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ABSTRACT

The complexity and dynamics of the Internet is driving the demand for scalable and

efficient network simulation. In this thesis, we describe a novel approach to scala-

bility and efficiency of parallel network simulation that partitions the networks into

domains and simulation time into intervals. Each domain is simulated independently

of and concurrently with the others over the same simulation time interval. At the

end of each interval, traffic statistics data, including per flow average packet delays

and packet drop rates, are exchanged between domain simulators. The simulators

iterate over the same time interval until the exchanged information converges to the

value within a prescribed precision before progress to the next time interval. This

approach allows the parallelization with infrequent synchronization, and achieves

significant simulation speedups.

Large memory size required by simulation software hinders the simulation of

large-scale networks. To overcome this problem, our system supports distributed

simulations in such a way that each participating simulator possesses only data

related to the part of the network it simulates. This solution supports simulations

of large-scale networks on machines with modest memory size.

x



CHAPTER 1

INTRODUCTION

1.1 Motivations

In simulating large scale networks at the packet level, one major difficulty is the

enormous computational power needed to execute all events that packets undergo

in the network [38]. The needed computational resources can only be provided by

the parallel computation involving a large number of processors. Over the last two

decades, Parallel Discrete-Event Simulation (PDES) technology has been studied

and applied to a variety of network simulation applications. In order to synchronize

parallel simulators, conservative and optimistic synchronization techniques were in-

vented and different protocols in both categories were proposed [25]. In conservative

parallel simulation, each logical process must be blocked from processing an event

until it can make sure that it will not receive any event with a smaller time stamp

than the current event in the future. In optimistic parallel simulation, each logical

process is allowed to execute events on its event-list without the guarantee that later

arrival events have no smaller time stamps, and it uses additional mechanisms to

detect out-of-order event execution and to roll the logical process back to a state

before the execution of out-of-order events. All the conventional parallel simulations

require precise execution and tight synchronization for each individual event. How-

ever, the inherent characteristics of network simulations are the small granularity of

events and high frequency of events that cross the boundaries of parallel simulations.

Tight synchronization on the event-level lowers parallel efficiency of the execution,

and therefore do not scale to large number of processors. This difficulty motivated

us to invent a new synchronization mechanism for network simulations to achieve

better efficiency and scalability, and develop our novel Genesis network simulation

system, which integrates a set of parallel simulators loosely coordinated by a coarse

granularity synchronization framework [75, 76, 77].

Many parallel simulation systems achieved speedup in execution time, however,

they also required that every machine involved had big enough memory to hold the

1
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full network, the requirement most easily achievable through the systems with shared

memory. In distributed memory parallel systems, this leads to the large memory size

required by simulation software on each processor. With the emerging requirements

of simulating larger and more complicated networks, the memory size becomes a

bottleneck. Simulating a large network requires large memory to construct the

network when network configuration and routing information is centralized. In

addition, memory size used by simulation software also depends on the intensity

of traffic loads (that impact the average size of the future event list), hence the

memory used might further increase during the simulation. Memory requirements

are also impacted by the design and implementation of different simulation software

packages, a good design can achieve better scalability [51]. However, we believe that

to simulate truly large networks, the comprehensive, distributed memory approach

needs to be developed. This requires that our new simulation approach has to

incorporate distributed memory techniques to achieve scalability on memory usage

in addition to high execution speed.

Recently, Coffman and Odlyzko reported that Internet data traffic is doubling

each year [13]. With the fast growth of Internet data traffic, the demands placed on

Internet routing protocols, such as the Border Gateway Protocol (BGP), are tremen-

dous. Correct and efficient performance of these routing protocols is important for

keeping the Internet connected. These require the development of simulation tools

which can efficiently simulate routing protocols in large scale networks. Because

of its efficiency in parallel execution and scalability in both execution and memory

usage, we believe that Genesis will be such a powerful tool for BGP simulations in

large scale networks. Genesis achieves performance improvement thanks to its novel

high-granularity, low-frequency synchronization mechanism. No individual packet

is synchronized between two parallel simulations; instead, traffic data are “summa-

rized” on some flow metrics and only these statistic data are exchanged between

domains at the end of each time interval. Support for distributed BGP simulation

was also incorporated into the framework of Genesis [78], which makes it a powerful

tool for analyzing the performance of routing protocols.
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1.2 Contributions

Our first contribution was the design and implementation of a scalable dis-

tributed network simulation system, Genesis, using coarse granularity synchroniza-

tion techniques. Coarse granularity synchronization provides a novel approach of

simulating large scale networks. Compared with conventional simulation systems

which use fine granularity (event-level) synchronization techniques, coarse granular-

ity synchronization reduces the synchronization frequency and the amount of data

exchanged among processors. Genesis achieved better execution speed and scalabil-

ity for large scale network simulations.

Our second contribution was the design and implementation of distributed

BGP simulation. This was the first distributed version of detailed BGP simulation in

major network simulation systems. BGP simulation in large scale networks requires

large memory size which has become a scalability limitation. Distributed BGP

simulation creates a new approach of simulating large scale BGP networks using

clusters of machines with smaller dedicated memory.

Our third contribution was the development of a general approach to porting

existing sequential simulations to distributed platforms. To practice and validate

this technique, we have successfully created distributed versions of some widely used

network simulation systems, including ns2 and SSFNet.

Our fourth contribution was the development of a general simulation system

integration framework, which facilitated the inter-operation among heterogeneous

simulation systems.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 introduces the background of our research endeavor. Chapter 3 gives

an overview of the Genesis approach and system. Chapter 4 discusses distributed

simulation of UDP and TCP in Genesis with full network topologies. The design of

distributed BGP simulation is studied in Chapter 5. Chapter 6 introduces memory

distributed simulation in Genesis. Chapter 7 discusses simulation parameters in

Genesis and their effects on performance. Chapter 8 gives the conclusions.



CHAPTER 2

BACKGROUND

2.1 Parallel Discrete-Event Simulation

2.1.1 Introduction

Parallel/distributed simulation technology enables a simulation program to be

executed on parallel/distributed computer systems which have multiple processors

interconnected by a communication network. Parallel discrete-event simulation has

been successfully applied in several application areas, for example, aviation control

[80], Markov chain simulation [53], architectural simulation [63, 19, 20] and telecom-

munications [14]. The biggest benefit that can be gained from this technology is

that it reduces the execution time of the simulation. For example, by subdividing

a large simulation computation into ten different sub-computations and executing

them on ten processors, we can reduce the execution time up to a factor of ten

(ideally). We can also gain other benefits from this technology, such as integration

of heterogeneous simulations and better fault tolerance. But execution time is the

biggest concern in most of the large-scale simulations, and it is also one of the major

concerns in our research.

However, speedups in execution time in parallel/distributed simulations are

limited by the well known synchronization problem: in order to guarantee the cor-

rectness of the parallel/distributed simulation, the event execution order should be

maintained the same on each of the simulators as the order in which they are exe-

cuted on an equivalent sequential simulation. For this requirement, once the simula-

tion is divided into concurrent sub-simulations, special synchronization mechanism

is needed to control the pace of these concurrent simulations. Different synchroniza-

tion mechanisms divide parallel/distributed simulation technologies into different

categories, as explained below.

4
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2.1.2 Conservative Synchronization Technology

In conservative synchronization technologies, each “Logical Process” (LP) will

execute any events strictly in their time-stamp order, no out-of-order events are

allowed. Each LP must be sure that no events with smaller time-stamps than

the current event will arrive in the future before it can execute the current event.

Algorithms were designed to safely advance the simulation time in each LP [12, 4].

The performance of conservative synchronization based simulations is largely

determined by a parameter of the simulation model, named lookahead [48, 81]. If a

logical process at simulation time T can only schedule new events with time stamp of

at least T +L, then L is referred to as the lookahead for the logical process. Suppose

LP1 has reached time T and it has a lookahead of L, then any other LPs connected

only to LP1 can safely execute events with time-stamps smaller than T +L without

worrying about receiving an out-of-order event from LP1 in the future. Here is a

simple conservative synchronization protocol, where Li is the lookahead value of

LPi:

While (simulation in progress)

Do

Tmin = MIN(Ti + Li) for all i

S = set of events in the processor with time stamp ≤ Tmin

Process events in S

Barrier synchronization

End

Some more advanced conservative synchronization algorithm will take into

account the combination of the lookaheads and the relationship among the LPs, in

order to advance the local simulation time as much as possible. But the lookahead

values is still fundamental to these algorithms.

Intuitively one can expect that the larger the lookahead value, the faster the

LPs can advance their simulation execution. But unfortunately, the lookahead values

are determined by the design of the simulation model itself, and sometimes also

limited by the physical environment to be simulated, so not always big lookahead

values are achievable.

Because simulations based on conservative protocols are generally less complex
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than optimistic ones and easier to be implemented, many simulation applications in

the real world fall into this category.

2.1.3 Optimistic Synchronization Technology

Unlike conservative synchronization protocols, optimistic protocols take an-

other approach to maintain the correct event order. The basic idea is that, a LP

will advance its event execution without waiting for other LPs. Instead, it will store

some additional information for all the “unsafely” executed events. If this LP re-

ceives any event with a smaller time-stamp than its current simulation time from

other LPs in the future, it will “undo” the execution of all the events with greater

time-stamps than that of the received event by using the stored additional infor-

mation. A special mechanism is used to determined the “safe time point” called

Global Virtual Time [31, 32, 23], below which the simulation will not roll back

knowing of a simulator can discard the additional information stored before this

safe time point. The major concern in this kind of protocols is how to efficiently

“undo” event executions and use smaller additional storage.

A parallel simulation system using optimistic synchronization techniques will

usually consist of these functionalities:

1. Rolling Back State Variables. Executing an event usually changes the value of

some state variables within a logical process. To undo the event, the changed

values need to be restored. The major approaches are copy state saving, infre-

quent state saving [2, 41] and incremental state saving [29, 70]. In any of these

methods, the whole or part of the LP’s state need to be stored in additional

storage. During the roll back, the original value of the state is retrieved from

storage or restored by reverse computation. Time Warp programs typically

allocate much more memory than sequential simulation [71]. Some rollback-

based protocols require no more memory than the corresponding sequential

simulation [16, 40], however, performance suffers.

2. Unsending Messages. The execution of an event can also schedule new events

and send them to other logical processes. To undo an event, the events sent by

this event need to be “un-sent”. The Time Warp mechanism [25] introduced
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the idea of “anti-message”. For each message sent by a Time Warp Logical

Process (TWLP), an anti-message, which is simply a copy of the original

message with a special flag, is also created. To undo the sending of a previous

message, the sending TWLP will send the corresponding anti-message instead.

The receiving TWLP will either cancel the original message if it has not been

executed, or roll back its state to the point just prior to processing the message

to be undone by the anti-message.

3. Fossil Collections. From the discussion above, to support roll backs, additional

copies of state variables and messages need to be stored. These additional

storage need to be reclaimed regularly during the simulation, to prevent it

from running out of memory. The Global Virtual Time (GVT) is computed in

Time Warp system. GVT is the lower bound of the time stamp of any future

rollback. Once the GVT is computed [26], the copies of state variables and

messages earlier than the GVT are discarded and memory is reclaimed in a

procedure called fossil collection. In order to correctly compute the GVT, some

global control algorithms were designed to synchronize the logical processes

during the computation.

In optimistic synchronization protocols, events are periodically synchronized

only “loosely”. As the result, additional storage is required to support rollbacks, so

the overall order of the events is still strictly maintained. In addition, global control

is required to synchronize processes during the GVT computation.

The additional storage is required to store the already executed messages as

well as state variables, which means that the size of the additional storage is not

only related to the size of the program (size of states), but also the event processing

history.

2.2 Related Research

2.2.1 Network Simulator ns2 and PDNS

ns2 [57] represents the state-of-the-art in networking simulation packages. It

supports a variety of models, such as UDP, TCP/IP and wireless. The critical fea-
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ture of ns2 is the ease with which researchers can model networks. The standard ns2

implementation used sequential simulation technology. It did not support parallel

network simulation. The simulation in ns2 is also centralized in terms of memory

usage as well as execution.

Despite the advances made by ns2 in terms of flexibility and ease of use, it is

not adequate for simulating large-scale networks. Consider a simple network with

512 source nodes connected by a 1Gb/s duplex link to 512 sink nodes. The traffic

in the network consists of 1000 byte UDP packets and will fully utilize the duplex

link configured for drop-tail queuing. To simulate this network on a modern 1GHZ,

250MB RAM PC, ns2 will allocate almost 180MB of RAM and will processes events

at a rate of about 1000 per second. Hence, 1 second of the simulated traffic will take

nearly 1 hour of simulation time and will use almost entire memory of this platform.

For large-scale networks, several orders of magnitude greater memory and perfor-

mance are needed. Simulation results also showed that ns2 failed to simulate such a

network when the number of connections increased to more than 9000, thanks to its

centralized computation and memory usage [51]. Parallel and distributed network

simulation technology is needed to achieve efficiency and scalability, especially in

large scale network simulations.

In addition, the current version of ns2 did not support the simulation of BGP4,

which made it difficult to study BGP performance in simulation.

PDNS is an extension of ns2, which is a parallel/distributed version of ns devel-

oped by Georgia Tech [61]. PDNS distributes the memory as well as the execution

among parallel simulators: each parallel simulator only constructs and simulates

part of the full network. The parallelization of ns2 in PDNS is achieved by utilizing

a library for implementing parallel/distributed simulations, known as RTIKIT [22].

RTIKIT utilizes a conservative synchronization mechanism to support the interop-

erability among a group of sequential or parallel simulators. Because a conservative

protocol is used, PDNS falls prey to the same problems as conservative parallel

simulators.

Besides the extension of conservative synchronization parallel simulation tech-

nology, PDNS extends the tcl [59, 79] network model in ns2 by introducing the
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definitions of remote links, remote agents, remote route, et cetera, to distributively

define and construct network. Global routing issues arise when the network is de-

composed into distributed simulators. When using PDNS, since only a portion of

the global topology is known to each simulator, there are times when choosing the

correct route between nodes defined on different simulators is problematic, thus re-

mote routes are required to be defined by users in network model definition file.

Another case is the so called “pass-through” routes: sometimes a packet is received

by a simulator from a remote one, but the ultimate destination for that packet is

still not local to the simulator receiving the packet. In this case, the packet is to be

passed through to another simulator. Such routing is called pass-through routing,

and also need to be specified by user in network model definition file in PDNS.

The method used in PDNS to solve the global routing problem in distributed

simulation is problematic: users are required to pre-define global routing for re-

mote traffic in the network model definition phase. However, when global routing

is difficult to predict, it will be very difficult to pre-define it in network script files.

More importantly, such an approach makes impossible the simulation of global rout-

ing protocols, for example, BGP, which will decide the global routing dynamically

during the simulation.

2.2.2 SSFNet and DaSSFNet

SSFNet [67, 58] is a collection of Java SSF-based components for network

modeling and simulations. It can simulate Internet protocols and networks from IP

packet level up in the protocol stack. Parallel simulation is implemented not at the

SSFNet layer, but in the underlying simulation engine. The implementation of the

parallelization in the simulation engine is transparent to the SSFNet layer. Such a

design simplified the SSFNet layer from the details of the parallel implementation.

The Java based implementation of SSF simulation engine supports parallel

simulation using conservative synchronization techniques. Interface for paralleliza-

tion between SSFNet and the underlying engine is provided as the concept of “align-

ment”. Network components are defined as “entities” in the simulation, and the

simulation entities aligned to different alignment groups could be simulated on dif-
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ferent processors. Entities exchange simulation events through “channels”, which

are connections between two different entities. Channels connecting two entities

which belong to two different alignment groups transmit events between two paral-

lel simulators. This kind of border channels require non-zero lookahead to guarantee

the conservative synchronization performance.

Simulation results showed that Java based SSFNet runs slower than ns2 for

smaller size of networks, but it has better scalability in terms of memory and com-

putation limitations for large scale network simulations, thanks to its parallel sim-

ulation approach as well as to the garbage collection mechanism provided by Java.

In a simulation for a network of a dumbbell topology and with large number of

connections, ns2 failed to simulate more than 9000 connections, while Java based

SSFNet successfully simulated the largest number of connections provided, which

was 12000 sessions [51].

Because in SSFNet, the parallel simulation is implemented in the simulation

engine, the network model is transparent to the synchronization mechanism. As a

result, without any awareness of the semantics of the simulation events, the sim-

ulation engine in SSFNet must perform tight event-level synchronization on any

individual event. On the other hand, Java based SSFNet does not provide mem-

ory distribution, which requires that every involved processor has the access to the

full storage of the whole network. This design is more suitable for shared-memory

multiprocessor machines and can not scale well for very large network simulations.

DaSSFNet [18] is a C++ implementation of SSFNet, which was designed by

Dartmouth College. The simulation engine for DaSSFNet is DaSSF, which is a paral-

lel simulator using also the conservative synchronization approach. DaSSFNet/DaSSF

has similar design of the network model and the interfaces between the engine and

the network layer as SSFNet/SSF, but it optimizes its C++ implementation to

achieve better execution efficiency. One of the biggest improvements in DaSSFNet

is that it supports simulations on distributed memory, which allows it to utilize

not only shared-memory multiprocessors, but also distributed memory clusters of

workstations [43].

DaSSFNet also supports distributed construction of the network in distributed
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memory. In order to refer to the objects constructed in different memory spaces,

a global string name is defined for each object in DML file which defines the net-

work model. In addition, in order to transmit events through the border channels

connecting two entities in different memory spaces, “proxies” for these channels are

introduced to collect this kind of remote events, and pass them to the proper remote

entities. Each event to be transmitted to a remote simulator must be converted into

a byte stream. Because DaSSFNet also perform tight synchronization at event-

level, the distributed-memory implementation involved only two major extensions:

the way to identify the entities on both ends of a remote channel, and the way to pass

each individual event in such a remote channel to the other end. As we will see later

in our Genesis research, memory distribution in a coarse granularity synchronization

system without event-level synchronizations will be more complicated, where events

(packets) are handled differently based on their semantics in the network.

As reported by David Nicol from Dartmouth College, DaSSFNet runs nearly as

fast as ns2, and uses less memory than ns2 or Java based SSFNet. The performance

of DaSSFNet is more stable than other simulation software when the network size

scales up thanks to its parallel simulation approach and distributed memory usage

[51].

DaSSFNet is one of the closest research works to our Genesis in terms of ad-

dressing the memory usage limitation problem. This work was done within the

framework of conservative synchronization parallel simulation approach with the ef-

fort to improve its performance. In contrast, Genesis is designed to overcome the

efficiency limitation of parallel network simulation by avoiding tight synchronization

on the event-level, and it utilizes a novel optimistic coarse granularity synchroniza-

tion mechanism.

One major setback of DaSSFNet is that it does not have any routing protocol

implemented – protocols like BGP and OSPF. Static forwarding tables need to be

defined for routers in network script files. Like ns2, this makes it impossible to study

the dynamics and performance of routing protocols in simulation.
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2.2.3 High Level Architecture (HLA)

HLA [15] is, first, a conceptual framework because it defines a collection of

related concepts for organization of simulation systems. It defines a standard for

connecting several computer-based simulation systems so that they can run together

and exchange information. This allows the integration of existing simulation systems

with new systems, and the reuse of existing systems for new purposes. Secondly,

HLA is also an application framework because it defines interaction interfaces be-

tween the federates of the system, and provides implementations of the “Runtime

Infrastructure” (RTI). The basic concepts in HLA include:

1. Federation. The Federation is a collection of Federates with a common Fed-

eration Object Model. The Federation constitutes of a number of sub-systems

that together with a Runtime Infrastructure, RTI, form a distributed simula-

tion system.

