The Genesis Interface to Distributed Wireless Simulation
(Using GloMoSim)

Kiran Madnani
Rensselaer Polytechnic Institute, Troy, NY 12180, USA
email: {madnak}cs.rpi.edu

Abstract

The rapid advancement in portable computing plat-
forms and wireless communication technology has led
to significant interest in the design and development
of protocols for instantly deployable wireless networks
often referred to as “Ad-Hoc Networks”. Ad-hoc net-
works are required in situations where o fized com-
munication infrastructure, wired or wireless does not
exist or has been destroyed. The advantages span sev-
eral different sectors of society. In the civilian envi-
ronment, they can be used to interconnect work groups
moving in a urban or rural area or a campus and en-
gaged in collaborative operation such as distributed sci-
entific experiments and search and rescue. In the law
enforcement sector, applications such as crowd control
and border patrol come to mind. In the military arena,
the modern communications in a battlefield theater re-
quire o very sophisticated instant infrastructure with
far more complex requirements and constraints than
the civilian applications[3].

There are several challenges in the design and eval-
uation of these ad-hoc metworks which make them
unique. Some of these include the shared broadcast
medium between thousands of nodes, the mobility of
these nodes and the unpredictable nature of the wire-
less channel with problems such as fading, obstacles
and interference.

The major difficulty in simulating large networks at
the packet level is the enormous computational power
needed to execute all events that packets undergo in the
network(5]. Packets crossing the boundaries of par-
allel partitions impose tight synchronization between
parallel processors, thereby lowering parallel efficiency
of the execution[6]. In addition, in the case of ad-hoc
networks, we deal with the possibility of nodes crossing
the boundaries of the partition during the simulation.

The design of the GENESIS[8] technique used for
simulating ad-hoc networks is described in the next
sections. We implement the GENESIS technique over

GloMoSim[9], a scalable simulation library for wireless
network simulation developed at UCLA.

1 Introduction
1.1 Genesis Overview

Although our approach has been described ear-
lier [10, 7], we provide a brief summary here, to make
the paper self-contained. The system is able to use
different simulators in a single coherent network simu-
lation, hence we called it General Network Simulation
Integration System, or Genesis in short.

In Genesis, each network domain consists of a sub-
set of network sources, destinations, routers and links
that connect them. It is simulated concurrently with
other domains and repeatedly iterates over the same
simulation time interval, exchanging information with
other domains after each iteration. In the initial it-
eration, each domain assumes either zero traffic flow-
ing into it (when the entire simulation or a particular
flow starts in this time interval) or the traffic charac-
terization from the previous time interval. External
traffic into the domain for all other iteration steps is
defined by the activities of the external traffic sources
and flow delays and packet drop rates defined by the
data received from the other domains in the previous
iteration step. The whole process is shown in Figure 1.

Each domain simulator creates all flows whose
sources are within this domain by itself, but needs
to approximate flows with the sources that are exter-
nal to its domain. This approximation is achieved as
follows. In addition to the nodes that belong to the
domain by the user designation, Genesis creates also
domain closure that includes all the sources of flows
that reach or pass through this domain. Since those
are copies of nodes active in other domains, we call
them source proxy. Each source proxy uses the flow
definition from the simulation configuration file and
the native traffic generator.

The flow delay and the packet drop rate experi-
enced by the flows outside the domain are approxi-

Simulation
Time

Simulation
frozen

Freeze-
Simulation
time stopped

Inter-

data
xchange]

domain }...

Check-point\
required? A,

Simulation
Time-
resumed

Si/mulalion

resumes

Legend:
[0] pomin workery
@ Farmer

Figure 1: Progress of the Simulation Execution

*In this case, say domain 2 requires check-pointing

mated by the random delay and probabilistic loss ap-
plied to each packet traversing in-link proxies. These
values are generated according to the average packet
delay and its variance as well as the observer packet
loss frequency communicated to the simulator by its
peers at the end of simulation of each time interval.
Each simulator collects this data for all of its own out-
link proxies when packets reach the destination proxy.

Each delay at the router is the sum of constant
processing, transmission and propagation delays and
a variable queuing delay. If the total delay over all
external routers is relatively constant in the selected
time interval, the actual delay can be approximated by
randomly generated delay from the distribution with
the same average value and variance as observed in
the other domains and packet loss can be applied ran-
domly with the probability defined by the observed
frequency of the actual packet loss on the external
path. These three values (average packet delay and
its variance and the frequency of packet drop) are
send to the source proxy to be used in generating the
flow. Thanks to the aggregated effect of many flows
on queue sizes, this delay changes more slowly than
the traffic itself, making such model precise enough
for our applications.

Our experience indicates that communication net-
works simulated by Genesis will converge thanks to
monotonicity of the path delay and packet drop prob-
abilities as a function of the traffic intensity (conges-
tion).

The efficiency of our approach is greatly helped by
the non-linearity of the sequential network simulation.
It is easy to notice that the sequential simulation time
grows faster than linearly with the size of the net-

work. Some of our measurements [4] taken over the
hierarchical networks indicate that the dominant term
is of order O(n?) even for small networks. The impact
of this observation on superlinear speedup of Genesis
simulation is shown in Figure 2.

30

25

20 +

— lteration computational power d*T(n)
— - Domain iteration time T(n)=n"2+0(n"2)
= = *Network simulation time T(d*n)=d"2*T(n)

Figure 2: Analysis of Superlinear Speedup: with d
domains of size n superlinear speedup will be achieved
if the number of iterations ¢ < d.

We conclude that it is possible to speed up the
sequential network simulation more than linearly by
splitting it into smaller networks and parallelizing the
execution of the smaller networks. With modest num-
ber of iterations the total execution time can be de-
creased by the order of magnitude or more. Example
of the superlinear speedup for 4 and 16 domain sim-
ulations of mixed TCP and UDP traffic is shown in
Figure 3.

The extension of a wired network simulator needed
for Genesis are quite standard and include the follow-
ing components.

