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ABSTRACT

The ability of a network to synchronize can change drastically when time delays are

introduced. Nonzero time delays impose a limitation on the strength/frequency of

communication regarding the synchronizability of the network. When synchroniza-

tion is possible, there is a fundamental limit on how well the network can synchro-

nize, even in the most optimal circumstances. These fundamental properties are

apparent even in the most basic case of uniform time delays in stochastic, linearly-

coupled synchronization problems. This basic model can be expanded to include

the richer behavior of networks with multiple delays. Non-uniform time delays can

arise when there are multiple sources of delay, e.g. the time to transmit and the

time to process information. In this particular two-delay case, the primary limita-

tion on network synchronization does not come from restrictions in the transmission

of a node’s state to its neighbors; rather it depends on the ability for each node

to process and respond to the information about itself in the context of its local

environment. Furthermore, given a network’s structure, there are optimal delays

for which the network remains synchronizable for longer processing delays. As a

result, synchronization is not always improved – and in some cases can be totally

destroyed – by minimizing the transmission delays. For special cases, one can also

study the scaling function that quantifies synchronization, showing the limitation of

synchronization in a noisy network.

viii



CHAPTER 1

Introduction 1

Synchronization describes phenomena that involve a collection of agents coordinat-

ing among themselves to produce a global goal. The synchronization of a system

emerges from the cumulative efforts of the individual entities, each regulating them-

selves based on what information they can gather of the system’s overall state from

neighbors. This information can be strongly distorted by noise, which prevents the

achievement of perfect global consensus, and the focus becomes how controlled or

wild the fluctuations tend to be about a steady state. A further obstacle to syn-

chronization is the incompleteness of the data that each individual can act upon.

There is no central director that guides the evolution of the system; rather each

individual node within a network responds according to the information that it can

gather from its immediate neighbors. (Although the goal is to understand such sys-

tem that lack centralized governance, it will be insightful to consider fully connected

systems, which exhibit some of the same critical behavior.) The final defining char-

acteristic to be considered here is a time delay between the state of the system and

an individual’s reaction. The categorization of temporal delays can in general be

split into two sources: from the transmission of state information between nodes

and from the processing of that information or the execution of the response at a

single node. The aim of this thesis is to explore and offer insight into the effects

of noise and delays on the dynamics of various network topologies. To this end, in

addition to the general theoretical results and numerical calculations, there will also

be examples of different network topologies to show the relevant implications.

Crucial aspects of the underlying theory of delays have been long established

in the context of macro-economic cycles as far back as 1935 [1, 2]. In such cases,

describing the complex network reduces to a single stochastic variable [3, 4, 5].

The core feature that the inclusion of time delay presents in these models is os-

1Portions of this chapter to appear in: D. Hunt, G. Korniss, B.K. Szymanski, “Network Syn-

chronization and Coordination in a Noisy Environment with Time Delays”, (in review).

1
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cillatory behavior, which under the appropriate conditions can be self-feeding and

cause instability. The recent interest in the application of time delays to networks

[6, 7, 8] offers fresh insights extending from these older results. Understanding the

dynamics across a complex network offers the possibility to optimize synchroniza-

tion [9, 10, 11, 12, 13]. The dynamics depend in part on the particular topology.

Not only which nodes are connected to which is important, but strengths of each

link can very, leading to weighted graphs [14, 15, 16]. All specific networks consid-

ered in this thesis are non-directional (two connected nodes communicate directly

back and forth to each other), but there have been studies into directed graphs

[6, 17, 18] and some general conclusions given here (e.g. in Section 3.9) can be

applied to such cases. Two common topologies to be considered often in this thesis

are the Barabási-Albert (BA) [19, 20] scale-free (SF) and the Erdős-Rényi (ER)

random graphs [21]. To understand the difference between these network types, it

is instructive to understand the artificial creation of such networks.

The degree distribution of BA networks is characterized by the exponential

γ so that the probability that a randomly chosen node i has degree ki follows

Prob(ki = x) ∼ x−γ. The BA networks implemented throughout the numerical

ensemble analyses fall within the γ = 3 family, set with a minimum degree of 3.

The construction process of such networks involved creating a fully-connected core

of nodes of this minimum degree. A new node is added by choosing 3 nodes within

the existing core to which the new node is connected. This augmentation is re-

peated until the desired system size is reached, yielding a network with average

degree ⟨k⟩ ≈ 6 (i.e. ⟨k⟩ → 6 as N → ∞). Using this algorithm results in a corre-

lated graph, in which higher degree nodes are likely to be connected to other higher

degree nodes, and lower degree nodes are likely to be connected to lower degree

nodes. One important feature to note is the existence of a central core of nodes of

high degree.

The degree distribution of ER networks is binomial, which in the limit of

large system size becomes Poisson [20, 21]. During the artificial construction, each

possible link between nodes is considered and a true connection is realized with

probability ⟨k⟩/(N − 1) (the factor of N − 1 appears because self-links are disal-
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lowed). To be comparable with BA networks, the implemented ER networks have

an average degree of 6. Because the algorithm does not ensure that the complete

set of nodes constitutes a single connected component, any instance with multiple

disjoint components is ignored, and a fresh trial is produced. Unlike BA networks,

ER networks do not typically have a central core of nodes.

1.1 Example Applications

Studying synchronization has many applications to a diverse array of disci-

plines, as it can be used to described a variety of states that can interact in a

network, e.g., pace, load, phase, or orientation. The following is a brief survey of

topics to illustrate the general applicability as well as giving examples to enhance

intuition (for alternative overviews, see [6, 9, 16, 22]).

Within a natural, ecological focus, time delays were introduced decades ago

into population dynamics [23] and consequently elaborated upon, e.g. for systems

with multiple predation levels [24]. A plethora of specific examples exist in ecology,

from chirping cicadas and flashing fireflies [25] to herding and flocking of animals

[26]. One specific instance of synchronization appears in bird flocks, where each

bird adjusts its velocity to match the others, a crucial process in accomplishing

such tasks as avoiding predators [27, 28]. Traders in the stock market benefit from

synchronizing well with other traders as everyone seeks to balance the risk and

reward in an uncertain environment [29]. Within a single organism, synchronization

describes bursting neurons [30] and the propagation of excitatory fronts [31, 32, 33]

in the brain. It also applies to postural sway [34, 35], and balancing a stick on one’s

finger [36, 37].

Shifting to artificial contexts, synchronization is important in controlling con-

gestion in communication networks [6, 15, 16, 38, 39]. Delays from round trip times

can lead to significant congestion on the internet [40]. Optimizing sychronization

in important for managing virtual time horizons for massively parallel [41, 42] and

distributed computing [43, 44]. Congestion control is of course also of interest in

vehicular traffic [45, 46] and synchronization becomes crucial especially when au-

tonomous vehicles are working cooperatively to stay in formation [47] or to carry
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out a task [39]. Technological applications utilize synchronization of coupled phase

oscillators [48] as described by the well-studied Kuramoto model [49]) applies to

flashing microfluidic arrays [50] and circuits comprised of optomechanical arrays

[51].

1.2 The General Model

For each node i in a network, assign a local scalar state variable hi. The two

competing influences that continuously contribute to the evolution of each state

variable are the noise ηi and the relaxational response to the node’s local neighbor-

hood. The response is linearly proportional to the difference between nodes i and j

as defined by Cij, where C is the coupling strength matrix. A local delay τ o that

comes from processing (cognitive) or execution, results in a lag in the information

of the state of the node itself and its neighbor, while the transmission delay τ tr only

affects the information received from the neighbor. Hence each node obeys a delay

differential equation of the form

∂thi(t) = −
∑
j

Cij[hi(t− τ oi )− hj(t− τ oi − τ trij )] + ηi(t) (1.1)

where the noise satisfies ⟨ηi(t)ηj(t′)⟩ = 2Dδijδ(t− t′), with D being the noise inten-

sity. The system is initialized in a perfectly synchronized state (hi(t) ≡ 0 for t ≤ 0)

with the noise becoming active at t = 0. Local delays are treated as an intrinsic

property of each individual node, so every term in the sum includes the same delay

(i.e. there is no j dependence). On the other hand, transmission delays may vary

depending on the properties of the node at the other end of the link, so that every

edge in the network can potentially have a unique delay. Setting ηi(t) = 0 for all

i and t, Eq. (1.1) becomes deterministic and reduces to a the network consensus

problem [6, 39]. In this context, the networked agents try to coordinate or reach an

agreement or balance regarding a certain quantity of interest.

A standard measure of synchronization, coordination, or consensus in a noisy
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environment is the width [15, 41]

⟨w2(t)⟩ =
⟨

1

N

N∑
i=1

[hi(t)− h̄(t)]2
⟩
, (1.2)

where h̄(t) = (1/N)
∑N

i=1 hi(t) is the global average of the local state variables and

⟨. . .⟩ denotes an ensemble average over the noise. A network is “synchronizable”

if it asymptotically reaches a steady state with a finite width, i.e. ⟨w(∞)⟩ < ∞.

When the network is well synchronized (or coordinated), the values hi for all nodes

are near the global mean h̄ and the width is small.

1.3 Coordination without Time Delays

In order to distinguish the effects of noise from those coming from time delays,

first consider the case of zero time delay. Explicitly, Eq. (1.1) takes the form

∂thi(t) = −
∑
j

Cij[hi(t)− hj(t)] + ηi(t) = −
∑
j

Γijhj(t) + ηi(t) (1.3)

where Γij = δij
∑

l Cil − Cij is the network Laplacian. Writing the system of dif-

ferential equations in relation to the network Laplacian is convenient, because it is

the eigenvectors and eigenmodes of this matrix that will define the dynamics of the

network. A special case of a Langevin equation, Eq. (1.3) describes an Edwards-

Wilkinson process [52]. Starting from a flat initial profile (hi(0) = 0 for all i) for

symmetric couplings, the width evolves as [53]

⟨w2(t)⟩ = D

N

N−1∑
k=1

(1− e−2λkt)

λk
, (1.4)

where λk, k = 0, 1, 2, . . . , N − 1, are the eigenvalues of the network Laplacian. Note

that measuring the local state variables hi from the mean h̄ in Eq. (1.2) removes

the singular contribution of λ0 = 0 (given that the network has a single connected

component) associated with the uniform mode from the sum in Eq. (1.4). Conse-

quently, the network is always synchronizable for any positive connection strengths
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with steady-state width

⟨w2(∞)⟩ = D

N

N−1∑
k=1

1

λk
. (1.5)

Clearly the larger contributions come from the modes with smaller eigenvalues.

In the limit of infinite network size, however, network ensembles with a vanish-

ing Laplacian spectral gap may become unsynchronizable, depending on the details

of the small-λ behavior of the density of eigenvalues [9, 15, 41]. This type of singular-

ity is common in purely spatial networks (in particular, in low dimensions) where the

relevant response functions and fluctuations diverge in the long-wavelength (small-

λ) limit [41, 54]. In complex networks [19, 20, 55, 56] these singularities are typically

suppressed as a result of sufficient amount of randomness in the connectivity pattern

generating a gap or “pseudo” gap. [10, 41, 57, 58, 59, 60].

As is also clear from Eq. (1.5), synchronization can be arbitrarily improved

in this case of no time delays, e.g., by uniformly increasing the coupling strength

by a factor of σ > 1 (corresponding to more frequent communication). Such a

re-weighting results in Cij → σCij (λk → σλk) and yields a width of

⟨w2(∞)⟩σ =
1

σ
⟨w2(∞)⟩σ=1 . (1.6)

The width is a monotonically decreasing function of σ; stronger effective coupling

σ leads to better synchronization. A divergence in the width only comes about as

the smallest eigenvalue vanishes, when the communication necessary to synchronize

is overcome by noise.
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Uniform Local Time Delays 2

Now that the effects of noise have been outlined in Section 1.3, let us turn our

attention to those of nonzero time delays. Consider the case with symmetric coupling

Cij = Cji when transmission delays are negligible (τ trij = 0) and local delays are

uniform (τ oi ≡ τ). Then Eq. (1.1) is governed by a single uniform time delay [61, 62]

∂thi(t) = −
N∑
j=1

Cij[hi(t− τ)− hj(t− τ)] + ηi(t) = −
N∑
j=1

Γijhj(t− τ) + ηi(t) . (2.1)

This equation has a similar form to that of Eq. (1.3) but with the inclusion a delay

τ . Since the delay is uniform, it is still possible to decompose the system into

eigenmodes by diagonalizing the Laplacian.