2. Federate. A Federate is a member of a Federation. It is a simulation component

participating in the Federation, communicating and cooperating with other

Federates. A Federate can be a sub-system of a simulator or a whole simulator

in a multi-simulator Federation.

3. Runtime Infrastructure. The Runtime Infrastructure (RTI) is, in effect, a dis-

tribute operating system for the Federation. RTI provides a set of services that

support the simulation in carrying out these federate-to-federate interactions

and Federation management support functions.

Intuitively, HLA can be viewed as a parallel/distributed simulation system. It

distributes the simulation execution as well as memory usage among participating

Federates. RTI provides several services to integrate these Federates, among which

the “Time Management Service” performs the parallel synchronization function. In

HLA, Federates must explicitly request logical time advances, and the advance does

not occur until the RTI issues a grant. RTI will only grant an advance to logical

time T when it can guarantee all time-stamp ordered messages with time-stamp

less than T (or in some cases less than or equal to T ) have been delivered to the
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Federate. This guarantee enables the Federate to simulate the behavior of the entity

it represents up to logical time T without concern for receiving new events with

time-stamp less than T . HLA uses a conservative synchronization technology to

coordinate the simulations in Federates.

The HLA provides several services to support the inclusion of optimistic Fed-

erates, e.g., Federates synchronized using the Time Warp mechanism. The Lowest

Bound Time Stamp(LBTS) value computed by the RTI enables the Federate to

compute Global Virtual Time (GVT). A service for retracting previously sched-

uled events is provided, thereby enabling the implementation of “anti-messages”.

A service is provided to allow optimistic Federates to flush the time-stamp ordered

message queue, enabling the optimistic processing of events. An important property

of the time management services is that they ensure that optimistic events (events

that may later be canceled) are not delivered to Federates unless they explicitly

request them via the flush queue primitive, thereby enabling conservative Federates

to operate in the same Federation with optimistic Federates. It is not necessary

for these conservative Federates to implement rollback and message cancellation

mechanisms.

Similar to Genesis, HLA is also a framework which supported integration of

simulation systems. However, there are some important difference between HLA and

Genesis. Because HLA was designed to provide a general framework to integrate

both new and existing systems which might use either conservative or optimistic

synchronization technology, a conservative based synchronization mechanism be-

came the only choice for RTI. In contrast, the purpose of our research in Genesis

was to achieve high efficiency and scalability in simulation and provide the inte-

gration ability for Genesis-complied simulators. Integration of existing systems was

not the major purpose of Genesis. This allowed us to utilize novel optimistic syn-

chronization technology. In addition, Genesis used a technique of application level

checkpointing mechanism in its coarse granularity synchronization. This technique

can be used to convert existing sequential simulation systems into Genesis-complied

simulation sub-systems, thus also provided the ability to integrate existing systems.
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2.2.4 GTW and ROSS

GTW (Georgia Tech Time Warp) [17] and ROSS (Rensselaer’s Optimistic

Simulation System) [9, 10] are parallel simulation systems using optimistic synchro-

nization technologies. One concern in optimistic protocols is how to efficiently cancel

event execution for out-of-order events and use smaller additional storage. One ap-

proach is “Rolling Back State Variables”, which stores all the state variables within

a logical process, or stores them in an incremental way, and then restores their orig-

inal values in a roll back. Another approach which can save the addition storage

required by state saving is “Reverse Computation” [6, 7, 8], which is used in ROSS,

where the original values are computed from their current values. To cancel the

sending of an event, GTW and ROSS use “anti-messages”, which is simply a copy

of the original message with a special flag. An LP that receives an anti-message will

eliminate the original message received earlier. If the original message has already

been processed, the effects of processing this message will also be rolled back. Fossil

collection is a mechanism to reclaim additional storage used by optimistic synchro-

nization. The Global Virtual Time (GVT) is computed in Time Warp system. GVT

is the lower bound of the time stamp of any future rollback. Once the GVT is com-

puted, the copies of state variables and messages created earlier than the GVT are

discarded and memory is reclaimed in the procedure of fossil collection.

GTW is a parallel discrete event simulation system based on a Time Warp

mechanism. It was designed to support efficient execution of small granularity

discrete-event simulation applications, and targeted at cache-coherent, shared-memory

multiprocessor systems. As a result, it used a simplified GVT computation algo-

rithm, in which the GVT execution is asynchronous and is interleaved with normal

processing.

ROSS is also a system designed for shared-memory multiprocessor systems and

uses the same GVT computation algorithm as GTW. It is a modular, C-based im-

plementation of Time Warp protocols. It introduced some important improvements

into previous implementation of Time Warp systems to achieve high performance

and low memory requirement. It is capable of extreme performance: on a quad

processor PC server ROSS is capable of processing over 1,250,000 events per sec-
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ond for a wireless communications model. Additionally, ROSS only requires a small

constant amount of memory buffers greater than the amount needed by the sequen-

tial simulation for a constant number of processors. The improvements in ROSS

were achieved by the integration of several technologies including its pointer-based,

modular implementation framework, its use of reverse computation technique and

its use of Kernel Processes.

Memory consumption, event rollbacks and GVT computation overheads are

often cited as reasons for commercial network simulation packages using the con-

servative synchronization techniques. To develop more efficient GVT algorithms,

reduce synchronization overheads and minimize optimistic memory consumption

was one approach taken by optimistic synchronization simulation research. To de-

velop a novel, more efficient synchronization technology for network simulation and

distribute the memory usage was another approach taken in the research work ad-

dressed in this thesis.

2.2.5 Fluid Model Network Simulation

The traditional packet-level approach to network simulation is to simulate the

arrival, queuing, processing and departure of each individual packet at the various

queues along a packet’s path through the network. However, as the number of

network nodes becomes large, this approach becomes computationally infeasible, or

at the best, inefficient. Thus, while packet level simulation may be easy to imple-

ment and can yield accurate results for small networks, more scalable simulation

methodologies and techniques are needed to simulate truly large scale networks.

To reduce the complexity of network simulation in packet level, some ap-

proaches to using a “fluid” technique to approximate the flow between network

partitions were invented, such as Kesidis and Walrand [36], itDecisionGuru [30] and

the Rensselaer Scalable On-line Simulation project [72]. Fluid simulation uses a

fluid flow rather than a packet-by-packet flow to represent a traffic source. In a fluid

simulation, a source’s fluid flow rate may change as the packet generation rate in

the system being modeled changes. Small time-scale variations in the packet arrival

stream are abstracted out of the source model by having the fluid’s rate remain
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constant between these changes in the fluid rate. As the fluid flows through the

network, a fluid simulator need only to keep track of the rate changes that occur as

a result of queuing, multiplexing, and processing of the fluids at the various queues;

in contrast, an equivalent packet-level simulation would need to keep track of a po-

tentially enormous number of packets in the network. When a packet-level source

is modeled as a fluid source, the fluid’s rate (and rate changes) is simulated and

tracked exactly at each point in the network. Thus, in fluid simulation, network

traffic is modeled in terms of a continuous fluid flow, rather than discrete packet

instances.

In fluid simulations, the traffic source rates and its changes are used to calculate

queue length, average waiting time in queue, et cetera. Because no individual packet

is traced, the simulation is more efficient, and scales better than traditional packet-

level simulation when network size grows up. Such a high level of abstraction might

achieve high processing efficiency when simulating network traffic [42].

One drawback of a fluid model is the accuracy of the measurements of interest

that is compromised because of the abstraction. In addition, performance mea-

surements cannot be obtained in fluid simulation as conveniently as in packet-level

simulations.

2.3 Chapter Summary

In this chapter, we provided an overview of Parallel Discrete-Event Simula-

tion (PDES). Synchronization technique is one of the biggest challenge in parallel

discrete event simulation. These techniques have been classified into two major

categories: conservative synchronization and optimistic synchronization. Either of

them has some advantages over the other. More comprehensive surveys of various

synchronization techniques are provided in [24, 55, 52, 21, 47]. Large scale net-

work simulation is particularly challenging in terms of scalability, because of the

enormous computational power needed to execute all events that packets undergo

in the network. We provided an overview of some related research efforts towards

building a high performance, scalable network simulation system. Some of them

used sequential simulation techniques while the others took the parallel/distributed
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simulation approach.

The techniques to improve the parallel synchronization performance were dif-

ferent, however, all the packet-level parallel network simulation systems shared one

common property in: they all performed tight packet-level synchronization to guar-

antee the correct time-stamp order in each processor. To improve simulation perfor-

mance within this tight packet-level synchronization framework was the approach

taken by most of current research efforts. In the rest of this thesis, we will intro-

duce a novel approach to improve simulation performance, the coarse granularity

synchronization framework.



CHAPTER 3

GENESIS: GENERAL NETWORK SIMULATION

INTEGRATION SYSTEM

3.1 A Novel View of Network Simulation

The inherent characteristics of large-scale network simulation is that the num-

ber of events (e.g., packets) is huge and the event rate is high, while the granularity of

an event is usually small. In the previous chapter, we have shown that synchroniza-

tion for parallel/distributed network simulation is a big challenge, and researchers

have taken different approaches to improve synchronization performance.

This high synchronization overhead comes from a “general rule” for parallel

and distributed simulations: each event that is created on one processor and needs

to be executed on the other introduces synchronization overhead. The processors

involved in such an event need to be synchronized for this event and this delays their

execution. This general rule limits the improvement of synchronization performance

for network simulation because of the huge number and high frequency of events.

Can we break this “general rule”? Our efforts to find the answer for this

question had led us to the research work addressed in this thesis.

In the traditional view of network simulation, we consider a group of parallel

or distributed simulation sub-systems as one simulation system which is required to

produce exactly the same simulation result as a sequential simulation would do. Un-

der this consideration, the general rule is an indispensable requirement to guarantee

the correct result. The answer to our question seems to be negative. However, is it

always a requirement to synchronize each individual packet to achieve the purpose

of a network simulation? The answer is no. In many network simulations, we do not

care what have happened to individual network packets. Instead, we are more inter-

ested in some “metrics”, for example, traffic throughput, end-to-end packet delay,

packet lost rate, et cetera. Thus, from a view at a higher level, we are running simu-

lations to achieve statistics data for the “metrics” we are interested in. A simulation

system only needs to produce these data accurately, or with approximations within

18
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a satisfactory range, instead of guarantee the correct behavior of each individual

packet. This gave us the possibility to simplify a network simulation.

With this novel view of network simulation, we consider a distributed simu-

lation system as a loosely coupled distributed computing system. Each distributed

domain simulator runs separately doing local computation (simulating the domain

assigned to it) within a period of time, with all the information of the network it has

at that time, to produce local results as accurately as possible. Periodically, these

distributed simulator exchanges computation results and updates network informa-

tion among them. Each simulator uses these “fresh” information to update its own

computation and information base, to produce more accurate results during the next

iteration. In this way, we don’t need to synchronize and exchange data among sim-

ulators at event-level (packet-level). The synchronization for these loosely coupled

sub-systems can be much infrequent and the overhead will be reduced significantly.

In this chapter, we will provide the overview of Genesis, which had materialized

this view into a real system.

3.2 System Architecture

In Genesis, a large network is decomposed into parts and each part is simulated

independently and simultaneously with the others. Each part represents a subnet

or a sub-domain of the entire network. These parts are connected to each other

through edges that represent communication links existing in the simulated network.

In addition, we partition the total simulation time into separate simulation time

intervals selected in such a way that the traffic characteristics change slowly during

most of the time intervals.

Each domain is simulated by a separate simulator which has a full description

of the flows whose sources are within the domain. This simulator also needs to

simulate and estimate flows whose sources are external to the domain but will be

routed to or through the domain. In addition to the nodes that belong to the domain

by the user designation, we also create domain closure that includes all the sources

of flows that reach or pass through this domain. Since these are copies of nodes

active in other domains, we call them proxy sources. Each proxy source uses the



20

flow definition from the simulation configuration file.

The flow delay and the packet drop rate experienced by the flows outside the

domain are simulated by the random delay and probabilistic loss applied to each

packet traversing in-link proxy. These values are generated according to the average

packet delay as well as observed packet loss frequency communicated to the simulator

by its peers at the end of simulation of each time interval. Each simulator collects

this data for all of its own out-link proxies when packets reach the destination proxy.

Figure 3.1: Progress of the Simulation Execution

A Farmer-Worker system is designed for data exchange among these domain

simulators. Each domain simulator runs as a worker, and one stand-alone server

runs as a farmer to synchronize domain simulators. Every domain simulator stops

its simulation at pre-defined checkpoints, and exchanges data with all the other

domain simulators. During a checkpoint, each domain simulator also checks its

convergence condition by analyzing the received data, based on some pre-defined

metrics (end-to-end packet delay, packet loss rate, etc.) and parameters (e.g. pre-

cision threshold). The farmer collects convergence information from all domain

simulators and makes global convergence decisions. If some convergence condition
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is not satisfied, the farmer will inform some or all domain simulators to roll back

and re-iterate. Those simulators which need to roll back will go back to the last

checkpoint and re-simulate the last time interval, however, utilizing the data re-

ceived during the current checkpoint. When all the domain simulators converge, a

global convergence is reached and the farmer will inform all the domain simulators

to go on to the next time interval. The system framework is shown in Figure 3.1,

and the details are explained below.

In the initial (zero) iteration of the simulation process, each part assumes on

its external in-links either no traffic, if this is the first simulated interval, or the

traffic defined by the packet delays and drop rate defined in the previous simulation

time interval for external domains. Then, each part simulates its internal traffic,

and computes the resulting outflow of packets through its out-links.

In the subsequent k > 0 iteration, the in-flows into each part from the other

parts will be generated based on the out-flows measured by each part in the iteration

k − 1. Once the in-flows to each part in iteration k are close enough to their

counterparts in the iteration k − 1, the iteration stops and the simulation either

progresses to the next simulation time interval or completes execution and produces

the final results.

Consider a flow from an external source S to the internal destination T , passing

through a sequence of external routers r1, . . . rn and internal routers rn+1, . . . rk. The

source of the flow is represented by the sequence of pairs (t1, p1), . . . (tm, pm), where

ti denotes the time of departure of packet i and pi denotes its size. At router i, a

packet j is either dropped, or passes with the delay di,j. For uniformity, dropping

can be represented as as delay T greater than the total simulation time. Hence, to

replicate a flow with the proxy source S ′ sending packets to router rn+1, packet j

produced by S ′ at time tj needs to be delayed by time Dj =
∑n

i=1 di,j. A delay at

each router is the sum of constant processing, transmission and propagation delays

and a variable queuing delay. If the total delay over all external routers is relatively

constant in the selected time interval, a random delay with proper average and

variance approximates Dj well. Thanks to the aggregated effect of many flows on

queue sizes, this delay changes slower than the traffic itself, making such a model
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precise enough for our applications.

3.3 Coarse Granularity Synchronization in Genesis

Genesis uses a coarse granularity synchronization mechanism, described above,

to simulate network traffics, e.g., TCP or UDP flows. This approach avoids frequent

synchronization of parallel simulators. Parallel domain simulators are running in-

dependently. Each of them uses data that it received from others to represent the

external network outside of its own domain. By periodically exchanging data with

other domain simulators and reiterating over the same simulation time interval to

achieve a global convergence, the simulation of the whole network approximates

the sequential simulation of the same network with controllable precision. This is

explained more formally as follows.

Consider a network Γ = (N,L), where N is a set of nodes and L (a subset of

Cartesian product N ×N), is a set of unidirectional links connecting them (a bidi-

rectional link is simply represented as a pair of unidirectional links). Let (N1, ..., Nq)

be a disjoint partitioning of the nodes, each partition modeled by a simulator. For

each subset Ni, we can define a set of external out-links as Oi = L∪(Ni×(N−Ni)),

in-links as Ii = L ∪ ((N −Ni)×Ni), and local links as Li = L ∪ (Ni ×Ni).

The purpose of a simulator Si, that models partition Ni of the network, is to

characterize traffic on the links in its partition in terms of a few parameters changing

slowly compared to the simulation time interval. In the implementation presented

in this thesis, we characterize each traffic as an aggregation of the flows, and each

flow is represented by the activity of its source and the packet delays and losses

on the path from its source to the boundary of that part. Since the dynamics of

the source can be faithfully represented by the copy of the source replicated to the

boundary, the traffic is characterized by the packet delays and losses on the relevant

paths. Thanks to queuing at the routers and the aggregated effect of many flows on

the size of the queues, the path delays and packet drop rates change more slowly

than the traffic itself.

Based on such characterization, the simulator can find the overall character-

ization of the traffic through the nodes of its subnet. Let ξk(M) be a vector of
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traffic characterization of the links in set M in k-th iteration. Each simulator can

be thought of as defining a pair of functions:

ξk(Oi) = fi(ξk−1(Ii)), ξk(Li) = gi(ξk−1(Ii))

(or, symmetrically, ξk(Ii), ξk(Li) can be defined in terms of ξk−1(Oi)).

Each simulator can then be run independently of others, using the measured

or predicted values of ξk(Ii) to compute its traffic. However, when the simulators

are linked together, then of course
⋃q

i=1 ξk(Ii) =
⋃q

i=1 ξk(Oi) =
⋃q

i=1 fi(ξk−1(Ii)), so

the global traffic characterization and its flow are defined by the fixed point solution

of the equation:
q⋃

i=1

ξk(Ii) = F (
q⋃

i=1

(ξk−1(Ii)), (3.1)

where F (
⋃q

i=1(ξk−1(Ii)) is defined as
⋃q

i=1 fi(ξk−1(Ii)). The solution can be found

iteratively starting with some initial vector ξ0(Ii), which can be found by measuring

the current traffic in the network.

We believe that communication networks simulated that way will converge

thanks to monotonicity of the path delay and packet drop probabilities as the func-

tion of the traffic intensity (congestion). For example, if in an iteration k, a part

Ni of the network receives more packets than the fixed point solution would de-

liver, then this part will produce fewer packets than the fixed point solution would.

These packets will create inflows in the iteration k + 1. Clearly then, the fixed

point solution will deliver the number of packets that is bounded from above and

below by the numbers of packets generated in two subsequent iterations Ik and Ik+1.

Hence, in general, iterations will produce alternately too few and too many packets

in the inflows providing the bounds for the number of packets in the fixed point so-

lution. By selecting the middle of each pair of bounds, the number of steps needed

to convergence can be limited to the order of logarithm of the needed accuracy, so

convergence is quite fast. In the measurements reported later in this thesis, the

convergence for UDP traffic was achieved in 2 to 3 iterations, for TCP or mixed

UDP/TCP traffic in 5-10 iterations, and for BGP/TCP/UDP traffic it was about

twice the number of Autonomous Systems simulated.
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It should be noted that the similar method has been used for implementation

of the flow of imports-exports between countries in the Link project [37] led by

the economics Noble Laureate, Lawrence Klein. The implementation [66] included

distributed network of processors located in each simulated country and it used

global convergence criteria for termination [74].

