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ABSTRACT

Many modern and important technological, social, information and infrastructure

systems can be viewed as complex systems with a large number of interacting com-

ponents. Models of complex networks and dynamical interactions, as well as their

applications are of fundamental interests in many aspects. Here, several stylized

models of multiplex propagation and opinion dynamics are investigated on complex

and empirical social networks.

We first investigate cascade dynamics in threshold-controlled (multiplex) prop-

agation on random geometric networks. We find that such local dynamics can serve

as an efficient, robust, and reliable prototypical activation protocol in sensor net-

works in responding to various alarm scenarios. We also consider the same dynamics

on a modified network by adding a few long-range communication links, resulting

in a small-world network. We find that such construction can further enhance and

optimize the speed of the network’s response, while keeping energy consumption at

a manageable level.

We also investigate a prototypical agent-based model, the Naming Game, on

two-dimensional random geometric networks. The Naming Game [A. Baronchelli

et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employ-

ing local communications that captures the emergence of shared communication

schemes (languages) in a population of autonomous semiotic agents. Implementing

the Naming Games with local broadcasts on random geometric graphs, serves as a

model for agreement dynamics in large-scale, autonomously operating wireless sen-

sor networks. Further, it captures essential features of the scaling properties of the

agreement process for spatially-embedded autonomous agents. Among the relevant

observables capturing the temporal properties of the agreement process, we investi-

gate the cluster-size distribution and the distribution of the agreement times, both

exhibiting dynamic scaling. We also present results for the case when a small den-

sity of long-range communication links are added on top of the random geometric

graph, resulting in a “small-world”-like network and yielding a significantly reduced

x



time to reach global agreement. We construct a finite-size scaling analysis for the

agreement times in this case.

When applying the model of Naming Game on empirical social networks, this

stylized agent-based model captures essential features of agreement dynamics in a

network of autonomous agents, corresponding to the development of shared clas-

sification schemes in a network of artificial agents or opinion spreading and social

dynamics in social networks. Our study focuses on the impact that communities

in the underlying social graphs have on the outcome of the agreement process. We

find that networks with strong community structure hinder the system from reaching

global agreement; the evolution of the Naming Game in these networks maintains

clusters of coexisting opinions indefinitely. Further, we investigate agent-based net-

work strategies to facilitate convergence to global consensus.
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CHAPTER 1

Introduction

A network is a collection of nodes, which we call vertices, and a collection of edges

that connect pairs of vertices. Networks are also called graphs in mathematics and

computer science. A graph maybe undirected, meaning that there is no distinction

between the two vertices associated with each edge, or its edges may be directed

from one vertex to another.

Systems that have the form of networks or graphs are abundant in the world.

Examples range from the Internet (computers as vertices and physical network con-

nections as edges), the World Wide Web (pages as vertices and hyper-links as edges),

power grids (power plants and transmission lines), to social networks of acquain-

tance or other connections between individuals, networks of business relations be-

tween companies, even metabolic networks, neural networks, and chemical reaction

networks, etc. Meanwhile, network science, the study of networks has emerged in

diverse disciplines as a means of analyzing complex relational data. It is a new

and emerging scientific discipline that examines the interconnections among diverse

physical or engineered networks, information networks, biological networks, cog-

nitive and semantic networks, and social networks. This field of science seeks to

discover common principles, algorithms and tools that govern network behavior.

Leonhard Euler’s solution to the famous Seven Bridges of Königsberg problem

in 1736 is the earliest known paper in the theory of networks [115]. His mathematical

description of vertices and edges was the foundation of graph theory, a branch of

mathematics that studies the properties of pairwise relations in a network structure.

In the 1930s, Jacob Moreno developed a sociogram representing the social structure

of a group of elementary school students [114]. This network representation of social

structure has found many applications and has grown into the field of social network

analysis, the branch of sociology that deals with the quantitative evaluation of an

individual’s role in a group or community by analysis of the network of connections

between them and others.

1
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Figure 1.1: A small example network made up of seven vertices and eight
edges (including five undirected edges and three directed
edges)

Probabilistic theory in network science developed as an offshoot of graph the-

ory with Paul Erdős and Alfréd Rényi’s famous papers on random graphs [53, 23].

For social networks the exponential random graph model or p* graph is a notational

framework used to represent the probability space of a tie occurring in a social net-

work [128]. An alternate approach to network probability structures is the network

probability matrix, which models the probability of edges occurring in a network,

based on the historic presence or absence of the edge in a sample of networks [110].

More recently other network science efforts have focused on mathematically

describing different network topologies. Duncan Watts reconciled empirical data

on networks with mathematical representation, describing the small-world network

[154]. Albert-László Barabási and Réka Albert developed the concept of scale-free

networks [?, 11] which is a network topology that contains hub vertices with many

connections, that grow in a way to maintain a constant ratio in the number of the

connections versus all other nodes. Although many networks, such as the internet,

appear to maintain this aspect, other networks have long tailed distributions of

nodes that only approximate scale free ratios.
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1.1 Networks in the Real World

Empirical network data are usually the starting point for network analysis.

Recent work on mathematics of networks has been driven largely by observations of

the properties of actual networks and attempts to model them. In the real world,

networks may take various forms and many of them are more complex than a simple

collection of vertices linked by edges. Based on originations and network properties,

Mark Newman classifies real-world networks into four loose categories: social net-

works, information networks, technological networks and biological networks [115].

1.1.1 Social Networks

A social network is a social structure made of individuals or organizations.

These individuals or organizations are tied or connected by one or more specific

types of interdependency, such as friendship, kinship, financial exchange, dislike,

sexual relationships, or relationships of beliefs, knowledge, or prestige [68]. Early

works on the subject can be traced back in the 1920s and 30s by Jacob Moreno [114]

on friendship patterns within small groups. Another important experiment is the

famous “small-world” experiment of Milgram [112]. Instead of reconstructing the

actual topology of acquaintance networks as people would usually do, the experi-

ment probed the distribution of path lengths by asking participants to pass a letter

through one of their acquaintances in an attempt to get to an assigned target individ-

ual. This experiment led to the popular concept of the “six degrees of separation”,

as the result indicates that the letters reached the target have passed on average

through the hands of only about six people in doing so. In recent days, the contact

or interaction patterns between individuals in social networks are not limited to

traditional ways. For example, one could construct a network of email correspon-

dences, instant messages, or telephone calls between individuals. And the number

of vertices in such network may be significantly larger than before, which allows to

have various statistical analysis on such networks.
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1.1.2 Information Networks

Information networks, also sometimes called knowledge networks, are a cate-

gory of network that stores the information at its vertices while the network structure

reflects the relative structure of the information (hence the term “information net-

works”). The network of citations between academic papers, and the World Wide

Web are two classic examples of the information network. In a citation network,

the vertices are articles and a directed edge from article A to article B indicates

that A cites B. While the World Wide Web is a network of Web pages containing

information, linked together by hyperlinks from one page to another. Both networks

reflect the infrastructure of how information is organized. Furthermore, the citation

network is acyclic because papers can only cite other papers that have already been

written, not those that have yet to be written [43, 115]. Therefore are no loops possi-

ble in a citation network. However, the World Wide Web dose not have such natural

constraints to prevent the appearance of closed loops, thus it is cyclic. By studying

the publication citation pattern quantitatively, Alfred Lotka made the important

discovery in 1926 of the so-called Law of Scientific Productivity, which states that

the distribution of the numbers of papers written by individual scientists follows a

power-law [100]. That is, the number of scientists who have written k papers falls

off as k−α for some constant α. Price [43] further pointed out that both the in and

out-degree distributions of the network follow power-laws. Interestingly, the World

Wide Web also appears to have power-law in and out-degree distributions, as well

as a variety of other interesting properties [5, 1].

1.1.3 Technological Networks

Technological networks are usually man-made networks designed typically for

distribution of some commodity or resources, such as electricity or information [115].

Examples of technological networks include the electric power grid, which is a net-

work of high-voltage transmission lines that transmit electricity across the country,

the network of airline routes, the networks of roads, railways, and pedestrian traf-

fic, sensor networks, etc. Another very widely studied technological network is the

Internet. Note that here the Internet means the network of physical connections
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between computers. While the World Wide Web indicates the web pages stored on

computers and the hyperlinks between web pages.

1.1.4 Biological Networks

Many biological systems or processes can be represented by networks. E.g.,

the network of protein-protein interactions which involve both the direct-contact as-

sociation of protein molecules and longer range interactions through the electrolyte,

aqueous solution medium surrounding neighbor hydrated proteins [136], the protein

phosphorylation network, the metabolic interaction network, or the genetic regula-

tory network [161]. However, there are many other studied networks can be also

categorized into biological networks, such as the food web, in which the vertices

represent species in an ecosystem with a directed edge from species A to species B

indicating that A preys on B [37]. Neural networks are another class of biological

networks of considerable importance [156, 56].

1.2 Models for Complex Networks

To analyze networks of various forms, it is then of fundamental interests to

model networks mathematically. Perhaps the simplest useful model of a network is

the random graph, first studied by Erdős and Rényi [53]. However, most of the inter-

esting features of real-world networks are not like random graphs. And sometimes

these features are crucial in modeling and exploiting the network structures.

1.2.1 Network Features

In this section we describe some features or statistic measurements that ap-

pear to be common to networks of many different types: The small-world effect;

transitivity or clustering; degree distribution; and community structure.

1.2.1.1 The Small-world Effect

In Stanley Milgram’s famous experiment of letter passing in 1960s, randomly

selected individuals in the U.S. cities of Omaha, Nebraska and Wichita, Kansas

were asked to deliver letters to someone in Boston, Massachusetts through a chain
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of correspondence. These cities were selected because they represented a great

distance in the United States, both socially and geographically. However, many

letters are delivered in only a small number of steps – around six in the published

cases. This result is one of the first direct demonstrations of the small-world effect,

the fact that most pairs of vertices in most networks seem to be connected by a

short path through the network. A modern version of “six degrees of separation”

experiment was conducted by Duncan Watts et. al in 2003 [49], in which more than

60, 000 e-mail users attempted to reach one of 18 target persons in 13 countries by

forwarding messages to acquaintances. Same result as in Milgram’s experiment was

repeated that in successful deliveries an email reaches the target in a median of five

to seven steps, depending on the separation of source and target [49]. In 2007 Jure

Leskovec and Eric Horvitz examined a data set of instant messages composed of 30

billion conversations among 240 million people. This is by far the largest data set

examined for this purpose. They found the average path length among Microsoft

Messenger users to be 6.6 [94]. Similar experiments also appear in Facebook, one

of world’s largest social networks. Over 100 groups under the name “six degrees of

separation” experiment on proving the statement bearing in their titles. So far the

largest group has 5, 563, 429 members as of October 2009. The average separation

among these members is 5.73, whereas the maximum degree of separation is 12 [69].

The most direct measurement of the small-world effect is the average shortest

path length l in a network:

l =
1

1
2
N(N − 1)

∑

i<j

dij, (1.1)

where N is the number of vertices in the network, and dij is the shortest path length

from vertex i to vertex j. In any regular lattices or spatial graphs of dimension d,

the number of vertices within a distance r of a typical central vertex grows with r

in a power of d, thus the value of l as well increases as a power-law of 1/d,

l ∼ N1/d. (1.2)

If for networks (the random graph for example) the number of vertices grows expo-
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nentially with r, then l will increase as log N . In recent years the term “small-world

effect” more precisely means that the value of l scales logarithmically or slower with

network size [115].

The small-world effect has obvious implications for the dynamics of processes

taking place on networks. For example, the small-world effect greatly speeds up the

global information spread across the network than on pure spatial graphs [101], or

gives better synchronization in problems in distributed computing [79].

1.2.1.2 Network Transitivity

Another fundamental measure that has long received attention in both theo-

retical and empirical network research is the network transitivity, or the clustering

coefficient. This measure assesses the degree to which nodes tend to cluster to-

gether. Evidence suggests that in most real-world networks, and in particular social

networks, nodes tend to create tightly knit groups characterized by a relatively high

density of ties [66, 154]. In the language of social networks, the friend of your friend

is likely also to be your friend. In real-world networks, this likelihood tends to

be greater than the average probability of a tie randomly established between two

nodes [66, 154]. The clustering coefficient C is the quantified network transitivity

[115]:

C =
3 × number of triangles

number of connected triples of vertices
, (1.3)

where a “connected triple” means a single vertex with edges running to an unordered

pair of others. In effect, C measures the fraction of triples that have their third edge

filled in to complete the triangle. Watts and Strogatz [154] proposed an alternative

way to define the clustering coefficient through a local value

Ci =
2Ei

ki(ki − 1)
, (1.4)

where ki is the degree of vertex i, and Ei is the number of edges in the subgraph

consisting of vertex i and all his neighbors. Then the clustering coefficient for the
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whole network is the average of all local values,

C =
1

N

∑

i

Ci. (1.5)

A purely random graph built according to Erdős and Rényi model exhibit

both a small average shortest path length and a small clustering coefficient. Watts

and Strogatz measured that in fact many real-world networks have a small aver-

age shortest path length, but also a clustering coefficient significantly higher than

expected by random chance [154].

1.2.1.3 Degree Distribution

In a network, the degree of a vertex is the number of edges connected to that

vertex. We define pk to be the fraction of vertices in the network that have degree

k. A histogram of pk for any given network is thus the degree distribution for the

network. The degree distribution is very important in studying both real networks,

such as the Internet, social networks, and theoretical networks. The simplest net-

work model, for example the random graph, in which each possible pair of n vertex

is connected with independent probability p, has a binomial distribution of degrees,

which, in the limit of large N , can be well approximated by a Poisson distribution

with an exponentially decaying tail. Many networks in the real world, however,

have degree distributions very different from this. E.g., some of them are highly

right-skewed, meaning that a large majority of nodes have low degree but a small

number, known as “hubs”, have high degree. Some networks, notably the Internet,

the world wide web, and some social networks are found to have degree distribu-

tions that approximately follow a power law. Such networks are called scale-free

networks and have attracted particular attention for their structural and dynamical

properties.

1.2.1.4 Community Structure

Community structure, i.e., groups of vertices that have a high density of edges

within them, with a lower density of edges between groups, is assumed to be pre-

vailed in most social networks and some other types of networks [137]. It is a matter
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of common experience that people tend to divide into groups along lines of inter-

est, occupation, age, and so forth. Thus it is quite common to observe community

structures in real networks, particularly in social networks.

In Fig. 1.2 we show a visualization of the friendship network of high-school

students. By implementing a suitable model for opinion dynamics (we use the

Naming Game here [104]) on the friendship network, the network exhibits four

different communities at some stage. These communities correspond to segregation

along the two-schools involved in the particular network, high-school (HS) – middle-

school (MS) pair, and along racial lines, whites students – black students in each.

Checking the race and school-grade attribute of the node information in the raw

data [113], we find most of the nodes in respective communities are coincide with

their attributions of, as shown in Fig. 1.2, black HS (green), white HS (yellow),

black MS (purple), and white MS (red) students.

1.2.2 Prototypical Models for Complex Networks

We now look at some mathematical models for networks of various types,

mainly focus on following models: the random network by Erdős and Rényi [53];

spatially embedded random geometric graphs [40]; the “small-world model” of Watts

and Strogatz [154]; and models of growing networks, in particular, “scale-free net-

works” of Price [44] and Barabási and Albert [11].

1.2.2.1 Random Graphs

The model of “random graph” or as sometimes called “Poisson random graph”,

was probably the first attempt to construct and model a certain type of large scale

random network by Paul Erdős and Alfréd Rényi. They proposed an extremely

simple model of a network: for a network with N vertices, connect each pair of

vertices (or not) with probability p (or 1−p). Purely random graphs, built according

to the Erdős - Rényi model, exhibit a small average shortest path length (varying

typically as the logarithm of the number of nodes l ∼ log N) along with a small

clustering coefficient [4, 115].

Given the mathematic model, most properties of the random graph can be

solved exactly. For example, the mean degree is k̄ = (N − 1)p, and the degree ki of
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Figure 1.2: Community structure in a U.S. high-school friendship net-
work. The network is constructed from in-school question-
naires by Ad-Health [113]. Vertices are colored according
to races and grades of students. Yellows are white students
in high-school, greens are black students in high-school, reds
are white students in middle-school, and purples are black
students in middle-school. The community separation is
achieved with the naming game simulation.

a node i follows a binomial distribution with parameters N − 1 and p:

P (ki = k) =







N − 1

k





 pk(1 − p)N−1−k. (1.6)

This probability represents the number of ways in which k edges can be drawn from

a certain node: the probability of k edges is pk, the probability of the absence of

additional edges is (1 − p)N−1−k, and there are Ck
N−1 equivalent ways of selecting

the k end points for these edges. Further more, in the limit of large network size,

with a good approximation the binomial distribution can be replaced by a Poisson

distribution [4],
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P (k) ≃ e−pN (pN)k

k!
= e−k̄ k̄k

k!
, (1.7)

where the average degree k̄ = (N − 1)p ≃ Np for large N . The Poisson distribution

decays rapidly for large values of k, the standard deviation of the distribution being

σk =
√

k̄.