2.1 Steady-state Fluctuations for a Single-Variable Stochas-

tic Delay Equation

Before conducting the network analysis in this chapter and those following,

it is useful to outline the general theory of a single variable with time delay and

noise. It will be useful in understanding the underlying fluctuations of the system

in the cases where the network Laplacian is diagonalizable. For generality, consider

a single (linearized) stochastic variable h(t) with multiple time delays {τω}Ωω=1 and

noise, which obeys the linear first-order differential equation

∂th(t) = A0h(t) +
Ω∑

ω=1

Aωh(t− τω) + η(t) , (2.2)

2Portions of this chapter to appear in: D. Hunt, G. Korniss, B.K. Szymanski, “Network Syn-

chronization and Coordination in a Noisy Environment with Time Delays”, (in review).

7
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where ⟨η(t)η(t′)⟩ = 2Dδ(t− t′). A more suggestive form might be

∂th(t)− A0h(t)−
Ω∑

ω=1

Aωh(t− τω) = η(t− t′) , (2.3)

where the noise η(t) plays the specific role of the inhomogeneous part. The corre-

sponding Green’s funtion G(t, t′) satisfies

∂tG(t, t
′)− A0G(t, t

′)−
Ω∑

ω=1

AωG(t− τω, t
′) = δ(t− t′) , (2.4)

where the noise in Eq. (2.3) is replaced by δ(t− t′). A Laplace transform performs

the vital function of removing the heterogeneity of the arguments and turning them

into multiplicative factors. The general transform is defined h̃(s) =
∫∞
0
e−sth(t)dt,

with the individual terms transforming as

L[h(t)] = h̃(s)

L[∂th(t)] = sh̃(s)− h(t = 0) = sh̃(s)

L[h(t− τ)] = e−τsh̃(s) ,

L[δ(t− t′)] = e−st′

(2.5)

noting that h(t) = 0 for all t < 0. The transformed equation can then be written

sG̃(s)−A0G̃(s)−
Ω∑

ω=1

Aωe
−sτωG̃(s) =

(
s− A0 −

Ω∑
ω=1

Aωe
−sτω

)
G̃(s) = e−st′ . (2.6)

The characteristic polynomial g(s) associated with the homogeneous part of Eq.

(2.6) is given by

g(s) ≡ s− A0 −
Ω∑

ω=1

Aωe
−τωs = 0 . (2.7)

Efforts to determine the sycnhronizability of a system will reduce to finding the

solutions of equations of this form.
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Thus the Laplace transform of the Green’s function of Eq. (2.2) has the form

G̃(s) =
e−st′

g(s)
. (2.8)

Performing the inverse transform, one finds

G(t, t′) =
1

2πi

∫ x0+i∞

x0−i∞
dsestG̃(s) =

1

2πi

∫ x0+i∞

x0−i∞
ds
es(t−t′)

g(s)
= Θ(t− t′)

∑
α

esα(t−t′)

g′(sα)
,

(2.9)

where sα (α = 1, 2, . . .) are the (generally complex) zeros of the characteristic equa-

tion g(s) = 0 from Eq. (2.7). In the above inverse transform, the infinite line of

integration is parallel to the imaginary axis (s = x0) and is chosen to be to the

right of all zeros of the characteristic polynomial. This allows for the application

of the residue theorem (utilizing the quotient rule, which states that the residue of

a function f(z) = g(z)/h(z) about z0 is g(z0)/h
′(z0)) by closing the contour with

an infinite semicircle to the left of this line. Note that the Green’s function G(t, t′)

depends only on the variable t− t′, reflecting the time translation symmetry of the

problem.

Utilizing the Green’s function, the general solution of Eq. (2.2) formally be-

comes

h(t) =

∫ ∞

0

dt′ G(t, t′)η(t′) =

∫ t

0

dt′ G(t, t′)η(t′) =

∫ t

0

dt′
∑
α

esα(t−t′)

g′(sα)
η(t′) . (2.10)

For more general initial conditions (other than uniformly zero for t < 0), see Ref. [63].
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Averaging over the noise, the fluctuations of h(t) become

⟨h2(t)⟩ =

⟨∫ t

0

dt′ η(t′)
∑
α

esα(t−t′)

g′(sα)

∫ t

0

dt′′ η(t′′)
∑
β

esβ(t−t′′)

g′(sβ)

⟩

=

∫ t

0

dt′
∫ t

0

dt′′
∑
α

esα(t−t′)

g′(sα)

∑
β

esβ(t−t′′)

g′(sβ)
⟨η(t′)η(t′′)⟩

=
∑
α,β

1

g′(sα)g
′(sβ)

∫ t

0

dt′
∫ t

0

dt′′ esα(t−t′)esβ(t−t′′)2Dδ(t′ − t′′)

=
∑
α,β

2D

g′(sα)g
′(sβ)

∫ t

0

dt′ e(sα+sβ)(t−t′)

=
∑
α,β

−2D(1− e(sα+sβ)t)

g′(sα)g
′(sβ)(sα + sβ)

. (2.11)

The time dependence appears only in the terms exp((sα+ sβ)t). Consequently, h(t)

reaches a stationary limit distribution for t→ ∞ of the form

⟨h2(∞)⟩ =
∑
α,β

−2D

g′(sα)g
′(sβ)(sα + sβ)

, (2.12)

with a finite variance when Re(sα) < 0 for all α. When the steady state is reached,

the zero with the largest real part of all sα governs the long-time behavior of the

stochastic variable h(t). When the first zero requires a nonnegative real part, then

⟨h2(t)⟩ diverges exponentially with time. Note that the condition for the existence

of an asymptotic stationary limit distribution is the same as the one for the stability

of the homogeneous part of Eq. (2.2) about the h = 0 fixed point [39, 64]. Also keep

in mind that Eq. (2.2) may have an arbitrary number of delays, so this analysis will

still be applicable in future chapters when multiple delay sources are included.

2.2 Eigenmode Decomposition and Scaling

The first implementation of the Laplace transform analysis is to the present

case of uniform time delays. By diagonalizing the symmetric network Laplacian Γ,
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the above set of equations of motion decouples into separate modes

∂th̃k(t) = −λkh̃k(t− τ) + η̃k(t) , (2.13)

where λk (k = 0, 1, 2, . . . , N − 1) are the eigenvalues of the network Laplacian,

and h̃k and η̃k are the time-dependent components of the state and noise vectors,

respectively, along the k-th eigenvector. Such an equation is known as an Ornstein-

Uhlenbeck process [53]. Thus, the amplitude h̃k of each mode is governed by the

same type of stochastic delay-differential equation

∂th̃(t) = −λh̃(t− τ) + η̃(t) , (2.14)

where the index k of the specific eigenmode is temporarily dropped for transparency

and to streamline notation. The uniform mode with λ0 = 0 is removed from the

width, and only has contributions from noise, so one needs only to focus on the

cases for which λ > 0.

The above stochastic delay-differential equation does has an exact stationary

solution for the stationary-state variance [3, 5], but it can be insightful to first

review the formal solution [61, 65]. Doing so can provide connections between the

zeros of the underlying characteristic equation and the existence (and scaling) of

the stationary-state fluctuations of the stochastic problem. The formal solution can

also be applied to more general linear(-ized) problems with multiple time delays

[66]. It also serves as the starting point from which one can extract the asymptotic

behavior [67] near the singular points (synchronization boundary).

Performing standard Laplace transform on Eq. (2.14) in accordance with the

method in Section 2.1, the characteristic equation associated with its homogeneous

part is found to be

g(s) ≡ s+ λe−sτ = 0 . (2.15)

The time-dependent fluctuations can be written formally as

⟨h̃2(t)⟩ =
∑
α,β

−2D(1− e(sα+sβ)t)

g′(sα)g
′(sβ)(sα + sβ)

. (2.16)
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The fluctuations remain finite (i.e., a stationary distribution exists) when

Re(sα) < 0 , (2.17)

for all α, where sα, α = 1, 2, . . ., are the solutions of the characteristic equation,

Eq. (2.15), on the complex plane. Inserting Eq. (2.15) into its derivative yeilds

g′(s) = 1− λτe−sτ = 1 + sτ . (2.18)

The expression for the fluctionations in Eq. (2.16) can then be simplified and be-

comes

⟨h̃2(∞)⟩ =
∑
α,β

−2D

g′(sα)g
′(sβ)(sα + sβ)

=
∑
α,β

−2D

(1 + τsα)(1 + τsβ)(sα + sβ)
. (2.19)

Eq. (2.15) is perhaps the oldest and most well-known transcendental characteristic

equation from the theory of delay-differential equations [2, 39, 64, 68], with the

linear stability analysis of numerous nonlinear systems reducing to this one. It

has an infinite number of solutions for τ > 0, but all have negative real parts for

sufficiently small delay.

The condition for stability is easily derived in the case of uniform time delay

by determining the point when the real part of a solution first vanishes. Begin with

the real and imaginary parts of Eq. (2.15)

0 = cos(sIτ) (2.20)

−sI = sin(sIτ) (2.21)

(2.22)

where sI is the imaginary part of s where the real part vanishes. Adding the squares

of each equation gives sI = ±λ, which can then be inserted back into Eq. (2.20).

Hence the condition in Eq. (2.17) holds if

λτ < π/2 (2.23)
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Figure 2.1: Time evolution of an individual mode obtained by numeri-
cally integrating Eq. (2.14) with λ = 1, D = 1, and ∆t = 0.001
for several delays chosen to show the various behaviors across
the separating/critical points λτ = 1/e and π/2; (a) λτ = 0.2 <
1/e, (b) 1/e < λτ = 1.5 < π/2, and (c) λτ = 1.7 > π/2.

since both λ and τ are strictly positive in the network topologies and circumstances

of interest here.

Long-time dynamic behavior of the solution of Eq. (2.14) is governed by the

zero(s) of Eq. (2.15) with the greatest real part. In particular, the zero with the

largest real part is purely real for λτ ≤ 1/e, hence no sustained oscillations occur,

exemplified in Fig. 2.1(a). For 1/e < λτ < π/2, all zeros including the ones with

the largest real part have imaginary parts and are arranged symmetrically about

the real axis. Thus the symmetry of the zeros is expected in the finding that the

first zeros with vanishing real parts have imaginary parts of ±λ. Nonzero imaginary

parts result in persistent oscillations that do not diverge so long as condition (2.23) is

satisfied, as shown in Fig. 2.1(b). The first pair of zeros to acquire positive real parts

are the two with smallest imaginary parts. Once the product λτ fails to satisfy the

condition (2.23), the oscillation amplitude grows in time, as in Fig. 2.1(c). Specific

time series for ⟨h2(t)⟩ are shown in Fig. 2.2, where the real parts of solutions have

become positive for delays τ = 1.60 and 2.00 but remain negative for the others.
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Figure 2.2: Time series of the fluctuations of a single mode (λ = 1) aver-
aged over 104 realizations of noise (with D = 1) by numerically
integrating Eq. (2.14) with ∆t = 0.01 for different delays (from
bottom to top in increasing order of τ).

2.3 Exact Scaling Functions for Time Delayed Stochastic

Differential Equations

Küchler and Mensch [3] obtained the analytic stationary-state autocorrelation

function for the stochastic delay-differential equation

∂th(t) = ah(t) + bh(t− τ) + η(t) , (2.24)

with ⟨η(t)η(t′)⟩ = 2Dδ(t− t′).

An equation of this form appears in two cases that will be considered here. The

first is the present focus of uniform time delays, with the special condition a = 0.

