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ABSTRACT

We propose a new approach to enable synchronous parallel computations adapt
to the changing computing environment in networks of nondedicated workstations.
Our approach treats the temporary unavailability of a workstation as a transient
failure and seeks to reduce its impact on program execution time. It relies on
recovering the computations of a failed process by replicating its computations on
another available workstation and eventual migration of the recovered process to a
new available workstation. Replication of computations is made possible by eagerly
replicating the computation state of each process on a backup process. We refer to
our approach as the adaptive replication scheme.

We analyze the performance of parallel computations using the adaptive repli-
cation scheme for exponentially distributed available and nonavailable periods of
workstations and outline the conditions under which the scheme is scalable.

The adaptive replication scheme is based on the Bulk-Synchronous Parallel
(BSP) model, which is a universal abstraction of a parallel computer. We explore
BSP based parallel processing on networks of workstations. Using several applica-
tions, we demonstrate that the BSP model can be used to build efficient implemen-
tations of parallel algorithms on networks of workstations.

We designed and implemented the adaptive replication scheme on top of a
library for the BSP model. We describe adaptive parallel extensions we made to the
library to facilitate the design of our scheme. We present a protocol for replication
of computation state and recovery of failed processes. To insulate the application
programs from the implementation, we designed the adaptive replication scheme
in layers. We describe the design of the layers and present their implementation.
Finally we present the results of application of the adaptive replication scheme to

parallel applications executing on a network of nondedicated workstations.

xiv



CHAPTER 1
INTRODUCTION

Recent advances in computers and networking are redefining the way we use com-
puters. Advances in the processing power have brought vast amounts of computing
power within the reach of computer users. For a majority of users whose computing
needs are small or who need this vast computing power only occasionally, much of
this computing power is wasted. At the same time, there exist other users whose
computing needs are so large that can only be met with a number of computers
working together. Traditionally, solving such large problems required the use of
special purpose parallel computers that employed custom designed processors and
interconnection networks. However, recent advances in networking technology are
allowing the use of computers connected together through local area networks—
networks of workstations (NOWs)—to be treated as parallel computers. We can
therefore use the computing power of underutilized computers in NOWs to per-
form useful computations. In this chapter, we identify the trends that are shaping
the future of parallel computing and discuss approaches to utilize unused capacity
of computers connected through local and wide area networks to perform parallel
computations.

Processing power of computers has been growing at a rapid rate. Current work-
stations' have powerful processors that can execute up to several million floating
point operations per second. This large computing power is available at a rela-
tively low cost. Additionally, current workstations have large memories allowing for
solution of large problems.

Local area networks, which were originally introduced to enable sharing of re-
sources, have grown in size and speed. Computer networks comprising workstations
and personal computers, ranging up to several hundreds, have become common in

business, research and educational establishments. Thus local area networks (LANs)

'We use the term workstation to refer to any computer system designed for a desktop, as
done in [3]. Current personal computers are nearly indistinguishable from workstations in their
capabilities.



provide us with access to a large number of workstations. Recent advances in net-
working technology are making fast communication in LANs possible with the use of
switched networks that allow bandwidth to scale with the number of processors and
low-overhead protocols [3]. Networks of workstations are thus becoming attractive
for parallel computations.

With the standardization of programming languages and tools, parallel pro-
gramming is becoming more general purpose. Message passing libraries such as
PVM [69] and MPI [50] allow for portable parallel programs that can run on paral-
lel computers as well as networks of workstations. In recent years, the SPMD (Single
Program Multiple Data) paradigm has become the favorite programming paradigm
of the parallel processing community. SPMD paradigm allows the programmer flex-
ibility in structuring parallel applications with varying degrees of granularity. This
shift toward SPMD programming has enabled networks of workstations to be used
as parallel computers in their own right. Current trends in parallel architectures
(the IBM SP2, for example) point to use of general purpose workstations connected
through dedicated high-bandwidth and low-latency networks. These trends further
narrow the gap between parallel computers and networks of workstations. As scien-
tists and engineers tackle larger and larger problems, parallelizing those applications
results in large grain parallel computations. A large grain size helps to mask the
relatively high latency of networks of workstations.

Even though special purpose parallel computers outperform networks of work-
stations in parallel efficiency, networks of workstations have certain advantages over
special purpose parallel computers. As a result of economies of scale, general pur-
pose computers are relatively inexpensive. Special purpose parallel machines are
a niche market and lag the workstations in terms of price-performance. Further,
the workstations have access to a large range of software products that need to be
ported or customized to run efficiently on the special purpose parallel computers.
Perhaps the most important factor is the wide availability of workstations. Almost
every programmer has a workstation or a personal computer on her? desktop con-

nected to a network. It is desirable to use the vast computing power of networks

2The words his and her, wherever they appear in this thesis, are used to indicate gender-neutral
personal pronouns.



of workstations for parallel computing. The NOW project [3] at the University of
California at Berkeley aims to demonstrate the use of networks of workstations as
the primary computing infrastructure for tasks ranging from interactive to demand-
ing sequential and parallel applications. The project involves building a 100-node
network of workstations to demonstrate the capabilities of NOWs for sequential and
parallel computing.

The local area networks are connected to form wide area networks to facilitate
exchange of data. Millions of computers worldwide are now connected to one an-
other through a hierarchy of interconnections. Thus we now have a large number of
machines connected together that can be used for parallel and distributed computa-
tions. Even though computers have become more and more reliable over the years,
when parallel and distributed applications execute on machines that are not owned
by the user, the availability of the computing power for an application is often unpre-
dictable and varying. The unreliability may emanate from link failures or from the
usage patterns in force. Whatever may be the source, the unreliability of available
computing power affects the performance of parallel programs adversely. In such
situations, it is important for the parallel applications to adjust to the dynamically
changing computing environment to maintain acceptable performance. We refer to
the ability of a parallel application to dynamically adjust to the changing computing

environment as adaptive parallelism.

1.1 Environments Requiring Adaptive Parallelism

In this section, we consider a few scenarios that require applications to be

adaptive to their environments to maintain acceptable performance.

1.1.1 Networks of Nondedicated Workstations

The typical computing facility at a business or a research institution is a net-
work of workstations. The workstations are owned by individual users who use the
workstations for a wide variety of tasks ranging from simple editing of files to com-
plex modeling and simulations that require sophisticated graphics and computations.

The workstations are powerful enough to handle the occasional compute-intensive



tasks, but are underutilized at other times. Further, the computing requirements
vary among users; while most users have modest computing requirements, other
users have need for computing power beyond the capacity of their own worksta-
tions. The computing power from the underutilized workstations can be better
utilized to meet the computing demands of other users. Several studies have shown
that a large number of workstations in a network are idle at any given time. If
this idle computing power can be utilized to perform useful jobs, then considerable
computing power will be available to us at low cost. The feasibility of utilizing
the idle computing power depends on several factors such as the properties of the
communication medium and the statistical characteristics of the use of workstations.

There have been systems that attempt to make use of idle time on worksta-
tions. One of the most successful systems for using idle workstations for computa-
tions is the Condor distributed processing system [44] developed at the University of
Wisconsin. Condor tries to utilize idle workstations by scheduling sequential jobs on
them. Piranha [16] is another system for adaptive parallelism and caters to parallel
applications with independent tasks that can be scheduled independently of other
tasks. One concern in such systems is that the “owner” of a machine should not see
any degradation in performance due to the background programs. This concern is
usually addressed by requiring that the additional computation be suspended when
user activity is detected. The background computation is resumed when user activ-
ity ends and the processor is idle. Since these processors are available for use only
when they are idle and not available at other times, they are referred to as transient
processors [37). We explore adaptive computations on nondedicated networks of

workstations in the subsequent chapters.

1.1.2 The Internet

Millions of computers worldwide are now connected to one another through a
hierarchy of interconnections. Thus we now have a large number of machines con-
nected together that can be used for parallel and distributed computations. Several
researchers are trying to use the Internet for parallel computations [27]. A project

to enumerate twin primes using computers at several sites is underway at Rensse-



laer by Fry et al [28]. Even though currently available wide area networks operate
at speeds of a few megabits per second, efforts to develop wide area networks that
operate at several gigabits per second are underway. The MAGIC Gigabit Testbed
and MAGIC II [17, 34] projects with participating organizations from government,
industry and academia are engaged in developing high speed wide area networks.
With high speed wide area networks, it is possible to harness this vast computing
resource for parallel and distributed computing. However, computers are connected
loosely over a wide area network, and the connections are broken frequently thus
isolating some of the participating machines from the rest. Parallel and distributed
computing over the Internet therefore requires the applications to adapt to the fre-

quent link failures.

1.2 Parallel Computations on Transient Processors

Workstations that are used in a nondedicated manner tend to be either unreli-
able or available only part of the time and therefore can be characterized as transient
processors. Parallel computation of a task requires that the task be divided into
subtasks, which are then executed on a set of processors in parallel. We refer to the
subtasks as components and the processes that execute the subtask as component
processes of the parallel computation. Each component of the parallel application is
assigned to a processor. A component process is scheduled when its host processor

is idle and is suspended when the host processor is busy.

1.2.1 Impact of Transient Processors on Program Execution Time
Kleinrock and Korfhage [37] analyzed the impact of transient processors on
program execution time. They analyzed the probability density of a program’s
finishing time on both single and multiple processors for random values of available
and nonavailable periods from a general distribution. They model a program as
consisting of a number of stages, each of which must be completed before the start
of the next. Each stage represents a deterministic amount of work. They make
some simplifying assumptions. Their analysis ignores overhead that occurs in a real

system such as communication and processing delays and thus their analysis yields



an optimistic estimate of the program performance. They obtain expressions for the
finishing time density of the program under the assumption that the duration of a
stage is large compared to the mean lengths of available and nonavailable periods.
They try to lessen the impact of variance in processor available and nonavailable
periods by smoothing (i.e., by mapping large units of computation). Smoothing
works well with exponential distribution, in which the frequency of long periods
quickly tends to zero. Assuming smoothing for a general distribution, they found
that the mean value of finishing time was proportional to the inverse of the fraction
of processor idle time. They note that when the duration of a stage is not large
compared to the mean lengths of the available and nonavailable periods, the mean
value of the finishing time remains the same but the variance increases.

Recent research on statistical properties of host load in distributed environ-
ments by Dinda et al [24] indicates that host load can vary drastically and the ratio
of maximum to mean values can be very high. Their traces of host load exhibit
a high degree of self-similarity indicating that load varies in complex ways in all
time scales. Their measurements demonstrate that the assumption of exponential
distribution of host available and nonavailable periods is not valid in many envi-
ronments. Based on their measurements, they conclude that smoothing may not
be very effective since variance may not decline with increasing smoothing intervals
as quickly as expected. In view of their observations, for the results obtained by
Kleinrock et al for the finishing time of a program on transient processors to be
valid, the duration of the program stages need to be extremely large compared to
the maximum lengths of available and nonavailable periods. This requirement can
not be satisfied for many practical problems because of two reasons. First, large
problems require several hundreds or thousands of synchronized computation steps
to arrive at the solution. As a result, each computation step has to be short in
order for the overall computation to finish in a reasonable time. For example, sci-
entific computations like plasma simulation require a large number of iterations to
reach steady state, with each iteration followed by synchronization necessitated by
sharing of computation results by the processors. Numerical computations, like-

wise, require thousands of iterations with associated synchronization to converge



to a solution. Second reason is that the size of the problem that can be solved is
often limited by the memory available to the computation on each processor and
this limits the amount of computation in any stage. In chapter 7, we discuss a graph
search problem that is limited by the memory available on each processor for the
adjacency matrix partition. Due to the short duration computation steps in the
applications we consider, smoothing to reduce the variance in the finishing time of
the application is not an option. Instead our approach is based on migrating tasks
from unavailable to available machines. In a synchronous computation, execution
time of a computation step is the maximum of the execution times of the step on
the participating processors. Frequently synchronizing parallel applications, due to
the short duration of each computation step and the large number of computation
steps in the application, are severely impacted by the nonavailability of one or more
participating host machines. Our goal is to reduce overall finishing time of fre-
quently synchronizing parallel applications executing on transient processors using

a scalable adaptive parallelism scheme.

1.3 The Bulk-Synchronous Parallel Model
The Bulk-Synchronous Parallel (BSP) model [70], introduced by Leslie Valiant,

is a universal abstraction of parallel machines which can be used to design portable
parallel software. The model was expected to fulfill two purposes: the model should
lend itself to theoretical analysis and it should be possible to implement the model
efficiently. The model is expected to fill the gap between theory and practice, thereby
enabling the development of general purpose, architecture independent parallel pro-
grams. The model offers a framework within which we can unify the various classes
of parallel computers — distributed memory architectures, shared memory multi-
processors and networks of workstations.

The model has been attracting attention from a number of researchers. Bis-
seling and McColl [9] investigate the efficiency of several computations in linear
algebra that include iterative solution of sparse linear systems, partial differential
equations, etc. Their analysis suggests that knowledge about the underlying struc-

ture of the problem is important to achieving efficient parallel computations on a



BSP computer.

Several people are working on providing suitable environments for BSP pro-
gramming. Miller developed the Oxford BSP library [48, 49|, a simple yet robust
library for BSP programming. The library uses an SPMD model with static al-
location of processors. BSPlib [25] is another programming library based on the
BSP model developed by the Oxford Parallel group. BSPlib is a part of the Ox-
ford BSP toolset which includes profiling tools and implementations of BSPlib for
several machine architectures. Like the Oxford BSP library, the BSPIlib supports
SPMD parallelism and is based on efficient one-sided communications. H-BSP [18]
is a general purpose parallel computing system, currently under development at
Harvard university. The system consists of (a) a high level programming language
BSP-L, (b) a collection of compiler tools (optimizers, code generators, etc.) which
generate efficient code for a large range of parallel computers based on the parame-
ters of the model, and (c) a collection of library operations for communication and
synchronization for a runtime system.

By expressing the cost of an algorithm in terms of a few parameters, The BSP
model allows us to determine the cost of an algorithm and predict its performance
on any parallel architecture for which the values of the parameters are known. Thus
the BSP model enables predictable parallel computing. A more detailed description

of the model is given in Section 3.1.

1.4 Research Objectives and Approach

We are now ready to specify the objectives of our research. Stated broadly, our
primary objective is to investigate techniques and algorithms that enable parallel ap-
plications to adapt to the changing computing environment to maintain performance
and to make use of the available computing resources efficiently. The techniques to
make the parallel applications adaptive should be general purpose and independent
of any machine architecture. Further, we require that the techniques and algorithms
we develop be scalable.

Towards this end, our approach to parallel processing is based on the Bulk-

Synchronous Parallel model described in the previous section. Thus an investigation



of BSP-based parallel processing forms the first step in our research. Our approach
to adaptive parallel computations is described in Section 1.4.2.

Since different computing environments pose different challenges, a successful
approach to solving the problem requires exploring strategies that fit each specific
environment. With this objective in mind, we wish to investigate the specific prob-
lem of utilizing idle time on workstations for parallel computations. As seen in the
previous section, there have been some efforts to make use of idle computing power
of a network of workstations. However, all systems known to the author, with the
exception of Stardust [12], focus on either sequential jobs (Condor [44]) or parallel
applications with independent tasks that synchronize infrequently (Piranha [16]).
Stardust uses an approach similar to ours. Our system differs from Stardust in how
quickly the additional computation is suspended upon detecting user activity. These
systems will be discussed in more detail in chapter 2. In our research, we aim to
explore the most challenging case of frequently synchronizing parallel applications
on transient processors.

In general, we subscribe to the notion that a user of a workstation should
not be inconvenienced by the execution of additional background jobs on his/her
workstation. Hence, in our approach, we require that any background parallel com-
putations be suspended or preempted from a workstation when the user returns. On
the other hand, we are open to using a few cycles to improve the adaptive behavior
of our algorithms, if it can be done without putting too much load on the user’s
machine. We can now describe our approach to adaptive parallel computations on

networks of workstations.

1.4.1 Our Approach to Adaptive Parallel Computations on NOWs
Towards the goal of reducing the impact of the unavailability of a processor
on the execution time of the application, we treat the unavailability of a processor
as a failure. Specifically, a transition of the host processor from an available to a
nonavailable state will be referred to as a transient failure of the component process.
The effect of a transient failure is to delay the parallel application. Conversely, a

transition of the host processor from a nonavailable to an available state will be
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treated as recovery of the suspended component process. In the following discussion,
we assume that transient failures of processors are independent events.

In general, there are two ways to deal with failures in any system: prevention
(or avoidance) and recovery. Based on this general principle, we identify three
strategies to deal with transient failures. An analysis of these strategies is the first
part of our investigation.

Our first approach to reduce the impact of transient processor failures is based
on redundancy. Given the probability of failure (nonavailability) of a processor, the
probability of two processors failing together is much smaller. Therefore, we can re-
duce the probability of failure of a component by replicating the component on more
than one processor. We refer to the processes as replicated processes. Our justifica-
tion to considering the idea of replicating components is based on our assumption
that the idle time on a processor is free for use and therefore, costs nothing.

The second approach is based on the concept of recovery from failures. Specif-
ically, we would like to recover the computations of the failed process in another
component process on a different processor. We further assume that at least one
of the component processes is immune to the transient processor failures. This as-
sumption is easily satisfied, since it is possible to place at least one component of
the parallel computation on a workstation owned by the user. We refer to this pro-
cess as the master process. The computations of the failed component process can
be recovered by sending the computation state of the failed process to the master
process. The master process can use this data to recreate the computation state of
the failed process and execute its computations. This approach requires the services
of the master process for each process that failed. Consequently, the master process
can become a bottleneck in case of multiple transient failures.

Our third approach tries to deal with transient failures preventively. This
is done by communicating the state of each component process to a neighbor at
the beginning of the computation step. Each component process will therefore be
capable of recovering the computations of the sender process in the event of failure
of the sender process. Recovery of computations in this approach is distributed

among the components.
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Replication of | Replication || Migration
Scheme Computations of Data of Processes
Straightforward execution No No No
Full process replication Eager Lazy Not needed
Standard failure recovery Lazy Lazy Needed
Adaptive replication Lazy Eager Needed

Table 1.1: Classification of schemes for transient failure recovery using
replication of data and computations and migration of pro-
cesses

These approaches try to mask or reduce the impact of processor state transi-
tions by replicating processes, computations and/or data to varying degrees. They
can be classified based on the eagerness with which they replicate processes, com-
putations and/or data. Table 1.1 shows the different approaches.

The straightforward execution simply delays the completion of the computa-
tional step until all participating processes finish their computation, even if some of
the processors change their state from available to nonavailable. The full replica-
tion scheme eagerly replicates computations by actively replicating each component
process on more than one processor, thereby increasing the chances of at least one
of the replicas finishing the computation successfully. This scheme uses (lazy) data
replication to enable replicas that have fallen behind to catch up with the leading
process that has finished its computation. The third scheme is based on a failure
recovery strategy. There is no replication of processes. In the event of failure, the
failing process sends its computation state to a reliable process, which replicates
the computations of the failed process after reconstructing its state. In the adaptive
replication scheme, the computation state is eagerly replicated on a neighbor pro-
cess at the beginning of a computation step. In the event of a failure of the sender
process, the receiver process uses the state data it received to replicate the com-
putations of the failed process. We analyze these approaches in more detail in the
following sections, and compare them by analyzing the finishing time of a parallel

program under each approach.
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1.4.2 Adaptive Parallel Computations in the BSP Model

Our view of parallel computation is based on the Bulk-Synchronous Parallel
Model [70]. A brief introduction to the BSP model is given in section 1.3. A more
detailed description of the model is given in 3.1. Computation in the BSP model
is a sequence of parallel supersteps consisting of computation and communication
operations. All the processors participating in the parallel computation synchronize
at the end of each superstep. The BSP model has been used to implement a wide
variety of scientific applications including numerical algorithms [9], combinatorial
algorithms [30] and several other applications [13]. We used the model to build an
efficient implementation of plasma simulation on a network of workstations [54] as
described in chapter 3. By basing our approach on the BSP model, we are able to
analyze the adaptive replication scheme and describe its performance. Chapter 4
presents an analysis of the adaptive replication scheme in terms of network and
program parameters.