The network structure of random graphs is largely affected by the connection

probability p. For low-p values, there only exists few edges and the graph is separated

into small isolated component, i.e., subsets of vertices that are connected by paths

through the network. For high-p values, these small components quickly merge into

a giant connecting component whose size is comparable with the graph size. For

random graphs, this is a typical phase transition from isolated components to a

giant connecting component as the probability of connection p increases [53]. The

criticality of p happens at

pc ∼
1

N
. (1.8)

1.2.2.2 Random Geometric Graphs

The model of random graphs can be extended in a variety of ways to make

them more realistic. In many cases vertices of a network may have geographical

information attached to them, such as randomly deployed sensor nodes, or geo-

graphical living spaces for individuals in a social network. Here we look at another

network model called random geometric graph [125, 111, 40], also referred to as

Poisson Boolean graphs, which carries both the random connectivity and spatial

property of vertices. A random geometric graph is a network in which each ver-

tex is assigned uniformly and independently at random coordinates in a geometric

space of arbitrary dimensionality and two vertices are connected if and only if the

distance between them is at most a threshold r. Random geometric graphs feature

with a large average shortest path length (scales with the system size in a power-law

of l ∼ N1/d, where d is the dimension of a random geometric graph), and a large

clustering coefficient [125, 40].

The average degree α of a random geometric graph is the (average) number of
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Figure 1.3: Degree distribution of a random geometric network. The
network has N = 10, 000 nodes with average degree k̄ = 10.
The solid line is a Poisson distribution.

vertices inside a d dimensional sphere with radius r,

α =
NCdr

d

V
= ρCdr

d, (1.9)

where ρ = N/V is the number of vertices in a unit volume of the geometric space,

and the constant proportionality is given by

Cd =
πd/2

Γ(d
2

+ 1)
. (1.10)

In a 2d random geometric graph the average degree depends on r with a simple

relationship

α2d = ρπr2. (1.11)

Random geometric graphs also have the binomial degree distribution, which
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approaches Poisson distribution for large N [Fig. 1.3] [40]:

pk =







N − 1

k





 pk(1 − p)N−1−k ≃ αke−α

k!
. (1.12)

The phase transition from small separated clusters to a single giant component

is also observed in random geometric graphs at percolation threshold [40]. In 2d

random geometric graphs, the critical connectivity is about αc ≃ 4.52. Below αc the

network is mostly disconnected and average size of the components is considerably

small comparing with the size of the network. Above the αc the giant component

emerges in the network covering majority of the nodes.

1.2.2.3 Small-world Networks

When measured by the average path length and transitivity, random graphs

and random geometric graphs sit on the opposite side of each other: random graphs

have small average path length as well as small transitivity; on the other side,

random geometric graphs are usually able to achieve high transitivity accompanied

with very large average path length. Here, another classic network model is the

“small-world model” proposed by Watts and Strogatz in 1998 [154]. The model

starts from a low-dimensional lattice – it thus conserves the spatial properties of

vertices with high transitivity derived from lattices. And by proper manipulation

(rewiring) of existing links the network is also able to achieve a fairly low path

length.

Small-world models can be built on lattices of any dimension or topology, but

the best studied case by far is one-dimensional one. If we take a one-dimensional

lattice of L vertices with periodic boundary conditions, i.e., a ring, and connect each

vertex to its nearest k neighbors, we get a system shown in Fig. 1.4(a), with Lk edges.

The small-world model is then created by taking a small fraction of the edges in this

graph and “rewiring” them. The rewiring procedure involves going through each

edge in turn and, with probability p, moving one end of that edge to a new location

chosen uniformly at random from the lattice, except that no double edges or self-

edges are ever created. This process is illustrated in Fig. 1.4(b). Fig. 1.5 shows the
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Figure 1.4: (a) A one-dimensional lattice with periodic boundary con-
dition. (b) The small-world model is created by choosing at
random a fraction p of the edges in the graph and rewire them
to new ending vertices, also chosen uniformly at random. (c)
A random graph is constructed with the rewiring probability
p = 1. From Watts et al., 1998 [154].

degree distribution of a numerically constructed random small-world network with

average degree k̄ = 10.

As we stated above, the rewiring process allows the small-world model to

interpolate between a regular lattice and a random graph. When p = 0, we have

a regular lattice. The clustering coefficient of this regular lattice is C = (3k −
3)/(4k − 2). Such regular lattice does not show the small-world effect because the

mean path length between vertices is around L/4k for large L. When p = 1, every

edge is rewired to a new random location and the graph is now a random graph, with

typical path length on the order of log L/ log k, and very low clustering coefficient

C ≃ 2k/L [115]. As Watts and Strogatz showed by numerical simulation, there

exists a sizable region in between these two extremes for which the model has both

low path lengths and high transitivity [153].

1.2.2.4 Models of Network Growth

All of the models discussed above reflect some properties observed in real-

networks, such as degree distribution or transitivity, and try to incorporate these
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Figure 1.5: The degree distribution of a random small-world network.
The network is constructed by adding 1

2
pN random links with

p = 8 on top of a 1d ring. The resulting network has average
degree k̄ = 10. The solid line is a Poisson distribution. From
G. Korniss [78]

properties when create new networks with the model. However they do not reveal

how networks come to have these properties. Thus, it is worth to look at another

category of network model whose primary goal is to explain network properties. In

these models, the networks typically grow by the gradual addition of vertices and

edges in some manner intended to reflect growth processes that might be taking place

on the real networks, and it is these growth processes that lead to the characteristic

structural features of the network. Here we introduce models of network growth

aimed at explaining the origin of the highly skewed degree distributions, by Price

[44], and Barabási and Albert [11].

In Price’s earlier paper in 1965 [43], he studied the the network of citations

between scientific papers and found that both in and out-degrees have power-law

distribution. He later published another paper to propose a model for the explana-

tion of the power-law degree distribution [44]. His work was intrigued by the idea of

“the rich get richer”, which was originally discovered in the problems of wealth dis-
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tribution, and he later applied them to the growth of a network. This is an analogy

of cumulative advantage in the context of network growth, that the rate at which a

paper gets new citations should be proportional to the number that it already has.

Consider a directed graph of n vertices, such as a citation network. Let pk be

the fraction of vertices in the network with in-degree k (number of times a paper

has been cited). At the time of creation, new vertices that are to be added to the

network have a certain out-degree (citations to other papers). The out-degree may

vary from one vertex to another, but the mean out-degree, which is denoted m,

is a constant over time. When a new created vertex is added to the network, the

probability that a new edge attaches to any of the existing vertices with degree k is

thus:
kpk

∑

k kpk
=

kpk

m
. (1.13)

In the limit of large n, the degree distribution can be solved exactly [44]:

pk ∼ k−(2+1/m). (1.14)

It has a power-law tail with exponent α = 2+1/m, which typically gives exponents

in the interval between 2 and 3.

The mechanism of cumulative advantage proposed by Price is now widely ac-

cepted as the probable explanation for the power-law degree distribution observed

not only in citation networks but in a wide variety of other networks also, includ-

ing the World Wide Web, collaboration networks, etc. The phenomena was later

rediscovered by Barabási and Albert [11] in the context of complex networks, called

preferential attachment, to explain the network properties of the World Wide Web.

The network growth model of the Web proposed by Barabási and Albert has one

important difference, that edges of the network are undirected, so there is no dis-

tinction between in- and out-degree. This model can also be solved exactly and the

analytical solution gives a power-law degree distribution of p ∼ k−3, with only the

single fixed exponent α = 3 [Fig. 1.6], as well as a logarithmically increasing average

shortest path length with the system size, l ∼ log N [4].
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Figure 1.6: The degree distribution of the scale-free Barabási-Albert net-
work with m = 5, yielding an average degree of k̄ = 10. The
solid line shows the power-law behavior in log-log scale with
the power α = −3. From G. Korniss [78].

1.3 Network Dynamics

Many modern and important technological, information and infrastructure

systems can be viewed as complex systems with a large number of interacting com-

ponents, whose aggregate activity is usually non-linear and typically exhibits self-

organization under selective pressures. In many of such systems, complex networks

serve as the underlying topology to support the dynamics of interactions among

system components (nodes) through network links. Examples include the package

flow over the Internet, electric power grid, sensing networks, traffic flow on road

network, and a large category of social dynamics and interactions. These systems

and dynamics are usually autonomous, i.e., they lack a central regulator. Through

local interactions they still exhibit collective behavior at some large scales, e.g., from

disorder to order, achieving agreement or consensus without global regularities, etc.

Here, we briefly review some well-known and interesting network dynamics mod-

els, such as information spreading models, random boolean networks, and opinion
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dynamics in social interactions.

1.3.1 Simple and Multiplex Propagation Dynamics

A large number of system dynamics and social phenomena can be described

by simple contagion processes. The most obvious examples include the epidemic

spreading and information propagation. Even if we look into the deep reasonings

of, e.g., how does a small initial shock cascade to affect a large system, and how

do large, grassroots social movements, fads, riots start in the absence of centralized

control or public communication, we are still able to find the simple contagion

process, or so called information cascades, under the complex interactions. These

processes share a common feature: for individuals in a population, either their

status, or how they make decisions based on the status or the actions of other

individuals rather than relying on their own information about the problem [155].

In case of epidemic spreading it is inevitable that certain disease may be transmitted

through close contact regardless of the status of individuals. And in social systems,

decision makers often pay attention to each other usually because they have limited

information about the problem, or limited ability to process. For example, when

deciding which restaurant to visit we usually rely on the recommendation of our

friends if we have limited information to evaluate the alternatives.

For simplicity, we only consider binary decisions regarding the problem, which

is suitable in many real cases such as infected or not, either decide to visit (the

restaurant) or not, etc. If a single active node is sufficient to trigger the activation

of its neighbors with however small probabilities, such as the spread of information

or disease, it is called simple propagation [34]. In addition to simple propagation,

multiplex propagation, in which node activation requires simultaneous exposure to

multiple active neighbors, is also common in the real-world situation. One particular

model for multiplex propagation is the threshold model for contagion [155], in which

a node becomes active only if the fraction of its neighbors in the active state is equal

to or larger than a pre-selected threshold ϕ, and it will remain active afterwards.

This simple threshold-based binary-decision model has its application in various

fields, such as decision making in social activities or detecting outliers in a sensor
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network. We investigate more details about the model in chapter 2.

If a small perturbation can cascade to affect a large system, it is then of

particular interests to study the robustness of technological networks against certain

perturbations of failures, e.g., the spreading of a computer virus of the internet

[38], failure propagation in power girds [131], or the perturbation of gene expression

patterns in a cell due to mutations [126]. One possible way is to use random Boolean

networks (RBNs) as a dynamics model to study the response of complex dynamical

networks to external perturbations, also referred to as damage [129].

RBNs were originally introduced by Kauffman as simplified models of gene

regulation networks [74, 75]. In its simplest form, RBN is a discrete dynamical

system composed of N automata (nodes). And each automata can make decisions

between two possible states (similar to binary decisions in threshold model) based on

inputs of K randomly chosen other nodes according to associated (random) Boolean

functions. Comparing with the simple or multiplex propagation, RBN model is able

to achieve more complicated controls on decision making rules for individuals in the

system. And this makes RBN a more suitable model in studying the robustness for

technological networks with complex decision making rules, such as the Internet at

the router level, and road traffic networks.

1.3.2 Social Dynamics

Social systems and related social interactions are another wide collection of

topics about dynamics over complex systems. Common social dynamics include

the dynamics of opinions (opinion formation and agreement dynamics), language

dynamics (formation and evolution of a language, and the competition between dif-

ferent languages), cultural dissemination, etc. In most social systems the elementary

components of the system are usually humans, which is probably the most compli-

cated thing in the world, as it is nearly impossible to precisely predict the behavior

of human individuals. So there usually has two folds of difficulties in modeling so-

cial dynamics, first is in the definition of relative simple while realistic microscopic

models; the second is the problem of inferring the macroscopic phenomenology out

of the microscopic dynamics of such models and obtaining useful results. In this
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respect, the concept of universality brings a possible solution to this problem. In

statistical physics, universality is the observation that some properties of large-scale

phenomena are independent of the dynamical details of the system. Systems display

universality in a scaling limit, when a large number of interacting parts come to-

gether. It is thus possible to model the social system by including only the simplest

and most important properties of single individuals and looking for qualitative fea-

tures exhibited by models. From early adoptions of the Ising model for ferromagnets

[138], in which a collection of N spin particles are energetically pushed to be aligned

with their nearest neighbors, to more general q-state Potts model [106, 138, 139],

by far there are many stylized models for social dynamics, e.g., the voter model

[96, 140, 71, 72], cultural dissemination model [10], and bounded confidence mod-

els [46] for opinion dynamics; the evolutionary language game [107, 120] and the

Naming Game [142, 15, 14, 103] for language dynamics.

The voter model assigns to each agent a discrete variable, i.e. an opinion, that

can assume two values. The dynamics then evolves following the rule that at each

time step the opinion of a randomly chosen agent is made equal to the one of its

neighbors (selected at random on its turn). The process ends up with a complete

order on low dimensional lattices but different blocked configurations survive in

more complex topologies [140, 72].

The Axelrod model [10], describes agents with a rich repertoire of opinions.

More precisely, each individual is endowed with F cultural traits (σi,f , f = 0, .., F −
1), each of which can assume one out of q values. The agents are embedded on

a square lattice and at each time step two of them are randomly selected along

with a cultural trait f . If σi,f 6= σj,f(∀f) nothing happens. Otherwise another

cultural trait f ′ is randomly chosen and its value is set equal for the two agents,

i.e. σj,f ′ → σj,f ′ = σi,f ′ . Absorbing states are those in which, across each bond, all

features are equal or different, and final configurations can be described in terms of

distributions of different clusters of homogeneous agents. In this respect, it is worth

mentioning that a non-equilibrium phase transition from a culturally polarized phase

(all agents belong to the same cluster) and culturally fragmented one (finite size,

O(1), clusters) has been shown to occur as q grows [30, 77].
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The Hegselmann and Krause model [62] describes the opinion formation of

an individual as an averaging process on the opinions of all its neighbors, provided

they fall inside a given confidence bound ǫ. This is the fundamental parameter of

the model, since three different final states can be reached depending on its value.

In particular, starting from a uniform distributions of opinions, that here are real

numbers between 0 and 1, the final state consists of a plurality of stable opinions

(small ǫ), a consensus on a single opinion (large ǫ), or, interestingly, a polarization

of the population on two or three different opinions for intermediate values of the

confidence bound.

In the model proposed by Deffuant et al. [46], agents perform pairwise interac-

tion. Opinions are real numbers, and when two agents i and j meet, they make their

opinion Oi and Oj closer by a certain amount µ|Oi − Oj|, with µ ≤ 0.5, provided

that they find each other in their confidence bound, i.e. |Oi − Oj| < ǫ. Also in this

case the fundamental parameter is ǫ, and its magnitude determines the number of

opinions that survive in the final state. The parameter µ, on the other hand, only

influences the convergence time.

The Naming Game model was expressly conceived to explore the role of self-

organization in the evolution of language [16, 41]. In the original paper [142], Luc

Steels focused mainly on the formation of vocabularies, i.e. a set of mappings

between words and meanings (for instance physical objects). In this context, each

agent develops its own vocabulary in a random private fashion. But agents are forced

to align their vocabularies in order to obtain the benefit of cooperating through

communication. Thus, a globally shared vocabulary emerges, or should emerge, as

a result of local adjustments of individual word-meaning association.

The work outlined in this thesis analyzes several stylized models of multiplex

propagation and opinion dynamics on complex and empirical social networks.

We first investigate the threshold-based cascade dynamics on wireless sensor

networks. The purpose is to effectively detect outliers in sensing networks while

suppressing false alarms. It is also interesting to look at the impact of network

topology including the small-world effect to the information cascading, energy con-
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suming, and other network properties.

The underlying network structure for wireless sensor networks can be inter-

polated as random geometric graphs (RGGs), which are both random and spatial.

Thus it is worth to look at some other complex dynamics on this particular net-

work. We introduce the simplified agreement dynamics model on both pure and

small-world embedded random geometric networks. Detailed scaling behavior of

the Naming Game has been carefully examined.