One issue of great importance for efficiency of the described method is fre-

quency of synchronization between simulators of parts of the decomposed network.

Shorter synchronization time limits parallelism but decreases also the number of

iterations necessary for convergence to the solution because changes to the path de-

lays are smaller. Variance of the path delay of each flow can be used to adaptively

define the time of the synchronization for the subsequent iteration or the simulation

step.

It is easy to observe that the execution time of a network simulation grows

faster than linearly with the size of the network. Theoretical analysis supports this

observation because for the network size of order O(n), the sequential simulation

time include terms which are of order:

• O(n ∗ log(n)), that correspond to processing events in the order of their sim-

ulation time in the event queue;

• O(n(log(n))2) to O(n2), depending on the model of the network growth, that

result from number and complexity of events that packets undergo flowing

from source to destination. The average length of a path traversed by each

packet, the number of active flow sources, the number of flows generated by

each source and even the number of packets in each flow may grow at the rate

of O(log(n)) to O(nα), where 0.5 ≤ α ≤ 1, as the function of n, the number

of nodes in the network. They together create the super-linear growth in the

number of the events processed by the simulation.

Some of our measurements [82] indicate that the dominant term is of order

O(n2) even for small networks. Using the least squared method to fit the mea-

surements of execution time for the different network sizes, we got the following

approximate formula for star-interconnected networks:
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T (n) = 3.49 + 0.8174× n+ 0.0046× n2 (3.2)

where T is the execution time of the simulation, and n is the number of nodes

in the simulation. From the above, we can conclude that the execution time of a

network simulation is a super-linear function of the network size. Therefore, it is

possible to speed up the network simulation more than linearly by splitting a large

simulation into smaller pieces and parallelizing the execution of these pieces.

As we demonstrate later in the measurement section, a network decomposed

into 16 parts will require less than 1/16 of the time of the entire sequential net-

work simulation, despite the overhead introduced by external network traffic sources

added to each part and synchronization and exchange of data between parts. Hence,

with modest number of iterations the total execution time can be cut an order of

magnitude or more. Our experiment results showed that this approach achieved

significant speed-up for TCP or UDP traffic simulations.

Another advantage of the proposed method is that it is independent of any spe-

cific simulator technique employed to run simulators of the parts of the decomposed

network. Rather, it is a scheme for efficient parallelization based on convergence

to the fixed point solution of inter-part traffic. The convergence is measured by

a set of parameters characterizing the traffic rather than individual packets. Our

primary application is network management based on on-line network monitoring

and on-line simulation [82]. The presented method fits very well to such application

as it predicts changes in the network performance caused by tuning of the network

parameters. Hence, the fixed point solution found by our method is with high prob-

ability the point into which the real network will evolve. However, there are open

questions such as under what conditions the fixed point solution is unique, or when

the solution found by the fixed-point method coincide with the operating point of

the real network.

The method can be used in all applications in which the speed of the simulation

is of essence, such as: on-line network simulation, ad-hoc network design, emergency

network planning, large network simulation, network protocol verification under

extreme conditions (large flows).
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3.4 Inter-Domain Routing Simulation in Genesis

Genesis achieved performance improvement thanks to coarse granularity syn-

chronization mechanism. Since in many network simulation scenarios, the real data

of the traffics packets are not important to the simulation result, no individual

packet is synchronized between two parallel simulations in UDP and TCP traffic

simulations. Instead, packets are “summarized” on some metrics (delay, drop rate,

etc.). Only these data are exchanged between domains at the end of each time

interval. This approach was designed to simulate TCP and UDP data traffics, but

could not be used to simulate some other flows, for example, data flows providing

information for routing protocols. This is because the traffic of a routing protocol

cannot be summarized; instead, different content and timing of each routing packet

might change the network status. Particularly, our desire to simulate BGP protocol

required us to develop additional synchronization mechanism in Genesis.

We developed an event-level synchronization mechanism which can work within

the framework of Genesis and support the simulation of BGP protocol. To simulate

a network running BGP protocol for inter-AS (Autonomous System) routing, with

background TCP or UDP traffics, we decompose the network along the boundaries

of AS domains. Each parallel simulator simulates one AS domain, and loosely coop-

erates with other simulators. When there are BGP update messages that need to be

delivered to neighbor AS domains, the new synchronization mechanism in Genesis

guarantees that these messages will be delivered in the correct time-stamp order.

3.5 Simulation Systems Integration

3.5.1 Interoperability Between ns2 and SSFNet

Java-based SSFNet and C++/TCL-based ns2 use different network models

and different simulation frameworks. The details of the implementation of traffic

packets and other network entities are different in these two systems. Thanks to the

coarse granularity synchronization framework in Genesis, only traffic statistics data

summarized on some metrics are exchanged among domain simulators, while the

implementation details of the actual network traffic in one domain can be viewed

as a black box to the other. This facilitates the design of a general integration
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framework.

In Genesis, we design the general format of the traffic statistics data mes-

sage being exchanged in the framework, and the general conventions for a domain

simulator to identify a network entity (e.g., nodes identified by a global node id).

Then, the rest of the work is the implementation of conversion between native data

format and the general message format for both SSFNet and ns2. Because of this

general inter-operation interface, a SSFNet domain simulator can work with either

SSFNet or ns2 domain simulators, in exactly the same way. Another advantage of

this approach is its extensibility: any domain simulators complies with this general

interface can be easily plugged into Genesis.

3.5.2 Interoperability Between SSFNet and GloMoSim

Based on the design of interoperability between ns2 and SSFNet, we adopted a

similar approach (described below) to enable interoperability between SSFNet and

GloMoSim. Our main objective is to create a scenario where we have mixed-mode

traffic between a wired network (modeled using SSFNet) and a wireless network

(modeled using GloMoSim).

The network configuration includes wired domains simulated by SSFNet and

wireless domains simulated by GloMoSim. The SSFNet part of the network will

view the wireless GloMoSim domains as a single node proxy network, which is

the source and sink for all traffic originating and destined respectively to the latter.

Similarly, for GloMoSim, the SSFNet domains are represented by a single node proxy

network as well. At each checkpoint interval, the information about inter-domain

traffic statistics data is exchanged between SSFNet and GloMoSim simulations. The

receiving simulation uses this information to adjust the single node proxy network

and the links connecting to it, to better represent its cooperating simulation. And

based on the received information and local conditions in the domain, a decision

whether to roll back or not is made by each of the domains.
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3.6 Memory Distribution

Simulations of large-scale networks require large memory size. This require-

ment can become a bottleneck of scalability when the size or the complexity of the

network increases. For example, ns2 uses centralized memory during simulation,

which makes it susceptible to the memory size limitation. The scalability of differ-

ent network simulators was studied in [51]. This paper reports that in a simulation

of a network of a dumbbell topology with large number of connections, ns2 failed to

simulate more than 10000 connections. The failure was caused by ns2’s attempt to

use virtual memory when swapping was turned off. This particular problem can be

solved by using machines with larger dedicated or shared memory. Yet, we believe

that the only permanent solution to the simulation memory bottleneck is to develop

the distributed memory approach.

In a typical parallel network simulation using non-distributed memory, each

of the parallel simulators has to construct the full network and to store all dynamic

information (e.g., routing information) for the whole network during the simulation.

To avoid such replication of memory, we developed an approach that completely

distributes network information. Thanks to this solution, Genesis is able to sim-

ulate large networks using a cluster of computers with smaller dedicated memory

(compared to the memory size required by shared memory-based SSFNet simulating

the same network).

3.7 Chapter Summary

In this chapter, we provided an overview of our distributed simulation system,

Genesis. Genesis took the novel coarse granularity synchronization approach to

improve simulation performance, and distributed the memory usage to reduce the

memory requirement on each participating simulator. In addition, Genesis also

supported distributed BGP simulation with full memory distribution. This will

facilitate the simulation of large scale BGP networks on cluster of machines with

smaller dedicate memory.



CHAPTER 4

DISTRIBUTED SIMULATION WITH FULL NETWORK

TOPOLOGY

4.1 Introduction

In this chapter, we will discuss the design of Genesis distributed simulation

with full network topology stored in each domain simulator.

4.1.1 Distributed Simulation Approaches

In parallel/distributed network simulation, the simulation system utilizes mul-

tiple processors or machines to simulate one network concurrently to improve sim-

ulation performance. There are two different approaches of the distribution:

• Approach 1: Computation distribution only. In this approach, each processor

or machine has the same full copy of the network topology being simulated,

or accesses the same network topology in shared memory (e.g. in parallel

simulation). Thus, the computation of the simulation is distributed among

processors, while one or multiple copy of the full network topology need to be

stored as a whole somewhere.

• Approach 2: Computation and memory distribution. In this approach, the

full network topology is divided into partitions and only one partition of the

network is constructed for each machine participating in the simulation. Thus,

not only the computation of the simulation but also the memory used for

constructing the network is distributed.

Generally speaking, the advantage of approach 1 is that it is easier to imple-

ment because each participating simulator has information about the full network,

which facilitates the cooperation among simulators. These systems can be compara-

tively simple thus the overheads introduced by parallel simulation is relatively small

as well. All of the parallel simulation systems mentioned earlier belong to this cate-

gory. However, its disadvantage is also apparent. Because the system needs to store

29
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the full network, the memory size required by the simulation limits its scalability,

especially in large-scale network simulations. Super computers with large memory

usually will be required in those cases.

Approach 2 solved the memory limit problem by distributed the memory usage

among distributed simulation machines. It is attractive because it provides the

ability to use clusters of machines with small memory size to simulate large networks.

DaSSFNet mentioned earlier belongs to this category. However it was not a complete

solution because it used pre-configured forwarding tables instead of supporting real

routing simulation.

In addition, approach 2 also provides potentials for a broader range of dis-

tributed applications. Because it does not require storing of the full network, each

distributed simulator requires only partial information about the network. Each

simulator manages its own network partition and treats others as black boxes to

some extend. Thus, it is possible for some potential applications which need to

geographically distribute simulators, for example, to the center location of each real

network partition being simulated, and allow each of them dynamically adjusts its

network partition as long as the communication interface is maintained.

4.1.2 Genesis Approach

Genesis was designed to support distributed simulation with both full network

topology and distributed memory. In this chapter, the design and experimental

results for distributed simulation with full network topology are presented first.

The advantage for keeping the full network topology is that it requires relatively

small changes to implement a distributed simulation system based on a sequential

simulation system. Such a solution introduces also smaller overheads.

In addition, in the memory distribution approach, each simulator has routing

information of only part of the network, which requires additional work to collect the

global routing information and forward network traffic among simulators correctly.

A design of such a global routing information sharing mechanism might impose

limitations on the simulation. For example, DaSSFNet requires pre-configured static

forward tables. In Genesis, we implemented our memory distributed simulation
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system which can represent dynamic global routing changes, with the limitation

that network partitioning must observe the boundaries of BGP Autonomous Systems

(ASes) or group of ASes.

In our Genesis network simulation with full network topology, users have more

freedom to group any neighboring nodes into domains.

4.2 Distributed Simulation System Model

4.2.1 System Components

Genesis took some common approaches for parallel and distributed simulation

systems and had all the general components for these systems, while adjusted them

to meet the special needs of coarse granularity synchronization.

In conventional parallel or distributed simulation which uses the space par-

titioning technique to divide network into domains, the system usually consists of

these general components:

1. Network partitioning. The network topology being simulated is logically par-

titioned into areas, and each area is assigned to one processor. The simulation

script which defines the network provides some functionalities to divide the

network and assign processors.

2. Concurrent Simulation. Network areas are simulated concurrently on different

processors. Each processor simulates only the part of the network assigned to

it and handles events generated from this part of network, or events received

from other processors.

3. Data management. In conventional simulation, the simulation data exchanged

among processors are events. Events originated from one processor and tar-

geted to another processor are remote events. The parallel or distributed

simulation system should recognize these remote events and forward them to

the correct destination, by using either shared memory or explicit information

exchanging techniques (e.g. MPI, socket connection).

4. Time management. Parallel or distributed simulators need to be synchronized.

As we explained earlier, different synchronization approaches are designed to
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achieve the same goal that in each processor, events are handled in the correct

order of their time-stamps.

In our novel simulation system using coarse granularity synchronization tech-

nique, there are differences in the roles and functions of these components:

1. Network partitioning. A network topology is partitioned in the same way

as in conventional simulations, and each network partition is assigned to one

processor. However, it does not mean that one processor will only simulation

the partition assigned to it. Instead, the assigned partition is the “simulation

focus” of this processor, and fragments of other partitions related to this one

will also be simulated in this processor.

2. Concurrent Simulation. Each processor simulates the network partition as-

signed to it in detail the same way as conventional simulation systems. How-

ever, processors do not exchange remote events among each other. Instead,

each processor contains not only its own part of the network, but also a sim-

plified model of the rest of the network. Thus, a “remote” event related to the

rest of the network can be delivered to the corresponding simplified network

model. In this way, there is no need to exchange “remote events”, all events

are “internal events” to a processor.

3. Data management. Data management in Genesis is different from conven-

tional systems. No remote events need to be exchanged among processors. As

explained above, for one processor, the simplified network model serves as a

representation of the part of network simulated in details by other processors,

in other words, the “outside world”. In order to correctly represent the “out-

side world”, each processor collects simulation statistics data from the part of

network assigned to it and exchange them with other processors. And then,

it uses the data received from other processors to adjust the network model

representing the “outside world”.

4. Time partitioning and management. Time management in Genesis is different

because no remote events need to be synchronized. Instead, the simulation
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time is partition into intervals separated by checkpoints. During each check-

point, the simulation time of every processor is synchronized and convergence

decision is made. Based on the received data from its peer domains, a domain

simulator might need to re-iterate one simulation time interval to produce

more accurate results.

4.2.2 Network Partition and Domain Model

In Genesis, network partitions are called “domains”. For one processor, the

domain assigned to it is called the “active domain”, and the domains assigned to

other processors are called “non-active domains”.

In the “active domain”, the network structure is the same as the non-decomposed

network. In “non-active domains”, traffic sources and destinations are represented

by proxy sources, which can be activated or deactivated dynamically during the

simulation. “Path shortcuts” are used to simplify any traffic paths in non-active

domains. They are implemented as proxy links which connect proxy sources directly

to border routers in the domain. Simulation statistics data are used to adjust these

proxy links to represent network traffic changes during the simulation.

Active DomainNon−active Domain
Domain 2Domain 1

Network Link

Proxy Link

Traffic Path

Host/Router

Domain 1

6

5432

16

5
432

1

Non−active DomainActive Domain
Domain 2

Figure 4.1: Path Shortcuts and Proxy Links

Figure 4.1 shows an example of this domain model. Suppose that a network is

partitioned into two domains and simulated by two processors: domain 1 is assigned

to processor 1 and domain 2 is assigned to processor 2. Suppose that there is a

network traffic from node 1 to node 6 through nodes 2, 3, 4 and 5. In processor 1,

domain 1 is the active domain while domain 2 is a non-active domain, thus part of

the traffic path, from node 1 to node 3, is inside of the active domain and the other

part, from node 4 to node 6, is inside of the non-active domain. On the contrary, in
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processor 2, the path from node 1 to node 3 is in the non-active domain while the

path from node 4 to node 6 is in the active domain.

Processor 1 simulates traffic packets from node 1 to node 4, and creates a

proxy link from node 4 connecting directly to the destination node 6 in the non-

active domain. Node 6 is represented as a proxy source in processor 1. At the same

time, processor 1 collects traffic statistics data from node 1 to node 3, and sends

these data to processor 2.

Concurrently with processor 1, processor 2 simulates traffic packets from node

4 to node 6. This is done by creating a proxy source in non-active domain 1 to

represent traffic source node 1, and creates a proxy link from node 1 connecting

directly to node 3. At the same time, it collects traffic statistics data from node 4 to

node 6 and sends them to processor 1. Both processors use received data to adjust

their own proxy links.

In this way, these two processors simulate the network concurrently and co-

operate with each other. Each processor is only responsible for the simulation of

its active domain, and collects simulation statistics data within the active domain.

However, the proxy source and proxy link structure for non-active domains is also

essential that it completes the traffic path from the source node to the destination

node. As the result, in Genesis, each processor simulates full traffic paths from source

nodes to destination nodes. This is important because for TCP traffic, source nodes

must receive ACK packets from destination nodes to continue its packet sending.

4.2.3 Synchronization and Checkpointing

In Genesis, domain simulators cooperate with each other by exchanging sim-

ulation statistics data periodically. The Genesis framework synchronizes domain

simulators by dividing the simulation time into intervals and performing check-

pointing at the end of each interval. During checkpointing, each domain simulator

suspends its simulation, checkpoints its states, exchanges statistics data with other

domain simulators, and checks convergence conditions.

Simulation state checkpointing is done by calling Unix system routine fork

from the running process to duplicate the process image in memory, and immediately
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suspends the child process. The suspended child process serves as a backup copy

of the current state of the running simulator. Checkpointing the simulator state

makes it possible for the simulator to continue execution and roll back to a saved

state when needed. When a simulator decides to roll back to its previous state, it

will signal its suspended backup process to resume execution.

During checkpointing, each simulator also exchanges simulation data with

other distributed simulators. By comparing the data from its peer simulators re-

ceived in this checkpoint with those received in the last checkpoint, a simulator

decides whether or not it needs to re-run the last interval. If it decides to re-run,

the simulator stores the received data to some persistent storage (disk files), re-

sumes the suspended child process and terminates itself. A resumed child process

will make a new backup process of its own first, retrieves the simulation data stored

by the terminated process, and continues its execution. A simulator re-iterates over

one simulation time interval until it decides that the changes in received data are

small enough according to some pre-defined convergence conditions.

For example, each domain may run its individual simulation from simulation

time tn to tn+1, and pause thereafter. Then, statistics data about the traffic packets

leaving the domain during this time interval is passed onto the target domain to

which these packets are directed. If the traffic data differ significantly from what

was assumed in the target domain, the simulation of the time interval (tn, tn+1) is

repeated. Otherwise, the simulation progresses to the next time interval (tn+1, tn+2).

4.2.4 Statistics Collection and Convergence Conditions

During the simulation of one time interval, statistics data of network traffic

are collected for each flow based on some pre-set metrics. Currently in Genesis,

these metrics are packet delay and path drop rate. Packet delay measures the time

expired from the instance a packet leaves its source in the active domain to the time

it reaches the domain boundary. Packet drop rate is computed as the percentage

of dropped packets out of total sent packets in the active domain for each flow.

Also recorded is information about each packet source and its intended destination.

Having this information enables us to set up proxy sources and proxy links in non-
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active domains, and use statistics data to adjust proxy links. A proxy link will

then apply the packet delay and drop probability data of one flow to the packets

belonging to that flow which pass through it.

Statistics data are also used for convergence computation. The threshold val-

ues of the differences between the data received in the current checkpoint and those

received in the previous checkpoint are pre-set by users. If traffic data changes ex-

ceed those thresholds, rollbacks and re-iterations are required; otherwise, the current

interval is converged and the simulation proceeds to the next interval.