The second case will come along in Chapter 3, when there will be two types of time

delays. The specific application is viable for fully connected networks when there is

transmission delay between nodes but no local delay. For this latter instance, it is

useful to consider the full form of Eq. (2.24). The following derivation follows the

steps in [3], but is set in the notation to match the present context of networks.
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Define the stationary-state autocorrelation function as

K(t) = ⟨h(t′)h(t′ + t)⟩ , (2.25)

where it is implicitly assumed that t′ → ∞ to be applicable to the steady state.

From this definition and the invariance under time translation in the stationary

state, the autocorrelation function can be formally extended to t < 0 according to

K(t) = ⟨h(t′)h(t′ + t)⟩ = ⟨h(t′ + t)h(t′)⟩ = ⟨h(t′)h(t′ − t)⟩ = K(−t) , (2.26)

implying

K̇(t) = −K̇(−t) , (2.27)

which will be needed later on.

As one would like to obtain a directly solvable equation of motion for the

autocorrelation function, one must first find expressions for its time derivatives.

Employing the equation of motion for h(t) [Eq. (2.24)], one finds for t ≥ 0 that

K̇(t) = ∂tK(t) = ∂t⟨h(t′)h(t′ + t)⟩ = ⟨h(t′)∂th(t′ + t)⟩

= ⟨h(t′){ah(t′ + t) + bh(t′ + t− τ) + η(t′ + t)}⟩

= a⟨h(t′)h(t′ + t)⟩+ b⟨h(t′)h(t′ + t− τ)⟩+ ⟨h(t′)η(t′ + t)⟩ (2.28)

= aK(t) + bK(t− τ) , (2.29)

using ⟨h(t′)η(t′ + t)⟩ = 0 in the last step (i.e., Ito’s convention [53, 69]). The above

expression, combined with the (analytic) extension of the autocorrelation function

in Eq. (2.26), yields the condition

K̇(0) = aK(0) + bK(τ) (2.30)

in the limit of t → +0. Differentiating Eq. (2.29) again with respect to t and

exploiting the properties of Eqs. (2.26) and (2.27), the second derivative is found to
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be

K̈(t) = aK̇(t) + bK̇(t− τ) = aK̇(t)− bK̇(τ − t)

= a{aK(t) + bK(t− τ)} − b{aK(τ − t) + bK(−t)}

= a{aK(t) + bK(t− τ)} − b{aK(t− τ) + bK(t)}

= (a2 − b2)K(t) . (2.31)

Note that the reduction of the equation of motion of the autocorrelation function

to a second order ordinary differential equation (with no delay) is a consequence of

Eq. (2.24) having only one delay time-scale. The general solution of Eq. (2.31) can

be written as

K(t) = A cos(ωt) + B sin(ωt) (2.32)

with ω =
√
b2 − a2. From the definition of the autocorrelation function in Eq. (2.25)

and from some of the basic properties of the Green’s function (see Section 2.3.1 for

details), it also follows [3] that

K̇(0) = lim
t→0

∂t⟨h(t′)h(t′ + t)⟩ = −D , (2.33)

and from Eq. (2.30),

aK(0) + bK(τ) = −D . (2.34)

Thus, the second order ordinary differential equation Eq. (2.31) with conditions

from Eqs. (2.33) and (2.34) can now be fully solved, yielding

A = K(0) = D
−ω + b sin(ωτ)

ω[a+ b cos(ωτ)]
, (2.35)

and

B =
K̇(0)

ω
= −D

ω
. (2.36)

Finally, the stationary-state variance of the stochastic variable governed by Eq. (2.24)
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can be written as

⟨h2(t)⟩ = ⟨h(t)h(t)⟩ = K(0) = D
−ω + b sin(ωτ)

ω[a+ b cos(ωτ)]
. (2.37)

Following the technical detours and details in Section 2.3.1, Section 2.3.2 will cover

the applications of the above result to obtain the scaling function of the fluctuations

for the individual modes in specific networks.

2.3.1 General properties of the Autocorrelation Function and the Green’s

Function

From the definition of the autocorrelation function in Eq. (2.25) and of the

Green’s function in Eq. (2.10), it follows that

K(t) = ⟨h(t′)h(t′ + t)⟩ =

⟨∫ t′

0

du G(t′, u)η(u)

∫ t′+t

0

dv G(t′ + t, v)η(v)

⟩

=

∫ t′

0

du

∫ t′+t

0

dv G(t′, u)G(t′ + t, v)⟨η(u)η(v)⟩

= 2D

∫ t′

0

du G(t′, u)G(t′ + t, u) , (2.38)

and consequently

K̇(t) = ∂t⟨h(t′)h(t′ + t)⟩ = 2D∂t

∫ t′

0

du G(t′, u)G(t′ + t, u)

= 2D

∫ t′

0

du G(t′, u)∂tG(t
′ + t, u)

= 2D

∫ t′

0

du G(t′, u)(−∂u)G(t′ + t, u)

= −2D

∫ t′

0

du G(t′, u)∂uG(t
′ + t, u) . (2.39)
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Hence,

K̇(0) = −2D lim
t→0

∫ t′

0

du G(t′, u)∂uG(t
′ + t, u)

= −2D

∫ t′

0

du G(t′, u)∂uG(t
′, u)

= −2D

∫ t′

0

du ∂u
G(t′, u)2

2

= −D{G(t′, t′)−G(t′, 0)} = −D{1− 0} = −D , (2.40)

where in the second term of the last expression G(t′, t′) = 0 and G(t′, 0) → 0 as

t′ → ∞. The former can be seen by a segment-by-segment integration and solution

of Eq. (2.24) with a delta source δ(t − t′) in the intervals (t − t′) ∈ [nτ, (n + 1)τ ],

n = 0, 1, 2, . . . [3]; the solution in the [0, τ ] interval is particularly simple, G(t, t′) =

exp[a(t − t′)]. The latter property is trivial in that the magnitude of the Green’s

function in the stationary state has to decay for large arguments.

2.3.2 Applications to Special Cases

2.3.2.1 Unweighted Symmetric Couplings with Uniform Local Delays

For symmetric couplings Cij with uniform local delays, the Laplacian Γij =

δij
∑

l Cil−Cij in Eq. (2.1) can, in principle, be diagonalized. Each mode is governed

by Eq. (2.13), a special case of Eq. (2.24) with a = 0, b = −λ, and ω = |b| = λ

(λ being the eigenvalue of the respective mode). From Eq. (2.37), the steady-state

variance of each mode then reduces to

⟨h2(∞)⟩ = D
1 + sin(λτ)

λ cos(λτ)
= Dτ

1 + sin(λτ)

λτ cos(λτ)
= Dτf(λτ) , (2.41)

yielding the analytic scaling function for each mode

f(x) =
1 + sin(x)

x cos(x)
, (2.42)

with the scaling variable x = λτ .
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2.3.2.2 Complete Graphs with Only Uniform Transmission Delays

The exact stationary-state variance of Eq. (2.24) can also be applied to com-

plete graphs with global coupling σ, which have no local delays but do have uni-

form transmission delays, i.e., Eq. (3.32) with γ = 0, translating to a = −σ,
b = −σ/(N − 1) in Eq. (2.24). The analytic expression from Eq. (2.37) for the

stationary-state variance for each (non-uniform) mode becomes

⟨h2(∞)⟩ = D
α+ σ

N−1
sinh(ατ)

α[σ + σ
N−1

cosh(ατ)]
, (2.43)

with α =
√
a2 − b2 = σ

√
1− 1/(N − 1)2.

2.4 Scaling Function for Mode Fluctuations

To obtain the general scaling form of the fluctuations in the stationary state,

define zα ≡ τsα (α = 1, 2, . . .). One can easily see that the new variables zα are the

corresponding solutions of the scaled characteristic equation,

z + λτe−z = 0 , (2.44)

and hence can only depend on λτ , i.e. zα = zα(λτ). Thus,

sα(λ, τ) =
1

τ
zα(λτ) . (2.45)

Substituting this into Eq. (2.19) yields

⟨h̃2(∞)⟩ = Dτf(λτ) , (2.46)

where

f(λτ) =
∑
α,β

−2

(1 + zα)(1 + zβ)(zα + zβ)
(2.47)

is the scaling function. Th scaling in Eq. (2.46) is illustrated by plotting ⟨h̃2(∞)⟩/τ
vs λτ as in Fig. 2.3, fully collapsing the data for different τ values (with fixed noise

intensity D) .
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Figure 2.3: (a) Steady-state fluctuations of an individual mode as a func-
tion of λ obtained by numerical integration of Eq. (2.14) for
several delays with D = 1 and ∆t = 0.01. (b) Scaled fluctua-
tions of an individual mode and the analytic scaling function
Eq. (2.48).

As mentioned earlier, Eq. (2.14) has an exact solution for the stationary-

state variance obtained by Küchler and Mensch [3] (briefly reviewed in Section 2.3),

providing an exact form for the scaling function

f(λτ) =
1 + sin(λτ)

λτ cos(λτ)
. (2.48)

The asymptotic behavior of the scaling function near the singular points, λτ = 0 and

λτ = π/2, can be immediately extracted from the exact solution given by Eq. (2.48)

(see also Ref. [67] for a more generalizable method),

f(λτ) ≃


1

λτ
0 < λτ ≪ 1

4

π(π/2− λτ)
0 <

π

2
− λτ ≪ 1 .

(2.49)

The scaling function f(x) (x ≡ λτ) is clearly non-monotonic; it exhibits a single

minimum, at approximately x∗ ≈ 0.739 with f ∗ = f(x∗) ≈ 3.06, found through

numerical minimization of Eq. (2.48). The immediate message of the above result

is rather interesting: For a single stochastic variable governed by Eq. (2.14) with a

nonzero delay, there is an optimal value of the “relaxation” coefficient, λ∗ = x∗/τ , at

which point the stationary-state fluctuations attain their minimum value ⟨h̃2(∞)⟩ =
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Dτf ∗ ≈ 3.06Dτ . This is in stark contrast with the zero-delay case (the standard

Ornstein-Uhlenbeck process [53]) where ⟨h̃2(∞)⟩ = D/λ, i.e., the stationary-state

fluctuation is a monotonically decreasing function of the relaxation coefficient.

2.5 Implications for Coordination in Unweighted Networks

Since the eigenvectors of the Laplacian are orthogonal for symmetric couplings,

the width can be expressed as the sum of the fluctuations for all non-uniform modes

⟨w2(∞)⟩ = 1

N

N−1∑
k=1

⟨h̃2k(∞)⟩ = Dτ

N

N−1∑
k=1

f(λkτ) , (2.50)

where λk is the eigenvalue of the kth mode. Thus, condition (2.23) must be satisfied

for every k > 0 mode for synchronizability, or equivalently (as in the case of the

deterministic consensus problem),

λmaxτ <
π

2
. (2.51)

The above exact delay threshold for synchronizability has some profound conse-

quences for unweighted networks. Here, the coupling matrix is identical to the

adjacency matrix, Cij = Aij, and the bounds and the scaling properties of the

extreme eigenvalues of the network Laplacian are well known. In particular [70, 71],

N

N − 1
kmax ≤ λmax ≤ 2kmax , (2.52)

where kmax is the maximum node degree in the network [i.e., ⟨λmax⟩ = O(⟨kmax⟩)].
Thus, τkmax < π/4 is sufficient for synchronizibility, while τkmax > π/2 leads to

the breakdown of synchronization with certainty. Note that this condition coin-

cides with the convergence condition of the deterministic consensus problem [6, 39].

These inequalities imply that even a single (outlier) node with a sufficiently large

degree can destroy synchronization or coordination in unweighted networks (regard-

less of the general trend, if any, of the tail of the degree distribution). Naturally,

network realizations selected from an ensemble of random graphs with a power-law

tailed degree distribution typically have large hubs, making them rather vulnerable
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Figure 2.4: The fraction of synchronizable networks ps(τ,N) taken from
ensembles of 104 random constructions of ER and BA net-
works with ⟨k⟩ ≈ 6. (a) ps vs. N . (b) and (c) are scaled
plots of the same data according to Eq. (2.53), for ER and
BA networks, respectively.

to intrinsic network delays [6, 39]. For example, Barabási-Albert (BA) [19, 20] and

uncorrelated [72, 73] scale-free (SF) networks with structural degree cut-off (yield-

ing λmax ∼ kmax ∼ N1/2) and similarly, SF network ensembles with natural cut-off

(exhibting λmax ∼ kmax ∼ N1/(γ−1)) for N ≫ 1 [56, 72]), are particularly vulnerable.