Despite these benefits, there still exist concerns about the efficiency of BSP
implementations. The barrier-synchronization at the end of a BSP superstep can be
expensive. However, by exploiting knowledge about the communication patterns in
an application and by overlapping communication with local computation, the cost
of global synchronization can often be reduced. Barriers also have desirable features
for distributed system design. By making circularities in data dependencies impos-
sible, they avoid potential deadlocks and live locks thus eliminating costly detection
and recovery. Barriers ensure that all processes reach a globally consistent state
which allows for novel forms of fault tolerance [65]. In our model of parallel com-
putation based on BSP, the participating processors are all in a globally consistent
state at the beginning of each computation step which eliminates the need for con-
sistent checkpointing. The synchronization at the end of a superstep also provides
a convenient point for checking process® failures. Should one or more processes fail,
the surviving processes can start the recovery of the failed processes at this point.

For these reasons we base our approach to adaptive parallelism on the BSP

model. Our approach employs a combination of replication of computation state and

3Throughout the rest of the paper, we use the term process to refer to a component process of
the parallel computation.
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replication of computations. We refer to it as the adaptive replication scheme (ARS).
The following chapters describe our approach to adaptive parallelism including our
assumptions, the protocol for replication of computation state and recovery of failed
processes, the role of process migration, and the algorithm that implements the

adaptive replication scheme.

1.5 Summary

In this chapter we introduced current trends in parallel computing and dis-
cussed their impact on parallel computations on networks of workstations. We pro-
posed adaptive parallelism as a means for parallel computations to deliver acceptable
performance in the face of a changing computing environment. We described two
scenarios which require parallel applications to adapt to their computing environ-
ments. These environments can be described as a network of transient processors.
We discussed the impact of transient processors on frequently synchronizing parallel
computations. We introduced the Bulk-Synchronous Parallel model and described
our approach to adaptive parallel computations within the framework of the BSP

model.

1.6 Thesis Outline

In subsequent chapters we expand on the topics and issues briefly discussed
here.

In chapter 2 we discuss related work in this area including workstation usage
patterns, remote execution facilities, remote execution policies and scheduling and
some recent work in adaptive parallel computing on networks of workstations.

In chapter 3 we discuss BSP-based parallel computing on a network of ded-
icated workstations. We discuss the characteristics of a network of workstations
when viewed as a BSP computer. With the example of an application for plasma
simulation, we demonstrate the use of the BSP model in analyzing and then tun-
ing the performance of a parallel application for a given parallel architecture. We
also briefly discuss two other parallel applications: a graph search problem and an

application of finite element method in the modeling of bioartificial artery.
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In chapter 4 we consider parallel computations running on a network of tran-
sient processors. We characterize nondedicated workstations as transient processors
and consider approaches to alleviate the impact of transient processors on program
execution time. We then analyze the performance of our adaptive parallelism ap-
proach and investigate the conditions under which the approach is scalable.

In chapter 5 we consider adaptive parallelism in the BSP model and describe
the protocol for replication of data and recovery of failed computations. Chap-
ter 6 describes the extensions to the Oxford BSP library, the design of the adaptive
replication scheme in layers and an implementation of a prototypical system.

In chapter 7 we present the application of the adaptive replication scheme
to two parallel applications and present performance results. We also present a
demonstration of the scheme in a real environment.

In chapter 8, we discuss the work in a broader perspective including its scope
and limitations, summarize the results and our contributions and discuss possible

directions for future work.



CHAPTER 2
RELATED WORK

Much research has gone into exploring ways of effectively utilizing the computing
capacity in networks of workstations. The work done is mainly in the following
areas: analysis of workstation usage patterns, policies and scheduling algorithms
to allocate remote execution capacity, development of remote execution facilities,
message passing libraries to aid parallel computations on NOWs and analysis of the
impact of transient processors on program execution time. We summarize related
work in each of these areas. We also describe the Bulk-Synchronous Parallel model
which aims to unify various parallel architectures including networks of workstations

into one model.

2.1 Workstation Usage Patterns

Mutka et al analyzed the workstation usage patterns and their availability
for remote execution [52]. They monitored a network of workstations consisting
of 13 workstations over a period of 5 months. The workstations observed were
owned by a variety of users: faculty, systems programmers and graduate students.
They obtained the profile of available and nonavailable periods of workstations. A
workstation is considered unavailable if the average cpu usage was above a threshold
value (one-fourth of one percent) within the last 5 minutes. A workstation was
considered available at all other times. An analysis of the traces showed that the
workstations were available approximately 70% of the time. The average available
and nonavailable periods were of duration 100 minutes and 40 minutes respectively.
Long available periods are good for scheduling background jobs on the machines.
The most surprising result was that the long available periods were observed even
during the busiest times. The average amount of time the workstations spend in
available state during the busy times was 50%. Their results show that workstations
are good candidates for remote execution of jobs.

Krueger and Chawla [38] made observations over a 3 month period of a net-

15
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work consisting of 199 Sun-3/50 diskless workstations. Some of the machines were
privately owned, while others were located in public laboratories. They found that,
on the average, 91% of the computing capacity of the network of workstations is
idle. The overall range of observations was from 77% to 96% which shows that a
significant variation in unused capacity is possible. Even during the periods that the
network was most heavily used, unused capacity rarely fell below 87%. However,
even during the periods of low overall utilization, some workstations were heavily
used while many others were idle. As a result, significant delays can occur at heav-
ily used workstations at times when other workstations could provide immediate
service. Therefore, significant improvements in response times can be obtained by
transferring some of the jobs from the heavily loaded machines to the idle machines.

Dinda and O’Hallaron [24] conducted research into statistical properties of
host load in distributed environments. They collected traces of load on a number of
machines over a period of one week. Their data indicates that host load can vary
drastically. In addition, host load traces exhibit a high degree of self-similarity and
as a result, lessening the effect of load by smoothing (not migrating long-running
tasks, for example) may not be very effective.

Mutka and Livny [52] made actual measurements of a network of transient
processors. They developed models for the available and nonavailable period densi-
ties to fit these measurements. Their model for the distribution of available periods
has a mean of 91 minutes and a variance of 40225 minute?. The probability distri-
bution function of nonavailable periods has a mean of 31 minutes and a variance of
2132 minute?. These mean values were also used by Kleinrock et al [37] in examples
to illustrate results of their analyses. In our experiments using simulated transient
processors (section 7.3), we use values in the range reported by Mutka et al for mean

lengths of available and nonavailable periods.

2.2 Remote Execution Facilities

There has been much research on systems that make use of idle time on work-
stations through load balancing and process migration. The systems described in

this section cater to sequential jobs and independent tasks and not to parallel com-
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putations with synchronization. We summarize some of the systems here.

Condor ([44, 45, 10, 42]) is a very successful remote program execution facility
developed at the University of Wisconsin. The system schedules long running back-
ground jobs on idle workstations. When the owner of a workstation resumes activity
at a workstation, Condor checkpoints the remote job running on that workstation
and later migrates it to another workstation when one is available. The system
guarantees that the job will eventually complete. Condor tries to improve the uti-
lization of the network by accommodating the requests from heavy users for extra
computing power without curtailing the freedom of light users. The system has been
operational at the University of Wisconsin and at many other sites worldwide.

Condor uses the Remote Unix facility [43] under which a shadow process runs
locally as a surrogate of the process running on the remote machine. Any Unix!
system call made by the remote program is communicated to the shadow process.
The Remote Unix facility is responsible for checkpointing the remote program.

The Sprite network operating system [61] uses a “workstation” model, in which
a user executes tasks primarily on his/her own machine (called the “home ma-
chine”). It provides a mechanism to take advantage of idle machines transparently
using migration. Logically, a process in Sprite executes on the user’s home ma-
chine. However, the process can physically migrate to another processor at any
time. Transparency is assured by forwarding location-dependent operations to and
from a process’s home machine.

Amoeba [51] is a distributed operating system. Its system architecture is orga-
nized around a “processor pool”. All users have equal access to all pool processors.
Pool processors are dynamically allocated to processes as needed. Amoeba achieves
some load balancing by assigning the most desirable processor to a process.

The V System [19] uses a workstation model similar to Sprite. It uses process
migration to execute new tasks on lightly loaded workstations.

There are many other systems that attempt to make use of idle computing
power through a remote execution facility. The Benevolent Bandit Laboratory

(BBL) [26] runs distributed computations on a network of personal computers. A

1Unix is a trademark of AT&T Bell Laboratories.
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special shell runs on each machine. When the machine is at the operating system
prompt level, it is available for use. If a user starts using a machine that is a part
of background distributed computation, a replacement machine is chosen from the
pool of the idle processors. Lyle and Lu [46] describe a simple remote program ex-
ecution facility that runs at shell level. The Butler [58] system at Carnegie-Mellon
University also provides remote execution facilities through servers that run on idle
workstations instead of on a fixed workstation. In the Butler system, the state of
the job is not preserved when the job is preempted. As a result, all the work accom-
plished by a job could be lost. The Worm program [64] at Xerox PARC was one of

the early experiments in distributed computing using idle workstations.

2.3 Remote Execution Policies and Scheduling

In a system where idle machines are allocated to long running jobs, users who
request additional computing capacity occasionally must be protected from users
who try to acquire all the additional capacity available. Mutka and Livny [53]
proposed the Up-Down algorithm designed to allow fair access to remote capacity
for those who use the system lightly in spite of large demands by heavy users.
This is achieved by maintaining a schedule indez for each workstation. The index is
increased when remote capacity is allocated to the workstation. When a workstation
wants remote capacity but is denied access to it, the index is decreased. The priority
to remote capacity of a workstation is determined by its schedule index. When a
station has a higher priority job to execute, and if there are no idle stations, the
coordinator preempts a remotely executing job from a station with lower priority.

The scheduling strategy used in Condor [44] is a mixture of centralized and
distributed approaches. Each workstation has a local scheduler and a background
job queue. The jobs submitted by the user at this workstation are placed in the
job queue. In addition, there is a central scheduler at one of the workstations. The
central scheduler polls the workstations periodically and gathers information on
which workstations have idle capacity for remote execution and which workstations
have background jobs waiting. The central coordinator allocates capacity from idle

workstations to local schedulers on workstations that have background jobs waiting.
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The local schedulers are responsible for scheduling their own jobs. If there is more
than one job in the job queue, the local scheduler decides which job should be next.
Between successive polls by the central coordinator, each local scheduler monitors its
station to see if it can serve as a source for remote capacity. When a background job
is running, the local scheduler periodically checks for user activity. As soon as user
activity is detected, the local scheduler preempts the background job immediately.

The Sprite network operating system accords priority to the owners of the
workstations. When a owner returns, any foreign processes on this workstation
are migrated to other workstations. A workstation is also reclaimed when there
are no more idle workstations and one process is using more than its fair share of
workstations. In Sprite, an application may use another workstation only if the
workstation is idle and no other application is already using it.

The criterion used by many systems (including Condor) treats availability of
workstations for remote execution in an “all or nothing” fashion - if a node is idle
then it is a candidate for executing a remote job, otherwise it is not. In this approach,
any machine can take over an idle machine for execution of its jobs, but as soon as
the owner of the machine uses it, the remote jobs have to be suspended. The remote
jobs are either put in the background, moved to another idle machine [44] or just
killed [58]. While these techniques guarantee the ownership of the resources of an
idle machine to the owner of the workstation, they do not assure any performance
improvements for the remote jobs the idle node may be servicing.

Alonso and Cova [2] replace this approach with a gradual one, called “High-

” In this approach, each machine in the network determines the amount of

Low.
sharing it is willing to do. The node will share some of its resources as long as
its users are not significantly affected. The policy works as follows: each time the
execution of a job is requested at a node, the load of the machine is compared
against its High-mark value. If the former is higher than the latter, then the load
sharing mechanism will try to execute the job at a remote node. On the other hand,
whenever a request to execute a remote job arrives at a machine, the request is

accepted only if the load on the machine is less than its Low-mark value. When the

High-mark value is greater than the Low-mark value, these thresholds divide the
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range of possible load values into three regions: overloaded (above the High-mark),
normal (above the Low-mark and below the High-mark), and under loaded(below
the Low-mark). When the load of a machine is in the overloaded region, new local
jobs are sent to be run remotely and remote execution requests are rejected. In
the normal region, new local jobs are run locally and remote execution requests are
rejected. In the under loaded region, new local jobs are run locally and remote
execution requests are accepted. Their system does not implement migration of the
jobs once they are started on a machine.

The V System executes remote tasks at a lower priority than local ones in

order to reduce their impact on interactive response.

2.4 Adaptive Parallel Computations on NOWs

While all the systems mentioned in the previous subsections are successful to
varying degrees in utilizing the idle computing power, they all address the place-
ment of independent jobs on idle machines. Specifically, they do not address the
issue of running tightly coupled parallel programs whose components synchronize
periodically. This is the issue of using a network of workstations as a parallel com-
puter. There have been several message passing libraries for distributed memory
computers, which can be used to program networks of workstations.

PVM [69] (Parallel Virtual Machine) is a software package that allows a het-
erogeneous network of parallel and serial computers to appear as a single concurrent
machine. The PVM user library [29] provides routines for initiating processes on
other machines, for communicating between processes, and changing the configura-
tion of machines.

Otto et al [35] discuss three systems that transparently migrate load among
the workstations in the network for PVM applications. Migratable PVM (MPVM)
uses Unix processes as its virtual processors just like PVM, and allows transparent
migration of these processes. The processes of a PVM application can be migrated
without any help from the application program. This system uses a global scheduler
to coordinate migration events. UPVM is a virtual processor package that supports

multi-threading. The virtual processors are called User Level Processes (ULPs).
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ULPs are light-weight UNIX-like processes and can be migrated. Adaptive Data
Movement (ADM) provides programmers with constructs for developing adaptive
computations based on work re-distribution. Work redistribution is achieved by data
movement. To maintain consistency of the parallel computation, MPVM and UPVM
flush all messages to and from the process to be migrated. Then the computation
state of the process is transferred to a new skeleton process that is started on the
target machine. Our approach differs from the PVM based systems in the following
ways. By basing our approach on the BSP model, we avoid the need for a consistent,
checkpoint. Thus our approach is simpler than the PVM based approaches. In our
approach, recovery of a failed process is performed on another available machine
and eventually migrated from this machine to the target machine. Thus migration
of the process imposes no overhead on the unavailable machine.

The message passing interface standard MPI [50, 11, 66, 33| was proposed by
MPI Forum, a consortium of industry and research institutes. Its goal is to serve
as a standard for writing message-passing programs. The interface is suitable for
SPMD style of programming. MPI has been implemented on a variety of platforms
including networks of workstations.

Parform is a high performance platform for parallel computing based on a net-
work of workstations, developed at the University of Zurich by Cap and Strumpen [14].
It involves three kinds of processes intended for programming the parallel compu-
tations: administrative process, executive processes and load sensor processes. The
programmer supplies the application dependent portion of administrative procedure
and the executive procedure. The platform specific part of the administrative pro-
cess is supplied as part of a library. This portion, together with the load sensors, is
responsible for collecting load data and identifying idle machines. The application
specific portion of the administrative process divides the computation among the
executive processes and collects results. The application independent code of the
executive process sets up the communication links and supports message passing
and dynamic load balancing. The application dependent part of the code performs
the arbitrary size subtasks.

In [15], Cap and Strumpen address the issue of utilizing heterogeneous net-
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works of workstations with constantly changing load situation for parallel computa-
tions. In frequently synchronizing computations, the throughput of a heterogeneous
network is reduced to that of the slowest workstation. They solve this problem using
heterogeneous partitioning and dynamic load balancing. In heterogeneous partition-
ing, the task is divided according to the performance of the individual worksta-
tions. As a result, workstations able to contribute more to a parallel computation
are automatically assigned larger subtasks, leading to better performance from the
heterogeneous network. However, due to the dynamically changing load situation,
the available performance from the individual workstations will change eventually.
They solve this problem using dynamic load balancing. At certain times during the
computation, processes exchange the load values of their hosts and adapt the size of
their subtasks to the actual load situation. This is achieved by communicating parts
of the subtasks from processes on hosts with increased load to processes on hosts
with less load. However, before actually changing the size of subtasks, a protocol
must ensure that the communication partner is ready to receive additional chunks
of work with respect to its own resource and load situation. This approach requires
mechanisms to change the size of a subtask during the computation depending on
the load situation of individual machines.

Carriero et al [16] implemented an adaptive parallel system called Piranha,
which works with Scientific Computing Associates’ tuple-space based coordination
model Linda. A tuple space is a virtual shared, associative, object memory accessible
to all nodes within a parallel computing environment. Tuple space supports uncou-
pled communication between producers and consumers of tuple data; producers and
consumers of tuple data (which are the subtasks of an adaptive parallel program)
need not be aware of the identity of each other. The subtasks can therefore freely
move around the network in search of idle machines.

Piranha implements an adaptive version of master-worker parallelism. The
number of workers can vary as the computation proceeds. The master process is
persistent and runs on the node from where the application is started. It creates the
tasks that need to be executed. Whenever a node becomes idle, the system creates

a new worker process on the node. Each worker process executes a loop, in which
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it claims a task from the tuple space, executes it and adds the result to the tuple
space. When the owner of the node returns and the node is busy, the worker process
retreats. The Piranha runtime system consists of daemons, one per participating
node. The overhead due to the daemons is insignificant.

In Piranha, the user has to supply the routines for the master process, worker
process and the retreat function. Tasks are represented by task descriptors. Inter-
task dependencies are handled by the dependency information stored in the tuple
space. A number of applications have been bench marked on Piranha. The observed
efficiency, measured as a ratio of sequential time to parallel time, is quite high
(above 90%). However the applications bench marked are all coarse grained and
only the process time spent on the problem were considered in the measurements.
Master-worker parallelism is suitable only when the tasks of the parallel computation
are independent. This approach therefore does not apply to synchronous parallel
computations.

Stardust [12] is a system for parallel computations on a network of heteroge-
neous workstations. It captures the state of the computation at the barrier syn-
chronization points in the parallel program. In saving the application state, only
the architecture-independent data is saved on to disk and transferred to other nodes
which allows for migration of the application between heterogeneous hosts. A ma-
jor limitation of Stardust’s mechanism of using naturally occurring synchronization
barriers is that it limits the number of points where an application can be stopped

and migrated.

2.5 Summary

In this chapter we reviewed previous work relating to utilizing idle workstations
for sequential and parallel computations. The systems for adaptive parallelism fall
into three categories. Systems in the first category try to dynamically balance
the load among the participating processors by redistributing the work through
data movement. ADM for PVM applications and Parform belong to this category.
The second category consists of systems that cater to parallel computations with

independent tasks. Since the tasks are independent, they can be restarted on new
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machines. Piranha belongs to this category. In the third category, systems try to
dynamically map a set of virtual processors to the currently available processors.
When a workstation becomes unavailable, the virtual processor on this workstation
must be migrated to a new available machine. These systems differ in the way
they try to maintain the consistency of the parallel computation and in the way
they migrate processes from one machine to another. MPVM and UPVM flush all
messages to and from the process to be migrated. Stardust uses naturally occurring
barriers to migrate processes without losing consistency. Our approach falls into this
category, but differs from the others in the following respects. Our approach is based
on the abstract parallel computer model of BSP. The synchronous nature of BSP
eliminates the need for maintaining the consistency of the parallel computations.
This makes our approach much simpler compared to the other approaches. Unlike
Stardust, our scheme does not limit the number of points where a process can
be suspended. In addition, our approach differs from all other approaches in that
recovery of a failed process (a process on a workstation that has become unavailable)
and eventual migration to a new available workstation are performed on an available
machine and not the currently unavailable machine. Thus recovery of the failed
process and migration to an available host impose no additional overhead on the
host that has become unavailable. Thus our approach is less intrusive compared
to other approaches. Finally, basing our model on BSP allows us to analyze the
performance of a parallel computation using our approach in terms of the program

and network characteristics.



