8
Node_10

Node_11

D1

Node_12

D2

Node_13

E 1

Node_14

E 2

1 1

C (A (E),B (D)) - 0.1661 2 2 1 1

C (A (E),B (D)) - 0.1661 2 2 1 2

PCFG Learned

START

Call Paths

C (A (E),B (D)) (0.166) |1 2 1

C (A ,B) (0.5)1 1 2

1 1

C (A (E),B (D)) (0.166) |1 2 2 1 1

C (A (E),B (D)) (0.166) |1 2 2 1 2

C A ,B (0.5)1 2 1

C A ,B (0.5)1 1 2

A E (0.333)2 1

A E (0.666)2 2

B D (0.666)1 1

B D (0.333)1 2

For C

For A

For B1

2

1

PCFG

C (A (E),B (D)) - 0.1661 2 1

C (A ,B) - 0.51 1 2

No Congestion

1 1

C (A (E),B (D)) - 0.1661 2 2 1 1

C (A (E),B (D)) - 0.1661 2 2 1 2

Call Paths

C (A (E),B (D)) - 0.1111 2 1

C (A ,B) - 0.51 1 2

1 1

C (A (E),B (D)) - 0.2221 2 2 1 1

C (A (E),B (D)) - 0.1111 2 2 1 2

C (A (E),B (D)) - 0.0555 - Congestion !!!1 2 1 1 2

Figure 6.17: An Example to Present the Advantage of the PCFG-based
Service Composition over Call Paths

myopic problem of creating suboptimal compositions from which the edge weights

and call paths methodology discussed above suffer. We hereby present that this

problem can be avoided by using an entropy-based scheme for applying these oper-

128

ators. Please note that the chunk operator as utilized in this domain finds only the

frequent subcompositions, hence has no generalizing effect, and will not create sub-

optimal compositions. However, doing the merge may cause such an effect, hence

should be used with great care. Let’s work with an example to illustrate this issue.

Suppose we have found n subcompositions for the same service S, which have

frequencies f1 . . . fn, and the sum of these frequencies is
∑n

i=1 fi = fsum. When

we combine all these alternative subcompositions into a single new subcomposition

nonterminal (by the merge operator), the probability for each subcomposition in

this nonterminal (i.e., the corresponding rule probability) becomes pi =
fi

fsum
. In

this setting, the total probability of a subcomposition being used in place of another

subcomposition (i.e. the probability of generalized usage) is:

n
∑

i=1

[(Probability of generating a case where i was used) ×

(Probability of using subcomposition other than i)]=

=
n
∑

i=1

pi(1− pi) =
n
∑

i=1

pi − p2i = 1−
n
∑

i=1

p2i .

This value is the total probability that the PCFG based service composition may

use subcomposition j 6= i when in reality i would be used if no generalization

had occurred. We want such generalization to have as low probability as possible,

hence
∑n

i=1 p
2
i to be as large as possible. This gives us a bound on which frequent

subcompositions are more desirable, and which merges are more beneficial to hold

generalization probabilities low while giving the advantage of providing black-box

services to the end-user. Basically, we want to find very frequent subcompositions,

but we also want subcomposition alternatives where one dominates the others in

terms of usage frequency (which increases the value of
∑n

i=1 p
2
i). We evaluate such

an approach in Section 6.2.3.

6.2.2.3 Utilization of PCFGs to Generate Compositions

After a PCFG is constructed from previous composition examples, the next

step is to utilize it to generate composition graphs (i.e. the graphs which denote

how services connect to each other in a composition). For this purpose, we propose

129

Possible Compositions

A.1 (B.1,C.2(D.3,E.3)) - Probability of 0.4
A.1 (B.1,C.2(D.4,E.5)) - Probability of 0.35
A.1 (B.1,C.2(D.5,E.4)) - Probability of 0.25

PCFG for Composing A.1

Start s_A.1 (s_B.1 , C.2) (1.0)
C.2 s_C.2 (s_D.3 , s_E.3) (0.4) |

s_C.2 (s_D.4 , s_E.5) (0.35) |
s_C.2 (s_D.5 , s_E.4) (0.25)

Available nodes: 1,2,4,5

Available services: A.1 , C.2 , D.4 , E.4 , D.5 , E.5

Available terminals: s_A.1 , s_C.2 , s_D.4 , s_E.4 , s_D.5 , s_E.5

Composition Generation via the PCFG

Start

s_A.1 (s_B.1 , C.2)

s_C.2 (s_D.3 , s_E.3) s_C.2 (s_D.4 , s_E.5) s_C.2 (s_D.5 , s_E.4)

Composition Failure due to Missing Terminals Chosen Composition due to 0.35 Probability Composition Succeeds but not Chosen due to Low Probability

Figure 6.18: An Example on How to Generate a Composition via the
PCFGs Given the Set of Available Services

the usage of a centralized scheme where the PCFG is held at a centralized decision

maker, where the list of available services are also kept. As it can be seen, the service

name together with the id of a sensor node on which it resides constitute a unique

terminal symbol for our PCFG. We furthermore assume that the high probability

rules represent the fact that certain composition schemes have been preferred over

others, hence denote a more efficient composition. We leave the PCFGs where rules

are labeled with performance values for future work.

The creation of a composition essentially involves generating a sentence from

the PCFG, hence is a modification to the Early-Stolcke parsing [17], [47], where the

productions with higher probability are kept, and the productions with unavailable

services are directly eliminated. In Figure 6.18, we give an example on how the

composition is generated at the centralized decision maker. In this example, there

are five nodes and five basic services (A, B, C, D and E). We denote an instance of a

service at a specific node with a dot, e.g. D.5 means an instance of service D residing

on node 5. Each such instance is made into a terminal in the presented grammar

with the ‘s ’ in front of it, to distinguish between terminals and nonterminals. As it

can be seen, although the composition with probability 0.4 is more desirable (due

to previous usage frequency, also represented in the grammar), we cannot create

it since node 3 and all of the services on it are unavailable, and the creation of

such composition from the grammar with the related terminals cannot complete.

Instead, the composition with 0.35 probability is selected. Please note that nodes

130

need to exchange messages to update the list of available nodes, as described in

Section 6.1. The benefit of using the PCFGs here are three-fold. First, we already

have the probabilities of use of each service in the past that represent the preference

for using them currently. Second, the exchange of messages between services with

low preferences can be eliminated. Finally, metadata information can be limited to

indication if a node is available; we do not need all input/output lists since we already

know the links between services. This is a significant reduction compared to an

input/output matching based automated composition method, hence improvement

of both communication overhead and security of composition construction.

6.2.3 Evaluation

In this section, we demonstrate two advantages of the PCFG based compo-

sition. First, we will show that by changing the lower bound on the generalizing

threshold (as defined in Section 6.2.2.2), the number of the composition alternatives

that are substituted in the created composition changes. More precisely, the lower

the generalizing threshold, the more likely it is that the optimal subcomposition

scheme will be replaced with another one. From that point of view, the methods of

Edge Weights and Call Paths can be seen as generalizing without any such thresh-

old. We present the effect of the value of generalizing threshold in comparison to

Call Paths methodology in which generalizing is a bit more suppressed in general.

We also evaluate how the PCFG based composition helps in reducing pro-

cessing during the composition creation, as compared to an automated composition

scheme from Section 6.1. We have already discussed how the identification of sub-

compositions creates black-box services for the end user. We evaluate how the

generalization threshold affects the faster composition (since the lower the general-

ization threshold, the more black-box services there are and the less time it takes

to compose the solution).

We start with the description of the simulation setting with an example ap-

plication and then we provide the described above evaluations for the PCFG based

composition on the output from this simulation.

131

s1
s2

s3

s4
s5

s6

s7
s8

s9

c1

c9 c10

c13 c14

c3 c4

c7 c8

c11 c12

c15 c16

c1

s1

Camera 1

Acoustic Sensor 1

c5

c2

c6

c1

Camera 1’s region
with four subregions

Figure 6.19: Simulation Application

6.2.3.1 Simulation Setting

For our evaluations, we have implemented a simulation as a simple version of

the application in Figure 6.13. See Figure 6.19 for a detailed presentation of this

scenario. We have a 5x5 grid where each 2x2 subgrid is in the range of a camera

sensor, hence covering an area of four grid rectangles. Each camera connects to

three acoustic sensors (one from each rectangle, hence no acoustic sensor is chosen

from one rectangle) to detect the location of a potential target. There are 16 2x2

subgrids, hence 16 cameras, and each subgrid rectangle (there are 25 of them) has

three acoustic sensors (75 in total) for cameras to choose from.

Each user request in our simulation is for 2 to 4 camera service’s composi-

tion, while the cameras have a preset probability for using each acoustic sensor in

each subregion. We have set the most likely acoustic sensor in a subregion with

probability between 0.85 and 0.95 (p1) for each camera (i.e., each camera separately

preassigns a likelihood to each acoustic sensor in each subregion). The other two

sensors are assigned probabilities from the remaining probability range (with total

probability of p2+p3=1-p1). We assume the processing cost for choosing an acoustic

132

START -> u_3_12 (M_c3 , M_c12) (0.005)

M_c3 -> c3 (s7 , s11 , s27) (0.26) |

c3 (s7 , s22 , s27) (0.23) |

c3 (s11 , s22 , s27) (0.21) |

c3 (s7 , s11 , s22) (0.30)

M_c12 -> c12 (s45 , s56 , s59) (0.31) |

c12 (s40 , s45 , s59) (0.22) |

c12 (s40 , s56 , s59) (0.22) |

c12 (s40 , s45 , s56) (0.25)

Figure 6.20: A Sample from the Constructed PCFGs

sensor in a subregion to be three units (i.e. we assume a selection process) for an

automated composition scheme. For the PCFG however, we take the number of

symbols seen at the first level from the START nonterminal, i.e. each black-box

service is only given a processing cost of one.

6.2.3.2 Results

In our simulations, we used 10 cases of the simulation scenario given in the

previous subsection. Each of these cases contains 1000 user requests, which chooses

2-4 camera services to compose. Later, we use the outputs of these simulations,

and generate PCFGs with our proposed method. We changed the allowance of

generalization for service’s subcomposition to be chosen as a black-box, as given

in Section 6.2.2.2. We have asserted in our experiments that each service should

occur at least 20 times in the training data to be chosen as a parameter to the

chunk or merge operator, regardless of its generalization threshold. This threshold

is application specific, and is kept constant in the experiments since it is not worth

representing a service as a black-box abstraction if it is barely used in the application.