4.3 Simulator Component Design Based on SSFNet

The Genesis system model explained above introduced a new approach of

constructing a distributed simulation system. However, Genesis is not only one

network simulation system. Instead, it is a general approach which can be used

to transform conventional sequential or parallel simulation systems into scalable

distributed simulation systems, as well as constructing new systems from scratch.

Besides this, different conventional systems transformed by the Genesis approach

will be able to cooperate with each other.

In this section, we will introduce our Genesis system constructed on top of

SSFNet. In order to integrate SSFNet simulator into Genesis, SSFNet has been

extended with the following additions: Domain Definition, Proxy Sources and Proxy

Links, Data Collector, Checkpointing and Freeze that are further discussed below.

1. Network decomposition. In SSFNet, a network is modeled as a hierarchy of

“Net” that is a collection of hosts, routers, links and component sub-nets. Sub-

net inclusion is a powerful construct that facilitates building very large models

from pre-configured sub-networks. Hierarchical “Net” is also a convenient tool

for network partitioning required by Genesis. In Genesis, domain definition is

simply implemented by adding domain identification numbers into the “Net”

definition defining the corresponding network partitions. This domain infor-

mation is stored in SSFNet Domain Modeling Language (DML) configuration

database. The modified Net class will retrieve its domain identifier from DML
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configuration database and store it at its global data area, which makes it

easily accessible by other components.

2. Proxy traffic source is a modified traffic source which can be deactivated

or re-activated by a controller called “freeze”.

In SSFNet, when traffic starts, the client will first connect to the known port

of the server. Then, the client sends control data (including the size of the file

requested) and waits for data from the server. Once the server is initialized, it

listens to incoming connections from clients. After accepting a new connection,

the server builds a data socket and spawns a slave server that transmits the

data between the client and the server.

If a traffic source is not in the current active domain, it will be deactivated

after its initialization. In other words, traffic sources outside of the active

domain will not automatically generate traffic in Genesis. The slave server

for this deactivated traffic source is called a “proxy source”. The reference to

a proxy source is registered at global area with corresponding flow identifier,

so that it can be re-activated during checkpointing. When a proxy source is

re-activated during the simulation it starts to send packets out. Proxy sources

are connected directly to border routers of the active domain by some one-hop

“short-cut” path, which is called “proxy links”.

3. Proxy links are used to implement “short-cut” paths. Traffic packets gen-

erated by proxy sources will not go through the regular network path defined

in the network topology. Instead, each host of a proxy traffic source has a

“dummy” interface which is connected to a border router of the active do-

main, via a special network link called “proxy link”, as shown in Figure 4.2.

Proxy links are special links because they dynamically apply transmission

delay and packet drop to the traffic flow passing through it. The values of

delay and drop rate are adjustable based on simulation statistics data.

Each link in SSFNet is implemented by channel mapping between the two

attached interfaces, “push” invoked by one interface will put a packet into its

peers’ inChannel with appropriate delay. This mechanism is used for building
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Figure 4.2: Proxy Link Design

proxy links which shortcut the path from proxy source to the corresponding

border router of current domain. In addition, the IP class in SSFNet has also

been enhanced to (i) sent outgoing data through proxy link instead of the

normal route, (ii) dump information about outgoing data into statistics data

collector, and (iii) preserve the regular routing for control data.

4. Traffic statistics data collection. This is done by adding class Collector

to SSFNet as a global container to hold flow-based information. The work-

ing mechanism of Collector is based on the packet-level simulation in SSFNet.

There are three kinds of delay accumulated in the lifetime of a packet trans-

mission in SSFNet. Link delay is configured as link latency. Queue delay is

decided by the queue size, link capacity and traffic volume. NIC (Network

Interface Card) delay is defined by the NIC latency. There are three cases in

which packet gets dropped: (i) end of life time, (ii) no reachable destination

(IP layer), and (iii) dropped by queue manager of its deporting interface (Link

Layer). Using these rules, the delay of outgoing packets is accumulated for

every flow. The number of packets fired and the number of packets dropped

are also recorded.

5. Simulation Freezing and Synchronization relies on cloning of the simu-

lation state at the beginning of each interval. The cloned copy is activated

when the rerun is necessary. We use Java Native Interface (JNI) to do the
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memory checkpointing and the interaction between Java and C copy routines

is shown in Figure 4.3.
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Figure 4.3: In-Memory Checkpointing in Genesis Simulation

A Freeze component paces suspensions of the simulation. Frequency of sus-

pension is defined in the DML configuration database. The simulation is

interrupted by Freeze Events. Freeze object is wrapped with a Freeze Timer

extended from Timer class of SSFNet. The call-back method of Timer is

overloaded to fulfill freeze-related tasks.

Freeze Object is instantiated and initialized by Net object. At the end of

initialization, it will register at DML databases, and then it will instantiate

and set Freeze Timer. With self-channel mapping, Timer Event fired by Freeze

Timer will be received by itself with some appropriate delay. Once a Timer

Event is delivered, the call-back method will be invoked implicitly and will

execute the exchange of information between domains.

4.3.1 Design of Feedback-based Protocol Simulations

The approach in Genesis described above was originally designed for protocols

that generate packets without feedback flow control, such as Constant Bit Rate
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(CBR) UDP traffic. However, modeling the inter-domain traffic which uses feedback

based flow control, such as any of many variants of TCP, requires more processing

capabilities.

To control congestion in a network or the Internet, some protocols use conges-

tion feedback. The most important among them is TCP protocol used in TCP/IP-

based Internet congestion control [69]. TCP uses sliding-window flow and error con-

trol mechanism for this purpose. The sliding-window flow control provides means

for the destination to pace the source. The rate at which the source can send data

is determined by the rate of incoming acknowledgment packets. Any congestion on

the path from the source to destination will slow down the data packets on their way

to destination and the acknowledgment packets on their way back to the source. As

a result, the source will decrease its flow rate to lessen or eliminate the congestion.

TCP flows demonstrate complex dynamics by adjusting their rate to the changing

conditions on their paths to destination.

For our method, the important property of TCP traffic is that the rate of

the source is dependent on the conditions not only in the source domain but also

in all intermediate and destination domains of the traffic. Additionally, each data

flow has a corresponding acknowledgment flow that paces the source. As a result,

for the TCP traffic, the precision of our flow simulation depends on the quality of

the replication of the round trip traffic by the packets and their acknowledgments.

Moreover, the feedback loop for iterations is extended. For example, in two-domain

TCP traffic, a change in congestion in the source domain will impact delays of data

packets in the destination domain in the following iteration and the delays of the

acknowledgment packets in yet subsequent iteration. As a result, convergence is

slower in simulation of networks with TCP flows.

Our experience indicates that communication networks simulated by Genesis

will converge thanks to monotonicity of the path delay and packet drop probabil-

ities as a function of the traffic intensity (congestion). The speed of convergence

depends on the underlying protocol. For protocols with no flow feedback control like

UDP, simulations typically requires 2-3 iterations. As presented in this thesis later,

protocols with feedback based flow-control, like TCP, require number of iterations
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up to an order of magnitude larger then UDP-like protocols.

The process of modeling feedback-based traffic is shown in Figure 4.4 and

involves the following steps.

1. In the first iteration, the packets with a source within the domain and destina-

tion outside that domain flow along the path defined by the network routing

through internal links to the destination proxy. We refer to such packets as

DATA packets. The same internal links also serve as the path for the flow of

feedback, that is acknowledgment, abbreviated as ACK, packets. The timing

and routing information of both kinds of packets (DATA and ACK) within

the domain are collected at the flow source and the destination proxy.

2. In the second iteration, the timing and routing information collected at the

source domain is used to create a proxy source and in-link proxy in the desti-

nation domain. The proxy source in the destination domain is activated and

the traffic external to the domain and entering the domain is simulated using

information collected in the first iteration in the source domain. In addition,

the timing and routing information within the destination domain for packets

flowing to external nodes is collected at the destination proxy. This informa-

tion will be used in the source domain to define the source domain in-link

proxy that will reproduce ACK packets and send them to the original flow

source.

3. In the third iteration, in-link proxy and proxy source are created in the source

domain similar to iteration 2, but this time for the ACK packets returned by

the flow destination. The timing and routing information is obtained from the

previous iteration of the destination node and is used to initiate the flow of

ACK packets within the source domain. This completes the definition of the

full feedback traffic.

Note that, unlike the traffic without feedback control that uses one iteration

delayed data to model traffic in the destination domain, delay here is two iterations.

That is, the ACK packet traffic in the source domain in iteration n is modeled
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Protocols

based on information from n− 1 iteration about the ACK packets produced by the

DATA packet flow that was modeled using information from n− 2 iteration about

the DATA packets in the source domain. Hence, there is delayed feedback involved

in the convergence in this case, since an extra iteration is required to recreate the

in-link proxy and proxy sources in both the source and the destination domains.

4.3.2 Transit Traffic Simulation

In Genesis, each domain simulator focuses only on the simulation of its active

domain. Thus, in the simulation of UDP traffic, any packet sent from a UDP source

inside the active domain stops at the border of the active domain and does not need

to be forwarded further. If a packet is sent from a proxy UDP source (outside of

the active domain), then it will be forwarded into a proxy link which is connected

with the active domain. In both cases, only part of the traffic path, from the traffic
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Figure 4.5: Transit Traffic Simulation

source to the last node inside of the active domain, need to be simulated. In this

way, all the UDP traffics leaving or entering the active domain can be simulated,

and at most just one link proxy need to be set up for a flow. However, this is not

enough for TCP simulation. For TCP flows, in order to get the feedback flow (ACK)

from the sink, each flow must go through the full path to its sink. When the TCP

flow goes through more than two domains, multiple pairs of link proxies will need

to be set up for this flow for the domains which are in the middle of the path. This

is called the transit traffic scenario and shown in Figure 4.5. In such a case, more

complexities will be involved into data collecting and link proxy setup, as explained

below.

In the example network shown in Figure 4.5, for the domain simulator B, the

traffic flow from domain A to C is a transit traffic. Both the source and destination of

the traffic are outside of the active domain B. For such a transit traffic scenario, the

network is viewed as consisting of three parts: the current active domain, B, and the
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two parts of the network outside this domain on both directions of the flow, A and

C. Initially, the transit flow does not exist in the simulator for domain B. After one

iteration, the simulator for domain A detects the outbound flow targeting domain B,

and passes this flow information to domain B simulator during checkpointing. Based

on this information, domain simulator B activates the corresponding traffic source

in domain A and creates one pair of proxy links to connect the source to domain B.

Similarly, domain B receives flow information from domain C and creates another

pair of proxy links to connect the traffic sink in domain C to domain B. Thus,

two pairs of link proxies will be set up for one transit flow. Domain B will then

re-iterates the previous time interval with this transit traffic activated. In other

cases when a transit flow passes through more than one intermediate domains, the

transit flow information will be passed down to the domains along the traffic path

and will activates the proxy sources in those intermediate domains in turns. More

intermediate domains will require more re-iterations, however, each intermediate

domain only needs two pairs of proxy links for one transit flow.

4.4 Simulator Component Design Based on ns2

As we mentioned earlier, Genesis is a general approach and can be applied to

different existing simulation systems. In addition, Genesis also supports integration

of different simulators into a coherent network simulation. In this section, we provide

an overview of the implementation of Genesis based on another popular network

simulator, ns2, in addition to our SSFNet based implementation.

The following extensions were integrated into ns2 to support distributed sim-

ulations in Genesis:

1. Domain definition in ns2-based Genesis is similar to that in SSFNet-based

Genesis. The difference is that Tcl/Tk is used as the network scripting lan-

guage instead of DML. To declare a domain in the Tcl script, the nodes be-

longing to that domain are defined as parameters to a new “domain” command

and are stored as a list. Each time a new domain is defined, the new node list

is added to a domain list. The user also marks a domain as the active domain

in the network script.
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2. Proxy Link in ns2-based Genesis is implemented by extending the existing

connector class in ns2. A modification has been made to the original ns2

connector class by adding functionality of filtering out packets destined for the

nodes outside the domain and storing them for statistical data calculation. In

ns2, a connector object is generally associated with a single link. When a link

is set up, the simulator checks if this link connects nodes in different domains.

If this is the case, this link is classified as a cross-link and the connector

associated with this link is modified to record packets flowing across it. Each

such packet is either forwarded to the neighboring node or is marked as leaving

the domain based on its destination.

3. Proxy Source is implemented by extending the existing traffic generator

class. The ns2 traffic generator class is modified, so the traffic sources can be

activated or deactivated as needed. Initially, at the start of the simulation,

the traffic generator suppresses nodes outside the domain from generating

any traffic. During the simulation, traffic generators in the nodes which are

representing proxy sources in non-active domains will be activated.

4. Connecting Proxy Links to Proxy Sources. In ns2, connectors are de-

fined as “an nsObject with only a single neighbor”. In Genesis, connectors are

extended to have a list of proxy targets. Once a new proxy link is set up from

this connector, it will be added to this connector’s proxy target list.

5. Border is a new class added to ns2. A border object represents the active

domain in the current simulation. The main functionalities of the border class

include:

(a) Initializing the current domain: setting up the current domain id, assign-

ing nodes to different domains, setting up the data exchange etc..

(b) Collecting and maintaining information about the simulation objects,

such as a list of traffic source objects, a list of the connector objects and

a list of the proxy link objects maintained by the border object.
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(c) Implementing and controlling the proxy traffic sources; setting up and

updating proxy links, etc..

The traffic sources outside the current active domain are deactivated while

setting up the network and domains. When a proxy link is set up for a flow,

the traffic source of this flow will be reactivated. When the border receives

flow information from other domains, it will set up a proxy link for this flow,

and initialize the parameter of the proxy link using the received statistical

data. All the created proxy link objects are stored in the border as a linked

list ready for further updates.

6. Synchronization and Checkpointing is done in the same way as in SSFNet-

based Genesis. It is another implementation of the Genesis framework in C++

for ns2, in addition to the Java implementation for SSFNet.

4.5 Experiments

4.5.1 Network Models

Our first set of experiments for the Genesis involved two sample network con-

figurations, one with 64 nodes and 576 UDP and TCP flows, the other with 27 nodes

and rich interconnection structure with 162 UDP and TCP flows. These networks

are symmetrical in their internal topology. We simulated them on multiple proces-

sors by partitioning them into different numbers of domains with varying number of

nodes in each domain. The rate at which packets are generated and the convergence

criterion are varied.

All test were run on up to 16 processors (always the number of processors

used is equal to the number of domains) on Sun 10 Ultrasparc and 800 MHz IBM

Netfinity workstations. For both architectures, the machines were interconnected

by the 100Mbit Ethernet.

For the 64-node network, the smallest domain size is four nodes; there is full

connectivity among these four nodes. Four such domains together constitute a larger

domain in which there is full connectivity between the four sub-domains. Finally,
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four large domains are fully connected and form the entire network configuration

for the 64-node network, as shown in Figure 4.6.
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Figure 4.6: 64-node Configuration Showing Flows from a Sample Node
to Other Nodes In a Network

Each node in the network is identified by three digits a.b.c, where a,b,c is

greater than or equal to 0 and less than or equal to 3. Each digit identifies domain,

sub-domain and sub-sub-domain and node rank, respectively, within the the higher

level structure.

Each node has nine flows originating from it. Symmetrically, each node also

acts as a sink to nine flows. The flows from a node a.b.c go to nodes:

a.b.(c + 1)%4 a.b.(c + 2)%4 a.b.(c + 3)%4

a.(b+ 1)%4.c a.(b+ 2)%4.c a.(b+ 3)%4.c

(a+ 1)%4.b.c (a+ 2)%4.b.c (a+ 3)%4.b.c

Thus, this configuration forms a hierarchical and symmetrical structure on which

the simulation is tested for scalability and speedup.

The 27-node network is an example of Private Network-Network Interface

(PNNI) network [3] with a hierarchical structure. The main feature of PNNI proto-
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cols is “scalability”, because the complexity of routing does not increase drastically

as the size of the network increases. Although we do not support simulation of

PNNI protocols in Genesis, we took this network model as an interesting test case

for Genesis approach. The smallest domain of this 27-node network is composed of

three nodes. Three such domains form a large domain and three large domains form

the entire network (cf. Figure 4.7).

Figure 4.7: 27-node Configuration and the Flows from the Sample Node

In the 27-node network, each node has six flows to other nodes in the configu-

ration and is receiving six flows from other nodes. The flows from a node a.b.c can

be expressed as:

a.b.(c + 1)%3 a.b.(c + 2)%3

a.(b+ 1)%3.c a.(b+ 2)%3.c

(a+ 1)%3.b.c (a + 2)%3.b.c
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4.5.2 Experimental Results

In a set of measurements, the sources at the borders of domains produce

packets at the rate of 20000 packets per second for half of the simulation time. The

bandwidth of the link is 1.5Mbps. Thus, certain links are definitely congested. For

the other half of the simulation time, these sources produce 1000 packets per second.

Since such flows require less bandwidth than provided by the links connected to each

source, congestion is not an issue. All other sources produce packets at the rate of

100 packets per second for the entire simulation. The measurements were done with

the Telnet traffic source that generates packets with constant size of 500 bytes.

Speedup was measured in three cases involving (i) feedback-based protocols,

(ii) non-feedback based protocols, and (iii) the mixture of both, with UDP traffic

constituting 66 percent of flows and TCP traffic making up the rest of the flows.

We noticed that if mixed traffic involves a significant amount of non-feedback based

traffic, then it requires fewer iterations over each time interval and hence yields

greater speedup up than the feedback based traffic alone.

Table 4.1: Measurements Results on IBM Netfinity (Times are in Sec-
onds) for Non-feedback Based Protocols. Large Domains Con-
tain 9 or 16 Nodes and Small Domains Contain 3 or 4 Nodes

Networks 27-nodes 64-nodes
Non-decomposed Network 3885.5 1714.5
Network with Large Domains 729.5 414.7
Network with Small Domains 341.9 95.1
Speedup 11.4 18.0
Distributed Efficiency 126% 112%

Table 4.1 presents a small subset of the timing results obtained from the sim-

ulation runs. It shows that partitioning the large network into smaller individual

domains and simulating each on an independent processor can yield a significant

speedup.

Initial implementation of feedback based protocols used delays from the pre-

vious iteration as a starting value for the next iteration, leading to modest speedup

(cf. Table 4.2 and Figure 4.8). The fixed point solution delay lays in between the
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Figure 4.8: Speedup Achieved for 27 and 64-node Network for TCP Traf-
fic

Table 4.2: Measurements Results on IBM Netfinity (Times are in Sec-
onds) for Feedback-based Protocols

Networks 27-node-TCP 64-node-TCP 64-node-mixed
Non-decomposed Network 357.383 1344.198 6280
Network with Large Domains 319.179 1630.029 1120
Network with Small Domains 93.691 223.368 298
Speedup 3.81 6.02 21
Distributed Efficiency 42.3% 37.5% 131%

delays measured in the two subsequent iterations. Hence, a delay for each flow

used in the next iteration is a function of the delays from the current and previous

iterations. As expected, using this method of computing delay improves the Gen-

esis performance. This is shown in Figure 4.9 and Table 4.2 for 64-node domains

with mixed traffic. If dold is the previous estimate of the delay, and dm is currently

observed values of the delay, then the new estimate of the delay is computed as

dnew = a ∗ dm + (1− a) ∗ dold, where 0 < a < 1. Varying values of the parameter a
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impacts the responsiveness of the delay estimate to new and old values of observed

delays. As a result, a impacts the speed of the simulation by increasing/decreasing

the time required for convergence, the optimum value of a is 0.5.

