
OBJECT�ORIENTED PROGRAMMING PARADIGMS IN
SCIENTIFIC COMPUTING

By
Charles D� Norton

An Abstract of a Thesis Submitted to the Graduate Faculty of
Rensselaer Polytechnic Institute

in Partial Ful�llment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject� Computer Science

The original of the complete thesis is on �le in the
Rensselaer Polytechnic Institute Library

Approved by the
Examining Committee�

Dr� Boleslaw K� Szymanski� Thesis Adviser

Dr� Viktor K� Decyk �Physics�UCLA�� Member

Dr� Joseph E� Flaherty� Member

Dr� Franklin T� Luk� Member

Dr� David R� Musser� Member

Rensselaer Polytechnic Institute
Troy� New York

August 	

�
�For Graduation December 	

��



OBJECT�ORIENTED PROGRAMMING PARADIGMS IN
SCIENTIFIC COMPUTING

By
Charles D� Norton

A Thesis Submitted to the Graduate Faculty of
Rensselaer Polytechnic Institute

in Partial Ful�llment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject� Computer Science

Approved by the
Examining Committee�

Dr� Boleslaw K� Szymanski� Thesis Adviser

Dr� Viktor K� Decyk �Physics�UCLA�� Member

Dr� Joseph E� Flaherty� Member

Dr� Franklin T� Luk� Member

Dr� David R� Musser� Member

Rensselaer Polytechnic Institute
Troy� New York

August 	

�
�For Graduation December 	

��



c� Copyright 	

�

by

Charles D� Norton

All Rights Reserved

ii



Contents

List of Tables vi

List of Figures viii

Preface xiii

Acknowledgments xvii

Abstract xxi

� Introduction and Historical Review �
	�	 The Importance of Programming Paradigms � � � � � � � � � � � � � � 	
	�� Basic Concepts in Object
Oriented Methodology and Programming � �
	�� Background and Relevance to Previous Work � � � � � � � � � � � � � � �
	�� Overview of Principal Contributions � � � � � � � � � � � � � � � � � � � 		

� Plasma PIC Simulation ��
��	 Overview of the Plasma PIC Model � � � � � � � � � � � � � � � � � � � 	�
��� The Fortran �� Simulation Programs � � � � � � � � � � � � � � � � � � 	�

����	 The Sequential Programs � � � � � � � � � � � � � � � � � � � � � 	

����� The Parallel Programs � � � � � � � � � � � � � � � � � � � � � � �	

��� The Experiments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����	 Beam
Plasma Instability � � � � � � � � � � � � � � � � � � � � � ��
����� Collisionless Free
Expansion into a Vacuum � � � � � � � � � � ��
����� Gravitation � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Abstraction Modeling in Scienti�c Computing ��
��	 Organizing Object
Oriented Simulation Codes � � � � � � � � � � � � � ��
��� Object
Oriented Design of Sequential PIC Programs � � � � � � � � � � �


����	 One
Dimensional PIC Simulation � � � � � � � � � � � � � � � � ��
����� Two
Dimensional PIC Simulation � � � � � � � � � � � � � � � � ��
����� Three
Dimensional PIC Simulation � � � � � � � � � � � � � � � ��

iii



����� Commentary on Sequential Models � � � � � � � � � � � � � � � ��
��� Object
Oriented Design of Parallel PIC Programs � � � � � � � � � � � ��

����	 One
Dimensional PIC Simulation � � � � � � � � � � � � � � � � ��
����� Two
Dimensional PIC Simulation � � � � � � � � � � � � � � � � ��
����� Three
Dimensional PIC Simulation � � � � � � � � � � � � � � � ��
����� Commentary on Parallel Models � � � � � � � � � � � � � � � � � ��

��� Evaluation� Discussion� and Advanced Issues � � � � � � � � � � � � � � �


� Object�Oriented Programming in Fortran 	
 ��
��	 Fortran 
�� The New Standard � � � � � � � � � � � � � � � � � � � � � ��
��� Object
Oriented Fortran 
� Programming � � � � � � � � � � � � � � � ��

����	 Encapsulation with Derived Types � � � � � � � � � � � � � � � ��
����� Overview of Modules � � � � � � � � � � � � � � � � � � � � � � � ��
����� Inheritance and Related Issues � � � � � � � � � � � � � � � � � � ��
����� Generic Programming and Polymorphism � � � � � � � � � � � � ��
����� The Object
Oriented Programming Model � � � � � � � � � � � ��

��� Plasma PIC Application Programming � � � � � � � � � � � � � � � � � ��
����	 Fortran 
� Mirror of C�� Model � � � � � � � � � � � � � � � � ��
����� Program Organization Based on Fortran 
� � � � � � � � � � � ��

��� Parallel PIC Programming in Fortran 
� � � � � � � � � � � � � � � � � 
	
��� Commentary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

� Irregular Computation in Plasma Modeling 	

��	 An Object
Oriented Approach for Irregular Computation � � � � � � � 
�
��� Computation and Communication Irregularity in PIC Simulation � � 	��

����	 Managing Particle
Field Partitioning � � � � � � � � � � � � � � 	��
����� The Scanning Partition Mapping Method � � � � � � � � � � � � 	��

��� Load Balancing in the Plasma PIC Algorithm � � � � � � � � � � � � � 		�
��� Continuous Implicit Monitoring for Irregular Computation � � � � � � 	��

� The Implications of Abstraction ���
��	 The In�uence of Language Statements on Object
Oriented Modeling

and Programming � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��
��� Comparing C�� and Fortran 
� Models of Abstraction � � � � � � � � 	��
��� Comparing Fortran ��� Fortran 
�� and C�� Paradigms � � � � � � � 	�	
��� Commentary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

� Machine � Compiler Performance Comparisons ��

��	 Development Experiences Across Compilers � Machines � � � � � � � 	��
��� Analysis of Scalar Performance � � � � � � � � � � � � � � � � � � � � � 	��
��� Parallel Simulation Results and Performance � � � � � � � � � � � � � � 	�

��� Measuring the Performance E�ects of Object
Oriented Abstractions in

Fortran 
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

iv



��� Commentary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��


 Discussion� Conclusions� and New Directions ���
��	 The Impact of Paradigm Studies on Modern Software Development � 	��
��� Review of Thesis Research � � � � � � � � � � � � � � � � � � � � � � � � 	��
��� Final Commentary and New Directions � � � � � � � � � � � � � � � � � 	��

Literature Cited �
�

Appendices �
	

A Plasma PIC Programming Source Segments �
	
A�	 Fortran �� Scalar 	D Initialization Section � � � � � � � � � � � � � � � 	
�
A�� Fortran �� Scalar 	D Loop Section � � � � � � � � � � � � � � � � � � � 	
	
A�� C�� Scalar 	D Initialization Section � � � � � � � � � � � � � � � � � � 	
�
A�� C�� Scalar 	D Loop Section � � � � � � � � � � � � � � � � � � � � � � 	
�
A�� C�� Scalar 	D Main Program �Initial� � � � � � � � � � � � � � � � � � 	
�
A�� C�� Revised Scalar 	D��D Main Program � � � � � � � � � � � � � � � 	
�
A�� C�� Scalar �D Main Program � � � � � � � � � � � � � � � � � � � � � 	
�
A�� C�� Parallel 	D��D��D Main Program � � � � � � � � � � � � � � � � 	
�

A���	 Two
Dimensional Distribution Objects � � � � � � � � � � � � � 	
�
A���� Three
Dimensional Distribution Objects � � � � � � � � � � � � 	
�

A�
 Fortran �� Parallel 	D Main Program � � � � � � � � � � � � � � � � � � 	


A�	� C�� Parallel �D Main Program �modi�ed� � � � � � � � � � � � � � � ��	
A�		 Fortran 
� 	D Main Program �initial� � � � � � � � � � � � � � � � � � � ���
A�	� Fortran 
� 	D Main Program �modi�ed� � � � � � � � � � � � � � � � � ���
A�	� Fortran 
� �D Main Program � � � � � � � � � � � � � � � � � � � � � � ���
A�	� Fortran 
� Parallel �D Main Program � � � � � � � � � � � � � � � � � � ��

A�	� C�� Parallel �D Free
Expansion Main Program Sketch � � � � � � � � �		
A�	� C�� Parallel �D Gravitation Main Program Sketch � � � � � � � � � � �	�

Index ���

v



List of Tables

��	 Major simulation components of the one
dimensional Fortran �� pro

gram� The sequential parameters are also used in the parallel programs�
In higher dimensions� additional parameters are required� � � � � � � � 	


��� Fortran �� major routines of the one
dimensional scalar program� � � ��

��� Fortran �� major routines of the one
dimensional parallel program� � ��

��	 C�� major routines of the initial one
dimensional scalar program�
Simulation objects and member function operations are indicated� � � ��

��� C�� major routines of the three
dimensional vector
based scalar pro

gram� Simulation objects and member function operations are indicated� ��

��� C�� major routines of the one
dimensional parallel program� � � � � ��

��� C�� major routines of the three
dimensional parallel program� Con

currency features are encapsulated in object de�nitions� Additionally�
abstractions have been modi�ed to represent scalar and vector �elds
independently� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Receive
Posting algorithm computation example� The �rst row indi

cates how Pk�s moving region maps into the static partition regions
of the processors listed� The second shows the number of receives ex

pected by processor Pk which owns the static partition region� The
last shows the receives posted by processor Pk which owns the moving
partition region� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 		�

��� Initial and �nal locations of moving partition borders when load bal

ancing is applied in the free expansion experiment� � � � � � � � � � � 	��

��� Moving partition border locations at the initial time step and step ��� 	�


��	 Sequential one
dimensional Sparcstation 	� Performance Comparison
of Fortran �� �SPARCompiler Fortran from SunPro� and C�� �g��
v������� using the gprof pro�ling tool� The C�� optimized perfor

mance improves dramatically using an optimized pow routine� � � � � 	��

vi



��� Sequential two
dimensional IBM RS���� Performance Comparison of
Fortran �� �IBM xlf�� Fortran 
� �IBM xlf
��� C �IBM xlc� and C��
�IBM xlC� using the gprof pro�ling tool� � � � � � � � � � � � � � � � � 	��

��� Sequential two
dimensional IBM RS���� Performance Comparison of
C�� �IBM xlC� and C �IBM xlc� without optimized exponentiation
calls in major loops� using the gprof pro�ling tool� � � � � � � � � � � 	��

��� Sequential Performance Characteristics for various programs on the
IBM RS����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

��� Paragon XP�S� SP� � T�D Basic System Characteristics �From Spec�
Reports�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�


��� Paragon XP�S� SP	�SP� Multi
Million Particle Parallel Performance
Characteristics� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

��� Paragon XP�S and SP	�SP� Fixed Problem Size Parallel Performance
Characteristics� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�	

��� Performance characteristics for �D and �D two
stream beam
plasma
instability experiment on IBM SP� �AIX ��	� with ��� million and �
million particles on �� processors� � � � � � � � � � � � � � � � � � � � � 	��

��
 Parallel two
dimensional IBM SP� Performance Comparison of For

tran �� �IBM xlf�� Fortran 
� �IBM xlf
�� and C�� �IBM xlC�� � � � 	��

��	� Three
Dimensional parallel programs for IBM SP� and Intel Paragon
in the beam
plasma experiment� The modern class design� where the
scanning partition mapping algorithm is used without load balancing�
is compared to the same model without the mapping algorithm and
the vector program model� � � � � � � � � � � � � � � � � � � � � � � � � 	��

��		 The e�ect of load balancing in the gravitational problem� � � � � � � � 	��

vii



List of Figures

	�	 Basic elements of the OMT Notation� � � � � � � � � � � � � � � � � � � �

��	 Particle�Field interaction in the plasma PIC algorithm �scalar and
two
dimensonal vector �eld illustration�� Local and non
local �eld and
particle operations� due to the slab partitioning� are shown� � � � � � � 	�

��� Plasma PIC computation loop overview� Diagnostic operations and
extensions for load balancing are not shown� � � � � � � � � � � � � � � 	�

��� Electron phase space of one
dimensional beam
plasma instability� � � ��

��� Electron
Ion collisionless free expansion into vacuum� � � � � � � � � � ��

��� Gravitational Bunching� � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 C�� hierarchy for initial version of one
dimensional scalar PIC code
�OMT notation�� The major encapsulated components and relation

ships are indicated� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� First revision of the C�� one
dimensional scalar class hierarchy �OMT
notation�� Electrons have been modi�ed to include distribution prop

erties� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Second revision of the C�� one
dimensional scalar class hierarchy
�OMT notation�� Particle distribution properties are speci�ed sepa

rately from the de�nition of particles by feature encapsulation into a
ParticleDistribution class � � � � � � � � � � � � � � � � � � � � � � ��

��� C�� two
dimensional scalar class hierarchy �OMT notation�� Encap

sulated components are extended while the interface to major routines
remains unchanged� Object de�nitions re�ect the higher dimensional
problem� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� C�� three
dimensional scalar class hierarchy �OMT notation�� Vector
particle components with mathematical operations and parameterized
grid point elements have been introduced� � � � � � � � � � � � � � � � ��

viii



��� C�� one
dimensional parallel class hierarchy �OMT notation�� Much
of the sequential design has been reused where additional classes ad

dress parallel programming features� The plasma and �eld class objects
are partitioned by partition region objects� A virtual parallel machine
class object encapsulates features for portability� � � � � � � � � � � � � ��

��� C�� three
dimensional parallel class hierarchy �OMT notation�� The
abstractions from lower
dimensional programs are preserved� The tem

plate structure and encapsulated features simplify extending objects
into three dimensions� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Alternative C�� three
dimensional parallel class hierarchy �OMT no

tation�� Scalar and vector �elds have been introduced� as well as com

plex �elds used by numerical �eld solvers� A parameterized species
class replaced the vector organization of particles� maintaining the ab

straction during interprocessor communication� The �eld and particle
partitioning can be dynamically resized automatically� � � � � � � � � � ��

��	 Sketch of a Fortran 
� distribution function module that contains a
routine to initialize distribution derived type objects� � � � � � � � � � �


��� Sketch of a Fortran 
� collective species module that uses a distribution
function module for spatial and velocity distribution of various particle
species� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��� Sketch of composition inheritance in Fortran 
� where the derived class
uses base class operations in implementing member routines� � � � � � ��

��� Usage of Fortran 
� objects de�ned through composition inheritance�
The construction allows a single overloaded operator to push a single
particle� or a group of particles� where the derived class function uses
the base class operations in its de�nition� � � � � � � � � � � � � � � � � ��

��� Usage of Fortran 
� objects de�ned through sub
typing inheritance�
The construction allows a single overloaded operator to access features
of objects de�ned through sub
typing inheritance� � � � � � � � � � � � �


��� Usage of Fortran 
� use only statement for inheriting speci�c aspects
of the base class� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Module procedures can be created in Fortran 
� that allow various
�elds to be initialized by a single function� where the proper initializa

tion routine is called based on the object type� � � � � � � � � � � � � � ��

��� Fortran 
� one
dimensional scalar class hierarchy �OMT notation��
This design� derived from an early C�� version based on Fortran 
�
constructs� uni�es particle species and �eld in the de�nition of plasma
simulation operations� � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

��
 Structure of a Fortran 
� two
dimensional dynamic vector �eld module� 
	

ix



��	� Fortran 
� two
dimensional scalar class hierarchy �OMT notation�� In

dividual �eld types form components of the complete �eld� The plasma
module routines operate on the uni�cation of the particle species and
various �eld components� � � � � � � � � � � � � � � � � � � � � � � � � � 
�

��		 Sketch of a partition module used in the Fortran 
� parallel program�
MPI routines are encapsulated in a module made available for parti

tioning operations by use
association� � � � � � � � � � � � � � � � � � � 
�

��	� Fortran 
� two
dimensional parallel class hierarchy �OMT notation��
The sequential version was extended by adding a module to make MPI
communication routines visible as well as the inheritance of partition

ing information into distributed �elds� � � � � � � � � � � � � � � � � � 
�

��	 Partition mapping when �elds are static and uniform� � � � � � � � � � 	�	

��� Illustration of slab partition mappings used to represent �eld partition

ing� Projections of three
dimensional �elds into the plane are shown� 	��

��� The uniform partitioning only requires transmission of the guard re

gions �not shown�� while the non
uniform partitioning may require
more extensive interprocessor communication beyond the guard region
transfers� For instance� P� communicates with P� and P� in addition
to itself� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

��� Examples of �eld and guard cell mappings among processors into the
Fourier partitions� The Fourier partition is in complex space and does
not maintain guard planes� � � � � � � � � � � � � � � � � � � � � � � � � 	��

��� Various scenarios illustrating issues that the scanning algorithm must
address� The guard cell regions in the moving partitions complicate
the scanning technique� � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

��� Sketch of the Scanning Partition Mapping Method� � � � � � � � � � � 	��

��� Sample mapping in static partition receive posting algorithm� � � � � 	�


��� Sketch of receive
posting algorithm for static partitioning� � � � � � � 		�

��
 Sample partition mappings showing various cases that the mapping
algorithm must address� The guard regions inducing interprocessor
interactions are not shown explicitly� � � � � � � � � � � � � � � � � � � 		�

��	� Sketch of algorithm used to map moving �eld partitions to static �eld
partitions across processors� � � � � � � � � � � � � � � � � � � � � � � � 		�

��		 Illustration of scan
pack
move method for processor P� mapping into
the static partition regions� � � � � � � � � � � � � � � � � � � � � � � � � 		�

��	� Deadlock can occur in the scan
pack
move method for processor P� if
the communication protocol does not allow messages to be sent when

ever possible� P��s static region will wait for a message from P��s
moving region that can never be sent� �P��s static region successfully
receives a portion of the �eld� P��s region will not�� � � � � � � � � � � 		�

x



��	� Illustration of scan
pack
move algorithm with interprocessor commu

nication protocol� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 		�

��	� Sketch of the Scan
Pack
Move Method in Inverse Mapping� � � � � � � 		�

��	� Implicit monitoring and acquisition of data for load balancing� � � � � 	�	

��	� C�� three
dimensional parallel hierarchy with implicit monitoring
class mechanism applied to Plasma and Species classes� � � � � � � � 	��

��	� A plasma class code segment is instrumented to monitor the movement
of electron and ion particle species across processors� The number of
particles� for each species in the current partition� is monitored auto

matically based on the species type� Additionally� the plasma object
monitors the species for usage in load balancing routines� Calling the
UpdateDistribution routine on the plasma object collects instrumen

tation data implicitly� � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

��	� Load balancing operations can be called on the plasma object� Within
the routine� the monitored information is automatically available� where
the data has been collected implicitly by other object operations� � � 	��

��	
 Movement in partition borders for free
expansion experiment using four
processors and the implicit monitoring technique� The particle expan�
sion is symmetric� however� the partitioning scheme is simplistic so
symmetry in border movement is not maintained� � � � � � � � � � � � 	��

���� Movement in partition borders for gravitational experiment using four
processors and the implicit monitoring technique� � � � � � � � � � � � 	�


���	 Intermediate development of gravitational experiment when dynamic
load balancing is applied� � � � � � � � � � � � � � � � � � � � � � � � � � 	��

��	 Inversion in programming� indicating how language statements can
cause the redesign of abstraction models� � � � � � � � � � � � � � � � � 	��

��� Fortran 
� design of a module for scalar �elds� Both the charge density
and electric �eld objects can be created� where the de�nition of the
object types are included with the numerical routines that manipulate
them� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

��� Fortran 
� design of a module for two
dimensional scalar and vector
�elds extended from the one
dimensional version� New �eld derived
types and related functions can be added� preserving the structure of
the original one
dimensional de�nition� � � � � � � � � � � � � � � � � � 	��

��� C�� design of classes supporting the de�nition and usage of individual
scalar and vector �elds in numerical �eld operations� C�� templates
allow �elds to be resized dynamically while supporting Fortran 
�
style
array operations� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

xi



��� Incorrect Fortran 
� attempt to unify multiple �eld solvers and def

initions into a single abstraction� Function overloading requires For

tran 
� module procedures with user
speci�ed resolution of routine
name con�icts� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

��� Correct Fortran 
� design unifying multiple �eld solvers and de�nitions
into a single abstraction� Scalar and vector �elds can be solved by
calling the fields pois routine� where the correct function is called
based on the �eld type� � � � � � � � � � � � � � � � � � � � � � � � � � � 	�


��	 Paragon � SP� Two
Dimensional Fortran �� and C�� Execution Pro

�le for a Fixed Problem Size� � � � � � � � � � � � � � � � � � � � � � � 	��

��� Structure of the Fortran ��
based multiplication test that is replicated
with various Fortran 
� array
syntax and object
oriented abstractions� 	�


��� Structure of the of static array module multiplication test� Array ob

jects can be created from the module where overloaded operations�in
combination with array syntax�are applied in multiplication� � � � � 	�	

��� Abstraction benchmark results applied to IBM RS����� with the IBM
xlf
� Fortran 
� compiler �optimization 
O� with AIX ��	�� Note
that test � �automatic array test with use
association� always returns
����� as the execution time� regardless of the iteration length� The
time indicated for that test is a loose approximation based on test ��
Abstraction measurements close to 	���� are desired� � � � � � � � � � 	��

xii



Preface

There is little argument that the programming of scienti�c applications� particu


larly on distributed memory parallel machines� remains di�cult� Scientists are still

productive� but this productivity comes at the high cost of designing and developing

applications that are hard to maintain� modify� share with collaborators� explain� and

scale to larger problems� Many of these challenges stem from applying languages and

techniques that do not promote abstraction in programming� The human cognitive

ability to unify and generalize detailed concepts into abstract representations is the

most powerful tool available in scienti�c and engineering disciplines� Unfortunately�

we have not yet been successful in transferring this technique into a general applica


tion development process� Programming via abstraction is not common practice�

One of the most promising areas of opportunity to address abstraction in scien


ti�c programming involves object
oriented technology� The advanced techniques of

this approach can bring coherency to the design and programming process� Issues of

interest include application
oriented design of scienti�c programs and language selec


tion within an environment where new machines and languages are introduced and

are rapidly changing� This represents a serious concern for software development�

vital to the immediate and long
term success of production
oriented application de


sign� These issues are even more critical as individuals consider how best to prepare

themselves for the use of modern programming methodologies in the hope of being

more productive�

Many scienti�c programmers are contemplating issues of language selection to in


xiii



crease productivity� communication and understanding� Since decision making could

not be based on an empirical comparative analysis of a single application written

using a variety of techniques and modern languages� other factors in�uenced these

decisions� This may have included our current experience� educational trends� man


agement concerns� or even interest in the latest and fastest growing technologies�high

performance scienti�c JAVA has even been proposed�

Our research� for the �rst time� allows direct comparisons among the design�

development and performance of an application based on existing and emerging pro


gramming methodologies� As a result� interest in this work has already generated at


tention� both within the United States and internationally� Recent requests for infor


mation have come from Brazil� Japan �Electrotechnical Laboratory at Tsukuba� Real

World Computing Partnership� and University of Tokyo�� Switzerland �Ecole Poly


tehnique F�ed�erale de Lausanne� and France �Institut National de Physique Nucl�eaire

et de Physique des Particules� Centre National de la Recherche Scienti�que�� Institu


tions throughout the United States include Cornell Theory Center� Digital Equipment

Corporation� Geophysical Institute at University of Alaska� Hewlett Packard� Inter


national Business Machines� Lawrence Livermore National Laboratories� Los Alamos

National Laboratories� National Aeronautics and Space Administration �Goddard

Space Flight Center�� National Institute of Standards and Technology� Princeton

Plasma Physics Laboratory� Sandia National Laboratories� Silicon Graphics Corpo


ration� The Portland Group� United States Department of Energy� University of

Colorado� and University of Illinois at Urbana
Champagne� Additionally� numer


ous international and domestic laboratories and institutions have indirectly acquired

information over the Internet�

This growing level of attention� supported in part through activities of members

from the examining committee and our article in Communications of the ACM �����

shows the interest and need for research of this kind� Therefore� thesis has been

written for a wide audience� containing both a research and a tutorial perspective

xiv



where appropriate� This work should be readily accessible to scienti�c application

developers whose background involves �elds outside of computer science�

Although we explore paradigm issues in terms of scienti�c computation in plasma

simulation� the points addressed easily extend to broader areas of interest� Our focus

on physics
related issues is limited� rather we concentrate on aspects of simulation

that are a�ected by these issues� In most circumstances� the topics addressed will

be common to most scienti�c applications� Hopefully� you will �nd the details and

conclusions drawn within this thesis suitable to your speci�c areas of interest as well�

To help guide your reading� we have included �briefs at the beginning of each

chapter� These are not summaries� but rather an overview of the issues discussed�

Although there may be some temptation to skip various sections based on your cu


riosity� the most e�ective way to read this text is from the beginning� It is essential

that you examine Chapter 	� since discussion of how this work �ts into current events

is only described therein�

This work builds upon itself relying upon information� assumptions� experiences�

and insights revealed from previous chapters� In many instances this information is

not repeated� The best way to bene�t from this work is to observe the progression�

development� and evolution of ideas and concepts presented� This should also make

the reading experience more enjoyable and educational�

Finally� detailed knowledge of Fortran ��� Fortran 
�� and C�� programming is

not a prerequisite for understanding the contributions of this work� Developers inter


ested in Fortran 
� and object
oriented programming will �nd a brand new approach

to scienti�c programming where the traditional aspects of e�ciency are combined

with the abstraction modeling bene�ts of object
oriented technology� While experi


enced Fortran �� developers may bene�t the most from the techniques and lessons

presented� those experienced in C�� should �nd the comparative analysis to For


tran 
� of interest� Experienced C�� programmers will �nd many of the modeling

and development issues across compilers and machines enlightening� Additionally� the

xv



work in object
based design paradigms for irregular computation will be of interest�

Everyone considering language selection issues will �nd the sections on abstraction

and the impact on object design in scienti�c programming useful� including the per


formance and language comparison sections� We hope that the analysis presented

will inspire all readers to question and evaluate their development process� opening

new design alternatives useful in modernizing their existing and future applications�

Charles D� Norton October� 	

�

Troy� New York� U�S�A

The statements and conclusions within this thesis do not necessarily

represent the position or policy of the United States government�

No official endorsements should be inferred or implied�

xvi



Acknowledgments

There are a large number of very generous� intelligent and thoughtful individuals who

have contributed to my research activities and lifestyle during my studies� Thinking

back on my experiences� the complications and setbacks typically associated with

graduate study are shadowed by many fond memories of the support and encour


agement I have received from my family� colleagues and friends� I am pleased to

introduce you to many of them through these acknowledgments� from which you may

also learn something about me�

My advisor� Bolek Szymanski� is a very patient� insightful and energetic scientist

with whom I have been privileged to conduct this research� His guidance and prudent

timing have led to an unusual amount of exciting and enjoyable professional activities�

In addition� Viktor Decyk has been extremely generous with his time and resources�

His collaboration and clarity of thought has been thoroughly enjoyable and inspira


tional� I look forward to continued exploration of issues in scienti�c computing with

Bolek and Viktor in the future� Joseph Flaherty� Franklin Luk and David Musser

have been involved in my development long before they were o�cially part of the

thesis committee� I deeply appreciate their on
going contributions to my studies�

Ephraim P� Glinert was instrumental in my graduate work� both as my M�S� ad


visor and in providing essential guidance during my transition to Ph�D level research�

His support during this time was the catalyst without which my research goals might

not have come to fruition� In addition to my family� committee and close friends� I

dedicate this work to him�

xvii



Robert D� Ferraro� associate project manager of NASA HPCC� members of the

High Performance Computing and Applications Group and the support sta� at Jet

Propulsion Laboratory� California Institute of Technology� always ensured that my

numerous research visits were pleasant and productive� I have bene�ted considerably

from their collaboration�

Bradley W� Dickinson� my former advisor from the Electrical Engineering Depart


ment at Princeton University� has followed my progress during my graduate work�

Near the end of my B�S�E studies� he encouraged me to pursue the Ph�D and I am

grateful for his foresight and continued interest in my professional development�

Gary Judd� Dean of the Faculty and Dean of the Graduate School at Rensse


laer� immediately developed a keen interest in my academic career upon my arrival�

Throughout my studies he has been a wonderful mentor and I appreciate his thought


fulness�

Robert F� McNaughton has been a great friend and mentor� as he is to anyone

fortunate enough to know him� Not only has he o�ered sound advice over the years�

his appreciation and detailed knowledge of the �ne arts� particularly the symphony

and chamber music� is considerable� I have enjoyed many wonderful outings to Emma

Willard for the �Friends of Chamber Music series and the Saratoga Performance Arts

Center with Robert and his wife Vivian�

Eva Ma� with whom I have also enjoyed many concerts� has been a constant

source of encouragement� Whenever I had doubts about the progress of the research�

an informal meeting quickly placed these concerns to rest�

While the entire Computer Science Department faculty has been unusually sup


portive of my e�orts� I want to recognize Erich Kaltofen� Sam Kim� Mukkai Kr


ishnamoorthy and Susan Rodger who clearly went out of their way to ensure the

successful completion of this work�

The Computer Science Department laboratory and secretarial sta� are an out


standing resource� without whom my research and travel activities could not have

xviii



been conducted� In particular� Joyce Brock� Dave Hollinger� Nathan Schmike� Ora

Schongar� and especially Pam Paslow never hesitated to assist me� Additionally� the

Numerically Intensive Computing Sta� at Rensselaer and the sta� at Jet Propulsion

Laboratory� California Institute of Technology were extremely helpful� particularly

Mike Kupferschmid� Nooshin Meshkaty� and Mark Miller�

My family has always believed in me� which is all that anyone ever needs� My

Father passed away not long after I was born� so my Mother and Grandmother raised

my brother and me alone� While they probably made a number of sacri�ces during

this time� I�m sure they would say otherwise� My Grandmother �rst encouraged my

study of music and my Mother fully supported this through activities with various

symphony orchestras� Those who know me well understand that music forms the

foundation to most of my intellectual activities� hopefully I can continue to transfer

the discipline� patience and respect for history the performing arts requires into my

scienti�c research�

This thesis is dedicated to my Mother Alva� my brother Michael� my aunt Alice

�who always supports major events in my life�� and to the memory of my Father Jim�

and my Grandmother Cleo� I cannot comment on what they mean to me� or the

importance of their in�uence on my life�

I am fortunate to have many dear friends� however I want to bring special atten


tion to some with whom I have enjoyed many pleasurable activities� Gail and Jon

Berry� Chak Bhagvati� Steve Blythe� Patsy and Nui Bodhipaksha� Sandy Charette�

William Chung� Ewa Deelman� Karen Devine� Maryanne Egan� Robin and Steinar

Flatland� Rama Govindaraju� Varina Hammond� Monique Havasy� Wesley Kaplow�

Susan Kokernak� Cynthia Lawton� Cassandra Lehman� Raymond Loy� William Ma


niatty� Julia Marvin� David McIntyre� Mohan Nibhanupudi� Austin Lobo� Toshiro

Ohsumi� Kristina Ott� Susan Palmer� Spencer Phillips� Badri Ramamurthy� Patrica

Ryan� Andrew Shapira� Balaram Sinharoy� Peter Tannenbaum� Kedar Tupil� Tom

Valente� Rebecca Wells� Julie Youse�� and Louis Ziantz� Should you come across any

xix



of these individuals� introduce yourself and your life will be improved immediately�

My research has been sponsored by a variety of agencies and corporations and I

wish to formally acknowledge their support� This includes the General Electric Foun�

dation� GTE Corporation� International Business Machines and the National Science

Foundation CCR

�	����� Most of the dissertation research was supported by the

National Aeronautical and Space Administration Graduate Student Researchers Pro�

gram NGT
����� and carried out in part at the Jet Propulsion Laboratory� California

Institute of Technology� and University of California at Los Angeles Department of

Physics and Astronomy� in addition to Rensselaer Polytechnic Institute�

Support for international speaking engagements has come from Laborat�orio de

Cosmologia e F��sca Experimental de Atlas Energias �LAFEX�� FERMILAB and

NASA Headquarters for travel to Rio de Janeiro� Brazil in September of 	

�� Ad


ditionally� the University of Tokyo �hosted by Dr� Satoshi Matsuoka�� the ACM

SIGPLAN Professional Activities Committee �chaired by Dr� Mary Beth Rosson�

and an IBM Development Grant supported speaking engagements in Kanazawa and

Tokyo� Japan in March of 	

��

Access to the Cray T�D and Intel Paragon XP�S at Jet Propulsion Laboratory�

California Institute of Technology was provided by NASA O�ce of Aeronautics� O�ce

of Mission to Planet Earth and O�ce of Space Science� Access to the IBM SP� at

Rensselaer was provided by the Scienti�c Computation Research Center� Additional

access to equipment and software at the University of California was provided by the

UCLA O�ce of Academic Computing�

xx



Abstract

The prominent success of high performance computing used in modeling scienti�c�

engineering� and physical phenomena continually motivates the development of very

ambitious applications� In most instances programming languages such as Fortran ��

and C have been used� but many of the most challenging applications are stretching

the capabilities of these languages� Many scienti�c problems are full of physical and

mathematical abstractions� yet these are often di�cult to integrate into the program


ming process� Furthermore� as modern languages and high performance computers

are introduced� there is a need to explore their e�ectiveness� usability� and perfor


mance in scienti�c programming�

We have investigated traditional and modern object
oriented paradigms in scien


ti�c computation� This work is in collaboration with the National Aeronautical and

Space Administration High Performance Computing and Communication �HPCC�

Earth and Space Sciences Project at Jet Propulsion Laboratory� California Institute of

Technology� The simulation testbed application used in our research is based on For


tran �� plasma particle
in
cell �PIC� skeleton programs associated with the Numerical

Tokamak Turbulence Project�an HPCC research e�ort to model and understand the

transport of particles and energy in a tokamak fusion energy device� The plasma PIC

model follows the trajectories of millions of particles in their self
consistent electro


magnetic �elds� both external and self
generated� Since the computation required is

extremely large� both in terms of the �eld sizes and number of particles� the only

alternative is to use massively parallel computers� While a variety of institutions are

xxi



involved in many aspects of this project� our e�orts concentrate on the problems of

evaluating new languages� machines� and programming techniques applicable to the

next generation of advanced simulation programs�

Our contributions include the design and implementation of object
oriented plasma

simulation codes using language
free abstractions� allowing analysis and comparison

of language paradigms in Fortran ��� Fortran 
�� and C��� This includes develop


ing a methodology for object
oriented programming in Fortran 
�� uncovering the

new potential of the modern features provided by this language� Since advanced

codes on parallel machines require dynamic load balancing� we have introduced an

object
oriented instrumentation technique which monitors objects continuously and

implicitly� This approach simpli�es the introduction of load balancing extensions into

object
oriented programs while preserving class hierarchies� Additional paradigm


related contributions study the implications of abstraction in scienti�c programming�

with machine and compiler performance comparisons between Fortran ��� Fortran 
��

and C�� on scalar workstations and high performance distributed memory parallel

computers� This work advances our understanding of emerging language standards

and new paradigms critical for modern scienti�c programming�

xxii



Chapter �

Introduction and Historical Review

We introduce the importance of programming paradigms in modern scienti�c software

development with a language independent overview of object�oriented methodology and

concepts� This is followed by a brief review of the current state of the art in object

technology for parallel scienti�c computation in plasma modeling� as well as commentary

motivating the relevance and contributions of this work�

��� The Importance of Programming Paradigms

The e�ective programming of large scale scienti�c applications on massively paral


lel computers remains challenging� Although there are many concerns involved in

building applications in this environment� the most signi�cant include organization

of the software for extension to new problems� clarity of design for shared develop


ment among multiple contributers� and the development of appropriate computational

abstractions� These software engineering issues have become requirements in the

management of increasingly ambitious scienti�c computations� This is particularly

noticeable on supercomputers� which have traditionally been di�cult to program�

The success of computer simulation continues to impact research in science and

engineering� spawning new problems and increasing our understanding of various

	



CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW �

phenomena� Nevertheless� these bene�ts are di�cult to achieve and often result in

complex� di�cult to maintain stand alone programs� which lack the features needed

to build multidisciplinary applications�

What is needed is a better understanding of how new programming paradigms

can be applied to ambitious scienti�c applications�

Programming Paradigm� A development methodology� not de�ned

by a particular language� that characterizes the distinguishable way in

which applications are designed and implemented�

Modern programming paradigms must consider irregular data and communication

characteristics requiring dynamic load balancing� modular design for extensibility�

and appropriate abstractions in programming� A programming language can simul


taneously support development using a variety of paradigms� Similarly� paradigms

take on di�erent forms when parallel programming is of interest �����

The demands of modern simulation are imposing limits on traditional program


ming approaches� New paradigms� which were largely ignored in scienti�c computing�

are receiving attention and need to be critiqued� This is a critical time to evaluate

past� present and future language paradigms since each user must make decisions�

often based on a lack of complete comparative evidence� Fortran �� programmers

may have the most di�cult decision� should they move into a completely di�erent

language like C�� or build upon their experience with Fortran 
�! Migration to a

new language introduces risks� Are the bene�ts of object
oriented programming in

C�� worth the risk of losing large investments in expertise and existing software for

the seasoned Fortran �� programmer! What is the most e�ective way to program in

Fortran 
�! Many new features are available to support abstraction� how are they

best introduced! Many computational scientists have migrated to C��� but are they

receiving any bene�ts compared to their previous experiences in Fortran �� and C� or

are they losing ground due to the immaturity of compilers on advanced parallel archi


tectures! Even if they are programming in C��� to what extent are they putting the



CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW �

object
oriented methodology into practice� have they committed to a complex lan


guage without the background in object
oriented design to make this e�ective! What

about users who have been programming in C�� and are unsatis�ed with the perfor


mance of their codes! Should they consider moving to Fortran 
�� or are the modern

features of C�� �meta
classes� exception handling� expression templates� Standard

Template Library� su�cient motivation to remain with this language! Should similar

features be included in future revisions of the Fortran 
� language!

C�� programmers enjoy a powerful language� Advanced tools �nding their way

into software systems� particularly in the areas of visualization and analysis tools�

work very well within the C�� framework� C�� is probably the fastest growing

language among programmers� is there any real reason why other languages should

even be considered in scienti�c programming! Finally� scientists who must move into

the area of simulation but have limited experience with software development� often

rely on rumors regarding language selection� What factors should one consider when

choosing between traditional Fortran ��� Fortran 
�� or C�� in scienti�c program


ming!

The general theme of this research involves empirical study of object
oriented

programming paradigms for scienti�c computing� This has been indenti�ed by the

Grand Challenges Applications and Software Technology Programming Paradigms

Working Group as a serious open issue� ��that� could be used to drive the devel


opment of the next generation of computer software ����� The members warn that

understanding the fundamental questions of the costs� bene�ts� and consequences of

using one language rather than another can only be of interest if serious applications

are considered�

The scienti�c computing community is looking for techniques to modernize and

simplify development of advanced applications� particularly for extension to new prob


lems and integration of related codes into multidisciplinary applications� For exam


ple� the National Aeronautical and Space Administration �NASA� High Performance



CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW �

Computing and Communications �HPCC� Earth and Space Sciences �ESS� Project is

a special program designed to advance the state of software technology� algorithms�

and high performance computing for ESS problems related to NASA missions� One

of the many areas targeted for research involves the study of parallel programming

paradigms and dynamic load balancing aimed at advancing the state of software

technology applicable to Grand Challenge problems ����� Our research involves the

analysis of various techniques using a plasma particle
in
cell simulation code to un


derstand how modern paradigms can add structure and organization to computations

of this kind� Additionally� by comparing various design approaches across machines�

languages and development paradigms� a better understanding of the needs and chal


lenges for current and future simulation programming becomes apparent�

Increasing the level of abstraction in scienti�c programming allows scientists to

use many of the same concepts that have been bene�cial in scienti�c theory� Ad


ditionally� a communication context is established which promotes interdisciplinary

collaborations� These issues represent the importance of paradigm research�

��� Basic Concepts in Object�Oriented Methodol�

ogy and Programming

Much of object
oriented methodology and programming is �lled with terminology

that can be di�cult to grasp without extended examples� Furthermore� there are

many research activities adding to this complexity on a regular basis� While debate

continues on what makes a speci�c language object
oriented� this section brie�y intro


duces the general concepts of object
oriented technology in a language independent

manner�

The Goal of Object�Oriented Technology� To facilitate the develop


ment of software from an application oriented viewpoint�



CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW �

The underlying premise is that modeling software based on �real world concepts

enhance program safety� portability� modi�ability and understanding� Since object


oriented programs can be represented through graphical class interaction diagrams�

communication with collaborators� software readability� and documentation are im


proved�

The methodology emphasizes the design of conceptual models representing the

problem� rather than language speci�c or implementation details� Many organiza


tional approaches have been suggested� generally they require analysis of the problem

domain� organization of the general system design� realization of system data struc


tures and algorithm components through object design� followed by implementation

in a speci�c language ����� The main bene�t of this approach is the clear distinction

among development phases� useful in supporting large software development e�orts�

There are many�often con�icting de�nitions�of what object
oriented languages

must support� Nevertheless� the most widely used descriptions include at least the

following ��	��

	� Abstraction

The ability to represent concepts in a static form �classes� and to manipulate

them in a dynamic form �objects��

�� Inheritance

The ability to create new abstractions by preserving features of existing ab


stractions�

�� Polymorphism

The ability for objects to share a single interface� while responding to operations

di�erently� based on dynamic binding to speci�c routines�

Objects represent a uni�cation of data with associated operations� These operations

�often called methods or functions� modify the data encapsulated within the object�

Encapsulation localizes where object de�nitions can be modi�ed to well speci�ed parts



CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW �

of the program� A related notion is information hiding which de�nes the interface and

access restrictions on the object� The interface functions may be publicly accessible

or private� The combination of encapsulation and information hiding allows interfaces

to remain �xed� even if the internal details of objects are modi�ed�

An object is created from a class� Classes represents the main data structures

of the abstract application model� When new classes share features in common with

existing classes� inheritance allows usage of the base class features in the newly de�ned

derived class� This represents one form of code reuse which is encouraged in the

object
oriented paradigm�

Polymorphism allows objects to respond to a function without explicit knowlege

of the object type� This can be very useful in generic programming� Suppose we

have classes representing the sections of a symphony orchestra �strings� winds� brass

and percussion� with objects representing various instruments such as violin� bassoon�

horn� and tympani respectively� Objects of these classes may have a tune operation�

used to verify intonation among other instruments in their section and the orchestra

as a whole� While these objects share the same interface for intonation� they will

respond di�erently� Violinists tune by moving a bow across the strings� wind and

brass instrumentalists blow into various reeds or mouthpieces� while the percussionists

often strike their instruments with a mallet�

Two additional language speci�c features are so often associated with object


oriented programming that we brie�y introduce them here� These are overloading

�compile time selection of a routine based on the number and type of its arguments�

and templates �the instantiation of classes based on parameterized types��

Overview of Object Modeling Technique �OMT� Notation The Object Mod


eling Technique �OMT� notation ���� is part of the OMT methodology used in con


structing object models� The general design methodology was not applied in our

research� nevertheless the symbolic notation is helpful in representing our class hier




CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW �

Exactly One
Class

Class
Many (Zero or More)

Class
1+ One or More

Multiciplicity of Associations

Class Name

attributes

operations

Class

Assembly Class

Part Class Part Class

Aggregration

Class Class

Ternary Association

Superclass

Subclass Subclass

Generalization (Inheritance)

Figure ���� Basic elements of the OMT Notation�

archies� Figure 	�	 shows some of the basic elements of this diagramming technique�

Most components are self explanatory� The links connecting classes show a one
to


one relationship� while numerical annotations indicate the number of object instances

from that class� Links may contain link associations describing the meaning of the re


lationship between classes� Link attributes� when present� describe the property of the

link� The diamonds attached to classes indicate an aggregation de�ning a �part
of 

relationship� Aggregations show how an object is assembled from many component

objects� The large diamond is a ternary association indicating classes which are so

tightly related that they form an atomic unit� one cannot be fully described without

the other� The examples in Chapter � will clarify all of these concepts�

Minor Commentary and Personal Viewpoints While object
oriented method


ology is language independent� experience shows that the actual construction of soft�

ware is often in	uenced by language speci�c details� Many object
oriented languages

�and languages that support object
oriented programming� have been developed�



CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW �

These languages support the methodology in varying ways and extent� The de�nition

of what makes a program object�oriented 
or not� should never be based solely upon

the implementation language features� Constructs including overloading� C�� virtual

functions� Fortran 
� array operations� and so on� only enable the methodology to be

applied� These features must be used judiciously� very good object
oriented programs

can be written without applying every construct� Rather� the ability to manipulate�

modify� extend� share� and understand the software through abstractions determines

the �object
orientedness of the program� These features are in agreement with the

goals of the methodology� not a speci�c language or feature implementation� Finally�

object�oriented techniques are not always useful for every kind of application� The

methodology should be applied when appropriate� which is more di�cult to deter


mine than when it is not appropriate" Only experience and honest evaluation during

development can make this distinction clear�

��� Background and Relevance to Previous Work

Many researchers are investigating the use of object
oriented technology in parallel

scienti�c computation ����� These e�orts focus almost exclusively on creating new

programming languages� compilers� or extensions to support parallelism based on

C�� or similar languages� Currently� the most promising technique for parallel pro


gramming combines a standard high
level language with an explicit message
passing

library for interprocessor communication� Languages� however� can also be extended

with new constructs in direct support of parallelism� The principal explicitly parallel

Fortran
based language is High Performance Fortran �HPF� ����� which introduces

new keywords and extrinsics for data placement and alignment� Additional research

languages include Fortran D ����� Fortran 
�D�HPF ���� Fortran M �	��� Opus and

Vienna Fortran� Some of these languages support operations on virtual processors

which separates the problem partitioning and mapping from the physical proces




CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW 


sors� Research activities in object
oriented parallel languages include ACT��� C##�

Charm�� ��
�� Compositional C��� Concert ����� Concurrent Aggregates� Concur


rent C��� COOL ��
�� DC��� DCE��� HPC�� ����� Mentat �	
�� Parallel C���

pC�� ���� POOL
T� �C�� and many more� Many of these systems have been re


cently described in a new text ��	�� These languages support shared memory �address

space is common to all processors�� distributed memory �address space is local to each

processor� and�or workstation cluster parallel environments� Each language adds ex


tensions� typically to C�� and often with complex runtime systems� to support task

and�or data parallel computation� Additionally� libraries featuring VLSI CAD appli


cations ��
�� �nite
element��nite
volume computations �DIME��� ���� and materials

science �LPARX� ��	� have been developed� Generally� library
based approaches try

to preserve existing C�� codes rather than introducing new languages or language

extensions�

Although these e�orts are important� the focus of our research involves the appro


priate usage of object
oriented paradigms for scienti�c computation� not the extension

of existing languages with features to support parallelism� Many of the research
based

modi�cations for parallelizing Fortran and C�� have very promising ideas� yet the

proposed techniques may not receive overwhelming support unless clear� empirical�

and measurable evidence establishes their bene�ts� Although valuable progress con


tinues� until these methods become commonplace� as demonstrated by supercomputer

manufacturer support and standards committees� most developers may remain ap


prehensive to adopting new languages� We believe development within existing and

emerging standards is most useful for the widespread use of object methodologies in

scienti�c programming� In this way� investigating the features of Fortran 
� and C��

is very relevant� New standards under development� such as HPF and HPC�� based

on Fortran 
� and C�� respectively� will undoubtably receive increasing attention�

Object
oriented methods are �nding their way into plasma simulation� although

the current number of e�orts is limited� Forslund �	�� has performed simulations on a



CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW 	�

network of workstations using C�� and the ISIS system� Objects are introduced to

represent the particles and �elds� Objects of the particle class know how to respond

to electric and magnetic �elds� particles are vectors� Objects of the �eld contain grid

quantities with interpolation methods to and from the grid� This provides a vector

�eld over the simulation space� A region class represents a process containing par


ticles and �elds on each processor� The boundary class describes the geometry of

regions while a species class maintains particle properties� Class methods for advanc


ing particles overload operators giving a program structure that closely matches the

physical equations� Performance is mentioned as a problem with this system� based

on the latency of communication among workstations� The system was scheduled for

an upgrade to the Thinking Machines CM
� parallel computer�

Haney ���� also uses C�� with building block classes of lists� queues� iterators

and matrix and vector templates� Their tokamak modeling code is ��$ C�� while

the rest is in Fortran ��� The development structure is organized around the building

block classes as opposed to speci�c physical constructs such as particles� This system

was not developed for a high performance computing environment�

Reynders ���� �	� has developed an object
oriented particle simulation library

which seems to continue the work of Forslund� The class structure has been re


organized and extended to handle abstractions for the distributed memory parallel

computer and I�O operations� A patch object now contains grid data and the �eld

consists of a group of patches which can be load balanced� A species object is analo


gous to the �eld object since it contains particle objects that can also be load balanced�

Users interact with the �eld and species objects� the patch and particles objects are

hidden� Field and species objects perform operations across all patches in the system�

A con�gure object maintains information on the location of all patches� Current ef


forts are focused toward providing capabilities for moving whole patches �with related

particles� across the system while maintaining the con�gure object� This capability is

supposed to allow for abstract load balancing of inhomogeneous particle distributions�



CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW 		

Much of these e�orts have found their way into the POOMA framework ��	��

Verboncoeur ���� describes experiences in object
oriented PIC for modeling a mi


crowave tube� The modeling abstractions include �elds� grids� spatial regions� bound


aries with particle group lists� and a particle group consisting of particle objects�

Vector operations are supported to aid in representing the mathematical model� This

system was not designed for a parallel computing environment� but according to

personal communication this may change�

We have also� independently� developed an object model for plasma simulations

from the existing Fortran �� codes� Our abstractions realize that plasma simula


tion models inherently depend upon interactions between particles and �elds ���� ����

Our approach models this relationship from a physical and computational perspec


tive� Chapter � covers the details of this e�ort with extended work in Chapters �

and �� This is relevant to previous research in the �eld since we introduce a new un


derstanding of how the object
oriented paradigm can be used to design sophisticated

scienti�c software based on existing and emerging language standards� Additionally�

modeling for extension to problems in higher dimensions� design for modi�cation

without side e�ects� and the introduction of advanced features for load balancing�

which maintain programming abstractions�are emphasized for this application� The

language comparison and Fortran 
� parallel programming experiences have already

in�uenced new considerations for the Numerical Tokamak Project ���� now The Nu


merical Tokamak Turbulence Project� in supporting extensions for advanced issues in

plasma simulation on modern architectures�

��� Overview of Principal Contributions

As described in the preface and abstract� this research addresses object
oriented pro


gramming paradigms for scienti�c computation� Most of the contributed work is

based on completely new approaches and ideas� rather than extensions from previous



CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW 	�

work� This is summarized as follows�

� Design and implementation of object
oriented sequential and parallel plasma

particle
in
cell programs� from the Fortran �� versions� with analysis and com


parision of organizational models using language
free abstractions�

� Establishment of a programming methodology for the new features of the For


tran 
� programming language based on object
oriented techniques�

� Analysis of the implications Fortran ��� Fortran 
�� and C�� programming

language paradigms impose on abstraction modeling in scienti�c programming�

� Development of a Fortran 
� abstraction modeling benchmark program which

measures the performance e�ects of applying object
oriented features across

compilers�

� Design and implementation of an optimal mapping algorithm used in managing

irregularly slab
partitioned �elds in load balancing�

� Creation of an object
oriented continous implicit monitoring techique that al


lows objects to be instrumented and monitored for dynamic load balancing

while preserving class abstraction hierarchies�

� Performance comparisons of Fortran ��� Fortran 
�� and C�� programming

language paradigms for plasma particle
in
cell programs on scalar workstations

and distributed memory parallel architectures�

We have received many comments from scientists in various organizations who

have learned about some aspects of this research� For instance� Ian Wells of Hewlett

Packard Massachusetts Language Lab�in regard to the our Fortran 
� comparative

paradigm issues and the abstraction modeling benchmark software�had the following

comment�



CHAPTER �� INTRODUCTION AND HISTORICAL REVIEW 	�

You have done an excellent job of providing a focus point for the scienti�c

community to quantify the tradeo�s between programming productivity

and performance� This is a unique and timely contribution� I feel the

performance side of decreasing the e�ort to produce software has �been

downplayed� with all the recent hype over C�� and now Java� This

benchmark will help out internal optimization groups� managers making

decisions about containing development costs� and programmers who need

to get maximum performance for the least e�ort� Excellent ��
��

This statement generously summarizes of the scope and impact of the research

contributions�



Chapter �

Plasma PIC Simulation

This chapter introduces plasma particle�in�cell �PIC� simulation on scalar and distributed

memory supercomputers� We examine the physical and computational features of the

model� the simulation experiments performed� and the concepts and terminology used in

this grand challenge application�

��� Overview of the Plasma PIC Model

When a material is subjected to conditions under which the electrons are stripped

from the atoms� acquiring free motion� the mixture of heavy positively charged ions

and fast electrons forms an ionized gas called a plasma� Ionization can be introduced

by extreme heat� pressure� or electric discharges� Fusion energy is an important

application area of plasma physics research� but more familiar examples of plasmas

include the Aurora Borealis� neon signs� the ionosphere� and solar winds� The plasma

particle
in
cell simulation model �	� integrates in time the trajectories of millions of

charged particles in their self
consistent electromagnetic �elds� The method assumes

that particles do not interact with each other directly� but through the �elds which

they produce� Particles can be located anywhere in the spatial domain� however� the