The Naming Game (NG) was originally proposed as a social dynamics model

to study the evolution of human languages. Later it is found that many other

phenomena such as the collaborative tagging, autonomous development of shared

lexicon, etc., can also be explained with the NG model. It is then of particular in-

terest to look at the behavior of NG on empirical social networks. In the simulation,

long lasting meta-stable state is found to indicate the existence of strong community

structure in empirical social networks.



CHAPTER 2

Threshold Based Cascading in Random Geometric Graphs

Many of the modern and important technological, information and infrastructure

systems can be viewed as complex networks with a large number of components

[4, 50, 115]. The network consists of nodes (or agents) and (physical or logical) links

connecting the nodes. These links facilitate some form of interaction or dynamics

between the nodes. Spreading information fast across such networks with efficient

and autonomous control is a challenging task. Wireless Sensor Networks (WSNs)

provide an example where understanding dynamical processes on the network is

crucial to develop efficient protocols for autonomous operation.

A sensor network is comprised of a large number of sensor nodes which moni-

tor, sense, and collect data from a target domain and then process and transmit the

information to the specific sites (e.g., headquarters, disaster control centers). There

are many potential applications of sensor networks including military, environment

and health areas (for a taxonomy of sensors networks see [63]). There are fundamen-

tal differences between a sensor network and other wireless ad-hoc networks. First,

sensor nodes are often densely deployed (typically 20 sensor per cubic meter) [3] so

that the underlying network has high redundancy for sensing and communications.

Accordingly, the size of sensor networks may be several orders of magnitude larger

than the other ad-hoc networks. Hence, scalability of sensor network operations is

of utmost importance (see, for example [54] for scalable coordination challenges and

solutions or [148] scalable, self-organizing designs for sensor networks and for limits

on achievable capacity and delay in mobile wireless networks). Second, sensor nodes

have limited battery power without recharging capabilities. Nodes running out of

power may cause topology changes in sensor networks even without mobility (see for

example [36] for scalable and fault-tolerant routing and [?] for communal routing in

which some of the nodes take over routing for the sleeping neighbors). Third, new

sensors with fresh batteries may be injected to a sensor network, already in use, to

enhance and ensure its correct operation. Finally, the sensor nodes may be deployed

23



24

in adversarial environments such as battlefields, hostile territories or hazardous do-

mains that make their management, control and security very difficult. Combined

with diverse environments, ranging from deserts to rain forests, from urban areas

to battlefields and habitats of protected species [2], these challenges make designing

sensor networks that can operate reliably and autonomously (totally unattended)

very difficult.

Our focus is on outliers detection in wireless sensor network but the challenge

is the same as in the above mentioned work, to design scalable, energy efficient

algorithms for communication and coordination. Outlier detection is an essential

step which precedes most any analysis of data. It is used either with the intention

of suppressing the outliers or amplifying them. The first usage (also known as data

cleansing) is important when the analysis carried on the data is not robust. Exam-

ples for such applications are optimization tasks, including routing (where erroneous

data may lead to infinite loops). The second usage is important when looking for rare

patterns. This often happens in adversarial domains such as battlefield monitoring,

controlling a boundary or a perimeter of protected objects or intrusion detection.

Outliers are caused not only by external factors, but also by imperfections

in the acquisition of the data. They typify error prone systems, specifically those

which ought to operate in harsh environmental conditions and make imperfect mea-

surements of external phenomena. Another setting in which outliers may occur is

whenever an adversary can control the measurement (but not the computation and

communication) of a device. In this setting, outliers detection can either detect

the manipulation of the data, or limit the extent to which the data is manipulated.

Thus, in some settings, outliers detection limits the ability of an adversary to divert

the result.

Several factors make WSNs especially prone to difficulties in outliers detection.

First, WSNs collect their data from the real world using imperfect sensing devices.

Next, they are battery operated and thus their performance tend to deteriorate

as power is exhausted. Moreover, as sensor networks may include thousands of

devices, the chance of error accumulates in them to high levels. Finally, sensors are

especially exposed to manipulation by adversaries in their usage for security and
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military purposes. Hence, it is clear that outlier detection should be an inseparable

part of any data processing that takes place in sensor networks. In this part of work,

we investigate a simple model of cleansing and amplifying outliers in wireless sensor

networks. WSN environments pose several restrictions on outlier computation, such

as: (i) it has to be done in-network because communication of raw data would

deplete batteries, (ii) communication may often be asymmetric, (iii) the data is

streaming, or at least dynamically updated, and (iv) both spatial and temporal

locality of the data are important for the result – data points sampled by nearby

sensors during a short period of time ought to be more similar than ones sampled

by far off sensors over a large time interval. Hence, in this paper, we assume that

the number of nodes reporting outliers is significant in making a decision to amplify

or not the outlier discovery.

Sensor networks are both spatial and random. As a large number of sensor

nodes are deployed, e.g., from vehicles or aircrafts, they are essentially scattered

randomly across large spatially extended regions. In the corresponding abstract

graph two nodes are connected if they mutually fall within each others transmission

range, depending on the emitting power, the attenuation function and the required

minimum signal to noise ratio. Random geometric graphs (also referred to as Pois-

son/Boolean spatial graphs), capturing the above scenario, are a common and well

established starting point to study the structural properties of sensor network, di-

rectly related to coverage, connectivity, and interference. Further, most structural

properties of these networks are discussed in the literature in the context of contin-

uum percolation [111, 125, 40].

The common design challenge of these networks is to find the optimal connec-

tivity for the nodes: If the connectivity of the nodes is too low, the coverage is poor

and sporadic. If the node connectivity is too high, interference effects will dominate

and results in degraded signal reception [61, 159, 88, 87]. From a topological view-

point, these networks are, hence, designed to “live” somewhat above the percolation

threshold. This can be achieved by adjusting the density of sensor nodes and con-

trolling the emitting power of the nodes; various power-control schemes have been

studied along these lines [61, 87]. We consider random geometric graphs above the
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percolation threshold, as minimal models for the underlying network communication

topology. The focus of this work is to study novel cascade-like local communication

dynamics on these well studied graphs.

Here, we focus on the scenario where the agents (the individual sensors) are

initially in an inactive mode, typically performing some periodic local measurements.

However, if an alarm-triggering event is detected locally by a (few) agent(s), the

network, as a whole should “wake-up” (all agents turning to an active state), to

closely monitor the spatial and temporal behavior of the underlying phenomena that

caused the alarm (e.g., spread of a fire or toxic chemicals). This process of turning

agents from an inactive state to an active one, requires some kind of local rules

between agents. There are three (somewhat conflicting) objectives for constructing

an optimal protocol:

1. reliability, so local erroneous events or false-alarms are suppressed and do not

result in a “global wake-up”;

2. speed, so that sensors can monitor the underlying physical, chemical, etc.

phenomena;

3. energy efficient, so main concern in sensor networks, namely energy limitation

is addressed.

To this end, we will consider a simple threshold-based model (or multiplex propa-

gation) [60, 155, 34] on the sensor network with the potential to efficiently facilitate

the transition of the nodes from an inactive to an active state. First, we will con-

sider the threshold-based cascade dynamics on random geometric networks. Then

we will experiment with the “addition” of a few long-range communication links,

representing multi-hop transmissions. In particular, we will investigate the benefits

in shortening the global transition time versus the increase in communication (and

therefore also energy) costs. Such networks, commonly referred to as small-world

networks [154, 153], has long been known to speed up the spread of local information

to global scales [4, 50, 115, 154, 153] and to facilitate autonomous synchronization

in coupled multi-component systems [145, 12, 79, 83, 84].
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2.1 Threshold-Based Propagation on Random Geometric

Networks

2.1.1 Random Geometric Networks

As mentioned in the Introduction, we consider random geometric graphs [111,

125, 40] as the simplest topological structures capturing the essential features of ad

hoc sensor networks. N nodes are distributed at uniformly random in an L × L

spatial area. For simplicity we consider identical radio range R for all nodes. Two

nodes are connected if they fall within each other’s range. An important parameter

in the resulting random geometric graph is the average degree or connectivity α

(defined as the average number of neighbors per node k), α ≡ k = 2K/N , where K

is the total number of links and N is the number of nodes. In random geometrical

networks, there is a critical value of the average degree, αc, above which the largest

connected component of the network becomes proportional to the total number of

nodes (the emergence of the giant component) [111, 125, 40]. For a given density of

nodes ρ, there is a direct correspondence between the degree of connectivity α and

the radio range R of each node [111, 125, 40],

α = ρπR2 . (2.1)

In what follows, for convenience, we will use R instead of α, as the relevant parameter

controlling the connectivity of the network.

2.1.2 Threshold-Controlled Propagation

The phenomenon of large cascades triggered by small initial shocks, originally

motivated by propagation in social networks [60], can be described by a simple

threshold-based model [60, 155, 34]. This model considers the dynamics on a net-

work of interacting agents (wireless sensors in the present context), each of which

must decide between two alternative actions and whose decisions depend explicitly

on the actions of their neighbors according to a simple threshold rule. Unlike in

simple diffusive propagation, such as the spread of a disease, where a single node is

sufficient to “infect” (activate) its neighbors, in threshold-based (multiplex) propa-
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gation node activation requires simultaneous exposure to multiple active neighbors.

Here, we implemented these simple rules for random geometric networks, capturing

the topological features of wireless sensor networks.

The detailed description of the threshold model is as follows. Each agent can be

in one of two states: state 0 or state 1, corresponding to the agent being inactive or

active, respectively. Upon observing the states of its k neighbors, an agent turns its

state from 0 to 1 only if the fraction of its active neighbors is equal to or larger than

a specific threshold ϕ. In this work we are interested in the temporal characteristics

of global cascades (network “wake-ups”), hence once a node turns active, it remains

active for the duration of the evolution of the system.

We consider a system of N agents located at the nodes of a random geometric

network. Each agent is characterized by a fixed threshold 0 ≤ ϕ ≤ 1. For simplicity

all agent have the same threshold. Initially the agents are all off (in state 0). The

network is perturbed at time t = 0 by a small fraction of nodes that are switched on

(switched to state 1). The number of active nodes then evolves at successive time

steps with all nodes updating their states simultaneously (synchronous updating) or

in random, asynchronous order (asynchronous updating) according to the threshold

rule above. Once a node has switched on, it remains on (active) for the duration of

the experiment.

For sensor networks, we are interested in the behavior of the network under

emergent situation which is represented by small perturbation in the initial condi-

tion. In our investigation, the focus is on:

1. the probability that a successful global cascade will be ignited by small fraction

of initial seed(s);

2. time needed for a global cascade, that is how fast an initial shock will spread

out to the entire network; and

3. the energy used for communication between agents in a successful global cas-

cade.

The last quantity is an important factor in designing wireless sensor networks. Here

the term cascade refers to an event of any size triggered by initial seed(s), whereas
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global cascade is reserved for sufficiently large cascades (corresponding to a final

fraction of active agents, larger than a cutoff fraction of large, but finite network).

2.1.3 Simulation and Analysis

We simulated systems consisting of N = 104 sensor nodes distributed ran-

domly in a L × L = 103 × 103 (in arbitrary units) two-dimensional region with

periodic boundary conditions. These nodes are employed (for simplicity) with iden-

tical communication range R to form a random geometric network. For a fixed

density of sensor nodes, ρ = N/L2, the relationship between the average degree α

and the radio range R is given by Eq. (2.1).

Figure 2.1 displays the phase diagram for the cascade dynamics on the (ϕ, R)

plane in terms of the probability of global cascades for two different initial seed size.

Each point in the graph is obtained by averaging over 1000 simulations (including

different network topologies and initial cascade seeds). For seed size one, only a

single node is activated initially in the network. For seed size three, we randomly

select three neighboring (connected) nodes as a seed and turn them active as the

initial condition. In the phase diagram, by fixing the threshold ϕ and going along

the line parallel to the R-axis, hence increasing the radius of communication R, the

system exhibits two different phase transition as shown in Fig. 2.2. The first transi-

tion occurs at about Rc1 ≃ 12.5 (corresponding to α ≃ 4.9) where the probability of

global cascades sharply rises from 0 to around 1 for both initial seed sizes. We refer

to this phase transition as phase transition I. Further increasing the communication

range R, the probability of a global cascade slowly drops to 0. This phase transition

is referred to as phase transition II. Phase transition I is inherently related to the

emergence of the giant component in a random geometrical network [111, 125, 40].

Below the critical value Rc1, the network is poorly connected, hence no cascade can

spread to global scales. Above Rc1 the giant component can support global cas-

cades, depending on the threshold ϕ. This transition across Rc1 is sharp, related

to the scaling properties of the giant component of the random geometric network.

For sufficiently small threshold values ϕ < 1/α the probability of global cascades

is close to 1 in a well connected graph, yielding the upper boundary of the region
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Figure 2.1: Phase diagram in the plane of threshold and radio range
(ϕ, R). The cascade window is enclosed by two different types
of boundaries. (a) the cascade window when the size of the
initial seed is one. (b) the cascade window when the size of
the initial seed is three. Both graphs are obtained at the
system size N = 104 and averaged over 1,000 simulation runs.

where global cascades are possible, Rc(ϕ). As the range R is increased, while the

threshold ϕ is held fixed, nodes will have have so many neighbors that they cannot

be activated by a single active agent. Since the relationship between the average

degree and the range follows Eq. (2.1), the approximate location of the boundary

associated with phase transition II scales as

Rc(ϕ) ∼ 1/
√

ϕ . (2.2)
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enables the network to suppress the global cascade triggered
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Figure 2.3 is the snapshots from a successful global cascade with non-periodical

boundary condition. At time t = 170 the fraction of active nodes exceeds 0.85 and

completes the global cascade.

In reality, it is possible that one of the sensors fails or turns active and sends out

an alarm message by accident. One of our objectives is to construct local dynamics

where global “wake-ups” due to erroneous events or miss-alarms are suppressed or

possibly excluded. This should be accomplished in an autonomous fashion, i.e.,

without any external filtering or intervention. To this end, first, it is reasonable to

assume that the probability that a specific node will send out an erroneous alarm

is very small. Thus, if, e.g., three neighboring nodes become active simultaneously,

it should be considered to be a real event. Comparing Fig. 2.1(a) (one initial seed

node) and Fig. 2.1(b) (three initial seed nodes), it is clear that to prevent miss-
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alarms by eliminating global cascades triggered by one initial seed, while allowing

them when triggered by the real event defined as above, we should chose the region

outside of the global cascades (blue/dark colored region) of Fig. 2.1(a) but inside

the global cascade region (red/light colored region) of Fig. 2.1(b) by picking proper

R and ϕ. Fig. 2.2 is the cross section of phase diagram at ϕ = 0.15. We can see

that if the radius of communication range is within 20 < R < 25, the probability of

global cascades triggered by three initial seed nodes is still very close to 1 while the

probability of global cascades triggered by a single initial seed essentially drops to 0.

Hence, by choosing the proper values of R and ϕ, according to the phase diagrams,

we can prevent miss-alarms and, at the same time, ensure that real events will

trigger global cascades with near certainty.

2.2 Threshold-Model with Small-World Links

The small world phenomenon originates from the observation that individuals

are often linked by a short chain of acquaintances. Milgram [112] conducted a series

of mail delivery experiments and found that an average of “six degrees of separa-

tion” exists between senders and receivers. The small-world property (very short

average path length between any pair of nodes) were also observed in the context

of the Internet and the world wide web. Motivated by social networks [153], and

to understand network structures that exhibit low degrees of separation, Watts and

Strogatz [154] considered the re-wiring of some fraction of the links on a regular

graph, and observed that by re-wiring just a small percentage of the links, the aver-

age path length was reduced drastically (approaching that of random graphs), while

the clustering remains almost constant (similar to that of regular graphs). This class

of graphs was termed small-world graphs to emphasize the importance of random

links acting as shortcuts that reduce the average path length in the graph. In the

following, we will continue to study random geometric graphs in the context of wire-

less sensor networks but with the goal of investigating the applicability of the small

world concept to these networks. The topological properties (such as the shortest

path and the clustering coefficient) of small-world-like sensor networks have been

studied in [64]. Here, we focus on the effect of adding some random communication
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Figure 2.3: Snapshots of the regular random geometric network evolving
with time after the initial shock. Blue dots are in state 0, red
ones are in active state. Black lines are local links. Snapshots
are taken at time-step (a) t=0; (b) t=80; (c) t=170. The
network implemented the synchronous updating with N =
104, ϕ = 0.12, and R = 16.0.