We will discuss Genesis performance and the effects of different parameter

values in more details in Chapter 7.

4.6 Chapter Summary

Genesis is a novel approach for large scale network simulation. In this chapter

we presented an overview of the Genesis approach, which combines simulations

and modeling in a single system. In Genesis, each domain simulator simulates its

own network partition in details, while using statistics data collected from its peer

simulators to simplify the model and simulation of other partitions of the network.

Distributed domain simulators run concurrently and cooperate with each other in

the Genesis coarse granularity synchronization framework.

Our experimental results showed that Genesis worked efficiently in distributed

network simulations. Thanks to its coarse granularity synchronization approach

which did not require exchanging and synchronizing each individual remote packet,

Genesis significantly reduced the overheads in distributed simulations. It achieved

significant execution speedups over conventional sequential network simulations.



CHAPTER 5

DISTRIBUTED BGP SIMULATION

5.1 Introduction

The Internet consists of tens of thousands of inter-connected networks. Despite

its enormous size, the Internet is organized into a hierarchical topology: the top

level ISPs (Internet Service Providers) connect with each other to form the Internet

backbone network, and there are many secondary and smaller ISPs where each of

them attaches to one or more ISPs on a higher level, and then many other networks

connect to these ISP networks. Each of these networks is independently managed

and there is no central control about how a packet should be routed from one

computer in the Internet to another. Because of this inherent characteristic, the

routing in Internet is done in a two-leveled way: the top-level inter-domain routing

decides how to route a packet from one network to another, while the second-level

intra-domain routing decides how to route a packet from one computer to another in

the same network. Some common routing protocols are RIP, OSPF and BGP. RIP

and OSPF are used for intra-domain routing while BGP (Border Gateway Protocol)

is widely used for inter-domain routing in the Internet nowadays.

Because BGP is widely used in the Internet for inter-domain routing, many

models of large-scale networks from the real world are BGP networks. This requires

that a modern simulation system for large-scale networks should provide the capa-

bility of BGP simulation. On the other hand, because of the importance of BGP

to the Internet performance, the study of BGP protocol itself is also of interest. A

system which supports detailed BGP simulation is a powerful tool for analyzing the

BGP protocol.

Dartmouth’s BGP4 [62] implementation extended SSFNet with BGP supports.

It was the first detailed BGP model for network simulators. The model was built

within the framework of SSFNet simulation suite and had already been used by many

researchers in their studies, including BGP protocol improvements [60], security [54]

and attacks on BGP [49].

52
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However, with a simulation system which supports detailed BGP simulation,

there are still some challenges to simulate Internet-scale, realistic BGP network

models, as explained by David Nicol in [50]. One of these challenges is the large

memory size required by large-scale BGP simulation. Because the storage size for

each individual BGP route can be on the order 1000 bytes in the Internet, a de-

tailed simulation of 10,000 routers will require on the order of 10Gb of memory [50].

This huge memory requirement will be a bottleneck for large-scale BGP simulations.

Although super computers with huge shared memory can be a solution to this chal-

lenge to some extent, we believe that a thorough solution will need to distribute this

memory.

Thanks to its SSFNet based implementation, with little efforts, Genesis sup-

ported detailed BGP simulation within its domain simulators. Besides this, one

important contribution of Genesis was that its distributed domain simulators could

cooperate with each other to support distributed BGP simulation. With the mem-

ory distribution technique which will be explained in the next chapter, Genesis

completely distributed BGP simulation, from execution to memory usage, and sig-

nificantly reduced the memory requirement for each single simulation machine.

Genesis was the first simulator which supported distributed, detailed BGP

simulation. It facilitated the simulation of large-scale BGP network simulation and

improved simulation efficiency. In addition, Genesis made it possible to simulate

very large BGP networks on computer clusters.

5.2 Distributed BGP Simulation Design

The Genesis was originally designed for network data traffic simulation, e.g.,

for TCP or UDP data traffic. In many network simulations, the real data carried by

UDP/TCP packets are not important to the simulation results. However, for BGP

packets, summaries of packet flows are not enough. The information stored in a

BGP update packet needs to be faithfully delivered to its destination. In addition,

these packets need to be delivered in the correct time-stamp order. These two

requirements are necessary to preserve correct network dynamics in the simulation.

Hence, new synchronization mechanism is needed in Genesis to satisfy these two
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requirements.

5.2.1 Design of Event-level Synchronization for BGP Simulations

We developed an event-level synchronization mechanism which can work within

the coarse granularity synchronization framework of Genesis. We modified Genesis

to support the simulation of BGP protocol, in addition of TCP and UDP protocols.

In Genesis, when we simulate a network running BGP protocol for inter-AS (Au-

tonomous System) routing, with background TCP or UDP traffics, we decompose

the network along the boundaries of AS domains. Each parallel simulator simulates

one AS domain, and loosely cooperates with other simulators. When there are BGP

update messages that need to be delivered to neighbor AS domains, the new syn-

chronization mechanism in Genesis guarantees that these messages will be delivered

in the correct time-stamp order.

In other simulation systems which use only event-level synchronization based

on either conservative or optimistic protocol, the correct order of event delivery is

guaranteed by the protocol. The price, however, is frequent synchronization.

In Genesis, we took advantage of coarse granularity synchronization for TCP

and UDP traffic, and at the same time synchronized BGP update messages by doing

extra rollbacks, to reflect the actual routing dynamics in the network.

In Genesis, simulators are running independently of each other within one

iteration. To simulate BGP routers separately from the Genesis domain in each

parallel AS domain simulator, and to make them produce BGP update messages

for its neighbor domains, we introduced proxy BGP neighbor routers. Those are

routers mirroring their counterparts which are simulated by other simulators. The

proxy BGP routers do not perform the full routing functionality of BGP. Instead,

they maintain the BGP sessions and collect the BGP update messages on behalf of

their counterpart routers.

At the synchronization point in Genesis, the BGP update messages collected

in the proxy BGP routers, if there are any, are forwarded to the corresponding

destination AS domain simulators through a component called BGP agent. These

update messages are delivered to the BGP agent in the destination AS domain
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through the connections among BGP agents, and are distributed there to the BGP

routers which are the destinations of these messages.

This framework enables the system to exchange real BGP message data among

Genesis simulators. But this is not a full solution yet. Within the independent sim-

ulation of one iteration in Genesis, BGP routers produce update messages for their

neighbors, but do not receive update messages from their neighbors in other AS

domains. Had they received these update messages, as it happens in an event-level

synchronization simulation system, they would have probably produced different

update messages. In addition, the routing might also have been changed. To simu-

late BGP protocol correctly, these BGP updates need to be executed in their correct

time-stamp order in each BGP router. Genesis achieved this event-level synchro-

nization for BGP updates by doing extra rollbacks.

Rollback

Convergence test

Insert received remote 
BGP future events into 

event list

BGP message 
exchanging during 

check-pointing

Simulation

Continue

Resume simulation

No

Yes

Figure 5.1: Synchronization for BGP Update Messages

During the Genesis checkpoint after one time interval, the BGP agent in each

AS domain collects BGP update messages from other BGP agents. If it receives

some update messages for the previous interval, it will force the AS domain sim-

ulator to rollback to the start time of the previous interval. Then, it inserts all

the received update messages into its future event list. Its domain simulator will
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reiterate the time interval again, and will “receive” these update messages at the

correct simulation time and will react to them correspondingly. The BGP messages

produced in the current reiteration might be different from those seen at previous

iteration. Hence, the rollback process might continue in domain simulators until all

of them reach a global convergence (for each domain, the update messages produced

in subsequent rollback iterations are the same as those produced in the previous it-

eration). Figure 5.1 shows the flowchart of rollback in the BGP agent. High cost

of checkpointing the network state makes it impractical to introduce separate roll-

backs for BGP activities. Hence, the UDP/TCP traffic checkpoints are used for all

rollbacks in Genesis.

5.2.2 Grouping Multiple ASes in One Genesis Domain

The initial design of distributed BGP simulation in Genesis supported par-

titioning the network on the boundary of each AS domains. As a result, each

distributed Genesis simulator simulated one AS domain. The BGP AS domain IDs

could be used as the identifier of Genesis simulators and were used to route BGP

messages to the corresponding destination simulator. This design was straightfor-

ward but it required that the number of simulators must be the same as the number

of BGP AS domains in the simulation. However, in the case of simulating a network

with large number of BGP AS domains with relatively small number of machines,

one distributed domain simulator need to simulate multiple BGP ASes. In other

words, it is required that we could partition the network in a more flexible way to

group multiple ASes into one Genesis domain. Another advantage of such a flexible

partitioning is that for a given network with multiple BGP ASes, there could be

multiple partitioning schemes to construct a distributed simulation with different

number of machines.

To support this flexible network partitioning and study the effects of different

partitioning schemes on distributed simulation, Genesis was extended to support

AS domain grouping [44]. With AS domain grouping, one Genesis domain could

have any number of BGP AS domains. During a synchronization point, the BGP

agent for one Genesis domain collected all the BGP update messages stored in the
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proxy BGP routers in this domain, and forwarded each of them to its destination

BGP router. This forwarding was done through a two-layered routing, as shown in

Figure 5.2.

To route a BGP message to its destination, the first-layer routing was a map-

ping between BGP ASes and Genesis domains. This could be done in two different

ways: by specifying a grouping factor (e.g., N BGP ASes per domain) when each

group had the same number of ASes, or by providing a mapping file when the group-

ing was not even. This grouping information was shared by all domain simulators

and used to forward every BGP update message to the domain which contained the

corresponding destination BGP router. The second-layer routing contained a mes-

sage classifier in the BGP agent of each domain. The classifier held a list of all BGP

routers in the ASes in that domain. The classifier first identified the destination

BGP router by the address of each received BGP message, and then retrieved the

reference of that router instance and called its receive-message method to deliver

the message.
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5.3 Simulation Component Design

An internal router of the current active domain in a domain simulator is called

an “active router”. When a BGP update message is received by an active router, the

router will handle the update message the same way as a regular BGP router will

do. If the receiving router is outside of the active domain, then this is an deactivated

BGP router, or a “proxy BGP router”. A proxy BGP router does not store any

actual routing information and will not handle the actual routing update. Instead,

it will send the received update message to its counterpart BGP router, which is in

another domain simulator where it is an active BGP router. At the second domain,

this update message can be handled correctly. In such a design, only the BGP

routers in the active domain store and update the actual routing information.

5.3.1 BGP Update Message Transmission

To support distributed simulation, the actual BGP update message will need

to be sent through the socket connections between BGP agents. The update mes-

sage is a data structure that contains some attributes and some sub-structures. The

two sub-structures areWithdrawal Routes and Advertisement Routes, for route with-

drawal and advertisement, respectively. A Withdrawal Route is a vector of IPaddress

objects, and an Advertisement Route is a vector of Route objects. Each Route object

consists of one IPaddress object, and a list of path attribute objects. Path attributes

are different classes of path attribute objects. Such an update message will need

to be encoded into a string for transmission through a socket connection, as shown

below:

UPDATE message encoding/decoding:

Class Name String Representation

UpdateMessage ‘‘msg_nh num_withdrawals IPaddress1 IPaddress2 ...

num_routes nlri1#Attr1#Attr2#Attr3 nlri2#Attr1#Attr2#Attr3 ...’’

Route ‘‘IPaddress#Attr1#Attr2#Attr3 ...’’

ASpath ‘‘num_segments$Segment1$Segment2 ...’’

Segment ‘‘type@num_AS@AS1@AS2@AS3 ...’’

The BGP agent at the receiving domain will decode the update message and

reconstructs the update message data structure, and then delivers the message to

the destination BGP router.
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5.3.2 Update Timer and Output/Input Buffers

Output and input buffers are used for BGP update message exchanging among

domain simulators. During one simulation time interval, each domain simulator

buffers the BGP update messages received by proxy BGP routers, with their times-

tamps. During the checkpointing at the end of this simulation time interval, domain

simulators exchange the BGP update messages stored in their output buffers. Be-

cause of possible rollbacks, domain simulators need to store received messages into

a persistent storage, the input buffer file. If a domain simulator received at least one

BGP update message with a timestamp smaller than its current simulation time,

then at the end of the checkpointing it will roll back the simulation to its previous

checkpoint.

The update timer is used to trigger the delivery of received messages. When

a domain simulator rolls back and restarts from a checkpoint, it retrieves the BGP

update messages from its input buffer file, and inserts them into its future event

list by utilizing a BGP update timer. Thus, during the reiteration of the same

simulation time interval, the update timer will deliver these BGP update messages

originated from peer domains into the simulation at correct simulation time.

5.4 Experiments with Distributed BGP Simulation

5.4.1 Campus Network Model

Our distributed BGP simulation experiments used a modified version of the

baseline model defined by the DARPA NMS community [56]. This baseline model

is a large-scale BGP network with a topology which can be visualized as a ring

of nodes, where each node (representing an AS domain) is connected to one node

preceding it and another one succeeding it. We refer to each node or AS domain

as the “campus network”, as shown in Figure 5.3. Each of the campus networks is

similar to the others and consists of four subnetworks. In addition, there are two

additional routers not contained in the subnetwork, as shown in the diagram. The

total number of AS domains is adjustable for different experiments. Such a synthetic

network model consisting of BGP domains with the same topology makes it easy to

automatically generate networks with large number of AS domains.
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Figure 5.3: One Campus Network

Figure 5.3 shows the internal topology of one AS domain. The subnetwork

labeled Net 0 consists of three routers in a ring, connected by links with 5ms delay

and 2Gbps bandwidth. Router 0 in this subnetwork acts as a BGP border router

and connects to other campus networks. Subnetwork 1 consists of 4 UDP servers.

Subnetwork 2 contains seven routers with links to the LAN networks as shown in

the diagram. Each of the LAN networks has one router and four different LAN’s

consisting of 42 hosts. The first three LAN’s have 10 hosts each and the fourth LAN

has 12 hosts. Each of the hosts is configured to run as a UDP Client. Subnetwork 3

is similar to Subnetwork 2, so internal links and LAN’s have the same property as

those in Subnetwork 2.

The traffic that is being exchanged in the model is generated by all the clients

in one domain choosing a server randomly from the Subnetwork 1 in the domain

that is a successor to the current one in the ring.

Our experiments were run on a cluster of Sun UltraSPARC-III, 750MHz dual-

cpu machines, which were interconnected by a 100Mbit Ethernet. Each Genesis
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domain simulator was assigned to one processor.

5.4.2 Convergence with Different Network Topologies

In this set of distributed simulations, we partitioned a network in the way that

each Genesis domain contained one Campus Network (CN), and assigned it to one

simulation machine, thus the number of machines (processors) used in simulation

was equal to the number of CNs (ASes) in each experiment.

In BGP network simulations, the first round of BGP update message burst

happens when AS domains start to exchange BGP information to set up the global

inter-AS routing. In Genesis, AS domains are simulated distributively, and BGP up-

date messages are synchronized by re-iterating over one time interval until the BGP

messages exchanged among domains converge (no more changes) on that interval,

as we showed in Figure 5.1. We measured the number of re-iterations required by

this BGP convergence on different sizes of networks and different network topologies

to evaluate performance.

In our experiments, we also defined the “maximum distance” in a network as

the maximum length of the shortest paths between any two distributed domains in

the network, where the path length was measured in the number of intermediate

distributed domains on the path plus one.

The first set of experiments were done on the baseline topology as we described

earlier, in which the Campus Networks (CN) were connected as rings, as shown in

Figure 5.4. We measured the convergence of the synchronization for ring sizes of

3, 4, 8 and 12 CNs. Table 5.1 shows the number of re-iterations needed in Genesis

to converge during the BGP message burst. It should be noted that the number of

needed iterations grows sub-linearly with the number of domains.

Table 5.1: BGP Synchronization Convergence with Ring Topologies

Ring Size(No. of CN) No. of Domains Max Distance Iterations
3 3 2 3
4 4 2 4
8 8 4 6
12 12 6 8
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Campus Network

Figure 5.4: Four Campus Networks Connected as a Ring

The results show that the number of re-iterations is related to the size of the

network, and is proportional to the maximum distance of a network. This can be

explained as follows: because in each re-iteration, BGP messages are exchanged

between neighboring distributed domains, thus they propagate to the domains with

distance one to themselves. The maximum distance in a network decides how many

re-iterations are needed for BGP decisions from one distributed domain to reach all

the other domains in the network. Any received BGP message might cause response

messages from the receiver and propagate to the rests in the network, and in each

round the number of re-iterations is also decided by the maximum distance in the

network. In our ring-based topologies, this maximum distance is proportional to

the ring size.

In another set of experiments, we used line-based network topologies where

different number of CNs were connected as lines, as shown in Figure 5.5. The

convergence results are shown in Table 5.2.

Campus Network

Figure 5.5: Four Campus Networks Connected as a Line

In a line topology, the longest distances for every CN to reach other CNs are

not the same, where the CNs on both ends of the line have the biggest value which

decides the maximum distance of the network. The maximum distance of a line-
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Table 5.2: BGP Synchronization Convergence with Line Topologies

Line Length(No. of CN) No. of Domains Max Distance Iterations
3 3 2 3
4 4 3 4
8 8 7 8

12 12 11 12

based network is bigger than that of a ring-based network of the same size, which

is easy to understand. Our results show that the maximum distance decided the

number of re-iterations required in convergence.

The results above show that when the number of Campus Networks increases,

the number of re-iterations for BGP convergence increases as well. However, sim-

ulation of a larger BGP network does not necessarily require more re-iterations.

This is because that it is the “maximum distance” of a network which decides the

rounds of propagations, not the number of BGP ASes itself. A network with more

connectivities among BGP ASes will significantly reduce this “maximum distance”,

thus reduces the number of re-iterations. To demonstrate this, in the following set

of experiments, we connected Campus Networks as cliques, as shown in Figure 5.6,

and varied the number of CNs as 3, 4, 8 and 12. The results are shown in Table 5.3.

Campus Network

Figure 5.6: Four Campus Networks Connected as a Clique

In a clique topology, each CN is directly connected with all other CNs. It is

obvious that the “maximum distance” of the network is 1 for each of these cliques,

despite the number of CNs in the network. Simulation results showed that the

number of re-iterations did not increase when the number of CNs in the clique
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Table 5.3: BGP Synchronization Convergence with Clique Topologies

Clique Size(No. of CN) No. of Domains Max Distance Iterations
3 3 1 3
4 4 1 3
8 8 1 3
12 12 1 3

increased while the “maximum distance” remained the same.

Besides network connectivities, network partitioning schemes can also affect

the convergence performance. It is important that the “maximum distance” is

decided by the distance between distributed domains instead of BGP ASes. In the

experiments above, a network was always partitioned on the boundary of each BGP

AS. In other words, each distributed domain had only one BGP AS. As a result, for

a network with large number of BGP ASes, there will be large number of distributed

domains and very likely the longest distance between two domains will be large (as

we showed, this distance was also depended on the topology), and will need more

reiterations to converge on BGP propagation. However, by grouping neighboring

BGP ASes into one distributed domain, we can reduce the “maximum distance” of

a network, and improve the convergence performance.