�eld quantities are calculated on a �xed grid� In our example applications only the

	�



CHAPTER �� PLASMA PIC SIMULATION 	�

Periodic
Boundary

Particle Charge Deposition to Charge Density Field

Particle Advance (Push) from Force Field

Processor 0 Processor 1 Processor 2 Processor 3

Processor 0 Processor 1 Processor 2 Processor 3

Processor Partition

Field Charge
Grid Cells

Grid Cells
Field Force

Partition
Border

Processor Partition
X Force Component

Y Force Component

Partition
Border

Periodic
Boundary

Figure ���� Particle�Field interaction in the plasma PIC algorithm �scalar and two

dimensonal vector �eld illustration�� Local and non
local �eld and par

ticle operations� due to the slab partitioning� are shown�

electrostatic �coulomb� interactions are included�

The General Concurrent Particle
in
Cell �GCPIC� Algorithm ���� partitions the

particles and grid points among the processors of the MIMD �multiple
instruction�

multiple
data� distributed
memory machine� The particles are evenly distributed

among processors in the primary decomposition� which makes advancing particle

positions and velocities in space e�cient� A secondary decomposition partitions the

simulation space evenly among processors� which makes solving the �eld equations

on the grid e�cient� As particles move among partitioned regions they are passed to

the processor responsible for the new region� For computational e�ciency� �eld�grid

data on the border of partitions are replicated on the neighboring processor to avoid

frequent o�
processor references� We illustrate the interaction between the particles

and the �eld�grid in �gure ��	 showing the data dependencies that must be modeled

in our class designs� Particles scatter charge and gather force data to�from their



CHAPTER �� PLASMA PIC SIMULATION 	�

Create Particle/Field Partitions

Create Particles

Initial Charge Deposition

Partition Border
Charge Update

Solve Field

Partition Border
Force Update

Advance Particle
Positions & Velocities

Move Particles Among
Processors As Needed

Charge Deposition
onto Grid

Distributed Across Processors

Spatial & Velocity Distribution

Exchange Guard Cells

Poisson’s Eqn. Using FFT

Exchange Guard Cells Gather Step

Scatter Step

Scatter Step - Electron & Ion Background

Initialization Section Loop Section

Figure ���� Plasma PIC computation loop overview� Diagnostic operations and
extensions for load balancing are not shown�

nearest grid points� Electric �eld components from each dimension are required to

advance particles to new positions�

The computation cycle� illustrated in �gure ���� essentially consists of two major

stages that occur with each simulated time step� the particle push�advance stage

and the �eld solve stage �seen in the loop section�� In the push stage� particle posi


tions and velocities are updated using a time centered leap
frog integration scheme�

based on the value of the �elds at each time step� A near neighbor grid point interpo


lation method is used to �nd the plasma charge density from the particle positions�

The electric �eld is then found by solving Poisson�s Equation in Fourier space using

the Fast Fourier Transform� Other �eld solution techniques can be applied� but the

approach used is problem dependent� Diagnosics are computed along the way� where

all lengths are normalized to the grid spacing� These can be related back to physical

quantities later�

On a distributed
memory parallel computer� the GCPIC algorithm is written in

SPMD �single
program� multiple
data� mode� In other words� every processor exe


cutes the same program independently� not the same instruction in synchronized lock


step typical of SIMD �single
instruction� multiple data� programs� The algorithm is



CHAPTER �� PLASMA PIC SIMULATION 	�

loosely synchronized by message passing and global communication operations� Since

the �elds and particles are partitioned� guard cells�areas of distributed data stru


tures that temporarily store data that belongs on a neighbor processor�are used to

improve the e�ciency of interprocessor communication� This allows many small mes


sages to be transmitted as a single message� reducing message startup latency and

other communication overheads�

Each processor is responsible for a region of physical space that includes �elds and

particles� as seen in �gure ��	 on page 	�� Simulations that do not require dynamic

load balancing of the particles and �elds share identical partitionings across the pro


cessors� This is advantageous computationally since only the guard cell data need be

transmitted between �elds� this transmission is part of the algorithm and occurs every

time step� When dynamic load balancing is required� the �eld and particle partition


ings di�er and may vary every time step� Since interpolation is required to map �eld

quantities to the particles� and vice
versa� the GCPIC algorithm must be extendible

to that case� This complexity is largely dependent on the numerical scheme used to

solve for the �elds� The modi�cations to the algorithm for load balancing will be

presented in Chapter �� Evaluating the use of object
oriented paradigms for such

situations will be an important aspect of our investigation�

��� The Fortran �� Simulation Programs

The Fortran �� programs� which served as the basis of our research� were written by

computational physicist Dr� Viktor K� Decyk from University of California at Los

Angeles� These �skeleton programs� which contain the critical components of the

main production programs� are used to explore the features of new computer archi


tectures� Although very portable and well benchmarked� modernizing these programs

to examine the features of new programming methodologies was of interest� making

them ideal for our paradigm studies�



CHAPTER �� PLASMA PIC SIMULATION 	�

Some of the input parameters to these programs include the interval between suc


cessive time steps� number of iterations� system length parameters� number of parti


cles in speci�c species and particle distribution function characteristics� The actual

particles are generated internally with an initial density and velocity distribution�

The output is a description of various plasma diagnostics along with performance

measurements� The high level structure of the Fortran �� programs is similar to the

PIC computation loop in �gure ��� on page 	��

The organization consists of two major sections referred to as the initialization

section and the loop section� The initialization section builds the particle and �eld

partitions �required for parallel programs�� constructs tables� and performs the initial

particle distribution and charge density deposition� The loop section calculates the

electric �eld forces using Poisson�s Equation and the Fast Fourier Transform� advances

the particles under these forces� and �nds the new charge density for the �eld at the

grid points� When the particle and �eld partitions are distributed across processors�

interprocessor communication is required to preserve consistency� Message passing

libraries� such as MPI ���� or vendor speci�c libraries� may be used� Each loop

represents a simulated time step during which diagnostics such as �eld� kinetic� and

total energy are monitored�

A wide variety of constants� variables� data structures� and functions are used dur


ing the computation cycle� As mentioned� the parallel programs contain additional

features associated with that environment� however� many fundamental characteris


tics are present in both the sequential and parallel simulations� Some of the most

important simulation parameters are listed in table ��	 on page 	
� Although we show

some components of the one
dimensional Fortran �� sequential and parallel programs�

the higher dimensional codes contain many additional data structures and variables�

In fact� we have not included features associated with message passing or dynamic

load balancing in table ��	� These issues will be addressed later in Chapter �� The

programs were designed to separate the programming of physics related issues from



CHAPTER �� PLASMA PIC SIMULATION 	


Sequential Parameters De�nition

part���n�� part���n�
Array describing the position and velocity of particles
in one dimension� respectively�

qme� qiO Charge on electron and normalized Ion charge�

vtx� vtdx
Thermal velocity distribution parameters of background
and beam particles�

vdx Drift velocity distribution parameter of beam particles�

npx� npxb� np
Number of background and beam particles followed by
the total number of particles�

nx Simulation system length in x
dimension�

q�j�� qc�j� Real and complex charge density �elds at grid point�

fx�j�� fc�j� Real and complex electric �elds at grid point�

we� wke� wt Field� kinetic � total energy diagnostics�

dt� nloop Simulation time step interval and number of iterations�

Parallel Parameters Additional de�nitions required for parallel programs

nvp� npp
Number of processors and total number of particles per
processor in the current particle partition�

edges���
Array identifying location of �eld and particle partition
boundaries on each processor�

nxp Number of x
dimension grid points in partition�

kstrt Processor identi�er�

Table ���� Major simulation components of the one
dimensional Fortran �� pro

gram� The sequential parameters are also used in the parallel programs�
In higher dimensions� additional parameters are required�

those associated with parallel computation� This allows scientists that may not have

experience with parallel programming to contribute to other portions of the codes�

����� The Sequential Programs

The Fortran �� subroutines� with their parameters� are called in the initialization

and loop sections with arguments from table ��	� The most important routines of

the one
dimensional sequential program are described in table ���� A sketch of the



CHAPTER �� PLASMA PIC SIMULATION ��

Routine call distr� �part�vtdx�vdx�npxb�idimp�nx�

Action Initialize density pro�le and velocity distribution� Given the
particle array part and distribution parameters for the maxwellian
velocity characteristic� distribute a speci�c particle species uni

formly� Note that the system length and dimensions of the particle
array must be passed as parameters�

Routine call dpost� �part�q�qme�np�idimp�nx�

Action Deposit charge� The particles deposit charge� using a nearest grid
point interpolation scheme� to the charge density �eld q� The num

ber of particles� their charge and the system length are required�

Routine call push� �part�fx�qtme�dt�wke�idimp�np�nx�

Action Push particles� The new particle positions and velocities are
determined from the electric force �eld fx� The kinetic energy of
the �eld is also computed�

Routine call pois� �q�fx�isign�ffc�ax�affp�we�nx�

Action Poisson solver� The Poisson�s Equation solver computes the elec

tric �eld fx from the charge density array q� as well as the �eld
energy�

Routine call fft�rx�q�t�isign�mixup�sct�indx�nx�nxh�

call fft�rx�fx�t�isign�mixup�sct�indx�nx�nxh�

Action Fast Fourier Transform� The Fast Fourier Transform routine
transforms the charge density array q to Fourier space for the Pois

son solver and back to real space for the force �eld fx used by the
push� routine�

Table ���� Fortran �� major routines of the one
dimensional scalar program�



CHAPTER �� PLASMA PIC SIMULATION �	

initialization section is shown in �gure A�	 on page 	
�� Similarly� the loop section

is sketched in �gure A�� on page 	
	� The organization of the one
dimensional pro


grams is similar to the higher dimensional programs� although more complicated data

structures are used�

����� The Parallel Programs

The parallel programs are highly portable data
parallel SPMD programs for dis


tributed memory message passing computers� Although shared memory and vector

parallel programs also exist� the distributed memory programs support larger exper


iments� Our attention will be focused on these programs�

The parallel programs are similar in structure to the sequential programs� Passing

particles and �eld elements among processors represents the major di�erence between

them� although various numerical operations also have modi�cations� For instance�

the Fast Fourier Transform must now operate on distributed data� where distributed

matrix transposes are applied during the transform in complex space� This impacts

the organization of the Poisson solver since it now operates on distributed transposed

data� As higher dimensional codes are written� the infrastructure and algorithms to

manage the simulation become more complex� To illustrate some of the modi�cations

introduced� we show the major subroutines of the one
dimensional parallel program

in table ��� on page ���

Most of the interprocessor communication library routines do not use bu�ers in

transporting data� Rather� the Fortran �� arrays are read and written directly as

arguments to the routines� In higher dimensions� the functions shown are more com


plicated� but the general activites performed by the routines are similar�



CHAPTER �� PLASMA PIC SIMULATION ��

Routine call pistr� �part�edges�npp�nps�vtdx�vdx�npxb�nx�idimp�
npmax�idps�

Action Initialize density pro�le and velocity distribution� The array
part� partitioned by edges stores particles�

Routine call pdost� �part�q�npp�noff�qme�idimp�npmax�nxpmx�

Action Deposit charge� The particles deposit charge to their local por

tion of the charge density �eld q�

Routine call ppush� �part�fx�npp�noff�qtme�dt�wke�idimp�npmax�
nxpmx�

Action Push particles� Some particles are moved to non
local �eld re

gions� Communication is performed in the pmove� routine� The
kinetic energy of the �eld is computed�

Routine call ppois� �qc�fc�isign�ffc�ax�affp�we�nx�kstrt�kxp�

Action Poisson solver� The Poisson�s Equation solver computes the elec

tric �eld fc in complex transpose space and the �eld energy�

Routine call pfft�r �qc�fc�isign�mixup�sct�indx�kstrt�kxp�

call pfft�r �fc�qc�isign�mixup�sct�indx�kstrt�kxp�

Action Fast Fourier Transform� The distributed Fast Fourier Transform
routine operates in complex fourier space using matrix transposi

tion�

Routine call dcomp� �edges�nxp�noff�nx�kstrt�nvp�idps�

Action Partition region� Compute partitioning of particle and �eld co

ordinates� stored in edges array�

Routine call pmove� �part�edges�npp�sbufr�sbufl�rbufr�rbufl�
ihole�jsr�jsl�jss�nx�kstrt�nvp�idimp�npmax�idps�nbmax�
ntmax�ierr�

Action Particle mover� Move particles to the processor that owns the
spatial region de�ned by edges�

Routine call cppfp� �q�qc�isign�scr�kstrt�nvp�nxpmx�kxp�idps�

call cppfp� �fx�fc�isign�scr�kstrt�nvp�nxpmx�kxp�idps�

Action Update guard cells� Move guard cell data from particle partition
to �eld partition and vice
versa� Charge density and force �eld data
updated�

Table ���� Fortran �� major routines of the one
dimensional parallel program�



CHAPTER �� PLASMA PIC SIMULATION ��

��� The Experiments

The plasma PIC method can support a variety of experiments based on the simulation

parameters� Dimensionless units are used for computation since this allows the results

of a particular experiment to be applied to similar cases without requiring additional

simulation runs� The experiments we consider are electrostatic in a simulation region

with periodic boundries� The kind of experiment performed is based on the physical

properties of interest� Plasmas can be studied as a �uid� which is useful for long

time scale experiments� but in the following we represent the plasma as a collection

of particles� In all of our examples� we model charge
neutral plasmas�the collection

of electrons and ions have a total net charge of zero�

����� Beam�Plasma Instability

The Beam
Plasma instability experiment models the injection of a low density elec


tron beam into a stationary �yet mobile� background plasma of high density� driving

plasma waves to instability� This is a special case of the more general two
stream in


stability where two streams of electrons �ow through each other ����� Beam
Plasma

interactions cause particle bunching� forming potential wells which are self
enhanced�

This leads to particle trapping creating vortices in phase space� The ions are modeled

as a �xed neutralizing background� Although the number of particles per processor

will vary during this simulation� the load remains su�ciently well balanced� This is

not the case for all kinds of plasma simulations where dynamic load balancing may be

required �	��� An experiment such as this can be used to verify plasma theories and

to study the time evolution of macroscopic quantities such as potential and velocity

distributions�

The initial state of a one
dimensional experiment is shown in �gure ���� where the

phase space diagrams plot position against velocity� The instability drives plasma

waves to saturation� In this experiment� we only measure the energy diagnostic



CHAPTER �� PLASMA PIC SIMULATION ��

�a� Initialization

�b� Saturation

Figure ���� Electron phase space of one
dimensional beam
plasma instability�

which shows how the kinetic energy is rapidly converted into �eld energy�

����� Collisionless Free�Expansion into a Vacuum

The collisionless free
expansion of plasma has important applications in laser fusion

experiments �	��� In this experiment� we allow a charge neutral plasma of electrons

and ions to expand under its own forces� The electrons expand into the high den


sity plasma regions as well as toward the vacuum region� which causes motion in the

ions� Since the electrons and ions expand into the vacuum region� based on the elec


tron�ion mass ratio� this experiment will allow for testing of dynamic load balancing

techniques� Additionally� we can also evaluate how useful object
oriented methods

may be for extending simulation codes to new problems� including how to design

class hierarchies to encourage these modi�cations� An illustration of the expansion

is shown in �gure ���� The electrons and ions are initial partitioned uniformly across

processors �c�f� ����a��� spreading into the vacuum region symmetrically �c�f� ����b���



CHAPTER �� PLASMA PIC SIMULATION ��

�a� Initial distribution across four
processors�

�b� Expansion where partitioning in�
formation has been omitted�

Figure ���� Electron
Ion collisionless free expansion into vacuum�

����� Gravitation

Gravititional problems can be addressed by using plasma PIC methods ����� In terms

of the simulation requirements� we can cause particles to bunch together by modifying

Poisson�s Equation and the normalization constant� The gravitational experiments

will also provide nice examples for the study of load balancing and object
oriented

design approaches� Figure ��� shows the initial uniform distribution of bodies in

a periodic cubic space �c�f� ����a��� As the simulation progresses� clustering of the

bodies is introduced �c�f� ����b���



CHAPTER �� PLASMA PIC SIMULATION ��

�a� Initial distribution across four processors
�view from above��

�b� Development of clusters where partitioning in�
formation has been omitted�

Figure ���� Gravitational Bunching�



Chapter �

Abstraction Modeling in Scienti�c

Computing

This chapter covers the design and programming of the sequential and parallel object�

oriented plasma PIC simulation codes in the C�� programming language� The abstract

programming models� designed from the Fortran 		 programs� are described� This pro�

vides insight into paradigm�related issues relevant to converting procedural�based scienti�c

codes into object�oriented models�

��� Organizing Object�Oriented Simulation Codes

The aim of object
oriented methodology is to model solutions to problems from the

viewpoint of real world abstractions ����� Abstractions provide concise representa


tions of entities without concern for development
related details� They are essential

to the overall design of systems� providing �exibility in organizational decision mak


ing� Frequently� however� the requirements of scienti�c computing extend beyond

what is tangible� Many abstract concepts may not exist in a �real world sense�

although they have a mathematical reality all their own� Computational geometric

grids� representing various �elds� are one example we have already encountered� These

��



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

grids�while important in solving mathematical �eld equations�are a simulation ab


straction modeling a real world e�ect� namely� the �elds created by the presence

of particles� Object
oriented modeling in scienti�c computation must intermix many

views including real world concepts� simulation ideas� and mathematical abstractions�

Indeed� the abstractions themselves may require a variety of views� such as collective

or individual operations� The abstractions already inherent in the scienti�c problem

must be represented during application programming� but how does one make this

transition!

Many computational scientists are moving toward C�� for their software de


velopment since it supports abstraction in programming� Surprisingly� research re�

garding the appropriate usage of object�oriented paradigms for scienti�c computing

remained unaddressed� Questions including the creation of proper abstractions in

scienti�c computing� how to integrate abstractions to support simulation modeling�

which paradigm issues are useful or inappropriate� and how scienti�c computations

should be organized to take advantage of object
oriented techniques� seemingly were

never researched during the paradigm
shift toward object programming in scienti�c

computing� Training for application development unrelated to this area is common�

However� in high performance scienti�c computing� the design and organization of

object
oriented applications have very di�erent requirements�

Various approaches have been presented for object
oriented plasma simulation

problems ���� ���� As part of our research involving the NASA High Performance

Computing and Communications Earth and Space Sciences Project� we have written

object
oriented programs from Fortran �� codes� These programs are designed to

investigate extensions to new advanced problems via this object paradigm� This

chapter describes work using the C�� language� while Chapter � explores these

issues in the context of object
oriented Fortran 
� programming�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING �


��� Object�Oriented Design of Sequential PIC Pro�

grams

In Chapter � we examined the organization and major components of the Fortran ��

particle
in
cell programs� In these programs large arrays maintain particle and �eld

data representing position� velocity� electric �eld� and charge density data� These

arrays are passed by reference among functions which compute energy diagnostics

at each simulated time step� Although passing data arrays leads to a very e�cient

simulation in Fortran� the data interrelationships are lost�

Plasma simulation inherently depends upon interactions between particles and

�elds� We seek to model this relationship from a physical and computational perspec


tive with object
oriented methods� Particles with spatial and velocity distributions�

�elds with charge and force components� energy diagnostics� and collective operations

all must be modeled to function within an object
oriented context� While the sim


ulation algorithm�and its representation in Fortran ���characterize many of the

abstract operations performed� non object
oriented languages place less emphasis on

the meaning of the data and more emphasis on its availability�

In object
oriented design� a classi�cation of the data and associated operations em


phasizes and re�ects the meaning of the application� When redesigning a Fortran ��

program into an object
oriented structure� issues to consider include�

� The impact of Fortran �� program structure on the design of classes�

� The interdependence between e�ciency and class design�

� The appropriate usage of C�� features�

Although the Fortran �� versions are well organized� establishing a relationship be


tween the data and characteristic operations would be bene�cial� There will be trade


o�s in identifying and organizing classes from a Fortran based code� this is discussed

in development of the C�� programs from the Fortran �� versions�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

����� One�Dimensional PIC Simulation

Beginning with the one
dimensional Fortran �� version� our initial objective was sim


ply to redesign the PIC application in C�� using objects� The Object Model

Notation� from the Object Modeling Technique �OMT� of Rumbaugh et al� will be

used in representing our class diagrams ����� Various diagrammatic methodologies

exist� each of which has bene�ts and pitfalls�many do not accurately re�ect issues

which in�uence code development� Sometimes the model can be quite distinct from

the software written� but this is a limitation of how diagramming methods can re�ect

something as powerful as a programming language� �The important issue of how

language statements a�ect abstraction modeling and class design will be addressed

in Chapter ��� Our selection of OMT was made quite arbitrarily�the OMTtool �	��

was available for drawing object diagrams� Nevertheless� we must emphasize that the

OMT methodology played absolutely no role in the design� modeling� or implementa�

tion of our class hierarchies except for the use of the OMT notation� For clarity we

minimize the use of the notation� showing classes with their attributes� operations�

associations� and generalizations �inheritance�� The details of class operations� when

required for illustration and comparative purposes� will be described separately�

Analysis of the application and the Fortran �� source indicates that classes should

represent the �eld �computational grid��� particles �individually and collectively�� and

diagnostics� All components of the plasma simulation can be expressed in terms of

these features� Organization the classes requires knowledge of their interaction and

commonality� For instance� electrons and ions share the property that they are both

particles described by their position and velocity� They can be organized into a class

hierarchy from which common properties can be derived and distinguishing properties

de�ned� Unfortunately this organization is insu�cient�it only de�nes operations on

�The OMT notation methodology is summarized in Chapter ��
�In this thesis �eld and grid may be used interchangeably� although the �eld may consist of many

computational grid elements�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING �	

individual particles� We need the ability to operate on the collection of particles that

make up a plasma� while simultaneously preserving individual particle operations� A

plasma class can be introduced which moves and distributes these particle objects

collectively�

Plasmas may also be viewed as a combination of particles and �elds of various

types� so this aggregation must be supported� A grid class may provide operations

to deposit charge and solve Poisson�s Equation for the electric �eld� An energy

diagnostic class may interact with the grid class to collect information related to

energy calculations� Additionally� classes which provide specialized services may be

needed� such as random numbers or timing measurements� Our goal is to model these

viewpoints while supporting aspects of the simulation environment�

The Initial Version The original one
dimensional Fortran �� program simulated

a beam
plasma instability experiment� as described in Chapter �� In �gure ��	 we

show the class modeling diagram for an initial implementation� The Particle class�

through its public methods �access functions�� provides the interface for position

and velocity information used by derived classes such as Electron� Inheritance� in

C��� implies that the electron class has all the properties of the particle base class

in addition to the speci�c features that de�ne an electron� Since the beam
plasma

instability experiment requires Background and Beam electrons� they were derived

from the electron class as well� These particles� distinguished by their thermal and

drift velocities� are de�ned as static member constants to conserve storage� Since these

constants must be initialized on an individual basis as static class members in C���

they were not de�ned as part of the electron base class� This reasoning also explains

why the charge was not included in the particle base class� Since many millions of

particles may be created� using static initializers saves memory since only a single

copy of the constant will be stored and known to all objects created from the class�

TheGrid class provides operations to deposit charge and solve Poisson�s Equation



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

Timer

begin
end

start
stop
secelapsed
usecelapsed

Grid

charge density field
electric force field

SetupGrid
DepositCharge
AddIonDensity
InitChargeDensity
CalcEFieldBackground

thermal velocity
drift velocity

Beam

thermal velocity
drift velocity

Ion

charge
normalized charge

Electron

charge
halfwidth
charge/mass

Particle

xpos
xvel

set/read posx
set/read posy

RandomNumber

DrawGaussian

Plasma

Advance
ParticleDistribution

EnergyDiagnostic

potential energy
kinetic energy
total energy

set/read potential
set/read kinetic
set/read total

describes

utilizes

computed by
computed by

Figure ���� C�� hierarchy for initial version of one
dimensional scalar PIC code
�OMT notation�� The major encapsulated components and relation

ships are indicated�

for the electric �eld from the charge density �eld� It has two important attributes

�components�� the charge density �eld and the electric force �eld� which are arrays

encapsulated into the grid class� The Plasma class contains no data� it only provides

two functions that advance the particles and specify their initial spatial and density

distribution� The EnergyDiagnostic class simply records this diagnostic during the

computation� Finally� a class which provides Gaussian random numbers and a utility

class for timing measurements are included�

Relationships among classes are also illustrated in �gure ��	� The plasma consists

of an aggregation of particles and �elds� Similarly� the plasma class utilizes the

RandomNumber class� and the energy diagnostic is computed by the grid class� The

arrows on these links indicate the one
way associations� The collective particles of the

plasma conceptually form an alternative description of the physical �eld� Similarly�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

the physical �eld describes the group of particles�they are distinct� yet bound to each

other� This is a ternary association since particles and �elds are atomic� one cannot

be described without the other� Nevertheless� they also have very distinct properties�

Incidentally� the ternary association involves the plasma class� and not the particle

class� because the former represents the collection on which the association is based�

This hierarchy permits the software design to re�ect the features of plasma simula


tion in general� and the beam
plasma instability experiment in particular� Although

the example is small� many of the functions and routines of the Fortran �� version in

table ��� on page �� have a new form� seen in table ��	� Note that the operations that

modify the data associated with a concept are bound to that class� This explains why

charge deposition is a grid class operation and not a plasma class operation�charge

deposition modi�es the grid� Additionally� since the Poisson�s Equation solver and