A sample of the PCFG rules constructed from the output of our simulations

is presented in Figure 6.20. In the figure, the START rule produces a user request

from the cameras 3 (c3) and 12 (c12), i.e. u 3 12. This request uses the black-box

representations of camera services 3 and 12, which are represented as nonterminals

constructed by the merge operator as previously demonstrated (i.e. M c3 andM c12

where M represents the merge). Although the black-boxes include more rules in the

133

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

500

1000

1500

2000

2500

3000

Maximum Error Allowance

G
en

er
al

iz
at

io
n

A
ch

ie
ve

d
by

 P
C

F
G

Generalization of PCFG vs the Maximum Error while Merging Subcompositions

Figure 6.21: Generalization Results

exact output than presented here, we have shown the highest four, and normalized

them to reach a sum of probabilities equal to 1.0, again for presentational purposes.

In the rules, a camera service uses three acoustic sensors (s followed by the id, as

shown in Figure 6.19); this is represented as a string according to the composition

representation language (see Section 6.2.1). The number in parentheses following the

rule denotes rule’s usage probability (due to the composition frequencies) compared

to the other rules in the same nonterminal, as calculated from the training data.

Figure 6.21 presents the generalization achieved on the training data by vary-

ing the allowed generalization metric (1-generalization threshold). This metric can

be at most 1.0, meaning there are infinitely many rules each with probability going

to 0 (e.g. 1−
∑∞

i=1 p
2
i = 1). We present the results with different generalization al-

lowance in range [0.8, 1.0], since we have found out that there are no possible merges

until 0.83 (this can be observed from the figure since generalization is 0 until x-axis

is 0.83). The y-axis in the figure represents how many subcompositions in training

data would be substituted with an alternative one, and increases with the general-

ization allowance. The method of Call-Paths [50] is the point where the allowance

134

is 1.0 (i.e. all generalizations are allowed, hence every service subcomposition is

a black-box). The automated composition [119] is the one with the generalization

allowance of 0.0, hence results in the generalization of 0 (which is achieved by the

PCFG method until 0.83 generalization allowance).

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Maximum Error Allowance

P
ro

ce
ss

in
g

fo
r

C
om

po
si

tio
n

Processing for Composition Comparison of PCFG based Composition vs
Automated Service Composition for Varying Error Allowance during Subcomposition Merging

PCFG based Composition
Automated Composition

Figure 6.22: Processing Cost Results

In Figure 6.22, we provide the results showing the composition creation pro-

cessing cost improvements obtained by the PCFG based composition using black-

box service descriptions as a function of the generalization threshold. As mentioned

before, increased generalization threshold allow more mergess that combine more

alternative service subcompositions into a single nonterminal (black-box represen-

tation). We have assumed that the automated subcomposition chooses one of the

three acoustic sensors for each subregion when a camera service is activated, hence

brings a three-unit processing cost (for each acoustic service). In contrast, when the

PCFG creates a black-box representation for this camera service, the corresponding

cost incurred is just one-unit. The figure clearly shows that the increased gener-

alized threshold helps with lowering processing cost of composition. Without the

generalization (i.e., when generalization threshold is less or equal to 0.83 and all

135

merges are suppressed), the PCFG method works only through its rules, and hence

brings down the cost of choosing each camera or acoustic service to one (for acoustic

services, the automated composition incurs the cost of three-units since we assume

an evaluation of selection the best acoustic sensor among the three possible ones in

the given subregion). Furthermore, the method of Call-Paths [50] is represented by

the point where the x-axis has 1.0 allowance, hence every camera service is made

into a black-box representation of its subcomposition.

We have shown through the simulations that the PCFG based method achieves

lower processing cost for creating compositions than Call-Paths. We furthermore

demonstrated that the fine tuning of the application specific generalization threshold

can resolve a trade-off between processing cost and composition generalization, as

expected.

6.2.4 Related Work in Service Composition Learning

As already mentioned, we are not aware of any previous efforts on learning

the service compositions in sensor networks or web applications as an automated

composition generation method by learning from previous compositions. A similar

problem of learning in component based systems, however, has been widely studied

in systems recognizing the causes for system errors (see surveys in [161]-[163]). We

have already discussed an important work [50], in Sections 6.2.2 and 6.2.3, which

we also use for evaluating our approach. We now review similar studies within the

same domain.

The authors of [164] introduce Gingko, a mechanism which allows users to

correlate casual paths (the path between components that a message follows) with

the errors that occur within a system. Such correlation can be used to detect the

root cause of an error in the system. Another work [165] makes use of Decision

Trees in order to detect failures in a shopping site. The authors train a decision tree

on what types of user requests (i.e., interaction with services) cause a failure. C4.5

[166] algorithm is used for this purpose.

Principal Component Analysis (PCA) has been utilized in [167] to classify the

frequency of component interactions in internet services into normal and anomalous

136

behavior. Another significant work [168] makes use of variable length n-grams to

model call and return order between components in distributed systems. In our

opinion, such a method is not suitable for the service model since in services compo-

sition, concurrent services are called and return data at the same time (e.g. multiple

services providing different outputs to the same service at the same time).

Other related error detection techniques use user logs of the visited internet

pages [169], CPU-instructions and function-calls [170], and messaging between com-

ponents [171]. In sensor networks domain, [172] examines simple metrics on network

performance.

6.2.5 Conclusions and Future Work

In this section, we have presented our work on the utilization of PCFG model-

ing for service composition in sensor networks. We demonstrated how different com-

positions can be represented as strings, which are then used to construct a PCFG.

This PCFG can later be utilized to generate compositions at the centralized decision

maker, taking into account which services are currently active in the system. We

have discussed advantages of our scheme over previous such efforts, and presented

simulation results which evaluate how the cost and the generalization performance

of service composition is affected by parameter setting in our methodology.

We conclude that the PCFG modeling is an efficient way of gathering and

storing composition information; it provides manageable generalization in the con-

structed compositions, and generates a lower processing overhead compared to sys-

tems in which such composition structure is not held. Furthermore, we believe that

other domains, such as error detection in software, can also benefit from this ap-

proach. We leave this direction as future work, along with a PCFG modeling where

the rules are labeled with performance metrics. Moreover, we plan to do a more

detailed evaluation of this methodology, especially in network-based metrics such as

communication overhead.

137

6.3 Switch Options for Pervasive and Mobile Applications

This section aims to optimize selection of services in sensor networks and op-

erational mode switching in pervasive applications, and we present the usability of

switch options for this purpose. Switch options (for more details, see Chapter 10

in [177]) are a special form of real options that can be used to model the value

of keeping multiple alternatives available. This applies to valuing general process

flexibility, defined as the ability to switch among alternative inputs, as well as prod-

uct flexibility, which refers to the ability of manufacturing multiple products in

response to changing market demands. When switching costs are absent, exercising

the option affects only the current payoff but not any subsequent (switching) de-

cisions. We use switch options to dynamically adjust the efficient interconnection

of basic services to changing network conditions. We furthermore demonstrate the

switch options approach in a domestic pervasive security application. We describe

how false security-breach alarms can be prevented by cleverly switching between

secure/insecure modes with an expectation of gains/losses for this application.

An exposition of the theory of switching in virtual organization may be found

in [178]. Switch options have been applied to the management of different modes

of operation (e.g. ability to produce different materials according to market condi-

tions) for investments [179], [180]. The first of these two papers utilizes a stochastic

dynamic programming to encapsulate the value of flexibility to switch between the

modes. The second paper examines the option to change the quantity of resources

used for production in response to changes in the product demand.

The rest of this section goes as follows. We first describe our methodology for

the switch options, and explain how the value of various alternatives can be found.

We then evaluate the proposed methodology in two applications: (i) dynamic service

selection in sensor networks, and (ii) switching operational modes in a pervasive

security application.

e.g. switching among various types of fuel that a factory may use for its operation

138

6.3.1 Switch Options Methodology

Switch options constitute a promising modeling and decision making approach

for service and operation mode selections that are made during the pervasive appli-

cation’s operation, in the presence of volatile network and environmental conditions.

However, the application of this method requires a model for quantifying the value

of an alternative service or operating mode.

6.3.1.1 Quantifying the Value of a Selection:

The value of a selection can be measured by the difference between its benefits

and the costs incurred by its execution. In the case of service selection in sensor

networks, the benefits rely on Value of Information (VoI) that is application-specific

and depends on the importance, quality and security of a service’s output [181]. On

the other hand, costs of accessing a service include any energy spent in processing

and communication with the provider of the service, as well as the delay for the

transmission of the output that it provides. Hence, the value (V) of a service S is:

V (S) = Vinf(S)− α(t)Es(S)− β(t)D(S) , (6.1)

where Vinf represents the VoI of the output that S produces, Es represents the energy

that is spent by this service, and D is the time it takes for the output of S to reach

the requesting service. α(t) and β(t) act as unifying parameters for the different

units of the above components. They are also application specific and describe the

relative importance of energy and delay to the application at a specific point t in

time. For example, if the application becomes time-critical, the β value will increase

to penalize the service instances with high delay. Similarly, for services with low

energy left in the sensor on which they are implemented, the α value will increase.

Furthermore it is entirely possible that the information value (Vinf(S)), energy spent

(Es(S)) and the delay (D(S)) vary during the operation; hence they are also time

dependent, although this is not explicitly shown in the equation. In this work we

are dealing with a simplified, linear valuation model but other valuation techniques

can also be applied, a task that we leave for future work. Furthermore, in the case of

switch options in other domains, different types of costs are more relevant. We will

139

discuss these in more detail for the application of switching options in the pervasive

security applications.