CHAPTER 3
PARALLEL COMPUTING ON NOWS USING THE

BULK-SYNCHRONOUS PARALLEL MODEL

The efficiency of parallel computations depends on the properties of the commu-
nication medium such as latency and bandwidth. In general, local area networks
connecting the workstations tend to have higher latency and lower bandwidth com-
pared to the interconnection networks in special purpose parallel computers. The
higher latency and lower bandwidth tend to reduce the efficiency of parallel com-
putations. Parallel computations intended to run on workstations require careful
design to maintain parallel efficiency.

The Bulk-Synchronous Parallel model [70] introduced by Leslie Valiant is a
universal abstraction of a parallel computer. The model is intended to support
creation of portable parallel software by acting as a bridging model for parallel
computation — a model between hardware and a programming model to insulate
software and hardware development from one another.

In this chapter, we characterize the network of workstations as a BSP computer
and describe an implementation of plasma simulation for networks of workstations
using the BSP model. We illustrate, with the example of plasma simulation, how
the BSP model can be used to analyze and gain insight into the structure of the
parallel computation, and use that knowledge to design an efficient implementation

of plasma simulation for networks of workstations.

3.1 Bulk-Synchronous Parallel Model
The Bulk-Synchronous Parallel model [70] consists of the following attributes:

e components (processors) which execute programs

e a router that provides point to point communication between pairs of compo-

nents, and

25
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e a synchronization mechanism to synchronize all or a subset of the components
at regular intervals. The periodicity parameter L represents the minimum time

between synchronizations.

A computation consists of a sequence of supersteps. In each superstep, a com-
ponent performs some local computation and/or communication with other compo-
nents. The data communicated are not guaranteed to be available at the destination
until the end of the superstep in which the communication was initiated.

In analyzing the performance of a BSP computer, a time step is defined to be
the time required for a component to perform an operation on data available in the
local memory. The performance of a BSP computer is characterized by the following

set of parameters:
e number of processors (p),
e processor speed (s),
e synchronization periodicity (L), and
e a parameter to indicate the global computation to communication balance (g).

s is the processor speed in number of time steps per second. L is the minimal
number of time steps between successive synchronization operations. g is the ratio
of the total number of local operations performed by all processors in one second
to the total number of words delivered by the communication network in one sec-
ond. It should be noted that the parameters L and g usually are not constants, but
functions of the number of processors p. These functions are in turn defined by the
network architecture and the implementation of the communication and synchro-
nization primitives.

For the analyses presented in this and other chapters, we assume a network of
workstations with a fixed bandwidth communication medium such as an Ethernet.
Communicating large amounts of data on networks of workstations using a fixed
bandwidth communication medium will cause the interconnection network to se-
quentialize message flow from/to the active processors. Under this assumption, the

parameter g can be expressed as a function of the number of processors as follows:
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g(p) = gop, where g, is a constant. We also assume a synchronization mechanism
that uses a tree structure, and therefore we have the following relationship for the
parameter L. L = Lylog(p), with Ly being a constant.

BSP parameters allow the user to analyze the complexity of a BSP algorithm in
a simple and convenient way. The complexity of a superstep, S in a BSP algorithm
is determined as follows. Let w be the maximum number of local computation
steps executed by any processor during the superstep. Let hy be the maximum
number of messages sent by any processor and let A, be the maximum number
of messages received by any processor during the superstep. In the original BSP
model, the cost of S is given by max{l, w, ghs, gh,} time steps. An alternative
formula for the complexity of a superstep [31] is to charge max{l, w + ghs, w + gh,}
time steps for the superstep. Yet another definition [9] charges [ +w + gmax{gs, g, }.
Different cost definitions reflect different assumptions about the implementation
of the supersteps, in particular about which operations can be done in parallel
and which ones must be done in sequence. The last formula assumes that the
local computation, communication and synchronization are done in sequence. The
difference is not crucial, since the cost of a BSP algorithm computed as the sum
of the costs of the supersteps using either of the above formulae differ only in the
constant.

By designing algorithms that are characterized by the size of the problem (n),
the number of processors (p) and the two parameters that characterize the perfor-
mance of the communication network (I and g), we can ensure that the algorithms
can be efficiently implemented on a range of BSP architectures. Such a design leads

to architecture independent BSP algorithms [9].

3.1.1 Network of Workstations as a BSP Computer

In terms of the BSP parameters, parallel computers are often characterized
by large values of s (fast processors) and low values of L and g (a communication
network with low latency and large bandwidth). A general purpose network of
workstations, on the other hand, is characterized by values of s that are somewhat

lower and values of L and g that are much larger than the corresponding values for
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the parallel machines (high latency and low bandwidth due to the loosely coupled
nature of these networks). Networks of workstations, with relatively high values of
[ and g, often require algorithms to be designed differently from algorithms that are
designed to run efficiently on parallel computers. In designing algorithms for a BSP
computer with a high value of g, we must ensure that for every non-local memory
access, we perform approximately g operations per local data.

As an example, consider the task of broadcasting data from a single processor
to all other processors using the point to point communication primitives. In a
parallel computer, broadcasting of data is often performed by using a (binary) tree
structure with the processor initiating the broadcast at the root of the tree and the
other processors occupying the other nodes. In the first superstep, the processor
at the root node communicates the data to the processors at its child nodes in the
first level. In each subsequent step, processors at nodes in the currently active level
communicate the data to processors at their child nodes in the next higher level.
The communication is increasingly parallel as data move from the root of this tree
to the leaves. We refer to this scheme as logarithmic broadcast. The communication
in the opposite direction (from the leaves to the root) implements data gathering.
Both operations take number of steps proportional to the logarithm of the number
of processors involved.

The cost of logarithmic broadcast of A units of data on NOWs is

Llog(p) 4+ g(p — 1)h = Lolog*(p) + go(p — 1)h (3.1)

In the linear broadcast, the broadcasting node simply communicates the data
to all other nodes in a single superstep. Hence, the cost of the linear broadcast of h

units of data is

L+g(p—1)h = Lolog(p) + go(p — 1)h (3.2)

Comparing 3.1 and 3.2 shows that, unlike in a parallel computer environment,
linear broadcast is always faster in a NOW environment. However, when logarith-
mic gather is used, computations can be performed on the data being broadcast in

parallel at the nodes of the tree, whereas linear gather forces computations to be de-
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layed until all of the data arrives at a processor. This feature may make logarithmic
gather more attractive than linear gather under some circumstances. For example,

using logarithmic gather, summation can be performed on the data being gathered.

3.1.2 The Oxford BSP Library

The Oxford BSP Library [48, 49], developed by Richard Miller, is used to
implement the plasma simulation on NOWs. It is based on a slightly simplified
version of the model presented in [70]. The programming model uses a SPMD
program style, and static allocation of processors. The most significant feature of
the library is its use of remote assignment semantics for non-local data access, which
simplifies debugging. The library is small, simple to use, yet robust. Figure 3.1 lists

the library functions for C programs.

( N\

The Oxford BSP Library

® Process Management
void bspstart(int argc, char* argv[], int maxprocs, int* nprocs, int* mypid);
void bspfinish();
@ Synchronization Management
void bspsstep(int sstep id);
void bspsstep_end(int sstep_id);
® Communication Management
void bspfetch(int pid, void* src, void* dst, int nbytes);
void bspstore(int pid, void* src, void* dst, int nbytes);

Figure 3.1: The Oxford BSP Library C Functions.

3.2 Plasma Simulation on NOWs Using the BSP Model

Norton et al [60] implemented a plasma simulation on a distributed memory
parallel machine. We discuss the implementation of the simulation on a network of
workstations using BSP after giving an overview of the particle in cell (PIC) method

used in the simulation.
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3.2.1 Overview of Plasma PIC Simulation

A material subjected to extreme heat, pressure or electric discharges undergoes
ionization, where the electrons are stripped from the atoms, acquiring free motion.
The created mixture of heavy positively charged ions and fast electrons forms an
ionized gas called a plasma. Familiar examples of plasma include the Aurora Bore-
alis, neon signs, the ionosphere, and solar winds. Fusion energy is also an important
application area of plasma physics research. The plasma Particle In Cell simulation
model [8] integrates in time the trajectories of millions of charged particles in their
self-induced electro-magnetic fields. Particles can be located anywhere in the spatial
domain; however, the field quantities are calculated on a fixed grid. Following [60],
our simulation models only the electrostatic (coulomb) interactions.

The General Concurrent Particle in Cell (GCPIC) Algorithm [40] partitions
the particles and grid points among the processors of the MIMD (multiple-instruction,
multiple-data) distributed-memory machine. The particles are evenly distributed
among processors in the primary decomposition, which makes advancing particle
positions in space and computing their velocities efficient. As particles move among
partitioned regions, they are passed to the processor responsible for the new region.
To enable solving of the field equations on the grid efficient, a secondary temporary
decomposition is used to partition the simulation space evenly among the processors.
After computing charge deposition by the particles, grid point data are exchanged
among the processors to allow processors to solve field equations in their secondary
partitions. For computational efficiency, field/grid data on the border of partitions
are replicated on the neighboring processor to avoid frequent off-processor references.

As in [60], we perform a Beam-Plasma instability experiment in which a weak
low density electron beam is injected into a stationary (yet mobile) background
plasma of high density, driving plasma waves to instability. Experiments such as this
can be used to verify plasma theories and to study the time evolution of macroscopic
quantities such as potential and velocity distributions. Figure 3.2 shows an overview

of the organization of the simulation program.
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Figure 3.2: Plasma PIC Computation Loop Overview. Reprinted with
permission from [59] under (©) Copyright 1995 by ACM Inc.

3.2.2 Plasma Simulation on NOWSs Using a Distributed Grid

Norton et al [60] describe an object oriented implementation of the plasma
simulation for distributed memory machines based on the GCPIC method. Their
implementation partitions both the particles and the field data among the proces-
sors. As particles advance in space, they need to be redistributed to appropriate
partitions. Redistribution of particles is achieved by a series of synchronous steps in
which particles are passed from one neighbor processor to the next until they reach
their destinations. Their implementation runs efficiently on parallel machines like
the IBM SP2 and the Intel Paragon, which provide fast communication between the
Processors.

Our first attempt to implement the simulation on NOWs using the BSP model
was to replace the message passing communication primitives with the communi-
cation and synchronization primitives from the Oxford BSP Library. No attempt
was made to change either the data distribution or the simulation routines to im-
prove the communication and synchronization performance of the implementation.
This version was tested on a network of Sun Sparc workstations. As can be seen
from Table 3.1, this implementation does not scale well. Increasing the number of
processors from 4 to 8 reduces the computation time per processor (user time) by

approximately 30%. However, the wall clock time for 8 processors is approximately
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Number of 20K Particles

Processors || Real Time | User Time | System Time
4 373.8 128.1 41.6
8 775.7 91.1 130.9

Table 3.1: Execution Times of the Plasma Simulation (Distributed Grid
version) on a NOW (All times shown are in seconds).

twice that of 4 processors. These results confirmed our intuition: the distributed
grid implementation is not suitable for the range of BSP parameter values that
characterize NOWs.

It is important to understand the reasons for the poor performance of dis-
tributed grid implementation of plasma simulation on NOWSs;, since they are rele-
vant to many other applications as well. According to the measurements on the IBM
SP2 by Norton et al [60], advancing the particle positions and velocities accounts
for about 90% of the overall simulation time and does not require inter-processor
communication. Thus, the volume of the communication (total number of bytes de-
livered by the communication network) does not appear to be a problem even after
taking into account the low bandwidth of the Ethernet. This relatively low volume
of communication is spread over a large number of short messages, giving rise to a
large number of communication calls and supersteps in the initial implementation
on NOWSs. This affects the performance in two ways. First, each communication
call contributes an additional delay equivalent to the latency of the communication
network. Second, every additional superstep contributes a synchronization point
and adds synchronization delay to the overall execution time.

To better fit the BSP model, the distributed grid implementation can be im-
proved by reorganizing the data distribution. Interprocessor communication can be
reduced if all the interactions between the particle and the field data are local to
each processor. Since the bulk of the work involves computations on particle data,
the particles must remain partitioned among the processors to support workload
sharing. However, the grid can be replicated on each processor allowing the par-
ticle/field interactions to remain local. Replicating the grid requires maintaining

consistency of the grid data across all the processors. This is achieved by merging
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the modified copies of the grid from individual processors. All the processors send
charge depositions to their local grid to one processor. This processor combines the

individual charge depositions and broadcasts the final grid to all the processors.

3.3 Plasma Simulation Using a Replicated Grid

P. C. Liewer et al [41] implemented the plasma simulation on a 32 node JPL
Mark IIT hypercube. The particle computations were done in parallel; each proces-
sor had a copy of the field data. Thus their implementation used a replicated grid, as
a first step towards parallelizing the particle simulation codes. Our decision to use
a replicated grid comes from an analysis of plasma simulation using the BSP model
on NOWs. Replicating the field data on all processors has two positive effects:(i) it
eliminates communication caused by particle-field interactions and (ii) it groups to-
gether communication needed to update field information on each processor. In
addition, it avoids the need for a secondary decomposition and allows field compu-
tation to be performed locally on each processor thereby eliminating communication
associated with exchange of grid points in the secondary decomposition.

There are other sources of execution inefficiency on a network of worksta-
tions. Parallel computer implementation [59] redistributes particles in a series of
synchronous steps in which each processor exchanges particles with its neighbors.
Such synchronization steps are very expensive on NOWs. In our current approach,
the processors maintain a set of buffers, one for each processor. A particle which
must be transferred to another processor is stored in a buffer corresponding to its
destination. When this buffer is full or when all particles are processed, each proces-
sor sends its non-empty buffers directly to their destinations in a single superstep.
Finally, replicating the grid allows for total elimination of particle redistribution.
The evaluation of efficiency of such a solution versus the solution with buffered

particle redistribution is given in the following section.

3.4 Analyzing BSP Implementation of Plasma Simulation

As the particles move in space, the region of the grid to which they deposit

charge varies. Based on this criterion there are two approaches to organizing the
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particle data among the processors. In one approach (scheme 1) we redistribute
particles after each advance operation, so that charges of the particles assigned to a
processor are always deposited to the same portion of the grid based on the particle
partitioning (approximately about 1/p of the grid in size). Only these portions
of the grid from each processor need to be combined to construct the complete
globally consistent grid. This also improves the cache performance of the simulation
since only this portion of the grid needs to remain in the cache on each processor.
However, redistributing the particles may cause the load to become unbalanced.
In the other approach (scheme 2), we allow the particles to remain on the same
processor throughout the simulation. This avoids the cost of redistributing the
particles while maintaining the initial load balance. Since particles can now deposit
charge anywhere, constructing the globally consistent grid requires combining the
whole grid data from each processor. In addition, cache performance may also suffer
during the charge deposition stage.

The total cost of a BSP implementation is the sum of the computation, commu-
nication and synchronization costs. In the plasma simulation, computation consists
of advancing the position and velocity of the particles, depositing charge from each
particle onto the grid, and solving the field equations. Field equations are solved by
a sequential FFT with a complexity of O(N,log(N,)), where N, is the number of
grid points. The charge deposition and particle advance operations are performed
for each particle in constant time. Hence, assuming ideal load balance, the complex-
ity of this part of the computation is O(%), where N, is the number of particles in
the simulation and p is the number of processors. Another computational step adds
together the charge depositions contributed by the individual processors. In the first
scheme, charge depositions to the grid points in the guard columns must be added
to the corresponding grid partition. For the 2D simulations discussed in this paper,
the height of the guard columns is approximately \/ﬁg . Assuming that there are c,,
overlapping guard columns per processor, the cost of summation is (n — 1)cw\/ﬁg.
In our implementation ¢,, = 3. In the second scheme, entire grids are added during
the parallel gather operation, so the associated cost is N, log(p).

To analyze communication costs, let c,, be the average fraction of particles
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that cross an arbitrary selected plane perpendicular to the x-axis of the space in one
simulation step. ¢y, is dependent on the characteristics of the simulation (the speed
distribution of the particles). With p processors, the average fraction of particles
that change partitions is ¢,,p. Let ¢, be the size of data associated with a grid point
and c, be the size of data associated with a particle. Let k£ = %—Z be the average
number of particles per cell.

In the first scheme, we use a linear gather for combining the grid data and a
linear broadcast to return the grid to the processors. Particles are sent directly to

the destination processor in one superstep. The communication cost in this case is

N,
go(p — 1)09(?'(} + Cwy/ Ny + Ng) + 9o NpCpCpmp-

For the second scheme, there is no particle redistribution and the only cost is that
of gathering the grid data from each processor into the global grid and broadcasting
the resulting grid to all processors. We use logarithmic gather to combine the grid
data, because summation of the data from individual processors can be done on the
nodes of the tree in parallel. We use linear broadcast for sending the final grid to
the processors. Following the analysis of the logarithmic and linear broadcasts in
the previous section, the communication cost is 2go(N,cg)(p — 1).

By adding the computation and communication costs derived above with the
synchronization cost, we obtain the cost function for the first scheme (which uses

particle redistribution):

N, N,
T, = cl?p + 2Ny log(Ny) + cyy/Ny(p — 1) + go(?g + /Ny + Ng)eg(p — 1)
+ 9oNpCpCpmp + 3L log(p) (3.3)

where ¢1, ¢y represent operation counts for charge deposition/force computation and
field computation, respectively. Similarly, the cost function for the second scheme

18

N,
T, = cl?p + ¢, log(Ny) + N, log(p) + 2goN,cy(p — 1) + Lolog?(p)
+Lg log(p) (3.4)
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No 20K Particles 300K Particles 3.5M Particles
of Real | User | System || Real | User | System || Real | User | System
Proc | Time | Time | Time | Time | Time | Time Time | Time | Time
4 510 143 9 5959 | 1919 32 68075 | 24352 232
8 410 102 20 3731 | 1036 7 27318 | 10225 322
16 504 92 53 3155 | 686 182 25619 | 5835 711

Table 3.2: Execution Times of Plasma Simulation (Replicated Grid ver-
sion, with no particle redistribution) on a NOW (All times
shown are in seconds).

Particle redistribution is more efficient than broadcasting the whole grid when

(3.4) exceeds (3.3). That is when

N,
N, log(p) + Lolog?(p) + goNycg(p — 1) > go(?g + cw\/Ny)cg(p — 1)

+ Cwy/ Ny(p = 1) + goNpCpCpmp + 2Lo log(p) (3.5)

For large simulations using a large number of processors, the above inequality
can be approximated by Nyc, > Nycpcpm. That is, redistributing particles is advan-
tageous when the size of the grid data that needs to be shared by the processors
is larger than the size of the particle data that needs to be exchanged among the
processors. In our simulations, ¢, = 1, ¢, = 4 and ¢y, ranges from 0.002 for 300,000
particles to 0.0009 for 3.5 million particles. With this data, the above inequality
can also be written as £ < 130 for 300,000 particles and k& < 280 for 3.5 million
particles. The value of k usually grows faster with the growth of the problem size
than the value of c,, decreases. Hence, the solution without particle redistribu-
tion should become more efficient than the alternative for very large simulations.
Figure 3.3 shows a plot of the cost function for this solution. The values of the
coefficients ¢; = 458 and ¢y = 33 have been estimated from theoretical analysis of
the algorithms and experimental data. The plot indicates that the execution time
continues to decrease up to 20 processors, even though the improvement may not be
significant after 16 processors. In a synchronous application, computation proceeds

at the speed of the slowest machine. As the number of processors increases, the
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Figure 3.3: Cost function for plasma simulation using no particle redis-
tribution. The simulation uses 3571712 particles and a grid
of size 32768 (k = 109).

variation in the load (due to other users) also increases. The mean value of the
random variable that represents the execution rate of the slowest machine decreases
with increasing number of processors. This implies that the performance of the
algorithm in a heterogeneous network will decrease statistically based on the overall
system load. This explains why the observed execution times from Table 3.2 are
larger than the theoretical cost function values of Figure 3.3. However, the trends
in execution times shown in Table 3.2 correspond well with the cost function plot.