Domain Definition: which must be introduced by
the user in the native simulation configuration
file. It simply enumerates nodes belonging to
each domain or labels each nodes with the do-
main identifier.

Source and Link Proxies: which are introduced
by the Genesis based on the domain defini-
tion. Proxies belong to the domain closure.
Source proxies represent sources that produce

64 node configuration (Mixed Traffic)

7000

6000 *

5000
= = g
4000 4

—64-4
3000 ¢
4 — = 54-16
2000 '

1000 4

Real Time (Sec)

Simulation Time (Sec)

Figure 3: Simulation Times for 2,000 UDP and 1,000
TCP Flows in the 64-router Network Split into 4 and
16 Domains.

flows crossing or directed to the domain. Link
proxies approximate packet delays and packet
dropping on the path from the source to the do-
main boundary.

Data Collector: that is added to each flow leaving
a domain. It collects the data about the packet
delay and dropping from the flow source to the
domain boundary.

Checkpointing and Freeze Event: that enable
domain simulation synchronization. Freeze event
causes all the simulators to stop at the same simu-
lation time and it is added to the future event list
by the Genesis system (this is the only new event
introduced by Genesis). Checkpointing uses fast,
diskless and application independent fork-based
memory copy [2] to create a copy of each simula-
tor at the beginning of each simulated interval. At
the end of simulated interval, all domains either
reactivate a copy (re-simulating the same interval
but withe new data about external flow) or delete
the copy and continue simulation into a new time
interval.

1.2 Genesis Distributed Wireless Simula-
tion Overview

The rapid advancement in portable computing plat-

forms and wireless communication technology has led

to significant interest in the design and development
of mobile networks [3]. However, the management
and evaluation of such networks presents unique chal-
lenges. Some of these include the shared broadcast
medium between thousands of nodes, the mobility of
these nodes and the unpredictable nature of the wire-
less channel with problems such as fading, obstacles
and interference. The design overview of the Genesis
interface to mobile network simulator, GloMoSim [9]
is described in this section. The next few sections de-
scribe the design and implementation of this interface
in detail.

As in the previous interfaces, we decompose the net-
work into domains that contain network nodes, which
in this case can be mobile. Thus, a domain is defined
by the geographical area that it covers. The user’s
domain definition is a Genesis specific part of the Glo-
MoSim configuration file. It contains also the radio-
range of a node and using these parameters, Gene-
sis computes the closure of the domain defined as the
conjunction of the domain proper and its boundary
regions of the radio-range width. The closure enables
the system to account for nodes which lie outside the
domain but still can interfere with the nodes inside it.
Based on the domain closure, Genesis identifies the
nodes active for each domain.

As in the Genesis interface to wired networks, do-
mains are simulated concurrently with each other over
the same time interval. The domains freeze [7] at user-
specified intervals. At the time of freeze the inter-
domain data exchange takes place. In GloMoSim, a
node can schedule events (transmit and receive pack-
ets) while it is mobile. The current Genesis exten-
sion to GloMoSim accounts for the “mobility-trace”
defined mobility in which the user specifies the speed,
start and destination locations of the nodes in a con-
figuration file. Knowing the above parameters, Gene-
sis computes before the simulation the time and loca-
tion at which the node crosses the domain boundaries.
Using this information, each domain simulator knows
when and where the mobile node will be active in its
domain.

The introduction of domain closures creates regions
in the network topology which overlap at least two do-
mains. Thus, a node in such a region is active in both
domains at the same time. The Genesis domain sim-
ulators which simulate activities of such a node must
include the same events for the node. To achieve this,
the inter-domain messages include information about
communication (packets received and sent) by nodes
lying in the domain-closure. Each domain receiving
this information checks if the same communications

were executed for its copy of the nodes in question. If
not, the time interval is re-simulated with the modified
list of events for the offending node.

Each domain has at most eight domains as neigh-
bors. Thus, each domain needs to communicate infor-
mation about the activity of domains lying in its clo-
sure to its corresponding neighbor only. We achieve
this by establishing a peer-to-peer connection between
domains. In other words, each domain receives data
from at most eight of domains during the freeze event.
On exchange of this information, each domain checks
whether it needs to go-back and re-simulate the freeze
interval (based on the information collected and its
own information).

All the domains must simulate the same time in-
terval, that is, all domains must simulate the next
iteration at the same time. In order to achieve this
synchronizaion, a simple farmer-worker architecture is
overlayed over all domains. Once each worker (from
now on, we use the terms worker and domain inter-
changably unless otherwise specified) has made a deci-
sion to go-back/go-ahead, it informs the farmer about
the same. The farmer then broadcasts a re-check sig-
nal to all the domains along with the domain id’s of all
the domains that need to go-back. This is to intimate
all domains to re-check their logs if any of their neigh-
bors have resimulated the freeze interval (this is to
prevent cascading conflicts - a chain of conflicts in one
domain which may lead to conflicts in another domain
- explained in a section below). Thus, only when all
the domains are ready to go-ahead, the farmer sends
a sync-signal to all the workers. In other words, only
when all workers send the farmer a go-ahead signal,
the farmer in-turn sends them all a signal to go-ahead.
Each worker waits needs to receive this sync from the
farmer before it can go-ahead. Thus in this way, syn-
chronization is based on messages between the farmer
and worker, and the former is used to identify the state
of the simulation.

The following algorithms briefly describes the Gen-
esis model for distributed wireless simulations in a nut-
shell:

Each domain does the following till the end of simula-
tion:

1. Send up to 8 messages to all its neighboring do-
mains.

2. Receive logs from all of its neighbors and compare
the received data with the corresponding logged
data.

3. Detects conflicts based on the cases described in
the section below.

4. In the event of a conflict, the domain which needs
to take appropriate corrective action, will go-back
and re-simulate the freeze interval and inform the
farmer about the same(send a 1 signal to the
farmer).