In the following set of experiments, 24 Campus Networks (CN) were connected

in a ring, as described in the previous section earlier. We grouped N adjacent CNs

into one Genesis domain, and constructed each domain distributively in Genesis

domain simulators, as shown in Figure 5.7. N was varied as we set it to 8, 6, 3 and

2, thus the “maximum distance” of each network was, correspondingly, 2, 2, 4 and

6.

Table 5.4 shows the results of synchronization convergence. The results show

that by grouping BGP ASes together, we had reduced the number of distributed

domains and the number of convergence re-iterations. The cost was, however, the

degree of parallelism was also reduced. On the other hand, because Genesis supports

flexible BGP AS grouping, users have the freedom to select network partitioning

schemes. The results from Table 5.3 give us a hint that a partitioning scheme which
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Figure 5.7: Grouping Adjacent Campus Networks

has higher connectivity among distributed domains will converge faster.

Table 5.4: Synchronization Convergence with Different Ring Sizes

Ring Size(No. of CN) N No. of Domains Max Distance Iterations
24 8 3 2 3
24 6 4 2 4
24 3 8 4 6
24 2 12 6 8

5.4.3 Grouping BGP ASes with Background Traffics

In this set of experiments, we intended to study the performance impacts

of different types of traffic, specifically, local or remote traffic, on the distributed

simulation under different network partition schemes.

In order to compare the simulation performance of Genesis and SSFNet, we

first did some experiments under SSFNet on the same campus network model. We

ran a set of simulations on a Sun UltraSPARC-II 4-CPU machine, and varied the

number of processors in these SSFNet parallel simulations setting it to 1, 2, 3 and 4.

Ring size of 6 campus networks was used for the 1, 2 and 3 processors simulations,

while ring size of 4 campus network was used for 1 and 4 processors simulations. We

always assigned adjacent campus networks to the same processor. Thus, by varying

the number of processors, we varied the percentage of remote traffic (in this case,

traffic exchanged between parallel processors) as well.

Table 5.5 shows the experiment results. The results demonstrate that when
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Table 5.5: SSFNet Parallel Efficiency A

Network Partitions Remote Speedup Distributed
Size (CN) Traffics Efficiency

6 1 0% N/A N/A
6 2 50% 1.78 89%
6 3 75% 1.68 56%
4 4 100% 2.1 53%

the percentage of remote traffic increased, the parallel efficiency of SSFNET de-

creased. The parallel efficiency dropped to just above 50% when the percentage of

remote traffic was close to 100%. Because all links between two campus networks

were the same, the lookaheads were the same when the partitioning were differ-

ent in these simulations. However, larger amount of events (packets) needed to be

exchanged and synchronized among processors introduced higher overheads in the

parallel simulation.
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Figure 5.8: SSFNet Parallel Simulation Speedups

The parallel simulation performance of SSFNet was also reported in [68], where

experiments were done on Sun enterprise servers with up to 12 processors. A similar

ring of campus network model was used while the size of an individual campus

network was smaller. We included the reported results for the simulations in which
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each campus network exchanged traffic only with its neighboring network in Figure

5.8. We computed the parallel efficiencies of those experiments based on these results

and showed them in Table 5.6.

Table 5.6: SSFNet Parallel Efficiency

Network Partitions Remote Speedup Distributed
Size (CN) Traffic Efficiency

4 4 100% 2.7 67.4%
6 6 100% 4.0 66.7%
8 8 100% 4.5 56.2%

10 10 100% 5.7 57.0%
12 12 100% 6.1 50.8%

The results in Table 5.6 shows that when the number of processors increased,

the parallel efficiencies dropped not very significantly, from above 60% to about

50%. Because in these simulation, each campus network was simulated by one

processor and only exchanged traffics with its neighboring network, the remote traffic

percentages were the same as 100%. The volume of remote traffic and the overheads

for each processor to handle remote events from other processors were about the

same. Also the lookaheads were the same because the link delays between campus

network did not change. However, with more parallel processors, the overheads

of global synchronization increased. From these results, we observed that in the

simulations with high percentage of remote traffic, the parallel efficiency of SSFNet

was only about 50% to 60%.

Another set of experiments were done under Genesis. 24 campus networks

(CN) were connected in a ring, as described in the previous section. We grouped N

adjacent CNs into one Genesis domain, as shown earlier in Figure 5.7. N was varied

as we set it to 24, 6, 3, 2 and 1, thus the number of domains was, correspondingly 1, 4,

8, 12 and 24. Because each campus network exchanged traffic only with its adjacent

networks, when we changed the grouping scheme, the percentage of remote traffic

(traffic exchanged between distributed domains) in the simulation also changed.

We compared the results of different grouping schemes with the non-distributed

simulation (24 CNs simulated in one simulator) and computed the efficiencies.
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The individual campus network (CN) model in these experiments was the same

as the one we used in the experiments we reported in [78], however, we set the traffic

send-rate at the higher rate of 0.02 second per packet. In addition, we reduced the

total simulation time from 400 seconds to 100 seconds, while keeping the traffic

time as 60 seconds. As a result, the network was loaded with higher intensity traffic

throughout the simulation and the communication overheads during each checkpoint

became comparatively smaller.

Table 5.7: Distributed Efficiency in Genesis Distributed Simulation

Full Network Genesis Remote Total Packet-hop Speedup Distributed
Size (CN) Domains Traffic Difference Efficiency

24 1 0% N/A N/A N/A
24 4 28.6% 3.8% 4.15 104%
24 8 50.0% 3.2% 7.73 96.7%
24 12 66.7% 4.0% 11.0 91.7%
24 24 100% 5.0% 19.8 82.6%

Table 5.7 shows the experiment results. From these results, we observed that

when the percentage of remote traffic increased from about 28% to 100%, the dis-

tributed efficiency dropped slightly. Even with 100% remote traffic, the distributed

efficiency was still above 80%. In addition, the error of the total packet hops was

within 5% compared to non-distributed, accurate simulation. Genesis showed better

performance in these experiments than SSFNet.

We attributed this advantage of Genesis to its coarse granularity synchro-

nization approach. Unlike conventional event-level synchronizations in which each

individual remote packet (event) need to be exchanged and synchronized, Genesis

aggregated these simulation data and reduced both the amount of data exchange

and frequency of synchronization. As the result, higher percentage of remote traffic

did not introduce significant synchronization overheads in Genesis, as they usually

did in other conventional simulation systems.
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5.4.4 Distributed UDP Flooding in U.S. Backbone Network Model

In order to study the performance of Genesis with large scale, real-world net-

work models, we selected the U.S. backbone network model introduced in [39]. This

model was a large scale BGP network topology consisting of 8 national-level ISP

networks. The full topology included 9828 backbone routers and 787 BGP speakers.

Remote 
Connections

Distributed Genesis 
Domains
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Abovenet

465 BB RTR

211 BB RTR

244 BB RTR

Figure 5.9: Network Model of Three ISP’s

Due to our hardware limitation, we selected three ISPs to construct a subset

of this U.S. backbone network topology for our experiment. The selected ISP’s

were Sprintlink with 465 backbone routers and 56 BGP speakers, Exodus with 211

backbone routers and 32 BGP speakers and Abovenet with 244 backbone routers

and 39 BGP speakers. We connected them as a clique, as shown in Figure 5.9. We

distributively constructed each of these ISP BGP networks into one Genesis domain

and assigned each of them to one distributed simulator.

Domain Simulators

router

BGP

BGP

router

…… …… UDP Flooding Traffics

Figure 5.10: Distributed UDP Flooding Simulation
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Distributed UDP flooding simulation was used in network security research to

study the effectiveness of different protection techniques. Thanks to its distributed

traffic pattern and high traffic intensity, it usually introduces high synchronization

overheads in parallel and distributed simulations.

We designed our experiment to demonstrate the performance of Genesis in

a simulation with burst-out distributed UDP flooding. Initially, each of the three

ISP networks had some background traffic, and at simulation time 40 second, we

randomly selected 20 distributed hosts in each network to generate high intensity

UDP traffics (15Mb/sec) that flooded the other two ISP networks. These burst-out

flooding traffics increased the percentage of remote traffic in the network to over

90%. We monitored the packet-hop rate changes during the simulation. Higher

packet-hop rate represents higher simulation efficiency, and lower packet-hop rate

represents higher synchronization overheads in the simulation.
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Figure 5.11: Simulation Rate

Figure 5.11 shows the experiment results. We observed that when the dis-

tributed UDP flooding bursted out, the packet-hop rate dropped significantly. This

was because initially, during the synchronization, Genesis rolled back the simula-

tion for the iteration in which the burst happened. After the Genesis simulation

converged on this change in the network, it proceeded with UDP flooding traffic

and the packet-hop rate raised back to above 90% of the rate before the flooding.

Genesis was able to simulate very high percentage of remote traffic with very little

extra synchronization overhead.
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5.5 Chapter Summary

In this chapter, we discussed the design and implementation in Genesis to

support distributed BGP simulation. With this capability, Genesis facilitated the

simulation of large-scale BGP network simulation and made it possible to simulate

very large BGP networks on clusters of workstations.

We also demonstrated that Genesis worked efficiently in distributed BGP net-

work simulations. Thanks to its coarse granularity synchronization approach for

background traffic which did not require exchanging and synchronizing each indi-

vidual remote packet, Genesis significantly reduced the overheads in distributed

simulations and achieved better distributed efficiency than conventional systems.

Although larger BGP network simulations will require more re-iterations to

converge on BGP bursts, our approach supports scalability by distributing the BGP

networks as well as the background traffic. In networks in which BGP bursts are

not frequent compared to the changes in the background traffic, this approach also

assures good run-time performance thanks to coarse granularity synchronization of

the background traffic. In the next chapter, we will explain how we go further to

distribute the memory usage as well.

With the support of flexible partitioning of BGP networks, and distributed

simulation of large scale, real world network models, study of the performance and

stability of BGP and defensive techniques against flooding and worm attacks will

be directions of our future research.



CHAPTER 6

MEMORY DISTRIBUTED NETWORK SIMULATION

6.1 Introduction

Simulations of large-scale networks require large memory size. This require-

ment can become a bottleneck of scalability when the size or the complexity of the

network increases.

In Chapter 4, we discussed the design and implementation of distributed Gen-

esis simulation. However, that version of Genesis did not distribute network in-

formation among domain simulators. Each domain simulator constructs the full

network topology and stores all the dynamic information (e.g., routing information)

for the whole network during the simulation. To avoid such replication of memory,

we developed a new version of Genesis which completely distributed network infor-

mation among simulators. In such a solution, each domain simulator only needs

to construct and store the partition of network assigned to it, none of them needs

to construct the full network. As the result, the full network is constructed dis-

tributively among domain simulators, and the memory usage for each simulator is

reduced significantly.

6.2 Design of Memory Distributed Network Simulation

Memory distribution is particularly challenging in Genesis, because of its spe-

cial coarse granularity synchronization approach. In Genesis, within one time in-

terval, one domain simulator is working independently of the others, simulating the

partial packet flows within or through that domain. If the network information is

completely distributed among the domain simulators, then each simulator will have

information about only one part of the network. Hence, these simulators cannot

simulate global traffic independently because information about some flow sources

or destinations, or both will not be there. We should notice the difference here from

other event-level synchronization systems. In those systems, to simulate distributed

network, each individual event crossing the boundary is forwarded to remote simu-

72
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lators regardless of its “semantic meaning”. Such a parallel simulator does not need

to simulate global flows independently, but they must synchronize their execution

tightly on event level.

In Genesis solution, each domain uses traffic proxies that work on behalf of

their counterparts in the remote domains. Traffic proxies send or receive TCP

or UDP data packets as well as acknowledgment packets accordingly to produce

feedbacks. To simulate inter-domain flows, partial flows are constructed between

local hosts and proxy hosts. Thus, in the simulation of one AS domain, the simulator

just simulates one part of an inter-domain traffic by using proxy hosts and proxy

links, as shown in Figure 6.1.

Proxy Host

Proxy Host

Proxy Host

Inter-domain traffic

Inter-domain traffic

AS Domain Simulator

Host

Proxy Host

Proxy Link

Figure 6.1: Proxy Hosts and Inter-domain Traffic

The actual traffic path between local hosts and remote hosts must be decided

by inter-AS routing. For example, inter-AS routing changes can cause remote in-

bound traffic to enter the current AS domain from different entry points and flow

through a different path inside the domain. We developed a method, described

below, to construct these remote traffic paths and to automatically adjust them to

reflect the current inter-AS routing decision.

To support distributed memory simulation in Genesis, changes were made to

both DML definition and SSFNet based implementation.

Global routing information consistency: To compute global routing in
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separate simulations, each of which has only information about a part of the network,

IP address consistency is required to make the routers understand the routing update

messages. In addition, we use BGP proxies and traffic proxies to act on behalf of

their counterparts. To use routing data, these proxies need to use the IP addresses

of their counterparts when they produce traffic packets. We used a global IP address

scheme for the whole network, and introduced a mechanism of IP address mapping,

which translates local addresses to and from global addresses used in our BGP

update messages. In our global IP address scheme, domains are assigned different

IP address blocks to avoid address conflicts among domain simulators. Inter-domain

routing information is stored based on these global addresses. Each proxy host

stores the IP address of its counterpart host which has a global IP address. When

packets are sent from proxy hosts, the IP addresses in the packet headers would be

replaced with corresponding global IP addresses. In this way, the addresses in these

packets are consistent with the routing information and can be correctly routed to

the destinations.

Remote host, traffic and link : Those definitions were added to the current

DML definitions for SSFNet [67]. Remote host defines the traffic host (source or

sink) which is not within the current simulating domain, and specifies the global

IP address for this proxy. Remote traffic pattern extends SSFNet to allow the

definition of a traffic which will use proxy IP address instead of its own local IP

address. Remote link is defined to connect the remote host to the current domain,

and it is implemented as a Genesis proxy link which can adjust its link delay and

applied packet drop rates during the simulation.

Remote traffic path construction: The difficult part of remote traffic path

construction was to decide how to connect proxy hosts to the current AS domain.

Changes in inter-AS routing decision might change the entry (exit) point of traffic

packets to (from) the domain. Such a change cannot be determined during the

network construction phase. We designed a structure which connected remote traffic

hosts to a proxy switch, instead of connecting them to any entry point directly, as

shown in Figure 6.2. When a packet sent by a proxy host reaches the proxy switch,

the proxy switch will lookup an internal mapping from flow id to the current inter-
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Figure 6.2: Remote Traffic Path Construction with Proxy Switch

AS routing table, and will forward this packet via the correct inbound link to one

of the BGP routers on the domain boundary. If the inter-AS routing is changed by

some BGP activities later, the proxy switch will automatically adjust its internal

mapping, and then the packets with the same flow id will be forwarded to the new

inbound link.

6.3 Simulation Component Design

This section provides an overview of Genesis extensions to support memory

distributed BGP network simulations.

6.3.1 Network Partitioning for Memory Distributed Simulation

In Genesis simulations without memory distribution, network partitioning pro-

vides the mechanism to identify the active domain and non-active domains in the full

network topology. However, network partitioning for memory distributed simulation

is different. Because the full network topology is no longer stored in any of the do-

main simulators, network partitioning provides the mechanism to construct partial

networks for domain simulators. In addition, some auxiliary network information

is also stored to coordinate the inter-operation among domain simulators. Genesis

User Manual [46] provides the details about the requirements for constructing the
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network partitions in DML network scripts

Genesis Domain, Active Domain and Proxy Domain

Domains are partitions of the original network. The domain which is assigned

to the current domain simulator is referred as the “active domain” of the current

domain simulator. The rest of the network outside of the “active domain” is rep-

resented in an abstract level, and only the part of outside network which will have

network traffic or BGP sessions with the “active domain” need to be represented

in the current domain description file. These structures are represented as differ-

ent kinds of Genesis proxies. All the domains other than the “active domain” are

non-active domains in the current domain simulators, and are represented mainly

by Genesis proxies.

Each Genesis domain description file will contain one “proxy domain” which

does not represent any part of the original network. Instead, the “proxy domain”

is one group of Genesis proxy structures used by Genesis itself to coordinate the

distributed domain simulators and to manage proxy traffic. The active domain,

non-active domains and the proxy domain together are called a “Genesis domain”.

If the active domain is BGP AS 1, then the Genesis domain is called the Genesis

domain for BGP AS 1. For example, if a network with three BGP Automatic

System (AS) domains is partitioned into three Genesis domains, Figure 6.3 shows

the structure of the Genesis domain for BGP AS 1.

One Genesis domain description file needs to be constructed from the original

network description file for each Genesis domain simulator.

Proxy Domain Structure

Proxy hosts in non-active domains are not directly connected with the active

domain. Instead, they are connected with one “proxy switch” router in the “proxy

domain”. The proxy domain is a special BGP AS domain constructed specially for

Genesis domain simulators. The basic functionality for the proxy switch router is to

forward each packet coming out from the active domain to the correct proxy host,

and forward each packet coming out from a proxy host to the correct BGP router

in the active domain according to the current routing configuration of the network.

If the inter-AS routing changes, the proxy switch will automatically adjust itself
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to forward packets accordingly. All proxy hosts in non-active domains are directly

connected with this proxy router, and all packets coming out from the active domain

are immediately forwarded to this proxy router. This router serves as a central

“switch” for the packets, so it is called the “proxy switch router”. An overview of

the structure of a proxy domain is shown in Figure 6.4.
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Figure 6.4: Genesis Proxy Domain and Proxy Switch Router

The “proxy domain” is usually assigned an unused number as its BGP AS
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net id. It has one router defined with mark “proxy switch”. This router has one

interface defined for each proxy hosts which will be directly connected with it, and

each of these interfaces is marked with “proxy interface”. In addition to this proxy

domain, one link is defined to attach each proxy host to one of the proxy interfaces

of the proxy switch router. These proxy links are regular point-to-point links with

special marks, which tells the simulator that this is a Genesis proxy link instance.

Proxy links have pre-set delay and drop rate, and will be automatically adjusted by

Genesis during the simulation.

6.3.2 Packet Forwarding for Remote Traffic

For remote traffic, when one packet going out of the active domain reaches

the proxy BGP router outside of the domain, it needs to be forwarded to the proxy

switch router, and the proxy switch router needs to forward it further to the corre-

sponding proxy link for this flow. On the other hand, when one packet from a proxy

host goes through the proxy link and reaches the proxy switch router, the proxy

switch router needs to forward it to the correct NIC to allow it to enter the active

domain. This packet forwarding is done in the IP layer of the proxy switch router

and the proxy BGP routers.

To forward remote traffic packets correctly, the first step is to identify the

position of the packet in the partitioned network. This is done by adding special

marks into host/router definitions. Hosts or routers at different positions in the

network are marked with different host types. These host types are defined in class

Host, as shown in Table 6.1.

These marks are automatically set by parsing Genesis DML simulation scripts

instrumented with special marks for Genesis [46]. They are stored in the attribute

ghtpye of class Host, so it can be used to identify the role of a host/router in the

Genesis simulation. For example, the proxy switch router has its ghtpye set to

PROXY SWITCH.