Table 3.2 shows an interesting phenomenon. For the case of 3.5 million par-
ticles, the simulation exhibits superlinear speedups as we increase the number of
processors from 4 to 8. This phenomenon can be explained by the effects of the
cache size on program execution time. For 8 processors program data fits in the
system cache which reduces computation time due to improved memory access. Re-
ducing program data below this size does not result in further improvements in

memory access. When using 16 processors, decrease in computation time of local
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partition is offset by increased communication cost, resulting in significantly less

increase in speedup from 8 to 16 processors.

3.5 Parallel Finite Element Computations on NOWs

Finite element methods are highly computationally intensive and parallel im-
plementations are important for solving large problems in a reasonable time. Net-
works of general purpose workstations are widely used for scientific and engineering
computations. Workstations’ computing power can be utilized for the parallel com-
putations if the parallel implementation is of sufficient efficiency. The main obstacle
is the relatively high latency of the interconnecting network and sharing of the
network bandwidth with other users.

As an example, we consider finite element modeling of a bioartificial artery.
The techniques are applicable to all parallel finite element computations, including
solution to problems arising in optimization and control of chemical and biological

processes.

3.5.1 Overview of Finite Element Modeling of Bioartificial Artery

The model of tissue-equivalents was developed by Barocas and Tranquillo to
study the compaction of collagen tubes by smooth-muscle cells (SMC). We present
a brief overview of their model based on [7]. The cells exert a contractile stress on
the surrounding collagen network, causing the gel to compact by exudation of water.
Modeling this process is complicated by the cells’ sensitivity to their surroundings:
the cells will change their behavior in response to alignment of the collagen fibrils
(which results for inhomogeneous strain) or increased stress in the network. Barocas
and Tranquillo’s model accounts for these phenomena as well as the viscoelastic
behavior of the gel.

The model leads to a PDE system describing the mechanics of the fibril net-
work and interstitial solution phases comprising the gel, cell division and movement,
within the network, and the forces exerted by the cells on the network. Defining
the network viscoelastic stress (s), network velocity (v), solution phase pressure (p),

network volume fraction (q), and cell concentration (n), the governing mechanical
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force balances for the network and solution phases can be written as

V- [0(c+nz)—pl] =0 (3.6)

V. (#Vp - w) =0 (3.7)

and the governing mass and species conservation equations as

0+0(V-v)=0 (3.8)

n+n(V-v)=V-(D-Vn)+kn (3.9)

where material derivatives with respect to v are indicated. k& is a constant
measuring the cell division rate, and the tensors s and D describe the cell traction
stress and cell migration; for certain isotropic systems, these tensors are just scalar
multiples of the identity tensors, but for typical anisotropic systems (arising as a
result of inhomogeneous deformation) the cells exert stress and migrate preferentially
in the direction of network alignment. The details of modeling cell and network
orientation have been described [6] and involve defining a local network orientation
tensor in terms of an integral of the local strain tensor, and taking the cell orientation
tensor to be a simple functional of that for the network.

Barocas and Tranquillo’s numerical formulation is based on a mixed finite ele-
ment method using piecewise bilinear pressure, piecewise biquadratic displacement,
cell concentration, network concentration, and discontinuous piecewise biquadratic
stress. Their formulation allows efficient and accurate solution of the model equa-
tions. Their solver performs temporal discretization using DASPK [63], and solves
the large matrix problem using preconditioned GMRES [63] with an Uzawa-type

preconditioner.
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Figure 3.4: BSP implementation of modeling of bioartificial artery.

3.5.2

(a) Execution profile of the routines (b) Speedups obtained

BSP Implementation of Finite Element Modeling of Bioartificial
Artery

The parallel implementation using the BSP model performs elemental compu-

tations in parallel whenever possible. This is achieved by parallelizing loops that

perform the elemental computations. The execution profile of the routines that

are computationally significant is shown in figure 3.4(a). A brief description of the

routines is given here.

res .

Calculates the residual equations F'(t,y, ') defined by the finite element dis-
cretization of the spatial problem. y is the vector of solution values, containing
the variables (stress, position, cell concentration, collagen volume fraction, and
pressure); y' is the vector of material derivatives of y. The subroutine DASPK
calls res to determine whether the values of y and 3 are acceptable for a time
step. For a finite element mesh with NV elements, the routine requires O(N)

operations.

calc_phi_primes :

Since the finite element mesh is not composed of perfect squares, the integrals
on each element are solved by transforming the element to a unit square. This
routine calculates the derivatives of functions based on the transformation. It

requires O(1) operations, but it must be called for every element.
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jac :
Calculates the approximate jacobian that is used as a preconditioner for the
iterative solution of the full jacobian (which is not needed). Like res, this
routine operates by evaluating integrals on each element and summing, thus
requiring O(N) operations.

ilut :
The incomplete LU factorization of jacobian preconditioner blocks. Ilut is
computationally expensive, requiring O(N?) operations.

lusol :
This is the solver for the above. It requires O(N) operations.

amux :
Routine to multiply a matrix (in sparse row format) and a vector. Its com-
plexity is proportional to the number of nonzeros in the matrix.

Ax and Bx :

These routines calculate the product between sections of the Jacobian matrix
and a vector x. Since this product can be defined in terms of integrals over

elements, the calculation requires O(N) operations.

The constants in the O notation in all these computations are rather large,
about 100 to 1000. For the problem sizes shown in Figure 3.4(a), calculation of the
residuals is the computationally most significant and accounts for about 35% of the
overall execution time. However, Ilut, with computational complexity quadratic in
the number of elements, becomes more and more significant at higher problem sizes.

The figure also shows the routines that have been parallelized. As can be seen
from the plot, about 60 to 70% of the sequential code is parallelized. Consequently,
the maximum theoretical speedup that can be achieved from this computation as
given by Amdahl’s Law [1] is approximately 3. Our BSP implementation achieves

a maximum speedup of about 2.5, which is obtained with 3 processors.



42

Figure 3.5: A sample graph with 12 vertices. Degree of each vertex is
shown in parentheses

3.6 Finding the Maximum Independent Set of a Graph

A set of vertices in a graph is said to be an independent set if no two vertices
in the set are adjacent [23]. A mazimal independent set is an independent set
that is not a subset of any other independent set. A graph, in general, has many
maximal independent sets. In the maximum independent set problem, we want to
find a maximal independent set with the largest number of vertices. Finding the
maximum independent set has applications in communication theory. For example,
if the vertices represent possible code words and edges connect code words that are
close to each other and hence can be confused with each other, then finding the
largest set of code words for reliable communication is the problem of finding a
maximal independent set with the largest number of vertices.

To find a maximal independent set in a graph GG, we start with a vertex v of G
in the set. We add more vertices to this set, selecting at each stage a vertex that is
not adjacent to any of the vertices already in the set. This procedure will ultimately
produce a maximal independent set. In order to find a maximal independent set
with the largest number of vertices, we find all the maximal independent sets using a
recursive depth first search with backtracking [32]. To reduce search time, heuristics

are used to prune the search space. The number of subgraphs searched at any level
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of recursion is determined from prior knowledge obtained from a large database of
maximum independent sets found for various graphs and their search paths. The
recursion is terminated when the size of the graph to be searched is too small to
produce an independent set larger than the maximum independent set found so far.

Connectivity information for the vertices of the original graph is represented
by an adjacency matrix. To conserve memory, no explicit representation of the
graph is maintained. Instead, the connectivity information of the original graph is
used to search through a virtual graph. The virtual graph is represented by two data
structures: a list of all vertices in the graph and a list of their degrees. The degrees
of the vertices in the graph are determined by referring to the adjacency matrix
of the original graph. At any given stage, we select the vertex with the minimum
degree and add it to the independent set being constructed. A new graph is formed
by deleting the selected vertex and all vertices adjacent to it from the current graph.
A new list of vertices is constructed to represent this graph. The list of vertices for
the new graph is obtained by deleting the selected vertex and all vertices adjacent
to it in the current graph from the current list of vertices. Once the list of vertices
is constructed for the new graph, the list of degrees of the vertices is constructed
by using the adjacency matrix. The new vertex list and the degree list representing
the new graph are passed down to the recursive search function. Figure 3.5 shows a
sample graph with 12 vertices and Figure 3.6 shows the corresponding search tree.
Each node of the search tree corresponds to a level in the recursive search. Each
path from the root to a leaf node results in the construction of an independent set.
For each search, Figure 3.6 shows the vertex selected and the resulting subgraph to
be searched.

In the parallel implementation of the search procedure using BSP, the ad-
jacency matrix is replicated at all processors and the processors share the search
space. The computation superstep involves each processor searching a subgraph. In
the communication superstep, the processors exchange information on the maximal
independent set found so far. This information is used to prune the search space
in subsequent computation steps. Figure 3.7 shows a plot of the speedups obtained

with the BSP implementation of the graph search.
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3.6.1 Performance of the Graph Search Algorithm

Consider a graph with n vertices and a probability of d for any two vertices
to be connected. The adjacency matrix is replicated at each processor. To conserve
memory, the adjacency matrix is represented as bit patterns. If W is the word
size on the host machine, then the storage requirements for the adjacency matrix is
n?/W. At each level of the recursive search, a vertex with minimum degree is added
to the independent set and all vertices that are adjacent to it are deleted to form the
virtual graph at the next level. Thus the number of vertices of the virtual graph to
be searched decreases exponentially at a rate of 1 —d. Since the adjacency matrix is
replicated at each processor, each processor can construct the virtual graph locally.
At a given level of the recursive search [, the number of vertices of the subgraph is
approximately n(1 — d)l. All processors proceed through the search space until the
number of vertices of the subgraph to be searched is below a predetermined threshold
L. Below this level, each subgraph is searched by one of the processors and all
processors exchange information on the size of the maximum independent set found
so far and its search path. Since the size of maximum independent set and the search
path is usually very small, the cost of communicating these data can be considered
to be constant. Thus the communication requirements of the graph search algorithm
are quite low. However, since the adjacency matrix information is replicated at each
processor, this algorithm does not scale. An improved graph search algorithm that

partitions the adjacency matrix among the processors is presented in Section 7.4.1.

3.7 Summary

In this chapter we considered parallel computations on a network of dedicated
workstation using the BSP model. We characterized the network of workstations
as a BSP computer. We used the BSP model to characterize the application of
plasma simulation and gain insight into the scalability of the problem. Using BSP
analysis techniques, we tuned the application for improved performance on a network
of workstations. We also analyzed the BSP implementation and characterized its
behavior. We also presented an application of the BSP model to a finite element

computation and a graph search problem. These examples illustrate that the BSP
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model can be used to model and implement a wide variety of parallel computations.



CHAPTER 4
PARALLEL COMPUTATIONS ON TRANSIENT

PROCESSORS

In this chapter we consider the use of a network of nondedicated workstations for
synchronous parallel computations. We describe the conditions under which ad-
ditional computations? are allowed to run on a workstation. We characterize the
workstations based on their availability and analyze the performance of additional
parallel computations on the workstations. We use the results of the performance
analysis to argue the need for making the parallel computations adaptive to the
computing environment. We consider approaches to enable parallel applications

adapt to the computing environment and analyze their performance.

4.1 Nondedicated Workstations as Transient Processors

Processors in a network of workstations (NOW) are often underutilized. Sev-
eral studies indicate that a large number of workstations in a NOW are idle at
any given time [15, 38, 52]. Arpaci et al [4] report that, although the set of idle
machines changes over time, the total number of idle machines stays relatively con-
stant. Our objective is to use the idle workstations to run additional jobs. There
have been several systems that attempt to make use of idle workstations to execute
sequential programs [19, 44, 58]. In systems using idle workstations, the additional
computation is suspended when primary user activity is detected to avoid perfor-
mance degradation for primary users. The additional computation is resumed when
primary user activity ends and the workstation is idle. Since the workstations are
available for use only when they are idle, they are referred to as transient proces-
sors [37]. A transition of the host processor from an available to a nonavailable state
is referred to as a transient failure. When using a network of transient processors for
parallel computation, each component process of the parallel application is assigned

to a processor; the component process is scheduled when the host processor is idle

2Computations other than those belonging to the owner of the workstation.
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and suspended when the processor is busy.

The impact of transient failures on sequential programs and long duration
parallel programs with many independent tasks is analyzed by Kleinrock et al [37].
The rate of progress of long duration parallel programs with many independent
tasks is proportional to the fraction of time the processor is idle. The impact
of transient failures on frequently synchronizing parallel programs with relatively
small amounts of computation between synchronizations is much more severe; if a
single participating processor becomes unavailable, the entire parallel computation is
delayed for the duration of the nonavailable period, making parallelism useless. As a
result, synchronous parallel programs take much longer to execute on nondedicated
networks of workstations. In the following sections we analyze the finishing time of
frequently synchronizing parallel programs on a network of transient processors for

the case of exponentially distributed available and nonavailable periods.

4.1.1 Approaches to Reduce the Impact of Transient Failures

Section 1.4.1 lists a number of approaches to reduce the impact of transient
processor failures on synchronous parallel programs. These approaches try to re-
duce the impact of transient processor failures on program execution by replicating
processes, computations and/or data to varying degrees. These approaches are clas-
sified based on the eagerness with which they replicate processes, computations or
data. In this chapter, we consider the different approaches listed in Table 1.1. In
the following sections, we analyze these approaches in more detail and compare the

finishing times of a parallel program on transient processors under each approach.

4.2 Parallel Computations on Transient Processors

In the following analyses of finishing time of a parallel program under different

schemes, we make the following assumptions:

e Transient processors alternate between an available and a nonavailable state.
The lengths of the available (¢,) and nonavailable (¢, ) periods are exponentially

distributed random variables. They are mutually independent.
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e The application is structured as a sequence of computation and communication

steps.

e The application synchronizes frequently; in other words, the duration of a
computation step in each component process is small compared to the mean

available and nonavailable periods.

e The application program scales with the number of processors. That is, as the
number of processors p increases, we can find a problem size n such that the

parallel efficiency e(n, p) is greater than a predetermined constant e.
e The application program is available on every processor in the network.

We explain these assumptions in more detail below and obtain expressions for the
cost of data replication and the cost of process migration in terms of the program and
network parameters. In addition to the above, schemes that depend on replication
of computations may impose additional requirements on the computations. For
example, the computation may not contain operations with side effects such as

input/output operations.

4.2.1 Network

Mutka and Livny [52] made actual measurements of a network of transient
processors. They developed models for the available and nonavailable period densi-
ties to fit these measurements. The model they used for the probability distribution
function of available time was a 3-stage hyper-exponential distribution. For the
probability distribution function of nonavailable time, they used a shifted 2-stage
hyper-exponential distribution. Kleinrock et al, in their analysis of finishing time
of a distributed computation on a network of transient processors [37], frequently
assumed exponential distribution for the available and nonavailable periods in their
examples. Using exponential distributions instead of hyper-exponential distribu-
tions will not affect the mean values of the results obtained, however the variance
of the results will be lower than if hyper-exponential distributions were used.

Our measurements of available and nonavailable periods of workstations (shown

in section 4.2.1.1) indicate that distribution of lengths of available and nonavailable
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periods have significant frequency of long periods. Since the finishing time of a
computation step is determined by the maximum finishing times of individual pro-
cessors, this results in a larger variance in execution time than with the assumption
of an exponential distribution of available and nonavailable periods. To simplify
the analysis, we too assume exponential distribution for the available and nonavail-
able periods of the processors. In subsequent sections, we analyze the finishing
time of synchronous parallel programs using several approaches and conclude that
only the adaptive replication scheme can support scalable computations on transient
processors. In view of the measurements of Dinda et al [24] as well as our own mea-
surements, for approaches based on smoothing, the variance of actual results will be
larger than the variance derived with the assumption of an exponential distribution.
Hence, the negative conclusion of our scalability analaysis will hold in this case. In
case of our approach, which migrates computations on failed processors to available
machines, actual results are not affected by frequency of long nonavailable periods.
More frequent than expected long available periods on the other hand, will only
improve performance by requiring fewer migrations. Hence, the positive conclusions

of our scalability analysis of our approach hold in this case also.

4.2.1.1 Machine Characteristics

The available and nonavailable periods of workstations are monitored. Fig-
ure 4.1 shows the frequency distribution of lengths of available and nonavailable
periods for two machines. As can be seen from the plots, the machines have large
available periods which can be used for parallel computations. The large values of
mean and standard deviation are due to long available periods during the nights
when most machines are virtually unused. Figure 4.3 shows the minimum, mean
and maximum values of lengths of nonavailable periods and the maximum to mean
ratios of lengths of nonavailable periods for a few machines. As can be seen from the
plot, the maximum length of nonavailable periods can be much higher than the mean
length. There are a significantly large number of long available and nonavailable
periods. Figure 4.2 shows the frequency distribution of available and nonavailable

periods for a machine along with a curve with an exponential distribution to fit the
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Figure 4.1: Frequency Distribution of lengths of available and nonavail-
able periods on two machines.

measurements. As can be seen from the plots, the tail portion does not fit well
within exponential distribution. Dinda et al [24] collected detailed load measure-
ments on a number of hosts. In their observations, they found that most machines
had low mean loads, however load varied drastically. Desktop machines tended to
have higher maximum loads relative to their mean loads. Our measurements with
available and nonavailable periods exhibit a similar pattern. Their observations also
show a high degree of self-similarity indicating that the variations in the available
and nonavailable periods persist even over long periods. They observe that lessening
the effects of load behavior by smoothing without migrating long-running tasks may
not be effective. Our approach to adaptive parallelism is based on migrating tasks
on unavailable processors.

Following Kleinrock et al, we assume a network of P identical processors. A
processor alternates between a nonavailable state when it is being used by the owner,

and an available state when it is idle. The lengths of nonavailable periods are in-
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dependent and identically distributed (i.i.d.) random variables from an exponential
distribution, N(t) = ie_%, with mean ¢, and variance 0,2 = t,,. Likewise, available
periods are i.i.d. random variables from an exponential distribution A(t) = %6_%.

The available and nonavailable periods are mutually independent.

4.2.2 Application Program

The program is structured as a sequence of computation and communication
steps. Assume a program with & computation and / communication steps. For sim-
plicity, we assume that all the computation steps are identical. For a given problem

of size n and a degree of parallelism p, let T'(n) be the total amount of computation,
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expressed as number of CPU seconds, done by all participating processors in each
computation step and C(n) be the size of the data communicated by each compo-
nent process in each communication step. We drop the functional notation for the

computation and communication when we refer to a given problem size.

4.2.2.1 Program Image

The program image consists of code and data segments. Let I(n) be the size
of the program image and I.,4. and I, be the size of the code and data segments
respectively, for a given problem of size n. The code segment is unaffected by
the computation. The data segment is composed of two components: one that is
common across all the processes and has size I, and another component of size I
that is distributed over p component processes. Therefore, we have I = I .40 + Lgata
and I;uq = Io + 14. 1 consists of the data and results of the computation that can
be parallelized, and I consists of the data that is affected solely by the computation
specific to each process, that is, the sequential part of the computation. The ratio of
Iy/1, is a measure of the scalability of the application, and for scalable applications
the ratio approaches zero when the problem size grows to infinity. Hence for scalable

computation and for large problem sizes, I/l is a small fraction, [y/I; < 1.

4.2.2.2 Computation State

For this analysis, we define the computation state of a component process P;
to be the collection of all the data that is necessary and sufficient in order for an-
other component process P; to reconstruct the state of P; and execute (replicate) its
computations. Let S(n) be the size of the computation state of the program at the
beginning of each computation step. Like the program data segment, the computa-
tion state consists of two components: a component of size Sy that is common across
all the component processes and another component of size S; that is distributed
across the p parallel components, S = Sy + S4. By definition, Sy < Iy and S; < I,.
For scalable applications and large problem sizes, Sy/S; < 1. Let g be the relative
cost of communication compared to computation, expressed in terms of the number
of local computation steps. The cost of communicating the computation state of a

component process is gS;/p and it represents the cost of data replication of a single
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component process.