Thus, for any fixed delay, increasing the size of scale free networks will eventually

lead to the violation of condition (2.51), and in turn, to the breakdown of synchro-

nization. In contrast, the typical largest degree (hence the largest eigenvalue of the

Laplacian) grows much slower in ER random graphs [21], as λmax ∼ kmax ∼ ln(N).

To illustrate the above finite-size dependence, define the fraction of synchroniz-

able networks ps(τ,N), which is equivalent to the probability that a randomly chosen

realization of a network ensemble satisfies λmax < π/2τ . Thus, ps(τ,N) = P<
N (π/2τ),

where P<
N (x) is the cumulative probability distribution of the largest eigenvalue of

the network Laplacian. Figure 2.4 shows the fraction of synchronizable networks

for BA and ER network ensembles by employing direct numerical diagonalization

of the corresponding network Laplacians and evaluating condition (2.51) for each

realization. For N ≫ 1 the cumulative distribution for the largest eigenvalue ex-



23

hibits the asymptotic scaling P<
N (x) ∼ ϕ(x/⟨λmax(N)⟩) [60]. Thus, the fraction of

synchronizable networks should scale as

ps(τ,N) = P<
N (π/2τ) ∼ ϕ(π/2τ⟨λmax(N)⟩) = ψ(τ⟨λmax(N)⟩) (2.53)

Figure 2.4 (b) and (c) demonstrates the above scaling for ER and BA networks,

respectively.

Since the scaling function is known exactly as Eq. (2.48), the eigenmode de-

composition given by Eq. (2.50) allows one to evaluate the stationary width for an

arbitrary network with a single uniform time delay by utilizing numerical diagonal-

ization of the network Laplacian

⟨w2(∞)⟩ = Dτ

N

N−1∑
k=1

f(λkτ) =
Dτ

N

N−1∑
k=1

1 + sin(λkτ)

λkτ cos(λkτ)
. (2.54)

The optimal (minimal) width occurs when all eigenvalues of the Laplacian are degen-

erate so that the couplings and/or delay can be tuned to the minimum of Eq. (2.48).

For each mode in Eq. (2.54), such degeneracy is present in the case of a fully-

connected network with uniform couplings, optimized to Cij = x∗/Nτ (i ̸= j) and

Cii = 0. For general networks, better synchronization can be achieved when the

eigenvalue spectrum is narrow relative to the range of synchronizability so that

most eigenvalues can fall near the minimum of Eq. (2.48). Strategies for achieving

a narrow spectrum have been explored by others [17, 18], but are not a focus of this

thesis.

2.6 Scaling, Optimization, and Trade-offs in Networks with

Uniform Delays

With the knowledge of the scaling function in Eq. (2.54), one also immediately

obtains the width for the case of an arbitrary but uniform effective coupling strength

σ, where Cij = σAij. The effective coupling strength can now be tuned for optimal

synchronization. However, there is a trade-off between how well the network syn-

chronizes and the range over which it is synchronizable. When the eigenvalue spec-
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Figure 2.5: Stationary-state widths obtained through numerical diago-
nalization and utilizing Eq. (2.54) for a typical BA network
with N = 100 (a) for several coupling strengths, (b) for sev-
eral delays, and (c) scaled so that the nonzero delay curves
collapse.

tum is not narrow, diminishing the couplings uniformly in order to satisfy Eq. (2.51)

may cause small eigenvalues to be pushed farther up the left divergence of the scaling

function. Figure 2.5(a) shows this trade-off in uniform reweighting (Cij → σCij).

The monotonicity of these widths means that the uniform delay should always be

minimized to obtain the best synchronization. The same conclusion can be drawn

from Fig. 2.5(b), which shows that networks synchronize better and do not become

unsynchronizable until greater link strengths when the delay τ is minimized. Be-

cause globally reweighting the coupling strengths corresponds to a uniform scaling

of the eigenvalues, define the width of a network by a scaling function F (στ) (see

Fig. 2.5(c))

⟨w2(∞)⟩σ,τ =
Dτ

N

N−1∑
k=1

f(σλkτ) = DτF (στ). (2.55)

Fluctuations from small eigenvalues dominate other contributions to the width for

small στ , hence the optimal value occurs near the end of the synchronizable region,
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where the network fails to meet condition (2.51).

As an alternative to varying the (effective) uniform coupling strength σ, con-

sider a scenario where the frequency (or rate) of communication is controlled for

each node according to

∂thi(t) = −pi(t)
N∑
j=1

Aij[hi(t− τ)− hj(t− τ)] + ηi(t) . (2.56)

In the above scheme, pi(t) is a binary stochastic variable for each node, such that at

each discretized time step, pi(t) = 1 with probability p and pi(t) = 0 with probabil-

ity 1− p (for simplicity, consider uniform communication rates). The local network

neighborhood remains fixed, while nodes communicate with their neighbors only at

rate p at each time step. As an application for trade-off, consider a system governed

by the above equations and stressed by large delays, where local pairwise communi-

cations at rate p=1 would yield unsynchronizability, i.e., τλmax > π/2 (see Fig. 2.6).

The width diverges for one of two reasons: either communication is too frequent

and the system fails to satisfy condition (2.51), or there is no synchronization (p=0)

and the system is overcome by noise. However, the divergence of the width is faster

in the former, accelerated by overcorrections made by each node due to the delay.

With an appropriate reduction in the communication rate, the width reaches a fi-

nite steady state, recovering synchronizability, as can be seen in Fig. 2.6. Decreasing

the frequency of communication can counter-intuitively allow a network to become

synchronizable for delays and couplings that would otherwise cause the width to

diverge.

2.7 Coordination and Scaling in Weighted Networks

For the case of uniform delays, compare the following two cases: networks with

weights that have been normalized locally by node degree and networks with weights

that are globally uniform. The couplings for local weighting are defined as Cij =

σAij/ki (a common weighting scheme in generalized synchronization problems [9]),

while for uniform couplings Cij = σAij/⟨k⟩. In turn, the weighted (or normalized)

Laplacian becomes Γ = σK−1L where K is the diagonal matrix with node degrees
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Figure 2.6: Time evolution of the width obtained by numerically inte-
grating Eq. (2.56) with D=1, ∆t=0.005, and averaged over 103

realizations of noise for several communication rates p on a
BA network of size N=100 and average degree ⟨k⟩=6 with
τλmax = 1.2× π/2.

on its diagonal, Kij = δijki, and L is the graph Laplacian, Lij ≡ δij
∑

lAil − Aij =

δijki − Aij. Similarly, for uniform couplings, the corresponding Laplacian becomes

Γ = σ⟨k⟩−1L. Note that the overall coupling strength (communication cost) is the

same in both cases, σ
∑

ij Aij/ki = σ
∑

ij Aij/⟨k⟩ = σN .

In the locally-weighted case, the eigenvalue spectrum of K−1L is known to be

confined within the interval [0, 2] [74], so any network of this class will be synchro-

nizable, provided στ < π/4. With globally uniform weighting, the increase of λmax

withN will lead to fewer synchronizable networks asN grows (holding ⟨k⟩ constant).
Figure 2.7(a) shows that it is more likely for an ER network to be synchronizable

than a BA network of the same size N when the couplings are weighted uniformly by

⟨k⟩ (with all ER networks remaining synchronizable over the range of N for the two

smallest delays). However, this is not always the case when couplings are weighted

locally by node degree (Fig. 2.7(b)), although nearly all of these networks remain

synchronizable over the delays in Fig. 2.7(a). The behavior of the width for typical
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Figure 2.7: Fraction of synchronizable networks for (a) uniform global
weights and (b) local weights for the same ensemble of net-
works used in Fig. 2.4.

networks is shown in Fig. 2.8 to compare the effects of these two normalizations. In

both the BA and ER case, synchronization is better and is maintained for longer

delays when the coupling strengths are weighted locally by node degree.
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CHAPTER 3

Multiple Time Delays 3

To generalize the basic model, let us distinguish between transmission and processing

time delays. With the introduction of transmission delay, the information that a

node has about its local neighborhood is not as recent as the information that is

has on itself. The response of a node depends on its state within the context of an

even older snapshot of its neighbors. As a starting point, consider the case when

this transmission delay is uniform, so that Eq. (1.1) becomes

∂thi(t) = −
∑
j

Cij[hi(t− τo)− hj(t− τo − τtr)] + ηi(t) (3.1)

where the local delay τo and the transmission delay τtr are the same for all nodes

and links, respectively. Although the synchronizability condition and steady state

width cannot be determined in a closed form for arbitrary networks as is the case

of Eq. (2.1), focusing on special cases does offer insight.

3.1 A Stochastic Model of Two Coupled Nodes with Local

and Transmission Delays

The absolutely simplest case consists of two coupled nodes. Although the idea

of a network is lost for N = 2, there still exists nontrivial critical behavior and

the simplification, as will be shown, permits an analysis of the asymptotic behavior

of the width. With only two nodes, the system of two coupled delay differential

3Portions of this chapter previously appeared as: D. Hunt, G. Korniss, B.K. Szymanski, “The

impact of competing time delays in coupled stochastic systems”, Phys. Lett. A 375, 880 (2011).

Other portions of this chapter to appear in: D. Hunt, G. Korniss, B.K. Szymanski, “Network

Synchronization and Coordination in a Noisy Environment with Time Delays”, (in review).
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equations becomes

∂th1(t) = −λ[h1(t− τo)− h2(t− τo − τtr)] + η1(t)

∂th2(t) = −λ[h2(t− τo)− h1(t− τo − τtr)] + η2(t) (3.2)

where λ > 0 is the coupling strength between the two nodes.

To simplify notation, let γ ≡ τo/(τo + τtr) = τo/τ (0 ≤ γ ≤ 1). Further,

focus on the relative difference u(t) = h2(t)−h1(t), which is related to the width as

⟨u2⟩ = ⟨(2w)2⟩. The quantity u(t) is governed by the equation

∂tu(t) = −λu(t− γτ)− λu(t− τ) + ξ(t) , (3.3)

where ⟨ξ⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = 4Dδ(t − t′). The special case γ = 1 of the above

equation reduces directly to the case of uniform delay in Chapter 2. The quantity

of interest is ⟨u2(t)⟩, capturing the relative deviation of the relevant state variables

on the two nodes. By definition, the system is synchronizable if the fluctuations

reach a finite steady state, ⟨u2(∞)⟩ < ∞. In the absence of time delays (τ=0) one

immediately finds ⟨u2(t)⟩ = (D/λ)(1− e−4λt) [53], i.e., the system is synchronizable

for any λ > 0. Further, the stronger the coupling, the better the synchronization:

⟨u2(∞)⟩ = D/λ is a monotonically decreasing function of λ.