FFT are private to the grid class they are not accessible by the main program so they

are not listed in table ��	� This is another example of encapsulation and information

hiding�

The C�� object
oriented organization has advantages over the Fortran �� ver


sion� The operations are performed on objects that represent simulation and physical

abstractions� Also� the function argument lists are shorter due to encapsulation of

simulation components� The main program is shown in �gure A�� on page 	
��

Nevertheless� there are a number of disadvantages associated with this model� The

background and beam particles exist in separate data structures causing operations

to be called multiple times� such as DepositCharge� The di�erence between these

particles is a property of their distribution characteristic� not their usage� Once

distributed background and beam electrons are simply particles that share identical

collective operations� This problem a�ects the computationally expensive Advance

routine� Calling Advance twice only because the particles are stored in separate

objects introduces performance penalties� Additionally� various constants such as

NBMX �the number of beam electrons�� are passed as parameters to object routines�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

Objects plasma� grid� bkelec� bmelec� energy

Call Syntax object	memberfunction��

De�nitions The plasma object performs collective operations on the group of
background �bkelec� and beam �bmelec� electrons while the grid
object operates on the �eld� energy stores this diagnostic�

Routine plasma	DenVelDist�bkelec� BackgroundElectron

thmlvelx�
BackgroundElectron

driftvelx� NBKX��

plasma	DenVelDist�bmelec� BeamElectron

thmlvelx�
BeamElectron

driftvelx� NBMX��

Action Initialize density pro�le and velocity distribution� Dis

tribute background and beam electrons using the plasma object�

Routine grid	DepositCharge�bkelec� Electron

charge� NBKX��

grid	DepositCharge�bmelec� Electron

charge� NBMX��

Action Deposit charge� Deposit charge onto grid from background and
beam electrons�

Routine plasma	Advance�bkelec� grid� energy� NBKX��

plasma	Advance�bmelec� grid� energy� NBMX��

Action Push particles� The plasma object advances particle positions
and velocities using the grid object while assigning the potential
energy�

Table ���� C�� major routines of the initial one
dimensional scalar program� Sim

ulation objects and member function operations are indicated�

This information should be encapsulated as part of the distribution of particles�

Evaluation and revision are a necessary part of abstraction modeling� This is par


ticularly important when concepts have multiple meanings� The design in �gure ��	

models the Fortran �� version too explicitly during the translation process to C

�

The revisions that follow take a more abstract view of the simulation process and the

general meaning of its components�

First Revision The class hierarchy of �gure ��	 can be modi�ed to include the

distribution properties of the electrons within the Electron class� This eliminates



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

Ion

charge
normalized charge

Electron

charge
halfwidth
charge/mass
backgndthmlvel
backgnddriftvel
beamthmlvel
beamdriftvel

Timer

begin
end

start
stop
secelapsed
usecelapsed

Particle

xpos
xvel

set/read posx
set/read posy

RandomNumber

DrawGaussian

EnergyDiagnostic

potential energy
kinetic energy
total energy

set/read potential
set/read kinetic
set/read total

Plasma

Advance
ParticleDistribution

Grid

charge density field
electric force field

SetupGrid
DepositCharge
AddIonDensity
InitChargeDensity
CalcEField

utilizes

describes

computed bycomputed by

Figure ���� First revision of the C�� one
dimensional scalar class hierarchy �OMT
notation�� Electrons have been modi�ed to include distribution prop

erties�

the need for background and beam classes� Operations in the main program will

remain identical to those in table ��	� however� DepositCharge and Advance will

only be called once on the collective group of electrons� The particle distribution

routine necessarily must be called twice because the background and beam particles

are distributed di�erently� Figure ��� shows the revised version of the class hierarchy

which should be compared to �gure ��	 on page ���

Notice how minor the class structure changes are� and how the modi�cations were

limited to well
speci�ed encapsulated components� Many routine parameters which

expect background and beam electrons as particle types require no modi�cations at

all� Of course� the bene�ts are more signi�cant when larger and more sophisticated

programs are involved� We will see examples of this in later sections�

Second Revision Modifying the electron class in �gure ��� solved the problem of

reducing function calls� but we must reconsider the e�ect of this decision� Earlier�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

ParticleDistribution

number of particles in x
thermal velocity in x
drift velocity in x
spatial density

Maxwellian

Ion

charge

Electron

charge
halfwidthx
charge/mass

RandomNumber

DrawGaussian

Particle

xpos
xvel

set/read posx
set/read posy

Grid

charge density field
electric force field
complex fourier field

SetupGrid
DepositCharge
AddIonDensity
InitChargeDensity
CalcEField
FFT
PoissonSolve

Plasma

Advance

Timer

begin
end

start
stop
secelapsed
usecelapsed

EnergyDiagnostic

potential energy
kinetic energy
total energy

set/read potential
set/read kinetic
set/read total

utilizes

computed by

computed by

describes

Initializes

Figure ���� Second revision of the C�� one
dimensional scalar class hierarchy
�OMT notation�� Particle distribution properties are speci�ed sepa

rately from the de�nition of particles by feature encapsulation into a
ParticleDistribution class

we mentioned that thermal and drift velocity attributes speci�ed the distribution

properties of particles� These are simulation features� many possible distribution

characteristics can be introduced� This mathematical property has no intrinsic rela


tion to the physical properties of an electron� The distribution properties of particles

should not be encapsulated in the electron class�

Figure ��� shows the class modeling diagram for the second revision of the one


dimensional sequential PIC program� A ParticleDistribution class� responsible

for providing distribution features for particles� has been introduced� A distribution

object initializes the electrons� Now� background and beam electrons may have di�er


ent distribution properties without modifying the de�nition of an electron� An added

bene�t is that distribution operations� such as the spatial density for a particular par


ticle species� are easily computed� Although we provide a Maxwellian distribution�

additional functions can be added to this class in a manageable way�

Introducing the particle distribution class a�ected the plasma class� since the latter



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

was originally responsible for distributing particles� This caused a relocation of the

random number class� but all of these modi�cations are safe due to encapsulation� A

new association has been introduced between the particle distribution and the particle

class�the former now initializes the spatial and density distribution of particles� The

main program from the second revision is illustrated in �gure A�� on page 	
��

Modeling changes in scienti�c computing may also a�ect how numerical compu


tations are performed� In the grid class� we previously solved the Poisson�s Equation

in real space� but we moved to complex Fourier space for the FFT� As a result� we

have added a new complex Fourier �eld to the grid class for this computation� The

modi�cations were limited to the grid class operations� so users of the public interface

for solving �eld equations were unaware that the internal �eld solver routines have

changed� The interface remained �xed during these modi�cations for operations such

as�

grid	CalcEField� energy ��

grid	DepositCharge� elec� Electron

charge� NP ��

when compared to the same operations previously de�ned in �gure A�� on page 	
��

grid	CalcEField� energy ��

grid	DepositCharge� bkelec� Electron

charge� N�BKELE�X ��

grid	DepositCharge� bmelec� Electron

charge� N�BMELE�X ��

Since the distribution objects speci�ed how the collective electrons were distributed�

only elec is needed as an argument to DepositCharge� Although the arguments

changed the interface remained the same� because the background �bkelec�� beam

�bmelec�� and electron �elec� objects share the particle type in the DepositCharge

declaration statement�

void DepositCharge� const Particle elec
�� const float qm�

const int np ��



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

The organization of �gure ��� seems satisfactory� but how �exible is it! In scienti�c

computation software rarely remains unchanged�features and additions are added

routinely� Evaluating the bene�ts of the object
oriented approach depends on exam


ination of more complex problems� including extensions toward higher dimensional

programs�

����� Two�Dimensional PIC Simulation

The beam
plasma instability experiment in two dimensions is similar to the one


dimensional case� Particles now have four components for position and velocity in

x and y� Similarly� the particle distribution class now distributes particles into a

two
dimensional geometry� The grid class contains multiple two
dimensional compu


tational grids�one for the charge density �eld and one for each component of the

electric �eld� Additionally� a complex �eld is included since the �eld solver operates in

complex Fourier space� Figure ��� shows the organization� which should be compared

to the one
dimensional version in �gure ��� on page ���

The main program for this hierarchy is identical to that of �gure A�� on page 	
��

One reasonable exception is that distribution objects in two dimensions require ad


ditional parameters �example for background distribution objects��

ParticleDist backelec� �	�F� �	�F� SYSLEN�X� N�BKELE�X �� �� ONE�DIM

ParticleDist backelec� �	�F� �	�F� �	�F� �	�F� SYSLEN�X� SYSLEN�Y�

N�BKELE�X� N�BKELE�Y �� �� TWO�DIM

The public interfaces are the same across the programs� but the de�nition of the

objects has been extended to handle two
dimensional simulations�

����� Three�Dimensional PIC Simulation

When considering the design of a three
dimensional code there are clear similarities

to the two
dimensional version in both the computation structure and program or




CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING �


Timer

begin
end

start
stop
secelapsed
usecelapsed

Electron

charge
halfwidthx
halfwidthy
charge/mass

Ion

charge

EnergyDiagnostic

potential energy
kinetic energy
total energy

set/read potential
set/read kinetic
set/read total

Plasma

Advance

ParticleDistribution

number of particles in x
number of particles in y
thermal velocity in x
thermal velocity in y
drift velocity in x
drift velocity in y
spatial density in x
spatial density in y

Maxwellian

RandomNumber

DrawGaussian

Grid

charge density field
electric force field x
electric force field y
complex fourier field

SetupGrid
DepositCharge
AddIonDensity
InitChargeDensity
CalcEField
FFT
PoissonSolve

Particle

xpos
ypos
xvel
yvel

set/read posx
set/read posy

computed by

utilizes

describes

Initializes

Figure ���� C�� two
dimensional scalar class hierarchy �OMT notation�� Encap

sulated components are extended while the interface to major routines
remains unchanged� Object de�nitions re�ect the higher dimensional
problem�

ganization� Many of these similarities are extensions from encapsulated features of

the lower
dimensional programs� Particles now have three components in x� y and

z for position and velocity� an immediate extension from the two
dimensional case�

Regarding the numerical aspects of the simulation� charge deposition�which used a

�
point stencil near
neighbor grid point scheme in one dimension and a 

point stencil

in two dimensions�now applies a ��
point stencil in three dimensions� This can also

be viewed as an extension of existing abstractions�

Design for Extensibility The notion of extensibility is critical to abstraction mod


eling� particularly in scienti�c computation� Object
oriented designs may model a

problem accurately� but if this model cannot be extended it may not be very use


ful� A major goal of this paradigm is not to reduce the e�ort of building the initial

software� but rather to reduce the e�ort of producing software in the future� The

initial design may be more di�cult to create than more advanced versions� since a

designer must account for general aspects of the problem with a viewpoint toward



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

future applications� A di�culty with the procedural programming paradigm is that

software using this methodology is not usually designed to be reused� There is often

little �exibility in the design of data structures or computational control preventing

programmers from leveraging their existing work toward solving related problems�

Good object
oriented models always consider how applications developed today can

be leveraged toward those required tomorrow�

With these thoughts in mind� we must now consider some important questions re


garding our previous programming e�orts� How well were the previous codes designed

for extension� both for new experiments and for higher
dimensional problems! Do

our abstractions accurately allow for extensions in both the numerical aspects of the

software design and the qualitative modeling of the physical problem! What about

the simulation component� did we really consider how much e�ort would be involved

in changing the features of a computational grid point for extension across simulation

dimensions! We should point out� however� that many of these issues could not have

been considered until we attempted to design a new code from an existing code� As

new organizations are examined new questions and options appear� This is a natural

aspect of this design process� which becomes more challenging when working with sci


enti�c codes� since simulation� mathematical� and abstraction modeling requirements

must be satis�ed simultaneously�

In the two
dimensional hierarchy of �gure ��� on page �
 the particle class de�ni


tion extended one
dimensional particles into two dimensions� Particles were also dis


tinguished by their charge� using inheritance of basic particle properties into speci�c

electrons and ions� There are mathematical operations involving particles which en


courage a vector model de�nition� Also� particles potentially have fractional amounts

of charge rather than simple positive� negative� or neutral charges� If we generalize

the notion of a collection of particles to a vector space of charged particles� then

vector operations on the collection can be supported�

We know that the �eld consists of a number of computational grids for the electric



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING �	

and charge density �elds� Based on how the �eld solver is de�ned� real and complex

grid structures may be used� These �elds share similar geometries and additional �elds

may be needed as new e�ects are added� such as current density for the presence of

an externally applied magnetic �eld� A more general organization of the �eld could

unify the components into a grid point� where collections of grid points form the �elds

in real and complex space� From an e�ciency point of view� combining multiple �eld

components for a speci�c point into a grid point structure can improve cache usage

for expensive �eld operations� since components tend to be referenced together�

The Multi�Dimensional Vector Model Figure ��� shows the three
dimensional

class hierarchy� Notice that the OMT notation has been extended to indicate classes

which use the template feature of C���� The modi�ed class hierarchy uses templates

to operate on a vector space of particles� A particle is generalized by a vector from

the PointVector�D�T� class which represents the position or velocity components

in the corresponding dimensions� This class de�nes mathematical point vector op


erations� This type is inherited into a ChargedParticle class which enhances the

physical description of a particle� The plasma is modeled as a vector space of charged

particles by instantiating a Vector�ChargedParticle� template class �using the

Vector�T� template�� This allows for vector operations on the collective group of

particles� Note that the vector space of particles from the plasma class is speci�ed

using two separate objects�

Vector� ChargedParticle � elec�pos� NP �� �� particle positions

Vector� ChargedParticle � elec�vel� NP �� �� particle velocities

Since mathematical vector operations on particle velocities �such as scalar multipli


cation� must not in�uence position components� this distinction is necessary� This

�Templates allow speci�c classes to be generated by using object type information as parameters�
The Standard Template Library�	
� was not used since support was not available on our parallel
machines�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

EnergyDiagnostic

potential energy
kinetic energy
total energy

set/read potential
set/read kinetic
set/read total

PointVector3D<T>

x, y, z

set/read components
(point vector ops)

RandomNumber

DrawGaussian

ChargedParticle

charge
halfwidth x
halfwidth y
halfwidth z

(point particle ops)

GridPoint<T>

chargedensity
electric force x
electric force y
electric force z

set/read charge
set/read force x
set/read force y
set/read forcez

Timer

begin
end

start
stop
secelapsed
usecelapsed

Field

field geometry x, y, z
force/charge field
complex fourier field

DepositCharge
AddIonDensity
SetIonDensity
InitChargeDensity
CalcEField
FFT
PoissonSolve
VisualizeFieldParticleDistribution

of particles in x, y, z
thermal velocity in x, y, z
drift velocity in x, y, z
spatial density in x, y, z

Vector<T>

length
dynamic vector

set/read components
(vector operations)

Plasma

total number of particles

Advance
ParticleDistribution
VisualizeParticles

computed by

utilizes

describes

computed byinitializes

2

complex

real

Figure ���� C�� three
dimensional scalar class hierarchy �OMT notation�� Vector
particle components with mathematical operations and parameterized
grid point elements have been introduced�

class uses mathematical operations on entire vectors� which are propagated to spe


ci�c point vector operations based on the dimensionality of the particle type� The

Field consists of computational grid points of GridPoint�T� template class ob


jects which unify force and charge data in multiple dimensions� Since there are real

and complex �elds� which vary in size� multiple aggregation associations are shown�

The remaining components of the hierarchy perform the same functions as described

in the previous models�

The main program for the three
dimensional hierarchy is shown in appendix A��

on page 	
�� This should be compared to appendix A�� on page 	
�� The programs

are comparable� all of the vector operations have been information
hidden in class

de�nitions� Since the particle distribution class speci�es the properties of various

distributions� such as background and beam electrons� the plasma class performs the

actual distribution� A new function name re�ects the uniform spatial and Maxwellian



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

velocity distribution performed� The multidimensional �eld is automatically initial


ized upon creation� so the grid	Setup�energy� call is no longer required�

The bene�t of this new organization is that many of the features that vary

across simulation dimensions are parameterized� Examples include the particles and

the speci�cation of the �eld components� Additionally� some of the mathematical

operations�which must be modi�ed with the dimensionality of the problem�are

now standardized by vector operations that remain �xed� For instance� computing

the new velocity for a particle� given the new particle acceleration� requires the fol


lowing statements in Fortran �� �additional program statements omitted��

c new velocity

do �� j � �� nop

dx � part���j� � qtm�dx

dy � part���j� � qtm�dy

dz � part���j� � qtm�dz

�� continue

In C��� only one statement is needed due to the vector types �additional program

statements omitted��

for � register int j � �� j � nop� j�� � �

diff � part�vel
 j � � � QTME � diff �� �� New Velocity

�

In fact� if the diff acceleration components are known for every particle� we can

modify the previous C�� statement so that indexing over a loop is not required�

diffv � part�vel � � QTME � diffv �� �� New Vector Velocities

where diffv is the vector of all new particle velocities� Given the large number

of particles� the extra memory required to store the temporary vector could easily

exceed storage limitations� Therefore� new velocity operations are performed on a



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

Objects plasma� field� elec pos� elec vel� energy

De�nitions The plasma object performs collective operations on the group
of particles with speci�c distribution properties �backgnd� beam��
The field object performs �eld operations� energy stores this
diagnostic�

Routine plasma	UniformSpcMaxwellVelDist�elec pos� elec vel�
field� backgnd��

plasma	UniformSpcMaxwellVelDist�elec pos� elec vel�
field� beam��

Action Initialize density pro�le and velocity distribution� Dis

tribute background and beam electrons using the plasma object�

Routine field	ChargeDeposition�elec pos� plasma�

ChargedParticle

e charge��

Action Deposit charge� Deposit charge onto �eld based on particle
positions�

Routine plasma	Advance�elec pos� elec vel� field� energy��

Action Push particles� The plasma object advances particle positions
and velocities using the �eld object while assigning the potential
energy�

Table ���� C�� major routines of the three
dimensional vector
based scalar pro

gram� Simulation objects and member function operations are indicated�

particle
by
particle basis� Nevertheless� statements such as these remain dimension

independent�

In table ��	 on page �� we showed the major routines in the one
dimensional initial

scalar program� Table ��� shows how these routines have been modi�ed based on the

three
dimensional vector organization of �gure ��� on page ���

����� Commentary on Sequential Models

Comparing �gure ��� on page �� to �gure ��� on page �� there are signi�cant di�er


ences in the class designs� This raises a number of interesting questions� What e�ect

does an existing Fortran �� program have on the design of an object
oriented version



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

of that program! When considering the move to C�� from a Fortran �� background

this may be an issue in the decision if existing software must be converted� How

does e�ciency a�ect class design and how do we determine which C�� features are

appropriate!

Generally� the Fortran �� source code did not in	uence many issues in C

 pro�

gramming� Understanding the nature of the problem and designing the appropriate

objects was much more important� Some fundamental concerns included Fortran ��

array indexing� We preserved standard C�� conventions� indexing from zero� to

prevent potential array indexing errors during source code translation� If Fortran ��

numerical routines were used through the foreign language interface to C��� Fortran


based indexing would have been prefered� We found� however� that many popular

compilers had serious bugs so multi
paradigm language constructs were not intro


duced� Fortran �� common blocks and equivalence statements introduced additional

considerations� Fields in real and complex space were often equivalenced in Fortran ��

for the Fourier Transforms� saving memory� C�� does not support an equivalence

construct� so additional data structures were required to store �elds in complex space

when complex transforms were applied�

E�ciency concerns can in�uence class design� particularly when a language like

C�� provides features for improving e�ciency� The Fortran �� force �elds were

stored in very large independent arrays� where a component from each array was re


quired in particle position and velocity modi�cations� In C��� by encapsulating each

component into a single structure� referencing components does not require jumping

between multiple arrays� which improves performance� Certain features of C��� such

as virtual functions powerful for generic programming� were not required in the se


quential programs� Some particle programs use pointer lists of various particle types

with virtual functions operations� Background and beam particles could have been

maintained in pointer lists� where virtual functions could distribute them based on

their distinct type� Our simulations may use many millions of particles� however� so



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

pointer lists would waste memory prohibitively� Nevertheless� using virtual functions

would have been inappropriate since other language techniques could have been ap


plied with greater e�ciency� Such issues demonstrate how class designs and e�ciency

issues are related� but this will be investigated further in Chapter ��

Although the sequential object
oriented models di�er from each other� where the

three
dimensional version is the most general� they capture the essence of the simula


tion in a form that is more suitable for modi�cation and extension� These di�erences

are often in the inner details� the outer interfaces remained relatively unchanged�

Modeling a scienti�c code involves a mixture of simulation� physical� and compu


tational issues which interact with each other� In the next section� the e�ects of

parallelism will be discussed�

��� Object�Oriented Design of Parallel PIC Pro�

grams

The sequential plasma simulation programs are useful for small scale experiments�

and more importantly� for testing concepts before they are introduced into the larger

parallel PIC codes� Since simulations with very large numbers of particles are of

interest� the only option available is to develop software using massively parallel com


puters� Programming in a parallel environment adds additional complexity to an

already complex problem� Returning to �gure ��	 on page 	�� the �elds and particles

are partitioned across processors requiring interprocessor communication to manage

data and numerical operations� Figure ��� on page 	� illustrates the modi�cations

required to support parallelism� Field borders must be exchanged between processors

and particles must be redistributed as they move across partitions� The partition


ing remains �xed for problems that do not require dynamic load balancing� Various

complications arise� however� when load balancing is required� Programs that do

not require moving partition boundaries will be discussed in this section while the



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

modi�cations for load balancing will be addressed in Chapter ��

Our sequential program design experiences will be bene�cial� Some of the one


dimensional and two
dimensional parallel programs were developed simultaneously

with the sequential versions� Nevertheless� we will ignore the actual order of code

development to improve the clarity of this discussion� Furthermore� since many alter


native code designs were examined� using approaches similar to the sequential codes�

we will limit our discussion to the most recent versions� Issues involving how objects

are designed for parallel programming will be considered after the models have been

presented�

����� One�Dimensional PIC Simulation

The parallel codes must account for message passing of particle and �eld data across

processors� Since each processor is responsible for a region of space� which includes a

portion of the partitioned �eld and particles� constructs to de�ne the properties of a

region and the communication mechanisms to move data across regions are required�

When designing the three
dimensional sequential code� we introduced templates and

vector spaces to parameterize various features for extension� We plan to reuse this

e�ort in building a one
dimensional parallel code�

Figure ��� shows the class hierarchy for the one
dimensional parallel program�

Although rearranged� it compares well with the three
dimensional sequential ver


sion previously described� A VirtualParallelMachine class encapsulates machine

speci�c communication information for portability among various architectures� The

message passing operations allow objects to be transported among processors through

a standard interface to machine speci�c message passing libraries��

A PartitionRegion class partitions the �elds and particles across the distributed

memory machine� Link attributes describe partition association properties where a

�Much of the interface to the message passing operations was removed when MPI became available
on our parallel machines�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

VirtualParallelMachine

number of processors
processor id
processor type

(message passing ops)

EnergyDiagnostic

potential energy
kinetic energy
total energy

set/read potential
set/read kinetic
set/read total

GridPoint<T>

chargedensity
electric force x

set/read charge
set/read force x

RandomNumber

DrawGaussian
slab partition

ChargedParticle

charge
halfwidth x

(point particle ops)

PointVector1D<T>

x

set/read component
(point vector ops)

ParticleTransportBuf

xpos
xvel

set/read xpos
set/read xvel

Vector<T>

length
dynamic vector

set/read components
(vector operations)

slab partition

PartitionRegion

left border
right border
region size
number of elements

set/read borders
set/read region size
UniformPartitioning

Plasma

total number of particles
send/recv transport buffers
region:PartitionRegion

Advance
ParticleDistribution
Partition
UpdateDistributionAcrossPEs
NumParticlesInPartition

Field

field geometry x
force/charge field
complex fourier field
send/recv transport buffers
region:PartitionRegion

DepositCharge
AddIonDensity
InitChargeDensity
CalcEField
FFT
PoissonSolve
Partition
UpdateGuardRegions

ParticleDistribution

number of particles in x
thermal velocity in x
drift velocity in x
spatial density in x

set/read # particles
set/read thermal vel
set/read drift vel

Timer

begin
end

start
stop
secelapsed
usecelapsed

utilizes

utilizes utilizes

computed bycomputed by

partitioned bypartitioned by

describes

2

initializes

real complex

Figure ��	� C�� one
dimensional parallel class hierarchy �OMT notation�� Much
of the sequential design has been reused where additional classes address
parallel programming features� The plasma and �eld class objects are
partitioned by partition region objects� A virtual parallel machine class
object encapsulates features for portability�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING �


slab
partitioning of the �elds and particles is used� From an implementation point

of view� using partition region objects as members of the �eld and plasma classes

simpli�es operations performed on the regions they own� For this reason� the region

object is also included in the attribute list for the plasma and �eld classes�

The ParticleTransportBuf class provides a mechanism for moving groups of

particles across processors since their position and velocity components are indepen


dent vector objects� The particle transport bu�er class uni�es �type converts� these

objects into a single type so they can be transported together for e�ciency� This

reduces the number of particle message passing calls in half� Additional transport

bu�ers are utilized� but they are de�ned within existing abstractions�

The Plasma class has new routines for partitioning�using a partition region

object�and for moving particles across partition boundaries� The Field class also has

an internal partition region class object to maintain information about the distributed

�eld� Since the real force�charge density and complex Fourier �elds share the identical

partitioning in one dimension� these distinct �elds can share the same partition region

object� The makes the multiplicity of the link from the �eld to partition region class

exactly one� Finally� a routine to move �eld guard cells across partition borders is

included�

Table ��� on page �� illustrates the major routines of the one
dimensional parallel

Fortran �� program� Reusing abstractions from existing codes simpli�ed the interface

to the major routines of the one
dimensional parallel C�� program in table ���� The

routine parameters are straightforward and readable� The Poisson�s Equation solver

and the FFT are not included in table ��� since they are information hidden and not

accessible to the main program� By including these two routines as members of the

�eld class the computational grids are directly accessible�

The main program is shown in appendix A�� on page 	
�� Although features for

message passing have been included and some of the numerical routines have been

modi�ed to operate on distributed data� encapsulation incorporates these changes



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

Objects vpm� elec pos� elec vel� plasma� field� backgnd� beam�

energy

Call Syntax object	memberfunction��

De�nitions The vpm object performs message passing� encapsulating parallel
machine parameters� The elec pos and elec vel vector objects
hold particle positions and velocities respectively� The field per

forms all �eld operations while energy stores the diagnostic�

Routine plasma	UniformSpcMaxwellVelDist�elec pos� elec vel�
backgnd� vpm��

plasma	UniformSpcMaxwellVelDist�elec pos� elec vel�
beam� vpm��

Action Initialize density pro�le and velocity distribution� Dis

tribute background and beam electrons using the plasma object�

Routine field	ChargeDeposition�elec pos� plasma�
ChargedParticle

e charge��

Action Deposit charge� Deposit charge onto grid from background and
beam electrons�

Routine plasma	Advance�elec pos� elec vel� field� energy� vpm��

Action Push particles� The plasma object advances particle positions
and velocities using the �eld object while assigning the potential
energy�

Routine plasma	Partition�vpm��

field	Partition�vpm��

Action Partition region� Compute partitioning of plasma particles and
�eld�

Routine plasma	UpdateDistribution�elec pos� elec vel� vpm��

Action Particle mover� Move particles to the processor that owns the
spatial region�

Routine field	CalcEField� vpm� energy ��

Action Calculate Field� Solve Poisson�s Equation with FFT to convert
charge density into electric force �eld� Also update guard cell data
from particle partition to �eld partition and vice
versa�

Table ���� C�� major routines of the one
dimensional parallel program�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING �	

into the de�nition of the objects� In other words object de�nitions have been extended

for parallelism� but the interfaces have only been slightly modi�ed� Examining the For


tran �� main program in appendix A�
 on page 	

� there are major di�erences when

compared to the sequential Fortran �� and parallel C�� programs since abstractions

cannot be represented as readily in Fortran ��� For instance� the parameters of the

routines which distribute particles in the parallel Fortran �� program�

c background electrons

if �npx	gt	�� call pistr� �part�edges�npp�nps�vtx�zero�npx�nx�

�idimp�npmax�idps�

c beam electrons

nps � npp � �

if �npxb	gt	�� call pistr� �part�edges�npp�nps�vtdx�vdx�npxb�nx�

iidimp�npmax�idps�

are less clearly described when compared to the same operations in the C�� parallel

program�

plasma	UniformSpcMaxwellVelDist� elec�pos� elec�vel� backgnd� vpm ��

plasma	UniformSpcMaxwellVelDist� elec�pos� elec�vel� beam� vpm ��

The interface for higher dimensional programs remains unchanged in the C�� ver


sion� but the Fortran �� version would become more complex as additional features

are included�

Abstraction Modi�cations Introduced By Parallelism Although some of the

particle operations were dimension
independent with the vector organization� this

abstraction had to be reorganized into a new form �the particle transport bu�er

type� for interprocessor communication� Transporting particle positions and veloci


ties separately�preserving the abstraction�is unreasonable since the communication

overhead is higher than necessary� Apparently� some abstractions that are �ne in a



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

sequential environment may cause performance penalties in a parallel environment�

Our temporary solution was to change the form of the abstraction to facilitate parallel

computation concerns� but was this reasonable! For object
oriented techniques to be

useful in scalable parallel computing existing correct abstractions should be preserved

whenever possible� Approaches that consider these issues must be part of the overall

design process� We may proceed by allowing modi�cation of some abstractions to

preserve consistency with previous work� Alternatively� new approaches can be inves


tigated to introduce consistency for parallelism that may render previous approaches

at least partially obsolete� These options will be studied as more advanced simulation

programs are designed�

����� Two�Dimensional PIC Simulation

Modifying the de�nition of particles� �elds� and the numerical solvers is required to

extend the one
dimensional code into two dimensions� Encapsulating abstractions af


fecting the dimensionality of the problem streamlines program extension� The de�ni


tion of the GridPoint�T� template class simpli�es addition of the y force component

to the entire �eld� The PointVector�D�T� template class� inherited into the charged

particle class� creates a two
dimensional vector space of charged particles from the

Vector�T� class object� All of these interface modi�cations are straightforward and

immediate from the object
oriented hierarchy presented in �gure ��� on page ���

These modi�cations allow the main program of the two�dimensional parallel ver�

sion to have exactly the same interface as the one�dimensional parallel program� Nev


ertheless� the design still requires changing the abstraction model for particles when

interprocessor communication is performed� Since the vector space distribution of

particles must necessarily require more parameters in two dimensions� the initial


ization of the background and beam particle distribution objects are a�ected� The

object types are identical so this does not a�ect the de�nition of the interfaces� as

seen in appendix A�� on page 	
��



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

����� Three�Dimensional PIC Simulation

The design of the two
dimensional parallel code using the vector space abstractions

was very successful� so it makes sense to reuse these concepts for the three
dimensional

program� In �gure ��� we show the class hierarchy which is an extension of the one


dimensional version from �gure ��� on page ��� The structure of the hierarchy for

two
dimensions is exactly the same� where the z components would be omitted� One

interesting di�erence from the one
dimensional version involves the partitioning of the

three
dimensional �eld� The one
dimensional parallel program uses a fully parallel

Fast Fourier Transform algorithm� so only one partitioning of the �eld is required�

the charge density and force �elds may share the same partitioning� The higher


dimensional programs perform Fast Fourier Transforms using a sequential algorithm

with matrix transposes for data distribution across processors� This requires real�

complex� and transposed complex partitioning managed by three partition region

objects indicated in �gure ����

The interface of the main program matches that of the lower dimensional versions

seen in appendix A�� on page 	
�� There are issues of interest� however� beyond the

surface of the main program� The �eld solver operations were given direct access to

the �eld components which simpli�es program development in C��� Unfortunately�

this may not be the abstraction we desire� If the �eld component names change then

the FFT and Poisson�s Equation solver must be modi�ed since they use these names

directly� Also� if machine speci�c vendor optimized Fourier transforms were available�

these routines would not be designed with our class naming convention in mind� Our

interface to the Fourier transform could remain� but we might want to change the

form of the �eld abstraction to use the optimized vendor routines� converting back

to our abstraction later� The vector organization provided �exibility and ease in the

transition to higher dimensional codes through abstraction of dimension dependent

operations� This was bene�cial� but a disappointing realization is that full vector

operations have seen limited usage in the program� The advantageous feature of this



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

VirtualParallelMachine

number of processors
processor id
processor type

(message passing ops)

EnergyDiagnostic

potential energy
kinetic energy
total energy

set/read potential
set/read kinetic
set/read total

GridPoint<T>

chargedensity
electric force x

set/read charge
set/read force x

RandomNumber

DrawGaussian
slab partition

ChargedParticle

charge
halfwidth x

(point particle ops)

PointVector1D<T>

x

set/read component
(point vector ops)

ParticleTransportBuf

xpos
xvel

set/read xpos
set/read xvel

Vector<T>

length
dynamic vector

set/read components
(vector operations)

slab partition

PartitionRegion

left border
right border
region size
number of elements

set/read borders
set/read region size
UniformPartitioning

Plasma

total number of particles
send/recv transport buffers
region:PartitionRegion

Advance
ParticleDistribution
Partition
UpdateDistributionAcrossPEs
NumParticlesInPartition

Field

field geometry x
force/charge field
complex fourier field
send/recv transport buffers
region:PartitionRegion

DepositCharge
AddIonDensity
InitChargeDensity
CalcEField
FFT
PoissonSolve
Partition
UpdateGuardRegions

ParticleDistribution

number of particles in x
thermal velocity in x
drift velocity in x
spatial density in x

set/read # particles
set/read thermal vel
set/read drift vel

Timer

begin
end

start
stop
secelapsed
usecelapsed

utilizes

utilizes utilizes

computed bycomputed by

partitioned bypartitioned by

describes

2

initializes

real complex

Figure ��
� C�� three
dimensional parallel class hierarchy �OMT notation�� The
abstractions from lower
dimensional programs are preserved� The tem

plate structure and encapsulated features simplify extending objects
into three dimensions�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

abstraction really involved the encapsulation of dimension�dependent concepts� not the

mathematical vector operations�

Rethinking The Design For Advanced Programming When thinking about

the design of future codes� dynamic memory management of dimension
dependent

�elds would be useful for load balancing� Also� from a physical point of view� the

charge density �eld is a scalar �eld �single component� while the electric force �eld

is a vector �eld �multiple components�� The ability to create scalar and vector �elds

of various types would be useful now� and for dynamic load balancing in the future�

Our experience with building abstractions indicates that such a model can clearly be

created�

In �gure ��� we show a modern three
dimensional parallel code design with a

variety of useful features� Although this design may look very di�erent� it shares

much in common with the previous versions� The Species�T� template class creates

various particle species which are automatically partitioned across processors� Using

the Particle�D type� a species of electrons partitioned by the SlabParition class

in three dimensions can be created� Since the link association between the species

and the partitioning is de�ned as slabs from the slab partition class� the OMT link

association symbol has been removed from the diagram� The kinetic energy of the

system is associated with the particle species� so this attribute is now part of the

species class� The species can be distributed based on the particle distribution class

objects that describe properties of the background and beam electron species�

The �eld organization has changed dramatically� The ScalarField�D�T� class

is used to create the charge density �eld� while a VectorField�D�T� represents

the electric force �eld� Once again� a FieldPoint�D�T� class parameterizes the

computational grid point elements for vector �elds� The scalar and vector �elds

are derived from a GeneralField�D class which provides geometry and partitioning

information� These �elds can be dynamically resized� which will be useful as �elds are



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

RandomNumber

DrawGaussian

SlabPartition

number of guard rows
left/right borders
region size
border global indices

set/read borders
set/read region size
UniformPartitioning
set/read global indices

Species<T>

DynamicStorage1D<T>
simulation geometry
number of particles on Proc.
total number of particles
charge of species
charge/mass of species
kinetic energy of species
SlabPartition:plasma region

ParticleDistribution
Resize
CopyOnResize
set/read kinetic energy

FieldPoint3D<T>

electric force x, y, z

(field point3D ops)

GeneralField3D

global field geometry
SlabPartition:field region

read field geometry

ScalarField3D<T>

field:DynamicMatrix3D<T>
field energy

set/read field energy
set/add to field
Resize
(scalar field matrix ops)

ComplexFields

global field geometry
halfwidth x, y, z
fourier field q, x, y, z:ScalarField3D<T>
transpose field q, x, y, z:ScalarField3D<T>

PoissonSolve
FFT
TransposeFields
SolvePrepare
CalculateEField
UpdateGuardRegions

Plasma

Advance
ChargeDeposition
UpdateDistribution
read kinetic energy
read potential energy
Visualize Particles

VirtualParallelMachine

number of processors
processor id
processor type
timer

(message passing ops)

EnergyDiagnostic

potential energy
kinetic energy
total energy

compute total energy

ParticleDistribution

number of particles in x, y, z
total number in species
thermal velocity in x, y, z
drift velocity in x, y, z
absolute drift velocity in x, y, z
spatial density in x, y, z

set/read number of particles
set/read thermal velocity
set/read(absolute)
read spatial density

DynamicMatrix3D<T>

length
rows, columms, planes
dynamic memory

Resize
(3D matrix operations)

DynamicStorage1D<T>

length
dynamic memory

CopyOnResize
Resize

Particle3D

xpos, ypos, zpos
xvel, yvel, zvel

TransportBuffer3D<T>

length
rows, columns, planes
dynamic memory

Resize

VectorField3D<T>

field:DynamicMatrix3D<FieldPoint3D<T>>
field energy

set/read field energy
Resize
(vector field matrix ops)

utilizes

utilizes

computed by

utilizes

computed by

initializes
describes

partitioned by

Figure ���� Alternative C�� three
dimensional parallel class hierarchy �OMT no

tation�� Scalar and vector �elds have been introduced� as well as com

plex �elds used by numerical �eld solvers� A parameterized species
class replaced the vector organization of particles� maintaining the ab

straction during interprocessor communication� The �eld and particle
partitioning can be dynamically resized automatically�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

modi�ed due to load balancing� The Fast Fourier Transform and Poisson�s Equation

are solved on complex �elds� which di�er in type and geometry from the scalar and

vector �elds� Since these �elds also have transposed components and are only used for

computation� they have been separated from the other �elds� The ComplexFields

class supports these operations where the particle halfwidth components�used by

the Poisson�s Equation solver�have been incorporated� Scalar �elds are used in

constructing the complex �elds�

The plasma class performs the major simulation operations since this abstrac


tion consists of the scalar charge density �eld� vector electric �eld� and the electron

particle species� Although energy diagnostics are computed elsewhere� this class is

responsible for reporting diagnostics maintained by the energy diagnostic class� The

ternary association among the scalar �eld� vector �eld� and plasma indicates that

�elds can describe particles and vice
versa� Some of the additional classes used in the

construction of other classes are shown included in the diagram� In particular� the

TransportBu�er�T� classes are useful in transmitting �eld and particle species

across processors� Also� the DynamicStorage�T� and DynamicMatrix�T�

classes are useful in constructing �elds�

Appendix A�	� on page ��	 shows the interface for the main program� In this

organization charge density and electric �elds are separate� allowing operations to be

tailored to the �elds required� In the previous programs� where charge density and

electric �eld components were encapsulated into one structure� operations requiring

only one type of �eld had access to both� Since charge deposition does not require

the electric �eld� and since advancing particles does not require the charge density

�eld� these operations now appear as follows�

plasma	ChargeDeposition� electrons� cdensity ��

plasma	Advance� electrons� efield� DT ��

where DT is the time step� This model will be used in the development of the more

advanced simulation codes�



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

����� Commentary on Parallel Models

We are now prepared to address some important issues that have intentionally been

omitted� These issues involve object management in scienti�c parallel programs�

Modeling Concurrency with Objects In our approach objects view themselves

as communicating sequential processes that possibly represent and�or operate on dis


tributed data� Some objects� such as the particles� simply move among processors

unaware that they are participating in a parallel computation since their de�nition in


cludes no information about a distributed environment� Nevertheless� since particles

are part of a distributed species�by de�nition of the species class�they participate

in the parallel computation� Other objects� including the plasma� charge density�

and electric �elds� are also aware of the distributed computation since partitioning

information is encapsulated into their class de�nition� For example� when the charge

density �eld is created with a global geometry everything required to de�ne this par


titioned object is handled automatically by the slab partitioning object bound to

the scalar �eld class de�nition� In other words� the parallelism arises from opera�

tions performed on objects that are distributed by de�nition� Objects that are not

distributed are handled normally� or may become part of a distributed computation

once bound to an object which is distributed� This approach is reasonable for SPMD

object
oriented programs where each processor executes the same program� but on

distributed data�

Nonetheless� alternative approaches for representing parallelism for plasma com


putations exist�although they may not necessarily take object
oriented aspects into

consideration �	��� Parallelism can be introduced by creating a single object on one

node which spawns multiple copies of itself distributed across the processors� Spe


cialized annotations can be added for concurrency and interprocessor communica


tion which may include data parallel language extensions� software supported shared

memory programming� or di�erent parallel programming models including the Bulk



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING �


Synchronous Parallel �BSP� model �����

Since this plasma code is generally data parallel and not task parallel� encapsulat


ing aspects of parallelism into the de�nition of objects was the best approach for our

needs� It was more direct to control global addressing� the namespace� and ownership

of regions by representing parallelism through the creation of objects that encapsu


lated this information in their de�nitions �implemented by the owner
computes rule��

rather than applying an alternative approach� Objects are speci�ed using global

dimensions and properties� but the parallelism� data management� operations� and

storge management are handled by the automatic partitioning of objects on creation�

This approach allows for simple and direct extension of a non
distributed data object

into a distributed data object useful in parallel programming� Table ��� shows the

main routines of the modi�ed three
dimensional C�� parallel program�

��� Evaluation� Discussion� and Advanced Issues

As sequential and parallel models were proposed and implemented abstractions were

continually modi�ed� This experience allows evaluation of the abstraction process in

scienti�c programming with discussion of general issues applicable to these kind of

problems�

Evolving Basic Programs to Advanced Versions The original Fortran �� codes

could not allow for object
oriented abstraction modeling due to limitations in language

features� As abstraction features were added to the C�� programs such as particle

species� parameterized computational �elds� classes for component interaction� and

features for parallelism including partitioning and object based message passing� a

speci�c model always guided the design� Our model involved decomposing particles

and �elds into independent regions distributed across processors� This was a natural

extension of the sequential design that simpli�ed extending these abstractions into

the advanced parallel codes� This allowed particle and �eld partitioning to be han




CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

Routine electrons	UniformDistribution� backdf� vpm ��

electrons	UniformDistribution� beamdf� vpm ��

Action Initialize density pro�le and velocity distribution� Dis

tribute background and beam electron species using the distribution
objects�

Routine plasma	ChargeDeposition� electrons� cdensity ��

Action Deposit charge� Electron species deposits to charge density �eld�

Routine plasma	Advance� electrons� efield� DT ��

Action Push particles� Advances species positions and velocities using
the electric �eld while assigning �eld energy�

Routine plasma	UpdateDistribution� electrons� vpm ��

Action Particle mover� Move particles to the processor that owns the
spatial region�

Routine fields	Solve� cdensity� efield� vpm ��

Action Calculate Field� Solve �eld equations using charge density and
electric �eld on distributed data�

Routine plasma	pe� efield� energy ��

plasma	ke� electrons� energy ��

Action Energy� Find the energy of the �eld and particles�

Table ���� C�� major routines of the three
dimensional parallel program� Con

currency features are encapsulated in object de�nitions� Additionally�
abstractions have been modi�ed to represent scalar and vector �elds
independently�

dled separately where the interactions among abstractions was clearly de�ned� For

instance� the particle species could participate in operations involving the charge den


sity �eld or the electric �eld� These �elds could also be converted to complex �elds for

the solution of Maxwell�s Equations without interfering with any other abstraction�

This �separation of concerns� with facilities for interaction simpli�es the design and

extension of basic codes to more advanced codes� The bene�ts of this approach will

be seen in Chapter ��

Other models have been proposed that support abstraction� but extension may



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING �	

not be as immediate� One model binds portions of the grid directly to each particle

making the near
neighbor grid points immediately accessible�� It is unclear that this

approach is worth the e�ort involved in unifying these grids to solve the complete

�eld� Furthermore� de�ning a particle to include a portion of the grid may not be

a proper abstraction in the �rst place� If particles include �eld components in their

de�nition then particles would be involved in �eld solvers which is not appropriate�

The creation of abstractions in scienti�c computing must provide a mechanism for

adding new features without a�ecting existing abstractions� For example� our designs

allow an ion species to be added without a�ecting the de�nition of the �elds or the

�eld solvers�

Inheritance and Templates Inheritance� while sometimes appropriate� had lim


ited usage in the design of our class hierarchies� Most general purpose object
oriented

textbooks state that inheritance is an essential part of code reuse and application pro


gramming� In contrast� our designs actually removed inheritance�based de�nitions of

various particle types since template parameterization of object construction provided

greater 	exibility� The physical description of electrons and ions sharing an IS
A

relationship with a base class particle type may seem reasonable� Nevertheless� if dis


tinguishing characteristics of computational objects �such as the charge on a particle�

can be parameterized during object creation rather than through inheritance� then

perhaps this notion is not that critical in scienti�c programming�

Our experience in writing many models�beyond what has been presented�

indicates that inheritance should only be used in scienti�c programming when there is

more to gain than the minor extension of an existing concept� Inheritance hierarchies

are di�cult to maintain� particularly when sub
typing inheritance is used� In scienti�c

abstraction modeling if a derived class object does not preserve the exact semantics

of the base class object the meaning of the IS
A sub
typing relationship is destroyed�

�Personal communication during the poster session of the ��th International Conference on the
Numerical Simulation of Plasmas� King of Prussia� Pennsylvania� September� �

��



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

There are not many instances in our experience where preserving sub
typing was

useful� rather the ability to compose abstractions in a HAS
A relationship was more

important� One example was the incorporation of partition objects encapsulated into

existing abstractions allowing for distribution across the parallel processors�

When most of the extensions to a program consist of changing the properties of

an abstraction rather than building new abstractions� the use of well�designed tem�

plates simpli�es code modi�cations and the introduction of new features� Returning

to particle modeling� in this case a new abstraction using inheritance is not always

necessary to distinguish an electron from an ion� modifying the properties of the gen


eral species de�nition through parameterization is easier and more direct� There are�

however� times when creating a new abstraction may be useful�ions may require a

di�erent particle advance routine� Distinguishing objects based on type� preserving

type safety� is an important feature that inheritance mechanisms can provide which

found important use in our �eld de�nitions� If objects are only distinguished by

parameterized features� however� then inheritance may not need to be introduced�

There are various forms of inheritance that exist ��	� and often a programmer�s

de�nition of inheritance is based on the language that is most familiar� In abstraction

modeling for scienti�c computing our designs indicate that sub
typing inheritance

�type
preserving inheritance where the derived class shares every property of the

base class� has not been as useful as composition inheritance �aggregation
inheritance

where classes are composed of features from existing classes� but subtypes are not

necessarily created�� Discussions of the role sub
typing plays in the de�nition of

inheritance is not new ��� 	��� Often� however� programmers may consider this issue

the de�ning subject of how well a language supports object
oriented programming�

including C�� since sub
typing is automatically provided in that language� Scienti�c

applications have di�erent requirements than other applications where the object


oriented methodology is applied� and our impression is that this paradigm will be

applied di�erently in this domain� This question will be raised again in chapter � as



CHAPTER �� ABSTRACTION MODELING IN SCIENTIFIC COMPUTING ��

the ways in which Fortran 
� supports object
oriented programming is explored�

Relevance To Fusion Code Modeling Examining the usefulness of encapsula


tion� inheritance� and other object
oriented features has been identi�ed as an im


portant component toward the development of modern fusion codes� Many of these

features have allowed the internal numerical and structural organization of the PIC

application to be modi�ed while preserving well de�ned interfaces and computational

abstractions� The ability to view some abstractions as individual components and as

a collection was important� for example� in particle modeling� Additionally� manip


ulation of abstractions with support for their interaction in�uenced the various �eld

models� as well as the particle species and �eld interactions� Future chapters will

consider the implications of abstraction modeling on programming design decisions�

language selection� extension to new simulation problems� and the performance e�ects

of programming in the C�� and Fortran 
� languages�



Chapter �

Object�Oriented Programming in

Fortran �	

This chapter introduces how object�oriented concepts are supported by the Fortran 
�

programming language� The principal features of object�oriented methodology are de�

scribed with examples from our sequential and parallel PIC programs� Only the general

issues are presented� For more in�depth discussions see �
� 
� ��� ����

��� Fortran 	
� The New Standard

The C�� programming language ���� ��� is well
known for its support of object


oriented concepts useful in abstraction modeling� Containing many important fea


tures� its popularity is growing with a new generation of scientists anxious to bring

clarity and �exibility to their programming e�orts� Nevertheless� most of the scienti�c

applications in development and use today are based on Fortran�the most popular

language for scienti�c programming�

Fortran is not a static language� it has continually evolved� somewhat slowly� to

include the most recent proven ideas and concepts garnered from other programming

languages� Until recently� modern aspects of software design were not supported

��



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

which complicated abstraction modeling for large scale development projects� This

can make software di�cult to comprehend� unsafe� and potentially problematic� The

emergence of Fortran 
� �		� has dramatically altered traditional Fortran program


ming� Many modern programming language techniques are included in the standard

with new features that will in�uence practical scienti�c programming ����� We believe

these features extend far beyond the well
publicized array
syntax operations� into the

object
oriented programming paradigm�

Although Fortran �� programs are completely compatible with the Fortran 
�

standard� Fortran 
� is a very di�erent language� The new constructs encourage

the creation of abstract data types� encapsulation� information hiding� inheritance�

generic programming and many features to ensure the safe development of advanced

programs� These new features have ushered in Fortran 
� as a modern language

whose bene�ts can be compared and evaluated with other modern languages� includ


ing C��� Our goal is to illustrate how Fortran 
� supports object
oriented program


ming concepts� not to teach this language� An excellent textbook is �Fortran 
�

Programming by Ellis� Philips and Lahey �		�� Sometimes� Fortran 
� terminology

matches that of other languages� yet the meaning di�ers� We will try to distinguish

these instances as clearly as possible�

Finally� the features of Fortran 
� are quite powerful by themselves� even if the ob


ject paradigm is not applied� For experienced Fortran �� users looking to modernize

their programs to enhance collaboration� usability� sharing� and software extension�

one bene�t is that the new aspects of Fortran 
� can be incrementally introduced into

existing Fortran �� programs� This allows programs to evolve in the context of a well


known environment� permitting scienti�c productivity to continue while new ideas are

acquired� Unfortunately� there is always some risk associated with change�using For


tran 
� most e�ectively requires a paradigm
shift� Some reluctance is natural given

the investments in existing software and process of code development� Nevertheless

Fortran 
� is a standard� which when applied properly� can make scienti�c program




CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

ming very clear and productive� particularly when object
oriented methodology is

applied� We will explore these ideas throughout this chapter and perform a detailed

comparative analysis to Fortran �� and C�� in Chapter ��

��� Object�Oriented Fortran 	
 Programming

The now familiar routines of advancing particles and computing their charge deposi


tion from the original Fortran �� one
dimensional program are�

dimension part�idimp�np�� q�nx�� fx�nx�

data qme�dt ���	�	��

call push� �part�fx�qtme�dt�wke�idimp�np�nx�

call dpost� �part�q�qme�np�idimp�nx�

where an array of particles �part�� charge density �eld �q�� and electric force �eld

�fx� are used in the operations of pushing particles �push�� and depositing charge

�dpost��� Additional parameters include the charge on an electron �qme�� the time

step �dt�� �eld dimension �nx�� particle kinetic energy �wke�� and number of particles

in the electron species �np�� Even in this example� the code would be clearer and

easier to manipulate if particle and �eld information were encapsulated into logically

related units�

USE plasma�module

TYPE �species� 

 electrons� ions

TYPE �fields� 

 charge�density� efield

real 

 dt � 	�

call plasma�push� �electrons� efield� dt�

call plasma�dpost� �electrons� charge�density�

In this Fortran 
� example the collection of electrons� with their properties� are lo


calized to the de�nition of the species type� Additional species can be created�

including ions� due to the encapsulation of species features� Similarly� the proper


ties of �elds are encapsulated into a fields type from which the charge density and

electric �eld are created� The details of how these �elds are stored and manipulated



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

are hidden in the de�nition of the type� This notion� related to encapsulation and

known as information hiding supports creation of user de�ned types called abstract

data types� Together� encapsulation� information hiding� inheritance� and abstract

data types form the building blocks of object
oriented programs�

Comparing the plasma push� and plasma dpost� calls to the push� and dpost�

calls� the parameters have been simpli�ed representing problem
related abstractions�

These new data types and associated operations can be combined into a module

for coherency� Modules can be used in parts of the program that require access

to the routines and data they provide� For added protection� the internal details

of the module can be hidden �private�� Then� the only way to manipulate module

data is with the functions and subroutines the module makes publicly accessible�

The private data will always be directly accessible to the routines de�ned within

the module� This provides a clean interface adding clarity� protection� and a stable

context for information sharing and collaboration useful for increasingly complex

scienti�c programs�

In the following sections we introduce many� but not all� of the new Fortran 
�

constructs that can support object
oriented programming� The terminology will be

de�ned and introduced with small examples from various programming segments�

Due to space considerations� we may omit detailed language statements within our

general discussion� See� for example� �		� for formal descriptions of the language

statements� In later sections� we illustrate full scale programs with comparison to

the object
oriented models of Chapter �� Although some of the Fortran 
� programs

were developed and modi�ed simultaneously with the C�� programs� for clarity� we

present them independently in this chapter�

����� Encapsulation with Derived Types

Fortran provides a number of intrinsic data types including integer� real� complex�

character� and logical� In object
oriented programming� it is useful to create user




CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

de�ned types from intrinsics and�or previously de�ned new user types� Fortran 
�

allows this through the creation of derived types which allow for encapsulation of

related concepts into a single form� A derived type can be created to describe the

distribution properties of particles in Fortran 
��

TYPE distribution�function�d

INTEGER 

 number�of�particles�x

REAL 

 thermal�velocity�x� drift�velocity�x� spatial�density

END TYPE distribution�function�d

where the type has the name distribution function�d with components describing

the information required for particle distribution� Variables of this type can now be

created using the syntax�

TYPE �distribution�function�d� 

 backdf� beamdf

and passed as parameters to various procedures �if de�ned in a module or through

an explicit interface� since derived types have many of the capabilities of intrinsic

data types� The percent symbol is used to access components of derived types� Spec


ifying the number of particles and drift velocity of the background distribution is

straightforward�

backdf�number�of�particles � �����

backdf�drift�velocity�x � �	�

Derived types can use previously de�ned derived types in their de�nition�

In object
oriented programming we often create user de�ned types with operations

bound to the type� This provides an interface to modify the components of the type

where the internal details are hidden� Our current use of Fortran 
� derived types

does not provide a mechanism for de�ning a set of operations on the type� How� for

example� should we create a distribution! The best way is to de�ne the derived type

within a Fortran 
� module� seen in �gure ��	� The number of particles distributed

�npxs�� the system length �nxs�� the thermal �vtxs� and drift �vdxs� velocity of the



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 �


Sketch of Fortran 	
 module with a derived type

MODULE distribution�module

IMPLICIT NONE

TYPE distribution�function�d

INTEGER 

 number�of�particles�x

REAL 

 thermal�velocity�x� drift�velocity�x� spatial�density

END TYPE distribution�function�d

CONTAINS

SUBROUTINE distribution�create�distf�npxs�nxs�vtxs�vdxs�

TYPE �distribution�function�d�� INTENT �out� 

 distf

INTEGER� INTENT �in� 

 npxs� nxs

REAL� INTENT �in� 

 vtxs� vdxs

distf�number�of�particles�x � npxs

distf�thermal�velocity�x � vtxs

distf�drift�velocity�x � vdxs

distf�spatial�density � float�nxs��float�npxs�

END SUBROUTINE distribution�create

END MODULE distribution�module

Figure ���� Sketch of a Fortran 
� distribution function module that contains a
routine to initialize distribution derived type objects�

particles� and the distribution characteristic �distf� are formal parameters to the

distribution create function�

By de�ning a module an explicit procedure interface for the distribution routine

has been created� Features of the module can be used in various routines� and other

modules� as needed� The distribution create routine takes the derived type as

its �rst argument� followed by the features of the distribution that characterize the

type variable� Notice that the formal parameters are fully typed� The intent�in�

attribute indicates which formal parameters cannot be modi�ed within the routine�

they are for input only� The intent�out� attribute means that the argument is

unde�ned on entry to the routine where it must be assigned a value before evaluation

in any expression� it is for output only� Bidirectional attributes can be speci�ed with

intent�inout�� The contains statement� which is part of the module� indicates that

a list of routines the module makes available follows� One of the bene�ts of including



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

routines within modules via the contains statement is that an explicit interface is

created� so argument type checking is possible� For example� if the actual arguments

to a function or subroutine call do not match the formal parameter interface� a compile

time error will occur� Finally� the implicit none statement prevents Fortran ��
style

implicit variable creation�all variables must be declared before they are used�

Initializing the background and beam electron distribution functions is straight


forward�

TYPE �distribution�function�d� 

 backdf� beamdf � create

call distribution�create�backdf�npx�nx�vtx�zero� � initialize

call distribution�create�beamdf�npxb�nx�vtdx�vdx�

provided the module is visible to the program calling unit� Variables created from

derived types de�ned within a module are the objects of Fortran 
� object
oriented

programming�

����� Overview of Modules

The module is a critically important new addition to Fortran 
� since modules in


crease the visibility and accessibility of data and routines throughout the program�

Modules are much more powerful than this however� they can easily be used to sup


port the object
oriented methodology� Modules allow encapsulation of derived types

and the routines that operate with them� they can be �used wherever module vari


ables �objects� are needed� The use statement allows the features of modules to be

accessible to any program unit� For example� we can create a module for the particle

species which requires features of the distribution function� seen in �gure ����

Through use�association� access to the distribution module derived types and

features is now provided to the species module� A function to distribute the species�

given the distribution properties from the distf object� can be de�ned in the species

module after the contains statement�

SUBROUTINE species�distribute �species�distf�



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 �	

Sketch of Fortran 	
 module with use�association

MODULE species�module

USE distribution�module � access additional features

IMPLICIT NONE

TYPE particle�d

REAL 

 x� vx � x position and velocity

END TYPE particle�d

TYPE species

REAL 

 qm� qbm� ek � charge� charge�mass� energy

INTEGER 

 nop � number of particles

TYPE �particle�d�� DIMENSION �
�� POINTER 

 p

END TYPE species

CONTAINS

SUBROUTINE species�distribute �species�distf�

� details omitted			

END SUBROUTINE species�distribute

� list of additional routines			

END MODULE species�module

Figure ���� Sketch of a Fortran 
� collective species module that uses a distribution
function module for spatial and velocity distribution of various particle
species�

TYPE �species�d�� INTENT �out� 

 species

TYPE �distribution�function�d�� INTENT �in� 

 distf

� uniform density profile

do j � �� distf�number�of�particles�x

species�p�j��x � distf�spatial�density��float�j��	��

enddo

� remainder of routine			

END SUBROUTINE species�distribute

The distf object has direct access to its components through use
association of the

distribution module� Note that Fortran 
� loops do not require labels and that free


format source code programming is supported�

Returning to the species module� notice that in addition to the distribution fea


tures a particle�d type and a species type have been added� The species includes

the charge �qm�� charge�mass �qbm�� species kinetic energy �ek�� and the number of



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

particles in the species �nop� as part of the encapsulated de�nition� A pointer to a

one
dimensional array of particles is also included in the species derived type� For


tran 
� supports pointer types and dynamic memory allocation� however� we should

explain why this pointer structure was introduced� Derived types have some restric


tions on their content� We require storage for an array of particles as part of the

species derived type de�nition� If the number of particles is known at compile time�

the derived type could contain the statement�

TYPE �particle�d�� DIMENSION �NumberOfParticles� 

 p

However� the number of particles may be determined dynamically implying that stor


age must be allocated at runtime� An allocatable array in Fortran 
� allows the

programmer to create and destroy arrays dynamically� but allocatable arrays are not

allowed in derived type de�nitions� Pointers to arrays are allowed� explaining the use

of the pointer attribute�

TYPE �particle�d�� DIMENSION �
�� POINTER 

 p

where a pointer to a one
dimensional dynamically allocated array is declared� Storage

allocation occurs in a separate executable statement�

Use
association gives the species distribute routine direct access to the dis


tribution function derived type� since the components of the distribution module

were public� However� we may want to restrict access for protection or information

hiding� Any component of a module can be made private to the module� limiting

external access to its internal management while creating a standard interface to the

features the module provides� Indeed� the designer has complete control over the

accessibility of any component of the module� This includes data� derived types� and

routines which may be speci�ed as public or private explicitly� When a derived type

is in a module� its components may be private while the type itself is still publicly

available wherever the module is used� If the following derived type were de�ned in

the species module



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

TYPE particle�d

PRIVATE

REAL 

 x� vx � x position and velocity

END TYPE particle�d

where the position and velocity are declared� then objects of type particle�d can be

created by use
association of the module� but the components are only accessible to

routines de�ned within the module or by an interface that the module must provide�

Alternatively the derived type may be entirely private to the species module�

TYPE� PRIVATE 

 hidden�particle�d

REAL 

 x� vx

END TYPE hidden�particle�d

Now� variables of type hidden particle�d cannot be created outside of the mod


ule by use
association� the type is hidden� These examples illustrate two forms of

information hiding�

All modules have a default accessibility of public unless explicitly speci�ed oth


erwise� The accessibility to each component of a module can be listed explicitly� or

overridden� if desired� To encourage information hiding in object
oriented program


ming the default accessibility of the module can be private� followed by a list of rou


tines and data that are publicly accessible by the public attribute� Modules should

be used as much as possible in object
oriented Fortran 
� programming since they

provide the only mechanism to gain access to the advanced features of the language�

They will have an important role in the construction of inheritance relationships in

Fortran 
��

����� Inheritance and Related Issues

Inheritance� the ability to create new abstractions from existing abstractions� is fun


damental to object
oriented programming� Fortran 
� can support inheritance with

the use statement� since one module �the derived� can gain access to another module



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

�the base� by use
association� Object
oriented languages de�ne inheritance in various

ways�often the separate issues of sub
typing and reuse inheritance are uni�ed in

some languages leading to misconceptions �	�� �	�� In Fortran 
�� inheritance allows

modules with sophisticated derived types to be created from modules with simple

derived types� since objects are created from derived types in modules� Similarly in

C��� inheritance allows objects created from complicated classes to be formed from

simple classes� There is a subtle distinction in these statements that will be addressed

shortly�

The simplest form of inheritance in Fortran 
� is to provide access to base module

data by use
association into a derived module�

MODULE base�module

IMPLICIT NONE

INTEGER 

 base�data

END MODULE base�module

MODULE derived�module

USE base�module

IMPLICIT NONE

REAL 

 derived�data

END MODULE derived�module

The module derived module can now be used in a program segment where both

base data and derived data will be accessible�

PROGRAM inherit�test

USE derived�module

IMPLICIT NONE

� this program can access base�data and derived�data			

END PROGRAM inherit�test

It would be more useful� however� to create new derived types from derived types

de�ned in existing modules� Additionally� we want to create routines that know what

action to perform� automatically� based on the type of the object when inheritance is



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

used� It would also be helpful if the derived module routines could call base module

routines in their de�nition�

Inheritance By Composition The most general de�nition of inheritance allows

complex classes to be composed from simple component classes� As an implemen


tation technique� inheritance by composition allows new classes to be de�ned as in


cremental changes to existing classes �	��� For example� given a base module that

contains a routine to advance a particle� called push� we may want to create a derived

module for advancing a collection of particles� Additionally� push should be callable

by a base module or derived module object where the action performed depends on

the object type�

MODULE base�module

IMPLICIT NONE

� particle derived type definition			

INTERFACE push

MODULE PROCEDURE push�one�particle

END INTERFACE

CONTAINS

SUBROUTINE push�one�particle�this�

TYPE �particle�� INTENT�inout� 

 this

� push operation			

END SUBROUTINE push�one�particle

END MODULE base�module

When push is called by a base module object� the interface statement calls the

push one particle routine provided the argument �this� is of type particle� Sim


ilarly� the derived module de�nes push as an interface to the push all particles

routine� In other words� we have overloaded the routine push� and the proper routine

will be called based on the type of the object� The derived class is illustrated in

�gure ���� Since the derived module has �used �or inherited� the base module� any

program unit that uses the derived module�class will also have access to the public

part of the base module�class� This allows the derived class to call the push routine�



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

Sketch of Fortran 	
 Inheritance by Composition

MODULE derived�module

USE base�module � inherit base�module types and routines

IMPLICIT NONE

INTERFACE push

MODULE PROCEDURE push�all�particles

END INTERFACE

CONTAINS

SUBROUTINE push�all�particles�this�

TYPE �particle�� DIMENSION�
�� INTENT�out� 

 this

INTEGER 

 i

do i � �� SIZE�this�

� push calls push�one�particle from base�module

call push�this�i��

enddo

END SUBROUTINE push�all�particles

END MODULE derived�module

Figure ���� Sketch of composition inheritance in Fortran 
� where the derived class
uses base class operations in implementing member routines�

de�ned in the base class� in a loop to push a collection of particles�

Fortran 
� arrays are actually objects� therefore� the size intrinsic will return

information about the size of the array� Notice that the loop index variable i was not

initialized on declaration� If we initialized this variable it would be static� the �nal

value of i would be retained on subsequent calls to the routine� In C��� it is common

to initialize loop variables on declaration� remain aware that careless initialization of

variables in Fortran �� may cause unexpected results�

When the derived module is used in any program unit and push is called� either

the base or derived module version will execute depending on the type of the object�

as seen in �gure ���� Notice that the parameter attribute was used to de�ne the size

of the array �nx� as a constant�

We have seen how the use statement allows inheritance by composition of data

and routines where interfaces may be created allowing base and derived modules to



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

Operations on Objects De�ned by Composition

PROGRAM inherit�test

USE derived�module

IMPLICIT NONE

INTEGER� PARAMETER 

 nx � �����

TYPE �particle� 

 x

TYPE �particle�� DIMENSION�nx� 

 y

call push�x� � push one particle

call push�y� � push a collection of particles

stop

END PROGRAM inherit�test

Figure ���� Usage of Fortran 
� objects de�ned through composition inheritance�
The construction allows a single overloaded operator to push a single
particle� or a group of particles� where the derived class function uses
the base class operations in its de�nition�

share routine names� This sharing is permitted because the actions performed are

controlled by overloading the routines based on the derived types� However� can

inheritance in Fortran 
� be de�ned so that new derived types can be created from

existing derived types! This form of sub
typing inheritance� which depends on the

typing features of speci�c programming languages� is studied in the next section�

Inheritance By Sub�Typing Inheritance in the C�� programming language al


lows a derived class object to assume the base class type through an implicit type


conversion� if necessary� This implies that derived class objects can be used wherever

base class objects are expected� because the derived object is a base object� this is

called an IS
A relationship� This is possible since a derived object contains all the

components of its class and every ancestor class�C

 objects are created from classes

of a speci�c type� Fortran 
� modules consist of a collection of derived types with asso


ciated operations involving those types� where objects are created by use
association

of the module� In other words� Fortran �� objects are created from derived types via

modules� We hinted earlier that there was a distinction between C�� classes and



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

Fortran 
� modules that in�uence how inheritance is modeled� We are now prepared

to explore the implications of this distinction�

Inheritance of a base class in C�� modi�es the structure of the derived class�

Base class attributes are physically added to the derived class� This is why C��

derived class objects also �inherit the type of the base class� it allows the base

class methods� which have been added� to be called on derived class objects� Since

Fortran 
� objects are created from derived types �not from modules which only make

derived types available� and since the use statement does not modify the structure

of the derived module� inheritance in Fortran 
� means that we get functionality� not

typing features� The principal reason for this is that the Fortran �� typing system

does not allow for implicit type conversions� Rather� Fortran 
� objects created from

the derived module have access to the base module routines and derived types by

use
association� but they have not been modi�ed by the base module derived type�s

components�

Nevertheless� it is still possible to construct derived type objects in the derived

module from base module derived types via inheritance� but we must be explicit� In

C��� the compiler implicitly �automatically� includes the base class components in

the derived class object de�nition� Interestingly enough� the explicit Fortran 
� ap


proach is very powerful since base module derived type information can be combined

into derived module derived types in non
trivial ways� We will see in later sections

the important implication of this scheme in abstraction modeling for PIC simulation�

As another purely academic example� we can create an electron derived type from

a particle derived type using inheritance� where we have included a function which

will print the position of a particle� Using inheritance� we can extend the de�nition

of particle objects into electron objects� as seen in �gure ����

Since the particle derived type has publicly accessible components� we could

have accessed them directly from within the e pos routine�

SUBROUTINE e�pos�this�

TYPE �electron�� INTENT�in� 

 this



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 �


Sketch of Fortran 	
 Inheritance by Sub�Typing

MODULE particle�module

IMPLICIT NONE

TYPE particle

REAL 

 x� vx

END TYPE particle

INTERFACE position

MODULE PROCEDURE pos

END INTERFACE

CONTAINS

SUBROUTINE pos�this�

TYPE �particle�� INTENT�in� 

 this

print �� this�x

END SUBROUTINE pos

END MODULE particle�module

MODULE electron�module

USE particle�module

IMPLICIT NONE

TYPE electron

REAL 

 charge

TYPE �particle� 

 p

END TYPE electron

INTERFACE position

MODULE PROCEDURE e�pos

END INTERFACE

CONTAINS

SUBROUTINE e�pos�this�

TYPE �electron�� INTENT�in� 

 this

call position�this�p� � access base class routine

END SUBROUTINE e�pos

SUBROUTINE e�charge�this�

TYPE �electron�� INTENT�in� 

 this

print �� this�charge � access electron component

END SUBROUTINE e�charge

END MODULE electron�module

Figure ���� Usage of Fortran 
� objects de�ned through sub
typing inheritance�
The construction allows a single overloaded operator to access features
of objects de�ned through sub
typing inheritance�



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

print �� this�p�x � access particle component

END SUBROUTINE e�pos

However� modifying base class internal data through the public interface provided is

often safer as programs are modi�ed and reused�

When the electron module is used in any program unit particle and electron

objects can be created� where the electron has been de�ned through inheritance of the

particle derived type� Additionally� base class routines have been extended to work in

the derived class�note that the base class was not modi�ed in this construction� This

illustrates inheritance by sub�typing since derived objects can use base class routines

as if they were the same type� by overriding existing de�nitions� as illustrated in the

example below�

PROGRAM inherit�test

USE electron�module

IMPLICIT NONE

TYPE �particle� 

 p

TYPE �electron� 

 e

� initialization code omitted			

call position�p� � print position of particle

call position�e� � print position of electron

call e�charge�p� � ERROR� function not defined

call e�charge�e� � print charge on electron

stop

END PROGRAM inherit�test

Note that this is a construction� no automatic type conversion is applied� but conver


sion operators can be created �
��

The reason object modi�cation through inheritance cannot be automatic in For


tran 
�� compared to C��� is that objects are not created from modules� they are

created from derived types that do not de�ne an IS
A relationship through use


association� In Fortran 
�� objects have exactly one type and are not modi�ed by

use
association of modules� The base module functions can be used in the derived



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 �	

module functions� as we have seen� but for a derived module object to have the com


ponents of a base module object the base module derived type must be included

explicitly in the derived module type of interest� An advantage of this scheme is

that a greater mixture of Fortran 
� objects can be created from base modules that

contain related derived types�

Inheritance by sub
typing is more restrictive than inheritance by composition�

These forms of inheritance are not less e�ective in Fortran 
� than in C��� but their

usage di�ers� These di�erences a�ect abstraction modeling� as will be seen in this

chapter and formally examined in Chapter �� Finally� C�� allows access restrictions

to be imposed during inheritance� We already know that Fortran 
� provides access

control for modules and derived types� which can be imposed during inheritance as

well�

Selective Inheritance One useful feature of use
association is that parts of mod


ules can be used selectively by the use only statement� This allows derived modules�

or any program unit that uses a module� to select the routines of interest from the

base module� This has the bene�t that base modules can be very general� but that

generality need not be inherited into derived modules� For example� a base mod


ule can be created which de�nes operations involving the charge density and electric

�elds� However� there may be new additional routines that are speci�c to a particu


lar �eld� The general base module routines can be selectively inherited into speci�c

derived modules using the use only statement� Then� the additional operations on the

speci�c �elds can be included in the derived module� as seen in �gure ����

Now� if new features are required �such as the addition of magnetic e�ects�� opera


tions involving all these �elds can be added to the base module� without a�ecting the

de�nition of the derived modules� Program units which only require usage of speci�c

�elds derived from the base module remain una�ected by changes to the base mod


ule� In languages where every component of the base class is inherited by the derived



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

Sketch of Fortran 	
 Selective Inheritance

MODULE spatialfields�module

IMPLICIT NONE

� interface and derived type declarations			

CONTAINS

SUBROUTINE solve�fields�cdensity� efield�

� field solver routines

END SUBROUTINE solve�fields

SUBROUTINE charge�deposit�electrons� cdensity� q�

� write to charge density field

END SUBROUTINE charge�deposit

SUBROUTINE particle�push�electrons� efield� dt�

� read from electric force field

END SUBROUTINE particle�push

END MODULE spatialfields�module

MODULE chargefield�module

USE spatialfields�module� ONLY
 charge�deposit

IMPLICIT NONE

� interface and derived type declarations			

CONTAINS

� new specific routines on charge field			

END MODULE chargefield�module

Figure ��	� Usage of Fortran 
� use only statement for inheriting speci�c aspects
of the base class�

classes the object model would have to be revised� The ability to inherit selectively

opens new abstraction modeling capabilities bene�cial in scienti�c programming� Ad


ditionally� it promotes safety and extends the lifetime of abstraction hierarchies since

features can be added without inadvertently a�ecting existing components�

Commentary on Inheritance Issues To what extent can Fortran 
� support

inheritance! The answer is somewhat controversial� depending on comparison to

other languages� For example� a very bene�cial feature of C�� is that derived class

objects generally can be used as arguments to functions where base class objects are

expected because of type conversions� Derived objects in Fortran 
� can access base



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

module routines� but the typing restrictions of the language do not allow derived

module objects to be used where base module objects are expected unless this is

constructed explicitly� There is no type promotion as in C��� Fortran 
� objects

have exactly one type which must be an exact match for all routine arguments in

which they are used�

Inheritance does not exist as an explicit language feature in Fortran 
�� but the

statements of the language allow for construction of a useful de�nition appropriate

to this language� Using such de�nitions to copy inheritance in C�� may lead to

an awkward program� However� an advantage of use
association of modules with

their derived types for inheritance is that a wide variety of Fortran 
� types can

participate in the de�nition of new modules through inheritance� This �exibility

allows for bene�cial abstract modeling di�cult to realize in languages that inherit all

features of base classes into derived classes�

We have seen that the use statement allows inheritance of data and routines where

interfaces may be created allowing base and derived modules to share routine names�

Using similar techniques� new derived types may also be created from existing derived

types� Additionally� the use only statement allows module components to be used

selectively� hence not everything need be inherited into derived modules�

����� Generic Programming and Polymorphism

In the Fortran 
� literature� generic programming refers to calling a routine where

the action performed depends on the type of the argument� This� perhaps� is not

the typical usage for this term� An example of a generic routine in Fortran 
� is the

ABS�x� intrinsic �		�� The absolute value of x is returned by this single call� whether

or not it is real or integer valued�

Since the type of every variable must be known at compile
time in Fortran 
��

generic routines resemble overloaded functions in languages like C��� Since C��

provides virtual functions�a form of dynamic binding of pointer and reference types



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

to routines�the terminology �generic implies that the operation performed varies

based on the current address of a pointer� This is possible because base class pointers

can also refer to derived class objects in C��� In other words� virtual functions

de�ne operations in an inheritance hierarchy based on type� Since the pointer can

refer to objects of di�erent types at execution
time� this allows a single pointer to call

generic operations on objects which are derived from a common inheritance hierarchy�

This form of run
time polymorphism implies that C�� objects belonging to di�erent

classes can share identical operations� yet the action of the operation may vary based

on the object type�

Fortran 
� supports pointers� but they can only refer to objects of exactly one

type� Additionally� pointers are restricted to point to objects that have the target

attribute� a Fortran 
� pointer may only point to speci�c type
matching targets� This

makes pointers very e�cient in Fortran 
�� but this restriction means that run
time

polymorphic generic operations cannot be modeled in a fashion similar to virtual

functions in the C�� language�

Nevertheless� using Fortran 
� interface blocks� it is possible to create generic

routines which are bound at compile
time� Since such interfaces are automatically

provided for routines in modules� when they are part of a generic de�nition a module

procedure statement must be speci�ed� For instance� we may want to create scalar

and vector �elds for charge density and electric forces respectively� Creating these

�elds in a generic fashion requires the declaration of an interface block in the module

calling unit� as seen in �gure ���� The fields create routine can be called on scalar�

vector� and complex �eld objects in the main program where the proper creation

routine will be called since the object is an argument and overloading can resolve the

type�

TYPE �sfields�d� 

 cdensity

TYPE �vfields�d� 

 efield

CALL fields�create�cdensity�nx�ny�nxv�

CALL fields�create�efield�nx�ny�nxv�



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

Sketch of Fortran 	
 Generic Procedures

MODULE fields�module

USE sfields�module

USE cfields�module

USE vfields�module

PRIVATE 

 sfields�create� cfields�create� vfields�create

INTERFACE fields�create

MODULE PROCEDURE sfields�create

MODULE PROCEDURE cfields�create

MODULE PROCEDURE vfields�create

END INTERFACE

� rest of module definition			

END MODULE fields�module

Figure ��
� Module procedures can be created in Fortran 
� that allow various �elds
to be initialized by a single function� where the proper initialization
routine is called based on the object type�

Since the speci�c routines� such as sfields create are private� they can only

be called using the generic fields create routine� Usage of these internal names is

restricted to the �elds module�

Polymorphic operations can be implemented in Fortran 
�� although the com


plexity of the construction increases based on their usage� As mentioned� Fortran 
�

requires exact matches for routine types� and this applies to pointer types as well�

Nevertheless� a dynamic dispatching approach can be applied to support polymorphic

object operations similar to virtual function invocations in C��� provided that every

object instance is instantiated into a new derived type� This construction models the

essence of polymorphic features� although it is not possible in Fortran 
� to construct

a single routine that accepts di�erent object types� as in C��� Similar construc


tions for polymorphism in statically
typed languages are not uncommon� they have

been applied� independently� to Ada ����� Information on dynamic dispatching for

polymorphism is available through examples on the Internet �����



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

����� The Object�Oriented Programming Model

Many languages that are object
oriented� or which support object
oriented program


ming� support some way of mapping the pure object
oriented methodology into a

form suitable for practical programming purposes� In Fortran 
�� the creation and

usage of objects di�ers from other languages� requiring further consideration�

Fortran 
� objects are created from intrinsic or derived types that are made avail


able by modules� Object declarations that are distinct� yet related� can be grouped

into a module where operations involving them are uni�ed through a single interface�

The C�� object model of de�ning operations on a single object can be emulated in

Fortran 
� if we restrict a single derived type to each module� However� the ability

to include as many derived types as necessary in module de�nitions opens interest


ing modeling options� We will see the bene�ts of the Fortran 
� object model when

creating the ternary relation between particles and �elds�

The language features of Fortran 
� that can be used to support object
oriented

programming have been described� The new statements are also useful in more tra


ditional programming paradigms� as is suggested in most Fortran 
� texts� We be


lieve� however� that the abstraction modeling concepts introduced will encourage a

paradigm shift useful in scienti�c application development�

��� Plasma PIC Application Programming

Now that the fundamental features of object
oriented programming in Fortran 
� have

been presented� we can consider their usage in plasma particle
in
cell programming�

Since we have already discussed the process of designing object models� as well as the

features of this application� we will immediately focus our attention strictly on the

programming issues�

The Fortran 
� programs were developed in a collaborative manner� Some of the

most recent scalar programs were extended by Viktor Decyk based on conversations



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

and the orignal C�� codes� While many of the Fortran 
� program models are

similar to the C�� versions� and vice
versa� the reasons for these di�erences are

based on language features that a�ect abstraction modeling� This important issue

will be addressed in Chapter ��

����� Fortran 	
 Mirror of C�� Model

Returning to the original one
dimensional C�� scalar program of �gure ��� on

page ��� our interest was to mirror every feature of this program in Fortran 
�� By

establishing if the new constructs could model an existing C�� program� we could

examine Fortran 
��s abstraction modeling capabilities and performance�

Modules in Fortran 
� were created to represent the classes of the C�� program�

Objects were created from the derived types within the modules by use
association�

where the modeling hierarchy matches that of �gure ���� Since constructors are pro


vided in C�� we emulated them in Fortran 
� by including module create routines�

which were called to initialize objects� The array syntax operations in Fortran 
�

were very useful� they replaced a number of iterative loops in �eld operations used in

the C�� version�

The Fortran 
� main program is shown in appendix A�		 on page ���� This

should be compared to the C�� program in appendix A�� on page 	
�� Although

some of the naming conventions are di�erent� they are essentially identical� It is also

interesting to compare the Fortran 
� main program to the one
dimensional Fortran ��

initialization and loop sections of appendix A�	 and appendix A�� on page 	
� and

page 	
	 respectively� Many of the inner details of the Fortran 
� program are similar

to the original Fortran �� version� but the interface to these details is very di�erent�

����� Program Organization Based on Fortran 	


The Fortran 
� scalar one
dimensional mirror program was a copy of the C�� version�

Fortran 
� features were not used based on their capabilities� but rather based on



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 ��

the features of C��� This section presents a new program organization based on the

features of Fortran 
�� developed in collaboration with Viktor Decyk� The new model

was more physics
oriented than the original one
dimensional C�� version� given that

we could represent these abstractions more directly with modules and derived types�

�The more advanced C�� programs already presented were developed concurrently

with the Fortran 
� programs� so components of the following designs should seem

familiar��

The organizational changes were motivated by the features of modules� derived

types and use
association� Many distinct� but related� items can be included in a

single module using derived types� The objects created by use
association repre


sent speci�c parts of the module based on the derived types contained within� This

provides a very �open modeling strategy�

One�Dimensional Sequential Program The modi�ed one
dimensional sequen


tial program contains modules for the distribution of particles� energy diagnostics�

particle species� �elds� collective plasma� and related operations much like similar

models already presented� The interesting part of the Fortran 
� version is the or


ganization of these components� The fields module contains a derived type for

dynamically creating scalar �elds with �eld operations� The �elds created include

the one
dimensional charge density and electric �eld� with operations to solve �eld

equations in complex Fourier space� Since all of these �elds come from the same mod


ule� however� their components are immediately accessible so the numerical routines

can operate on them directly� This allows the module to contain two very di�erent yet

related constructs� charge density and electric �elds� where all operations involving

the �elds� individually or collectively� are uni�ed in a single place and accessible by

use
association�

In Fortran 
�� a species module may be de�ned which includes the de�nition

of a one
dimensional particle with other aspects of the species� as we have seen in



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 �


�gure ��� on page �	� The previous codes separated the de�nition of a particle from

features that describe the collection of common particle properties� The derived type�

combined with the structure of modules� supports this view naturally�

Although building an equivalent species class in C�� is possible� the bene�t of the

module organization can be seen in extensions to mixed
dimensional codes� Higher


dimensional particle types can be added directly to the module� so a single code

can be written to support higher
dimensional simulations by use
association of the

original module� This could encourage the development of module libraries that can

be shared among related codes�

The plasma module can easily represent the uni�cation of all components that

make up the simulation �energy diagnostics� particle species and �elds�� by simple

use
association of these components�

MODULE plasma�module

USE energy�module� species�module� fields�module

IMPLICIT NONE

CONTAINS

� plasma simulation routines			

END MODULE plasma�module

In this manner� a simple form of multiple inheritance is applied� All routines that

involve these components can be uni�ed into the plasma module� so usage of the

module in the main program makes every routine and type immediately available�

This is seen in appendix A�	� on page ���� where the class hierarchy is shown in

�gure ���� Many of the modules contain derived types as part of their de�nition� such

as the de�nition of a particle in the species module� as previously seen�

Higher�Dimensional Sequential Program Organization The latest C�� codes

used templates to combine related �eld components into a single structure� When

considering the design of the next generation of Fortran 
� codes� even though For


tran 
� currently does not support parameterized types� this grouping of �eld elements

was used since it also made sense physically� Now� the charge density �eld would be



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 
�

Energy Module

potential energy
kinetic energy
total energy

Total Energy

Species Module

total # of particles in species
charge, charge/mass of species
kinetic energy of species
collection of species particles

Create/Destroy Species
Distribute Species
Set Kinetic Energy

Fields Module

field energy
real scalar field
real field geometry
complex temporary Field
particle halfwidth x

Create/Destroy Field
Set/Add to Field
Poisson Solve
FFT

Distribution Module

number of particles in x
thermal velocity in x
drift velocity in x
spatial density in x

Create Distribution

Plasma Module

Advance
ChargeDeposition
Set Kinetic Energy
Set Potential Energy

describes

used by

used by

Figure ���� Fortran 
� one
dimensional scalar class hierarchy �OMT notation��
This design� derived from an early C�� version based on Fortran 
�
constructs� uni�es particle species and �eld in the de�nition of plasma
simulation operations�

a scalar �eld while the electric �eld would be a vector �eld� This nomenclature was

introduced somewhat independently into the Fortran 
� codes� later �nding its way

into the latest C�� versions� Also� since the �eld solvers operate in complex space� a

new complex �elds module was introduced to represent the �elds in this space since

their geometry and purpose is quite di�erent from scalar and vector �elds� To support

the conversion between the complex and scalar�vector �elds� a �elds module was also

added� This module is responsible for solving the �eld equations using objects of the

three �eld types� scalar� vector and complex�

Part of the vector �eld �v�elds module� is shown in �gure ��
� The module struc


ture allows the components that comprise the de�nition of the vector �eld to be in


cluded in the module� Creating a pointer to a dynamic two
dimensional array which

represents the vector �eld is simple� shown in the modi�cation of the dimension at


tribute� Fortran 
� can support dynamic allocation of arrays in many dimensions�

All array intrinsic operations are automatically supported�



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 
	

Sketch of Fortran 	
 Vector Fields Module

MODULE vfields�module

IMPLICIT NONE

TYPE point�d

real 

 x� y

END TYPE point�d

TYPE vfields�d

real 

 wp � field energy

integer 

 nx� ny � field geometry

type �point�d�� dimension�
�
�� pointer 

 p

END TYPE vfields�d

CONTAINS

SUBROUTINE vfields�create�this� nx� ny�

TYPE �vfields�d�� INTENT�inout� 

 this

INTEGER� INTENT�in� 

 nx� ny

allocate �this�p�nx�ny�� stat�ierr�

� rest of subroutine body			

END SUBROUTINE vfields�create

� additional routines			

END MODULE vfields�module

Figure ���� Structure of a Fortran 
� two
dimensional dynamic vector �eld module�

Modi�cations to the �eld de�nition represent the major di�erence from the one


dimensional code� A sketch of the main program is shown in appendix A�	� on

page ���� The new model� extended from the one
dimensional model of �gure ���

can be seen in �gure ��	��

��� Parallel PIC Programming in Fortran 	


To learn more about how object
oriented techniques in Fortran 
� could be applied

to parallel programs� we developed a two
dimensional model as an extension from the

scalar program� Although High Performance Fortran �HPF� compilers are becoming

more available� currently most of them only support the subset
HPF standard and

many do not support important Fortran 
� features� such as modules� The MPI mes




CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 
�

ScalarFields Module

field energy
real scalar field
field geometry

Create/Destroy Field
Set/Add to Field

VectorFields Module

field energy
vector field
field geometry

Create/Destroy Field
Read Field Energy

ComplexFields Module

field energy
complex field
field geometry
particle halfwidth x, y

Create/Destroy Field
Poisson Solve
FFT
Transpose Field

Distribution Module

number of particles in x, y
thermal velocity in x, y
drift velocity in x, y
spatial density in x, y

Create Distribution

Energy Module

potential energy
kinetic energy
total energy

Total Energy

Species Module

total # of particles in species
charge, charge/mass of species
kinetic energy of species
collection of species particles

Create/Destroy Species
Distribute Species
Set Kinetic Energy

Plasma Module

Advance
ChargeDeposition
Set Kinetic Energy
Set Potential Energy

Fields Module

complex charge field
complex electric field

Create/Destroy Fields
Move Fields to Real/Complex Space
Solve Fields

used by

used by

used by

describes

used by used by

Figure ���
� Fortran 
� two
dimensional scalar class hierarchy �OMT notation��
Individual �eld types form components of the complete �eld� The
plasma module routines operate on the uni�cation of the particle
species and various �eld components�

sage passing interface standard was used for parallelism� This required modi�cations

to the MPI header �les� mainly adding interface declarations for some routines� since

we used the Fortran �� compiled library calls in Fortran 
��

Extending the Fortran 
� two
dimensional hierarchy of �gure ��	� on page 
�

was unusually straightforward and direct� Fortran 
� array subsection operations

were bene�cial in guard region operations� Use
association also simpli�ed introducing

MPI routines into the program� An mpi module included the library routines� local

data� and application speci�c functions useful in message passing� The components

of the module were accessible to any program unit involved in message passing by

use
association�

MODULE mpi�module

INCLUDE �mpif��	h�

IMPLICIT NONE



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 
�

Sketch of Partition Module with MPI Usage

MODULE partition�module

USE mpi�module

IMPLICIT NONE

TYPE slab

� definition of slab partition			

END TYPE slab

CONTAINS

SUBROUTINE dcomp��edges�ny� � perform partitioning

TYPE �slab�� INTENT �out� 

 edges

INTEGER� INTENT �in� 

 ny

� remainder of routine			

END SUBROUTINE dcomp�

END MODULE partition�module

Figure ����� Sketch of a partition module used in the Fortran 
� parallel program�
MPI routines are encapsulated in a module made available for parti

tioning operations by use
association�

INTEGER 

 idproc� kstrt� nproc� nprec

CONTAINS

SUBROUTINE ppinit�nvp� � initialize for parallelism

INTEGER� INTENT�in� 

 nvp

INTEGER 

 ierror

call MPI�COMM�RANK� MPI�COMM�WORLD� idproc� ierror �

call MPI�COMM�SIZE� MPI�COMM�WORLD� nproc� ierror �

END SUBROUTINE ppinit

SUBROUTINE timera�icntrl�chr�time�

� details of timer using MPI routines			

END SUBROUTINE timera

END MODULE mpi�module

The include statement makes standard MPI calls available where the local variables

are also accessible when the module is used� such as in the partition module� seen

in �gure ��		� or any other module that requires message passing�

The C�� programs included partition objects in the de�nition of classes that

operated on partitioned data� such as the particle species and �elds� In Fortran 
�� we



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 
�

can simply make partition information �available by use
association where needed�

such as in the species module� In this instance� we are simply providing partitioning

information as static member data with the use statement� there is no inheritance

relation�

MODULE species�module

USE distribution�module

USE partition�module

� definition of derived types

CONTAINS

SUBROUTINE species�distribute�this�edges�distf�noff�

TYPE �species�d�� INTENT �out� 

 this

TYPE �slab�� INTENT �in� 

 edges

� remainder of routine			

END MODULE species�module

In the creation of scalar and vector partitioned �elds� however� the usage of the

partitioning module does represent inheritance since it is used in partitioning the

�eld� not simply to �nd border information�

The module hierarchy is illustrated in �gure ��	� with the main program in ap


pendix A�	� on page ��
� The derived types� from which objects are created� are

contained within the modules� The di�erences from the hierarchy of �gure ��	� on

page 
� are minor� Many classes developed for the C�� version to support multi


dimensional dynamic arrays and array operations are not required since Fortran 
�

supports this in the language itself�

��� Commentary

It is important not to confuse object
oriented methodology with its realization by a

particular language� such as C�� or Fortran 
�� The speci�cation of the paradigm

is language independent� Some languages� like C��� provide support for object


oriented programming that extend beyond the formal description of the paradigm�



CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 
�

Energy Module

potential energy
kinetic energy
total energy

Total Energy

Plasma Module

Advance
ChargeDeposition
UpdateDistribution
Set Kinetic Energy
Set Potential Energy

Distribution Module

number of particles in x, y
thermal velocity in x, y
drift velocity in x, y
spatial density in x, y

Create Distribution

Fields Module

complex/transpose charge field
complex/transpose electric field

Create/Destroy Fields
Update Partitioned Field Borders
Solve Fields

ComplexFields Module

field energy
complex field
field geometry
particle halfwidth x, y

Create/Destroy Field
Poisson Solve
FFT
Transpose Field

MPI Module

number of processors
processor id
processor type

Timer
Initialize

Species Module

total # of particles on Proc.
total # of particles in species
charge, charge/mass of species
kinetic energy of species
collection of species particles

Create/Destroy Species
Distribute Species
Set Kinetic Energy

VectorFields Module

field energy
vector field
field geometry

Create/Destroy Field
Read Field Energy

ScalarFields Module

field energy
real scalar field
field geometry

Create/Destroy Field
Set/Add to Field

SlabPartitioning Module

left/right borders
region size

Uniform Partitioning

describes

used by

used by

used by

used by

used by used by

used by used by

Figure ����� Fortran 
� two
dimensional parallel class hierarchy �OMT notation��
The sequential version was extended by adding a module to make MPI
communication routines visible as well as the inheritance of partition

ing information into distributed �elds�

such as templates� Some of these features go beyond basic language statements such

as automatic type conversion and the ability to choose whether a base class or derived

class member function should be called in various instances�

There are many popular aspects of object
oriented programming that have not

been discussed in the context of Fortran 
�� such as templates� run time type iden


ti�cation �RTTI�� design patterns� and so on� Some features are currently in discus


sion within the Fortran 
� standards committee� such as parameterized derived types

which are similar to templates� At this point in time� many aspects of object method




CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 
�

ology are still in the research stage� it may be premature to formally introduce them

into a language so dominant in scienti�c programming as Fortran� We do not wish

to imply that compiler designers should rush to add features to convert Fortran 
�

into a language which is more object
oriented� possibly to increase its popularity or

to formally proclaim Fortran 
� as an object
oriented language� Our view is that

Fortran should continue to evolve� as it has in the past� based on the experience with

other languages�

There are bene�ts in applying the object
oriented methodology to languages that�

strictly speaking� lack some features to exploit this methodology directly� One of the

bene�ts of applying this technique to Fortran 
� is that entities that conceptually

belong together� but may not share a hierarchical relationship� can be modeled in

this language easily� Such capabilities have also been useful in the features of C��

that are not �purely object
oriented ��	�� While some features� such as the IS
A

relationship seem to be a hallmark of general
purpose object
oriented modeling of

�real world concepts� we have found the HAS
A form of composition inheritance

more useful in modeling physics concepts than the sub
typing inheritance model�

Object
oriented techniques have been applied to languages not known to support

this methodology before� somewhat notably with the Ada language ��� ��� as well as

other languages ����� Indeed� we recently found the Seidewitz paper and were sur


prised at the similarities in approach� compared to our methods� given the di�erences

in Ada and Fortran 
�� One of the exciting aspects of the new Fortran 
� constructs

and their usage is that Fortran is very popular and the new techniques can be applied

incrementally to existing software� The object
oriented techniques need not be used

duplicate techniques in other languages� such as C��� rather the modeling methods

can stand on their own� In practice the emulation of C�� statements in Fortran 
��

such as sub
typing inheritance� may require an e�ort much larger than most designers

may tolerate�

As suggested� many of the features of Fortran 
� are bene�cial even if the object




CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN FORTRAN �	 
�

oriented approach is not fully adopted� Nevertheless� the methodology can establish

a context through which these new features may be applied� Finally� while it is

possible to use Fortran 
� constructs to model aspects of C��� this can be tedious

at times� In particular� it is important that inheritance is not automatically part of

the Fortran 
� language standard� it must be constructed� However� the �exibility

of the language allows for important new modeling concepts to be explored� In �����

it is suggested that languages support a style of programming based on the ease�

convenience and safety by which the features of that style are supported� Excessive

e�ort or ability required in modeling this style are good indications that the language

only enables various techniques to be applied� Our recommendation is to use modules

and derived types in abstraction modeling� with judicious use of use associations and

other advanced language features� to develop a programming style appropriate to the

semantics of Fortran 
�� not necessarily other languages� This has been our approach

in application development and it has been extremely successful�



Chapter 


Irregular Computation in Plasma

Modeling

This chapter describes irregularity in plasma computation and discusses how object�

oriented techniques can be introduced to address this problem� The forms of irregularity

in plasma simulation are unusual and quite di�erent from other applications given the

structure of the PIC algorithm� Since modi�cation of simulation parameters can cause

experiments to require load balancing� handling irregularity is necessary for extension to

new problems� An implicit monitoring technique� which is an object�oriented approach

used in instrumenting programs to address load imbalance� is described in the context of

the collisionless free�expansion and gravitational experiments�

��� An Object�Oriented Approach for Irregular Com�

putation

Modern simulation of various phenomena in the physical sciences and engineering has

become increasingly dependent upon distributed memory parallel computation� Many

applications are regular � the computation workload distribution remains static �bal


anced� across the processors during execution� More sophisticated problems require


�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 



a dynamic redistribution of processor workload to o�set performance degradation�

These irregular computations are di�cult to implement since dynamic load balanc


ing is required� The form of irregularity is usually problem dependent� Furthermore�

current programming techniques are not designed for problems of this kind� which

are among the most challenging to model on distributed
memory parallel machines�

This implies an interdependence between the programming methodology and the

techniques used to maintain e�ciency for irregular scienti�c computations�

Our approach in addressing this issue involves a programming paradigm and mech


anism based on continuous implicit monitoring of program characteristics via class

abstraction hierarchies� Such an approach can allow for dynamic load balancing

through a monitor class interface whereby program development can be separated

from load balancing implementation issues� This paradigm extends object
oriented

methods beyond program abstraction� into a methodology useful in addressing irreg


ular scienti�c programming problems�

In the approach� data collected for run
time analysis is implicitly acquired through

a special monitoring class inherited into an application class hierarchy� Operations

performed on user
de�ned derived classes trigger implicit �hidden� operations which

collect information used by the run
time load balancing routines� Additionally� the

monitor itself makes new capabilities explicitly available to derived classes for run


time analysis of performance characteristics used for load balancing computational

objects� Since user de�ned objects can also be viewed as instances of the monitor


ing base class� dynamic load balancing can be performed on these objects through

monitor class operations� The monitoring methods are continuous� allowing for use

of these techniques in applications that require frequent load rebalancing� such as in

certain simulation problems� This encapsulates the load balancing mechanisms while

separating them from other application implementation issues� An important con


cern involves selection or design of methods appropriate for continuous monitoring�

The advantage of such an approach is that various load balancing algorithms can be



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

introduced on top of the mechanism that provides information about the run
time

characteristics of the simulation� As properties of the simulation change in an ir


regular fashion� di�erent load balancing methods may potentially be applied within

the same object
oriented context to improve e�ciency based on trend information

discovered within the application�

As mentioned� programs are instrumented for monitoring implicitly since mea


surements are associated with object usage� Because of the inheritance based usage

of monitors� virtual functions in C�� allow generic monitor operations to behave

di�erently based on the derived object type� In this way� load balancing methods

that operate on monitors can manipulate program objects di�erently based on their

type� Before we introduce this method� which is most clearly described by example�

we must understand the context in which it will be applied�

��� Computation and Communication Irregularity

in PIC Simulation

When dynamic load balancing is applied in the General Concurrent Particle
in
Cell

�GCPIC� method� particles remain relatively well balanced across the processors as

they move among partitioned regions� Since all particles must deposit charge through

interpolation to the charge density �eld� as well as acquire forces through interpola


tion from the electric force �eld� both of these �elds must vary in size with the density

distribution of particles in the spatial region� The �eld equations are solved in Fourier

space� which requires a uniformly partitioned �eld across the processors� This com


plicates the simulation since load balancing not only includes balancing the particles

by moving the charge density and electric force �eld boundaries� but also includes

mapping these non
uniform �elds back and forth between the uniform Fourier �elds�

The nature of this coupled mapping introduces irregular data and communication

which for highly dynamic problems may occur every time step�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	�	

As suggested� there are a number of �elds that a�ect the motion of the particles�

These include the scalar charge density �eld� vector electric �eld� and the complex

Fourier �eld� When these �elds are uniformly partitioned and static� mapping from

the charge density to Fourier to electric �eld is straightforward since load balancing

is not required� Consequently� only the guard regions of the scalar and vector �elds

must be exchanged with their neighbor processors� the major portion of the �elds

can be mapped locally� In fact� this uniformity allows each processor to easily map

between �eld regions in stages listed in �gure ��	� The regularity in communication

Uniform�Static Partitioning Mapping Algorithm

	� Write charge density to local Fourier �eld

�� Send left guard region to left neighbor

�� Send right guard region to right neighbor

�� Solve �eld

�� Write Fourier �eld to local electric force �eld

�� Send left Fourier region to left neighbor

�� Send right Fourier region to right neighbor

Figure ���� Partition mapping when �elds are static and uniform�

and computation using this approach is apparent� The technique is also very e�cient�

since the number of guard regions transported to neighbors is small compared to the

total �eld size�

This section will study the details of how this method must be modi�ed when

moving boundaries are involved� We will see that an algorithm for this problem in


volves a number of issues that are not immediately apparent� Our goal was to design

a time
space e�cient algorithm which minimizes the communication overhead� After

the technique used in managing particle and �eld partitioning has been presented� we

examine the modi�cations to the plasma PIC algorithm for load balancing� Subse




CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

quently� the monitoring method is introduced for load balancing the free expansion

of plasma in a vacuum and for a gravitational problem�

����� Managing Particle�Field Partitioning

Since the �eld is partitioned into sub�elds consisting of uniformly distributed grid

elements of �nite size� the partition borders will be resolved to the integral address of

a grid point normal to the partitioning direction� In this problem� it turns out that a

slab
partitioning in three
dimensions� rather than rod or cube partitions� is su�cient

since maintaining more re�ned partitioning would overwhelm the time spent in load

balancing ����� In �gure ���� we show the �eld on processor P� in three
dimensions

�c�f� ����a��� Since slab
partitioning in the Z
coordinate will be used� we can simplify

the mapping illustrations by drawing the two
dimensional projection normal to the

Z
plane� hiding the XY
Plane� Additionally� this projection will be re
mapped into

the page so that mappings between di�erent �elds can be drawn in a single illustration

�c�f� ����b���

X

Y

Z

Field Element
P0 P1 P2 P3

�a� Three�Dimensional Field

P0 P3P1

Z

P2

Z Plane Projection and Mapping

�b� Field Projection Re�mapping

Figure ���� Illustration of slab partition mappings used to represent �eld partition

ing� Projections of three
dimensional �elds into the plane are shown�

Partitioning examples are shown in �gure ���� A uniform partitioning �c�f� ����a���

where the Fourier and particle �elds are identical� and a non
uniform partitioning

�c�f� ����b��� where the particle �elds are variant� are illustrated� The shaded region

indicates how partitions overlap when processors map �eld regions into the complex



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

uniform Fourier �elds�

Static Field Partition

Moving Field Partition

P0 P1 P2 P3

P0 P1 P2 P3

�a� Uniform Partitioning

Moving Field Partition

Static Field Partition

P0 P1 P2 P3

P0 P1 P2 P3

�b� Non�Uniform Partitioning

Figure ���� The uniform partitioning only requires transmission of the guard re

gions �not shown�� while the non
uniform partitioning may require more
extensive interprocessor communication beyond the guard region trans

fers� For instance� P� communicates with P� and P� in addition to itself�

As indicated� the moving partition and static partition regions belong to distinct

processors� They can overlap in arbitrary ways� with some restrictions� We have

already mentioned that partition borders will only be resolved to a grid point� Addi


tional assumptions on the position of partitions include the following�

� Borders shared by neighbors have the same global address�

� Borders �in general� cannot overlap� The guard cells in moving partitioned

regions are an exception� but they only overlap in a logical way� not in terms of

their addressing�

� The external boundary borders on processors P� and P�n��� are �xed� where n

is the total number of processors�

We do not claim that the number of moving partitions segments must equal the num


ber of static partition segments� nor that they must equal the number of processors�

In most cases� however� these circumstances will hold�

Although the images shown in �gure ��� are two
dimensional� the �elds partitioned

are three
dimensional� In �gure ��� �c�f� ����a��� we illustrate how the guard region



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

P0 P1 P2 P3

P0 P1 P2 P3

Guard Region

Mapping Into Neighbor Fourier Fields

�a� Local Guard Cell Mapping

P0 P1 P2 P3

P0 P1 P2 P3

P0 Guard Region P2 Guard Region

Mapping Into Fourier Field

�b� Neighbor Guard Cell Mapping

Figure ���� Examples of �eld and guard cell mappings among processors into the
Fourier partitions� The Fourier partition is in complex space and does
not maintain guard planes�

mapping on processor P� extends into static partitions on neighboring processors

�P�� P��� In the accompanying �gure �c�f� ����b�� we see how the guard regions in

neighboring processors �P�� P�� map into the local �eld region on P�� There are

two guard regions on the right and one on the left� but this can vary based on the

interpolation scheme used� Managing the interaction among these regions will be an

important part of the partitioning scheme�

Rotating Field Partitioning Approach On a message passing machine inter


processor communication is required to send and receive �eld components among

processors that need them� Therefore� processors must know which portions of the

global �eld they own in addition to those regions required by other processors� To

guarantee that each processor will receive the �eld sections required to perform Fourier

transforms one simple approach is to rotate the �eld components among all the pro


cessors� As �elds arrive processors select the portions required� sending the incoming