6.3.1.2 Switch Options Modeling

The value of being able to switch to different operating modes or actions during

the development of a project is the extra value that can be gained once the switch

is exercised. For example, for two operating modes A and B, of which the former

is more valuable at the beginning of the project, the extra value of keeping B as

an alternative, as long as there are no switching costs, is VOption =
∑tn

t=t0
VA→B(t),

where VA→B(t) is the expected value of the extra gain from using B instead of A

when market conditions suggest so, and time series t0 . . . tn denotes the times at

which the switch was made. Of course, this value is obtained only if choosing B is

expected to be more beneficial than keeping A, otherwise the switch will not occur.

The above approach can readily be applied to sensor service selection or perva-

sive applications. However, it becomes apparent that the network and environmental

conditions that drive the switching decisions should be assessed before any selection

of sensor service instances or operating modes can take place. We name this task

the test phase, which is followed by the actual selection and execution phases. These

phases are discussed in the remainder of this section.

Test Phase: once the possible sensor services or the operation modes that provide

the necessary functionality are detected, the test phase executes all alternative se-

lections either all at once or one after the other, to estimate the costs that they incur

and their value of information. The test run lasts for a set period of time, the length

of which determines the cost of performing this evaluation. Often, the conditions for

switching between the instances may require that the possible selection alternatives

are run all at once.

The cost of a selection is determined during the test phase by: (i) accumu-

lating the energy consumption and delay for processing and communication of the

information packets that are relayed along the path that connects the service and

the user, for the domain of service selection, and (ii) accumulating monetary and

manual labor costs, for other application domains (such as modes of operation in

140

a security application). The value of information that is provided by a selection

is also assessed during the test phase, thus the value V (S) (as in Eq. 6.1) can be

computed.

From the above discussion, it is apparent that the test phase (and our proposed

method based on switch options described herein) cannot be applied in cases when

the sensor service, or a mode of operation, is time-critical and short-lived. For

example, there is no opportunity to conduct a test phase when one needs to monitor

the break-out of a fire in a forest. On the other hand, for long-lived sensor tasks

such as temperature or soil contamination monitoring, the costs incurred by the test

period are reclaimed by the future gains of switching from one selection to another.

The gains from different selections are estimated using the measurements of

the test phase as follows. Let C(t) be a random variable representing network and

environmental conditions at time t that define VoI of options A and B at time t,

denoted by VA(C(t)) and VB(C(t)), respectively. Also let I be the random variable

representing switching signal to switch from option A to B (I(t) = 1) and from B to

A (I(t) = −1), or no action (I(t) = 0), at time t. Most often, the switching signal

is a function of C(t), and its quality might depend on which options are active, as

only currently active sensors can provide input to the computation of function I.

Furthermore, let T denote the duration of the test phase. During that time, we

make a series of n measurements of C(ti) and compute I(ti), where ti = i× T/n, as

well as VA(C(ti)) and VB(C(ti)). Based on these measurements and computations,

we create the piecewise linear approximations vA(t) and vB(t) of VA(C(ti)) and

VB(C(ti)) for t in (0, T). Likewise, we create a piecewise constant function s(t)

(stating currently active option, either A (s(t) = 0) or B (s(t) = 1)) defined for

ti < t ≤ ti+1 as 0 if i = 0 (we always start with option A active), or, for i > 0,

s(ti) = min(max(I(ti) + s(ti−1), 0), 1), where min and max are used merely to keep

the result 0 or 1. Then, the benefit per time unit of having an option to switch from

A to B is given by the following integral:

V (A → B) =
∫ T

t=0

s(t)(vB(t)− vA(t))

T
dt . (6.2)

If amortization cost per time unit of having option B (which includes cost of switch-

141

ing between options as well as cost of measurements necessary to generate switching

signals) is lower than V (A → B), option B is worth having. If cAB and cBA denote

the switching costs from A to B and B to A, respectively, then the switching cost

between options A to B normalized over time T is given by the following sum:

c(A → B) =
n
∑

i=2

I(ti)

2T
[(1 + I(ti))cAB − (1− I(ti))cBA] .

Indeed, when I(ti) = 1, we switch from option A to option B, and when I(ti) = −1,

we switch back, so at those times we need to add the cost of switching, and I(ti)(1+

I(ti))/2 yields 1 if and only if when I(ti) = 1, and similarly −I(ti)(1−I(ti))/2 yields

1 if and only if when I(ti) = −1.

Finally, if the cost of measurements of switching signals at time t is m(t), then

the cost of measurements per time unit is:

m(A → B) =
n
∑

i=1

m(ti)

T
.

Often, m(t) is independent of t, so m(t) = mc and then m(A → B) = n×mc

T
.

The above mathematical model captures a direct relationship between the

signals used for switching decisions and the value of the switch option. The test

phase is required for calibrating the values of switching option and of switching

signals. Better these signals are, larger percentage of the benefit of switching to

the best solution are. Furthermore, the cost of amortization and achievable benefits

of switching determine whether the alternative services or modes of operation are

worth keeping.

Execution Phase: once the feasible choices for a set of selections are narrowed

down based on the lowest estimated cost from the test phase, then the chosen sub-

set of possible selections are executed and the gains are computed according to Eq.

6.1, during the execution phase. Once conditions for replacement of services (or

operating modes) are specified, they can be monitored continuously as the opera-

tion continues. Moreover, monitoring of the environmental phenomena may offer

information about the kinds of events requiring switching. For example, this could

142

be evident in the case of high humidity being detected during the test phase that

affects one service more than another. Knowledge of such a result can be used to

switch automatically when humidity increases in the monitored area. Note that

such effects depend on the environment in which the sensor network is deployed,

making the test phase essential. Furthermore, to be able to switch between services

or operation modes, it is not necessary to run all alternatives during the execution

phase. The environmental conditions that are necessary to decide on switching are

monitored separately (which constitutes a cost as given in the above mathematical

model). The switching points however are learned in the test phase, where multiple

options are run together to see which is more advantageous at which condition.

6.3.2 Switch Options for Service Selection

A Service-oriented Architecture (SOA) approach [182] to wireless sensor net-

works abstracts them into a set of software services, each of which provides a well-

defined functionality and might be deployed on one or more sensor nodes. Service

selection is based on the assessment of the processing and communication costs that

are incurred when a service instantiation in a given sensor node is chosen as part of

a composition graph. There were previous methods proposed for making an efficient

choice of operator for general distributed computations (e.g. [183]-[186]). However,

these methods have not taken into account the operational uncertainty arising in

sensor network deployments, which directly affects any estimates of service costs.

Operational uncertainty in sensor networks arises from several causes, including (a)

a lack of accurate knowledge of the computational and communication resources of

sensor nodes and their residual energy that gets depleted over time, (b) changes

in the environmental conditions in which nodes are operating, such as background

noise that affects the quality of sensor readings (e.g. audio signals), and (c) the

changes in the Value of Information (VoI) that the output of a composite service

carries for a particular user at a given point in time. We propose the use of switch

options to deal with such uncertainty in sensor services.

To demonstrate the application of switching options theory to the domain of

sensor service selection, we first provide a real world scenario, and then present the

143

Figure 6.23: A Parking Garage Example to Explain Switch Options
Methodology

benefits of the switch options methodology on a simulation based on this scenario.

6.3.2.1 Real-World Scenario

As an example real world application of switch options to service selection,

we chose a covered parking garage monitoring network given in Figure 6.23. There

are two types of services in this network: (i) a microphone service of readings

from an acoustic sensor to monitor the sound volume, and (ii) a camera service

that provides views of the area covered by the microphone monitors. We consider

a pervasive monitoring application during which automated service selection may

choose to utilize one or both of the services in monitoring.

An illustration of expected test period results for this application is shown

in Figure 6.24a. The test period measures how external factors affect the VoI and

benefits produced by each service. Clearly, the camera view for an area will produce

the best results, but running a camera is a costly operation (due to its energy

consumption and maintenance costs) in mid-term applications, so the benefit of

144

(a) Service Value Fluctuations for Two Types of Monitoring Service

(b) Value of Switching Option During the Test Period

Figure 6.24: Expected Test Period Results for Parking Garage Monitor-
ing

using this service is low when no events are happening in the garage. Figure 6.24a

also shows that when the VoI of the microphone service drops below a certain

level, there is loud noise in the garage, and the VoI provided by the camera service

increases. Of course, loud noise often signifies an important event in which case

the VoI (the first factor in the above equation) increases even more, giving the

camera service a higher benefit than normal. On the other hand, the microphone

gives faulty measurements when the noise level is high. This example shows how

the switch option balances the Value of Information (VoI) provided by the services

with the cost incurred by it.

145

Once the costs of running multiple services in each area during the test pe-

riod have been incurred, the service selection mechanism can switch between the

microphone and the camera service, and can do it with increased efficiency based on

information about the conditions that are beneficial for switching gathered during

test period. In the long run, the costs of the service test phase is compensated by

clever switching actions, which it enables with the information it acquires. Figure

6.24b shows the advantage that could have been gained had switching information

been available during the test period shown in Figure 6.24a. The area difference

between the curves of Figure 6.24b and the curve of the microphone service (since it

is best on average) in Figure 6.24a quantifies the extra value of the switching option.

6.3.2.2 Evaluations

We conduct a simulation-based evaluation of our service selection method via

switch options, which is based on the parking garage example described in Section

6.3.2.1. Our goal is to assess the relative gains in service value obtained by using

this new approach compared to the naive method of selecting a service based on its

current value, as well as the optimal approach that always has complete knowledge

of the value of services in a noisy environment. The setup that we simulate includes

a microphone and a camera monitoring service for one area of the parking lot; events

triggering system responses are set up to investigate how the service value of the

microphone or camera changes. A test period was established to measure the switch

points according to the sound levels in the environment. These levels are hence as-

sociated with the signaling function I(t), as given in Section 6.3.1.2. Here, C(t) (i.e.

the environmental conditions) is the sound level in the system at time t. This can

be measured by both the microphone and the camera service, since we assume the

camera service also encapsulates a microphone; hence the conditions of the environ-

ment can be measured by the chosen service during execution phase. This allows

for the chosen service signal that it should be switched with the other alternative

during execution. In another application with different environmental indicators,

extra effort may be needed to monitor conditions which signal the switching of ser-

vice selections. The cost of this extra effort was also mentioned in Section 6.3.1.2,

146

Table 6.3: Sound Change Properties for Service Selection Experiment
Type Inter-arrival (secs) Sound Level Length of Period (secs)

Event exp(mean=100) 200+[40 x (Γ(k=90,θ=1/3))] 20 x N (µ=1,σ2=0.1)
→ av: 100 → min: 200, av: 1400 → av: 20

Non-Event exp(mean=40) 200+[40 x (Γ(k=10,θ=0.5))] 20 x N (µ=1,σ2=0.1)]
→ av: 40 → min: 200, av: 400 → av: 20

which may make keeping the option infeasible if too costly. While we try to make

reasonable assumptions regarding the evolution of noise level in our target environ-

ment as well as the characteristics of the process that generates events of interest,

our goal is not to exhaustively study all possible statistical distributions and their

parameters for these components, but rather gain a qualitative understanding of

the performance of these strategies. A realistic assessment of the service selection

approaches can only be performed in a deployed sensor network, a task that we leave

as future work.