Employing standard Laplace transform [61, 63], one can immediately write the

formal solution for Eq. (3.3)

u(t) =

∫ t

0

dt′ξ(t′)
∑
α

esα(t−t′)

h′(sα)
, (3.4)

where sα, α = 1, 2, . . . , are the zeros of the characteristic equation

g(s) ≡ s+ λe−γτs + λe−τs = 0 (3.5)
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on the complex plane. Then for the noise-averaged fluctuations one finds

⟨u2(t)⟩ =
∑
α,β

−4D(1− e(sα+sβ)t)

g′(sα)g
′(sβ)(sα + sβ)

=
∑
α,β

−4D(1− e(sα+sβ)t)

(1− γλτe−γτsα − λτe−τsα)(1− γλτe−γτsβ − λτe−τsβ)(sα + sβ)

=
∑
α,β

−4Dτ(1− e(zα+zβ)t/τ )

(1− γλτe−γzα − λτe−zα)(1− γλτe−γzβ − λτe−zβ)(zα + zβ)
,(3.6)

where the last expression of the above equation introduces the scaled variables zα ≡
τsα . From Eq. (3.5) and from the definition of these scaled variables it is evident

that zα are the solutions of the scaled characteristic equation

z + λτe−γz + λτez = 0 , (3.7)

and consequently, the solutions depend only on λτ , i.e., zα = zα(λτ). From the

structure of the above characteristic equation it follows that if z is a solution of

Eq. (3.7) so is its complex conjugate z∗. From Eq. (3.6) it is clear that synchroniza-

tion can only be achieved if Re(zα)<0 for all α. To identify the boundary of the

region of synchronizability, one has to find the solution(s) with a vanishing real part,

i.e., z = x+ iy with x = 0 [2, 24, 64, 68]. Elementary analysis yields y±c =±π/(1+γ)
and

(λτ)c =
π

2(1 + γ)
sec

(
π

2

1− γ

1 + γ

)
. (3.8)

Thus, for a fixed γ, the system is synchronizable if 0 < λτ < (λτ)c(γ). Results

obtained by numerically integrating Eq. (3.3) together with the analytic expression

Eq. (3.8) are shown in Fig. 3.1. The time discretization of Eq. (3.3) naturally has

its own effects on the stability through the numerical scheme. Choosing ∆t ≪ γτ

and ∆t ≪ 1/λ will yield only small corrections to the behavior of the underlying

continuous-time system. The phase diagram and some limiting cases will be dis-

cussed in terms of the original variables, the local delay τo and the transmission

delay τtr, in section 3.4.
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Figure 3.1: (a) Time series ⟨u2(t)⟩ for τ=1.00, γ=0.50 for different values
of the coupling constant λ. Here, and throughout this paper,
D=1 and ∆t=0.01. (b) Synchronizability threshold in terms
of the scaled variable λτ vs γ. Data points were obtained by
numerically integrating Eq. (3.3) . The solid line represents
the exact analytic expression Eq. (3.8).

3.2 Scaling and Asymptotics in the Steady State

The next step is to analyze the steady-state fluctuations, in particular, their

scaling behavior in the synchronizable regime, 0 < λτ < (λτ)c(γ). Here, the fluctu-

ations remain finite, and in the steady state (t→ ∞) from Eq. (3.6) one obtains

⟨u2(∞)⟩ = Dτf(γ, λτ) , (3.9)

where

f(γ, λτ) =
∑
α,β

−4

(1− γλτe−γzα − λτe−zα)(1− γλτe−γzβ − λτe−zβ)(zα + zβ)
(3.10)

is the scaling function for the steady-state fluctuations. [Recall that zα = zα(λτ)

are the solutions of the scaled characteristic equation Eq. (3.7).] Thus for a given γ,

⟨u2(∞)⟩
Dτ

= f(λτ) , (3.11)

where in this notation, the γ-dependence is supressed to highlight the scaling be-

havior of the fluctuations, which is valid for each γ separately. Figure 3.2 shows
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Figure 3.2: (a) Steady-state fluctuations as a function of the coupling
strength λ for the various delays for γ=0.5. Data points are
obtained by numerically integrating Eq. (3.3). (b) Same data
as in (a) scaled according to Eq. (3.11), ⟨u2(∞)⟩/τ vs λτ . The
dashed lines represent the asymptotic behaviors of the scal-
ing function near the two endpoints of the synchronizable
regime , Eqs. (3.12) and (3.13), respectively, while the solid
line (running precisely through the data points) represents
the full approximate scaling function f(λτ), Eq. (3.14).

the steady-state fluctuations before (a) and after (b) scaling, and demonstrates the

data collapse for the scaled variables according to Eq. (3.11). The scaling function

f(λτ) (shown in Fig. 3.2(b)) is a non-monotonic function of its argument, diverg-

ing at λτ = 0 and λτ = (λτ)c(γ), and exhibiting a single minimum between these

points. This non-monotonic feature of the scaling function with a single minimum

between 0 < λτ < (λτ)c(γ) is present for all 0 < γ ≤ 1. Figure 3.3 shows sev-

eral of these curves for various ratios of the delay γ. Thus, for fixed non-vanishing

and finite delays, there is an optimal value of the coupling constant λ for which

the steady-state fluctuation attains its minimum value. For stronger couplings, the

overall coordination between the two nodes weakens, and for λ > (λτ)c(γ)/τ , it

completely deteriorates.

The fluctuations of ⟨u2(∞)⟩ diverge at the end points of the synchronizable

regime [as at least for one α, Re(zα) → 0], indicating the breakdown of synchro-
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Figure 3.3: Scaled steady-state fluctuations ⟨u2(∞)⟩/τ vs λτ for various γ
values. Data points are obtained by numerically integrating
Eq. (3.3). Solid lines represent the full approximate scaling
function f(λτ) for each γ, Eq. (3.14).

nization. Near these endpoints, the sum in Eq. (3.10) is dominated by the term(s)

where Re(zα) ≃ 0 [67]. These are the solutions which have (negative) real parts

with the smallest amplitude. To leading order,

f(λτ) ≃ 1

λτ
(3.12)

as λτ → 0, and

f(λτ) ≃ c1(γ)

(λτ)c(γ)− λτ
(3.13)

as λτ → (λτ)c (λτ . (λτ)c) with c1(γ) given in Section 3.3 by Eq. (3.22). From the

numerical results shown in Fig. 3.2(b), it is also apparent that the scaling function

varies slowly between (and away from) the singular points. Thus, f(λτ) can be

reasonably well approximated [67] throughout the full synchronizable regime 0 <

λτ < (λτ)c(γ) by

f(λτ) ≈ 1

λτ
+

c1(γ)

(λτ)c(γ)− λτ
+ c2(γ), (3.14)



35

with c2(γ) also given in Section 3.3 by Eq. (3.26).

Figure 3.2(b) and Fig. 3.3 show that the above approximate scaling function

Eq. (3.14) (being asymptotically exact near the singular points) matches the nu-

merical data very well. In particular, it captures the basic non-monotonic feature

of the results obtained from numerical integration, exhibiting a single minimum

(λτ)min(γ) =
(λτ)c(γ)

1 +
√
c1(γ)

(3.15)

in the 0 < λτ < (λτ)c(γ) interval. Since the above analytic estimate for (λτ)min(γ)

is based on asymptotics, it is worthwhile to compare it to the actual numerical

estimates. From the data and for the γ values shown in Fig. 3.3, the relative devi-

ation between the estimate and Eq. (3.15) is 0.7%, 0.7%, 0.7%, 0.5%, and 0.4% for

γ = 0.20, 0.25, 0.40, 0.65, and 1.00, respectively.

As can also be seen in Fig. 3.3, the theoretical asymptotic behavior, captured

by the approximate scaling function Eq. (3.14) becomes less accurate for small γ

near (λτ)c(γ). Other than lacking higher-order corrections to the asymptotic ex-

pressions, this is due in part to the time discretization in the numerical integration.

For sufficiently small γ values, the condition ∆t << γτ will not hold, and devia-

tions between the results of the time-discretized numerical scheme and those of the

continuous system Eq. (3.3) will become more significant and noticeable.

3.3 Asymptotic Behavior of the Scaling Function Near the

Synchronization Thresholds

Applying the method in Ref. [67] (which was used to analyze the scaling func-

tion for uniform delays) to the present case gives the dominant contributions in

Eq. (3.10) nea the boundaries of the synchronizable regime. First, assume that

solutions of the characteristic equation

z + λτe−γz + λτe−z = 0 (3.16)
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change continuously with the product λτ . Thus, if z=zo is a solution for λτ = (λτ)o,

then for a small change in the parameter, λτ = (λτ)o + δλτ , the corresponding

solution can be written as z = zo + δz. Substituting this into the characteristic

equation, to lowest order this becomes

δz ≃ − e−γzo + e−zo

1− γ(λτ)oe−γzo − (λτ)oe−zo
δλτ +O

(
(δλτ)2

)
. (3.17)

For λτ = 0, there is a single solution with vanishing real part, z=0, thus for

small λτ

z(λτ) ≃ −2λτ +O((λτ)2) . (3.18)

The dominant contribution for the scaling function as λτ → 0 comes from the

corresponding term in Eq. (3.10), to leading order yielding

f(λτ) ≃ −4

2(−2λτ)
=

1

λτ
. (3.19)

For λτ = (λτ)c(γ) [Eq. (3.8)], there is a pair of solutions (complex conjugates)

with vanishing real parts z = ±i π
1+γ

. When λτ is in the vicinity of (λτ)c (λτ ≃
(λτ)c + δλτ), to lowest order, these solutions behave as

z±(λτ) ≃ ±iyc −
e∓iγyc + e∓iyc

1− γ(λτ)ce∓iγyc − (λτ)ce∓iyc
δλτ , (3.20)

where yc =
π

1+γ
. The dominant contributions for the scaling function as λτ → (λτ)c

then come from the two terms in Eq. (3.10) when (α = ±, β = ∓), yielding

f(λτ) ≃ −8

(1− γ(λτ)ce−iγyc − (λτ)ce−iyc)(1− γ(λτ)ceiγyc − (λτ)ceiyc)(z+ + z−)

=
c1(γ)

(λτ)c(γ)− λτ
, (3.21)

where

c1(γ) =
4

(1 + γ)(λτ)c + (1 + γ)(λτ)c cos(π
1−γ
1+γ

)− cos( π
1+γ

)− cos( γπ
1+γ

)
. (3.22)

Finally, one can obtain the approximate scaling function for the full 0 < λτ <
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(λτ)c(γ) interval, using some heuristics following Ref. [67]. As can be observed in

the numerical results in Fig. 3.2, the scaling function varies slowly between (and

away from) the two singular points. Then, it can be approximated by

f(λτ) ≃ 1

λτ
+

c1(γ)

(λτ)c(γ)− λτ
+ c2(γ) . (3.23)

In principle, the constant c2(γ) could be determined by matching the minimum

value of the scaling function. Since it is not known analytically, instead one must

resort to the heuristics of Ref.[67] where the constant c2(γ) is determined in such a

way that it matches next-to-leading order corrections of the asymptotic behavior,

e.g., near λτ = 0. To that end, the next-to-lowest order corrections to the solution

of Eq. (3.16) in the vicinity of λτ = 0 are found to be

z(λτ) ≃ −2λτ − 2(1 + γ)(λτ)2 +O((λτ)3) . (3.24)

Keeping the relevant orders in the dominant term in Eq. (3.10) gives

f(λτ) ≃ −4

(1− γλτ − λτ)2 2(−2λτ − 2(1 + γ)(λτ)2)

≃ 1

[1− (1 + γ)λτ ]2λτ(1 + (1 + γ)λτ)

≃ 1

λτ
+ (1 + γ) . (3.25)

In order to match this next-to-leading order correction as λτ → 0 with the proposed

approximate scaling function Eq. (3.23), one must have

c2(γ) = 1 + γ − c1(γ)

(λτ)c(γ)
. (3.26)

3.4 Special Cases

Having established the scaling theory for the phase boundary [Eq. (3.8)] and for

the fluctuations [Eq. (3.14)], it is insightful to express the main findings explicitly

in terms of the two types of delays appearing in the original formulation of the

problem, Eq. (3.2). From Eq. (3.8), for the boundary of the synchronizable regime
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Figure 3.4: Synchronizability phase diagram on the λτtr-λτo plane
[Eq. (3.27)]. The shaded area indicates the synchronizable
regime. The boundary of this region approaches the horizon-
tal line λτo = 1/2 in the limit of λτtr → ∞. Further, λτo = π/4
when λτtr = 0.

one immediately finds

λ(2τo + τtr) =
π

2
sec

(
π

2

τtr
2τo + τtr

)
. (3.27)

While explicitly expressing the critical line τo vs τtr is prohibitive due to the implicit

nature of Eq. (3.27), one can produce a plot for it numerically as in Fig. 3.4.