34

Figure 2.4: Snapshots of the small-world network evolving with time af-
ter the initial shock. Green lines are random long-ranged
links. Snapshots are taken at time-step (a) t=0; (b) t=28;
(c) t=45. Messages propagate much faster than in regular
random geometric networks. The network implemented the
synchronous updating with N = 104, ϕ = 0.12, and R = 16.0.
The total number of long-ranged links is 200.
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Figure 2.5: Phase diagram in the plane of threshold and the probability
of long-ranged links (ϕ, pr). The cascade window is enlarged
as we increase the probability of long-ranged links (pr). The
graph is obtained at the system size N = 104 with R = 14 and
averaged over 1, 000 simulations.

links between possibly distant nodes, on the dynamics on the network.

As previously, we randomly deploy N = 104 sensor nodes in a L×L = 103×103

area, set a fixed radio range R to connect them, and generate the corresponding

random geometric network. In addition, we also add random “long-range” links

to this backbone to construct a small-world-like network. Random (possibly long-

range) connections are constructed by adding a fixed number of random links, so that

the total number of random added edges is prN with pr ≪ 1. Alternatively, one can

construct statistically identical networks by adding a random link emanating from

each node with probability pr. The procedure has several different realizations,

depending on how pr (in the above probabilistic interpretation) varies with the

underlying spatial distance between the randomly connected two nodes.

1. pr = constant, in which case there are no restrictions on the length of random
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long range links;

2. pr ∝ 1/dδ, where d is the distance between the two chosen nodes and δ is a

parameter;

3. pr = constant for d ≤ dc and pr = 0 for d > dc, where d is the distance between

the two picked nodes and dc is a parameter to which we refer as cutoff distance.

The dynamics on the network is defined by the same threshold model that was

discussed earlier. Here we show results for the case when the size of the initial seed

is set to one. Thus, the dynamics is controlled by threshold ϕ, the radio range R,

and the probability of a long-range links pr.

The addition of small-world links is expected to speed up propagation (reduce

time for global cascades to complete) in the region where global cascades are possible

[34]. Focusing on the three quantities outlined earlier, the probability of global

cascades (yielding the phase diagram), the average global cascade times, and energy

costs, compared to the original random geometrical network are discussed below.

The measured observables are averaged over 1,000 simulations. The time needed for

global cascades is averaged over all successful global cascades with the same model

parameters.

Snapshots of a successful global cascade in the small-world network is shown in

Fig. 2.4. Comparing the snapshots from regular random geometric networks, nodes

in small-world networks can be ignited by his neighbors in distance via long-ranged

links added to the network, thus expedite the speed of message propagation.

Next, we define the energy consumption during a successful global cascade.

The total energy consumption in a wireless sensor network is, in most part, due

to communication between nodes, computing, and storage (neglecting some smaller

miscellaneous costs). The communication is the main part of energy consumption,

and is directly related the network structure and dynamics, while energy used for

computing can be regarded as a constant, so it can be easily evaluated. Conse-

quently, in the following, we only consider the energy consumption in communica-

tions between sensor nodes.

There are two kinds of communication in small-world graphs. First is the local
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Figure 2.6: Effect of long-ranged links on the dynamics of random geo-
metric graph under threshold rule. The introduction of long-
ranged links decreased the time needed for cascades but in-
creased the energy cost. Symbols mean: pr = 0 (solid circles);
pr = 0.05 (open circles); pr = 0.01 (open triangles); pr = 0.02
(open diamonds). The graph is averaged over 1, 000 simula-
tions with synchronous updating and the threshold fixed at
ϕ = 0.12.

communication. According to the nature of sensor nodes, the wireless broadcast

is the most commonly used method for local communication. Thus, the energy

cost for local broadcast is proportional to the square of radio range R, El = cR2,

where c is a coefficient that we scaled to 1. It should also be noted that a message

send by a specific node can be received by all his local neighbors, regardless of

the number of them, by a single broadcast. The second type of communication is

the long-ranged one. The energy cost for long-ranged communication depends on

how this communication is implemented, including solutions such as a directional

antenna, multi-hop transmission, global flooding, etc. In this paper, we consider
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multi-hop transmissions in which messages reach their destination following a multi-

hop route. The energy cost of such a transmission (for well-connected networks) can

be approximated as

Er ≃ cR2(
d

R
) = cRd = El

d

R
, (2.3)

where d is the distance between two nodes. Unlike in case of broadcast, each pair

of nodes that has a long-ranged link between them will incur additional energy to

communicate. Hence, the total energy consumption in communication for a success-

ful global cascade with m local communications and n long-ranged communications

is:

E = mEl + nEr (2.4)

Since n = prN , then denoting the average length of long-range links as d and using
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an approximation m ≃ N (the exact value of m is equal to the number of nodes

participating in the global cascade), the energy cost can be rewritten as:

E ≃ cN(R2 + prdR) = NEl

(

1 +
prd

R

)

. (2.5)

The first term corresponds to the local communication energy, while the second

term represents the additional energy needed for the long-ranged links. The ratio

of the long-ranged link communication energy to the local communication energy is

proportional to the probability of long-ranged links pr and the average link length

and inversely proportional to the radio radius R.

Graphs for the cascade window, after adding the long-ranged links, are sim-

ilar to that of the model without long-range links [Fig. 2.1]. The most significant

difference is that the lower boundary of the cascade window (which we referred to
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Figure 2.9: A comparison of average time and energy costs with different
cutoff distance of long-ranged links. Different symbols are,
pr = 0 (solid circles); pr = 0.01, dc =

√
2L (open circles); pr =

0.01, dc = 0.5L (open triangles); pr = 0.01, dc = 0.3L (cross).
The network implemented the synchronous updating with
the threshold fixed at ϕ = 0.12.

as phase transition I) shifts downwards by a small amount (∼ 0.5 − 1.0) toward

smaller R. As we discussed above, a sufficiently large value of R is necessary for

the entire graph to be well connected and to be able to support global cascades. By

adding long-ranged links, it will be more likely that several small clusters would be

connected via these long-ranged links to form a larger cluster, hence lowering the

boundary of cascade windows. Figure 2.5 displays the phase diagram in terms of

the probability of global cascades on the plane of the threshold ϕ and the probabil-

ity of random long range links pr, (ϕ, pr), when the radio range R is fixed at 14.0.

Different from the results of Ref. [34] (as a result of adding as opposed to re-wiring

random links), the cascade window somewhat enlarges at a specific region of (ϕ, R)

when pr increases.

The advantage of the small-world links is that they can significantly decrease
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Figure 2.10: A dependence of the average time and energy costs on the
cutoff distance when the threshold and radio range are both
fixed. According to the shape of these two curves, we can
optimize the system behavior by varying the cutoff distance
dc. Open triangles are the average time, open circles are the
energy cost and solid line is the energy cost predicted by
Eq. (2.5) with R = 16, ϕ = 0.12 and synchronous updating.

the global cascade time. In other words, alarms and messages propagate faster

in small-world graphs than in the original random geometric graphs, as shown in

Figs. 2.6 and 2.7. For fixed threshold, the time needed for a global cascade decreases

monotonously as R increases in regular random geometric graphs. In contrast, in

small-world graphs, the average time is much lower and reaches its optimal (mini-

mum) value at R ≃ 15.0. The more long-ranged links are added to the network, the

lower the average time is. Meanwhile, due to the long-range communications, the

average energy cost for a successful global cascade is also increasing, linearly with

pr, in agreement with Eq. (2.5) as can be seen in Fig. 2.8.

The above observations can be used to develop a scheme to compensate the

increase in energy cost caused by the added long-range links. In the discussion above,
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the distribution of the distance of the long-range links was uniform. Next, we explore

the effects of “suppressing” the occurrence of links with large spatial length. While

one can implement, e.g., a power-law or an exponentially-tailed distribution for the

spatial length of the added random links, here, for simplicity and to ease technical

realizations, we use a sharp cutoff for pr(d),

pr(d) =











pr0 if d ≤ dc

0 if d > dc,
(2.6)

where dc is the cutoff distance for the long-ranged links. This distance may represent

the range of a uni-directional antenna of special sensor nodes. Adding a small

amount, prN , of such random links to the network will provide the long-range links

in the network without the need to implement multi-hop routing.

Scaling dc with the spatial size L of the system, when dc ≥
√

2L, there is no

restriction on the long-range link length. The average time and energy costs for

global cascade under the restriction of long-range links is shown in Fig. 2.9.

It can be seen that even putting a strong restriction of the longest link distance

(dc < 0.5L) only slightly increases the average time for successful global cascades.

However, under the same restrictions, the energy cost drops significantly, proportion-

ally to the decrease in the average long-ranged link length, as predicted by Eq. (2.5).

In particular, we explored the behavior of the average time (T ) and the energy cost

(E) vs. different cutoff distances (dc) when R and ϕ are both fixed [Fig. 2.10]. The

average time is close to its minimum when dc > 0.4L while the energy cost has still

not saturated until dc > 1.0L. Clearly, one can make a trade-off between the speed

of message propagating and the energy cost with different cutoff distances of the

long-range links. Depending on various applications and scenarios, we can choose

different dc to make the network respond faster to emergencies or be more efficient

in terms of energy used.



CHAPTER 3

Naming Games in Two-dimensional and

Small-world-connected Random Geometric Networks

Reaching agreement without global coordination is of fundamental interest in large-

scale autonomous multi-agent systems. In the context of social systems, the ob-

jective is to understand and predict the emergence of large-scale population-level

patterns arising from empirically supported local interaction rules between indi-

viduals (e.g., humans). Examples for such phenomena driven by social dynamics

include the emergence and the evolution of languages [121, 120, 107] or opinion

formation [29, 19, 46, 51, 85, 146, 80, 21, 9].

The creation of shared classification schemes in a system of artificial and net-

worked autonomous agents can also be relevant from a system-design viewpoint, e.g.,

for sensor networks [92, 39]. Envision a scenario where mobile or static sensor nodes

are deployed in a large spatially-extended region and the environment is unknown,

possibly hostile, the tasks are unforeseeable, and the sensor nodes have no prior

classification scheme/language to communicate regarding detecting and sensing ob-

jects. Since subsequent efficient operation of the sensor network inherently relies on

unique object identification, the autonomous development of a common “language”

for all nodes is crucial at the exploration stage after network deployment.

To this end, in this section we consider and slightly modify a simple set of rules,

referred to as Language or Naming Games (NG), originally proposed in the context

of semiotic dynamics [142, 76]. Such problems have become of technological interest

to study how artificial agents or robots can invent common classification or tagging

schemes from scratch without human intervention [142, 76]. The original model [142,

143, 141, 144] was constructed to account for the emergence of shared vocabularies or

conventions in a community of interacting agents. More recently, a simplified version

of the NG was proposed and studied on various network topologies by Baronchelli

et al. [15, 13, 14], and by Dall’Asta et al. [41, 42] The advantage of studying

a minimal model is that one can gain a deeper understanding of the spontaneous

43
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self-organization process of networked autonomous agents in the context of reaching

global agreement, and can extract quantitative scaling properties for systems with

a large number of agents.

In the context of artificial agents, there are other possible scenarios when the

NG algorithm, in addition to being interesting in its own merit in studying agreement

dynamics on various networks, can also be particularly useful from a system-design

viewpoint. That can be the case when one does not intend the outcome of the

agreement process among many agents to be easily predictable. The actual process

of electing a “leader” or coordinator among sensor nodes may actually be such a

scenario. The leader must typically be a trusted node, with possible responsibilities

ranging from routing coordination to key distribution [45]. Standard leader election

(LE) algorithms [8, 65, 93, 105, 150] are essentially based on finding global extremum

(e.g., maximum) through local communications [8, 65, 93]. Thus, the elections can

be stolen by placing a node in the network with a sufficiently high ID (e.g., the

largest number allowed by the number representation scheme of the sensor chips.)

Along these lines, a possible application of the NG algorithm is autonomous key

creation or selection for encrypted communication in a community of sensor nodes.

Instead of having a centralized or hierarchial key management system with domain

and area key distributors [45], group of sensor nodes can elect a key distributor or

a security key for secure communications between group members.

In the following sections, we first briefly review recent results on the NG on

various regular and complex networks. Then we put our focus on studying and

analyzing different aspects of the behavior of the NG model, including the temporal

and finite-size scaling of the opinions, the probability distribution of the agreement

times and the cluster-size distribution in the NG on random geometrical graphs

(RGGs). Further, we construct and present finite-size scaling for the agreement

times in Small-World (SW)-connected RGGs.

3.1 Background and Prior Results on the Naming Game

In the simplified version of the NG, agents perform pairwise games in order to

reach agreement on the name to assign to a single object. This version of the NG was
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investigated on fully-connected (FC) (also referred to as mean-field or homogeneous

mixing) [15, 13], on regular [14], on small-world (SW) [41, 98], and on scale-free

networks [42, 16]. In the FC network, each agent has a chance to meet with all others

and compare their current local vocabularies (list of “synonyms”) before updating

them. On regular networks, agents have only a limited and fixed number of neighbors

on a one-, two-, etc., dimensional grid with whom they can interact/communicate.

The communication in both cases is “local”, in that pairs of agents are selected to

interact and to update their vocabularies. The basic algorithmic rules of the NG

are as follows [15, 14]. A pair of neighboring nodes (as defined by the underlying

communication topology), a “speaker” and a “listener”, are chosen at random.1 The

speaker will transmit a word from her list of synonyms to the listener. If the listener

has this word, the communication is termed “successful”, and both players delete all

other words, i.e., collapse their list of synonyms to this one word. If the listener does

not have the word transmitted by the speaker, she adds it to her list of synonyms

without any deletion. The above rules are summarized in Fig. 3.1.

Among the above rules, the restriction to a single object [15, 13] strongly

reduces the complexity of the model, compared to a more general case where the

naming process of multiple objects can be performed simultaneously. From a linguis-

tic viewpoint, this rather strong restriction is equivalent to preventing homonymy,

and instead, treating all objects independently. This strong assumption can be more

realistic for a system of artificial agents, where agents assign random numbers (e.g.,

chosen from 231 integers) as “words” to new objects. In this case, the number of

potential words can be far grater than the number of objects, and the probability

that two players invent the same word for different objects (hence giving rise to

homonymy) is negligible.

It was found that employing the above local rules (pair-wise interactions), after

some time, the agents vocabularies converge to a unique vocabulary shared among

all agents [15, 13, 14, 41]. The major differences between the NG on FC graphs and

1Note that on strongly heterogeneous (scale-free) graphs, the order whether the listener or
the speaker is chosen first, strongly impacts the efficiency toward global agreement. Choosing
the listener first at random will increase the chance for selecting a node (as a neighbor) with
larger degree for speaker. In turn, hubs will be the most frequent speakers, giving rise to faster
convergence to global agreement at a mildly elevated memory cost [42, 16].
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Figure 3.1: Schematic rules of the Naming Game [15] as described in the
text. If the speaker has more than one word on her list,
she randomly chooses one; if it has none, it generates one
randomly.

on regular low-dimensional grids arise in the scaling of the the memory needed to

develop the common language before convergence occurs, and in the scaling of the

time tc needed to reach global agreement. (The memory need in the present context

is the typical value of the largest number of words an agent may posses throughout

the evolution of the game [15, 14].) In the FC network, the convergence process to

global agreement is fast [tc ∼ O(N1/2) for N agents], but large memory [O(N1/2)]

is needed per agent [15]. For a regular two-dimensional network (or grid), sponta-

neous evolution toward a shared dictionary is slow [tc ∼ O(N)], but the memory

requirement per agent is much less severe [O(1)] [14]. When the NG is implemented

on Watts-Strogatz [154] SW networks, the agreement dynamics performs optimally

in the sense that the memory needed is small, while the convergence process is much

faster than on the regular networks [tc ∼ O(N0.4), closer to that of the FC network]

[41].

Sensor networks, which are motivating our study, are both spatial and ran-

dom. As a large number of sensor nodes are deployed, e.g., from vehicles or aircrafts,

they are essentially scattered randomly across large spatially-extended regions. Two
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nodes are connected if they mutually fall within each others transmission range, de-

pending on the emitting power, the attenuation function and the required minimum

signal to noise ratio. Again we use random geometric graphs (RGGs) to capture

the above scenario. RGGs, also referred to as spatial Poisson/Boolean graphs, are

a common and well established starting point to study the structural properties of

sensor network, directly related to coverage, connectivity, and interference. Further,

most structural properties of these networks are discussed in the literature in the

context of continuum percolation [111, 125, 40].