Two experiments have been simulated that differ in the magnitude of the

noise level that is assumed in the environment. In our first experiment, the results

of which are shown in Figures 6.25 and 6.26, the simulation time is fixed at 100,000

seconds, and the ratio of the test period to the remainder of the simulation time

is varied among the runs (we ran 10 cases of 100,000 minutes for each test period

length), within the range of values that is depicted on the x axis in the figures. We

introduce two types of sound level changes to the environment, on top of the ground

noise sound level, which is constant with a value of 200. The first type represents

an increase in the environmental noise without any actual event of interest taking

place (for example no car driving in or out of the parking lot but outside noise due

to nearby construction is increasing). The second type of sound level change that we

simulate represents a significant event of interest that occurred in the environment,

for example detection of car movement in the parking garage. The properties of

these sound level change types are given in Table 6.3.

As discussed above, the value of information (VoI) consists of two components:

one that is subjective and describes the utility as assessed by the user, and another

one that denotes the objective quality of information (QoI) that data carries. VoI

is then represented as the product of these two components. For our experiments,

147

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Ratio of Test Period to Rest of Simulation (x 0.001)

S
er

vi
ce

 V
al

ue
 G

ai
n

fr
om

 S
tr

at
eg

y

Comparison of Service Value Gain between Switch Options and Other Strategies

Switch Options
Optimal Case
Microphone Only
Camera Only

Figure 6.25: Comparison of Switch Options in Experiment 1 for All Test
Period Lengths

a constant QoI of 0.9 is assumed for the camera sensor, while the microphone has

a QoI that changes according to 1− (SoundLevel
1000.0

)2, which accounts for loss of quality

with high sounds. The utility for the camera sensor service is set to 1.0 upon

occurrence of an event, while for the microphone it is constant at 0.2 when no

event of interest occurs. Regarding cost, we set it to 0.45 and 0.15 for the camera

and the acoustic sensor respectively, which includes both energy and delay as per

Equation 6.1. The value V (S) of each service is the computed by the simulator as

V (S) = utility ×QoI − cost for each time unit.

In Figure 6.25, the results for service values corresponding to different lengths

of the test phase are given for four strategies: the switch options approach, two

strategies that select either the camera or the microphone service exclusively, and

the optimal approach that has complete and accurate knowledge of the VoI and

the costs. Evidently, choosing either the microphone or the camera service provides

less value than switching between them during the system’s run time. This is to be

expected, since a system that does not make use of the test phase does not know if

and when it should switch between alternatives. Such decisions in our experiments

are made via the expected value by each service at a given sound level. Although

148

0 5 10 15 20 25 30
1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

4

Ratio of Test Period to Rest of Simulation (x 0.001)

S
er

vi
ce

 V
al

ue
 G

ai
n

fr
om

 S
w

itc
h

O
pt

io
ns

Service Value Gain for Switch Options between 0.0001 and 0.03 Test Period Ratio

Figure 6.26: Gain from Switch Options in Experiment 1 for Test Period
Lengths up to 3% of the Rest of Simulation Period

the test phase is indeed useful, as it gets longer, the value gains decrease due to the

excess cost of running (and testing) both services. Figure 6.26 shows the results of

a closer look to the varying lengths of the test phase to see the value that peaks the

gain for this setting (via comparing them with shorter ones for the same experiment).

From the graph, it appears that when the length is too short (for example only 0.1%

of the actual system run time), the gain in value is rather small. This is due to the

switching options approach not being able to determine when to make a switch, as

a consequence of limited experience with events.

The second simulation experiment that we ran, named Noisy Parking Garage,

differs from the previous one in that the magnitude of the first type of sounds level

changes (i.e. those that correspond to changes in the ambient noise level of the

environment but not to events of interest) exhibit a much higher average. The

interarrival times and the other parameters listed previously are kept the same,

but now each such sound level change follows a gamma distribution with k = 40

and θ = 0.5 (thus mean is 20 and variance 10), which is again multiplied by 40

and added to ground noise sound level of 200 as before. In this configuration, the

ambient sound changes are of high magnitude, and due to the decrease in QoI of

149

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5
x 10

4

Ratio of Test Period to Rest of Simulation (x 0.001)

S
er

vi
ce

 V
al

ue
 G

ai
n

fr
om

 S
tr

at
eg

y

Comparison of Service Value Gain between Switch Options and Other Strategies

Switch Options
Optimal Case
Microphone Only
Camera Only

Figure 6.27: Comparison of Switch Options in Experiment 2 for All Test
Period Lengths

the microphone service, the total gain from using it is expected to be lower. The

results of this simulation setup are presented in Figures 6.27 and 6.28.

As it can be seen from Figure 6.27, the value from the microphone service de-

creases significantly compared to the previous experiment, while that of the camera

service remains the same. This is due to the the higher ambient noise levels of the

parking lot that adversely affect the quality of acoustic measurements obtained from

the microphone, which decreases its QoI. The overall value obtained through the

switch options strategy is similarly decreased, with its peak level becoming lower

and the rate of decay higher as the length of the test period increases. Similar results

are observed for the value of the optimal service selection.

Finally, in Figure 6.28, we examine the service value obtained through the

switch options strategy by ranging the test period length from 0.1% to 3% of the

rest of the simulation time. The peak value of the switch option strategy is reached

when the test period is set to 0.3% of the overall simulation time, at which point

the best tradeoff between discerning switching points and keeping costs minimal is

achieved for the given simulation settings.

150

0 5 10 15 20 25 30
0.5

1

1.5

2
x 10

4

Ratio of Test Period to Rest of Simulation (x 0.001)

S
er

vi
ce

 V
al

ue
 G

ai
n

fr
om

 S
w

itc
h

O
pt

io
ns

Service Value Gain for Switch Options between 0.0001 and 0.03 Test Period Ratio

Figure 6.28: Gain from Switch Options in Experiment 2 for Test Period
Lengths up to 3% of the Rest of Simulation Period

6.3.3 Switch Options for Pervasive Security Applications

In this section, we consider another application of switch options, the selection

of operation modes in a pervasive security system. A house, a gallery or any other

secure space where certain valuables are stored are often monitored by a security

firm which charges a certain amount of money per time for its services when the

security system is in alarm mode. We assume that in addition to the per time fee,

the security firm charges also switch costs, a fixed cost fee charged when the alarm is

raised and the response crew is dispatched to the monitored area. This is a perfect

case for applying switch options because being able to set good indicator values of

when to alarm the security firm is crucial to protecting valuables with acceptable

cost of protection. False alarms cost money for security charges, but missed security

breaches result in the loss of valuables. This increases the importance of test period

during which the alarm indicators are learned.

We assume a security application where a microphone is used to measure sound

levels in the system. The changes of sound levels in the monitored area indicate a

potential security problem (e.g. theft). We simulated the security application for

100,000 minutes, and again introduce two types of sound level changes to the system:

151

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

Ratio of Test Period to Rest of Simulation (x 0.001)

M
on

et
ar

y
Lo

ss
 fo

r
th

e
S

tr
at

eg
y

($
)

Comparison of Monetary Loss between Switch Options and Other Strategies

Always Safe Mode
Always Alarm Mode
Switch Options
Optimal Case

Figure 6.29: Monetary Loss for All Test Period Lengths

(i) security breach, and (ii) safe situation whose properties are detailed in Table 6.4.

Table 6.4: Security Application Sound Change Parameters
Type Inter-arrival (min) Sound Level Length of Period (min)

Security 600+exp(mean=600) 200+[40 x (Γ(k=90,θ=1/3))] 5+[35 x N (µ=1,σ2=0.1)]
Breach → min: 600, av: 1200 → min: 200, av: 1400 → min: 5, av: 40
Safe 300+exp(mean=300) 200+[40 x (Γ(k=20,θ=0.5))] 5+[15 x N (µ=1,σ2=0.1)]
Event → min: 300, av: 600 → min: 200, av: 600 → min: 5, av: 20

The costs of running the alarm operating mode is set in our simulation as

follows. According to the sound level in the area as an indicator, the security firm

charges $50 for switching to alarm mode (i.e. initial service fee), and $1 for each

minute that it checks upon the monitored area. Furthermore, we have set the total

value of valuables in the monitored area to be $200,000; hence, the losses amount

to this value if the switch to alarm mode does not happen during a security breach.

These values stay the same during the test phase, meaning that for each minute

spent in test phase, the security firm charges $1 to learn the parameters for the

indicators (i.e. the sound levels that indicate a security breach, hence the switching

to alarm mode is necessary).

The results of the experiment are presented in Figures 6.29 and 6.30. We

152

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

0.5

1

1.5

2

2.5
x 10

5

Ratio of Test Period to Rest of Simulation (x 0.001)

M
on

et
ar

y
Lo

ss
 fo

r
th

e
S

w
itc

h
O

pt
io

ns
 (

$)

Monetary Loss for Switch Options between 0.0001 and 0.2 Test Period Ratio

Figure 6.30: Monetary Loss for Test Period Lengths up to 20% of the
Rest of Simulation Period

varied the length of the test period to see how it affects the cost of lost valuables

(i.e. being less-than-necessary cautious to switch to alarm mode) and the payment

to the security firm (i.e. being too cautious). We ran 10 cases of 100,000 minutes for

each test period length. Figure 6.29 shows that initially losses are very high because

the learning of necessary indicator values (i.e. sound values that require a switch)

has not been completed yet. However, once the test period length reaches about 3%

of the total simulation time (as shown in Figure 6.30 that is the close-up of Figure

6.29), it again starts to increase with the length of test period. This is because

the security firm is paid $1 for each minute of the test period and this cost is not

recovered by the slightly better tuned indicator values. Hence, there is an apparent

trade-off between the costs of the test period and the gains received by learning

when to switch. Furthermore, Figure 6.30 shows the step stair shaped cost curve

and the sudden drops of losses happening after a sequence of the same monetary

losses for different test period lengths. Those appear because certain lengths of the

test period were necessary to learn important switching cases for the rest of the

simulation.