5. Elseif it does not need to go-back, the domain will
send a go-ahead signal to the farmer represented
by 0.

6. Wait for a signal from the farmer. If the farmer
sends a recheck signal, then the domain checks
to see if its neighbor has gone back. If yes, it
rechecks the logs of the neighbors with that of
its own for any (cascading) conflict. If the do-
main then needs to go-back,it informs the farmer
of the same. Else the domain waits for a sync
signal from the farmer to go-ahead and simulate
the next iteration.

The farmer does the following till the end of simu-
lation:

1. Wait for a go-ahead/go-back signal from all work-
ers(domains)

2. If any domain needs to go-back , the farmer sends
a recheck broadcast to all the domains along with
the domain id’s of the domains that need to go-
back.

3. Else the farmer busy waits until all workers can
go-ahead.

4. Only when all workers can go-ahead, the farmer
broadcasts a sync message to all workers to sim-
ulate the next interval.

2 Design details
2.1 Freeze scheduler

As in the Genesis approach to wired networks, a
domain is simulated concurrently with other domains,
that is, the domains iterate concurrently over the same
time interval. The domains freeze[7] at user-specified
intervals during which the inter-domain data exchange
takes place.

Basically, a freeze is scheduled to pause the simula-
tion at points of time that are assigned in the config-
uration file by users. When the simulation is frozen,
the method GlomoFreeze() is called. All other func-
tionality for interdomain data exchange and decision
making (to go-ahead or to resimulate the interval) is
called in this method. On return from GlomoFreeze(),
the simulation resumes.

2.2 Domain Definition

In the Genesis extension to GloMoSim, we decom-
pose the network into domains which contain nodes.
However, unlike in the Genesis extension to wired net-
works [7][8] the nodes are mobile in this case. Thus,
the domain definition is a function of the geographical
area covered by the domains. The user is responsible
for specifying the number and area of the domains in
a configuration file. The radio-range of a node is also
calculated based on the radio-model and parameters
supplied by the user in the configuration file. Using
these parameters, the closure of the domain is calcu-
lated. We define the closure of the domain as the sum
of the domain boundary and the radio-range on all the
four boundaries of the domain. We consider the clo-
sure of the domain in order to account for nodes which
lie in this area (and are not part of the actual physical
boundary of the domain) but are still within the radio-
range to nodes lying in that respective domain. Our
extension to GloMoSim uses this information to pre-
compute the member nodes of the domain (from now
on, we will use the term domain and domain closure
interchangeably unless specified).

The present version of GloMoSim allows for only
a single partition in the network. In the Genesis in-
terface for distributed wireless simulations (as done
in our previous implementations in ns2 and SSFNet),
the domains are defined within this partition. These
are defined in the config.in file (the place where user
defines parameters) and are parsed into the driver.pc
file. Thus, although the simulation would have only
one partition, it will be allowed to have multiple do-
mains. For each domain we specify its start and end
x and y co-ordinates, in the domain.input file. Only
one of the domains is kept active on each processor
and only the nodes within this domain can send and
receive the messages in the simulation on this proces-
sor.

As in the Genesis approach to wired networks, do-
mains are selectively activated and deactivated. The
purpose is to process the entire simulation configura-
tion on each participating processor, and keep active
only one domain closure while maintaining informa-
tion of the neighbors of this domain.

2.3 Handling mobility of nodes

In GloMoSim, there are a number of ways to specify
mobility[11]:

1. If MOBILITY is set to NO, than there is no move-
ment of nodes in the model.

2. For the RANDOM-DRUNKEN model, if a node
is currently at position (x, y), it can possibly move

to (x-1, y), (x+1,y), (x, y-1), and (x, y+1); as
long as the new position is within the physical
terrain.

3. For RANDOM-WAYPOINT model, a node ran-
domly selects a destination from the physical ter-
rain. It moves in the direction of the destination
in a speed uniformly chosen between MOBILITY-
WP-MIN-SPEED and MOBILITY-WP-MAX-
SPEED (meter/sec). After it reaches its destina-
tion, the node stays there for MOBILITY-WP-
PAUSE time period.

4. For MOBILITY-TRACE, the mobility of nodes
is specified in a trace file.

In the Genesis extension to GloMoSim, we concen-
trate on “mobility-trace” as it allows us to control
the mobility of the nodes. In this case, the mobil-
ity of nodes is be specified in the configuration file.
Thus, a node can schedule events (transmit and re-
ceive packets) when it is mobile. There are a total of
6 possibilities when a mobile node sends or receives a
message from the nodes in the network. A node can
send a message and move before an event is sched-
uled or during the event or after the event is sched-
uled to that node. Similarly, a node can receive a
message and move before an event is scheduled for
it or during the event or after the event is scheduled
for it. However, instead of taking care of these “mo-
bile” nodes at run-time, we can modify the scheduler
during pre-simulation. Although such precomputing
can be applied to all four methods of node mobility
in GloMoSim, our current implementation deals only
with “mobility-trace” method. In it, the user speci-
fies the speed, start and destination locations of the
nodes in a configuration file. Knowing the above pa-
rameters, we can calculate the time and location (x,
y) when the node crosses the domain boundary (us-
ing the equation of the straight line - we assume that
nodes always travel along a straight line). Using this
information we modify the behavior of the scheduler
to allow nodes to transmit data only when it is in the
active domain. This gives rise to three cases:

a. The source and destination positions of the node
both don’t belong to active domain. In this case we
calculate the times when the node enters and leaves
the active domain. Based on these times, we schedule
the time when the node can transmit packets.

b. The source position is in active domain while the
destination location is not. In this case, we need to
calculate the time when the node leaves of the active
domain.

c. The source location is not in the active domain

while the destination position is in the active domain.
Thus, in this case we need to calculate the time when
the node enters the active domain.

The following example further clarifies this concept.