4.2.2.3 Process Migration

We use the migration scheme of Condor [10] to migrate processes across ma-
chines. The process to be migrated writes its data segment at a checkpoint onto the
disk and exits by invoking an exception. The program is restarted on a new host,
by loading the checkpointed data from the disk. This scheme assumes the availabil-
ity of the program code on each processor. This assumption is trivially true when
using a network-wide file sever. The cost of migration under this scheme equals
the cost of writing the data segment to the disk and reading it back. If g4 is the
cost of disk access per unit data, then the cost of migrating a process is given by
T = ga(Lo + I3/p) =~ galy/p for scalable applications and sufficiently large problem

size.

4.3 Finishing Time of a Computation Step on Transient

Processors

For the analyses, we define the completion of a step as the earliest time by

which all the component processors have finished their local computation.

4.3.1 Finishing Time of a Step on a Single Transient Processor

When a single processor is used, there is no need to synchronize and the
finishing time of a computation step depends on the number of failures during the
execution of the step. Since the duration of a step 7T is small compared to the mean
available period, the probability of occurrence of more than one transient failure
during the execution of a step is negligibly small. For the analysis presented here,
we assume the occurrence of at most one failure during the execution of a step.
Hence, we are using an optimistic measure of the finishing time of the computation
step in presence of transient failures.

Let p(t) be the probability density function of the finishing time. Obviously,
p(t) = 0 for t < Ts. For t = Ty, the step is executed without any failures and the
probability is given by [p° i et dt. For t > T, the step is executed with failures
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of the node, so under the assumption of a single failure, the probability density of
the distribution is given by i(l - e_%)et% e
The mean value of the finishing time is T + (1 — e_tTTf)tn, which can be

approximated by Ts(1 + i—z) for Ty < t,.

4.3.2 Finishing Time of a Step on p Transient Processors

Consider a parallel computation step with T units of work on p processors.
Assuming uniform distribution of work among the participating processors, the com-
putation step on each processor is of duration T,, where T, = %. Since all the
processors synchronize at the end of the computation, the finishing time of the step
is the maximum of the finishing times of the computation on individual processors.
Let F,(t) be the cumulative distribution function of the finishing time of the step
on p transient processors, so Fy(t) = (F(t))P.

The probability density function f,(¢) is the derivative of the distribution
function F,(t), hence f,(t) ~ %(6_# —(p— l)De_%) for t > T, , where D stands
for the constant expression (1 — e_%)e%.

The mean finishing time of the computation step on p transient processors
is approximately % + Ti—z. We can see from the above expression that the mean

finishing time of the parallel computation on p processors is worse than on a single

processor whenever t,, > t,.

4.3.3 Finishing Time on Transient Processors
The mean finishing time of a computation step when using p processors is
% + T%' The mean finishing time of the program with £ computation and [/ com-

munication steps is, therefore

1 t,
Tpa'f =kT <— + t_> -+ lgC (41)
p

a

Since kT is the computation time of the sequential program, the parallel pro-

gram performs worse than the sequential program whenever ¢, > t,.
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4.4 Finishing Time of a Parallel Computation with Repli-

cated Processes

4.4.1 Finishing Time of a Step Replicated on R Processes

Since the process is replicated on R distinct machines, the finishing time is
the minimum of the finishing times of the R replicated copies. Let fg(t) be the
probability density function and Fg(t) the cumulative distribution function of the
finishing time of a replicated process. Define D, to be the constant expression
(1— e*tT_;)etT_;. For a single copy of the replicated process, the distribution function
Fir1)(t) (on a transient processor) is given by 1 — D,e_% fort > T,, et fort = T,,
and 0 for t < T,. The distribution function for the replicated process Fg(t) is the
minimum of the R random variables, each with a distribution function Fig)(t). The
probability density function of the finishing time of the replicated process is given
by fr(t) = &(Fg(t)) = Rt—?%e_%. The mean finishing time of the replicated process

is given by

T,(1— (1— ¢ )% + (1 - e7i0) (T, + &)

4.4.2 Finishing Time of a Step With r Replicated Processes

In this section we analyze the finishing time of a computation step of duration
T,., with each process replicated on R machines. Since the total number of machines
in the network is fixed (p), we now have r = £ parallel components. Further, the
total work is constant, so 1. =T, or T, = %

Each component has a finishing time whose density function and cumulative
distribution function are as given above. The finishing time of the step is the maxi-
mum of the finishing times of the component processes. The distribution function of
the finishing time of the step with r replicated processes is given by Fi,r) = Fg(t)".
The probability density function of the finishing time of the step is obtained as
Jor)(t) ~ %ﬁ (1 —(r— l)Dfe_f_nt) ¢t . For a replication level > 2 the mean
finishing time is 7, +r ()" &.

The impact of the nonavailability of transient processors can be reduced by

replicating each component process on more than one host machine. The finish-
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ing time of a computation step with r component processes when each process is

replicated on R hosts is analyzed in the previous section.

4.4.3 Finishing Time of a Parallel Program using Full Process Replica-
tion

Consider the case in which additional processors are used for replication. As-
sume that each of the p components is replicated on R hosts. A computation step is
complete when at least one of the R replicated processes of each component finishes
its computation. Therefore, by the time a computation step is done, there could still
be some replicas of a component that have not finished their computation because
of an earlier transient failure of their host processors. To benefit from replication
in the subsequent steps, replicated processes on currently available processors that
have not yet finished their computations in the current step must be brought up to
par with the leading process. To this end, the leading process communicates the
computation state to lagging processes which use the data to update their own com-
putation state. The cost of this operation depends on the size of the computation
state and on the number of lagging processes.

The available and nonavailable periods form an alternating renewal process [21].
In the steady state, the probability of finding the processor in an available state is
given by t,/(t. + t,). The average number of processors available in steady state,
R, is given by St d ( ? ) (tatﬁtn)i (tatﬁtn)R_i =k (tatﬁtn)'

The cost of communicating the computation state to the lagging replica of

a component process over k steps is kg(R' — 1)Sy/p. The cost of communicating
the computation state over all the component processes depends on the properties
of the communication medium. If there are independent communication channels
between the processors, then communicating the computation state to the replicated
processes can be done in parallel. In this section, we assume an Ethernet-based
network which sequentializes communication of the computation state. Hence, the
corresponding cost is kg (R’ — 1) Sq.

Further, replication also affects the cost of communication internal to the

running parallel program. When each component is replicated R times, the amount
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of communication increases at least R-fold. Hence, the mean finishing time of the

parallel program is

T Tt (T \F?
kT (1 + bn (—) ) +1gRC + kg(R' —1)S, (4.2)

P 2R \ pt,

For a scalable network, g(R'—1)S; < % < t,. This expression indicates that actively
replicating processes is efficient and scalable only when the amount of communica-

tion and the size of computation state are relatively small.

4.5 Parallel Computations Using Failure-Recovery Scheme

An approach based on failure recovery can be used to improve the efficiency of
synchronous parallel programs on transient processors. In this scheme, no processes
are replicated. The scheme relies on the assumption that one of the processes is
on a host owned by the user and, hence, not subject to the transient failures. We
refer to this process as the master process. When a participating processor becomes
unavailable, it communicates its computation state to the master process. The
master process creates a new process and restores its state to that of the failed
process so that the newly created process performs the necessary computations in
place of the failed process. The new process is migrated to another host if one is

available.

4.5.1 Finishing Time of a Parallel Program Using Failure-Recovery

In this scheme, failure recovery is always possible since a reliable (master)
process is responsible for failure recovery. However, this also makes failure recovery
strictly sequential and the finishing time depends on the number of failures. For each
failure, the recovery time is the sum of the cost of communicating the computation
state to the master process and the cost of executing the computations on behalf of
the failed process. For large values of p and T < t,, the mean number of processor
failures is given by py = % Thus the mean number of failures increases with
increasing problem size. The cost of communicating the computation state is ¢Sy/p

for each failed process. In addition, the failed processes should be migrated to new
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hosts if available. Assuming the availability of a new host for each failed process,
the overall finishing time will be () (9S4 + T + gala).

The finishing time of a parallel program with £ computation and [ commu-
nication steps using the failure-recovery scheme based on lazy data replication and

lazy computation replication is

T
(t—) (kgSa + KT + kgaly) + 1gC (4.3)

a

Thus the scheme is not scalable as the number of failures and the cost of recovery

increase with increasing problem size.

4.6 Parallel Computations Using Adaptive Replication

A variation of the failure-recovery scheme, proposed in [55], uses eager data
replication and lazy replication of computations. In this scheme, each process is
ready to act as a warm backup for one or more of its peers. This is achieved by
eager replication of the computation state as explained below. At the beginning of
each computation step, each process communicates its computation state to one or
more of its peers, called the backup processes, before starting its own computations.
In the event of the failure of the sender process (due to unavailability of the sender’s
host processor), one of the backup processes can replicate the computations of the
failed process using the computation state received from that process. The partic-
ipating processes are arranged in a logical ring topology and follow a protocol to
ensure that the computations of the failed processes are performed in an orderly
manner without duplication. The computation step is complete when all the com-
putations are successfully completed by either the respective component processes
or their backups. The number of backup processes assigned to each process is called
the replication level, denoted by R. It is the number of processes at which the com-
putation state of each process is replicated. Conversely, it is also the number of
peer processes for which a process can act as a backup. It defines the maximum
number of consecutive transient failures of processes, according to the order of the

processes in the logical ring topology, that the data replication scheme can toler-
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ate. Failure of more than R consecutive processes will force the processes to wait
till one of the host processors recovers. This approach does not use any additional
processors since no processes are replicated; computations are replicated only when
a component process has failed. The investment is data replication whose main cost
is the additional memory required for replication and the communication cost asso-
ciated with sending the state of each subcomputation to peer processes. The cost
of replicating the computation state can be reduced in some cases by incremental
saving of the computation state. Incremental state saving has been used in discrete
event simulation to reduce the cost and storage associated with restoring the state
of a simulation object during rollback in optimistic protocols [67].

In this scheme, recovery of a failed process is performed by a peer process on an
available processor. The recovered process initially runs on the host machine of the
process that performed the recovery. This results in reduced parallelism which must
be avoided if possible. A scheme to exploit adaptive parallelism, therefore, should
provide for migrating the recovered processes to new available hosts. However, the
scheme allows the parallel computation to proceed with the reduced parallelism if
no new machines are available. In practice, the recovered process is migrated to a
new available host as soon as one is available. The scheme thus allows the parallel
computation to adjust to the number of machines currently available. We refer to

this scheme as an adaptive replication scheme.

4.6.1 Performance of Adaptive Replication Scheme

For the purpose of this analysis, we assume that the computation state of a
process is available as a consecutive array of bytes. We refer to this as the primary
data block. The cost of data replication is the cost of communicating the primary
data block to a peer process. The cost of data replication is linear in the size
of the primary data block. However, since all the component processes attempt
to communicate the primary data block in parallel, the cost of data replication
depends on the characteristics of the communication medium. An Ethernet-based
network has a fixed bandwidth that does not scale with the number of processors

used. Such a network limits the scalability of the data replication scheme and may
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limit the amount of parallelism in a parallel application using data replication. If
there are dedicated communication channels between the processors so that the
network bandwidth scales with the number of processors used and the primary data
blocks can be communicated in parallel, the data replication scheme scales as well.
Communication media employing new technologies such as the ATM (Asynchronous
Transfer Mode) allow a higher degree of parallelism thanks to their larger bandwidth.
To reduce the cost of data replication, the adaptive replication scheme seeks
to overlap the communication associated with data replication with the local com-
putation. Data replication can be done without significant overhead as long as the
time taken for communicating the primary data block is less than the time of com-
putation, under the assumption of overlapped communication and computation. If
g is the relative cost of communication compared to local computation, we require
that RgSy < T/p for a fixed bandwidth communication medium and RgS,; < T for
a communication medium whose bandwidth scales with the number of processors
used. This limits the parallelism to Rig(T/ Sa) for a network with fixed bandwidth.
Note that (7/S4) is the number of operations on a unit size data item in the compu-
tation step. Therefore, data replication is advantageous for computation intensive
parallel applications. Note that a similar situation exists in the case of the full pro-
cess replication scheme, where each of the lagging processes must be updated with
the computation state of the leading process. Since this update can occur only after
the completion of the computations by the leading process, this data communication
cannot be overlapped with the computation. Further, in the full process replication
scheme, the computations of all but one of the replicated processes are not used.

The following analysis makes these notions more concrete.

4.6.1.1 Computation Dominant Applications

In this section we consider the performance of the adaptive replication scheme
for applications in which the cost of data replication, expressed in O-notation, is
no more than than the local computation. Hence, the finishing time of the step is
within a constant factor of the local computation. Assuming a replication level of

R, we distinguish three cases for the execution of a computation step: execution



62

of the step with no transient failures, execution with more than R failures and
execution with at most R failures. In the first case of failure free execution, execution
time is given by T = %; the probability of no component failures is given by
(e*tT_rf)” — ¢ 7. In the second case the computation can proceed only after a time ¢,
since the number of failures is more than the maximum number of failures that can
be tolerated by the adaptive replication system. The execution time in this case is
%-i—tn and the probability of failure of R+1 or more successive component processors
is p(32)"" = & ()™, This is an optimistic measure since additional processes
can fail during the recovery of other failed processes. In the third case execution
time of the computation step depends on the number of successive processor failures.
Since the maximum number of successive processor failures the adaptive replication
system can tolerate is R, the worst-case execution time is given by (R + 1)% + T,
where T, = gqlq4/p is the cost of migrating the failed process to a new available
host. Note that since process recovery can proceed concurrently with migration of
a recovered process, we charge for only one migration. The mean execution time

of the computation step when using adaptive replication scheme is given by the

weighted average of the three cases:

negte (o)) (e em) £ (- (1)) o

Large Computations

We are interested in scalability of large computations, defined as those for
which the total computation in a step is comparable to or larger than the mean
available period, we have the following expression for the mean execution time.
Note that, even though 7' is not small compared to t,, we can choose p such that

%<<ta.
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From the above expression, the scheme is scalable for large computations as
long as p (7;—(/;”)1z #<(R+1)and T, < (R+ 1)% when data replication is scalable.
These two constraints allow us to choose suitable values for the degree of parallelism
p and the replication level R to maintain scalability. Since t,, and ¢, are comparable,
the two constraints are satisfied when we choose p and a corresponding value for
R such % <p < (R+ 1)% From this expression, we get a range of values
for the degree of parallelism, p. This range is nonempty when 7, < (R + 1)t,.
This expression reflects the architectural requirements for scalability of the adaptive
replication scheme. Since component processes can fail in different groups, recovery
and migration of processes in different groups can occur concurrently. Therefore,
a parallel architecture with low migration cost and a scalable network can ensure

scalable parallel computations using the scheme.

4.6.1.2 Data Replication Dominant Applications

We now consider applications in which the cost of data replication exceeds the
local computation and hence the finishing time of the computation step is deter-
mined by data replication. Again, we analyze three cases introduced in the previous
subsection. The execution time for the first case is given by ¢S;. For the second
case, the execution time is ¢S, +1t,. Similarly, for the third case, the execution time
is ng—i-R% + T, where T, is the cost of migrating the failed process to an available
host. The mean execution time is

T (RT tn [T\ B T
-l R T (= 4.
ng+p<ta)+pR (t) T m(ta) (4:5)

Finishing time of a parallel program with £ computation and / communication

steps is given by

kT /RT kt, (T T
kqS —( ) —”(—) KT, (-) 14C 4.6
950+~ )+ or L + )t (4.6)

Since the cost of data replication exceeds the computation time, the scheme
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will not be scalable for data replication dominant applications for an Ethernet based
communication medium. However, if the communication medium scales with the
number of processors used (for example, with connections between every pair of
processors), then data replication can be done in parallel by all the processors and

this scheme will be scalable as long as O(34) = O(1).

4.7 Summary

In this chapter we analyzed the finishing time of a parallel computation execut-
ing on a network of transient processors. We also analyzed the program execution
time under various approaches including the adaptive replication scheme. Based on
the analysis, we classified parallel computations into two categories: computation
dominant and replication dominant. Computation dominant applications can be
executed on nondedicated workstations without loss of efficiency. Classification of
a parallel computation into these categories depends not only on the characteristics
of the parallel computation, but also on the properties of the communication net-
work. To achieve efficient computation of a wide variety of parallel applications on
nondedicated workstations requires a network with low latency and high bandwidth.
This is also the requirement for efficient parallel computations on dedicated work-
stations. Therefore, by investing more in the network connecting the workstations,
we can achieve efficient parallel computation on nondedicated as well as dedicated

workstations.



CHAPTER 5
ADAPTIVE PARALLELISM IN THE

BULK-SYNCHRONOUS PARALLEL MODEL

In this chapter, we discuss the adaptive replication scheme within the framework
of the Bulk-Synchronous Parallel model [56]. We describe the protocol used by
the processes participating in the BSP computation for replication of data and for
recovering the failed computations. We also describe the algorithm used by the

participating processes.

5.1 Adaptive Replication Scheme

An overview of the adaptive replication scheme is given in the previous chap-
ter. As explained in Section 4.6, the adaptive replication scheme relies on executing
(replicating) the computations of a failed process on another participating processor
to allow the parallel computation to proceed. Note that in a synchronous computa-
tion, the computation states of the participating processes are consistent with each
other at the point of synchronization and therefore, by starting with the state of a
failed process at the most recent synchronization point and executing its computa-
tions, we can recreate the state of the failed process and execute its computations.
This allows the parallel computation to proceed in spite of the failure of some of the
participating processes. This approach takes into account the nature of the comput-
ing environment in NOWs, in which the machine cycles are relatively inexpensive
since we are mainly using idle machine cycles. Replicating the computations of
failed processes is made possible by eagerly saving the computation state® (C,) of
each process on a peer process at the beginning of the computation step.

In our approach the computation state is eagerly replicated and the computa-
tions are replicated only as needed by the failure of one or more of the participating

processes. Our approach can therefore be characterized as eager replication of com-

3The precise definition of what constitutes the computation state is given in the next chapter.
Not all of the computation state needs to be replicated.
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putation state and lazy replication of computations.

5.1.1 Assumptions

The adaptive replication scheme as described in the following sections assumes
that one of the processes is on a host owned by the user and hence this process is
immune to transient failures. We refer to this reliable process as the master process.
The master process coordinates recovery from transient failures without replicating
for any of the failed processes. It should be noted that the assumption of existence
of a reliable process is not necessary for the correctness of the protocol. Using the
standard techniques from distributed algorithms, synchronization can be achieved
over the virtual ring regardless of transient failures. However, the master process is
a convenient solution for a majority of applications, so we used it in this prototypical
implementation of the system.

For the prototypical system implemented, we assume that supersteps that
make use of replication contain computation only. This is not overly restrictive be-
cause, in the BSP model, data communicated in a superstep are guaranteed to be
received at the destination process only by the end of the superstep and can only
be used in the next superstep. Hence a superstep involving both computation and
communication can always be split into a computation superstep and a communi-
cation superstep. This assumption greatly simplifies the design of the protocol for
the recovery of failed processes. Further, the protocol assumes a reliable network,

so a message that is sent by a process will always be received at the destination.

5.1.2 Protocol for Replication and Recovery

The participating processes other than the master process are organized into
a logical ring topology in which each process has a predecessor and a successor.
Recall that in our model based on BSP, computation consists of a sequence of syn-
chronized computation and communication supersteps. In a computation superstep,
each process in the ring communicates its computation state, Cs to one or more of
its successors, called backup processes, before starting its own computation. Each

process also receives the computation state from one or more of its predecessors.
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When a process finishes with its computation, it sends a message indicating
successful completion to each of its backup processes. The process then checks to
see if it has received a message of completion from each of its predecessors whose
computation state is replicated at this process. Not receiving a message in a short
timeout period is interpreted as the failure of the predecessor. The process then
creates new processes - one for each of the failed predecessors. The computation
state of each new process is restored to that of the corresponding failed predecessor
at the beginning of the computation step. To do that, the restoring process uses
the computation state received from that predecessor. The process then performs
synchronization for itself. Each of the newly created processes performs the compu-
tations on behalf of a failed predecessor and performs synchronization on its behalf

to complete the computation step.