153

Figures also show that staying always in the safe mode causes the loss of

valuables ($200,000 average monetary loss), while keeping always the alarm mode on

incurs the payment of $100,000 to the security firm. The switch options may result in

higher losses than alarm always on strategy when the very short test periods causes

the loss of valuables. However, with longer test periods, the switch option strategy

yields losses very-close to optimal (lowest loss line in Figure 6.29 corresponding to

the optimal switch decision, therefore unattainable in reality) results are achieved.

6.3.4 Conclusions and Future Work

In this section, we presented the application of switch options to dynamically

compose complex services by optimally interconnecting basic services, and changing

modes of operation in pervasive security applications. The work presented here

addresses the issues of uncertainty arising in service activation and execution costs

in a sensor network, as well as clever and efficient selection of operation modes for

pervasive applications to reduce monetary costs.

Future work directions include improvement of our method via online detection

of switch points, which is expected to decrease the costs incurred by running services

simultaneously. Furthermore it would be interesting to implement the proposed

method in a real testbed, and evaluate the advantages of our approach in a more

realistic sensor or security application.

CHAPTER 7

Conclusions and Future Work

In this thesis, we have proposed using Probabilistic Context Free Grammars (PCFG)

modeling for data produced during the operation of a network. We first presented

our proposed algorithm for training a PCFG given the training data; this algorithm

is more efficient than previously proposed ones. Then, we applied the algorithm to

many domains, including event recognition in sensor networks, mobility modeling

and mobility trace generation in mobile networks, social network behavior modeling,

and service composition learning in service oriented sensor networks. We discussed

for each of these applications the related work, and compared our methodology in

terms of its representative power and complexity cost to other methods proposed

in the literature. Based on these results, we conclude that PCFG modeling is a

compact and efficient way of discovering and preserving data properties and using

them later to regenerate the data, or provide classification ability in monitoring

applications.

Independent of our PCFG-based modeling efforts, we also presented our con-

tributions to metric-based service composition in sensor networks, as well as to

application of switch options in pervasive sensor applications.

We have already discussed the future work for the subjects so far examined,

in their respective sections separately. However, we would like to add here a more

general discussion on future directions that can be based on our work.

The first interesting direction of future work is to further improve the PCFG

construction method and to expand the applications of the PCFG modeling method

to other domains, where appropriate. As aforementioned in Section 2, a pre-

processing on the data to discover frequent (and meaningful) substrings, as well

as the branching (applying multiple advantageous operations) during grammar con-

struction are two directions we would like to pursue in the future to improve the

grammar inference algorithm.

As a second direction of future work, we believe there are plenty of contribu-

154

155

tion opportunities for service computing in sensor networks. A new approach we

have very recently started working on is policy-based service composition. Policies

describe the rules which the service communications (e.g. which service can provide

information to which others etc.) and composition schemes must adhere to, and

clever design of service compositions compliant to the given policies is important

for efficient processing of service requests. We aim to come up with methods that

efficiently deal with distributed access to policy rules as well as their enforcement

on service selections.

As a last direction of future work, we would like to further investigate market

mechanisms, which is an emerging topic in networking applications. We would very

much like to see the real world implementation of our current efforts in the switch

options mechanism for pervasive applications.

LITERATURE CITED

[1] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules
between sets of items in large databases,” in Proc. ACM SIGMOD Int. Conf.
Management of Data, 1993, pp. 207−216.

[2] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current
status and future directions,” Data Mining and Knowl. Discovery, vol. 15, no.
1, pp. 55−86, Aug. 2007.

[3] B. Goethals, “Survey on frequent pattern mining,” Helsinki Inst. for Inf.
Technol., Helsinki, Finland, Tech. Rep., 2003.

[4] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in
large databases,” in Proc. Int. Conf. Very Large Data Bases, 1994, pp.
487−499.

[5] M. J. Zaki, “Scalable algorithms for association mining,” IEEE Trans. Knowl.
Data Eng., vol. 12, pp. 372−390, May 2000.

[6] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,” Data Mining and
Knowl. Discovery, vol. 8, no. 1, pp. 53−87, Jan. 2004.

[7] M. J. Zaki, “SPADE: An efficient algorithm for mining frequent sequences,”
Mach. Learning J., vol. 42, no. 1, pp. 31−60, Jan. 2001.

[8] V. Guralnik and G. Karypis, “Parallel tree-projection-based sequence mining
algorithms,” Parallel Comput. J., vol. 30, no. 4, pp. 443−472, Apr. 2004.

[9] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, vol. 14, no.
3, pp. 249−260, Sep. 1995.

[10] M. Eirinaki and M. Vazirgiannis, “Web mining for web personalization,”
ACM Trans. Internet Technol., vol. 3, no. 1, pp. 1−27, Feb. 2003.

[11] M. Spiliopoulou, “Web usage mining for web site evaluation,” Commun.
ACM, vol. 43, no. 8, pp. 127−134, Aug. 2000.

[12] M. J. Zaki, C. D. Carothers, and B. K. Szymanski, “VOGUE: A variable order
hidden Markov model with duration based on frequent sequence mining,”
ACM Trans. Knowl. Discovery from Data, vol. 4, no. 1, pp. 1−31, Jan. 2010.

156

157

[13] A. Srivastava, S. Sural, and A. K. Majumdar, “Database intrusion detection
using weighted sequence mining,” J. Comput., vol. 1, no. 4, pp. 8−17, Jul.
2006.

[14] L. E. Baum, T. Petrie, G. Soules, and N. Weiss., “A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov
chains,” Ann. Math. Stat., vol. 41, no. 1, pp. 164−171, Feb. 1970.

[15] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. IT-13, pp.
260269, Apr. 1967.

[16] C. D. Manning and H. Schutze, Foundations of Statistical Natural Language
Processing. Cambridge, MA: MIT Press, 1999, pp. 381−407.

[17] A. Stolcke, “Bayesian learning of probabilistic language models,” Ph.D.
dissertation, Dept. Comput. Sci., Univ. California, Berkeley, 1994.

[18] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition,” Proc. IEEE, vol. 77, no.2, pp. 257−286, Feb. 1989.

[19] E. Charniak, C. Hendrickson, N. Jacobson, and M. Perkowitz, “Equations for
part-of-speech tagging,” in Proc. Nat. Conf. Artificial Intelligence, 1993, pp.
784−789.

[20] T. E. Starner and A. Pentland, “Visual recognition of American sign language
using hidden Markov models,” in Proc. Int. Workshop Automatic Face and
Gesture Recognition, 1995, pp. 189−194.

[21] L. Song, U. Deshpande, U. C. Kozat, D. Kotz, and R. Jain, “Predictability of
WLAN mobility and its effects on bandwidth provisioning,” in Proc. IEEE
INFOCOM, 2006, pp. 1−13.

[22] A. J. Nicholson and B. D. Noble, “BreadCrumbs: forecasting mobile
connectivity,” in Proc. ACM Annu. Int. Conf. Mobile Computing and
Networking, 2008, pp. 46−57.

[23] A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler, “Hidden
Markov models in computational biology: Applications to protein modeling,”
J. Molecular Biol., vol. 235, no. 5, pp. 1501−1531, Feb. 1994.

[24] S. R. Eddy, “Profile hidden Markov models,” Bioinformatics, vol. 14, no. 9,
pp. 755−763, Oct. 1998.

[25] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” J.
Mach. Learning Research, vol. 3, no.7, pp. 993−1022, Mar. 2003.

158

[26] T. Griffiths and M. Steyvers, “A probabilistic approach to semantic
representation,” in Proc. Annu. Conf. Cognitive Science Society, 2002, pp.
381−386.

[27] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” in Proc. Nat.
Academy of Sciences 101, 2004, pp. 5228−5235.

[28] T. P. Minka and J. Lafferty, “Expectation-propagation for the generative
aspect model,” in Proc. Uncertainty in Artificial Intelligence, 2002, pp.
352−359.

[29] L. Cao and L. Fei-Fei, “Spatially coherent Latent Topic Model for concurrent
segmentation and classification of objects and scenes,” in Proc. IEEE Int.
Conf. Computer Vision, 2007, pp. 1−8.

[30] K. Farrahi and D. Gatica-Perez, “Mining human location-routines using a
multi-level approach to topic modeling,” in Proc. IEEE Int. Conf. Social
Computing, 2010, pp. 446−451.

[31] Y. Wang and G. Mori, “Human action recognition by semi-latent topic
models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, pp. 1762−1774,
Oct. 2009.

[32] D. Xing and M. Girolami, “Employing latent Dirichlet allocation for fraud
detection in telecommunications,” Pattern Recognition Lett., vol. 28, no. 13,
pp. 1727−1734, Oct. 2007.

[33] I. Biro, J. Szabo, and A. Benczur, “Latent dirichlet allocation in web spam
filtering,” in Proc. Int. Workshop Adversarial Information Retrieval on the
Web, 2008, pp. 21−24.

[34] A. McCallum, A. Corrada-Emmanuel, and X. Wang, “Topic and role
discovery in social networks,” in Proc. Int. Joint Conf. Artificial Intelligence,
2005, pp. 786−791.

[35] K. Farrahi and D. Gatica-Perez, “What did you do today?: Discovering daily
routines from large-scale mobile data,” in Proc. ACM Int. Conf. Multimedia,
2008, pp. 849−852.

[36] E. Linstead, C. Lopes, and P. Baldi, “An application of Latent Dirichlet
Allocation to analyzing software evolution,” in Proc. IEEE Int. Conf.
Machine Learning and Applications, 2008, pp. 813−818.