2.3.1 Example

1 2 3
L At 3t
(=) T i

)

(2,7

f —+— f —
b b of B
E—
time

Figure 4: Example showing the mobility of a node

In Figure 4, we consider only one partition (as de-
fined by GloMoSim) and 3 domains 1, 2, and 3 respec-
tively. Now, consider a node A’ at location (x1, y1)
and moves at time to and moves to location (xz, y2)
at speed, say s m/secs. Let A transmit data between
times t; and t, and t, and t, respectively.

Now, since we have both the start and the desti-
nation location, we can calculate the slope of the line
path that A will take. Based on this slope, the speed
at which it travels and the domain boundaries (also
set in the network configuration file), we can calculate
the points where A crosses the domain boundaries, (x’,
y’) and (x”, y”) using the equation of the straight line.
Based on this distance, we can calculate the times to
and t3 when the node crosses these boundaries. Each
instance of GloMoSim (that is, each active domain)
will do this calculation to check is in its region during
the time of simulation, thus giving rise to the 3 cases
described above.

Using these times, the instance where domain 1 is
active, the scheduler is not be changed as A completes
its transmission before it crosses its boundaries. How-
ever, the instance of GloMoSim where domain 2 is
active will change the time for which A starts and
stops sending out messages to to and tz respectively.
Similarly, the instance where domain 3 is active, the

scheduled start and stop times are changed to t3 and
t, respectively.

Thus, only the active domain (an instance of Glo-
MoSim running on a processor) checks if the mobile
node crosses its boundaries during the simulation and
if the node needs to send out data at the time when
it is in that domain, the latter will modify the sched-
uler to make sure the node transmits data between the
appropriate times. This entire process will take place
during the initialization phase of the simulation and
not during the run-time of the simulation.

2.4 Consistency of distributed domain
simulations - handling conflicts

As per our definition of a domain-closure, there ex-
ists a region in the topology which overlaps in at least
two domains. Thus, a node belonging to this area is
active in both domains at the same time. We need to
ensure that the domain (distributed) simulation faith-
fully represents the sequential simulation (on a single
processor). To achieve this, the inter-domain messages
only need to include information about communica-
tion (packets received and sent) by nodes lying in the
domain-closure. More specifically, we take care of two
cases described below. For each of these cases, as-
sume that X is a node which lies in the overlapping
region between two neighboring domains. Let X’ be
its "proxy” lying in the closure of the neighboring do-
main.

2.4.1 X and X’ both receive data from dif-
ferent nodes in an overlapping time-
interval

There are two sub-cases or overlapping receives, be-
cause a node can communicate only with nodes within
its range. Thus, a node in a boundary region can have
only nodes with a single domain on one side of its
range, as shown in Figures 5- 6 .

1. In Figure 5, X receives from node Y in D, which
does not have proxy in E and from a proxy 7’
of node Z in E, while X’ receives only from node
Z. Here, the fact that X has two nodes sending
and X’ just one is not by itself a conflict. The
conflict here is caused by the fact that Z’ trans-
mits to X after Y transmits to X in domain D.
So actually, Y should have the right to transmit
and not Z’. Here, X’ incorrectly receives from Z,
thus the conflict. In the correct scenario, both
X and X’ should behave consistently and receive
from Y. In this case only X is aware of the conflict
(between nodes Y and Z’), whereas X’ is not(as
it receives only from Z). Thus, when X’ receives

the log from X (during the freeze interval), it be-
comes aware this conflict. Thus, domain E would
need to re-simulate the freeze interval. During,
re-simulation, X’ would then take corrective ac-
tion - when Z tries to transmit to it, it takes ap-
propriate action of not allowing transmission of Z
transmit to it.

B

e

-

L

Figure 5: X and X’ both receive data from different
sets of nodes in an overlapping time-interval

2. As shown in Figure 6, X receives from node Y

in D, while X’ receives from proxy Y’ in E and
from Z in E, which does not have proxy in D.
Here, the fact that X has two nodes sending and
X’ just one is not by itself a conflict. The con-
flict here is caused by the fact that Y’ transmits
to X after Z transmits to X in domain D. So ac-
tually, Z should have the right to transmit and
not Y’. Here, X incorrectly receives from Y’ thus
the conflict. In the correct scenario, both X and
X’ should behave consistently and receive only
from Z’(in other words Y should not be allowed
to transmit in domain E). In this case only X’
is aware of the conflict (between nodes Y’ and
Z), whereas X is not. Thus, when X receives the
log from X’ (during the freeze interval), it be-
comes aware this conflict. Thus, domain E would
need to re-simulate the freeze interval. During,
re-simulation, X would then take corrective ac-
tion - when Y tries to transmit to it, X takes
appropriate action of rejecting transmission.

Figure 6: X and X’ both receive data from different
sets of nodes in an overlapping time-interval

2.4.2 X or X’ but not both are receiving while
the other node is transmitting at the
same time

Again, here there are two sub-cases or overlapping re-
ceives, because a node can communicate only with
nodes within its range. Thus, a node in a boundary
region can have only nodes with a single domain on
one side of its range, as shown in Figures 7- 8 .

1. In Figure 7, X receives from node Y in domain D,
which does not have proxy in E while X’ transmits
to Z in E. In the correct scenario, X’ should be
transmitting to Z at this time. This is because,
the start time of transmission of X’ to Z occurs
before X starts receiving from Y. Thus, when X
receives logs from X', it would now know of the
time of transmission of X’ to Z. Thus, domain
D would need to re-simulate the freeze interval.
Thus, during re-simulation of that freeze interval
X would not allow the transmission of Y to it.

2. As shown in Figure 8, X’ receives from node Z in
domain E which does not have proxy in D when
X transmits to Y in D. In the correct scenario, X
should be transmitting to Y at this time. This
is because, the start time of transmission of X to
Y occurs before X’ starts receiving from Z. Thus,
when X’ receives log information from X, it would
now know of the time of transmission of X to Y.
Thus, domain E would need to re-simulate the
freeze interval. Thus, during re-simulation of that
freeze interval X’ would not allow the transmis-
sion of Z to it.