5.1.3 Process Migration

As explained above, computations of the failed processes are replicated by
surviving processes which create new processes for this purpose. In general, such a
newly created process assumes the identity of the corresponding predecessor and can
continue participating in the parallel computation as a legitimate member. However,
for the sake of better performance, this renewed process is migrated to a new host if
one is available. We use a checkpoint based migration scheme to migrate the process

to the new host machine. The migration scheme is explained in chapter 6.

5.1.4 Tolerating Multiple Failures

Replication of computations is made possible by eager replication of the com-
putation state of a component process on one or more peer processes as explained
above. Recall from Section 4.6 that the number of successors on which the computa-
tion state of a component process is replicated is referred to as the replication level
(R). It is also the number of predecessors from which a process will receive the com-
putation state. A process can therefore act as a backup to any of the R predecessors
from which it receives the computation state. It is easy to see that the replication
level defines the maximum number of adjacent process failures (according to the

ordering of the processes in the logical ring topology) that the system can tolerate.
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Simultaneous failure of more than R adjacent processes will force the processes to
wait till one of the host processors recovers. A higher level of replication increases
the probability of recovery from failures, but in networks with a fixed bandwidth,

it also increases the overhead during normal (failure free) execution.

5.2 Adaptive Replication Algorithm

In this section we describe the algorithm for the adaptive replication scheme.
Each of the participating processes follows the algorithm to replicate the data, per-
form local computation, detect the failure of predecessors in the logical ring topology,
perform recovery for any failed predecessors, and finally to perform synchronization.

Consider a parallel application with p component processes. In a computation
step, each component process performs some local computation on the local data
(the computation state). In the adaptive replication scheme each component process
communicates the computation state to one or more backup processes as determined
by the replication protocol. Thus each process receives the computation state from
each of the processes for which it is acting as a backup. In the normal execution, each
process performs computations on its local data. When replicating for a predecessor,
the process performs computations on the computation state data received from its
predecessor.

Figure 5.1 illustrates the replication protocol for a replication level (explained
below) of one. The adaptive replication algorithm is shown in figure 5.2. Each
of the participating processes executes the adaptive replication algorithm in each

superstep.

5.2.1 Data Replication
At the beginning of a computation step, each process communicates its com-
putation state to its successor, which acts as the backup process. Each process also

receives the computation state of its predecessor, which it saves as a backup copy.
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Figure 5.1: The Adaptive Replication Scheme illustrated for a replication
level of one.

5.2.2 Primary Computation

Each process then performs local computation using its computation state. A
process suspends itself anytime during the local computation if it receives a signal
indicating that the host machine is unavailable. When a process completes its local

computation, it sends a message indicating successful completion to its successor.

5.2.3 Secondary Computation

Upon successful completion of the primary computation stage, each process
checks to see if its predecessor has successfully finished its computations. This veri-
fication is based on the receipt or absence of the successful completion message from
the predecessor. A suitable timeout period may be applied before deciding that the
predecessor has failed. When a participating process decides that its predecessor
has failed, it creates a new process to replicate the computations of the failed pre-

decessor. The new process restores the computation state of the failed predecessor
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using the state data it has received at the beginning of the computation step. It
then performs the local computation on behalf of the predecessor. The child process
aborts the computation any time it is informed by the parent that the predecessor

has successfully finished its computations.

5.2.4 Conclusion

Each surviving process initiates synchronization for itself. Likewise, each of
the newly created processes that replicated for a predecessor initiates synchroniza-
tion on behalf of the predecessor. The processes then wait for the synchronization
to complete. When the synchronization is complete, each of the surviving processes
receives information on the list of processes that successfully completed synchroniza-
tion. Based on this information, the surviving processes inform their child processes
either to continue or to terminate. Upon hearing from the parent process to con-
tinue, the child process will assume the identity of the failed predecessor and will

continue to participate in the parallel computation as a legitimate member.

5.3 Summary

In this chapter, we presented our approach to adaptive parallelism in the Bulk-
Synchronous Parallel model. The synchronous nature of the BSP model simplifies
the scheme by eliminating the need for a consistent checkpoint and by providing
a convenient point for checking process failures. The protocol for replication and
recovery assumes no knowledge of the transient failures and thus can be extended to
deal with real processor failures. We also presented the replication algorithm used

by the participating processes.
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e Data Replication

1. Communicate the computation state to the successor.

2. Receive the computation state from the predecessor.
e Primary Computation

1. Perform local computation.

2. Send a FinishTask message to the successor indicating successful
completion of local computation.

e Secondary Computations

1. Verify if the predecessor has successfully finished its computation.
Verification of successful completion of the predecessor is based on
the receipt or absence of a FinishTask message from the predecessor.

A suitable timeout period may be applied before checking for the
message from the predecessor to account for differences in processor
speed or delays in the communication network.

2. If the predecessor has not finished its computation, then create a
new (child) process to replicate the computations of the failed pre-
decessor. The child process does the following:

(a) Restore the computation state of the failed predecessor at the
beginning of the computation state using the computation state
received from the predecessor in step 1.

(b) Perform the local computations on behalf of the predecessor.

(c) Initiate synchronization on behalf of the predecessor.

(d) Abort the computation of the predecessor and exit at any time
if a signal indicating successful completion of the predecessor is
recceived from the parent process.

Figure 5.2: Adaptive replication algorithm (continued on the next page)
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e Conclusion

The superstep is complete when synchronization is initiated on behalf of
each participating process either by the original component process or by
its successor.

Each surviving process does the following:

1. Wait for the successful completion of synchronization.

2. If the child process which has replicated for the predecessor has
successfully completed synchronization, inform the child process to
continue; otherwise inform the child process to abort.

The child process does the following:

1. Wait for a signal from the parent to continue or to abort, based on
whether or not synchronization by the child process is successful.

2. Upon being informed by the parent to continue, the child process
does the following:

— Assume the identity of the predecessor and continue in place of
the predecessor.

3. Upon being informed by the parent to abort, the child process ter-
minates.

Figure 5.3: Adaptive replication algorithm (continued from the previous page)



CHAPTER 6
DESIGN AND IMPLEMENTATION OF THE ADAPTIVE

REPLICATION SYSTEM

In this chapter we discuss the design and implementation of the adaptive replication
scheme (ARS). ARS was designed as a set of layers on top of an extended version
of the Oxford BSP Library [48]. We describe the extensions to the library and the
design of the runtime system consisting of the replication and user layers [57]. We

also describe a monitor to check the status of the host machines.

6.1 The Computation State

Replicating the computations of a failed process is made possible by eagerly
saving the computation state of each process on a peer process at the beginning
of the computation step. In Section 4.2.2.2, we defined the computation state of a
component process P; as the collection of all the data that is necessary and sufficient
in order for another component process to reconstruct the state of P;. The goal is
to be able to execute the computations of P;. However, not all of the computation
state needs to be replicated. In this section we refine the amount of computation
state of a component process that needs to be replicated to enable recovery of the
component process by a peer process.

We need to communicate only the part of the computation state that is distinct
in each component process, since the common part is readily available at the process
performing the recovery. The part of the computation state that is distinct in each
component process is referred to as the Specific System State, SSS. That part of the
computation state that is common across the processes is referred to as the Common
System State, CSS. Thus the computation state of a component process is the sum
of the specific and common system states. The specific system state needs to be
saved on a peer process; the common system state needs to be saved only if it is
modified in the current superstep. However, unlike the SSS, which must be saved

on a backup process, the CSS can be checkpointed locally on each process. Thus
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the cost of data replication includes the cost of communicating the specific system
state and the additional memory associated with the checkpointing of specific and
common system states.

Computations in which it is possible to recompute some or all of the computa-
tion state can reduce the cost of data replication by specifying the code to recompute
the state. We refer to this code as the Recovery Function. In those applications, ex-
ecution of the recovery function is performed after restoring the computation state
(specific and common system states) from the backup. The recovery function is
also useful in applications whose computation state is not directly accessible. For
example, in an application using a vendor supplied random number generator, the
computation state may include the state of the random number generator which
is encapsulated in the library and not directly accessible to the user. A recovery
function using the function calls from the vendor library will be able to recreate
the computation state in such a case. We have used the recovery function to suc-
cessfully recompute the computation state in an application using such a random
number generator. A recovery function is also used to recompute the computation

state in a graph search algorithm discussed in Section 7.2.

6.2 Design of the Adaptive Replication System

The Adaptive Replication System is designed within the framework of the BSP
model [70] and developed using the Oxford BSP Library [48, 49]. ARS consists of
dynamic extensions to the Oxford BSP library and the adaptive replication scheme.
The adaptive replication scheme is designed in two levels of abstraction: a replication
layer and a user layer. The replication layer implements the functionality of the
adaptive replication scheme including the protocol for recovery and replication, as
a set of primitives. However, these primitives are not directly accessible to the
applications; the functionality provided by the replication layer can be accessed only
through the user layer. By designing the runtime support in two layers, we intend
to insulate the applications from changes in the implementation. By implementing
the replication layer for other architectures, we can maintain the portability of

applications using our library.
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/* Process Management */

bspstart(int arge, char® argv||, int maxprocs, int id, int nprocs);
bspfinish();

/* Synchronization */

bspsstep(int stepid);

bspsstep_end(int stepid);

/* Communication */

bspstore(int pid, char* from, char* to, int nbytes);

bspfetch(int pid, char* to, char* from, int nbytes);

Figure 6.1: The Oxford BSP Library for the C language

6.2.1 Extensions to the Oxford BSP Library

The Oxford BSP Library implements a simplified version of the Bulk-Synchro-
nous Parallel model. Figure 6.1 shows the library functions for the C programming
language. The Oxford BSP Library has been extended to provide dynamic process
management and virtual synchronization. The extensions include the following fea-
tures: the component processes can be terminated at any time; new processes can
be created to join the computation; and component processes can perform synchro-

nization for one another.

6.2.2 Implementation of the Protocol for Replication and Recovery
The participating processes other than the master process are organized into a
logical ring topology in which each process has a predecessor and a successor. Each
process in the ring acts as a backup process for its predecessor. Each process in the
ring communicates its specific system state to its backup process before starting
its own computations, where it is stored as a backup copy (SSS-BACKUP). Each
process also saves the common system state as a local checkpoint (CSS-BACKUP).
When a process finishes with its computations, it sends a message indicating suc-
cessful completion to its backup process. The process then checks to see if it has
received a message of completion from its predecessor whose computation state is
replicated at this process. Not receiving a message in a short timeout period is
interpreted as the failure of the predecessor. The backup process then creates a new
process and restores the computation state of the new process to the computation

state of the predecessor at the beginning of the computation step using the backup
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copies of the specific and local system states saved at this process and the recovery

function. Restoring the computation state of the new process involves

e restoring the specific system state from the backup copy received from the
predecessor (SSS-BACKUP),

e restoring the common system state from the local checkpoint (CSS-BACKUP),

and
e executing the user supplied recovery function.

The newly created process executes the computation step on behalf of the failed
predecessor and performs synchronization on its behalf to complete the computation

step.

6.2.3 Adaptive Replication Scheme: Replication Layer
The replication layer implements the functionality of the adaptive replication
scheme, including the protocol for replication and recovery. It provides the following

functionality for a component process:

e Replicate the specific system state on the backup process as determined by

the replication protocol.
e Checkpoint the common system state locally on the same process.

e Detect the failure of the process whose computation state is replicated on this

process.

e Create a new process to execute the computations of a failed process. The

new process created is a child of the process performing the recovery.

e Restore the computation state of the newly created process from the backup

copies of the specific and local system states.
e Execute the recovery function supplied by the user.

e Perform synchronization on behalf of a failed process.
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e Terminate lagging processes whose computations have been successfully repli-

cated.

e Migrate the process to another available host.

The replication layer allows a process to detect and replicate for failed pro-
cesses. However functionality of this layer is not directly accessible to the user, but

only through the user layer.

6.2.4 Adaptive Replication Scheme: User Layer

The user layer provides the application programming interface (API) for the
Adaptive Replication System. It includes primitives that transparently allow access
to the functionality of the replication layer. The user layer provides the following

constructs:

e Constructs to specify data to be replicated and memory management for the

replication data.

The construct bsp_replication_data (see Figure 6.2 for the full syntax) al-
lows the user to specify static or dynamic storage for the replication data. The
user can specify static or dynamic storage for replication data by explicitly pro-
viding a valid location for the store parameter. When no storage is explicitly
specified by the user (by passing a 0 value), automatic memory management
is assumed and the system allocates dynamic storage for the replication data.

It keeps track of the dynamic storage across process replications.

e Constructs to specify computation state.

A predefined structure BspSystemState can be used to declare variables that
hold the specific or common system state. The function bsp_init_system -
state can be used to initialize a BspSystemState variable. Using the function
bsp_set_system state, the state variable can be made to hold variables that
comprise the computation state (specific or common system state). The spe-
cific and common system states can be specified for a computation superstep
using the constructs bsp_specific_system_state and bsp_common_system_ -

state.
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e Constructs to specify a computation superstep.

The constructs bsp_comp_sstep and bsp_comp_sstep_end are used to delimit a
computation superstep. The replication and recovery mechanism is embedded
into these constructs; the process of data replication, detection of failures and

recovery is transparent to the user.

e Recovery Function.

The predefined function RecoveryFunction is executed after restoring the
computation state of a failed process from the backup. The user must supply
the code required for any operations required for recovering the computation

state of a failed process. Specification of the recovery function is optional.

Figures 6.2 - 6.5 illustrate the use of BSP constructs for adaptive parallelism.
These examples were taken from a C++ implementation of a plasma simulation
using the adaptive replication system.

Figure 6.2 shows the constructs provided by the user layer. These constructs
are described above.

Figure 6.3 illustrates the use of these constructs. Case (a) illustrates the spec-
ification of a variable plasma_region as the replication data for which static storage
is available in plasma region_backup. The construct allows the user to supply a
string ¢ ‘plasma_region’’, which can later be used to refer to this replication data
(refer to Figure 6.4). In case (b), the replication data consists of a vector of ob-
jects of a user defined type ChargedParticle. No static storage is available for this
replication data (specified by a 0 for storage). The tag for the replication data is
““PLASMA_P0S’’. In case (c), the replication data consists of each of the SYSLEN_MX
arrays, each a 2 dimensional array with no static storage available for replication
data. All the replication variables use the same tag FORCE_FIELD X, however an in-
dex variable <i> is used to distinguish between the SYSLEN_MX replication variables.

Figure 6.4 illustrates the use of the constructs to specify the computation
state of a component process. The construct BspSystemState is used to create a
variable to hold the computation state. The variable is initialized with the construct

bsp_init_system state. The construct bsp_set_system_state is used to include
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each of the replication data defined in Figure 6.3 in the computation state. Note
the use of tags to refer to the replication data.

Figure 6.5 illustrates the use of the extended BSP construct for the computa-
tion superstep. The specific and local system states must be specified for each com-
putation superstep. The computation superstep requires no additional constructs;

adaptive replication and recovery of failed computations are done transparently.

/* Constructs to specify a computation superstep */
bsp_comp_sstep(stepid);
bsp_comp_sstep_end(stepid);

/* Constructs to specify replication data and allocate storage */

bsp_replication_data(void* data, long nbytes, void* store, char* tag,
int subscript);

bsp_setup_replication_environment();

/* Constructs to specify Computation State */

struct BspSystemState;

bsp_init_system_state(BspSystemState* bss);
bsp_reset_system_state(BspSystemState* bss);

bsp_set_system _state(BspSystemState* bss, char* tag, int subscript);
bsp_specific_system state(BspSystemState™ bss);

bsp_common system_state(BspSystemState* bss);

void RecoveryFunction();

Figure 6.2: Adaptive parallel extensions to the Oxford BSP Library (User
Layer)

6.3 Implementation of the Adaptive Replication System
(Replication Layer)

We have implemented the adaptive replication system as additional layers on
top of the Oxford BSP library. The ARS is available as a library of C functions
and can be used by parallel applications in the same way a BSP library is used. In
implementing the prototype, we have assumed a replication level of one. That is, a

process can act as a backup for its immediate predecessor only. The prototype is

implemented on Sun Sparcstations using the Solaris (SunOS 5.5) operating system.
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/* case (a): (static) storage available for replication data */

bsp_replication_data((void*) &plasma region, sizeof(plasma. region),
(void*) &plasma region_backup,
“PLASMA_REGION”, -1);

/* case (b): storage to be allocated by the BSP library */
bsp_replication_data((void*) elec_pos, PTMAXNP * sizeof(ChargedParticle),
0,“PLASMA_POS”, -1);

/* case (c): 2 dimensional array, with no static storage for replication data */
for(i=0; i < SYSLEN_MX; i++)
bsp_replication_data((void*) ForceFieldX]i], SYSLEN_Y*sizeof(Scalar),
0,“FORCE_FIELD X, i);

Figure 6.3: Use of extended-BSP constructs to specify replication data

BspSystemState plasmaState = new BspSystemState;
bsp_init_system_state( plasmaState );
/* Specify the data for the state variable, using symbolic names */
bsp_set_system state(specific, “PLASMA REGION”, -1);
bsp_set_system state(specific, “PLASMA _POS”, -1);
for(i=0; i < SYSLEN_MX; i++)

bsp_set_system state(specific, “FORCE_FIELD X" i);

Figure 6.4: Use of extended-BSP constructs to specify computation state

It makes use of the checkpoint based migration scheme of Condor [10] for process
migration. It should be noted that our protocol for adaptive replication scheme can
be applied to other message passing libraries such as MPI [50]. The only requirement
is that the application be written in the BSP-style, using a sequence of computation
and communication supersteps.

The replication layer forms the core of the adaptive replication system. It is
built on top of the extended BSP library and implements all the functionality of the
adaptive replication system listed in Section 6.2.3. In this section we describe the

implementation of some of the important functions performed by this layer.

6.3.1 Failure Detection and Replication of Computations

In the adaptive replication scheme, a process starts replicating for its predeces-

sor when it concludes that its predecessor has failed. Failure detection is based on
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bsp_specific_system state( plasmaState );
bsp_local system state( localCharge );

bsp_comp_sstep( bsp-step );
CalcEField( vpm, energy );
InitChargeDensity();

energy.ke( 0.0 );

Advance( elec_pos, elec_vel );
bsp_comp sstep_end( bsp_step );

Figure 6.5: A BSP computation superstep with adaptive replication.

the receipt of a message from the predecessor indicating successful completion. Not
receiving the message is interpreted as the failure of the predecessor. Failure detec-
tion is a tricky issue in distributed system design as there is no way to distinguish
between a failed process and a process that is simply slow. In a heterogeneous net-
work the computations on individual workstations often proceed at different speeds
owing to differences in processor speed, characteristics of work load on the individ-
ual machines, etc. To compensate for the differences in processing speed, a grace
period can be used to allow a slow predecessor to complete its computations before
concluding that the predecessor has failed. The grace period can be specified by the
user in an include file. However, using a grace period also delays replicating for the
predecessor when required. Our implementation allows the user to specify the grace
period. However, based on experimental results, we have not used a grace period
with the applications we tested. A process starts replicating for its predecessor if
it has not received a message of successful completion from the predecessor by the
time it finishes its own computations. However, to avoid unnecessary migrations, we
abort the replicated process and allow the predecessor to continue if the predecessor
completes its computations before the replicated process or if it completes before
the synchronization is achieved. This results in a nice property of the adaptive
replication scheme - any processor that is twice as slow as its successor and slower
than all other processes participating in the parallel computation is automatically
dropped from the parallel computation and a new available host is chosen in its
place. This allows the application to choose faster machines for execution from the

available machines.



82

6.3.2 Process Migration

When the replicated process finishes its computation and successfully com-
pletes synchronization on behalf of the failed predecessor, it assumes the identity of
the predecessor and can continue in the parallel computation as a legitimate mem-
ber. The computation can continue albeit at a reduced degree of parallelism, as
there are now two processes on the same host. However we would like to maintain
the parallelism by migrating the process to a new host if one is available. Migration
is achieved by checkpointing the process and restarting the process from the check-

point on the new host. Checkpointing and restarting are done using Condor [44].