After identifying the host type, the IP layer operations will forward a remote

packet correspondingly. When one remote packet is to be pushed down to the link
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Table 6.1: Host Types in Genesis

// host inside of the active domain
public static final int NORMAL HOST = 0;
// host at the border of the active domain
public static final int BORDER HOST = 1;
// proxy server outside of the active domain
public static final int PROXY SERVER = 2;
// proxy client outside of the active domain
public static final int PROXY CLIENT = 3;
// proxy bgp router connected to the active domain
public static final int PROXY BGP = 4;
// proxy ospf router connected to the active domain
public static final int PROXY ROUTER = 5;
// proxy switch router in the proxy domain
public static final int PROXY SWITCH = 6;
// UDP and TCP servers representing transit traffic
public static final int DYN SERVER UDP TCP = 7;
// udp client representing transit traffic
public static final int DYN CLIENT UDP = 8;
// TCP client representing transit traffic
public static final int DYN CLIENT TCP = 9;

layer for transmission, the method push of class IP is invoked, and the related ghtype

is checked. If the packet is in the IP layer of the proxy switch router, this means

that the packet has just come out of the proxy link and needs to be pushed into the

corresponding entry NIC to enter the active domain. The entry NIC instance for

this flow is retrieved using the current packet’s flow id, and this packet is pushed

into that NIC.

If the packet is in the IP layer of a proxy BGP router with mark PROXY BGP,

this packet needs to be pushed into the corresponding proxy NIC in the proxy switch

router. The mapping between flow IDs and proxy NICs is stored in a Genesis

information base. The proxy NIC instance for this flow is retrieved and the current

packet is directly pushed into that NIC.

6.3.3 Traffic Data Collection and Update

Per flow traffic data (e.g. packet path delay, packet sends and drops) are

collected during the simulation. To record the packet trace information during the

simulation, the IP header is extended with attributes for Genesis, including the

fields shown in Table 6.2.

Gfid stores the Genesis flow id; gflag identifies different types of remote/local

traffic; gdata is 1 for UDP or TCP traffic packets with data payloads, and is
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Table 6.2: New Fields in IP Header

public int gfid = 0;
public int gflag = 0;
public int gdata = 0;
public long sent time = 0;
public long entered time = 0;
public long left time = 0;
public long received time = 0;

0 for other packets; other attributes record the send-from-source and receive-at-

destination time, and the time one packet enters or leaves the active domain.

Sent time is set when the packet just comes out from the traffic source; re-

ceived time is set when the packet is to be received by the traffic destination; en-

tered time is set when the packet just comes across a link from a router outside

of the active domain and reaches a border router inside of the active domain; the

left time is set when the packet reaches a border router and will be pushed into a

NIC marked as “border NIC” (a NIC in the active domain connects to a NIC out-

side of the active domain). At the same time, the counters related to the sending,

receiving, entering and leaving for each flow are updated. Based on these recorded

timing data, the delays for each packet from the sending to receiving and from the

entering to leaving are computed as well.

The other information collected in push is the “exit point” of a remote flow.

When a packet goes out of the current active domain and reaches a proxy BGP

router, the NIC of the proxy BGP router from which the packet coming out is the

“exit point” of this flow for the current active domain. This “exit point” will be

the “entry point” for the domain which contains the proxy BGP router. Thus, the

interface id of the NIC “exit point” is recorded. During the checkpoint, this “exit

point” information will be forwarded to the domain simulator which simulates the

active domain containing this proxy BGP router, where this “exit” NIC will be set

to the “entry” NIC for this remote flow. In addition, this “exit” NIC will also be

set to be the “entry” NIC for the feedback flow.

All these traffic data are stored in a global information base for the domain
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simulator. Genesis provides the functionalities to manage this information base,

which includes:

• Store flow identification, flags, traffic types (UDP/TCP), traffic source and

destination, etc.;

• Store per flow traffic data and statistics data. Per flow packet delay and drop

information and the computed statistics data are stored in different arrays;

• Store per flow traffic path information. For each flow, the information about

the entry NIC and proxy links needed by Genesis simulation is stored in arrays.

For each flow, the information of “cross links” (the links connect the active

domain and non-active domains) on its traffic path is also stored in arrays.

It stores the mapping between traffic flow IDs and entry NICs, which decides

the packet forwarding in proxy switch router;

• Store some other statistics information, like packet hop counts;

• Statistics computation over stored data;

• Access methods to retrieve and update stored data.

6.3.4 Transit Traffic Simulation

In Genesis, a transit traffic to an active domain is a traffic which both the

source node and the destination node are outside of the current active domain.

Unlike the remote traffic which has one end of traffic, either the source or destination,

inside of the active domain, transit traffic cannot be identified in advance for a

domain simulator. Transit traffic for one active domain is determined by the inter-

domain routing, and it can change during the simulation when inter-domain routing

changes. This requires domain simulators to simulate transit traffic dynamically.

In the Genesis simulation with full network topology, when a domain simulator

needs to add a transit traffic during the simulation, it only needs to activate the

proxy source nodes for that traffic to create the transit flow, because all the nodes

in the network have been constructed before the simulation starts. However, in

memory distributed simulation, only one part of the network is constructed in a
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domain simulator, thus the source nodes for a transit traffic do not exist in advance.

The solution is that Genesis creates a pair of special server and client hosts in it

proxy domain to handle transit flows dynamically. These special server and client

can dynamically create UDP or TCP flows using specified source and destination

IP addresses.

In Genesis, when one domain simulator received traffic statistics data for a

network flow from its peer simulators, if it identifies this flow as a new transit flow,

it will create a client request packet for this flow and sends it to a pre-designated

UDP or TCP server. The receiving server will then create a new flow to represent

this transit flow. At the same time, this domain simulator also uses the received

flow information related to this transit flow to set up the proxy links and entry/exit

points for this flow. When this transit flow expires, the domain simulator will remove

it from its transit flow list.

6.4 Experiments

6.4.1 Distributed Simulation of Campus Network Model

6.4.1.1 Simulation Model

To test the performance and scalability of BGP simulations and memory dis-

tributed simulations in Genesis, we use a modified version of the Campus Network

model defined by the DARPA NMS community [56], as we introduced in Chapter

5. We placed the figure of one Campus Network here again for reference.

We used different send-intervals of 0.1, 0.05 and 0.02 second to vary the traffic

intensities, and used different numbers of nodes (AS domains) to vary the size of

the network. Each simulation was run for 400 seconds of the simulated time.

All tests were run on up to 30 processors on Sun 10 Ultrasparc workstations,

which were interconnected by a 100Mbit Ethernet. One of these workstations had

1G large memory, and each of the others had at least 256M dedicated memory. In

the simulations under distributed Genesis, the number of processors used was equal

to the number of campus networks.
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6.4.1.2 Performance of Simulations on Distributed Memory

Genesis distributively constructs and simulates BGP routers in AS domain

simulators. To measure scalability of this solution in terms of network size, we

simulated BGP networks of 10, 15, 20 and 30 AS domains, each run by a Sun 10

Ultrasparc workstation with 256Mb of memory. As shown in Figure 6.6, when the

number of AS domains increases, unlike SSFNet, the memory usage of one Genesis

AS simulator does not increase significantly. As a result, by utilizing more computers

with smaller memories, we are able to simulate much larger networks.
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Figure 6.7: Memory Usage of SSFNet and Genesis for 20-AS BGP Net-
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Memory usage of simulation is related not only to the static network size, but

also to the traffic intensity. We increased the traffic intensity by reducing the traffic

send-interval from 0.1 to 0.05 and 0.02 second. As shown in Figure 6.7, although

we did not observe very big changes in memory usage in SSFNet on this campus

network model, Genesis showed even smaller increase in memory size with the same

changes in traffic (thanks to its smaller base memory size).

As we have shown, Genesis achieved execution speedups thanks to its coarse

granularity synchronization mechanism. In addition, despite the extra overheads

introduced by distributing the network, good speedups where achieved for 10, 15,

20 and 30 domain simulators with BGP routers. The Genesis domains were defined

by the AS boundaries. Figure 6.8 shows the speedups of simulations for these
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networks.
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Figure 6.9 shows that Genesis achieved higher speedups with higher traffic

intensities. This is because with higher traffic intensity, more events need to be

simulated in a fixed simulation time. Theoretical analysis tells us that sequential

simulation time includes terms of order O(n ∗ log(n)), due to sorting event queues.

Genesis distributes the simulation among domain simulators, which reduces the

number of events needed to be simulated by one simulator, so it can achieve higher

speedups when the traffic increases as well as when the network size increases.

To measure the accuracy of the simulation runs, we monitored the per flow

end-to-end packet delays and packet drop rates. We compared the results from

distributed Genesis with the results from sequential simulations under SSFNet, and

calculated the relative errors. Our results showed that for most of the flows, the

relative errors of both packet delay and drop rate were within the range from 2%

to 10%, while a small number of individual flows had higher relative errors of up

to 15% to 20%. Considering the fact that in a simulation with large number of

flows, the network condition was mainly determined by the aggregated effects of

sets of flows, we calculated the root-mean-square of the relative errors on each set

of flows which went through the same domain. These root-mean-squares of relative

errors were below 5%, which seems sufficiently close approximation of the sequential

simulation for many applications.
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Simulation results showed that by fully distributing the simulation in Gene-

sis, we gained the scalability of memory size. In addition, the parallel simulation

in Genesis still achieved performance improvement in this distributed framework,

compared to sequential simulations.

6.4.2 Impacts of On-going BGP Activities

We have shown the synchronization convergence on BGP bursts under Gen-

esis in section 5.4.2. When a BGP update message propagation happens, Genesis

re-iterates over the same time interval until the propagation converges. Each re-

iteration consumes simulation run time. When BGP update message propagations

happen periodically during the simulation, the additional run time required by these

re-iterations will decrease the speedups achieved by utilizing parallel simulation. An

interesting question is how such on-going BGP activities would affect the simulation

performance.

To investigate this question, we introduced BGP session crashes into our ex-

periments. The simulation time was fixed at 400 seconds for 20 AS’s and, cor-

respondingly 20 Sun 10 Ultrasparc workstations. The BGP session between two

neighboring AS domains, campus network 3 and 4, crashed every D seconds, each

time staying down for D/2 seconds, and then coming back and staying alive for

another D/2 seconds.
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Figure 6.10: Impacts of BGP Crashes on Simulation Progress

As expected, in the simulation time intervals in which the specified BGP ses-

sion went down, BGP update messages were propagated causing the broken routes

to be withdrawn and back up routes being set up. Accordingly, data packet flows

also changed and used the new routes. When that BGP session came back again,

BGP update messages propagated again and re-established the broken routes. In

either case, the relevant time interval had to be re-iterated again and again un-

til it converged. So these intervals were “slow-down” periods. The time intervals

with no BGP propagations were “speed-up” periods thanks to parallel simulation

mechanism used by Genesis, as discussed in the previous section. Figure 6.10 shows

the simulation progress with BGP crashes: periodical BGP crashes cause rollbacks

in simulation time, which are “slow-down” periods; after these BGP propagations

converge, the simulation can progress to the next time interval. As a result, the

proportion of the “slow-down” time in the whole simulation time affects the overall

speedup: the less frequently the crashes happen, the greater the speedup that can

be achieved. When the frequency of BGP crashes is not high, these “slow-down”

periods will not significantly slow down the progress of the simulation.

On the other hand, the length of the time interval also affects the total re-

iteration time. Ideally, smaller the length of the time interval, shorter the total

re-iteration time. But there are two other factors which benefit from longer inter-

vals. First, small interval length increases the synchronization and checkpointing
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overheads between intervals and can overwhelm the simulation speedup. Second, if

the interval length is too small to cover the BGP propagation period, then the next

time interval will need to be re-iterated, in addition to the current one.

To study the impact on performance of different crash frequencies and simula-

tion interval lengths, we varied the value of D from 80 to 60, 40 and then 20 seconds,

and also used different lengths of iteration time intervals for Genesis checkpointing,

denoted as T , which was set to 20, 10 and 5 seconds. Figure 6.11 shows the speedups

achieved in these experiments.
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In our experiments, we were able to reduce the iteration time interval length

to 5 seconds, as we observed that the BGP propagation in our experiment scenario

was around 3 seconds. As shown in Figure 6.11, we achieved significant speedups for

crash intervals greater than 40 seconds. Besides the crash frequency, the iteration

length also played an important role in the performance. When using big iteration

interval length of 20 seconds, Genesis failed to produce any speedup with short crash

interval of 40 seconds. These results indicate that a method to automatically decide

the optimal iteration length for a given simulation scenario could be a valuable

future extension that can improve the overall performance of the system.
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6.5 Chapter Summary

Memory distribution introduced some extra overheads into Genesis simula-

tion. However, thanks to its coarse granularity synchronization approach, Genesis

was able to achieve significant execution speedup over conventional sequential sim-

ulations.

With the support of memory distributed simulation, Genesis significantly re-

duced the memory usage in each domain simulator. Thanks to this solution, Genesis

was able to simulate large-scale networks using a cluster of computers with smaller

dedicated memory (compared to the memory size required by shared memory-based

SSFNet simulating the same network). This will facilitate research work using large-

scale network simulations.



CHAPTER 7

GENESIS SIMULATION PARAMETERS

7.1 Introduction

In Genesis, there are several parameters which can be customized in sim-

ulation scripts. These parameters include the length of the simulation intervals

(checkpoint intervals), re-iteration convergence conditions and computation param-

eters for statistics calculation. We observed that different configurations of these

parameters affected the performance of Genesis simulation. They affected the sim-

ulation execution time and the accuracy of the simulation results as well, and these

effects would be different for different types of simulations. In this chapter, we dis-

cuss these Genesis parameters in details, and demonstrate their effects in simulation

experiments.

7.2 Network Model

The simulation network model used in this section was the same campus net-

work model described before. The size of the model was a ring of 4 campus networks.

Each campus network had 504 UDP or TCP traffic flows connecting to its neigh-

boring campus networks in the ring. For each set of experiments, we simulated

this network topology with SSFNet sequential simulation first, and then partitioned

the network into distributed domains and simulated it with 4 Genesis distributed

simulators (one campus network per simulator). We varied the values of Genesis

parameters for different simulations and compared the results with that of corre-

sponding SSFNet sequential simulation.

To evaluate the performance of Genesis against sequential SSFNet, we com-

pared the execution time of the simulations to calculate speedups, and compared

the accuracy of simulation results based on average packet end-to-end delay, traffic

data throughput and average packet drop rate. We also measured and compared

the total packet hop counts in simulations. Total packet hop count and hop rate

reflect how much work has been done during a network simulation, so they are also

90
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used to measure the correctness as well as the efficiency of a simulation.

7.3 Simulation of UDP Traffic

In the first set of experiments, we simulated UDP traffic in the network with

low traffic intensity. We used constant bit rate UDP traffic source and set the UDP

traffic send rate at 20 packets per second with packet size of 10K bytes.

We used simple convergence condition for this set of experiments: we compared

the recorded average delays (as explained early in this thesis), and if the changes

between iterations exceeded a threshold of 5%, then the simulator rolled back to

re-iterate the last simulation interval.

Convergence Condition A:

ErrorN = (DelayN −DelayN−1)/DelayN−1

IF ErrorN > threshold

THEN

roll back interval N and re-iterate

ELSE

continue to interval N + 1

where threshold was set to 5%.

We also used simple statistics computation that recorded average delay and

drop rate for the current interval, DelayN and DroprateN , are directly applied to

the next interval, as

DelayN+1 = DelayN (7.1)

DropRateN+1 = DropRateN (7.2)

We varied the length of simulation intervals as 5, 10 and 20 seconds, and

compared the results with SSFNet sequential simulation. The results are shown in

Table 7.1.

In this set of experiments, no UDP packet was dropped during the simula-

tion because the traffic intensity was low and no congestion happened. From the

results, we observed that Genesis achieved very good accuracy for all three different
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Table 7.1: UDP Traffic Simulation with Packet Rate of 20 Pkt/sec

SSFNet Genesis Genesis Genesis
Interval(sec) 5 10 20

Run-time(sec) 960 250 260 286
speedup 3.8 3.7 3.4

Throughput(Mb/sec) 40.36 40.36 40.36 40.36
difference 0% 0% 0%
Drop Rate 0% 0% 0% 0%
difference 0% 0% 0%
Delay(sec) 0.2384 0.2372 0.2357 0.2347
difference 0.5% 1.1% 1.6%

Hop Count(Mhops) 20.97 21.95 22.00 22.90
difference 4.67% 4.92% 9.20%

interval lengths. In addition, when shorter interval length was used, the accuracy

of the result was slightly better. This was because with shorter length interval,

Genesis domain simulators updated their proxy links more frequently with statistics

data collected by its neighboring domains, which represented the current network

condition better.

We should also notice that the distributed efficiencies with 4 domains in these

experiments were lower than those we reported in Chapter 6. This was because we

used smaller domain size which consisted of only one Campus Network, instead of

grouping multiple Campus Networks into one domain. Smaller domain size meant

less simulation work for each domain simulator during the same interval, thus the

synchronization and checkpointing overheads became comparatively bigger. We

chose smaller domain size in these experiments because it facilitated our running

of large number of simulations, and our purpose in this chapter was to study the

effects of Genesis parameters.

To introduce traffic congestion into the network and study the performance of

Genesis in the network condition that packets were dropped, we increased the UDP

packet rate to 50 packets per seconds. Under this traffic intensity, the maximum

traffic load on the inter-campus links increased to slightly over 2.0 Gb/second, while

the capacity of inter-campus links in the model was 2.0 Gb/second. Congestion
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would happen and packets would be dropped. The simulation results for this set of

experiments are shown in Table 7.2.

Table 7.2: UDP Traffic Simulation with Packet Rate of 50 Pkt/sec

SSFNet Genesis Genesis Genesis
Interval(sec) 5 10 20

Run-time(sec) 950 285 320 410
speedup 3.3 3.0 2.3

Throughput(Mb/sec) 39.87 39.84 39.78 39.77
difference 0.10% 0.21% 0.25%
Drop Rate 1.20% 1.30% 1.42% 1.46%
difference 8.33% 18.3% 21.6%
Delay(sec) 0.2390 0.2364 0.2335 0.2299
difference 1.1% 2.3% 3.8%

Hop Count(Mhops) 20.75 22.67 22.69 22.72
difference 9.22% 9.29% 9.90%

Results in Table 7.2 shows that Genesis performed well in this slightly con-

gested network as well. Similar to the results shown in Table 7.1, simulation with

the smallest interval length, 5 seconds, produced the most accurate results among

the three different interval lengths. In this congested network and with Genesis

interval length of 5 seconds, the errors of both traffic throughput and average end-

to-end delay were under 1 percent and the errors of packet drop rate and total packet

hop count were under 10 percent. The execution speedup was 3.3 for interval length

of 5 seconds, thus the distributed efficiency of Genesis with 4 processors was 82.5%.

We again increased the UDP packet send rate to 100 packet/second to make

the network highly congested. The simulation results of SSFNet and Genesis are

shown in Table 7.3.

In the highly congested network, about half of the packets sent were dropped.