[37] D. Jurafsky et al., “Using a stochastic context-free grammar as a language
model for speech recognition,” in Proc. Int. Conf. Acoustics, Speech, and
Signal Processing, 1995, pp. 189−192.

159

[38] B. Roark, “Probabilistic top-down parsing and language modeling,” Comput.
Linguistics, vol. 27, no. 2, pp. 249−276, Jun. 2001.

[39] Y. Sakakibara et al., “Stochastic context-free grammars for tRNA modeling,”
Nucleic Acids Research, vol. 22, no. 23, pp. 5112−5120, Nov. 1994.

[40] Y. Sakakibara, “Grammatical inference in bioinformatics,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 27, pp. 1051−1062, Jul. 2005.

[41] D. Lymberopoulos, A. S. Ogale, A. Savvides, and Y. Aloimonos, “A sensory
grammar for inferring behaviors in sensor networks,” in Proc. Int. Conf.
Information Processing in Sensor Networks, 2006, pp. 251−259.

[42] T. Teixeira, E. Culurciello, J. H. Park, D. Lymberopoulos, and A. Savvides,
“Address-event imagers for sensor networks: evaluation and modeling,” in
Proc. Int. Conf. Information Processing in Sensor Networks, 2006, pp.
458−466.

[43] T. Teixeira, D. Lymberopoulos, E. Culurciello, Y. Aloimonos, and A.
Savvides, “A lightweight camera sensor network operating on symbolic
information,” presented at the Int. Workshop Distributed Smart Cameras,
Boulder, CO, 2006.

[44] D. Lymberopoulos, A. Barton-Sweeney, T. Teixeira, and A. Savvides, “An
easy to program sensor system for parsing human activities,” Yale Univ., New
Haven, CT, Tech. Rep. 090601, 2006.

[45] H. Mitomi, F. Fujiwara, M. Yamamoto, and S. Taisuke, “Bayesian
classification of a human custom based on stochastic context-free grammar,”
Syst. and Comput. in Japan, vol. 38, no. 9, pp. 52−62, Aug. 2007.

[46] Y. A. Ivanov and A. F Bobick, “Recognition of visual activities and
interactions by stochastic parsing,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 22, pp. 852−872, Aug. 2000.

[47] J. Earley, “An efficient context-free parsing algorithm,” Commun. ACM, vol.
13, no. 2, pp. 94−102, Feb. 1970.

[48] D. Moore and I. Essa, “Recognizing multitasked activities from video using
stochastic context-free grammar,” in Proc. AAAI−02, 2002, pp. 770−776.

[49] K. M. Kitani, Y. Sato, and A. Sugimoto, “Deleted interpolation using a
hierarchical Bayesian grammar network for recognizing human activity,” in
Proc. Int. Conf. Computer Communications and Networks, 2005, pp.
239−246.

160

[50] E. Kiciman and A. Fox, “Detecting application-level failures in
component-based internet services,” IEEE Trans. Neural Netw., vol. 16, pp.
1027−1041, Sep. 2005.

[51] S. C. Geyik and B. K. Szymanski, “Event recognition in sensor networks by
means of grammatical inference,” in Proc. IEEE INFOCOM, 2009, pp.
900−908.

[52] K. Lari and S. J. Young, “The estimation of stochastic context-free grammars
using the inside-outside algorithm,” Comput. Speech and Language, vol. 4, no.
1, pp. 35−56, Jan. 1990.

[53] J. Baker, “Trainable grammars for speech recognition,” in Proc. Spring Conf.
Acoustical Society of America, 1979, pp. 547−550.

[54] A. Stolcke and S. Omohundro, “Inducing probabilistic grammars by Bayesian
model merging,” in Proc. Int. Colloq. Grammatical Inference and
Applications, 1994, pp. 106−118.

[55] S. F. Chen, “Building probabilistic models for natural language,” Ph.D.
dissertation, Dept. Comput. Sci., Harvard Univ., Cambridge, MA, 1996.

[56] G. S. Brodal, R. B. Lyngso, A. Ostlin, and C. N. S. Pedersen, “Solving the
string statistics problem in time O(n log n),” in Proc. ICALP, 2002, pp.
728−739.

[57] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks,” IEEE Commun. Mag., vol. 40, no. 8 , pp. 102−114 , Aug.
2002.

[58] O. Amft, C. Lombriser, T. Stiefmeier, and G. Troster, “Recognition of user
activity sequences using distributed event detection,” in Proc. European Conf.
Smart Sensing and Context, 2007, pp. 126−141.

[59] M. Li, Y. Liu, and L. Chen, “Nonthreshold-based event detection for 3D
environment monitoring in sensor networks,” IEEE Trans. Knowl. Data Eng.,
vol. 20, pp. 1699−1711, Dec. 2008.

[60] S. Hongeng, R. Nevatia, and F. Bremond, “Video-based event recognition:
Activity representation and probabilistic recognition methods,” Comput.
Vision and Image Understanding, vol. 96, no. 2, pp. 129−162, Nov. 2004.

[61] M. Marin-Perianu, C. Lombriser, O. Amft, P. Havinga, and G. Troster,
“Distributed activity recognition with fuzzy-enabled wireless sensor
networks,” in Proc. IEEE Int. Conf. Distributed Computing in Sensor
Systems, 2008, pp. 296−313.

161

[62] S. D. Tran and L. S. Davis, “Event modeling and recognition using Markov
logic networks,” in Proc. European Conf. Computer Vision, 2008, pp.
610−623.

[63] M. Richardson and P. Domingos, “Markov logic networks,” Mach. Learning,
vol. 62, no. 1, pp. 107−136, Feb. 2006.

[64] A. Y. Yang, R. Jafari, S. S. Sastry, and R. Bajcsy, “Distributed recognition of
human actions using wearable motion sensor networks,” J. Ambient Intell.
and Smart Environments, vol. 1, no. 2, pp. 103−115, Apr. 2009.

[65] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in
time-sequential images using hidden Markov model,” in Proc. CVPR, 1992,
pp. 379−385.

[66] M. Brand, “The ”Inverse Hollywood Problem”: From video to scripts and
storyboards via causal analysis,” in Proc. AAAI/IAAI, 1997, pp. 132−137.

[67] N. M. Oliver, B. Rosario, and A. P. Pentland, “A Bayesian computer vision
system for modeling human interactions,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 22, pp. 831−843, Aug. 2000.

[68] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden Markov models for
complex action recognition,” in Proc. CVPR, 1997, pp. 994−999.

[69] S. C. Geyik, E. Bulut, and B. K. Szymanski, “PCFG based synthetic mobility
trace generation,” in Proc. IEEE Globecom, 2010, pp. 1−5.

[70] D. B. Johnson, D. A. Maltz, and J. Broch, “The dynamic source routing
protocol for multihop wireless ad hoc networks,” in Ad Hoc Networking. C. E.
Perkins, Ed. Boston, MA: Addison-Wesley, 2001, pp. 139−172.

[71] European Telecommun. Standards Inst., “Selection procedures for the choice
of radio transmission technologies of the UMTS (UMTS 30.03 version 3.2.0),”
European Telecommun. Standards Inst., Sophia Antipolis, France, Tech. Rep.
101 112 V3.2.0, 1998.

[72] S. Ahmed, G. C. Karmakar, and J. Kamruzzaman, “An environment-aware
mobility model for wireless ad hoc network,” Elsevier Comput. Netw., vol. 54,
no. 9, pp. 1470−1489, May 2010.

[73] L. Harfouche, S. Boumerdassi, and E. Renault, “Towards a social mobility
model,” in Proc. IEEE PIMRC, 2009, pp. 2876−2880.

[74] L. Hu and L. Dittmann, “Heterogeneous community-based mobility model for
human opportunistic network,” in Proc. IEEE WiMob, 2009, pp. 465−470.

162

[75] R. Calegari, M. Musolesi, F. Raimondi, and C. Mascolo, “CTG: A
connectivity trace generator for testing the performance of opportunistic
mobile systems,” in Proc. ESEC/FSE, 2007, pp. 415−424.

[76] N. Frangiadakis, M. Kyriakakos, S. Hadjiefthymiades, and L. Merakos,
“Realistic mobility pattern generator: design and application in path
prediction algorithm evaluation,” in Proc. IEEE Int. Symp. Personal, Indoor
and Mobile Radio Communications, 2002, pp. 765−769.

[77] F. K. Karnadi, Z. H. Mo, and K. Lan, “Rapid generation of realistic mobility
models for VANET,” in Proc. IEEE Wireless Communications and
Networking Conf., 2007, pp. 2506−2511.

[78] D. S. Tan, S. Zhou, J. Ho, J. Mehta, and H. Tanabe, “Design and evaluation
of an individually simulated mobility model in wireless ad hoc networks,” in
Proc. Communication Networks and Distributed Systems Modeling and
Simulation Conf., 2002, pp. 1−8.

[79] Y. Chang and H. Liao, “EMM: An event-driven mobility model for generating
movements of large numbers of mobile nodes,” Simulation Modelling Practice
and Theory, vol. 13, no. 4, pp. 335−355, Jun. 2005.

[80] D. Bhattacharjee, A. Rao, C. Shah, M. Shah, and A. Helmy, “Empirical
modeling of campus-wide pedestrian mobility observations on the USC
campus,” in Proc. Vehicular Technology Conf., 2004, pp. 2887−2891.

[81] I. Stepanov, J. Hahner, C. Becker, J. Tian, and K. Rothermel, “A meta-model
and framework for user mobility in mobile networks,” in Proc. IEEE Int.
Conf. Networks, 2003, pp. 231−238.

[82] M. Kim, D. Kotz, and S. Kim, “Extracting a mobility model from real user
traces,” in Proc. IEEE INFOCOM, 2006, pp. 1−13.

[83] C. Tuduce and T. Gross, “A mobility model based on WLAN traces and its
validation,” in Proc. IEEE INFOCOM, 2005, pp. 664−674.

[84] W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling time-variant
user mobility in wireless mobile networks,” in Proc. IEEE INFOCOM, 2007,
pp. 758−766.

[85] K. Maeda, A. Uchiyama, T. Umedu, H. Yamaguchi, K. Yasumoto, and T.
Higashino, “Urban pedestrian mobility for mobile wireless network
simulation,” Ad Hoc Netw., vol. 7, no. 1, pp. 153−170, Jan. 2009.