6.3.3 Coordination of Distributed events

The adaptive replication system implements a distributed fault-tolerance sys-
tem. The ARS needs to coordinate and control various events that occur at the
component processes. Coordination and control of the events is handled by a com-

bination of signals, messages and locking. The following is a list of events that are
handled by ARS.

e Completion of the computation by a component process is communicated to
the successor by a message indicating successful completion. Not receiving the

message is interpreted as the failure of the predecessor.

e Migration of a process to another available host is achieved by checkpoint-
ing the process and restarting the process from the checkpoint on the target
host. Restarting the process cannot start before the checkpointing is complete.

Coordination of these events is handled through file locking.

e A process delayed due to a transient failure of its host and whose computa-
tions have been successfully replicated needs to be terminated. Termination
of a lagging process is done by sending it a SHUTDOWN message. A process

terminates itself upon receiving a SHUTDOWN message.

e A newly created process replicating a delayed process needs to be terminated if

the delayed process manages to finish its computations before the new process.
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Termination of the replicated process is done by the parent process which

created the new process.

6.4 Host Monitor

The status of the host machines is monitored by the host monitor. A monitor
daemon exists on each of the host machines. The monitor periodically collects
information on the usage of the machine such as keyboard and mouse activity of the
console user and load on the machine. This information is obtained from the kernel
structures for accounting information. The monitor determines the host status based

on these data using the algorithm presented in the next section.

6.4.1 Algorithm to Determine Host Status

The host status is determined based on the activity of the console user as well
as the load on the host machine. Figure 6.6 shows the algorithm (written in pseudo
code) used to determine the host status. We will explain the algorithm briefly here.

The console is considered to be idle if there is no user on the console or if
the console user is idle for at least a specified period of time (MIN_IDLE_PERIOD).
In addition to the console activity, the load average within the last one minute is
also considered to determine the host status. Different load thresholds are used
for idle and active consoles, with the load threshold when the console is active
being less than the corresponding load threshold when the console is idle. Thus
the parameter LOAD_THRESHOLD_FOR_ACTIVE_CONSOLE has a value that is less than
the value of LOAD_THRESHOLD_FOR_IDLE_CONSOLE. The number of consecutive peri-
ods in which the average load is less than the threshold load values is maintained
(Low_load_period_count). If the load average is more than the predetermined
threshold value, then the host status is determined to be unavailable. However,
if the load average is less than the threshold load value, then the host status is
determined based on the number of consecutive periods in which the load average
is less than the threshold. If this count is less than a specified number (MIN_COUNT),
then the host status is determined to be unavailable. In all other cases the host

status is determined to be available.
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Since the remote process imposes additional load on the host machine, a lower
load threshold is used for new processes that want to enter the host machine than
for remote processes that are already executing on the host. This avoids the host
machine becoming unavailable as soon as a remote process is allowed to execute on

the host.

6.5 Summary

In this chapter we presented the protocol used by the participating processes
to detect failures and replicate computations of failed processes. We presented the
design of the adaptive replication scheme within the framework of the BSP model.
We also described the implementation of a prototype system. We extended the
Oxford BSP library with additional features necessary for the implementation of
the adaptive replication scheme. The adaptive replication scheme was built on top
of the extended BSP library in layers. The layered approach helps to insulate the
application programs from changes to the implementation of the adaptive replication
scheme or the replication protocol. By implementing the replication layer for other

architectures, we can maintain the portability of applications using our library.
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Find the console idle time.

//If (console idle time < MIN_IDLE_PERIOD)
//Then console is not idle

//Else console is Idle

Find the machine load average.
If load_average < LOAD_THRESHOLD_FOR_ACTIVE_CONSOLE
Then
low_load _period_count++;
Else
low_load_period_count = 0;

If the console is idle,
Then
if the load average > LOAD_THRESHOLD FOR_IDLE_CONSOLE
Then
status = UNAVAILABLE;
Else
status = AVAILABLE;
Else //Console is busy
if the load average > LOAD_THRESHOLD FOR_ACTIVE_CONSOLE
Then
status = UNAVAILABLE;

Else
If current status == AVAILABLE
Then
status = AVAILABLE;
Else

low_load _period_count = number of consecutive periods during which
load is less than LOAD_THRESHOLD _FOR_ACTIVE_CONSOLE.
if (low_load period_count < MIN_COUNT)
Then
status = UNAVAILABLE;
Else
status = AVAILABLE;

Figure 6.6: Algorithm to determine the host status




CHAPTER 7
APPLICATION OF ADAPTIVE REPLICATION

SCHEME TO PARALLEL COMPUTATIONS

In chapter 4, we analyzed the performance of the adaptive replication scheme and
categorized parallel applications based on the cost of data replication as compu-
tation dominant and replication dominant parallel computations. To recapitulate,
computation dominant parallel applications are those in which data replication can
be done without a significant overhead and hence the cost of a computation step
is determined by the cost of computation alone. Replication dominant applications
are those in which the cost of data replication adds a significant overhead to the cost
of the computation step. In this chapter we consider the application of the adaptive
replication scheme to parallel computations. We consider two applications that il-
lustrate the performance of the scheme for computation dominant applications and
data replication dominant applications.

The network of workstations used for these experiments consists of Sun Sparc-
stations connected by a 10Mbps Ethernet, which can be considered to be slow com-
pared to the networks available in the market today. Hence, the performance of
parallel applications using our network will be less than the performance which can
be obtained by a faster network. The slow network also affects the performance
of the adaptive replication scheme by increasing the cost of data replication and

migration.

7.1 Plasma Simulation

Section 3.2.1 gives an overview of plasma simulation. Here we describe aspects
of plasma simulation that are relevant to the application of adaptive replication
scheme. The operations in the computation step modify the position and velocities
of the particles and the charge distribution on the grid. Hence, the computation state
data that need to be replicated include the positions and velocities of the particles

and the grid charge. However, at the beginning of each superstep, all processors have

86
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the same global charge distribution and hence the charge data need not be replicated
on a remote host. Using the terminology introduced in Section 6.1, the positions and
velocities of the particles constitute the Specific System State and the portion of the
grid charge on each process constitutes Common System State. Since the grid charge
is modified by the computation step, each process can save this data locally which
it can use to restore a failed predecessor. Checkpointing data locally when possible
reduces the amount of data communicated for data replication. Due to the overhead
associated with the communication of computation state, this application can be
categorized as a replication dominant application (also see discussion in Section 7.3).
In plasma simulation, the computation state data cannot be recomputed and hence

the Recovery Function is empty.

7.2 Maximum Independent Set

The graph search algorithm used to find the maximum independent set of a
graph is described in Section 3.6. Here we will describe the data to be replicated
under the adaptive replication scheme. The adjacency matrix of the original graph
is replicated on each processor and constitutes the common system state. Since
this data is not modified by the computation step, no local checkpointing of this
data is necessary. During local search of a subgraph, each of the processes search a
different subgraph. Data about the subgraph that is being searched locally at each
process constitutes the specific system state at that process. However, the virtual
subgraph used in local search can be recreated from the connectivity information,
the level of recursive search and the identity of the failed process. Hence recovery of a
failed process can be achieved without replicating any computation state data. This

application thus illustrates the performance of a computation dominant application.

7.3 Results

The results presented in this section with the two applications described above
have been obtained with simulated transient processors. (Results on a real network
are presented in Section 7.5.) A timer process maintains the state of the transient

processor - available or unavailable. The duration of the available and nonavailable
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Single || Degree | Dedicated Transient Processors Trans Procs
Proc. of Processors with Adaptive Replication without ARS
Exec Para- Exec Mean Min Max Mean
Time | llelism Time Time | (#Moves) | (#Moves) Time
10300 3 3650 4350 | 3950 (2) | 4790 ( 8) 12400

6 1840 2340 | 1990 (1) | 2900 (10) 12900

12 980 1620 | 1000 (0) | 2700 ( 9) 26650

Table 7.1: Execution times of maximum independent set problem on ded-
icated processors, on transient processors with adaptive repli-
cation and on transient processors without adaptive replica-
tion. For the runs on transient processors with adaptive repli-
cation, number of migrations during the lifetime of the paral-
lel computation (#moves) is listed in parentheses. All times
shown are wall-clock times in seconds.

periods are determined using a random function according to a uniform exponential
distribution. State changes from an available to a nonavailable state and vice versa
are conveyed to the application processes on the host machine via signals.

Table 7.1 shows the execution times of maximum independent set problem on
transient processors using the adaptive replication scheme with ¢, = 40 minutes and
t, = 20 minutes respectively. These values for ¢, and t,, are within the range of values
reported in earlier works [52]. The three columns represent the mean, minimum and
maximum execution times of a number of trials. The measurements were taken on a
network of Sun Sparc 5 workstations connected by a 10 Mbps Ethernet. The degree
of parallelism used in the simulations is much smaller than the number of processors
and therefore, migration to an available processor was always possible.

The execution times of the runs on transient processors using the adaptive
replication scheme were compared with the execution time on dedicated processors
and with execution time on transient processors without using the scheme. The
execution time on a single processor is also shown for reference. As can be seen
from these timings, the runs on transient processors using the adaptive replication
scheme compare favorably with the runs on dedicated processors. Figure 7.1 shows
a plot of these timings.

Our measurements indicate that a significant amount of computation was per-
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Figure 7.1: Plot showing execution times of maximum independent set
problem on transient processors using adaptive replication,
on transient processors without adaptive replication and on
dedicated processors. Execution time on a single processor is
shown for comparison purposes.

formed using idle workstations. As mentioned in 5.1.2, parallel runs using the adap-
tive replication scheme use the user’s own host for one of the processes and use
the idle machines in the network for the remaining processes so that when using a
parallelism of p, a fraction of ’%1 of the total computation is performed by the idle
machines. In this case, a significant proportion of work - for example, 84% when
using 6 processors and about 92% when using 12 processors, was done using the idle

Processors.

Ts
pIp?

T; is the sequential execution time, 7T}, is the parallel execution time and p is the

For the runs on dedicated processors, parallel efficiency is given by where

number of processors. For the runs on nondedicated processors, p is replaced by

ta
ta+tn’

the effective number of processors, Peff = 1+(p-1) since each processor is

available only for a fraction of tatf;tn' For the values of ¢, and ¢, used for these
Tuns, pog = %. For the dedicated runs, parallel efficiency ranges from nearly

100% (for 3 processors) to 88% (for 12 processors). For the nondedicated runs using
adaptive replication, these values range from nearly 100% (for 3 processors) to 76%
at 12 processors. The corresponding values for nondedicated runs without adaptive

replication are 36% and 5%. Thus the adaptive runs are nearly as efficient as the
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dedicated runs and much more efficient than the transient processor runs.

Table 7.2 shows the results of application of the adaptive replication scheme
to plasma simulation with N = 3,500,000 particles. Figure 7.2 shows a plot of
execution time on transient processors with and without adaptive replication for
degrees of parallelism of 4, 8 and 12. These measurements were obtained using
t, = 30 minutes and ¢, = 20 minutes respectively. As mentioned in Section 7.1, due
to the overhead associated with the communication of computation state in each
step, simulation runs on transient processors using the adaptive replication scheme
take longer to execute compared to the runs on dedicated processors. However,
even in this case, adaptive replication scheme is relevant for the following reasons.
The execution time on transient processors with adaptive replication is still much
smaller than the execution time without adaptive replication. Since the duration of
the simulation is less than the mean available period, number of transient failures is
very small and hence their impact on program execution is not significant at small
degrees of parallelism. However, the impact of transient failures grows rapidly with
the number of processors, as is evident from the plot. Parallel efficiency of adaptive
runs as defined above is much higher compared to the runs on transient processors,
especially at larger number of processors. The parallel efficiency of adaptive runs,
as defined above, ranges from 34% on 4 processors to 16% on 12 processors, whereas
the corresponding figures range from 35% on 4 processors to about 2% on 12 pro-
cessors for runs on transient processors without adaptive replication. (We could not
run the simulation on a single processor due to insufficient memory. The values of
parallel efficiency mentioned above are based on a sequential execution time of 3360
seconds, which is estimated from the execution time of a parallel run on 4 dedicated
processors assuming 100% efficiency.) As explained above, simulation runs using
transient processors with the adaptive replication scheme use idle machines for a
significant fraction of their work. Further, the simulation used for our measure-
ments was too large to fit on a single workstation and hence single processor runs
were not even possible. For simulations that are too large to fit on a single worksta-
tion, parallel runs are mandatory. When dedicated machines are not available for

parallel computation, adaptive replication scheme ensures that parallel runs using
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Single || Degree | Dedicated Transient Processors Trans Procs
Proc. of Processors with Adaptive Replication without ARS
Exec Para- Exec Mean Min Max Mean
Time | llelism Time Time | (#Moves) | (#Moves) Time
not 4 840 3500 | 3340 (3) | 3774 ( 6) 3400
possi- 8 750 3100 | 2583 (5) | 3503 (11) 20300
ble 12 620 2700 | 2150 (5) | 3080 (20) 26500

Table 7.2: Execution times of plasma simulation on dedicated proces-
sors, on transient processors with the adaptive replication and
on transient processors without adaptive replication. For the
runs on transient processors with adaptive replication, number
of migrations during the lifetime of the parallel computation
(#moves) is listed in parentheses. All times shown are wall-
clock times in seconds.

idle workstations complete in a reasonable time.

Any approach intended to tolerate transient failures will necessarily incur some
overhead to checkpoint the computation state of the processes. Overhead incurred
by replication of computation state as done in the adaptive replication scheme (which
can be considered a form of diskless checkpointing) is no larger than the overhead
caused by checkpointing to disk. The network used to obtain the measurements is a
10 Mbps Ethernet, which is quickly becoming obsolete. With a faster network such
as an ATM network or a fast Ethernet, the overhead due to data replication should

be much smaller.

7.4 Improved Parallel Graph Search Algorithm

In the graph search algorithm described in Section 7.2, the connectivity in-
formation (the adjacency matrix) is replicated on all the processors. Replication of
the adjacency information improves the efficiency of the parallel graph search by
reducing the amount of data communicated. Replication of the adjacency informa-
tion also reduces the state information that is required for recovering from transient
failures. However, replication of the adjacency matrix on all participating proces-
sors limits the maximum size of the problem that can be solved. It is desirable to

find a parallel graph search algorithm that allows for solution of problems of size
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Figure 7.2: Plot showing execution times of plasma simulation on tran-
sient processors using adaptive replication, on transient pro-
cessors without adaptive replication and on dedicated proces-
sors.

larger than that can be solved on a single processor. In this section, we describe an

improved graph search algorithm with these characteristics.

7.4.1 Improved Parallel Graph Search Algorithm

In the improved graph search algorithm, the adjacency matrix is partitioned
among the participating processes in the following manner. The rows of the ad-
jacency matrix are partitioned among the participating processes such that each
process contains the complete connectivity information for a subset of the vertices.
We refer to this subset of vertices as belonging to the corresponding processor. As
explained in Section 3.6, at each level of the recursive depth first search, a new
vertex is added to the independent set being constructed and all vertices in the
current graph that are adjacent to this vertex are deleted to form the vertex list
for the new graph to be searched. Since each processor contains only a portion
of the adjacency matrix, each processor needs to obtain adjacency information for
vertices that belong to other processors. As explained in Section 7.2, when the sub-
graphs generated are of sufficient granularity they are searched locally on one of

the participating processors. To avoid communication during the local search, each
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participating process needs to have adjacency information for all pairs of vertices in
its subgraph. For this purpose, before starting local search on its subgraph, each
processor obtains adjacency information for vertices in the subgraph that belong to
other processes. Once the adjacency matrix is constructed for the subgraph to be

searched, the processors do not need to communicate during the local search.

7.4.2 Performance of the Improved Parallel Graph Search Algorithm
Consider a graph with n vertices and a probability of d that any two vertices
are connected. The adjacency matrix is partitioned among the processors equally
and hence each processor contains the complete adjacency information of n/p ver-
tices or n?/p entries, where p is the number of processors. The adjacency matrix
is represented as bit patterns. If W is the word size on the host machine, then the
amount of storage required for the local partition of the adjacency matrix is n?/pW.
At each level of the recursive search, a vertex with minimum degree is added to the
independent set and all vertices that are adjacent to it are deleted to form the vir-
tual graph at the next level. Thus the number of vertices of the virtual graph to be
searched decreases exponentially at a rate of (1 — d). The communication required
at each level of the recursive search contains the adjacency information for each of
the vertices that belong to other processors. At a given level of the recursive search
[, the number of vertices of the subgraph is approximately n(1 — d)l. Since the adja-
cency matrix is partitioned equally among the processors, roughly a fraction of ’%1
of these vertices belong to other processors. With bit representation for the rows
of the adjacency matrix, the amount of data required at each processor is approxi-
mately ’%ln(l - d)l%. The amount of communication decreases exponentially with
the level of the search tree. Finally each processor needs to construct a complete
adjacency matrix for the subgraph to be searched locally. If m is the number of
vertices of the subgraph to be searched locally, then the amount of adjacency data
required at each processor is ’%m%. The number of distinct subgraphs of a graph
with m vertices is 2™, so the cost of searching all the subgraphs is exponential in
the number of vertices of the subgraph m and the communication can be performed

without losing parallel efficiency.
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7.4.3 Adaptive Behavior of the Improved Parallel Graph Search Algo-
rithm

The adaptive performance of the graph search algorithm depends on the
amount of data to be replicated. Since the adjacency matrix is partitioned among
the processes, the adjacency matrix partition of each process needs to be copied to a
backup process. The replication of adjacency matrix partition is used to recover the
predecessor in case of a failure. The adjacency matrix partitions can be replicated
at the beginning of the search because these need not be updated in each compu-
tation step. However, when a process performs recovery for its failed predecessor
and assumes its identity, it needs not only the failed process’s adjacency matrix
partition but also a replica of the adjacency matrix partition of the failed process’s
predecessor. The new process needs this replica only in case of a failure of its prede-
cessor. Therefore, updating the adjacency information of the predecessor needs to
be done once per recovery. The cost of refetching the adjacency matrix partition can
therefore be included in the cost of recovering a failed process. Figure 7.3 illustrates
recovery of a failed process (2) by its successor process (3). Process 3 creates a child
process which performs recovery for process 2 and assumes its identity for subse-
quent computations. Since the new process still contains the replica of adjacency
matrix partition of process 2, this replica needs to be updated with the adjacency
matrix partition of process 1 (its predecessor) so that it can recover process 1 in
case of a failure.

In addition to the adjacency matrix partition, the adjacency matrix of the
subgraph that is searched locally also needs to be replicated. However, since the
subgraphs searched locally on the participating processors differ only slightly, we can
avoid replicating the adjacency matrix of the local subgraphs if we construct the
adjacency matrix for the largest of these subgraphs. This is the approach followed in
our implementation. Since the subgraphs differ slightly from each other, a mapping
that identifies these vertices needs to be replicated on the backup process. This cost
is proportional to the number of vertices in the original graph. Thus the amount of
communication required for replication during normal execution is smaller than the

communication inherent to the algorithm.
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Figure 7.3: Illustration of recovery of a failed process in the improved
graph search algorithm

7.4.3.1 Performance Characteristics of Improved Graph Search

The execution times of the improved graph search are plotted in figure 7.4. The
execution times for a 5000 vertex graph with the probability of edge connectivity
of 0.54. As can be seen from the plots, the algorithm obtains good speedups on

dedicated processors.