Genesis performed consistently in such a congested network condition and achieved

speedup of 2.6 with 5 seconds interval length, and the error in traffic statistics

was under 5%. We also observed that the total packet hop count in this case was

much smaller than those of the previous cases, thanks to the increased packet drop

rate. Consequently, the speedup in this case was smaller than those of the previous
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Table 7.3: UDP Traffic Simulation with Packet Rate of 100 Pkt/sec

SSFNet Genesis Genesis Genesis
Interval(sec) 5 10 20

Run-time(sec) 564 215 285 300
speedup 2.6 2.0 1.9

Throughput(Mb/sec) 20.99 20.49 20.47 20.32
difference 2.41% 2.46% 3.2%
Drop Rate 48.0% 49.2% 49.3% 49.6%
difference 2.50% 2.71% 3.33%
Delay(sec) 0.2395 0.2349 0.2309 0.2299
difference 1.9% 3.6% 4.0%

Hop Count(Mhops) 12.32 13.01 13.03 13.07
difference 5.59% 5.84% 6.09%

cases as well. The reason was that when less packet hops were simulated during one

interval, less wall-time would be spent on this interval, and the overheads introduced

by checkpointing between intervals became comparatively bigger and decreased the

distributed efficiency.

In all of the three cases above, we observed that the simulation with the

smallest interval length had the best performance. One interesting question would

be, is the smaller the simulation interval, the better the Genesis performance? To

find out the answer, we further reduced the interval length to 2 seconds for the

simulation with UDP packet rate of 50 packets/second, and we show the changes

in simulation accuracy and distributed efficiency with different interval lengths in

Figure 7.1.

Figure 7.1 shows that when shorter interval length was used, the simulation

result would be better. However, distributed efficiency decreased when the interval

was too short. When the interval length was 2 seconds, the speedup of Genesis with

4 processors dropped to 2.64, thus the distributed efficiency was 66%, which was

lower than the 82.5% of the simulation with interval length of 5 seconds.

Although shorter simulation interval length improved the accuracy of simula-

tion results, the effect of interval length on execution time was two-fold. With longer

interval length, a simulation would be divided into less iterations with less check-
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Figure 7.1: Simulation Accuracy and Distributed Efficiency with Differ-
ent Interval Lengths

points, thus the overheads introduced by checkpointing would be smaller. However,

when rollback happened, a simulator will roll back (go back to the last checkpoint)

more with longer interval length, thus requires more time to re-iterate and converge.

On the other hand, with shorter interval length, the simulation will converge faster

with shorter re-iterations, but more checkpoints will introduce more overheads.

The optimized interval length would be different for different simulations. Our

simulation experiments showed that the length of 5 seconds produced significant

execution speedups while the accuracy of the results were above 90%.

7.4 Simulation of TCP Traffic

7.4.1 Using the Same Parameters as UDP Simulation

In the previous section, we studied the results of UDP traffic simulation under

Genesis. Constant bit rate UDP traffic simulation is a simpler case than TCP

traffic simulation because the traffic source does not response to the changes of

the network condition. In the three different network conditions (non-congested,

slightly congested and highly congested) in the previous section, the same amount

of UDP packets were poured into the network. However, TCP is a more sophisticated
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feedback-based protocol that a traffic source will response to the network condition

and adjusts its data send rate. In this section, we study the performance of Genesis

and the effects of Genesis parameters in TCP traffic simulation.

Unlike UDP simulations, when simulating TCP, we can not control the network

condition by simply changing the packet send rate. TCP has its own congestion

control mechanism. However, the behavior of TCP is sensitive to the size of buffers

in the interfaces of routers. Different interface buffer sizes will affect both TCP

throughput and TCP packet drop rate. We set up 3 different scenarios as “large

buffer”, “median buffer” and “small buffer”, in which the buffer size of border

router interfaces was set to 200 MSS(Maximum Segment Size), 10 MSS and 5 MSS,

respectively, where the MSS was set to 1K bytes. With these selected buffer sizes,

TCP packet drop rates varied from 0% to 6% in SSFNet sequential simulations.

For each scenario, we compared the simulation results from Genesis with those from

SSFNet.

To demonstrate the difference between UDP and TCP simulation, we first

used the same convergence condition and statistics computation as we used for

UDP simulation in the previous section.

Table 7.4: TCP Traffic Simulation with Large Interface Buffer Size

SSFNet Genesis Genesis
Interval(sec) 5 10

Run-time(sec) 1336 483 533
speedup 2.7 2.3

Throughput(Mb/sec) 8.092 8.093 8.094
difference 0.01% 0.02%
Drop Rate 0% 0% 0%
difference 0% 0%
Delay(sec) 0.2371 0.2341 0.2366
difference 0.1% 0.2%

Hop Count(Mhops) 42.05 46.10 46.10
difference 9.63% 9.63%

Table 7.4, 7.5 and 7.6 show the simulation results for the three scenarios

with different buffer sizes. From these results, we observed that i) in the scenario
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Table 7.5: TCP Traffic Simulation with Median Interface Buffer Size

SSFNet Genesis Genesis
Interval(sec) 5 10

Run-time(sec) 1185 413 420
speedup 2.9 2.8

Throughput(Mb/sec) 7.74 6.67 5.95
difference 13.8% 23.1%
Drop Rate 0.47% 0.58% 0.7%
difference 23.4% 48.9%
Delay(sec) 0.2371 0.2366 0.2340
difference 0.2% 1.6%

Hop Count(Mhops) 40.44 38.40 34.75
difference 5.04% 14.1%

Table 7.6: TCP Traffic Simulation with Small Interface Buffer Size

SSFNet Genesis Genesis
Interval(sec) 5 10

Run-time(sec) 227 120 105
speedup 1.9 2.2

Throughput(Mb/sec) 1.26 1.10 0.98
difference 12.7% 22.2%
Drop Rate 5.83% 5.36% 4.85%
difference 8.06% 16.8%
Delay(sec) 0.2373 0.2354 0.2338
difference 0.8% 1.5%

Hop Count(Mhops) 6.928 6.398 5.480
difference 7.60% 20.9%

of large buffer size, TCP successfully transmitted all the packets and no packet was

dropped. Genesis performed well in that case, errors in the traffic simulation results

were small (under 5%); ii) in the scenarios of median and small buffer sizes, some

TCP packets were dropped and the throughput decreased. In those cases, errors

in Genesis simulation increased significantly. Especially, errors in packet drop rates

were large in those cases; iii) Errors in Genesis simulation with 10 seconds interval

length were much larger than those of simulation with 5 seconds interval length.

Unlike UDP traffic sources, TCP sources response to packet drops by adjusting
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its send window and congestion control windows. TCP slow start and congestion

avoidance mechanisms work together to control the number of TCP packet sent

without receiving acknowledgments. As a result, in a congested TCP network, we

will observe that packet send rates and packet drop rates change more frequently

than those rates in a congested UDP network. In the scenarios with median and

small buffer sizes, we observed that the average end-to-end delay for received packets

did not change much from interval to interval, however, TCP packet send rates and

drop rates changed more frequently during the simulation, thanks to TCP flow

control mechanisms. This had two effects on Genesis simulations: i) using long

interval length would produce large errors, because the proxy links were updated

too infrequently to reflect the traffic changes. We observed that length of 5 seconds

should be used instead of 10 seconds to produce more accurate results. ii) simple

convergence condition based only on changes in average delay was no longer enough

for TCP simulation. It would produce larger errors in congested TCP networks than

in UDP networks, even with the shorter interval length of 5 seconds.

7.4.2 Improving Convergence Condition Tests

To improve the accuracy of simulation results, we combined average packet

drop rate with average packet delay into the convergence condition test. The con-

vergence condition was set to

Convergence Condition B:

ErrorDelayN
= (DelayN −DelayN−1)/DelayN−1

ErrorDropRateN
= (DropRateN −DropRateN−1)/DropRateN−1

IF ErrorDelayN
> threshold

OR ErrorDropRateN
> threshold

THEN

roll back interval N and re-iterate

ELSE

continue to interval N + 1

where threshold was set to 5%.

We simulated the median and small buffer size scenarios with convergence

condition B and interval length of 5 seconds. We compared these results with those
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using convergence condition A, and showed them in Table 7.7 and Table 7.8.

Table 7.7: Simulation with Different Convergence Conditions and Me-
dian Buffer Size

SSFNet Convergence Convergence
Condition A Condition B

Run-time(sec) 1185 413 494
speedup 2.9 2.4

Throughput(Mb/sec) 7.74 6.67 7.35
difference 13.8% 5.04%
Drop Rate 0.47% 0.58% 0.49%
difference 23.4% 4.26%
Delay(sec) 0.2371 0.2366 0.2366
difference 0.2% 0.2%

Hop Count(Mhops) 40.44 38.40 39.56
difference 5.04% 2.18%

These results show that by combining both average delay and packet drop rate

changes into convergence condition test, it improved the accuracy of the results.

This was because once the changes in packet drop rates was included in convergence

condition test, if TCP packet drop rate changes exceeded the threshold, then those

intervals would be rolled back and re-iterated. As a result, proxy links had been

updated more frequently to reflect those changes. These improved the accuracy of

simulation results to about 90% to 95% of those results from SSFNet.

7.4.3 Improving Statistics Computation

However, combined condition tests introduced more rollbacks which also slowed

down the simulation. For the small buffer scenario, with convergence condition B,

the distributed efficiency dropped to 35%. We analyze how Genesis updates the

proxy links in the case that rollbacks are required. Let’s assume that interval N

will be rolled back; at the beginning of interval N , each domain simulator updates

proxy links with statistics data collected from other domains at the end of interval

N − 1, staticsticN−1, to represent the network condition in other domains. At the

end of interval N , the simulator collects staticsticN from other domains again, and

because the difference between statisticsN and statisticsN−1 exceeds the threshold,
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Table 7.8: Simulation with Different Convergence Conditions and Small
Buffer Size

SSFNet Convergence Convergence
Condition A Condition B

Run-time(sec) 227 120 161
speedup 1.9 1.4

Throughput(Mb/sec) 1.26 1.10 1.18
difference 12.7% 7.14%
Drop Rate 5.83% 5.36% 5.49%
difference 8.06% 5.83%
Delay(sec) 0.2373 0.2354 0.2356
difference 0.8% 0.7%

Hop Count(Mhops) 6.928 6.398 6.604
difference 7.60% 4.70%

it rolls back to the beginning of interval N . Then it applies statisticsN to the proxy

links to represent other domains, and replaces saved staticsticsN−1 with the current

statisticsN . This process will continue until the difference between statisticsN and

statisticsN−1 is not greater than the threshold. Both statisticsN−1 and statisticsN

are computed on the boundaries of intervals, neither of them represents the accu-

rate changes during the interval and this slows down the convergence. The ideal

solution would be to use very small interval length, then the statistics collected on

the boundaries of intervals will be closer to the actual values during the interval.

However, we have shown that when the interval length was too small, the check-

pointing overheads would significantly slow down the simulation and overcame the

advantage of coarse granularity synchronization.

Our solution to this was to update proxy links with a value in between of

statisticsN−1 and statisticsN . Thus, the statistics computation with equation 7.1

and 7.2 was changed to

DelayN+1 = α ∗DelayN + (1− α) ∗DelayN−1 (7.3)

DropRateN+1 = α ∗DropRateN + (1− α) ∗DropRateN−1 (7.4)
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where 0 ≤ α ≤ 1.

Equation 7.1 and 7.2 were the special case of 7.3 and 7.4 with α = 1.

In the case that no rollback is required, DelayN+1 and DropRateN+1 will be

applied to the next interval, interval N+1; in the case that rollback is required, they

will be applied to the re-iteration of interval N . We varied the value of coefficient

α for equation 7.3 and 7.4, and simulated the “median buffer” and “small buffer”

scenarios with convergence condition B again. The simulation results for these two

scenarios are shown in Figure 7.2 and Figure 7.3, respectively.
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Figure 7.2: Simulation Results with Median Buffer Size and Different α
Values

Figure 7.2 showed that when α was 0.5, the distributed efficiency increased to

about 74%, which was better than the efficiency of 60% when α = 1. In other words,

the speedup increased to be about 3.0 with 4 processors. Use of proper α value

reduced the number of rollbacks and speeded up the convergence. This speedup

was similar to the speedup of 2.9 achieved with convergence condition A, however,

the accuracy was improved significantly by applying convergence condition B. We

observed similar effects in the “small buffer” scenario. We compared the simulation

results and showed them in Figure 7.3. When α was 0.5, the distributed efficiency

was improved to about 56% from that of 35% when α was 1. So in the case that

more packets are dropped and packet drop rate changes more frequently, a proper
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Figure 7.3: Simulation Results with Small Buffer Size and Different α
Values

α value can improve the convergence performance more significantly.

7.5 Chapter Summary

In this chapter, we discussed the simulation parameters of Genesis, and their

effects on the simulation performance. Our experimental results showed that when

simulating UDP traffic, Genesis achieved good performance using convergence con-

dition tests based on packet delays. And with interval length of both 5 seconds

and 10 seconds, the accuracy of simulation results was above 90%. In contrast,

simulating TCP traffic was more challenging to Genesis. When simulating TCP

traffic, interval length of 5 seconds should be used instead of 10 seconds to improve

the accuracy of results. In TCP simulation under Genesis, by applying combined

convergence condition tests based on both packet delays and drop rates, and up-

dating proxy links with statistics data computed from two consecutive iterations,

we achieved significant speedup compared to SSFNet sequential simulation, and the

accuracy was above 90%.



CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Conclusions

The need for scalable and efficient network simulators increases with the

rapidly growing complexity and dynamics of the Internet. In this thesis we in-

troduced a novel scheme, implemented in Genesis, to support scalable, efficient

distributed network simulation.

Our experimental results showed that Genesis worked efficiently in distributed

network simulations. Thanks to its coarse granularity synchronization approach

which did not require exchanging and synchronizing each individual remote packet,

Genesis significantly reduced the overheads in distributed simulations. It achieved

significant execution speedups over conventional sequential network simulations.

When simulating UDP traffic, Genesis achieved good performance using con-

vergence condition tests based on packet delays. With interval length of both 5

seconds and 10 seconds, the accuracy of simulation results was above 90%. When

simulating TCP traffic, interval length of 5 seconds should be used instead of 10

seconds to improve the accuracy of results. In TCP simulation under Genesis, by

applying combined convergence condition tests based on both packet delays and

drop rates, and updating proxy links with statistics data computed from two con-

secutive iterations, we achieved significant speedup compared to SSFNet sequential

simulation, and the accuracy was above 90%.

In addition to execution speedups, the advantages of the presented method

include fault tolerance, ability to integrate simulations and models in one run and

support for truly distributed execution. When one of the participating processes

fails, the rest can use the old delay and packet loss data to continue a simulation.

When the only information available about a domain are delays across the domain

and its outflows, the simulation of the other parts of the networks can directly use

these data to perform the simulation.

We also demonstrated the support for distributed BGP simulation in Gen-
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esis. With this capability, Genesis facilitated the simulation of large-scale BGP

network on clusters of workstations. Thanks to its coarse granularity synchroniza-

tion approach for background traffic in large scale BGP network simulations, Genesis

significantly reduced the overheads and achieved better distributed efficiency than

conventional systems.

Although larger BGP network simulations will require more re-iterations to

converge on BGP bursts, our approach supports scalability by distributing the BGP

networks as well as the background traffic.

We also demonstrated that our system can work efficiently with fully dis-

tributed network memory. This design reduces memory and makes scalable the

memory size requirement for large-scale network simulations. As a result, Genesis

is able to simulate huge networks using limited computer resources. Particularly,

the memory size required by BGP network simulation increases very fast when the

number of BGP routers and AS domains increases. Simulation of large BGP net-

works was hindered by the memory size limitation. Genesis offers a new approach to

simulating BGP on distributed memory that is scalable both in terms of simulation

time and the required memory.

8.2 Future Research Directions

The future research directions fall into two categories: to improve the perfor-

mance of coarse granularity synchronization and the Genesis system, and to apply

Genesis as a simulation tool to solve networking problems.

8.2.1 Network Partitioning

In Genesis, a network is partitioned into domains for distributed simulation.

A network partitioning scheme which can minimize the inter-domain traffic flows

will improve the simulation performance. This is because each inter-domain traffic

flow will require proxy links to be set up in related domains, and changes of the

traffic might require rollbacks in the simulation. Minimizing inter-domain traffic

can reduce these overheads.

The graph partitioning problem has been studied and applied to many areas,
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including VLSI design [1], efficient storage of large databases [65] and data mining

[34]. The problem was to partition the vertices of a graph into k parts, such that the

number of edges connecting vertices in different parts is minimized. Different graph

partitioning algorithms have been proposed. To minimize number of cut-edges,

Levelized Nested Dissection (LND) algorithm put connected vertices together by

starting with a subdomain that contains only a single vertex, and then incremen-

tally growing this subdomain by adding adjacent vertices [27]. Kernighan-Lin [35]

algorithm starts from an initial partitioning of a graph, for example, a partitioning

produced by LND algorithm or even a random partitioning, and produces refined

partitioning. Given a bisection of a graph, Kernighan-Lin algorithm refines the par-

titioning by swapping two equal-sized subset of vertices, one from each part, to yield

the greatest possible reduction in the edge-cut. Multilevel graph partitioning is an

approach that consists of three phases: graph coarsening simplifies the graph by

collapsing together subset of nodes; initial partitioning is done on coarsened graph;

multilevel refinement refines the partitioning recursively to reduce edge-cut [33].
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Figure 8.1: Graph Conversion (a) a graph of network connectivity with
five nodes and four traffic flows (b) the corresponding graph
of flow connectivity

To apply these algorithms to Genesis network partitioning problem, a graph of

network connectivity need to be converted to a graph of flow connectivity. Because

in Genesis network partitioning, our objective is to minimize the “cut-flows” instead

of the cut-links in the network. In the graph of flow connectivity, if there is a flow
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from node A to node B, directly or indirectly, then there will be an edge connecting

from vertex A to vertex B. Figure 8.1 shows an example of this graph conversion.

Because the actual path of a flow is routing, the better we can predict the flow

path, the more accurate graph of flow connectivity we can produce.

The questions how to construct the accurate graph of flow connectivity for

better network partitioning, and what will be the actual impacts on performance

when different partitioning scheme is selected are not covered in the scope of this

thesis. However, these will be interesting future research directions.

8.2.2 System Performance Improvement

Several possible directions for improving efficiency of the current Genesis sys-

tem includes:

• Adaptive selection of time interval length based on a variance of the delay and

packet drop rate of the inter-domain traffic.

• Non-constant model of the flow delay, for example using the linear model of

the flow delay based on empirical data or using empirically collected delay

time distribution should speed up convergence to the fixed point solution.

• Aggregation of inter-domain flows passing through the same border router may

improve efficiency by enabling replacement of many individual source proxies

by a single aggregate proxy.

• Dividing each checkpoint interval into smaller sub-intervals for statistics data

collection may improve the convergence. For example, instead of computing

the average delay for the full interval length T , we can compute the average

delay for every T/4 sub-interval and store them in a vector. Convergence can

be improved by selecting proper sub-interval lengths.

8.2.3 Possible Applications

One other direction of the future work in this area is to apply Genesis to more

real-world applications, to construct more practical network models and to simulate

and analyze them in Genesis.
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With the support of flexible partitioning of BGP networks, and distributed

simulation of large scale, real world network models, study of the performance and

stability of BGP and defensive techniques against flooding and worm attacks will

be possible directions of future research.
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