Figure 7: X or X’ but not both are receiving when it
is time to transmit

When the simulation freezes, the information of all
nodes lying in the closure of a domain is sent to their
respective neighboring domains. Each domain receiv-
ing this information validates the same for the two
cases above. If any of the cases discussed above oc-
curs, the domain decides (checkpoints) to resimulate
that freeze interval after modifying the behavior of
the node to make it consistent with its ”proxy” in the
neighboring domain. Diskless checkpointing enables
the simulation to easily iterate over the same time in-
terval.

2.4.3 Cascading Conflicts

In all of the cases above, when a conflict is caused,
the domain in which the conflict is caused goes back
and resimulates the freeze interval. During the resim-
ulation, the events simulated by the nodes in conflict
are corrected. However, this might lead to a chain of
changes for all its neighbors and the neighbor’s neigh-
boring nodes causing an error in the neighboring do-
main as shown. For example, as shown in Figure 9,
domain D needs to go-back. In the 1st iterarion of D,
A transmits to B and Y transmits to X while the trans-
missions of Y to A and C to B are rejected over the
same channel. However, due to a conflict, Y should
not transmit to X. Thus, in the resimulation (2nd it-
eration), the transmissions of Y to A and thus C to B
are allowed and go through. However, in the 1st itera-
tion C(which is in the domain closure of Q) transmits
to another node in Q. Thus, a cascading conflict is
caused in the 2nd iteration of D.

In order to prevent such an error in simulation,

Figure 8: X or X’ but not both are receiving when it
is time to transmit

the farmer broadcasts a re-check signal to all domains
along the the domain id’s of the domain that go-back.
On receiving this signal, each domain will check to
see if its neighbor has gone back. If yes, when it re-
ceives the logs of the events of the resimulation from
its neighbor, it re-checks to see if the simulation is still
faithful. If not, it will go-back to resimulate the same
iteration after informing the farmer of the same. The
farmer, in turn only broadcasts a sync signal to the
workers when all of them are ready to go-ahead(that
is, it receives a go-ahead signal from all workers as
described in the algorithm above).

2.5 Genesis data exchange model for dis-

tributed wireless simulations

In the Genesis interface to GloMoSim, each domain
has the knowledge of its domain boundaries as well as
the domain id’s of its neighbors (from the configura-
tion file). Also, each domain has at most 8 domains as
neighbors as shown in Figure 10. Thus, each domain
needs to communicate information (about the activ-
ity of domains lying in its closure) to its corresponding
neighbor only. We achieve this by establishing a peer-
to-peer connection between domains. In other words,
each domain receives data from at most eight of its
neighbors during the freeze-interval.

However, in order to prevent cascading conflicts
(described above) and to make sure that all the do-
mains simulate the same interval (some of them may
need to go-back) we need to synchronize between do-
mains. We have implemented a server (farmer) for
this purpose. Synchronization between individual do-
mains is based on messages sent to the server, which
identifies the state of the simulation.

p Transmission in original fteration

¥ Tranamission in re-siltion o eraion

Figure 9: Chain of events in one domain causing a
conflict in the neighboring domain - cascading conflict

3 Interoperability with other wired
network simulation engines

As part of the Genesis project, we have previ-
ously demonstrated interoperability between Java-
based SSFNet and C++/TCL-based ns2 which re-
quired the definition of a generic network model
and a flow-based message exchange format [1]. We
adopt a similar approach (described below) in order
to demonstrate interoperability between SSFNet and
GloMoSim. Our main objective is to create a scenario
where we have mixed-mode traffic between a wired
network (modeled using SSFNet) and a wireless net-
work (modeled using GloMoSim).

In order to interoperate between the above men-
tioned simulators, our network configuration includes
wired domains simulated by SSFNet and wireless do-
mains simulated by GloMoSim. The SSFNet part of
the network will view the wireless GloMoSim domains
as a single node network, which is the fake source and
sink for all traffic originating and destined respectively
to the latter. Similarly, for GloMoSim, the SSFNet
domains are represented by a single (fake) source and
sink node. At each freeze interval, the information
about delay-drop rates (just as in Genesis interoper-
ability interface for ns2 and SSFNet) is exchanged for
inter-domain traffic. This information about flows is
exchanged only for cut-flows (as in ns-ssfnet interop-
erability). Based on this information and local con-
ditions in the domain, a decision whether to go back
or not is made by each of the domains (at each freeze
interval). If all (wired and wireless) domains are con-
vergent and can go ahead, the exchanged delay-drop

o;D

Ll Bardar Far T

Figure 10: General Description of Domain D and its
8 neighbors

information is used by the the respective proxy sources
to generate packets in the next freeze interval.

4 Experiments

In order to test the performance of the above de-
vised interface, we configured a simple network topol-
ogy. Initially, we considered a network with 5400
nodes over an area of 360,000 square meters. How-
ever, the sequential simulation ran out of memory for
the above. Thus, we redesigned the network configu-
ration to consist of 900 nodes over a geographical area
of 225,000 square-meters and perimeter of 6000 me-
ters (that is, it is a square of 1500 meters by 1500 me-
ters). We assumed that the mobile nodes moved with
a velocity of 50m/hour. The number of nodes which
are mobile per second is 15 (for every node that left
the domain, there would be a node that entered the
domain from the corresponding opposite boundary).
Figure 11 shows a sample scenario. Also for these ex-
periments, we used CBR traffic. About 80 percent
of the traffic was intra-domain, that is between nodes
within a domain, and 20 percent of the traffic was

inter-domain. This was done in order to reduce cost
of synchronization between domains.
4.1 Distributed Simulation Experiments

F
] ;
: W
¢ '
2
.
o 4 '
.L. : 0 ._7 ' 1__’
. » .
.
< " L] ..h; 1.’. L] L] L] .< 4
[[I . ’
o
L8 d o "] -
' [] \I“, L] 1] d 1]
’ .
(=] s ; ' a.?
i . [] .V. L] " M 1}/ "
4 R
| .
o7

900 sode configuration,
15 mobile nodes/domain,
o - mohile node

o stationary tode
=3 . diection of
ity

Figure 11: Sample network configuration showing 1
domain of the topology

We conducted tests for 3 different sizes of domains
- 1 domain (vanilla GloMoSim), 4 domains and 16 do-
mains. The simulation time was 200secs with a freeze
interval of 20secs. The intensity of flows shown in the
table 1 represents the time interval in seconds between
the transmission of 2 packets. The graph in Figure 12
shows the results generated by these experiments. All
of these experiments were carried out on a cluster of
IBM Netfinity processors.