Further insight into the different impacts of the two types of delays by consid-

ering two limiting cases. First, consider the case when τo/τtr << 1, i.e., when the

transmission delays are much larger than the local processing, cognitive, or execu-

tion delays. This is equivalent to the γ << 1 limit in the scaling expressions. From

Eq. (3.8) one finds (λτ)c ≃ 1/2γ or (λτo)c = 1/2. Thus, there is no singularity in

the fluctuations for any finite τtr provided that λτo < 1/2. Further, from Eq. (3.14)

(with the coefficients given in Section 3.3) for the steady-state fluctuations in the
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same limit we find

⟨u2(∞)⟩ ≃ D

λ
+

{
4

π2

1

1/2− λτo
+ 1− 8

π2

}
τtr . (3.28)

In the other limiting case, τtr/τo << 1, i.e., the transmission delays are much

smaller than the local processing delays. This is equivalent to the γ → 1 limit in our

scaling expressions. In this limit Eq. (3.8) reduces to (λτo)c = π/4. The steady-state

fluctuations approach

⟨u2(∞)⟩ ≃ D

λ
+

{
4

π

1

π/4− λτo
+ 2− 16

π2

}
τo , (3.29)

provided that λτo < π/4.

Figure 3.4 and Eqs. (3.28) and (3.29) highlight the subtle differences between

the impacts of the two types of delays. The local delays τo are the dominant ones,

in that as long as λτo < 1/2, there are no singularities for any finite τtr, and ⟨u2(∞)⟩
increases linearly with τtr as τtr → ∞ in accordance with Eq. (3.28). On the other

hand, for every τtr, there is a sufficiently large τo such that the fluctuations become

singular. In particular, when the transmission delays are much smaller than the

local processing delays, the fluctuations diverge as λτo → π/4, as is apparent from

Eq. (3.29).

The above discussed synchronizability condition can also be rephrased in terms

of the relevant time scales of the problem. The inverse of the effective coupling,

τcomm ≡ λ−1, can be interpreted as the characteristic time between successive com-

munications between system components (and the corresponding state adjustments

using available “recent” information) [41, 61]. As shown above, τo is the dominant

delay in the availability of the information. For τcomm>2τo, stability and synchro-

nization is guaranteed. On the other hand, for τcomm<(4/π)τo, synchronization

cannot be achieved. Thus, attempting to communicate and adjust too frequently

(limited by the availability of recent information), is not only useless, but will actu-

ally lead to complete desynchronization.
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3.5 Application of Cauchy’s Argument Principle with Im-

plementation

Determining the stability of networks with two types of delay for system sizes

greater than N = 2 requires numerical analysis. The following algorithm is a pow-

erful tool in finding both the similarities and contrasts between the simple two-node

system and more complex, interesting topologies. For an arbitrary complex analytic

function F (z), the number of zeros NC inside a closed contour C (provided F (z)

has no poles/singularities inside C) is given by Cauchy’s argument principle (see,

e.g., Ref. [75]):

NC =
1

2πi

∮
C

F ′(z)

F (z)
dz =

1

2π
∆C argF (z) , (3.30)

where ∆C argF (z) is the winding number of F (z) along the closed contour C. The

characteristic equations studied in this thesis can all be written as a sum of expo-

nentials, hence there are no singularities. The stability boundary is determined by

following the methods of Refs. [76, 77], using Eq. (3.30) to track the number of zeros

of the characteristic equations with positive real part (i.e., on the positive real half

plane) by substituting Eqs. (3.49) and (3.55) for F (z). The numerical algorithm was

adopted directly from Reference [76], which determines the winding number with an

adaptive step size. This method begins with a step of size h along the contour in the

direction ι̂ from s to s+hι̂. The step is accepted if θ(s, s+(h/2)ι̂ < θ(s, s+hι̂) < ϵ = 1

where θ(s, s′) ≡ |arg(detM(s))− arg(detM(s′))| mod 2π. The subsequent step size

is then h→ max{2, ϵ/∆}; unacceptable steps are retried with h→ h/2. The wind-

ing number is the count of the number of crossings of π without a return in the

opposite direction.

Choose the contour so that it detects the first zero to cross the imaginary axis

and acquire a positive real part. Note that the mode corresponding to the zero

eigenvalue allows the solution z = 0 for Eq. (3.50), so the zero at the origin must be

actively ignored, e.g. by choosing the left edge of the contour to be nonzero but still

very small. This method can be applied to any network structure with any delay

scheme, provided the approximate general behavior of the zeros is understood.

For arbitrary couplings and delays, general properties of eigenvalues of com-
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Figure 3.5: Numerical integration of Eq. (3.30) to identify the presence of
zeros in the cases of a system of two coupled nodes (τc = π/4)
for (a) τ = π/5 and (b) τ = π/3. The left column shows the
zeros and the points sampled along the contour; the right col-
umn shows the argument of the characteristic function (an-
gular coordinate) at these steps (radial coordinate).

plex matrices can be utilized to bound the location of the eigenvalues, but smaller

contours can be determined by building some intuition for a particular delay scheme.

The height and width of the box are chosen after observing the general behavior of

the location of zeros for representative networks. This is simple in the case of uni-

form time delay because the curves onto which all zeros fall have been well studied

[2, 68]. The first zeros to acquire a positive real part will be on the curves with

smallest imaginary parts. The width of the contour of integration must be great

enough so that zeros that have acquired a positive real part are still included. Look-

ing at the extreme cases of large system sizes and large delays, a reasonable limit

can be chosen which will not overlook any zero but does not require an excessive

amount of computation.

As an example, consider the simplest system of two coupled nodes with uniform

delay, which has a critical delay of π/4. Figure 3.5 shows two cases explored while
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finding the critical delay. In Fig. 3.5(a), τ = π/5 < τc and all real parts are non-

positive so none fall within the contour. Tracking the argument (right column)

shows that the winding number is correspondingly zero to verify that the delay is

subcritical. Alternatively, τ = π/3 > πc in Fig. 3.5(b) and there do indeed exist

zeros with positive real parts that fall within the contour. The argument winds

around the origin twice, signaling the presence of the first two zeros to cross the

imaginary axis, indicating instability.

3.6 Fully Connected Networks

Consider the case of a fully connected network of size N ≥ 3 with uniform link

strengths σ, where the local state variables evolve according to

∂thi(t) = − σ

N − 1

∑
j ̸=i

[hi(t− τo)− hj(t− τ)] + ηi(t)

= − σ

N − 1

∑
j ̸=i

[hi(t− γτ)− hj(t− τ)] + ηi(t)

= − σ

N − 1

∑
j ̸=i

[hi(t− τ)− hj(t− τ)] + σhi(t− τ)− σhi(t− γτ) + ηi(t)

= − σ

N − 1

∑
j

Γijhj(t− τ) + σhi(t− τ)− σhi(t− γτ) + ηi(t) (3.31)

where τ ≡ τo + τtr, γ ≡ τo/τ and Γij = δijN − 1. Normalizing the global coupling

with 1/(N − 1) assures that the coupling cost per node remains constant and the

region of synchronization remains finite in the limit of N → ∞. This all-to-all

coupling scheme abandons the restriction on the information of the system that

is available to each node, since the local neighborhood has now become the entire

network. However, as will be shown, the characteristics of the critical behavior

of the system are very similar to that of a graph that is not fully connected, but

the analysis is kept simpler and can be extended further. Using the fact that the

graph Laplacian of the complete graphs has a single, nonzero eigenvalue N [which

is (N − 1)-fold degenerate], each non-uniform mode (associated with fluctuations
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about the mean) obeys

∂th̃(t) = −σh̃(t− γτ)− σ

N − 1
h̃(t− τ) + η̃(t) . (3.32)

As in the case of uniform delays, the characteristic polynomial and equation is

determined by performing a Laplace transform on the deterministic part, yielding

g(s) ≡ s+
σ

N − 1
e−τs + σe−γτs = 0 . (3.33)

Note that for N = 2, the region of stability/synchronizability can be obtained

analytically [66], and for completeness it is shown in Fig. 3.6 in the (τo, τ) plane. In

this simple case of two coupled nodes, the synchronization boundary is monotonic,

and the local delay is dominant: There is no singularity (for any finite τtr) as long

as στo < 1/2 [66], while for any τtr, there is a sufficiently large τo resulting in the

breakdown of synchronization.

For N ≥ 3, the phase diagram (region of synchronizability) can be obtained

numerically by tracking the zeros of the characteristic equation Eq. (3.33) (i.e.,

identifying when their real parts switch sign) shown in Fig. 3.6. Note that keep-

ing track of infinitely many complex zeros of the characteristic equations would

be an insurmountable task. Instead, in order to identify the stability boundary of

the system, one only needs to know whether all solutions have negative real parts.

This test can be done by employing Cauchy’s argument principle [76, 77] (see Sec-

tion 3.5 for details). Similar to the N=2 case, the local delay is always dominant,

i.e., there are critical values of στo above/below which the system is unsynchroniz-

able/synchronizable for any τtr. [These critical values approach π/2 as N → ∞,

since in this case Eqs. (3.32) and (3.33) reduce to the familiar forms of Eqs. (2.14)

and (2.15), respectively, with the known analytic threshold.] The behavior with the

overall delay τ = τo + τtr, however, is more subtle: There is a range of τo where

varying τ yields reentrant behavior with alternating synchronizable and unsynchro-

nizable regions (as can be seen by considering suitably chosen horizontal cuts for

fixed τo in Fig. 3.6). Thus, in this region (for fixed local delays τo), stabilization of

the system can also be achieved by increasing the transmission delays.
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Figure 3.6: Phase diagram (synchronization boundary) for fully con-
nected networks with uniform coupling strength σ/(N − 1)
in the (τo, τ) plane. (Without loss of generality due to scal-
ing, the scaling σ = 1 was used.) With the exception of the
analytically solvable case of N = 2 [66], the synchronization
boundaries, corresponding to stability limits, were obtained
from the analysis of the zeros of Eq. (3.33).

In the special case γ = 0, the network is always synchronizable for all N and

the width can be obtained exactly (see Section 2.3.2.b),

⟨w2(∞)⟩ = 1

N

N−1∑
k=1

⟨h̃2k(∞)⟩ = D(N − 1)

N

α + σ
N−1

sinh(ατ)

α[σ + σ
N−1

cosh(ατ)]
(3.34)

with α = σ
√

1− 1/(N − 1)2, as shown in Fig. 3.7. For τ = τtr → ∞, the above

expression becomes

⟨w2(∞)⟩ = D(N − 1)

N

1

σ
√
1− 1/(N − 1)2

. (3.35)

3.7 The Uniform Mode and the Width

3.7.1 Eigenmode Decomposition

In synchronization and coordination problems, it is natural to define an ob-

servable such as the width, which measures fluctuations with respect to the global
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Figure 3.7: Analytic results for stationary-state widths for fully con-
nected networks of several sizes for the special case γ = 0
[Eq. (3.34)]. Here, D = 1 and σ = 1.

mean,

w2(t) =
1

N

N∑
i=1

[hi(t)− h̄(t)]2 , (3.36)

where h̄(t) =
∑N

i=1 hi(t). The amplitude associated with the uniform mode of

the normalized Laplacian automatically drops out from the width. (In the case

of unnormalized symmetric coupling, the expression for the width simplifies to the

known form.)

For the problem with two types of time delays and locally normalized couplings

as in Eq. (3.47), decomposition along the right eigenvectors of K−1L facilitates

diagonalization. While this normalized Laplacian is a non-symmetric matrix, its

eigenvalues are all real and non-negative (with the smallest being zero, λ0 = 0).

The corresponding (normalized) right eigenvector is

|e0⟩ = N−1/2(1, 1, . . . , 1)T . (3.37)

Note that since the normalized Laplacian is non-symmetric, the eigenvectors are not
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orthogonal, i.e., ⟨el|ek⟩ ̸= δlk. To ease notational burden, this subsection uses the

bra-ket notation – not to be confused with ensemble average over the noise. In this

notation, ⟨·| is a row vector and |·⟩ is a column vector, e.g., ⟨e0| = N−1/2(1, 1, . . . , 1).