[86] S. Gunasekaran and N. Nagarajan, “An improved realistic group mobility
model for MANET based on unified relationship matrix,” in Proc. IEEE
IACC, 2009, pp. 1270−1274.

163

[87] J. Koberstein, H. Peters, and N. Luttenberger, “Graph-based mobility model
for urban areas fueled with real world datasets,” in Proc. Simutools Conf.,
2008, pp. 1−8.

[88] D. Ashbrook and T. Starner, “Using GPS to learn significant locations and
predict movement across multiple users,” J. Pers. and Ubiquitous Comput.,
vol. 7, no. 5, pp. 275−286, Oct. 2003.

[89] L. Song and D. Kotz, “Evaluating location predictors with extensive wi-fi
mobility data,” in Proc. IEEE INFOCOM, 2004, pp. 1414−1424.

[90] P. Jacquet, W. Szpankowski, and I. Apostol, “A universal predictor based on
pattern matching,” IEEE Trans. Inf. Theory, vol. 48, pp. 1462−1472, Jun.
2002.

[91] J. Cleary and W. Teahan, “Unbounded length contexts for PPM,” Comput.
J., vol. 40, no. 2−3, pp. 67−75, Mar. 1997.

[92] A. Bhattacharya and S. K. Das, “LeZi-update: An information-theoretic
approach to track mobile users in PCS networks,” ACM/Kluwer Wireless
Netw., vol. 8, no. 2−3, pp. 121−135, Mar. 2002.

[93] K. Gopalratnam and D. J. Cook, “Online sequential prediction via
incremental parsing: The active LeZi algorithm,” IEEE Intell. Syst., vol. 22,
no. 1, pp. 52−58, Jan. 2007.

[94] M. Sipser, Introduction to the Theory of Computation. Boston, MA: PWS
Publishing, 2006, pp. 115−123.

[95] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and H. Zhang, “Study of a
bus-based disruption tolerant network: Mobility modeling and impact on
routing,” in Proc. ACM Annu. Int. Conf. Mobile Computing and Networking,
2007, pp. 195−206.

[96] M. Piorkowski, N. Sarafijanovoc-Djukic, and M. Grossglauser, “A
parsimonious model of mobile partitioned networks with clustering,” in Proc.
Int. Conf. Communication Systems and Networks, 2009, pp. 1−10.

[97] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications. New York, NY: Cambridge Univ Press, 1994.

[98] S. C. Geyik, J. Xie, and B. Szymanski, “Behavior modeling with probabilistic
context free grammars,” in Proc. Int. Conf. Information Fusion, 2010, pp.
1−8.

[99] F. Pianesi, M. Zancanaro, E. Not, C. Leonardi, V. Falcon, and B. Lepri,
“Multimodal support to group dynamics,” Pers. and Ubiquitous Comput., vol.
12, no. 3, pp. 181−195, Jan. 2008.

164

[100] R. Stiefelhagen, X. Chen, and J. Yang, “Capturing interactions in Meetings
with omnidirectional cameras,” Int. J. Distance Edu. Technol., vol. 3, no. 3,
pp. 34−47, Jul. 2005.

[101] K. Otsuka, H. Sawada, and J. Yamato, “Automatic inference of cross-modal
nonverbal interactions in multiparty conversations,” in Proc. ICMI, 2007, pp.
255−262.

[102] D. Hillard, M. Ostendorf, and E. Shriberg, “Detection of agreement vs.
disagreement in meetings: Training with unlabeled data,” in Proc.
HLT−NAACL, 2003, pp. 34−36.

[103] A. Pentland and A. Madan, “Perception of social interest,” presented at the
IEEE Int. Conf. Computer Vision, Workshop Modeling People and Human
Interaction, Beijing, China, 2005.

[104] I. McCowan, D. Gatica-Perez, S. Bengio, G. Lathoud, M. Barnard, and D.
Zhang, “Automatic analysis of multimodal group actions in meetings,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 27, pp. 305−317, Mar. 2005.

[105] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan, “Modeling
individual and group actions in meetings with layered HMMs,” IEEE Trans.
Multimedia, vol. 8, pp. 509−520, Jun. 2006.

[106] A. Dielmann and S. Renals, “Automatic meeting segmentation using
dynamic Bayesian networks,” IEEE Trans. Multimedia, vol. 9, pp. 25−36,
Jan. 2007.

[107] S. Banerjee and A. I. Rudnicky, “Using simple speech-based features to
detect the state of a meeting and the roles of the meeting participants,” in
Proc. Int. Conf. Spoken Language Processing, 2004, pp. 2189−2192.

[108] P. Dai, H. Di, L. Dong, L. Tao, and G. Xu, “Group interaction analysis in
dynamic context,” IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 39, pp.
34−42, Feb. 2009.

[109] A. Vinciarelli, “Role recognition in broadcast news using Bernoulli
distributions,” in Proc. IEEE Int. Conf. Multimedia and Expo, 2007, pp.
1551−1554.

[110] C. Weng, W. Chu, and J. Wu, “Movie analysis based on roles social
network,” in Proc. IEEE Int. Conf. Multimedia and Expo, 2007, pp.
1403−1406.

[111] N. P. Garg, S. Favre, H. Salamin, D. Z. Hakkani-Tur, and A. Vinciarelli,
“Role recognition for meeting participants: An approach based on lexical
information and social network analysis,” in Proc. ACM Multimedia, 2008,
pp. 693−696.

165

[112] M. Zancanaro, B. Lepri, and F. Pianesi, “Automatic detection of group
functional roles in face to face interactions,” in Proc. Int. Conf. Multimodal
Interfaces, 2006, pp. 28−34.

[113] W. Dong, B. Lepri, A. Cappelletti, A. Pentland, F. Pianesi, and M.
Zancanaro, “Using the influence model to recognize functional roles in
meetings,” in Proc. Int. Conf. Multimodal Interfaces, 2007, pp. 271−278.

[114] S. Basu, T. Choudhury, B. Clarkson, and A. Pentland, “Learning human
interactions with the influence model,” MIT Media Lab., Cambridge, MA,
Tech. Rep. #539, 2001.

[115] S. Basu, T. Choudhury, B. Clarkson, and A. Pentland, “Towards measuring
human interactions in conversational settings,” presented at the IEEE CVPR
Int. Workshop Cues in Communication, Kauai, HI, 2001.

[116] R. Rienks and D. Heylen, “Dominance detection in meetings using easily
obtainable features,” in Proc. Workshop Machine Learning for Multimodal
Interaction, 2006, pp. 78−86.

[117] R. Rienks, D. Zhang, D. Gatica-Perez, and W. Post, “Detection and
application of influence rankings in small group meetings,” in Proc. Int. Conf.
Multimodal Interfaces, 2006, pp. 257−264.

[118] D. O. Olguin, B. N. Waber, T. Kim, A. Mohan, K. Ara, and A. Pentland,
“Sensible organizations: Technology and methodology for automatically
measuring organizational behavior,” IEEE Trans. Syst. Man Cybern. B,
Cybern., vol. 39, pp. 43−55, Feb. 2009.

[119] S. C. Geyik, B. K. Szymanski, P. Zerfos, and D. Verma, “Dynamic
composition of services in sensor networks,” in Proc. IEEE Int. Conf. Services
Computing, 2010, pp. 242−249.

[120] S. Dustdar and W. Schreiner, “A survey of web services composition,” J.
Web and Grid Services, vol. 1, no. 1, pp. 1−30, Aug. 2005.

[121] R. Hull and J. Su, “Tools for composite web services: A short overview,”
ACM SIGMOD Rec., vol. 34, no. 2, pp. 86−95, Jun. 2005.

[122] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “A framework for
QoS-aware binding and re-binding of composite web services,” J. Syst. and
Softw., vol. 81, no. 10, pp. 1754−1769, Oct. 2008.

[123] D. Ardagna and B. Pernici, “Adaptive service composition in flexible
processes,” IEEE Trans. Softw. Eng., vol. 33, no. 6, pp. 369−384, Jun. 2007.

166

[124] M. Klusch, A. Gerber, and M. Schmidt, “Semantic web service composition
planning with OWLS-Xplan,” in Proc. AAAI Fall Symp. Semantic Web and
Agents, 2005, pp. 55−62.

[125] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “An approach for
QoS-aware service composition based on genetic algorithms,” in Proc. Genetic
and Evolutionary Computation Conf., 2005, pp. 1069−1075.

[126] P. Bartalos, “Effective automatic dynamic semantic web service
composition,” Inf. Sci. and Technol. Bulletin ACM Slovakia, vol. 3, no. 1, pp.
61−72, Mar. 2011.

[127] F. Lécué and N. Mehandjiev, “Seeking quality of web service composition in
a semantic dimension,” IEEE Trans. Knowl. Data Eng., vol. 23, pp. 942−959,
Jun. 2011.

[128] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H.
Chang, “Qos-aware middleware for web services composition,” IEEE Trans.
Softw. Eng., vol. 30, pp. 311−327, May 2004.

[129] Z. M. Mao, R. H. Katz, and E. A. Brewer, “Fault-tolerant, scalable,
wide-area internet service composition,” Univ. California, Berkeley, Tech.
Rep. UCB/CSD−01−1129, 2001.

[130] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The
nesC language: A holistic approach to networked embedded systems,” in Proc.
ACM SIGPLAN, 2003, pp. 1−11.

[131] B. Greenstein, E. Kohler, and D. Estrin, “A sensor network application
construction kit (SNACK),” in Proc. ACM SenSys, 2004, pp. 69−80.

[132] G. Mainland, G. Morrisett, and M. Welsh, “Flask: Staged functional
programming for sensor networks,” in Proc. ACM SIGPLAN, 2008, pp.
335−346.

[133] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden,
“Wishbone: Profile-based partitioning for sensornet applications,” in Proc.
USENIX Symp. Networked Systems Design and Implementation, 2009, pp.
395−408.

[134] K. Whitehouse, F. Zhao, and J. Liu, “Semantic streams: A framework for
composable semantic interpretation of sensor data,” in Proc. EWSN, 2006,
pp. 5−20.