The common design challenge of these networks is to find the optimal connec-

tivity for the nodes: If the connectivity of the nodes is too low, the coverage is poor

and sporadic. If the node connectivity is too high, interference effects will dominate

and result in degraded signal reception [61, 159, 88, 87, 25]. From a topological

viewpoint, these networks are, hence, designed to “live” somewhere above the per-

colation threshold. This can be achieved by adjusting the density of sensor nodes

and controlling the emitting power of the nodes; various power-control schemes have

been studied along these lines [61, 87, 25]. In our work we consider RGGs in two-

dimensions above the percolation threshold, as minimal models for the underlying

network communication topology. Further, we consider RGGs with an added small

density of “random” long-range links. The resulting structure resembles small-world

(SW) networks [154, 115], also well studied in the context of artificial [79, 101] and

social systems [153, 115].The focus of this work is to study the NG algorithm on

these spatially-embedded random graphs.

3.2 Naming Games on Random Geometric Networks

3.2.1 Random Geometric Graphs

The same model of 2d random geometric graphs as in chapter 2 is implemented

as the underlying structures capturing the essential features of ad hoc sensor net-

works. N nodes are uniformly random distributed in an L×L spatial area. When

connecting adjacent nodes we apply identical radio range R for all nodes. Given

the density of nodes ρ = N/L2, and the radio range R of the nodes, the average

connectivity of the graphs is then k̄ = ρπR2.



48

3.2.2 The Naming Game with Local Broadcast

We consider the Naming Game on random geometrical graphs. In the original

context of the NG, agents try to reach agreement in finding a unique “word” for an

object observed by them. In one of the above proposed potential applications, agents

try to generate a shared unique key for encrypted communication. For simplicity,

we will use the term “word” for the latter as well when describing the algorithm.

Motivated by communication protocols employed by sensor nodes, we mod-

ify the communication rules to make them applicable for sensor networks. Instead

of pairwise communications, nodes will initiate broadcast (to all neighbors) in a

continuous-time asynchronous fashion. The initial condition is such that the “vo-

cabulary” of each node is empty at beginning. Then at every elementary time step,

a node is chosen randomly out of N nodes (mimicking Poisson asynchrony for large

N). This node (the “speaker”) will broadcast a word from her list of “synonyms”;

if her list of synonyms is empty, the speaker randomly invents a word; if she already

has several synonyms, it randomly chooses one. Her neighbors (the “listeners”)

compare their vocabularies with the word transmitted by the speaker. If a listener

has this word, she considers the communication a success, and she deletes all other

words, collapsing her list of synonyms to this one word. If a listener does not have

the word transmitted by the speaker, she adds it to her list of synonyms without any

deletion. If at least one listener had the word transmitted, the speaker considers it

(at least a partial) success, and (somewhat optimistically) collapses her list of syn-

onyms to this one word. At every step, the “success” rate S is defined as the fraction

of listeners who were successful (i.e., those that had the word transmitted by the

speaker). From the above it is clear that one of the successful listeners, if any, has

to report the outcome of the “word matching” to the speaker. In order to achieve

that efficiently, in real sensor-network implementations one can employ the “lecture

hall” algorithm [147]. In this paper time t is given in units of one “speaker”-initiated

broadcast per node. The main difference between the above algorithm and the one

in Refs. [15, 13, 14, 41] is the broadcast (instead of pairwise communications) and

the underlying network (RGG in this paper) to capture the essential features of the

NG in sensor networks.
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When starting from empty vocabularies, agents invent words randomly. After

time of O(1) [on average one speaker-initiated broadcast per node], O(N/(k + 1))

different words have been created. Following the early-time increase of the number

of different words Nd(t), through local broadcasts, agents slowly reconcile their “dif-

ferences”, and eventually will all share the same word. First, a large number of small

spatial clusters sharing the same word develop. By virtue of the slow coalescence of

the interfaces separating the clusters, more and more of the small clusters are being

eliminated, giving rise to the emergence of larger clusters, eventually leading to one

cluster in which all nodes are sharing the same word. As suggested by Baronchelli

et al. [14], this late-time process is analogous to coarsening, a well-known phe-

nomenon from the theory of domain and phase ordering in physical and chemical

systems [26]. Figure 3.2 shows snapshots of vocabularies of the nodes at different

times. For later times, group of nodes which already share the same word, slowly

coarsen, until eventually only one domain prevails. This behavior is also captured

by Fig. 3.3(b), tracing the number of different words as a function of time Nd(t),

eventually reaching global agreement, Nd = 1.

3.2.3 Basic Scaling Considerations and Analogy with Coarsening

Before turning to the detailed discussion of our simulation results, we first

sketch the framework of coarsening theory [26], applicable to the observed late-time

dynamics of the NG on regular d-dimensional lattices [14]. Coarsening has also

been observed in other models relevant to opinion formation and social dynamics

[20, 85]. Unlike other minimalist (typically two-state) models often employed to

study opinion formation [51], such as the one studied by Sznajd-Weron & Sznajd

[146], the Voter model [95, 20], or the majority rule model [85], in the NG, each

agent can be in an unlimited number of discrete states (corresponding to a chosen

word). Further, at any instant before reaching global consensus, an agent can have

different possible words for the object. Because of the potentially unlimited number

of discrete states the agents can assume, the late-stage evolution of the NG resembles

that of infinite-state (Q=∞) Potts model [132, 133, 73, 89, 130, 47, 48, 86, 139, 138,

6, 106, 158].
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Figure 3.2: Snapshots of the time evolution of the contents of the agents’
word lists during the process of reaching global agreement on
RGG for N = 1, 000 nodes at time (a) t = 1; (b) t = 43; (c)
t = 169; (d) t = 291. The average degree is k≈12. Initially,
the word lists are empty for all agents. Time, as through the
paper, is measured in units of “speaker”-initiated broadcasts
per node. Different colors correspond to different words, with
black indicating nodes with multiple words. After the early-
time increase in the number of different words in the systems,
small spatial clusters sharing the same word quickly form,
then subsequently “coarsen” until eventually only one global
cluster prevails.

While RGG is a random structure, it is embedded in two dimensions, and

we also attempt to employ elementary scaling arguments from coarsening theory.

According to Ref. [14], on regular d-dimensional lattices, the typical size of domains

(each with already agreed upon one word) is governed by a single length scale

ξ(t) ∼ tγ with γ=1/2, analogous to that of domain formation in systems with a

non-conserved order parameter [26]. Thus, in d dimensions the average domain size
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Figure 3.3: Time evolution of the relevant observables in the Naming
Game in the fully-connected (FC), two-dimensional regular
(with four nearest neighbors), and random geometric net-
works (RGG) for N=1024, averaged over 1, 000 independent
realizations; (a) the total number of words in the system
Nw(t); (b) the number of different words Nd(t); (c) the aver-
age success rate S(t). The average degree of the underlying
RGG is k≈12. Data for the FC and 2d regular networks are
reproduced by our simulations, following Refs. [15, 14], for
comparison.

C(t) follows

C(t) ∼ ξd(t) ∼ tdγ . (3.1)

and the total number of different words Nd at time t scales as the typical number

of domains

Nd(t) ∼
N

ξd(t)
∼ N

tdγ
. (3.2)

Further, the total number of words Nw (Nw/N being the average memory load per

agent), at this late coarsening stage, can be written as the number of nodes N plus

the number of nodes with more than one (on average, between one and two) words,

separating the different domains. It is of order of typical number of domains times
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the typical length of the interface of one domain, yielding

Nw(t) − N ∼ N

ξd(t)
ξd−1(t) ∼ N

ξ(t)
∼ N

tγ
. (3.3)

Similarly, the “failure rate” for word matching, 1−S(t), (where S(t) is the suc-

cess rate) scales as the fraction of nodes at the interfaces separating domains with

different words

1 − S(t) ∼ 1

ξ(t)
∼ 1

tγ
. (3.4)

The main feature of the above power-law decays (up to some system-size dependent

cut-offs) is that the number of different words Nd, the total number of words Nw,

and the success rate S(t) only depend on t through the characteristic length scale

ξ(t). Further, for the typical time tc to reach global agreement or consensus, one

has ξd(tc)∼N , i.e.,

tc ∼ N1/(dγ) . (3.5)

Unless noted otherwise (as in section 3.2.4.1 and 3.2.4.2), our notation, tc, Nd(t),

Nw(t), C(t), and S(t) refer to the ensemble-averaged values of these relevant observ-

ables.

3.2.4 Simulation Results

Relevant quantities measured in the simulations are the total number of words

in the system Nw(t) (corresponding to the total memory used by the agents for word

allocation at time t), the number of different words Nd(t), and the average size of do-

mains/clusters C(t). Figure 3.3 displays the time evolution of these three quantities

for the RGG, compared to the fully connected (FC) and to the 2d regular networks.

Here, for the comparison, we reproduced the corresponding data of Refs. [15, 14].

The behavior of the NG on RGG is qualitatively very similar to that of the NG

on 2d regular graphs. After time of O(1), O(N/(k + 1)) different words have been

invented [Fig. 3.3(b)]. Nw(t) also reaches its maximum in time of O(1) [Fig. 3.3(a)].

Focusing on the late-time behavior of the systems, plotting Nw(t)/N−1, Nd(t)/N ,

and C(t) vs t on log-log scales, confirms the power-law decays associated with the

underlying coarsening dynamics, predicted by Eqs. (3.3), (3.2), and (3.1), respec-
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Figure 3.4: Time evolution of the relevant observables in the Naming
Game in random geometric networks (RGG) for three sys-
tem sizes on log-log scales, averaged over 1, 000 independent
realizations; The average degree of the underlying RGGs is
k≈12.(a) the normalized total number of words in the system
Nw(t)/N−1; (b) the normalized number of different words
Nd(t)/N ; (c) the average domain size C(t). The straight
line segments correspond to the best-fit power-law decays
Nw(t)/N−1∼t−0.36, Nd(t)/N∼t−0.74, C(t)∼t0.79 for (a), (b), and
(c), respectively.

tively [Fig. 3.4]. From the data for C(t), we obtain 2γ=0.79±0.01 [Fig. 3.4(c)], while

from the data for Nd(t) and Nw(t), we extract 2γ=0.74 ± 0.01 and γ=0.36 ± 0.01,

respectively [Figs. 3.4(b,a)]. Based on our finite-size results, we can only conclude

that the coarsening exponent is in the range 0.35<γ<0.40 for the NG on two dimen-

sional RGG. Different exponent values extracted from different observables for finite

systems long hindered the precise determination of the coarsening exponent in the

closely related large-Q Potts model [73, 89, 130]. There, employing advanced Monte
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Figure 3.5: Average and the standard deviation of the convergence time
tc until global agreement is reached, as a function of the num-
ber of nodes on log-log scales, averaged over 1, 000 indepen-
dent realizations of the NG on RGG. The average degree of
the underlying RGGs is k≈12 (squares) and k≈50 (circles).
The straight lines correspond to the best-fit power-laws with
exponents 1.10, for both the average (solid squares) and the
standard deviation (open squares) of RGGs with k≈12, and
1.07 for those of RGGs with k≈50, respectively.

Carlo renormalization (MCRG) schemes, it was shown that the coarsening exponent

(within error) is 1/2 [130]. However, finite-size effects and very strong transients,

in part due to “soft domain walls” and domain-wall intersections (“vertices”) can

produce values significantly smaller than 1/2 extracted from standard MC methods

[73, 89, 130], such as ours.

Measuring the time to global agreement, averaged over 1, 000 independent

runs (each on a different RGG network realization), we also obtained the scaling

behavior of the agreement time, tc∼N1.10±0.01 and tc∼N1.07±0.02 for k≈12 and k≈50,

respectively, as shown in Fig. 3.5. The corresponding scaling exponents both some-

what deviate from the one predicted by Eq. (3.5) with the exponent 1/(2γ). This
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Figure 3.6: Time evolution of the (scaled) number of different words
starting from an “empty” word list initial condition, for var-
ious average degree k on log-log scales. The number of nodes
is N=1, 000. The straight line segment indicates the asymp-
totic power-law decay as determined earlier [Figs. 3.4(b)],
independent of the neighborhood size k.

deviation is possibly due to strong finite-size effects, dominating the very late stage

of the agreement dynamics.

For RGGs with many nodes, a relevant control parameter is the average num-

ber of neighbors (or average degree) k. For sensor-network-specific implementations,

as noted earlier, k can be adjusted by increasing either the density or the commu-

nication range of the nodes. We performed simulations of the NG for different

average neighborhood size k, as shown in Fig. 3.6. The results indicate that the

scaling properties (in terms of N) of the time evolution of the agreement process

do not change. The typical convergence times, however, are significantly reduced

by increasing the neighborhood size. A closer examination of the convergence time

reveals that, for fixed N , it scales as tc ∼ k̄−2.6, in the sparse-network limit (k≪N)

in two-dimensional RGGs.
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3.2.4.1 Agreement-time distributions

In addition to the average agreement (or convergence) time 〈tc〉 (time until

global agreement is reached), we also measured the standard deviation ∆tc [Fig. 3.5],

and constructed the probability density (normalized histograms) P (tc, N) for N

nodes [Fig. 3.7]. Since in this subsection, we analyze the full probability density

of this observable, we use brackets for denoting the ensemble-averaged value of the

convergence time, 〈tc〉, while tc alone denotes the stochastic variable, corresponding

to a measurement in a single realization of the NG.

Up to the system sizes we could simulate, the standard deviation, within error,

scales in the same fashion with the number of nodes as the average itself, ∆tc∼N1.10

(k ≈ 12) and ∆tc∼N1.07 (k ≈ 50) [Fig. 3.5]. [Suppressing large average conver-

gence times and the corresponding large standard deviations (through modifying

the network communication topology) will be addressed in the next section.]

Further, the shape of the histograms, for sufficiently large systems, remains

invariant [Fig. 3.7]. Thus, introducing the scaled convergence time x = tc/〈tc(N)〉,
the corresponding scaled probability densities p(x) for different system sizes col-

lapse onto the same curve. [Fig. 3.7(b)]. The above findings indicates that the

convergence-time distribution for the NG is governed by a single scale 〈tc〉, hence

can be written as

P (tc, N) =
1

〈tc(N)〉p(tc/〈tc(N)〉) . (3.6)

The distributions exhibit exponential tails for large arguments [Fig. 3.7(b) inset], a

characteristic feature of opinion dynamics governed by coarsening [85, 158].

3.2.4.2 Cluster-size distributions

We also studied the probability distribution of the sizes of the clusters during

the agreement dynamics P (C, t) (the normalized histogram of the sizes of domains

with different words at a given time) [Fig. 3.8(a)]. Similar to the previous subsection,

we analyze the full probability density of this observable, hence we use brackets for

denoting the ensemble-averaged value of the cluster size in the system at time t,

〈C(t)〉, while C alone denotes the stochastic cluster-size variable (sampled at an

instant t in a single realization of the NG).
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Figure 3.7: (a) Probability densities of the convergence time for three
systems sizes. Data are gathered from 100, 000 independent
realizations of the NG on RGG. The average degree of the
underlying RGGs is k≈50. (b) Probability densities for the
scaled variable x = tc/〈tc(N)〉 for the same data. The inset
shows the same scaled histograms on log-lin scales.

Since the agreement process is governed by coarsening, one expects that this

distribution exhibits dynamic scaling, i.e.,

P (C, t) =
1

〈C(t)〉p(C/〈C(t)〉) . (3.7)

Thus, p(x), the distribution of the scaled cluster sizes x = C/〈C(t)〉 remains in-

variant for different times. Our simulations confirm this picture, except for very

early times (growth phase with initial domains forming) and for very late times

(where finite-size effects dominate) [Fig. 3.8(b)]. The cluster-size distribution ex-

hibit exponential-like tails for large arguments [47, 48, 86, 149], as can be seen in
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Figure 3.8: (a) Probability densities of the cluster size at different time of
the agreement dynamics. Data are collected through 100, 000
independent realizations of the NG on RGG. The system size
of the underlying RGGs is N = 1000 and the average degree
is k≈12. (b) Probability densities for the scaled variable x =
C/〈C(t)〉 for the same data as in (a) on log-lin scales.

Fig. 3.8(b).

3.3 Naming Games in Small-World-Connected Random Ge-

ometric Networks

In light of recent results on NG on one-dimensional SW networks [41], we

now consider accelerating the agreement process by adding random long-range com-

munication links between a small fraction of nodes of the RGG. Such networks

have long been known to speed up the spread of local information to global scales

[154, 153, 115, 82], with applications ranging from synchronization problems in

distributed computing [79] to alarm-detection schemes in wireless sensor networks
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[101]. For sensor networks, this can be implemented either by adding a small fraction

of sensors equipped with long-range unidirectional antennas (“physical” long-range

connections) or by establishing designated multi-hop transmission patterns (“logi-

cal” long-range connections) between certain nodes [64].