Figure 13, shows the speed-up for 4 and 16 domains
respectively. The Genesis interface for distributed
wireless simulations outperformed the sequential sim-
ulation to produce a speed-up of 4.2 and 14.7 for 4
and 16 domains respectively.

To measure the accuracy of the simulation runs,
the flows of the sequential runs were compared with
those of the parallel runs. We monitored the flow
statistics of the distributed simulations with that of
the sequential simulation. Since the number of nodes

Timing for 900-node wireless network simulations

Average runtimeise

1 4 18

Number of Domains(simulators)

020 sec freeze interval

Figure 12: Real-Time of Simulation vs Domain Size

Number of Domains 1 4 16

Total number of flows/domain 1120 280 70
No. of internal flows/domain 1120 224 56
No. of External flows/domain 1120 56 14
Max./Min. Intensity of flows(s) 1/98 1/98 | 1/98
Avg. Time(s) | 13827.6 | 3287.5 | 943.6

Speedup 1 4.2 | 14.7

Table 1: Measurements results on IBM Netfinities
(times are in seconds)

in the closure of any domain is always small (these
nodes are the ones which cause the inconsistency in
the simulation), the differences in these statistics was
observed due to these nodes was minimal too. Com-
parison of the throughput, drop-rates and delays in-
dicated that the values of the distributed simulation
differed by about 4.3 percent when compared to the
corresponding of the sequential simulation as shown
in table 2.

4.2 Experiments on Interoperability with
SSFNet

To demonstrate interoperability between wired and
wireless domains, we used the network configuration
shown in Figure 14 that consists of 4 domains, each
containing 4 nodes. Three of these domains are wired,
simulated by SSFNet; while one domain contains wire-
less nodes, simulated by GloMoSim.

In order to demonstrate interoperability, we had
2 TCP flows, one each from a node in the SSFNet
domain to the GloMoSim domain and vice-versa (as
shown in Figure 14). For each flow, we short-cut it to

Speed-up for 900 node wireless simulations

o

= e
e

Humber of Domains

= k3 = O OO

Speed-up | —— 20 sec freeze interval

Figure 13: Speed-up vs Domain Size

Number of Domains 1 4

Avg. Throughput(bits/s) 2133 | 2183.7
Avg. Delays(s) | 0.00273 | 0.00281

Avg % of packets dropped 2.10 2.19

Table 2: Comparison of parameters of sequential and
parallel simulations to demonstrate faithfulness of dis-
tributed simulations

the proxy sink in the respective domain. During the
freeze-interval, delay and drop information of these
flows is communicated to the domain in which the des-
tination domain lies. Each domain also makes a de-
cision to go-ahead or back based on past and present
parameters. Once all the domains can go-ahead, in the
next iteration, the fake source in the destination do-
main makes use of this information to generate packets
to the destination node.

For the described configuration, the average time
the simulation took to execute for a stand-alone Glo-
MoSim configuration was 10.52 seconds while the cor-
responding value for the SSFNet configuration was
8.43 seconds. The time of execution for the ineropear-
able configuration was 12.38 seconds as shown in ta-
ble 3. Thus, the time of execution for the stand-alone
configurations is comparable to that of the interoper-
able one. The latter result is greater because of the
time taken for synchronization between the 2 different
network simulators (this cost would be minimum when
the configuration is scaled). We believe that equally
good results would be achieved if the network is scaled
in terms of the number of domains, number of flows

aFNet Domvan 3R et Domain

33 et Domain

GlaMadim Domain

@ - Wiseless Hods === - Actoal Flow
@ -Whsdbodk e Cut-Flow
© - Procylouee ik - -FakeFlow

Figure 14: Network Topology for Interoperability of
GloMoSim with SSFNet

Network Type | SSFNet | GloMoSim

SSFNet+GloMoSim

Avg. Time(s) 8.43 10.52

12.38

Table 3: Measurements results for interoperability on
IBM Netfinities (times are in seconds)

and number of nodes per domain. The time of simu-
lation execution is in direct relation to the latter three
parameters.

5 Conclusion and Future Work

In this paper we present a novel approach to large
scale wireless network simulation, which combines
simulations of distributed domains and models it as
a single system. The model is run until it converges
to the fixed point solutions so each domain produces
the required outputs based on the received inputs.
Each model is fed by the data produced by the simu-
lation (of the neighboring domains) and sends its out-
put to other simulations (domains). This approach
extends the Genesis technique to wireless simulations
using peer-to-peer connections between neighboring
domains. Using this approach, we observe a super-

linear speed up of a wireless network simulation on
distributed computer architecture.

Some of the directions to improve/extend the cur-
rent implementation are as follows:

e currently, this interface supports only for CSMA-
CD protocol. We would like to extend it to
802.11-based MAC protocols,

e extension of the interface to support mobility
types other than “mobility-trace”,

e conducting extensive tests for interoperability be-
tween wireless domains and wired domains on
the lines of the ones conducted by the GloMoSim
group at UCLA,

e optimization of the peer-to-peer protocol used
for communication between neighboring domains.
This would help improve the speed-up of the sim-
ulation.

6 User manual
6.1 Overview of changes made to Glo-
MoSim
The following section gives the syntax of the com-
mands added to GloMoSim and also describes the
high-level algorithms used to implement the above de-
scribed components.