Using this notation, the state vector is denoted by

|h(t)⟩ = (h1(t), h2(t), . . . , hN(t))
T , (3.38)

while the state vector relative to the mean is

|h(t)− h̄(t)⟩ = (h1(t)− h̄(t), h2(t)− h̄(t), . . . , hN(t)− h̄(t))T

= (h1(t), h2(t), . . . , hN(t))
T − h̄(t)(1, 1, . . . , 1)T

= |h(t)⟩ − h̄(t)
√
N |e0⟩ = (1− |e0⟩⟨e0|)|h(t)⟩ . (3.39)

Employing the above formalism, the width can be written as

w2(t) =
1

N

N∑
i=1

[hi(t)− h̄(t)]2 =
1

N
⟨h− h̄|h− h̄⟩ . (3.40)

Now the state vector can be expressed as the linear combination of the eigenvectors

of the underlying Laplacian,

|h(t)⟩
N−1∑
k=0

h̃k(t)|ek⟩ . (3.41)
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Employing the above eigenmode decomposition, ⟨h− h̄|h− h̄⟩ can be written as

⟨h− h̄|h− h̄⟩ = ⟨h|(1− |e0⟩⟨e0|)2|h⟩ = ⟨h|(1− |e0⟩⟨e0|)|h⟩

=
N−1∑
k=0

h̃k(t)⟨ek| (1− |e0⟩⟨e0|) |
N−1∑
l=0

h̃l(t)|el⟩

=
N−1∑
k,l=0

h̃k(t)h̃l(t)⟨ek| (1− |e0⟩⟨e0|) |el⟩

=
N−1∑
k,l=0

h̃k(t)h̃l(t) (⟨ek|el⟩ − ⟨ek|e0⟩⟨e0|el⟩)

=
∑
k,l ̸=0

h̃k(t)h̃l(t) (⟨ek|el⟩ − ⟨ek|e0⟩⟨e0|el⟩)

=
∑
k,l ̸=0

h̃k(t)h̃l(t) (Ekl − Ek0E0l) , (3.42)

where Ekl ≡ ⟨ek|el⟩. As can be seen explicitly from Eq. (3.42), the terms where either

k or l are zero drop out from the sum (as E00=1). It is also clear from Eq. (3.42)

that ⟨h − h̄|h − h̄⟩ =
∑

k ̸=0 h̃
2
k(t) when the underlying coupling is symmetric (and

consequently the eigenvectors form an orthogonal set, Ekl=δkl). Finally, the width

can be written as

w2(t) =
1

N

N∑
i=1

[hi(t)− h̄(t)]2 =
1

N
⟨h− h̄|h− h̄⟩

=
1

N

∑
k,l ̸=0

h̃k(t)h̃l(t) (Ekl − Ek0E0l) . (3.43)

Note that the above result can be immediately applied to the case of symmetric

coupling with no transmission delays in Eq. (2.1). There, the eigenvectors of the

corresponding Laplacian form an orthogonal set, and the above expression collapses

to w2(t) = 1
N

∑N−1
k=1 h̃

2
k(t) [61].

3.7.2 Ensemble Average over the Noise

Using the general form of the solution given by Eq. (2.10) for the respec-

tive eigenmodes of normalized Laplacian coupling with two types of time delays
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[Eq. (3.48)] gives

h̃k(t) =

∫ t

0

dt′
∑
α

eskα(t−t′)

g
′
k(skα)

η̃k(t
′) , (3.44)

where skα is the αth solution of the kth mode for the characteristic equation gk(s) =

0 from Eq. (3.49). After averaging over the noise, one obtains for the two-point

function

⟨h̃k(t)h̃l(t)⟩ = −2Dχkl

∑
α,β

(1− e(skα+slβ)t)

g
′
k(skα)g

′
l(slβ)(skα + slβ)

. (3.45)

In the stationary state, one must have Re(skα) < 0 for all k and α. Thus, the

stationary state width can be written as

⟨w2(∞)⟩ = lim
t→∞

1

N

∑
k,l ̸=0

⟨h̃k(t)h̃l(t)⟩ (Ekl − Ek0E0l)

=
−2D

N

∑
k,l ̸=0

∑
α,β

(Ekl − Ek0E0l)χkl

g
′
k(skα)g

′
l(slβ)(skα + slβ)

. (3.46)

3.8 Locally Weighted Networks

Now consider Eq. (3.1) with specific locally weighted couplings (already uti-

lized for uniform local time delays in Section 2.7), Cij = σAij/ki. The set of differ-

ential equations then have the form

∂thi(t) = − σ

ki

∑
j

Aij[hi(t− γτ)− hj(t− τ)] + ηi(t)

= − σ

ki

∑
j

Lijhj(t− τ) + σhi(t− τ)− σhi(t− γτ) + ηi(t)

= −σ
∑
j

Γijhj(t− τ) + σhi(t− τ)− σhi(t− γτ) + ηi(t) , (3.47)

where σ controls the coupling strength and Γ = K−1L is now the locally weighted

network Laplacian (Kij = δijki, and Lij = δij
∑

lAil −Aij = δijki −Aij). Diagonal-

ization yields

∂th̃k(t) = σ(1− λk)h̃k(t− τ)− σh̃k(t− γτ) + η̃k(t) (3.48)
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Figure 3.8: Time series of the fluctuations of a single mode for several
delays obtained from numerical integration of Eq. (3.48) with
γ=0.5, λ=1.8, D=1, and ∆t=0.01, averaged over 103 realizations
of the noise ensemble.

where λk is the eigenvalue of the kth mode of the normalized graph Laplacian K−1L.

Figure 3.8 shows the evolutions of a particular mode with delays on either side of

the critical delay. The characterisitic equation for the kth mode is then

gk(s) = s+ σ(λk − 1)e−τs + σe−γτs = 0 . (3.49)

Defining the new scaled variable z = τs, this equation becomes

z + (στ)(λk − 1)e−z + (στ)e−γz = 0 . (3.50)

Hence, the solutions of the original characteristic equation depends on σ and τ in

the form of skα = τ−1zkα(στ). Although the scaling function of the width in the

case of locally normalized couplings with two time delays cannot be expressed in a

closed form, the general scaling behavior is identical to Eq. (2.55) [as follows from

the formal solution shown in Section 3.7, Eq. (3.46)], i.e., ⟨w2(∞)⟩σ,τ = DτF (στ).

The corresponding scaling behavior and scaling collapse, obtained from numerical
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Figure 3.9: Comparison of (a) the widths and (b) the scaled widths for
several coupling strengths σ on a typical locally weighted BA
network of size N = 100 and ⟨k⟩ ≈ 6 for γ = 0.2; simulated with
D = 1 and ∆t = 0.001.

integration of Eq. (3.47), are shown in Fig. 3.9.

The stability/synchronization boundary was again determined by employing

Cauchy’s argument principle [76, 77], applied separately for each mode (Section 3.5).

Figure 3.10 shows the most important eigenvalues to determine synchronizability:

the greatest restriction to the critical delay τc = (τo + τtr)c for a given γ belongs

to either the smallest or largest eigenvalues. An alternative presentation is given in

Fig. 3.11, which shows that it is not always the same eigenvalue that consistently

limits synchronizability for all values of γ; rather it is the eigenvalue that falls on

the lowest point on the boundary curve. The contributions of a few example modes

to the width are shown in Fig. 3.12(a). Note that the order of divergences is not the

same as the ordered eigenvalues, in accordance with Fig. 3.10. The contributions

of a single mode for various values of γ is shown in Fig. 3.12(b). Since it is τo

that has a greater impact on whether or not a network can synchronize, larger total

delays τ are tolerated for smaller γ since more of the delay comes from transmission.

Because of the great sensitivity of ⟨h2⟩ on ∆t near the divergence for longer delays,
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Figure 3.10: Synchronization boundaries for several modes with (a) λk ≤
1 and (b) λk ≥ 1 of a weighted network, obeying Eq. (3.48)
and determined by analyzing the zeros of Eq. (3.50).

an adaptive algorithm was implemented, which would halve ∆t until consecutive

runs agreed within 1%.

With this understanding of the underlying modes, let us return to synchro-

nization of the entire system. Incorporating all relevant eigenvalues results in the

synchronization boundary shown in Fig. 3.13(a) for several representative networks.

The cut for a carefully chosen local delay in Fig. 3.13(b) shows the previously men-

tioned reentrant behavior as the transmission delay is increased. Note that the

optimal width within each synchronizable region worsens with larger delay, so that

while synchronizability can be recovered with increasing τtr, better synchronization

is possible by decreasing τtr. To compare the contribution of modes within the syn-

chronizable regime, consider again the two topologies of BA and ER graphs. For

fixed γ, Fig. 3.14 shows that a BA graph remains synchronizable for larger delays

than a ER graph when the link strengths are weighted by node degree. However,

the ER graph synchronizes slightly better for the majority of the time that it is

synchronizable. Here it is not the topology but the ratio γ that has the most drastic



52

0 1 2
λ

0

10

20

στ

γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.4
γ = 0.5

(a)

0 1 2
λ

γ = 0.6
γ = 0.7
γ = 0.8
γ = 0.9
γ = 1.0

(b)

Figure 3.11: Synchronization boundaries determined by analyzing the ze-
ros of Eq. (3.50) for various delay ratios γ, segregated with
(a) γ ≤ 0.5 and (b) γ ≥ 0.6.

effect.

When γ < 1, the mode corresponding to λ0 = 0 includes self-interaction terms

and has the critical delay

τc(λ = 0) =
π

1 + γ

∣∣∣∣sec(π1− γ

1 + γ

)∣∣∣∣ . (3.51)

While the uniform mode does not contribute to the width because h̄ is removed from

the state of the network (see Section 3.7), a diverging mean can introduce egregious

truncation errors into the numerical integration if h̄ diverges exponentially while the

width remains finite. Fortunately, this can be avoided by simulating the network

in the subspace lacking the zero mode by removing the mean from each time slice.

Since the uniform mode is not allowed propagate, it does not cause any problem

with finite precision. The locations of the zeros’ real parts for Eq. (3.50) are tracked

again using Cauchy’s argument principle (see Section 3.5).
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Figure 3.12: Width contributions for (a) several modes with γ = 0.3 and
(b) several delay ratios with λ = 1.2, found by numerically
integrating Eq. (3.48) with D=1 and σ=1. The vertical lines
correspond to the stability limits obtained from the analyses
of the zeros of Eq. (3.49) with the same λ.

3.9 Arbitrary Couplings and Multiple Delays

When there are multiple time delays involved in the synchronization or coordi-

nation process, in general, one cannot diagonalize the underlying system of coupled

equations. This happens to be the case for the scenario with two types of time

delay [Eq. (3.1)] on unweighted (or globally weighted) graphs (as opposed to specific

locally-weighted ones discussed in Section 3.8). The effects of heterogeneous or dis-

tributed delays have been considered previously for their benefits to synchronization

[78, 79]. A generally applicable method to determine the region of synchronizabil-

ity/stability computationally can be derived by following the method from Refs.

[76, 77]. For arbitrary couplings Cij, the deterministic part of Eq. (3.1) (from which

one can extract the characteristic equation) becomes

∂thi(t) = −Cihi(t− τo) +
∑
j

Cijhj(t− τ) , (3.52)
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Figure 3.13: Synchronization boundaries for typical (a) ER and (b) BA
networks of several sizes with locally weighted couplings.
The boundaries are found by numerical diagonalization and
examining each mode through Eq. (3.49). (c) Widths along
a slice of constant τo=0.77 for the same N=100 BA network
used in (b). For stability comparison, the boundary is shown
below with the slice indicated.

where Ci=
∑

l Cil and τ = τo+ τtr. After Laplace transform, these equations become

sĥi(s) = −Ciĥi(s)e
−sτo +

∑
j

Cijĥj(s)e
−sτ , (3.53)

or equivalently, ∑
j

(
sδij + Ciδije

−sτo − Cije
−sτ
)
ĥj(s) = 0 . (3.54)

Hence, non-trivial solutions of the above system of equations require

detM(s) = 0 , (3.55)

where

Mij(s) = sδij + Cie
−sτoδij − Cije

−sτ . (3.56)
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ing Eq. (3.47) with D=1 and ∆t=0.001. The vertical lines cor-
respond to the stability limits obtained from the analyses of
the zeros of Eqs. (3.50).