We construct the small-world-like RGG (SW RGG) as follows. We start with

the original RGG (embedded in d dimensions, where d=2 in this paper). Then

we add “long-range” links (or “shortcuts”) between randomly chosen nodes in such

a way that the total number of long-range links per node (the density of random

links) is p. This SW construction differs slightly from the original Watts-Strogatz

one [154] (also used by Dall’Asta et al. [41]), where random links are introduced by

“rewiring” some of the original connections. The resulting network, however, has

the same universal properties in the small-p, large-N limit [119], which is the center

of our interest. Further, it is also motivated by actual implementations in sensor

networks, where long-range “channels” are established in addition to the existing

local ones.

3.3.1 Basic Scaling Considerations

Before presenting simulation results, using scaling arguments, one can obtain

an order of magnitude estimate for the crossover time t× present in the SW RGG

and for the time to reach global agreement tc [41]. In SW networks, embedded in d

dimensions, the typical (Euclidean) distance between nodes with shortcuts scales as

lSW∼p−1/d [119, 17, 18]. Starting from empty initial word lists word, for early times

(following the creation of O(N/(k + 1))) different words in the system), the system

will exhibit coarsening, until the typical linear size of the growing domains, ξ(t)∼tγ ,

becomes comparable to lSW . (Here, both lengthscale measures are understood in

terms of the underlying Euclidean metric.) After that time, the agreement process

is governed by the presence of random long-range connections, yielding mean-field-

like behavior. Hence the crossover from d-dimensional coarsening to mean-field-like

dynamics occurs when tγ∼p−1/d, yielding

t× ∼ p−1/(dγ) . (3.8)
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In a system of N agents, the above crossover is only displayed if the convergence time

of the original system with no random links would exceed the above crossover time

N1/dγ≫p−1/dγ , which is equivalent to the condition for the onset of the SW effect

N≫p−1 [119, 41]. Following the above system-size independent crossover time, the

agreement dynamics is of mean-field like, and one can expect to observe a scaling

behavior closer to that of FC networks [15]. In particular, the time to reach global

agreement is expected to scale as [41]

tc ∼ N1/2 , (3.9)

a significant reduction compared to that of the “pure” RGG with no long-range

links where tc∼N1.1.

3.3.2 Simulation Results

Simulating the NG on SW RGGs qualitatively confirms the above scaling sce-

nario. Following the very early-time development of O(N/(k + 1)) different words,

the system of SW-networked agents, exhibits slow coarsening, with only small correc-

tions to the behavior of the pure RGG [Fig. 3.9]. In fact, this early-time coarsening

on SW RGGs is slightly slower compared to pure RGGs due to the effective pin-

ning of interfaces near the shortcuts [41, 24, 31, 29]. In the NG on SW networks,

however, the agreement process only slows down [41], but is not halted by “frozen”

(metastable) disordered configurations [24, 29]. After a p-dependent crossover time

[Eq. (3.8)], (when the typical size of the growing clusters becomes comparable to

the SW length scale), an exponential convergence begins to govern the agreement

process. This final-stage fast approach toward consensus sets in earlier for increas-

ing values of the density of shortcuts p, yielding a significantly reduced convergence

time compared to that of the NG on the “pure” RGG. The temporal behavior of

the relevant observables for various values of p can be observed in Fig. 3.9.

Plotting the convergence time vs the density of long-range links, as shown in

Fig. 3.10(a), suggests that (for sufficiently large but fixed N) the convergence time

approaches an asymptotic power-law tc∼p−s with s=0.79±0.01 [41]. On the other

hand, for fixed p and increasing N , the convergence time increases with N , tc∼NαSW ,
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Figure 3.9: Time evolution of the (scaled) (a) total number of words, (b)
number of different words and (c) the average cluster size for
SW RGGs on log-log scales, starting from an “empty” word
list initial condition, for various density of long-range links
p, averaged over 1, 000 independent realizations of the NG on
RGG. The number of nodes is N=5, 000 with average degree
k≈12.

with αSW=0.31±0.01 [Fig. 3.10(b)]. The agreement process is much faster than on a

two-dimensional regular grid or RGG and is closer to the anticipated mean-field-like

behavior [Eq. (3.9)] [41]. Thus, in the small-world regime (Np≫1) the convergence

time depends on both the system size and density of random links, tc∼NαSW/ps.

3.3.2.1 Finite-size scaling for the agreement time on SW-RGGs

In the pure-RGG limit (Np≪1), tc only depends on N , tc∼NαRGG with αRGG≈1.10

[Fig. 3.10(b)] (since, essentially there are no shortcuts in the system). On the

other hand, as seen above, in the SW-regime (Np≫1), the agreement time scales as
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Figure 3.10: Average convergence time tc for SW RGGs. (a) as a function
of the density of shortcuts for various system sizes. The in-
set shows the same data on log-log scales. The straight lines
corresponds to an estimate of the associated (asymptotic)
power-law. (b) as a function of the number of nodes on
log-log scales for various density of long-range links p. The
curves shown are obtained by averaging over 1, 000 indepen-
dent realizations of of the NG on RGG. The average degree
of the underlying RGGs is k≈12.

tc∼NαSW/ps. One then can construct the full scaling behavior of tc(p, N), capturing

the above two finite-size behaviors as limiting cases on SW-connected RGGs,

tc(p, N) ∼ NαSW

ps
f(Np) , (3.10)
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where f(x) is a scaling function such that

f(x) ∼











xs if x≪1

const. if x≫1
. (3.11)

The pure RGG limit (Np≪1) is recovered, provided that

tc ∼ (NαSW/ps)(Np)s ∼ NαSW+s ∼ NαRGG , (3.12)

i.e.,

αRGG = αSW + s . (3.13)

Our measured “phenomenological” exponents αRGG≈1.10, αSW≈0.31, and s≈0.79,

satisfy the above proposed asymptotic scaling relation. For analyzing our data,
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Eq. (3.10) can also be rewritten as

tc(p, N) ∼ (Np)αSW

ps+αSW

f(Np) ∼ 1

pαRGG

g(Np) , (3.14)

where g(x) = xαSWf(x). Thus, plotting tcp
αRGG vs Np should yield data collapse,

together with the asymptotic small- and large-argument exponents of g(x), αRGG

and αSW, respectively [Fig. 3.11],

g(x) ∼











xαRGG if x≪1

xαSW if x≫1
. (3.15)



CHAPTER 4

The Naming Game in Social Networks: Community

Formation and Consensus Engineering

Agent-based models and simulations provide invaluable frameworks and tools to gain

insight into the collective behavior of social systems [52, 35, 7]. Opinion spreading

and social dynamics [51, 28] on regular and random networks are examples of the

latter. A large number of studies have investigated models of opinion dynamics

[29, 19, 46, 62, 99, 85, 140, 146, 80, 21, 9, 70] and the dissemination of culture

[10, 134, 108], while fundamental models for residential and ethnic segregation have

also attracted strong interest [135, 160, 151, 97]. Most recently, researchers have

also turned their focus to models where both the network topology and opinions

change over time [80, 81]. With the availability of empirical data sets and cheap and

efficient computing resources, one can implement stylized socio-economic models on

empirical social networks, and evolve “artificial societies” [52] to study the collective

properties of these systems.

Here, we continue to focus on the stylized model, the Naming Game (NG) [15].

By employing local communications, the NG is regarded as a minimal model which

can capture generic and essential features of an agreement process in a wide range of

complex systems, For example, in the context of a group of robots (the original appli-

cation), the NG dynamics mimics the emergence of shared communication schemes

(synthetic languages), while in the context of sensor networks, as we discussed in

chapter 3, such an agreement process can describe to the emergence of a shared

key for encrypted communications. In a system of human agents, the NG can be

considered as a minimal model to describe the recent phenomenon of collaborative

tagging or social bookmarking [33, 32, 58] on popular web portals like like Del.icio.us

(http://del.icio.us), Flickr (www.flickr.com), CiteULike (www.citeulike.org), and

Connotea (www.connotea.org). Another common example is the evolution and

spread of coexisting dialects in everyday use (see, e.g., the geographical distribu-

tion of “Pop” vs “Soda” for soft drinks in the US [109]). In a broader context, the

65
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NG can be employed to investigate the emergence of large-scale population-level

patterns arising from empirically supported local interaction rules between individ-

uals.

The common feature in the above examples and applications is that global

agreement can emerge spontaneously (without global enforcement) purely as a result

of local (e.g., pairwise agent-to agent) communications. The NG has been studied

intensively on regular and random complex network models (see next Section). Here

we investigate the evolution of the agreement process in the NG on empirical social

graphs. It is well known that empirical social graphs exhibit strong community

structure [57, 118, 122, 124, 123]. It is also known that in networks with community

structure, reaching global agreement can be hindered [91, 27]. Here, we investigate

the NG precisely from this viewpoint. Further, we analyze strategies to destabilize

otherwise indefinitely coexisting clusters of opinions, to reach global consensus of

a selected opinion. The later can also be considered as an abstract agent-based

marketing approach.

In the following sections we present results for the NG on empirical social

networks. In particular, we investigate the effect of communities in the underly-

ing static social graphs on the agreement process (typically leading to indefinitely

coexisting clusters of opinions). We are also interested in studying and analyzing

node-selection strategies to facilitate the convergence to a global opinion.

4.1 Background, Model, and Prior Results on the Naming

Game on Regular and Complex Network Models

In the simplified version of the NG, agents perform local communications in

order to reach agreement on the name to assign to a single object. The model of NG

has been introduced in chapter 3 in detail. Here we implement pairwise communi-

cations between agents, instead of local broadcast, i.e., each local interaction only

involves one “speaker” and one “listener”, as in the original model of Baronchelli

et al [15]. In most cases, we considered initial conditions when all agents have an

empty vocabulary. Then such an agent, when chosen to be a speaker, invents a ran-

dom word to be transmitted to the listener. But we also look at initial conditions
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with a single random word per agent.

This version of the NG has been studied on complete graphs (CGs), on regular,

on small-world (SW), and on scale-free (SF) networks. In terms of the number of

different words, the evolution of the game will go through stages of growth (due

to unsuccessful communications) and stages of elimination (due to successful ones).

In all of the above mentioned networks, starting from empty vocabularies, an early

time explosion of words is followed by a slow elimination of all synonyms, except one;

that is, agents come to global agreement on the naming of the object in question.

In chapter 3 we also investigated the NG model on homogeneous random geometric

graphs (RGGs). We found that the NG on RGG with homogeneous node density

also leads to global consensus, facilitating an application to autonomous key creation

for encrypted communication in a community of sensor nodes[102, 103].

It was found that the NG dynamics on the above networks will lead to global

consensus among all agents, i.e., after some time, agents’ vocabularies eventually

converge to a unique word, the same for all agents [15, 13, 14, 41]. On the other hand,

[42] found that on stylized network models with community structure (composed

of fully connected cliques with a single link between cliques) the evolution of the

NG runs into long-living meta-stable configurations, corresponding to different co-

existing words (different for each clique). Here we study precisely this later scenario

by implementing the NG on static empirical social graphs.

In passing we note that the issue of the emergence of meta-stable or frozen

opinion clusters and fostering consensus have been discussed for models of opinion

formation under bounded confidence [46, 62, 99]. In those models, however, commu-

nity formation or opinion segmentation is the result of the agents’ interaction being

limited by bounded confidence: an agent can gradually adjust her opinion toward

another one’s only if their opinions were already sufficiently close to one another

to begin with. As a result, opinion segmentation can emerge in networks with no

community structure with low-confidence agents. In contrast, the NG dynamics

does not require that agents’ opinions are sufficiently close in order to potentially

interact (i.e., their confidence is unbounded), and as mentioned earlier, the NG dy-

namics always lead to global consensus on networks without community structure.
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Our motivation here, by studying the NG on empirical social graphs, is to directly

study how the community structure of the underlying graphs affects the emergence

of meta-stable or long-living opinion clusters.

4.2 The Naming Game on Empirical Social Networks

One of the most important feature of social graphs is their modularity: these

networks typically consist of a number of communities; nodes within communities

are more densely connected, while links bridging communities are sparse. Since the

community structure of empirical networks is often not known a priori, detecting

communities in large networks itself is a difficult problem [124]. A number of current

methods for finding community structures utilize various forms of hierarchical clus-

tering, spectral bisection methods [137, 117, 157], and iterative high-betweenness

edge removal [118, 116, 57]. A different approach involves searching for the ground-

states of generalized multi-state spin models (corresponding to different opinions)

on these networks, such as the q-state Potts model [22, 127, 90, 55]. Also, recently

a novel method has been developed to detect overlapping communities in complex

networks [124].

The NG, as summarized in the chapter 3, in low-dimensional networks exhibits

slow coarsening, while networks with small-world characteristic (small shortest path,

such as in SW and SF networks) facilitate faster (and guaranteed) convergence to

a global consensus among nodes. But in all cases, global consensus is reached,

provided the network has no heterogeneous clustering or modularity (i.e., community

structure).

4.2.1 Time Evolution of The Naming Game on High-school Friendship

Networks

Here, we study the NG on networks which do exhibit strong community struc-

ture. The set of social networks (high-school friendship networks), on which we

implemented the NG, were provided by the National Longitudinal Study of Ado-

lescent Health (Add Health) 2. The high-school friendship networks investigated

2This research uses the network-structure data sets from Add Health, a program project de-
signed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris, and funded by
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Figure 4.1: Degree distribution of a high-school friendship network. The
network has total N = 1147 nodes (students) with average
connectivity k̄ = 8.86 and clustering coefficient C = 0.067.

here, were constructed from the results of a paper-and-pencil questionnaire in the

AddHealth project [113]. Here, nodes represent students while the edges are for

their mutual relations or friendships. Two students are considered to be friends

(thus have a link between them) when one nominates the other as her/his friend

and both of them participated in some activities, e.g., talked over the phone, spent

the weekend together, etc., in the last seven days. (for this study, we considered

the relationships reciprocal, and associated them with undirected links in the NG).

These networks exhibit exponential degree distributions (no hubs), with an average

degree of the order of 10. Fig. 4.1 shows a selected high-school friendship network

with average connectivity k = 8.86. For a baseline comparison we also constructed

a Watts-Strogatz (WS) network [154] network with the same number of nodes N ,

average degree k, and clustering coefficient C as the friendship network. The WS

network has homogeneous clustering, hence, no community structure.

a grant P01-HD31921 from the National Institute of Child Health and Human Development,
with cooperative funding from 17 other agencies. For data files contact Add Health, Carolina
Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524, (addhealth@unc.edu,
http://www.cpc.unc.edu/projects/addhealth/.
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Figure 4.2: (a) Number of different words Nd vs time for a friendship net-
work (thin lines) and for the Watts-Strogatz network (bold
line). N = 1, 127, k = 8.8, and C = 0.067 for both systems.
Results for the WS network are averaged over 1000 indepen-
dent realizations. For the high-school friendship network we
show three individual realizations (thin lines), reaching dif-
ferent final states with Nd = 1, Nd = 2, and Nd = 3 (indicated
with horizontal dashed lines). Note the log scales on both
axes. (b) The probability (relative frequency) of final config-
urations with Nd different words (opinions) for the same high
school friendship network as in (a) based on 10, 000 indepen-
dent runs. Statistically, in this particular network, the most
likely final configuration exhibits three opinions.
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We selected a few networks with a large number of students (on the order of

1,000) from the available data set. Starting from an empty word list for all agents,

both the friendship network and WS network show nearly identical early-time de-

velopment of the number of different words Nd. However, the friendship-network

simulations exhibit a long-time behavior very different from the ones discussed in

earlier section, and also from the baseline reference, the NG on the WS network

[Fig. 4.2(a)]. In the late stage of the NG, networked agents without community

structure (including the WS network) always exhibit a spontaneous evolution to-

ward a shared “dictionary” (or opinion), i.e., a global consensus is reached. In con-

trast, in the empirical high-school networks, consensus is rarely reached (for long

but finite simulation times) [Fig. 4.2(a)]. For this particular high-school friendship

network, performing 10, 000 independent runs of the NG with a fixed simulation

time of t = 104 steps, 10%, 35%, and 55% of these runs, ended up with one, two,

and three different words, respectively, in their final configurations [Fig. 4.2(b)].

Thus, in this network, the most likely (or typical) outcome of the NG is one with

three different clusters of opinions. Snapshots taken from the typical evolution of

the NG on this network are shown in Fig. 4.3. In analogy with domain formation

in physical systems, we can regard these long-living configurations with coexisting

multiple opinions as “meta-stable” ones.