6.1.1 Freeze Scheduler

Freezes are used to pause the simulation at the points
of time which are assigned by users in the Glo-
MoSim network configuration file config.in. During
the freezed time, the method glomofreeze() in file glo-
mofreeze.pc is called. The method glomofreeze() is the
right place for the GloMoSim users to perform their
own functions. When return from the glomofreeze(),
the simulation will resume. In the Genesis interface,
we perform/ call all the other components from this
method. Thus, this method is the core of all the
changes made by us.

The syntax of the freeze command in the config.in
file is as follows:

FREEZE-TIME [freeze_time]S
FREEZE-INTERVAL [intervallS
NO-OF-FREEZES [no_of_freezes]

The algorithm for the freeze scheduler is described
as follows:

static int i;
if (i $< no_of_freezes)

{
print ("Simulation frozen’’);
//...call all other components

1++;

6.1.2 Domain Deifnition

We divide the network into domains as described
above. This divison of the network configuration into
the respective domain components is a function of the
geographical area the domain covers. Only one do-
main is active on each processor. In our extension to
GloMoSim, we specify all the domains in a file called
“domain.input”. The active domain is specified in the
config.in file. This file and the active domain informa-
tion is parsed along with the other network configu-
ration parameters in “glomo.pc”. For each active do-
main, we maintain a list of which nodes is active in it.
This list is created duting initialization by comparing
the location of the node with the domain boundaries.

The syntax for the domain definition file do-
main.input is as follows:

[domain_id] [start_x] [start_y] [end_x] [end_y]

The syntax for specifying the active domain is as
follows:

NO-OF-DOMAINS [no_of_domains]
DOMAIN-PLACEMENT-FILE ./domain.input

ACTIVE-DOMAIN [id]

ACTIVE-DOMAIN-START-X [start_x]
ACTIVE-DOMAIN-START-Y [start_y]
ACTIVE-DOMAIN-END-X [end_x]
ACTIVE-DOMAIN-END-Y [end_y]

Please note that the start and end x and y values
in the domain.input and the config.in files respectively
must match.

The algorithm for domain definition is as follows:

parse config.in to determine the number of domains
parse domain.input to determine the domain boundaries

parse config.in for active domain information
for each node in the network do

{

compare node location with domain boundaries
if node falls within boundary, mark it acive

}

6.1.3 Mobility of nodes

As described above, in the Genesis extension to Glo-
MoSim, we concentrate on “mobility-trace” as it al-
lows us to control the mobility of the nodes. In this
case, the mobility of nodes is be specified in the con-
figuration file “mobility.in”. We take care of a total of
6 possibilities when a mobile node sends or receives a
message from the nodes in the network - 3 for when
a node sends a message and move before an event is
scheduled or during the event or after the event is
scheduled to that node. Similarly there are 3 possi-
bilities for when a node receives messages - a node
receives a message and move before an event is sched-
uled for it or during the event or after the event is
scheduled for it. However, instead of taking care of
these “mobile” nodes at run-time, we can modify the
scheduler during pre-simulation. Although such pre-
computing can b

In the file mobility.in, the user specifies the speed,
start and destination locations of the nodes in a con-
figuration file. Knowing the above parameters, we can
calculate the time and location (x, y) when the node
crosses the domain boundary (using the equation of
the straight line - we assume that nodes always travel
along a straight line). Using this information we mod-
ify the behavior of the scheduler to allow nodes to
transmit data only when it is in the active domain.
This gives rise to three cases:

a. The source and destination positions of the node
both don’t belong to active domain. In this case we
calculate the times when the node enters and leaves
the active domain. Based on these times, we schedule
the time when the node can transmit packets.

b. The source position is in active domain while the
destination location is not. In this case, we need to
calculate the time when the node leaves of the active
domain.

c. The source location is not in the active domain
while the destination position is in the active domain.
Thus, in this case we need to calculate the time when
the node enters the active domain.

Al of the above is done in a
method GLOMO_MobilityCalculateTime() in the file
“mobility_trace.pc” for each mobile node. The crux of
this method is as follows:

GLOMO_MobilityCalculateTime()
{

-parse information of mobile node(mobility.in)
-check for the 3 cases (a,b,c) above based on

the source and destination positon of the
node

-if any of the 3 cases are satisfied, based
on the source and destination location and
speed of node, calculate the slope of the
straight line traveresed by the node. This
gives the equation of the line traversed
by the node.

-calculate the time(s) when the node
crosses the boundary.

-use this time to reschedule the
transmission/receiving time for that
node

6.1.4 Conflict detection and resolution

In the Genesis extension to GloMoSim, we take care of
the 2 cases for conflicts described above. This is done
in the Glomo_DetectConflict() in glomofreeze.pc. This
function is called once the exchange of the log infor-
mation between atmost 8 neighboring domains takes
place. This function is called for each log of informa-
tion received. The algorithm is as follows:

GLOMO_DetectConflict()
{
- for each neighboring domain do
{
-receive the log of information for the
last iteration.
-compare the node_id of the received log
with each node_id of the domains own
log of nodes in the closure

-if the node_id’s match, compare the start/
end times of transmission for the 2 nodes.

-if these times do not match there is no
conflict and go on to next log of data.
-else check for case 1.1, 1.2, 2.1 & 2.2
described above (basically here the mode

of the node - transmitting/receiving - is

checked for a conflict in the respective
domain)
if a match is found
{
-set the go-back flag to 1
-resolve the conflict by toggling the
mode of conflicting node in the
schedule of events(so that in the
goback this node behaves correctly)

6.1.5 Genesis data exchange model for dis-
tributed wireless simulations

We use a peer-to-peer data-exchange model and also
a farmer-worker architecture in the Genesis extension
to GloMoSim.