7.5 Application of Adaptive Replication to Real Networks

As explained in Section 7.3, the results presented above have been obtained
with simulated transient processors. To demonstrate the applicability of the Adap-
tive Replication System to a real situation, we tested the system in a real envi-
ronment on the Computer Science Department Network at Rensselaer Polytechnic
Institute. The improved graph search algorithm described in Section 7.4.1 is run on

the workstations in the Computer Science department. The host monitor described
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Figure 7.4: Speedup characteristics of improved graph search algorithm

in Section 6.4.1 running on the workstations determines the status of the host. The
processor pool used for these runs consisted of about 20 machines that included
Sparc 5 (Models 110 and 70) and Sparc 20 processors. The runs used a degree of
parallelism of 6, with 5 of them using nondedicated machines. To compensate for
the difference in speeds of the different machines, a grace period of 60 seconds is
used. That is, a process will wait for 60 seconds after it finishes its computation to
replicate for a failed process. For 10,000 vertices with a mean probability of con-
nectivity of 0.54, the execution time on nondedicated processors is about 12 hours
compared to about 10.5 hours on dedicated processors.

The maximum size problem that can be solved on a single processor is a graph
of 10,000 vertices. Using the improved graph search algorithm, we are able to solve
graphs of size 15,000 vertices. The execution time for a graph with 15,000 vertices
and a probability of connectivity of 0.56 is about 7.5 hours when using a degree
of parallelism of 12. The corresponding execution time on nondedicated processors
is about 10 hours. Parallel run on dedicated processors used the faster processors
(Model 110) while the run on nondedicated processors used a mixture of fast and
slow processors (both Model 110 and Model 70), so part of the execution is on the
slower processors. Scalable parallel algorithms are essential to solve problems that
are too large to fit in the memory of a single processor. Adaptive replication scheme

allows efficient execution of parallel runs on nondedicated processors.



97

7.6 Summary

In this chapter we presented the application of adaptive replication scheme to
two parallel computations - a computation dominant and a replication dominant
application on simulated transient processors. The results demonstrate that we
can execute computation dominant applications efficiently on nondedicated work-
stations. We also demonstrated the capabilities of the adaptive replication scheme
by executing the graph search program on idle workstations on the network of Sun
workstations in the Department of Computer Science at Rensselaer Polytechnic In-

stitute.



CHAPTER 8
CONCLUSIONS AND FUTURE WORK

In the preceding chapters we demonstrated applicability of BSP based parallel pro-
cessing to networks of workstations with applications from plasma simulation, graph
search and finite element modeling. We proposed an approach to adaptive paral-
lelism in a network of transient processors within the framework of the BSP model.
We presented an analysis of our scheme, design of the Adaptive Replication System
and application of the system to specific parallel computing applications. We shall
now examine this work in a broader perspective - including its scope, applicability,

contribution, limitations, extensions and future work.

8.1 Discussion

The BSP model allows the programmer to gain insight into the structure
of the parallel computation and to use the insight to improve the performance by
changing the data distribution. We have demonstrated this ability of the BSP model
by implementing the plasma simulation in the BSP model. We used BSP analysis
techniques to improve the performance on a network of workstations.

The BSP model is intended by its author to be a general purpose programming
model. Since its introduction, the model has been used to implement a variety
of parallel algorithms (see section 1.3), and programming environments are being
developed. In addition to plasma simulation, we have used the model to implement
parallel algorithms in the areas of graph search, finite element computation and
other simulations.

Despite the obvious advantages of the BSP model as a basis for predictable
parallel computing, BSP has not become popular outside the academic and re-
search world. However the advantages of the BSP model go beyond simple parallel
programming. The barrier synchronization in the BSP model ensures that all par-
ticipating processes reach a globally consistent state. Although much other research

has been done in this area, BSP makes the implementation of consistent checkpoints
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much simpler. We have used this property to devise a simple approach to tolerate
transient failures of host processors.

Our approach to adaptive parallelism is based on replicating the computations
of a failed process on another participating process. Thus the recovery of a failed
process is done on an available (idle) workstation. Replication of computations of
the failed process is made possible by eagerly replicating the computation state of
each process on a designated peer process which acts as a backup. Thus the cost of
tolerating transient failures depends on the relative cost of replicating the computa-
tion state compared to local computation. Intuitively, algorithms in which the local
computation is larger than the cost of communicating the state to another process
are suitable candidates for application of adaptive replication scheme. Therefore
our approach is suitable to computation intensive parallel applications.

Even though our approach to adaptive parallelism is designed within the frame-
work of the BSP model, it applies to all parallel applications written in BSP-style as
a sequence of computation and communication steps. Keeping this in view, the ARS
library is designed in layers. The replication layer is built on top of the native com-
munication library and helps to insulate the user layer from implementation details.
The parallel applications are written using only the constructs in the user layer and
the application programmer is insulated from changes to lower level layers. Thus
the adaptive replication library can be reimplemented using other communication
libraries such as MPI as long as those communication libraries support constructs

for BSP-style parallel programming.

8.2 Contributions

This work makes contributions to our objectives stated in Chapter 1 to achieve
BSP-based parallel computing and to enable parallel computations adapt to the
computing environment. The thesis makes the following contributions to the theory

and practice of bulk-synchronous and adaptive parallel computations:

e Demonstrated the applicability of the BSP model to a variety of problems.
We demonstrate how the BSP model can be used to analyze and tune the

application to improve its performance on a given parallel architecture. We
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used BSP analysis techniques to gain insight into the computation and used
the knowledge to change the data distribution to allow the simulation to run

efficiently on a network of workstations.

Demonstrated the versatility of the BSP model by applying it to problems in

plasma simulation, graph search and finite element modeling.

Analyzed the impact of transient failures on the execution time of frequently
synchronizing parallel computations for exponentially distributed available

and nonavailable periods.

Developed a general approach to tolerate transient processor failures based on
eager replication of computation state and lazy replication of computations

within the framework of the BSP model.

Analyzed the performance of a parallel application using the Adaptive Repli-
cation Scheme on a network of transient processors. The analysis proves that,
for scalable parallel application under suitable conditions, the adaptive repli-

cation scheme provides scalable speedups.

Designed a protocol for the replication of computation state and replication of
computations for a replication level of one. The protocol can be generalized

to higher levels of replication.

Extended the Oxford BSP model to include dynamic process management
and virtual synchronization, allowing it to be used as a basis for a virtual BSP

Computer.

Designed a runtime system to support adaptive replication scheme within
the BSP model. The design incorporates a layered approach to provide for
portability and extensibility.

Implemented a prototype of the adaptive replication system based on the ex-
tended BSP library. The prototype implements a distributed fault-tolerant

system and uses TCP/IP (socket) based message passing, signals, signal han-
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dlers, process management and locking to coordinate distributed events and

to avoid deadlocks.

e Demonstrated the adaptive capability of the system by applying it to two
different applications and measuring their performance for simulated transient

Processors.

e Developed monitoring software to monitor the status of a host machine taking
into account activity of the console user including keyboard and mouse activity
and cpu load. The criterion for determining the status of the machine can

easily be configured by the user.

e Demonstrated the adaptive capabilities of the system by running the applica-

tion on the Computer Science Network at the Rensselaer Polytechnic Institute.

8.3 Future Work

Future work needs to focus on the following areas. Improvements to the com-
munication network and communication protocols increase the performance of par-
allel applications on dedicated as well as nondedicated networks. Another important
objective is portability across heterogeneous processor architectures. Extensions to
the scheme to incorporate multiple virtual processors on the same host will make
the scheme more general and will improve its ability to balance the load according
to the capacity of the host machines. Characterizing and predicting host status will
help in anticipating failures and avoiding host machines that are prone to failure. In
addition to the above, specific enhancements can be made to the system to improve
performance in some cases.

The adaptive replication scheme seeks to reduce the overhead of data repli-
cation by overlapping local computation with the communication associated with
data replication. Overlapping the computation and communication requires that
the communication be done in a separate thread within the user process. Thus
effective overlapping of computation and communication may require the use of a

multi-threaded communication library.
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Communication over TCP sockets incurs a significant overhead as a result of
the large number of layers in the TCP/IP protocol stack. A number of researchers
are looking into reducing this overhead through the use of new protocols and through
new implementations of the TCP/IP protocol. Communication libraries with low
overhead will reduce the cost of communication and replication.

Another area that is worth attention is portability of the scheme across het-
erogeneous processor architectures. There are two constraints in seeking this goal.
First, to enable data replication across processor architectures, routines must be
supplied to marshal and unmarshal replication data from the data format of the
sender to that of the receiving processor. Second, we need a portable scheme to
support migration of processes across architectures. The use of the Java program-
ming language plus CORBA for interoperability could be explored to address the
issue of process migration across heterogeneous architectures.

The adaptive replication system operates by treating the participating proces-
sors as virtual processors and continually mapping the set of virtual processors to
available host processors. In the current design ARS assigns each virtual processor
to one of the available host machines such that no two virtual processors are as-
signed to the same host. The virtual processor-to-host machine mapping is based
on the availability of the host machine. Currently the availability of a workstation
is treated as discrete. A host machine is either busy and therefore not available or
free and therefore available for the parallel computation. However, as the process-
ing power of workstations increases, it may be possible to view machines in terms
of their degree of availability. With such a concept, workstations will be able to
contribute cpu cycles to the parallel computation in proportion to the percentage of
idle time at any given time. To take advantage of the cpu cycles that can be offered
by a given a host processor, the protocol should be extended to support multiple
virtual processors on a single workstation.

The adaptive replication system enables the parallel computation to tolerate
and make progress in spite of transient failures of host machines. Even though
the scheme can tolerate real failures of host machines in certain situations, it is

desirable to extend the scheme or supplement it with features to provide tolerance
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from real host failures. However, since adaptive parallelism is primarily a means
of improving performance in a nondedicated environment, care should be taken to
avoid any adverse impact on the performance.

The ability to adapt to a computing environment can be significantly improved
if we can predict the occurrence and the duration of transient failures. For this, we
need a better understanding of the host load characteristics and distribution of
the available and nonavailable periods. Sophisticated mathematical models may be

needed to predict the occurrence of and the duration of transient failures.

8.3.1 Enhancements to the Adaptive Replication System
A few enhancements to the adaptive replication system can help to improve

performance for some applications.

8.3.1.1 Incremental Replication

Applications in which changes to the computation state are small compared
to the size of the computation state can reduce the cost of data replication by
replicating only the changes to the computation state. In the modified scheme the
computation state of a component process is replicated in full once. Subsequently,
only changes to the computation state since the last replication are sent to the
backup processes. The process receiving the replicated data applies the changes to
its backup copy to get an updated copy of the computation state. However, when
a process successfully replicates the computations of one of its predecessors and
replaces the predecessor in the parallel computation, the new process must again
receive a full copy of the computation state of its predecessors for which it is acting
as a backup. Therefore this enhancement is useful when the transient failures are

not too frequent.

8.3.1.2 Data Compression to Reduce Communication Cost
The cost of data replication can be reduced in some cases by compressing
the data to be communicated. The receiving process then needs to decode the

compressed data to get the actual data, but only in case of failure of the sender.
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Compression of the data to be replicated is useful only when the decrease in commu-
nication cost justifies the cost of data compression and decompression at the sending

and receiving processes.

8.3.1.3 Other Enhancements

Process migration time can be improved by writing the checkpoint to the local
disk on the target machine rather than to the network file system. Restarting the
process from the checkpoint on the target machine can now be done off the local

disk, without involving the communication network.
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APPENDIX A
Adaptive BSP Library User Guide

A.1 The ABSP Library

The Adaptive BSP library is an implementation of the adaptive replication
scheme, built on top of the Oxford BSP library. In addition to the functionality of
the Oxford BSP library, the ABSP library provides functionality to achieve adaptive
parallelism in environments involving transient processors. The following gives a

brief summary of all the functions available in the ABSP library.

A.1.1 Process Management

The following two functions of the Oxford BSP Library are available in the

ABSP library for process management.

bspstart(int argc, charx argv,

int maxprocs, int* nprocs, int* mypid)

This function creates parallel processes on remote hosts specified by the “host
file”. maxprocs is the maximum number of remote processes desired. The actual
number of processes created is returned in the nprocs parameter and the process

number of each process is returned in the variable mypid.
bspfinish()

This function terminates all remote processes and the execution continues with
the original process that created the remote processes. This call must be initiated

by all the participating processes.

A.1.2 Communication
The following two functions of the Oxford BSP library are available in the

ABSP library for communication among the component processes.
bspstore(int topid, char* src, charx dst, int nbytes)
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This function transfers nbytes of data from the location src to the location

specified by dst in the remote process specified by the process id topid.
bspfetch(int frompid, char* src, char* dst, int nbytes)

This function transfers nbytes of data from the location src in the remote
process specified by the process id frompid to the location specified by dst in the
local process. Note that the destination in bspstore and the source in the bspfetch
refer to data locations in the remote process. Thus these locations must be static

or global addresses.

A.1.3 Supersteps
The following constructs of the Oxford BSP library are available in ABSP
library for defining supersteps. These constructs delimit the code segment that

constitutes the superstep.

bspsstep(int stepid)
bspsstep_end(int stepid)

In addition to the above, the ABSP library provides constructs to define com-
putation supersteps that perform data replication, detection of process failures and

replication of failed processes.

bsp_comp_sstep(int stepid)

bsp_comp_sstep_end(int stepid)

A.1.4 Construct to Specify the Computation State
The ABSP library provides a predefined construct to specify the computation

state of a component process.

typedef struct BspSystemState;
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A.1.5 Specifying Replication Data
The ABSP library provides the following construct to speicfy replication data.

int bsp_replication_data(void* dataptr, long nbytes,
void* backup,

char* tag, int subscript);

dataptr refers to an address location representing the replication data and
nbytes is the length of the replication data in bytes. If storage is available for
replicated data (the backup), then backup refers to an address location for the
replicated data. If backup is zero, then the ABSP library allocates dynamic memory
for the replicated data.

A string value (tag) can be associated with each replication data. The replica-
tion data can subsequently be referred to by using this tag. To distinguish between
components of a 2 dimensional array, an integer subscript can be used. For simple

arrays, this value can be specified as -1.

A.1.6 Initializing and Setting the Computation State Variables
The ABSP library provides functions to initialize, to reset and to set variables

holding the computation state.
int bsp_init_system_state(BspSystemState* bspstate);

This function initializes a computation state variable. It allocates an initial

amount of memory for the variable and initializes all the fields appropriately.

int bsp_set_system_state(BspSystemState* bspstate,

char* tag, int subscript);

This function is used to specify replication data represented by the tag and

subscript as part of the computation state represented by the variable bspstate.
void bsp_reset_system_state(BspSystemState* bspstate);

This function resets the computation state represented by the variable bsp-

state to nil.
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A.1.7 Specifying the Computation State

The following functions specify the specific and local system state, respectively,
at any point in the program execution. In a computation superstep (described in
section A.1.3), the specific and local system states that are currently in effect are

used for replication and local checkpointing.

void bsp_specific_system_state(BspSystemState* state);

void bsp_local_system_state(BspSystemState*x state);

A.1.8 Setting Up the Replication Environment

void bsp_set_application_root_directory(char* rootdir);

This function specifies the directory to be used for creating the process id files,

lock files and checkpoint files used in process replication and migration.
int bsp_setup_replication_environment();

This function allocates dynamic storage for replication data for which no

backup storage is specified.
void bsp_debug_print_system_state(BspSystemStatex bspstate);

This function prints information on the replication data constituting the com-
putation state represented by the state variable bspstate. This function is useful

for debugging.

A.1.9 Miscellaneous
The following functions provide information on the number of processes, the

process id and the host name.

int  BSP_idQ);
char* BSP_host();

int  BSP_nprocs();



117

A.2 Setting Up the Environment

Set the following environment variables in your shell startup (.bashrc or .cshrc
or other) file. The BSP root directory can be obtained from the system administra-

tor.

# Specify the BSP root directory;

export BSP_ROOT= < BSP root directory >

# Specify the file that contains the machine list
export BSP_HOSTFILE="/host.list

# Set the PATH to include BSP bin directory
export PATH=$PATH:$BSP_ROOT/bin/:

# Set the MANPATH to include BSP man pages

export MANPATH=$MANPATH:$BSP_ROOT/man/:

The host file consists of entries denoting the hosts in the network on which

remote processes can be created.

A.3 Compiling and Linking ABSP Programs
In order to use the ABSP library, the following files from the ABSP library

need to be included.

bsp.h
bsp_client_state.h
bsp_application_decl.h
bsp_transient.h

bsp_replication.h

To enable the compiler access these files, include the following on the compi-

lation command:
-I<BSP root directory>/src

To link the ABSP library, use the following in the link command on the SUN4

architecture machines:
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-L<BSP root directory>/1ib/SUN4 -lsocket -1lnsl -1bsp

In addition, Condor checkpoint library supplied with the ABSP distribution
must be linked with the final executable. Using the Condor checkpointing library
requires a special linking step. The following Makefile segment illustrates the link

command using the GNU C or C++ compiler on a Sun Solaris machine.

CC = gcc

0BJ = <object files to be linked>

CONDOR_DIR = <Condor root directory>

SOLARIS_LIBS = /usr/local/gnu/lib/gcc-1ib/sparc-sun-solaris2.5/2.7.2.2

$(CC) -nostartfiles -o <executable>
$ (SOLARIS_LIBS)/crti.o
$ (CONDOR_DIR)/crtbegin.o
$ (CONDOR_DIR)/condor_ckpt/condor_rt0.o0
${0BJ}
$ (CONDOR_DIR)/condor_ckpt/libckpt.a
$ (CONDOR_DIR) /condor_ckpt/c_plus_alloc.o
$ (SOLARIS_LIBS)/crtend.o
$ (SOLARIS_LIBS)/crtn.o \
-1m -L<BSP root directory>/1ib/SUN4 -lsocket -1lnsl -1bsp

P g

A sample makefile that illustrates this link step is supplied in the ABSP dis-

tribution.



APPENDIX B

Application: Plasma Simulation

Plasma simulation follows the trajectories of millions of particles in their self-induced
fields. The simulation models the interactions between particles indirectly through
the electric field induced by the particles at the points of a fixed grid. In the
replicated grid version, particles are partitioned among the processors but the grid
is replicated. All interactions between the particles and grid points take place locally
on each processor. After the charge deposition operation, the grid charge is globally
combined to produce a grid that is consistent across all processors. Section B.1

shows the simulation main loop in pseudocode.

B.1 Simulation Main Loop

for (step=0; step < Max_Simulation_Steps; step++){
Computation Superstep:

Add Ion Density to Charge/Density Field

Calculate electric field on grid points;

Initialize Charge Density;

Initialize Kinetic Energy;

Adavance Particle Positions and Velocity;
Communication Superstep:

Combine Kinteic Energy (KE) over all processors;
Output Energy Diagnostics; /* PE, KE and Total Energy */
Computation Superstep:

Compute charge deposition on grid points due to particles;
Communication Superstep:

Combine charge depositions on local grids over all processors;
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APPENDIX C

Application: Finding the Maximum Independent Set of a

Graph

The maximum independent set program uses a recursive backtracking search algo-

rithm to search for the largest independent set. The basic recursive search algorithm

is shown in pseudocode in section C.1. In the parallel version of the program, the

recursive search through the virtual subgraph proceeds in an identical fashion on all

processors upto a certain level. When the subgraph to be searched is of size that

is below a certian threshold, processes search specific subgraphs of this subgraph

and exchange information on the maximum independent set found so far at each

Processor.

C.1 Search algorithm

/*
*
*

*

*
*

Se

{

Recursively search a graph;

The graph is

represented by

a list of vertices and

a list of their degrees

The adjacency matrix is globally available;

/

arch algorithm

Create local copies of vertex and degree lists;

Determine the
If the number
/* Graph is
If the size

is bigger

number of search trees to be searched at this level;
of vertices is ZERO

empty; no need to search further */

of the independent set found in the current search

than the maximum independent set found so far,

record this independent set as the maximum independent set.
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Else
/* check each child subtree */
for (position=0;position<lim;position++){
Select the next vertex as the vertex with the lowest degree;
Remove this vertex from the list of vertices and the list of
degrees;
Record vertex selected and the backtracking
coordinate (position of the subgraph being searched);
Delete all vertices that are adjacent to the selected vertex
from the list of vertices and the list of degrees to create
the vertex and degree lists for the subgraph to be searched.
Update the degree count of the subgraph;
Find the best independent set of the subgraph

(Recursive call to the Search algorithm);