The emergence of different long-living clustered opinions is not unexpected. In

fact, the same high-school networks have been analyzed for community structures

in a study of friendship segregation along racial lines among high-school students

[113, 59]. For example, close to the final stage, the time-evolution of the NG on

the particular network shown in Fig. 4.3(b) exhibits four communities. These four

clusters of opinions correspond to segregation along the two-schools involved in the

particular network, high-school (HS) – middle-school (MS) pair, and along racial

lines, whites students – black students in each. Checking the race and school-

grade attribute of the node information in the raw data, we confirmed that the four

communities exhibited by the NG in Fig. 4.3(b) correspond to black HS (upper

left), white HS (upper right), black MS (lower left), and white MS (lower right)

students. Then, in the final state [Fig. 4.3(c)], only three communities remain;
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Figure 4.3: Snapshots of the time-evolution of the Naming Game on
a high-school friendship network. Initially agents have an
empty word list (no opinions). In the snapshots, different
colors correspond to different words. In the very early stage
of the game (a), “speakers” with no words has to create one
randomly. After a slow but steady coarsening of opinions,
in the final stages of the game, the system exhibit relatively
long plateaus in the number of different opinions. The corre-
sponding clusters, i.e., agents with the same opinions, can be
regarded as communities. For the particular network shown
here, in the next to final stage (b), the network exhibits four
communities. Eventually, two of these communities coalesce,
leading to a final configuration (c) with three communities.

opinions, segregated along the racial line coalesce in the middle-school portion of

the students, simply indicating that racial segregation in friendships is weaker in

this group, in this particular network set.

The data set of high-school friendship network from AddHealth is comprised

of questionnaires from students of 84 schools, i.e., total 84 independent friendship

networks consisting from 25 (the smallest) to 2250 (the largest) students. In order

to show that the community structure and the existence of competing opinions in
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Figure 4.4: Number of different words Nd vs time for three different
friendship networks. (a) Two individual runs on friendship
network with N = 900, k = 3.66, (b) two individual runs on
friendship network with N = 1, 282, k = 5.44, and (c) one in-
dividual run on friendship network with N = 1, 047, k = 5.26.
These runs reach different final stages with Nd = 2 or Nd = 3,
respectively.

meta-stable state is not a special case on a particular network, we repeated the

same simulations on several other friendship networks chosen randomly from the

data set. Our results show it is not unusual to observe community structures in

these networks [Fig. 4.4]. It further indicates that these networks are more likely

to develop into small number of communities (usually two or three), if not reaching

global consensus.

Admittedly, our objective is not to draw over-ambitious conclusions from a

social science viewpoint. Instead, we are interested in how the evolution of the
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NG (a stylized model for opinion formation) is affected by the community structure

of the underlying graphs, such as the high-school friendship networks which are

well-known to exhibit strong community structure [113, 59]. We demonstrated that

the outcome of the NG, is strongly affected by the existence of communities in

the underlying network. Conversely, at some coarse level, the long-living late-stage

meta-stable clusters of words (opinions) reveal important aspects of the community

structure of the underlying network. Thus, the NG, together with other stylized

models for opinion formation, can not only be used as a tool to understand generic

features of spontaneous agreement processes in a network of artificial or human

agents, but can also be employed to extract relevant information on the community

structure of complex networks [22, 127, 90, 55].

Because we address community structure from a dynamics-on-networks view-

point over extended timescales, our results provide also the resolution of communi-

ties form fine to coarse as time evolves. The various stages through these scales are

displayed through clearly identifiable plateaus, e.g., in the time series of the num-

ber of different opinions. These plateaus are essentially meta-stable configurations

of several coexisting opinions/communities. So as we found, such a prototypical

model for opinion formation is very sensitive to the underlying community struc-

ture, hence, we can employ it as a novel and sensitive tool to study community

formation, structure, and the role of individuals to stablize or weaken the structure.

4.2.1.1 The Naming Game with One-word-per-agent Initial Conditions

Here, we show the behavior of the Naming Game (NG) with initial configura-

tions where each agent has exactly one word (or opinion), different for each agent

(Nd(0) = N). The rest of the rules of the NG are the same as described in above

sections. Since each agent has a word initially, no new words will be invented, and

there is no growth phase (Nd is monotonically decreasing as a function of time); pair-

wise communications will lead to the gradual elimination of existing opinions. At

the end, only a few opinion clusters remain, again, reflecting the community struc-

ture of the underlying graphs. There is no significant difference in the late-stage

scaling behavior between the empty-dictionary and the one-word-per-agent initial
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Figure 4.5: The Naming Game on a friendship network where the simu-
lations are initialized from configurations with a single word
per agent (different for each agent). (a) Number of different
words Nd vs time for a friendship network with N = 1, 127,
k = 8.8, and C = 0.067 (same friendship network as in Fig. 2 of
the main article). Results are shown for three individual re-
alizations, reaching different final states with Nd = 1, Nd = 2,
and Nd = 3 (indicated with horizontal dashed lines). (b) The
probability (relative frequency) of final configurations with Nd

different words (opinions) for the same friendship network as
in (a) based on 10, 000 independent runs.
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conditions: In the former case, it takes of O(1) time steps to reach the maximum of

Nd, Nmax
d ∼ N/2 [Fig. 4.2(a)], after which slow “opinion coarsening” begins. In the

latter case, the number of different words initially starts from N and slowly begins

to decay [Fig. 4.5(a).] The relative frequencies of the final configurations with one,

two, and three words are very similar [Fig. 4.2(b) vs Fig. 4.5(b)], and the underly-

ing opinion clusters (communities) exhibited this way are the same. Note that for

the one-word-per-agent initial conditions, out of 10, 000 independent runs, we also

recorded 3 runs with four surviving opinion clusters (Nd=4) after 104 time steps,

corresponding to a 3×10−4 relative frequency. Since it is three orders of magnitudes

smaller than the probability of other possible final configurations, it is not visible

on the same scales and is not shown in Fig. 4.5(b).

4.2.1.2 The Naming Game with Finite-memory Agents

As was discussed by Dall’Asta et al [42] , the typical memory need (the max-

imum number of words in its list at any given time) of an agent of degree k is of
√

k. Limiting the agents’ memory to a finite value L, in general, can slow down

the consensus process [152]. For the particular friendship network we used here,

kmin = 1, kmax = 33, and k = 8.8. Here we considered a “first in - first out” finite-

memory version of the NG: in case of an unsuccessful communication, if the memory

of the listening agents is full, it drops the word from its list which has been there

the longest, and adds the one just heard. All the other rules of the NG remain the

same.

For comparison, here we show the agreement process in terms of number of

different words (communities) vs time for both the Watts-Strogatz network and for

the friendship network with the same number of nodes, average degree, and cluster-

ing coefficient [Fig. 4.6]. Since the average degree of these networks is rather small,

there is very little variation in the late-stage agreement process and convergence

times (the infinite-memory behavior is asymptotically approached as the memory

length is of order
√

k̄). The only exception is the L=1 case: here the listener simply

replaces its current opinion with the one of the speaker’s, hence the model becomes

equivalent to the q-state voter model (with q = ∞) [67]. Unlike the NG with L≥2,
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Figure 4.6: Naming Game with finite-memory agents. The number of
different words vs time on (a) the Watts-Strogatz network;
(b) a friendship network with the same number of nodes,
average degree, and clustering coefficients (N = 1, 127, k = 8.8,
and C = 0.067). All curves represent averages over 10, 000
independent runs.
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the voter model on random graphs has no tendency to form compact domains; the

“interfaces” or boundaries separating domains stochastically disintegrate. While

the voter model on finite networks eventually orders, it is the result of a large spon-

taneous fluctuation of ordered regions spanning the full system [31, 29]. Global

consensus for the NG with L=1 (equivalent to the voter model) on networks with

no community structure takes much longer than for L≥2 [Fig. 4.6(a)]. On networks

with community structure (such as the friendship network), however, the tendency

of the NG with L≥2 to form domains leads to the formation of compact long-living

or meta-stable opinion clusters, hence global order is rarely reached. On the other

hand, when L=1, there are no stable domain boundaries and the underlying commu-

nity structure has little or no effect on reaching global consensus [Fig. 4.6(b)]. The

NG with L=1 (voter model) orders on any finite network, essentially independently

of the underlying community structure.

4.2.2 The NG on Large-scale Mobile Phone Network

We also investigated the evolution of the NG on another set of social network,

a large-scale info-social graph (of the order of 4 million nodes), projected out of the

call logs of a European mobile-phone provider [122]. Two nodes were connected with

an undirected link if there had been at least one reciprocated pair of phone calls

between them. The average connectivity of the cellular communication network is

about k = 3.32. However the scale-free degree distribution [Fig. 4.7] reveals there

is a small fraction of “hub”-like individuals who approach massive amount of other

people through the phone calls. The person that has the largest neighborhood

size called 143 different people in the call log. Meanwhile, most of other people

have very sporadic connections with others – they rarely talk with more than three

persons on the phone. For a baseline reference, we constructed a randomized scale-

free network of the same degree distribution and with the same number of nodes, by

homogenously rewiring the majority of links of the original network. The simulation

again shows the opinion segregation among people on the communication graph. At

the same time, the randomized scale-free network, the NG always converges to a

global consensus [Fig. 4.8].
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Figure 4.7: Degree distribution of mobile phone network. The network
consists of N = 3, 906, 441 anonymous cell phone numbers
(nodes). Edges connecting two numbers indicate there has
at least one phone call between them found in the call log.
The network has highly-skewed power-law degree distribu-
tion with α ∼ 6.1. The average neighborhood size is k = 3.32,
but the largest one has kmax = 143 neighbors. All nodes of
the network are in one single connecting component, i.e., the
size of the giant component equals to the network size.

4.2.3 The NG on Spatially Embedded Social Networks

The third social system we investigated is the geographic embedded popula-

tion distribution data from LandScan Global Population Database 3. It is a world-

wide population database at grid cells of very fine resolutions, by distributing best

available census counts to cells based on probability coefficients which, in turn, are

based on road proximity (transportation networks, and in particular, the densities

of roads), land slope (as most human settlements occur on flat to gently sloping

terrain), land cover (from extremely low population density in desert, water, wet-

3LandScan has been developed as part of the Oak Ridge National Labora-
tory (ORNL) Global Population Project for estimating ambient populations at risk
(http://www.ornl.gov/sci/landscan/).
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Figure 4.8: Time evolution of Nd for the mobile phone network and the
random scale-free network with the same power-law degree
distribution. Both networks have α ≃ 6.1. Red lines are
8 individual runs of cellular network, and blue lines are 8
runs of random scale-free network. Three dash lines indicate
positions of Nd = 3, Nd = 4, and Nd = 5 from bottom to top.

lands, etc., to high density in developed land cover), and nighttime lights. From

the raw data of geographical population information, we construct a generalized

version of random geometric graph to model a coarse-grained version of a social

system, based on the idea that most social interactions occur within the limit of

local geodesic distance. Nodes are randomly connected if they both fall inside the

predefined neighborhood distance (the distance will be larger when the population

density is low, and vice versa) of each other, until the designated average connec-

tivity of about k ≃ 10 [122] is reached [Fig. 4.9]. Due to the extreme fluctuation

of population density, which can vary from over tens of thousands per square mile

in metropolis region, to none in desert or wetland, the constructed network is a

random spatial graph with strong inhomogeneous distribution of node density. Here

the subset of U.S. population data is selected for the purpose of network construc-

tion. Population densities are much higher in east and west coast while leaving near
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Figure 4.9: Random geometric graph constructed from North America
geographical population data in LandScan global population
data set. Population density are highly uneven hence people
in city region usually have higher connectivity than those in
rural areas.

vacuum in the mid-west – the inhomogeneity might lead to the spatial segregation

of opinions or fads. The long-lasting of several coexisting opinions in the evolution

of the NG somewhat illustrates the generic feature of opinion segregation at the

global scales [Fig. 4.10], similar as in the geographical distribution of “Pop” versus

“Soda” for soft drinks in the US [109].

4.3 Engineering Consensus in Social Networks

There are several ways to influence the outcome of social dynamics, e.g., to

facilitate the outcome of a specific global opinion that one would prefer the system

to achieve (preferred opinion for short). All methods essentially rely on “breaking



82

Figure 4.10: Snapshots of the time-evolution of the Naming Game on a
social network based on geographical population data. The
simulation starts from empty initial configuration. In the
snapshots, different colors correspond to different words. In
the very early stage of the game (a), a large number of dif-
ferent “words” are generated. Most of the words are elimi-
nated in the coarsening stage (b). And finally in (c) config-
urations of long-living geographical segregated opinions are
formed.

the symmetry” of the otherwise equivalent coexisting opinions. One possibility is

to expose and couple many or all agents to an “external” global signal (analogous

to mass media effects) [108, 27]. Alternatively, one can break the symmetry by

choosing a small number of well-positioned “committed” agents who will stick to

a preferred opinion without deviation. In the next subsection, we investigate this

latter scenario first.
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Figure 4.11: Snapshots of the Naming Game on a high-school friendship
network with committed agents. The system is initialized
from a state with three coexisting meta-stable communities
[see (a)] with a small number of well-positioned committed
agents (indicated with yellow core around the nodes as in-
dicated in (b). Global consensus (i.e., a single opinion) is
reached exponentially fast. Here we employed 50 committed
agents, selected according to their degree ranking.

4.3.1 Committing Agents

In the simulations, by committed agents we mean an agent who has a fixed

opinion which cannot be changed. In the context of the NG, a committed agent has

a single word. As a listener, she does not accept any new word from their neighbors,

but as a speaker, always transmits her word.
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Figure 4.12: Fraction of surviving runs as a function of time for varying
number of committed agents M when agents are selected
according to their (a) degree ranking and (b) (shortest-
path) betweenness ranking. The total number of agents is
N = 1, 127. For the degree-based ranking selection method
different symbols represent the fraction of surviving runs
for 12, 13, 15, 25, 40, 60, and 80 committed agents, from top
to bottom. In betweenness selection method the number of
committed agents M ranges from 22, 25, 30, 35, 40, 50, 60, to
70, from top to bottom.
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Figure 4.13: Fraction of surviving runs as a function of time for differ-
ent strategies with the same number of committed agents
on the same network (M = 35, N = 1, 127, f ≃ 0.031.). The
three strategies (selection of committed agents) shown here
are based on degree ranking (squares), hop-distance prox-
imity to the core cluster (diamonds), and shortest-path be-
tweenness (circles). For comparison, the result of selecting
committed agents randomly is also shown (triangles).

4.3.1.1 Committing Agents in High-school Friendship Networks

The NG on the particular high-school friendship network we investigated con-

verges more likely to three communities at the end-stage [Fig. 4.2]. Of the three

co-existing communities [Fig. 4.3(c)], we choose one community as the one repre-

senting the “preferred” opinion, and we “indoctrinate” selected committed agents

with this opinion. Fig. 4.11 shows snapshots of the evolution of the NG with com-

mitted agents. Initiating the simulations from the final configuration of the original

NG (exhibiting three meta-stable opinion clusters), introducing a small number of

committed agents yields a relatively fast convergence to the global consensus of the

selected opinion.

To quantify this phenomena we investigated the temporal behavior of this

agreement process, in particular, its dependence on the method of selecting com-
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Figure 4.14: Convergence rate as a function of the fraction of committed
agents f=M/N , for different selection methods of committed
agents, including the degree ranking (squares), hop-distance
proximity to core cluster (diamonds), and shortest-path be-
tweenness (circles). For comparison, the result of selecting
committed agents randomly is also shown (triangles).

mitted agents and on the number of these selected agents. Among the methods to

select committed agents are selecting nodes with the highest degrees (nodes with

the highest number of neighbors), with the highest betweenness (likely to bridge dif-

ferent communities), with hop-distance proximity to the core cluster (nodes outside,

but no farther than two hops from the core cluster of “preferred” opinion), and for

comparison, also selecting committed agents at random.

Our main observation is that once the number of committed agents is suffi-

cient to induce global consensus, it happens exponentially fast, independently of the

selection method. More precisely, we ran 10, 000 realizations of the NG with com-

mitted agents. The initial configuration here is the final multi-opinion meta-stable

configuration of the original NG with no committed agents (with Nd = 3) [Fig. 4.11].

We kept track of the fraction of surviving runs, ns(t), defined as the fraction of runs

that have not reached global consensus by time t, i.e., runs that have more than one
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Figure 4.15: Convergence rate as a function of the fraction of committed
agents f=M/N , for different selection methods of committed
agents, including the degree ranking (squares), hop-distance
proximity to core cluster (diamonds), and shortest-path be-
tweenness (circles). This repeats the same simulations as in
Fig. 4.14 but on a different high-school friendship network.

opinion at time t. (This quantity then can also be interpreted as the probability

that a single run has not reached consensus by time t.)

We choose committed agents, to maximize their influence in reaching global

consensus, according to their ranking in a number of graph theoretical measures.