[135] J. Bronsted, K. M. Hansen, and M. Ingstrup, “A survey of service
composition mechanisms in ubiquitous computing,” in Proc. UbiComp
Workshop, 2007, pp. 87−92.

167

[136] T. Andrews et al. (2003, May). Business process execution language for web
services (BPEL). [Online]. Available:
http://www.ibm.com/developerworks/library/specification/ws-bpel/.

[137] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. (2001, Mar.).
Web services description language (WSDL). [Online]. Available:
http://www.w3.org/TR/wsdl.

[138] D. Martin et al. (2003, Nov.). OWL-S: Semantic markup for web services.
[Online]. Available:
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

[139] D. Box et al. (2007, Apr.). Simple object access protocol (SOAP). [Online].
Available: http://www.w3.org/TR/soap/.

[140] J. Ibbotson, S. Chapman, and B.K. Szymanski, “The case for an agile SOA,”
presented at the Annu. Conf. ITA, Adelphi, MD, 2007.

[141] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of
Computer Computations. R. E. Miller and J. W. Thatcher, Eds. New York,
NY: Plenum Press, 1972, pp. 85−103.

[142] U. Feige, “A threshold of ln n for approximating set cover,” J. ACM, vol. 45,
no. 4, pp. 634−652, Jul. 1998.

[143] M. P. Papazoglou and W. van den Heuvel, “Service oriented architectures:
Approaches, technologies and research issues,” VLDB J., vol. 16, no. 3, pp.
389−415, Jul. 2007.

[144] R. Sugihara and R. K. Gupta, “Programming models for sensor networks: A
survey,” ACM Trans. Sensor Netw., vol. 4, no. 2, pp. 1−29, Mar. 2008.

[145] L. Mottola and G. P. Picco, “Programming wireless sensor networks:
Fundamental concepts and state of the art,” ACM Comput. Surveys, vol. 43,
no. 3, pp. 1−51, Apr. 2011.

[146] J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and K. Kochut, “Quality of
service for workflows and web service processes,” J. Web Semantics, vol. 1,
no. 3, pp. 281−308, Apr. 2004.

[147] S. Kona, A. Bansal, and G. Gupta, “Automatic composition of semantic web
services,” in Proc. IEEE Int. Conf. Web Services, 2007, pp. 150−158.

[148] A. V. Riabov, E. Bouillet, M. D. Feblowitz, Z. Liu, and A. Ranganathan,
“Wishful search: Interactive composition of data mashups,” in Proc. ACM
Int. Conf. World Wide Web, 2008, pp. 775−784.

168

[149] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN planning for web
service composition using SHOP2,” Web Semantics: Sci., Services and Agents
the World Wide Web, vol. 1, no. 4, pp. 377−396, Oct. 2004.

[150] E. Sirin, B. Parsia, and J. Hendler, “Filtering and selecting semantic web
services with interactive composition techniques,” IEEE Intell. Syst., vol. 19,
no. 4, pp. 42−49, Jul. 2004.

[151] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic composition of web
services using semantic descriptions,” in Proc. Web Services: Modeling,
Architecture and Infrastructure Workshop in ICEIS, 2003, pp. 17−24.

[152] D. van Thanh and I. Jorstad, “A service-oriented architecture framework for
mobile services,” in Proc. IEEE Telecommunications, 2005, pp. 65−70.

[153] W. Tan, Y. Fan, M. Zhou, and Z. Tian, “Data-driven service composition in
enterprise SOA solutions: A Petri Net approach,” IEEE Trans. Autom. Sci.
Eng., vol. 7, pp. 686−694, Jul. 2010.

[154] X. Wang, J. Wang, Z. Zheng, Y. Xu, and M. Yang, “Service composition in
service-oriented wireless sensor networks with persistent queries,” in Proc.
CCNC, 2009, pp. 1−5.

[155] J. W. Branch et al., “Towards middleware components for distributed
actuator coordination,” presented at the Workshop Embedded Networked
Sensors, Boston, MA, 2006.

[156] A. Bamis, N. Singh, and A. Savvides, “An architecture for dynamic
reconfiguration of data flows in sensor networks,” Yale Univ., New Haven,
CT, Tech. Rep., 2007.

[157] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic, “EnviroSuite: An
environmentally immersive programming framework for sensor networks,”
ACM Trans. Embedded Comput. Syst., vol. 5, no. 3, pp. 543−576, Aug. 2006.

[158] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The abstract task
graph: A methodology for architecture-independent programming of
networked sensor systems,” in Proc. Workshop End-to-end,
Sense-and-Respond Systems, Applications and Services, 2005, pp. 19−24.

[159] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, “Middleware to
support sensor network applications,” IEEE Network, vol. 18, no. 1, pp. 6−14,
Jan. 2004.

[160] J. Wright et al., “A model-driven approach to the construction, composition
and analysis of services on sensor networks,” presented at the Annu. Conf.
ITA, London, UK, 2010.

169

[161] L. M. Silva, “Comparing error detection techniques for web applications: An
experimental study,” in Proc. IEEE Int. Symp. Network Computing and
Applications, 2008, pp. 144−151.

[162] L. J. Fulop et al., “Survey on complex event processing and predictive
analytics,” Univ. Szeged, Szeged, Hungary, Tech. Rep., 2010.

[163] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction
methods,” ACM Comput. Surveys, vol. 42, no. 3, pp. 1−42, Mar. 2010.

[164] Z. Zhang et al., “Gingko: Correlating causal paths in distributed systems,”
in Proc. IFIP Int. Conf. Network and Parallel Computing - Workshops, 2007,
pp. 762−767.

[165] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer, “Failure diagnosis
using decision trees,” in Proc. Int. Conf. Autonomic Computing, 2004, pp.
36−43.

[166] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers, 1993.

[167] L. Wu, L. Cheng, X. Qiu, and Y. Qiao, “A statistical approach to detect
application-level failures in internet services,” in Proc. IEEE Int. Conf. Fuzzy
Systems and Knowledge Discovery, 2009, pp. 155−159.

[168] G. Jiang, H. Chen, C. Ungureanu, and K. Yoshihira, “Multiresolution
abnormal trace detection using varied-length n-grams and automata,” IEEE
Trans. Syst. Man Cybern. C, Appl. Rev., vol. 37, pp. 86−97, Jan. 2007.

[169] P. Bodik et al., “Combining visualization and statistical analysis to improve
operator confidence and efficiency for failure detection and localization,” in
Proc. Int. Conf. Autonomic Computing, 2005, pp. 89−100.

[170] M. P. Kasick, R. Gandhi, and P. Narasimhan, “Behavior-based problem
localization for parallel file systems,” in Proc. HotDep, 2010, pp. 1−13.

[171] E. Hirota et al., “Multilayer failure detection method for network services
based on distributed components,” in Proc. IEEE/IFIP Network Operations
and Management Symp., 2010, pp. 365−372.

[172] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin,
“Sympathy for the sensor network debugger,” in Proc. Int. Conf. Embedded
Networked Sensor Systems, 2005, pp. 255−267.

[173] B. K. Szymanski, S. Y. Shah, S. Geyik, S. Das, M. Chhabra, and P. Zerfos,
“Market mechanisms for value of information driven resource allocation in
sensor networks,” in Proc. IEEE Int. Percom Workshop Information Quality
and Quality Service for Pervasive Computing, 2011, pp. 62−67.

170

[174] S. Geyik, B. Szymanski, P. Zerfos, and A. Mowshowitz, “Sensor service
selection through switch options,” in Proc. IEEE Int. Conf. Service
Computing, 2011, pp. 717−724.

[175] S. C. Geyik, S. Y. Shah, B. K. Szymanski, S. Das, and P. Zerfos, “Market
mechanisms for resource allocation in pervasive sensor applications,” Elsevier
Pervasive Mobile Comput. J., vol. 8, no. 3, pp. 346−357, Jun. 2012.

[176] S. Geyik, E. Bulut, and B. Szymanski, “Utilizing PCFGs for modeling and
learning service compositions in sensor networks,” in Proc. IEEE Int. Conf.
Service Computing, 2012 (In Print).

[177] E. S. Schwartz and L. Trigeorgis, Real Options and Investment under
Uncertainty: Classical Readings and Recent Contributions. Cambridge, MA:
MIT Press, 2001, pp. 179−198.

[178] A. Mowshowitz, Virtual Organization: Toward a Theory of Social
Transformation Stimulated by Information Technology. Westport, CT:
Quorum Books, 2002, pp. 23−84.

[179] N. Kulatilaka, “Valuing the flexibility of flexible manufacturing systems,”
IEEE Trans. Eng. Manag., vol. 35, pp. 250−257, Nov. 1988.

[180] J. M. Harrison and J. A. Van Mieghem, “Multi-resource investment
strategies: Operational hedging under demand uncertainty,” European J.
Operational Research, vol. 113, no. 1, pp. 17−29, Feb. 1999.

[181] A. Mowshowitz, “On the market value of information commodities: III.
Demand price,” J. Amer. Soc. for Inf. Sci., vol. 43, no. 3, pp. 242−248, Apr.
1992.

[182] J. Ibbotson et al., “Sensors as a service oriented architecture: Middleware for
sensor networks,” in Proc. IEEE Int. Conf. Intelligent Environments, 2010,
pp. 209−214.

[183] S. Kalasapur, M. Kumar, and B. A. Shirazi, “Dynamic service composition
in pervasive computing,” IEEE Trans. Parallel Distrib. Syst., vol. 18, pp.
907−918, Jul. 2007.

[184] E. Park and H. Shin, “Reconfigurable service composition and categorization
for power-aware mobile computing,” IEEE Trans. Parallel Distrib. Syst., vol.
19, pp. 1553−1564, Nov. 2008.

[185] T. Repantis, Y. Drougas, and V. Kalogeraki, “Adaptive component
composition and load balancing for distributed stream processing
applications,” Peer-to-Peer Netw. and Appl., vol. 2, no. 1, pp. 60−74, Mar.
2009.

171

[186] M. Alrifai and T. Risse, “Combining global optimization with local selection
for efficient QoS-aware service composition,” in Proc. ACM Int. Conf. World
Wide Web, 2009, pp. 881−890.