Peer-to-Peer data exchange

As described above, each domain has a maximum of
eight neighbors. Thus, at each freeze, each domain will
communicate to at most 8 neighbors. These changes
can be found in communication.c and glomofreeze.pc.
The algorithm for peer-to-peer data exchange is as
follows:

Each domain does the following at the beginning

of simulation

{

establish connections via sockets to each of its

neighboring domains.

X
At each freeze, each domain does the following
{
- send up to 8 messages to its neighboring
domains (as each domain has at most 8
neighbors) .
- receive logs from all of its neighbors
and compare the received data with the
corresponding logged data.
- make a decision to go-back/go-ahead
- if domain needs to go-back, it does so
- if it can go-ahead, it sends a sync to
the farmer indicating the same after which
it waits for signal from farmer to go-ahead.
}
At end of simulation
{
close all socket connections and exit
X

Farmer-Worker Architecture In order for workers
to prevent cascading conflicts (described above) and
also to synchronize between freezes - that is all work-
ers to be in the same iteration - we implement a server
(farmer). This implementation can be found in com-
munication_farmer.c. This implementation is similar
to the Genesis extensions for UDP and TCP on NS
and SSFNet (except the need for broadcasting a re-
check signal used to prevent cascading conflicts).

The algorithm for the farmer-worker architecture is
af follows:

The farmer does the following till the end
of simulation:
-Wait for a go-ahead/go-back signal from

all workers(domains)

-If any domain needs to go-back , the farmer
sends a recheck broadcast to all the domains
along with the domain id’s of the domains
that need to go-back.

-Else the farmer busy waits until all workers
can go-ahead.

-Only when all workers can go-ahead, the
farmer broadcasts a sync message to all
workers to simulate the next interval.

6.1.6 Checkpointing

We use diskless checkpointing as described above in
order to go-back and resimulate a freeze interval.
This code can be found in glomofreeze.pc. The al-
gorithm (implementation) for checkpointing is exactly
the same as that the Genesis extension to NS and
SSFNet. The documentation for the same can be
found elsewhere.
6.2 Location of source code and docu-
mentation

The additions and modifications to GloMoSim for
GENESIS have been done on FreeBSD IBM Netfinity
machines. This section gives the paths for the source
code and the documentation. All the source code and
documentation is under madnak/projects under vari-
ous sub-directories specified below.

Paths on FreeBSD:

Source code:

o /glomosim-2.0/glomosim,
e /glomosim-with-interoperability
Scripts

e Distributed Simulation Experiments:
madnak/projects/glomosim-2.0/glomosim/tests

Configuration | Subdirectory

900 nodes, 1 domain 1-domain
900 nodes, 4 domains 4-domain
900 nodes, 16 domains 16-domain

Table 4: Scripts and their directories

Below every subdirectory for the configura-
tion there are scripts for starting the con-
figuration of the respective distributed sim-
ulation, for example, under tests/4-domain,
there is 4-domain.sh, which starts the sim-
ulation of the 4 domains. The scripts to

start the 4-domain server and 16-domain server
is present in 4-domain/4procserver.sh and 16-
domain/16proc_server.sh.

Experiments with Interoperability:
/glomosim-with-interoperability

The test scripts for interoperability are present
under

/glomosim-with-interoperability /glomosim /bin.

Documentation:
/documentation/ms-report.tex,
/documentation/ms-report.ps,
/documentation/ms-report.pdf

References

[1]

[3]

Szymanski B., Gu Q., Liu Y, “Time-Network Par-
titioning for Large-Scale Parallel Network Simu-
lation under SSFNet,” to appear in Proc. Applied
Telecommunication Symposium, SCS Press (to be
presented at ATS2002, April 2002).

Carothers C., Szymanski B., “Linux Support
for Transparent Checkpointing of Multithreaded
Programs,” to appear in Dr. Dobbs Journal, Au-
gust 2002.

M. Gerla and J.T.-C.Tsai, “Multicluster, mobile,
multimedia radio network,” ACM/Baltzer Jour-
nal of Wireless Networks, vol. 1, (no 3) 1995,
p.244-265.

Ye, T., D. Harrison, B. Mo, S. Kalyanaraman,
B. Szymanski,K. Vastola, B. Sikdar, and H.
Kaur, “Traffic Management and Network Con-
trol Using Collaborative On-line Simulation,”
Proc. International Conference on Communica-
tion, ICC2001, 2001.

Law, L. A, and M. G. McComas, “Simulation
Software for Communication Networks: the State
of the Art,” TEEE Communication Magazine, vol.
32, pp- 44-50, 1994.

Fujimoto, R.M., “Parallel Discrete Event Simula-
tion,” Communications of the ACM, vol. 33, pp.
31-53, Oct. 1990.

Szymanski, B., Y. Liu, A. Sastry, and K. Mad-
nani, “Real-Time On-Line Network Simulation,”
Proc. 5th IEEE International Workshop on Dis-
tributed Simulation and Real-Time Applications
DS-RT 2001, August 13-15, 2001, IEEE Com-
puter Society Press, Los Alamitos, CA, 2001, pp.
22-29.

[8]

[9]

[10]

Szymanski, B., A. Saifee, A. Sastry, Y. Liu and
K. Madnani, “Genesis: A System for Large-scale
Parallel Network Simulation,” Workshop pf Par-
allel Network Simulation, Washington D.C., May
2002.

Xiang Zeng, Rajive Bagrodia, Mario Gerla, ” Glo-
MoSim: a Library for Parallel Simulation of
Large-scale Wireless Networks,” Proceedings of
the 12th Workshop on Parallel and Distributed
Simulations, May 26-29, 1998, Banff, Alberta,
Canada.

Zhang, J. -F., J. Jiang and B. K. Szymanski,“A
Distributed Simulator for Large-Scale Networks
with On-Line Collaborative Simulators,” Proc.
European Multisimulation Conference, vol. 11, pp.
146-150, Society for Computer Simulation Press,
1999.

GloMoSim website:
"http://pcl.cs.ucla.edu/projects/glomosim/”