We selected the top M agents according to their degree, shortest-path betweenness

centrality, [118, 116], hop-distance proximity to the preferred core opinion cluster,

or at random, for reference. Figure 4.12 displays the fraction of surviving runs ns(t)

for the degree and for the betweenness ranking for a number of different committed

agents.

A common feature of all methods is that a very small fraction (f = M/N)

of committed nodes is sufficient to induce global consensus. I.e., there seems to be

a very low threshold in fc1, such that for f > fc1 the dynamics with committed
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nodes leads to global agreement. Further, in this case, the fraction of surviving runs

(fraction of runs with more than one opinion), ns(t), in the long-time regime, decays

exponentially,

ns(t) ∝ e−t/τ . (4.1)

The time scale of the exponential decay τ , of course, depends on the selection

method and the fraction of committed nodes. The inverse time scale 1/τ , i.e., the

rate at which global consensus is approached is, initially, an increasing function of

the number of committed nodes, but it quickly saturates and essentially remains

constant. This can be seen in Fig. 4.12, as the slopes of the exponential decays are

becoming progressively steeper, up to a certain M , then they remain constant. Thus,

there is second characteristic fraction of committed agents, such that for f > fc2

the rate of reaching global consensus becomes essentially a constant (saturates).

These three features, (i) small threshold fc1 required for global consensus,

(ii) exponential decay of ns(t) if f > fc1 [Figs. 4.12 and 4.13], and (iii) saturation

of the rate to reach consensus for f > fc2 [Fig. 4.14], are exhibited by all selection

method we considered here. Further, both characteristic values and the gap between

them are very small, fc1, fc2, fc2−fc1≪ 1. These results are essentially summarized

in Fig. 4.14. The convergence rate for the randomly selected committed nodes

is also shown for comparison. On this particular social network, selecting a small

number of the nodes with the highest degree works best, followed by the hop-distance

proximity (to the core cluster) ranking. (We refer to a strategy as more efficient

if the convergence rate 1/τ is larger for the same fraction of committed agents.)

For example, selecting the committed agents according to their degree ranking,

fc1 ≈ 0.01 and fc2 ≈ 0.03 [Fig. 4.14]. Selecting committed agents just above this

latter fraction is optimal, since the rate of convergence does not improve beyond

this value.

Another high-school friendship network with N = 900 students and average

connectivity k = 3.66 [Fig. 4.4(a)] has also been investigated for the purpose of

engineering global consensus. Similar features, such as small threshold fc1 required

for global consensus, exponential decay of ns(t), and saturation of the rate to reach

consensus for f > fc2 are all present in the simulation [Fig. 4.15]
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Figure 4.16: Convergence to single opinion for varying number of com-
mitted agents M when agents are selected according to de-
gree ranking. The total number of agents is N = 3, 906, 441.
Different symbols represent the average of 2, 000 runs with
number of committed agents from M = 5, 000 to M = 600, 000,
from top to bottom. Note here we measure Nd−1 as a func-
tion of time t. As the simulation approaching final consensus
it has the same shape as the fraction of surviving runs.

4.3.1.2 Committing Agents in A Mobile Phone Network

A more challenging task is to study the global consensus under human in-

terventions on the mobile-phone network we discussed in above sections. Similar

as on the high-school friendship network, the NG on the mobile-phone network as

well develops into meta-stable state where three to five coexisting opinions reflect

the same number of communities in the network [Fig. 4.8]. The difficulty lies in

the size of the network – the mobile-phone network consists of nearly four million

agents and tens of millions of links while the typical size of a high-school friendship

network is only one thousand. Hence more efforts are need converting dissident

agents, in both implementation-wise and simulation-wise. However, the study on

such large-scale empirical social system usually gives more meaningful references

to our real-world applications. Here we also look at the method of convincing and
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Figure 4.17: Fraction of surviving runs as a function of time for varying
number of committed agents M when agents are selected
according to activity ranking. The total number of agents
is N = 3, 906, 441. Different symbols represent the average
of 2, 000 runs with number of committed agents from M =
60, 000 to M = 400, 000 from top to bottom.

indoctrinating a small number of particular agents in order to for the network to

reach global consensus.

An agent with large neighborhood size (high degree k) usually plays an impor-

tant role in the spreading of opinions, as she is considered to have higher influences

to her neighborhood than agents in the fringe with very limited number of neighbors.

Therefore controlling those “hub”-like agents is expected to be an efficient way in

facilitating the global consensus. Fig. 4.16 shows the exponential convergence to

single opinion when the balance of coexisting opinions is broken by committing

agents according to their degree ranking. Note here, when increasing the number of

committed agents there exists a small threshold, where further increasing commit-

ted agents (to a fixed fraction) dose not lead to faster convergence. This threshold

causes a small plateau in the convergence rate of committing agents in degree rank-

ing [Fig. 4.20]. Possible explanation for this is that at the threshold the number of
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Figure 4.18: Fraction of surviving runs as a function of time for varying
number of committed agents M when agents are selected
according to degree ranking under the constraint where the
hop-distance to core cluster must be greater than one. The
total number of agents is N = 3, 906, 441. Different symbols
represent the average of 2, 000 runs with number of com-
mitted agents from M = 60, 000 to M = 200, 000 from top to
bottom.

committed agents is enough to convert one or two communities but still more efforts

are needed to convert the remaining communities.

In the evolution of the NG, the local or global agreement is achieved by ex-

changing opinions among the agents. When an agent adopts a new opinion, or

collapses his opinions to a single one, it is regarded as one flip of the state for that

agent. By analyzing the flip number of agents throughout the evolution of the NG,

we are able to classify a small proportion of nodes who change their states (opin-

ions) more frequently than other agents. These nodes usually serve as the bridges

between two or more major communities, and are exposed to multiple opinions si-

multaneously. They have higher chances of accepting multiple opinions than those

sitting deep inside a community. Committing these bridging agents with high pri-

ority might be an effective way to infiltrate into other communities and eventually
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agents are committed. Here we measure the number of dif-
ferent opinions (Nd − 1) instead of the fraction of surviving
runs.

lead to the collapse of community structure. Therefore we explored the scenario of

facilitating the global consensus by committing a small number of the nodes with the

highest flip number. When sufficient fraction of agents are committed in this way,

the system again exhibits exponentially fast decay to the state of global consensus

[Fig. 4.17].

We consider the scenario of facilitating the global agreement toward a specific

opinion (preferred opinion) by committing a small number of agents. In most cases,

it is a waste of resources to indoctrinate agents who has already held the preferred

opinion. Thus, selecting committing agents only from dissidents (whose opinions

differ from the preferred one) is a natural choice if one wants to minimize the cost

of the indoctrination. It is the same idea as selecting nodes with the hop-distance

(to the preferred opinion) greater than one. To further optimize the strategy, we
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Figure 4.20: Convergence rate as a function of the fraction of committed
agents f=M/N , for different selection methods of committed
agents, including the degree ranking (circles), hop-distance
proximity to core cluster (diamonds), and activity ranking
(triangles). For comparison, the result of selecting commit-
ted agents randomly is also shown (squares).

also favor those nodes with higher connectivity or degree k. Fig. 4.18 shows the

process of converging to the preferred opinion using the strategy. Comparing with

other strategies such as degree ranking and activity ranking, it requires less number

of committed agents to achieve the same rate of opinions collapsing [Fig. 4.19].

The summary of results for these strategies are shown in Fig. 4.20, along with

the random selection for a baseline comparison. We again find the small threshold fc1

required for global consensus, exponential decay of ns(t) if f > fc1, and saturation

of the rate to reach consensus for f > fc2 in all selection method we considered here.

Global consensus is achieved when the symmetry is broken with certain amount of

committed agents. The processes happen fast as the characteristic values of fc1

and fc2 and the gap between them are very small, fc1, fc2, fc2−fc1≪ 1. On this

particular mobile-phone network, selecting a small number of the nodes according

to the hop-distance proximity (to the core cluster) ranking works better than the
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Figure 4.21: Global convergence initiated from a minority community.
Different symbols represent the number of different words
Nd as function of time t with different numbers of committed
agents, from M = 100, 000 to M = 500, 000. The committed
agents are selected according to the ranking of their hop-
distance to the minority community.

highest degree ranking and activity ranking. This is due to the large imbalance

of community sizes – the largest community consists of more than 90% of nodes

with all remaining nodes evenly distributed to four small communities. Thus even

selecting a small fraction of nodes with hop-distance greater than one might deplete

the minority communities and lead to fast convergence.

The mobile-phone network provides a configuration with great disparity in

community sizes. It is interesting to see whether it is possible for a small community

to spread its opinion to the whole network once the symmetry is broken. Our results

indicate that with proper positioning of committed agents this can also be achieved

[Fig. 4.21].

In general, the optimal selection method will vary, depending on the commu-

nity structure of the particular underlying network. However, because we changed

the dynamics of the NG by breaking the symmetry of otherwise equivalent opinions,
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Figure 4.22: Global consensus under external influences in a high-school
friendship network. (a) The fraction of surviving runs as a
function of time for several values of the strength of external
influence p (p is the probability that in a time step an agent
will adopt the fixed externally and globally promoted opin-
ion). (b) Convergence rate to global consensus as a function
of the strength of external field p.

the exponential decay and the saturation of the convergence rate is expected to be

generic for a large class of opinion formation models on networks with community

structure.
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Figure 4.23: Convergence rate to global consensus as a function of the
strength of external field p for mobile-phone network, where
p is the probability that in a time step an agent will adopt
the fixed externally and globally promoted opinion.

4.3.2 Global External Influence

As mentioned in the introductory paragraph of the section 4.3, another natural

way of influencing the outcome of the competition among otherwise neutral and

meta-stable opinions, is to couple all or a fraction of agents to a global external

“signal” [mimicking a mass media effect [108, 27]]. For comparison, we implemented

the NG with an external field (affecting all agents) corresponding to the selected

opinion among the three meta-stable ones in the final stage of the NG. Then, similar

to the committed-agent approach, we initialize the system with that final meta-

stable state with co-existing opinions of the original NG. In the presence of mass

media, an agent, when randomly chosen, with probability p will adopt the externally

promoted opinion. Otherwise, the usual rules of the game are invoked (i.e., the node,

as a speaker, initiates communication with a listener).

Our findings indicate that even for extremely small values of p, the fraction of

surviving runs (the fraction of runs that have not reached global consensus) decays

exponentially, ultimately leading to global order [Fig. 4.22(a)]. The rate of con-
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vergence 1/τ increases monotonically and smoothly with p [Fig. 4.22(b)]. Similar

relation of the convergence rate and strength of external field p also exists in the

mobile-phone network [Fig. 4.23]. For application oriented studies, one should as-

sociate a cost with the mass-media coupling, and a cost with committing an agent

(e.g., finding these nodes and giving them incentives impossible to resists), then

perform a relevant cost-benefit comparative analysis for the selection or optimal

combination of two approaches.



CHAPTER 5

Summary and Conclusions

In our work, several stylized models of multiplex propagation and opinion dynamics

have been analyzed on complex communication and empirical social networks, to

gain better understanding of dynamical processes such as collective behaviors and

components interactions in social and technological systems.

We studied cascade dynamics in threshold-controlled (multiplex) propagation

on random geometric networks as a simple yet effective model of outliers cleansing

and amplifying in wireless sensor networks. Hence, the local dynamics of cascading

can serve as an efficient, robust, and reliable basic activation protocol for responding

to various alarm scenarios and distinguishing between false (few outliers indicating

alarm discovered) and real alarms (several outliers detected in close proximity of

each other). We also found that the network modified by adding a few long-range

communication links, resulting in a small-world network, changes the speed of the

network’s response. Hence, such construction can further enhance and optimize the

speed of the network’s response, while keeping energy consumption at a manageable

level.

In addition to the information propagation model, here a prototypical agent-

based model of opinion dynamics, the Naming Game, has also been carefully studied

on Random Geometric Graphs and SW-connected RGGs embedded in two dimen-

sions. While the underlying RGG communication topology is motivated by large-

scale sensor networks, the NG on these networks captures fundamental features

of agreement dynamics of spatially-embedded networked agent-based systems. We

have found that, qualitatively similar to two-dimensional regular networks [14], the

NG on RGG can be reasonably well described by the physical theory of coarsening.

In particular, local clusters of nodes sharing the same word quickly form, followed by

slow coarsening of these clusters in the late stage of the dynamics. The typical length

scale grows as ξ(t)∼tγ with the coarsening exponent estimated to be 0.35<γ<0.40.

Our simulation results also indicate that the average time to reach global agreement
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is of O(N1.08±0.03) (for fixed average degree). The above results imply that, at least

for the range of finite system sizes studied here (up to N = 5, 000), the characteris-

tic length scale in two-dimensional RGGs grows slower than 1/2. This deviation, in

part, may very well be attributed to the effectively small system sizes that we could

study. Similarly strong transients and finite-size corrections, due to the presence

of “soft domain walls” and “vertices” (domain-wall intersections), also made the

precise determination of the asymptotic coarsening exponent difficult in the two-

dimensional large-Q (effectively Q=∞) Potts models [132, 133, 73, 89, 130]. On the

the other hand, based on our Monte Carlo studies, we cannot rule out the possibility

that the deviation from the γ=1/2 coarsening exponent is the result of the inherent

local random random structure of RGGs (in contrast to regular two-dimensional

grids [14]).

While in this work we did not address the message complexity of the NG

explicitly, one can make an order of magnitude estimate for the typical number of

messages needed to reach global agreement on RGGs for an efficient implementation.

(In sensor networks, this quantity is also relevant since it corresponds to the global

energy consumption.) Once the coarsening process begins, nodes inside the clusters

have reached agreement with all their neighbors, of which they are readily aware,

hence, they no longer have to initiate broadcasts any longer. Thus, only these

“active” nodes, found at the interfaces between these cluster (which have at least

one neighbor with different words), will initiate broadcast for word matching. Using

that the number of nodes at the interfaces scales as N/tγ [Eq. (3.3)], and integrating

this expression up to tc∼N1.08±0.03, one finds that the total number of messages

needed to be exchanged until global agreement is reached is of O(N1.68±0.05).

In an attempt to accelerate the agreement process by changing the communi-

cation topology between agents, we also studied the SW-connected version of the

two-dimensional RGG. By adding a small density of shortcuts “on top” of the RGG,

resulting in a SW-like network, the convergence time is strongly reduced and be-

comes of O(N0.31), similar to the behavior of NG on the Watts-Strogatz SW network

[41].

Earlier works on NG have shown that this simple model for agreement dy-
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namics and opinion formation always leads to global consensus on graphs with no

community structure. We therefore further studied the Naming Game on social

networks, which are known to have rich community structure. On empirical social

networks, such as high-school friendship networks, the mobile-phone network, and

the social network based on geographical population data, the Naming Game ex-

hibits, in the late-stage of the dynamics, several meta-stable coexisting communities;

these configurations, in effect, are the computationally observed final configurations.

In models for social dynamics, communities manifest themselves in the context

in which distinct stylized opinions (e.g., religions, cultures, languages) have evolved

and emerged over time. Clusters of nodes having reached consensus are part of

a community, reflecting the inherent community structure of the underlying social

networks. Thus, if at the late stages of the social dynamics on the networks, several

communities persist (different opinions survive), they are the authentic signatures

of the underlying community structure. The Naming Game, together with other

similar models for opinion formation, can be employed to probe these properties of

complex networks.

We then considered the task of destabilizing the coexisting meta-stable opin-

ions (in order to reach consensus) by selecting the optimal number of committed

agents with a preferred opinion, as an alternative to a global external signal (mass

media effect). The results implied that a small number of committed agent is suf-

ficient to facilitate an exponential decay toward global consensus of the selected

opinion. Further, selecting more agent than a system-specific upper cut-off, yields

no improvement in the convergence rate. Hence, there seems to be an optimal num-

ber of agents for this task, beyond which it does not pay off to invest in committing

more agents. Selecting the committed agents according to their degree, betweenness,

activeness, or hop-distance proximity to the core cluster of the preferred opinion, all

displayed the above qualitative features. Further, they all significantly outperformed

committing the same number of agents at random.
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Consensus-time distributions in models for opinion formation. 2006. to be
published.

[159] F. Xue and P. R. Kumar. The number of neighbors needed connectivity of
wireless networks. Wireless Networks, 10:169–181, 2004.

[160] J. Zhang. A dynamic model of residential segregation. Journal of
Mathematical Sociology, 28:147–170, 2004.



112

[161] X. Zhu, M. Gerstein, and M. Snyder. Getting connected: Analysis and
principles of biological networks. Genes Dev., 21:1010–1024, 2007.