Stability or synchronizability requires that Re(s) < 0 for all solutions of the above

(transcendental) characteristic equation [Eq. (3.55)]. To identify the stability bound-

ary of this coupled system, one does not need to know and determine the (infinitely

many) complex solutions of the characteristic equation, but only whether all solu-

tions have negative real parts. To test that, one again can employ the argument

principle [76, 77] (Section 3.5). Note that the above method can be immediately

generalized to arbitrary heterogeneous (local and transmission) time delays. To

compare synchronizability with locally weighted couplings of the same cost as in

Eq. (3.47), now consider the couplings Cij = σAij/⟨k⟩. The results are shown in

Fig. 3.15. The synchronization boundary was determined using the above scheme,

while the width was obtain by numerically integrating Eq. (3.1). Not only does local

reweighting of the coupling strength improve synchronization, but it also extends the

region of synchronizability.
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CHAPTER 4

Extreme Fluctuations in Networks with Time Delays

Along with the average fluctuations about the steady state given by the width,

knowledge of the extreme values of the fluctuations can be useful for gauging the

behavior of a network. Extremes have been of special interest in situations of sur-

face growth [80] and parallel discrete-event simulations [81], and have already been

studied in networks with no time delay [81, 44, 82]. To examine these extremes,

consider the quantity ∆max ≡ max{hi − h̄}i. Because of the symmetry of the relax-

ation behavior with regard to being above or below the mean, the distribution of

∆max is the same as that for ∆min ≡ max{h̄− hi}i and consequently simply related

to ∆ ≡ ∆max +∆min.

4.1 Statistics

The scaling behavior of extreme fluctuations in the case of no time delay has

been investigated previously for SW [81] and SF networks [44, 82]. The established

derivation of the expected distributions of extremes is also applicable to the case of

nonzero time delay [81], so for completeness I adopt that notation and include it

here.

To begin, consider a set of N independent and identically distributed random

variables {∆i}Ni=1. Such a scenario can be applied to a large system that has many

random connections because the correlations between nodes decay quickly for more

distant nodes, so that widely separated nodes are effectively uncorrelated. Denote

the probability for any one of these variables to be greater than x by P>(x). Assume

that

P>(x) ≃ e−cxδ

(4.1)

for x large and with c and δ constants. Since the noise is Gaussian and the couplings

are linear, it is expected that δ = 2. The probability that the variable is less than

x is related by P<(x) = 1− P>(x). The distribution for the largest value being less
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than x can then be expressed as

Pmax
< (x) = [P<(x)]

N = [1− P>(x)]
N . (4.2)

Inserting Eq. (4.1) and employing the convenient identity log(1 + a) ≈ a for a≪ 1

yields

Pmax
< (x) = eN ln([1−P>(x)]) ≃ e−NP>(x) = e−ecx

δ+lnN

. (4.3)

This distribution can be rescaled by x̃ = (x − aN)/bN to the Fisher-Tippett-

Gumbel (FTG) distribution [81, 83, 84, 85] so that

P̃max
< (x̃) ≃ e−e−x̃

(4.4)

by the extreme-value limit theorem. This distribution can again be rescaled for

zero mean and unit variance (removing the mean ⟨x̃⟩ = γ, the Euler constant, and

scaling the variance σ2
x̃ = π2/6 of the FTG distribution) so that a comparison across

various network sizes and delays is convenient. This alternate scaled extreme with

zero mean and unit variance is related to ∆max by

y ≡ (∆max − ⟨∆max⟩)/σ∆max . (4.5)

Continuing with the derivation from [81],the expected largest value is given by

⟨xmax⟩ = aN + bNγ ≈
[
lnN

c

]1/δ
+ (δc)−1

[
lnN

c

](1/δ)−1

γ ∼
[
lnN

c

]1/δ
(4.6)

to leading order with O(1/ lnN) corrections. These corrections will be noticeable

in the network sizes that will be considered.

4.2 Scaling with Uniform Delay

As an initial investigation into the effect of time delay on ∆max, consider the

simplest case of nonzero time delay as in Chapter 2. Through numerical integra-

tion of Eq. (2.1) and monitoring ∆max at each time step, a distribution can be

constructed for the extreme fluctiations. Increasing the delay shifts the average of



59

1 2 3
〈∆

max
〉

0

1

2
P(

 〈∆
m

ax
〉 )

(a)

-5 0 5 10
y

1e-05

0.0001

0.001

0.01

0.1

1

P(
y)

FTG
x = 0.0
x = 0.5
x = 0.7
x = 0.8
x = 0.9

(b)

Figure 4.1: (a) Extreme fluctuation distributions for various delays for a
typical BA network with N = 103, produced by numerically
integrating Eq. (2.1) with ∆t = 0.001. (b) Rescaling of (a)
according to Eq. 4.5.

the distribution higher, but does not significantly alter the shape, as shown in Fig.

4.1(a). The parameter x here is the fraction of the critical delay for the network.

Figure 4.1(b) shows that the same FTG distribution from zero time delay also ap-

proximates the rescaled widths when nonzero delays are present. Similarly, 4.2 shows

the same two plots for a typical ER network. While the BA network distributions

become wider as the delay is increased (and hence the peak becomes lower), the ER

network exhibits a narrowing of the distribution. In other words, a larger time delay

does not only lead to more extreme fluctuations in ER networks, but also to more

consistently large extremes. A progression of distributions showing the approach to

the FTG distribution is shown in Fig. 4.3. The corrections of O(1/ lnN) vanish

slowly and are expected to be noticeable for these somewhat small system sizes.

The displacement of individual nodes (∆i) can change drastically as the critical

delay is approached. Specifically, the highest degree nodes synchronize the best (i.e.,

have the narrowest distribution about zero for ∆i) when the delay is well below the

critical delay. The 1/k-dependence of ∆i (in accord with [15]) is shown in Fig. 4.4
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Figure 4.2: (a) Extreme fluctuation distributions for various delays for a
typical ER network with N = 103, produced by numerically
integrating Eq. (2.1) with ∆t = 0.001. (b) Rescaling of (a)
according to Eq. 4.5.

by a dotted line. However, as the delay increases, these hub nodes become the worst-

synchronized nodes in the network as the oscillations become more sustained locally

about them. The displacement of individual nodes ∆i has a Gaussian distribution.

In agreement with Fig. 4.4, the spread of ∆i is hardly affected by the presence of a

time delay, even at 95% of τc (see Fig. 4.5). However, there is a noticeable change

for a node of intermediate degree and a very significant spreading of ∆i (i.e., the

node is poorly synchronized) for the highest degree node.

In order to consider the scaling behavior of ∆max for ensembles of networks of

a given size, let us look at ⟨∆max⟩, the highest displacement of any node when the

system is in the steady state averaged over a random ensemble of networks. The

delay is constant across all networks of the same size, but varies on N according

to the average critical delay for all networks of size N . To be explicit, this method

requires taking an ensemble (104) of random networks of a given size and determining

the average largest eigenvalue. The delay for each ensemble of size N is then a

fraction x of the critical delay, with this fraction held constant over all network
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[Eq. 4.5] values to make the trend better visible.

sizes. Only networks which are synchronizable for the given delay (as discussed in

Section 2.5) are included in the computation for ⟨∆max⟩. The results for typical BA
networks are shown in Fig. 4.6(a), while those for typical ER networks are shown

in Fig. 4.6(b). Both networks exhibit the expected scaling dependence on lnN ,

although larger system sizes must be considered in order for the exact scaling to

manifest.

The natural continuation of this particular line of investigation concerning

extreme fluctuations would involve generalizations. The most straight-forward ap-

proach would resemble those generalizations explored for the width, which include

various topologies and weightings as well and multiple time delays.



62

0 5 10 15 20 25 30
k

0

0.2

0.4

0.6

0.8

1

〈∆
i2 〉

x = 0.00
x = 0.50
x = 0.80
x = 0.90
x = 0.95
~ 1/k

Figure 4.4: Fluctuations of individual nodes for a typical BA network of
size N = 100 for various delay fractions x, produced by nu-
merically integrating Eq. (2.1) with ∆t = 0.001. The constant
coefficient for the 1/k curve is 1.23.



63

-2 0 2
∆

i

0

0.5

1

1.5

2

P(
 ∆

i )

(a)

-2 0 2
∆

i

(b)

-2 0 2
∆

i

k
min

  = 3

k    = 15
k

max 
 = 30

(c)

Figure 4.5: Probabilities for displacements from the mean ∆i for three
nodes that represent the lowest (kmin), an intermediate, and
the highest (kmax) degree nodes for a typical N = 100 BA
network. The three figures correspond to (a) 0%, (b) 50%,
and (c) 95% of the critical delay τc = 0.05

100 1000
N

1

1.5

2

〈∆
m

ax
〉

x = 0.00
x = 0.50
x = 0.90
x = 0.95

(a)

10 100 1000
N

1

1.5

2

2.5

〈∆
m

ax
〉

x = 0.00
x = 0.50
x = 0.90
x = 0.95

(b)

Figure 4.6: Average extreme fluctuations ⟨∆max⟩ for ensembles made up
of 103 random networks for each size N . Each point is deter-
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CHAPTER 5

Summary 4

Through the investigations presented here, we have explored the impact and inter-

play of time delays, network structure, and coupling strength on synchronization

and coordination in complex interconnected systems. The focus has only been on

linear couplings, which already yields a rich phase diagrams and responses. While

nonlinear effects are crucial in all real-life applications [7, 31, 32, 33], linearization

and stability analysis about the synchronized state yields equations analogous to

the ones considered here [8, 79]. Hence, the detailed analysis of the linear problems

can provide some insights to the complex phase diagrams and response of nonlinear

problems.

For a single uniform local delay, the synchronizability of a network is gov-

erned by a single eigenvalue (i.e., the largest) and the time delay. This result links

the presence of larger hubs to the vulnerability of the system becoming unstable at

smaller delays. The quality of system-wide synchronization within the stable regime

is described by the width, which can be calculated exactly for arbitrary symmetric

couplings, provided the spectrum is known. The boundaries of the region of syn-

chronizability can also be expressed in terms of the delay and the overall coupling

strength (associated with communication rate) to provide the general scaling behav-

ior of the width inside this regime. These results underscore the importance of the

interplay of stochastic effects, network connections, and time delays, in that how

“less” (in terms of local communication efforts) can be “more” efficient (in terms of

global performance).

For more general schemes with multiple time delays, stability analysis in gen-

eral delay differential equations can be applied to ascertain the synchronizability

of a network. For cases where – at least in principle – eigenmode decomposition is

possible, the width obeys definite scaling behavior within the synchronizable regime.

4Portions of this chapter to appear in: D. Hunt, G. Korniss, B.K. Szymanski, “Network Syn-

chronization and Coordination in a Noisy Environment with Time Delays”, (in review).
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However, in these cases it is not always the same eigenvalue that determines stability

for all γ. This is in contrast to the special case γ = 1 when it is always the largest

eigenvalue that determines synchronizability.

In the non-monotonic nature of the scaling function, there is a fundamental

limit to how well a network can synchronize in the presence of noise. In the case

when transmission and reaction are two independent and significant sources of delay,

there is an additional parameter for tuning: the ratio of local delay to the total delay.

By fixing the local delay and cutting across different values of the ratio, there is the

possibility that the network will enter into and emerge from synchronizable regions.

In such scenarios, increasing the transmission delay can be beneficial by returning

the network to a synchronizable scheme.

Finally, we looked at the behavior of the extremes of the fluctuations in the

presence of uniform time delay. The association of large hubs with the unsynchro-

nizability of the network is reinforced by the observation that these hubs have the

poorest response as the delay is increased. Of all the nodes, those with highest

degree show the most deterioration in coordinating with the network. Ultimately,

they are the nodes whose fluctuations diverge the fastest once the critical delay is

reached. This shows that in order to extend the synchronizability of a network or to

maintain a well-synchronized network for longer delays, avoiding large hubs can be

very beneficial. Understanding all these influences can guide network design in order

to maintain and optimize synchronization by balancing the trade-offs in internodal

communication and local processing.
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