�eld to its neighbor� While straightforward to implement� the communication cost of

transmitting the entire �eld among processors is generally unacceptable�

Extended Guard Cell Partitioning Method Another partitioning approach

is to extend the static �eld transfer approach for moving �elds� Since the static



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

method sends guard data to the left� writes local data� and sends guard data to the

right� moving partitions that extend beyond static partition borders can be viewed as

�extended guard cells� The approach would require processors to determine if they

have extended guard cells� as well as if local writes must be performed� Then� the

send
left� local
write� send
right paradigm could be preserved� Tests on the partition

borders that would be performed include�

if �MovingPartitionLeft � StaticPartitionRight ��

MovingPartitionRight � StaticPartitionLeft�

�� Perform Local Write			

if �MovingPartitionLeft � StaticPartitionLeft ��

MovingPartitionRight � StaticPartitionRight�

�� Extended Guard Cells Method			

Actually the tests performed are much more sophisticated than this� as is the

action taken when these tests pass or fail� Although this approach can work a more

consistent method is desirable� An implementation based on the aforementioned

approach might wait unnecessarily if there are no guard regions to send� Additionally�

special cases must be evaluated� What happens� for instance� when the range of the

moving partition borders of processor Pk does not include Pk as a subset! We do

not perform a local write� but it may not be correct to think of the transfer as an

extended guard cell operation�

The Scanning Partition Algorithm The method that we have introduced for

mapping from the moving to the static partitions is based on scanning� A moving

partition is scanned from left to right in the dimension that is to be partitioned�

During this scan� �eld data is collected and packed into a bu�er� The amount and

destination of this data depends on the processor identi�cation number of the parti


tions scanned� their dimensions� the location of the partition borders� and the number

of guard planes�

Figure ��� shows typical scan examples for a selected moving partition� Notice

how the moving partition must map its �eld region across processors� as well as



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

Moving Field Partition
P0 P1 P2 P3

P0 P1 P2 P3

Scan Direction
0 8 16 24 32

�a� Processor P��s �eld region extends over
Pk�s �k � �� �� �� Fourier region�

Moving Field Partition
P0 P1 P2 P3

Scan Direction
0 8 16 24 32

P0 P1 P2 P3

�b� Processor P��s guard region extends be�
yond de�ned border on P�� causing interac�
tion with P��

Figure ���� Various scenarios illustrating issues that the scanning algorithm must
address� The guard cell regions in the moving partitions complicate the
scanning technique�

its additional exterior guard regions �c�f� ����a��� �These exterior guard regions are

only illustrated in the static partition mapping� not in the moving �eld partition

mapping�� Also� recognize that the left guard region on processor P� �c�f� ����b�� also

causes interaction with processor P� since a periodic �eld mapping is used� The scan

address is based on the global location of the partition borders� where sample indices

are shown in �gure ���� The global address of the guard regions will not be scanned�

but they are accountable during the scanning process� In the rest of this section� we

discuss the algorithm and the implementation details�

����� The Scanning Partition Mapping Method

In the mapping technique there will be an exchange of information between the mov


ing and static partition regions across processors� For instance� before a scan can be

performed� since the data is distributed� the static regions must know how many re


ceives to post for the incoming �eld segments� Only the moving regions can compute

how many sends to perform to the appropriate processors� Therefore� these mov


ing regions must determine the location of their borders with respect to the static

partitioning� the number of sends required �including guard cell operations�� and the



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

number of receives to post on behalf of the static regions� A global view of the

scanning partition mapping method can be seen in �gure ����

Scanning Partition Algorithma

	� Each processor inspects its moving partition boundaries and determines the
processor�s� whose static �eld coordinates contain these boundaries�

�� Each processor performs a scan from �left to right across its moving par

tition� Iteratively pack �eld data and information required for the inverse
mapping�from the static to moving partitions�and transport as a con

tiguous message to the static partitions that require this information�

�� Each processor that owns a static partition� using an inverse mapping table
dynamically constructed� iteratively maps �eld data back to the moving
partitions�

�� Repeat the process in the next time step�

aDetails are explained in the subsections�

Figure ��	� Sketch of the Scanning Partition Mapping Method�

These stages� while apparently straightforward to describe� actually have sophis


ticated components that require complex programming within a distributed memory

message passing environment� They shall be examined independently for clarity� but

the algorithm relies upon the transfer of information between stages�

Location of Processor Partition Borders �Step �� Every processor must de


termine the relationship between its moving �eld partition borders and the borders

belonging to processors in the static partitioning� Without this information� it is

impossible to map the moving �elds to the static �elds since there is no means

to determine where �eld data is sent� and received� Fortunately� the Fourier �eld

must be uniformly partitioned� so mathematical short
cuts can be introduced in this

stage� Unfortunately� the guard cells complicate matters since they can introduce

new interactions between processors due to the current partitioning� as we have seen

in �gure ���� Additionally� information required by future stages for interprocessor



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

communication must be collected as these border locations are determined�

The uniformity of the Fourier �eld allows the location of the moving borders on

any processor to be computed immediately�

PEL % bMPL�SPSIZEc

PER %

����
���
PEn�� for processor �n� 	�

bMPR�SPSIZEc otherwise

���	�

where �PEL� PER� are the processors that own the static regions where the moving

region borders fall� �MPL� MPR� are the global indices of the �left� right� moving

partitions� SPSIZE is the �xed size of the partitioned Fourier �eld region on each

processor and n is the total number of processors indexed from � to �n � 	�� Note

that the external borders on processors P� and Pn�� are �xed� The values of PEL

and PER are used as bounds when computing the range of static partition regions

to which the moving regions are mapped on each processor� This mapping implies

interprocessor communication� in particular�

	� Every processor that owns a static region must know how many �eld commu


nication messages to expect from processors that own the moving regions�

�� Similarly� every processor that owns a moving region must know how many �eld

communication messages to expect from processors that own the static regions�

These are important points which cannot be overemphasized� To address these points�

the interaction of the guard regions with the static partition borders must be consid


ered�

In determining the number of receives posted by the static regions� given the

location of the moving region borders �case 	�� one soon realizes that processors which

own static regions cannot compute this number� The processors responsible for the

static regions have no information about the location of the moving borders� however�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	�


Moving Field Partition
P0 P1 P2 P3

0 8 16 24 32

P0 P1 P2 P3

Static Field Partition

Figure ��
� Sample mapping in static partition receive posting algorithm�

the processors responsible for the moving regions do know that the static partitioning

is uniform� Using �gure ��� as a canonical example� we show the mapping of moving

partition regions into the static partition regions� For instance� P��s moving partition

region induces communication with the static partition regions on processors P�� P�

and P�� Including self
communication in these computations is convenient� as will be

seen when the message passing protocol is examined�

The number of receives posted by processors that own the static regions can be

computed by the parallel algorithm of �gure ���� Determining when moving bound


aries share the same address as static boundaries can be found by extensions to

equation ��	� This involves ensuring that the arithmetic is performed carefully� The

exterior boundaries of the simulation space are �xed� so this condition is handled

as a special case� as are the e�ects of the guard regions� The conditional testing is

sophisticated� but manageable�

Table ��	 shows the result of the computation performed by the static partition

receive
posting algorithm for �gure ���� For example� processor P� maps into static

regions on processor P� and P� �from the periodicity of the �elds and the guard regions

at address zero�� so this is indicated in the �rst row of the table� Similarly� processor

P��s moving region maps into the static regions of processors P�� P� and P�� which

are also marked� Each processor simultaneously makes these marks into a shared



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 		�

Static Partition Receive�Posting Algorithm

	� Mark the processor number for exterior and interior moving guard region
borders if the moving and static partition borders share the same address�

�� Mark the processor number which owns each static region that is covered
between the moving partition border regions �also implies a static partition
receive��

�� Perform parallel summation of marked identi�ers to compute the number
of receives to post for the static region owned by the current processor�

Figure ���� Sketch of receive
posting algorithm for static partitioning�

array where each index corresponds to a static partition processor� Then� a parallel

summation over the array is performed to determine the number of receives that the

processor owning a static region must post� The result is shown in the second row of

table ��	� Although the static region owned by each processor now knows how many

Action P� P� P� P�

�moving� Processor�s� mapping into �static� Pk �� 	� � 	 	� �� � �� �

Number of Receives Expected by �static� Pk ��k� � 	 � �

Number of Receives Expected by �moving� Pk ��k� � � 	 �

Table ���� Receive
Posting algorithm computation example� The �rst row indicates
how Pk�s moving region maps into the static partition regions of the
processors listed� The second shows the number of receives expected by
processor Pk which owns the static partition region� The last shows the
receives posted by processor Pk which owns the moving partition region�

receives to post� none of these processors know where the �eld messages will originate�

Fortunately� the receive order can be arbitrary� so processors sending regions they ow

can include their identi�cation number in the message� This information is required

for the inverse mapping of the static regions back to the moving partition regions�

however� additional data must also be included�

The computation of the number of receives that processors owning static regions



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 			

must post can yield additional information required when performing the inverse map


ping� The number of sends performed by the moving regions are exactly the number

of receives these regions must post in the inverse mapping� illustrated in the third

row of table ��	� For example� since there are two zeros in the �rst row� indicating

that P� sends to P� and P�� two sends will be performed� Similarly� processor P� only

performs one send�it communicates with itself&but this cannot be assumed in the

forward mapping� Processor P� maps into P�� P� and P� while processor P� maps

into P�� P� and P� indicating three sends each�

The sample partitioning of �gure ��� on page 	�
 does not induce additional

interactions with neighboring static regions� Since the partitioning may be arbitrary�

as seen in �gure ��
� the algorithm must also handle this case� An analysis of the

receive posting algorithm has been performed ����� The algorithm is linear in the

number of processors due to the number of messages that may be transmitted�

The Scanning Stage� Mapping Moving Fields to Static Fields �Step ��

The general operations performed in this stage are sketched in the scan
pack
move

algorithm in �gure ��	� on page 		�� Generally� each processor owning a moving

partition begins scanning and packing its �eld from its leftmost border until either

a static partition address� or the rightmost moving border� is encountered� Guard

regions are included as part of the contiguous message based on testing a variety of

conditions involving the moving and static border locations and the current location

of the scan index� When the proper conditions are satis�ed� the region scanned is

transported to the appropriate destination processor�which expects a message due

to the receive
posting algorithm� This technique divides the moving �eld regions into

blocks based on the uniform static partitioning� The process repeats until all blocks

that comprise the moving �eld region have been transported�

A example of this process on a moving �eld component is illustrated in �gure ��		�

When processor P��s moving region performs the scan �c�f� ��		�a��� it must pack its



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 		�

P0 P1 P2 P3

0 8 16 24 32

P0 P1 P2 P3

�a� Multiple interaction of P� with P��

P� P� P� P�

Map �� � � �� 	 �� �� 	� �� �

�k � 	 � �

�k � � 	 �

�b� Receive Posting Table

P0 P1 P2 P3

0 8 16 24 32

P0 P1 P2 P3

�c� P� never communicates with itself�

P� P� P� P�

Map �� � � �� 	 �� 	� �� �

�k � 	 � �

�k � � 	 �

�d� Receive Posting Table

P0 P1 P2 P3

0 8 16 24 32

P0 P1 P2 P3

�e� Maximum level of communication�

P� P� P� P�

Map �� 	� � �� 	� �� 	� �� � �� �� �

�k � � � �

�k � � � �

�f� Receive Posting Table

P0 P1 P2 P3

0 8 16 24 32

P0 P1 P2 P3

�g� Counterexample that �k �� ��k�
R�

P� P� P� P�

Map �� � �� 	� �� � � �� �

�k � � 	 �

�k � 	 	 �

�h� Receive Posting Table

Figure ���� Sample partition mappings showing various cases that the mapping
algorithm must address� The guard regions inducing interprocessor
interactions are not shown explicitly�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 		�

Scan�Pack�Move Algorithm

	� Initialize scan index to leftmost border of moving partition region�

�� Given the current scan index� compute next static border index�

�� Determine if �eld is packed to the next static border index or to the right

most border of the moving partition region�

�� Pack �eld data to the correct border and transport to appropriate processor�
�Include information required by the inverse mapping��

�� Continue scan
pack
move operations �from step �� until the rightmost bor

der of the moving partition is reached and the �eld is transported�

Figure ���
� Sketch of algorithm used to map moving �eld partitions to static �eld
partitions across processors�

left guard region for processor P� and additional information required by the static

region on P�� Then� the region of the moving partition on P� that is mapped onto

the static region owned by P� is packed� Next� the region on P� mapped onto itself

is packed� including part of the guard region� Finally� the last portion of P��s guard

region is packed and transported to the static region owned by processor P�� The four

regions packed are illustrated in �gure ��		 �c�f� ��		�b�� and are numbered in the

order they are sent� The receive order by processors owning static partition regions�

however� can be arbitrary� The �gure �c�f� ��		�c�� also shows an overhead view of

the mapping to illustrate the guard region interaction�

There are important details to consider related to managing the interprocessor

communication scheme� We need to ensure that the communication is as balanced

as possible� due to the irregularity in messages sent and received among partitions�

Additionally� the message passing protocol must be deadlock�free� Since the �elds

transported may potentially be large and since complex� yet e�cient� computations

are performed in determining how �elds are passed among processors� a scheme that

overlaps communication with computation is desirable�

Since every processor knows how many sends to perform and receives to expect�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 		�

Moving Field Partition
P0 P1 P2 P3

0 8 16 24 32
Scan Direction

P0 P1 P2 P3

�a� Scan across moving region on P�� Guard
regions on P� are indicated�

Moving Field Partition
P0 P1 P2 P3

0 8 16 24 32

1 2 43

�b� Four regions are packed from P� and
transported resulting from the scan opera�
tion�

0 8 16 24 32

P0 P1 P2 P3

P0 P1 P2 P3

1
2

3
4

Guard Regions

�c� Overhead view of guard region in�
teraction and block creation�

Figure ����� Illustration of scan
pack
move method for processor P� mapping into
the static partition regions�

using blocking sends followed by blocking receives would be straightforward to im


plement� Unfortunately� this approach can cause deadlock� as seen in �gure ��	� on

page 		�� Using the scan
pack
move algorithm the following sequence of events may

occur�

	� Processor P��s moving region sends a �eld region to processor P��s static region�

�� Processor P��s static region waits to receive a message from any processor� it

expects a message from the receive
posting algorithm�

�� Processor P��s static region can only receive if a message is sent� but the only

message that can arrive is from processor P��s moving region� due to the scan

direction�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 		�

Moving Field Partition
P0 P2 P3

0 8 16 24 32

P1

P1 P2 P3P0

Figure ����� Deadlock can occur in the scan
pack
move method for processor P�

if the communication protocol does not allow messages to be sent
whenever possible� P��s static region will wait for a message from P��s
moving region that can never be sent� �P��s static region successfully
receives a portion of the �eld� P��s region will not��

�� The process on P� is blocked forever waiting to receive a �eld segment that

cannot be sent�

This deadlock occured because the communication protocol waited for a message

that was expected rather than continuing with other work� We can eliminate this

possibility� and allow concurrent processes to unblock themselves if necessary� by

using a protocol that sends �elds whenever possible� An advantage of this approach

is that communication and computation can be overlapped� For this scheme to work�

however� the algorithm must be designed to receive �eld messages at any moment�

The details of the communication protocol are described in ����� however� �g


ure ��	� illustrates the major ideas of the approach� While the scan
pack
move al


gorithm appears to be linear in the number of processors� since we mathematically

compute the block sizes rather than actually scanning normal to the partitioning

direction� it is really linear in the size of the �eld �����

The Inverse Mapping �Step �� The inverse mapping from the static partitioned

regions to the moving regions is similar to the forward mapping� Since an inverse map


ping table was constructed the location� size and destination processor of static �eld



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 		�

Send Data

Yes

No
No

No

Yes

Yes

Send Loop

Static Region
Writes Field

Receive Loop

Barrier

Wait on Receive
Yes

No

Receive if Possible
Static Region Posts

Receive
Ready?

Receive
Expected?

Static Region PE Posts
Receive if Possible

While There Are
Receives Remaining...

While Moving Region
Has Fields to Send...

Figure ����� Illustration of scan
pack
move algorithm with interprocessor commu

nication protocol�

Inverse Scan�Pack�Move Algorithm

	� Read inverse mapping information from table and use to pack and send
�eld components�

�� Continue �step 	� until the inverse table has been exhausted�

Figure ����� Sketch of the Scan
Pack
Move Method in Inverse Mapping�

components can be accessed directly� In fact� scanning in this case is simply reading

the dynamic inverse table and following the instructions� as shown in �gure ��	��

The inverse mapping moves the complex Fourier �elds into the real electric vector

�eld� which involves a much larger data transfer than the charge density �eld� Al


though the static �eld regions do not contain guard cells the inverse mapping must

account for them in the moving regions� The content of the inverse table data auto


matically accounted for this� This section of the algorithm is bounded by the size of

the static partitioned �eld on a single processor� but the proportionality constant is

larger since a vector �eld is transported�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 		�

Additional Remarks Control in the scanning partition algorithm is decentralized �

no single processor is responsible for the execution of the algorithm� Additionally�

there is no explicit synchronization during the algorithm� although a barrier is estab


lished at the end of the algorithm to ensure that all �eld components have arrived at

the appropriate processor before the Fourier transforms� This is necessary since the

FFT uses matrix transposes on the statically partitioned �elds where message passing

is required� The overall complexity of the scanning partition algorithm is minimal�

linear in the number of �eld elements� as expected since particles are not involved�

��� Load Balancing in the Plasma PIC Algorithm

Many applications programmed on distributed memory parallel machines require load

balancing� particle computations are no exception �	�� ��� ���� For our purposes�

since the number of particles is much larger than the number of �eld elements� the

particles must be reasonably well
balanced across processors to maintain e�ciency�

The particle motion in�uences the scalar and vector �eld partitioning� since particles

must interpolate charge and force data to�from the �elds locally� Balancing the

particles for computational e�ciency is the source of irregularity in the �eld and

particle decomposition�

The plasma PIC algorithm shown in �gure ��� on page 	� can be modi�ed for load

balancing� Our approach� developed independently� is very similar to that described

in �	�� where an approximation of the plasma density pro�le is computed to determine

the new partitioning� We must know the density pro�le across the distributed �eld

because� for some simulations� the imbalance evolves over time requiring dynamic

repartitioning� We can compute the pro�le in a simple way by examining the particle

interpolation to the grid� using a number density function computed on each pro


cessor� These values can be globally combined to �nd the density pro�le across the

distributed �eld� allowing a new partitioning to be determined� The location of the



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 		�

partition borders should balance the number of particles� within reason� given that

we have resolved the borders to integral �eld addresses for simplicity�

The number density function can be computed directly from the existing charge

on the �eld by weighting the density array by a speci�c value� say the inverse of

the species charge� For simplicity and experimental purposes however� we computed

the exact number density from interpolation of particles to their near
neighbor grid

point in the plane normal to the partitioning direction� for three
dimensions� This

has the disadvantage that computing the density now depends on the number of

particles� but it is simple and direct� Furthermore� our interest is not to improve

on an existing load balancing algorithm� but rather to investigate how object�oriented

methods can be useful in load balancing� The mechanism described can be changed

to utilize the existing charge� when convenient� Fortunately� the encapsulation of

simulation components allows for such modi�cations without a�ecting the program

organization�

We can establish a perfect balance factor �p % bNp�Nprocc where Np is the total

number of particles and Nproc is the number of processors� The balance limits� which

indicate the perfect number of particles �to the left of processor k�s left and right

partition are�

�
�k�
lp % PEk � �p �����

��k�rp % PEk	� � �p �����

where ��
�k�
lp � �

�k�
rp � are the limits on the number of particles with coordinates less

than the left and right partitions respectively and PEk is processor number k� Then�

the location of the left and right borders �PEL� PER� on a speci�c processor are



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 		


determined from�

PEk � �p �

Z PE
�k�
L

�

n�z� dz �����

PEk	� � �p �

Z PE
�k�
R

�

n�z� dz �����

where n�z� is the particle number density function normal to the z slab partition

direction� �The absolute left and right borders are �xed at zero and the system

length in z� respectively�� This implies that we can count� up to the balance limits� the

running sum of the number density to �nd the new left and right partition addresses�

Equations ��� and ��� can be solved for PE
�k�
L and PE

�k�
R by �nding the global index

z in the number density array that satis�es�

PE
�k�
L % max z s�t�

�RX
z
�

n�z� � �
�k�
lp �����

PE
�k�
R % max z s�t�

�RX
z
�

n�z� � ��k�rp �����

where z corresponds to the global partition address determined simultaneously on

each processor� and �R is the absolute
right simulation border� The computation of

the running sum implies that a processor could be forced into choosing a left border

which exceeds the balanced average� possibly by a signi�cant amount� due to the integral

mapping of partition addresses� The selection of the right border tends to cancel this

out in general� although the �nal processor could contain fewer particles than its

predecessors� We have also introduced a scheme that uses recursive bisection of the

particle number density across the �eld� but selection of integral �eld addresses can

introduce the same di�culties recently described�

An important issue involves when load balancing should be detected and per


formed� Since our scheme involves examining the particles to compute the number

density function� there are complications in this decision� One option is to rebalance



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

after the Advance routine �c�f� �gure ��� on page 	��� This has the bene�t that since

particles will be moved to new processors in the next step� any additional particles

that must be moved due to changes in partitioning will also be handled� The major

problem is that we do not have an accurate count of the number of particles per

processor after Advance� so we do not know if load balancing is necessary� Realisti


cally� the severity of this issue depends on the simulation since it may be �ne to delay

repartitioning until the next time step�

Another option is to load balance after the particles are moved across processors�

since the number per processor is now known exactly� The disadvantage with this

scheme is that when load balancing is required particles must be moved across pro


cessors again� reintroducing interprocessor communication� This can be minimized

over the previous approach however� since we have an accurate particle count� This

technique will be applied as the scanning partition algorithm is applied for irregular

�eld mappings in load balancing using object
oriented implicit monitoring�

��� Continuous Implicit Monitoring for Irregular

Computation

We have studied how object
oriented technology is useful in application design for

scienti�c programming� Many applications require load balancing� which is often

di�cult to introduce into the programming process� In this section� we develop the

bene�ts of abstraction modeling and encapsulation into a scheme useful for load

balancing in irregular computation�

The plasma computation is typical of many simulation codes in that modi�cations

can allow new phenomena to be studied� For this application� such modi�cations may

introduce the need for load balancing to maintain e�ciency� Oftentimes� programs

are instrumented in an explicit and inconsistent manner to measure variables that

a�ect performance� While e�ective� such a technique could turn a well organized



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	�	

Arbitrary Code Segment

object.Method();
// Implicitly set Monitor::computation_weight

Dynamic Load Balancing Code Segment

object.Mon_Method();

// Use monitored information such as
// Monitor::computation_weight on object

Class::Method()
Class::Mon_Method()

Monitor::Mon_Method()

Monitor Class

Class

Figure ����� Implicit monitoring and acquisition of data for load balancing�

program into one which becomes increasingly di�cult to maintain as it is modi�ed

and features for load balancing are introduced�

Our new approach is an object
oriented instrumentation technique that moni


tors program abstractions in a continuous and implicit manner� We will not disrupt

a well organized class hierarchy� in fact the method utilizes the features that the

object
oriented methodology provides� Objects that must be load balanced are mon


itored implicitly via normal object usage� The implementation relies on polymorphic

operations that allow a wide variety of information to be collected and utilized in

unique ways�

Methodology for Object�Oriented Load Balancing The continuous monitor


ing methodology allows object usage to implicitly gather data useful for run
time

load balancing algorithms� The mechanism uses a monitor class that is inherited

into the application class hierarchy� augmenting derived class object capabilities� The

monitor class provides polymorphic operations allowing derived class objects to re


spond to monitoring messages based on their type� Monitoring then� can be applied

to speci�c objects or the entire collection of monitored objects� Normal application

programming is distinct from the activities of the monitor� yet the information col


lected is easily available to dynamic load balancing routines� Figure ��	� shows how



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

an arbitrary code segment calls one of its member functions that also modi�es a

monitor variable� When that object is used in a dynamic load balancing routine� the

information monitored on the object is available for use in balancing operations�

Figure ��	� shows how the class hierarchy of �gure ��� on page �� is extended

for continuous implicit monitoring� Since particle distributions are the source of load

imbalance� the species and the collective plasma classes inherit from the monitor class�

Now� when instrumented methods are called on objects of these classes� they will be

implicitly monitored for use by the load balancing algorithm�

Instrumentation has been used to measure the performance of software applica


tions ���� ���� however object
oriented methodology has not been applied to enhance

its e�ectiveness for usage in load balancing until now� When a derived class inherits

from the monitor class� the base class monitor operations can be used to instrument

derived class methods to collect information� When a derived class object calls one

of its instrumented methods� the code segment will implicitly set monitor data� This

is implicit because the calling sequence and use of the derived object throughout

the program remain unchanged� Since access routines for monitoring information are

also inherited� load balancing code segments can interpret monitored data as required�

Virtual functions are used for polymorphism in C��� therefore derived classes must

provide de�nitions for base class monitoring operations� This allows derived classes

to provide application speci�c de�nitions for generic monitoring routine calls� Exam


ples of this technique will be illustrated for load balancing in the free expansion and

gravitational problems�

Collisionless Free Expansion Experiment The collisionless free expansion ex


periment� described in Chapter �� models the expansion of electrons and ions �assum


ing charge neutrality� from the �elds created by the respective species charges� Mobile

ions are easily added to the simulation program from the species class� supporting

this experiment� As seen in Figure ��� on page ��� initially the electrons and ions



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

RandomNumber

DrawGaussian

ScalarField3D<T>

field:DynamicMatrix3D<T>
field energy

set/read field energy
set/add to field
Resize
(scalar field matrix ops)

ComplexFields

global field geometry
halfwidth x, y, z
fourier field q, x, y, z:ScalarField3D<T>
transpose field q, x, y, z:ScalarField3D<T>

PoissonSolve
FFT
TransposeFields
SolvePrepare
CalculateEField
UpdateGuardRegions

VirtualParallelMachine

number of processors
processor id
processor type
timer

(message passing ops)

EnergyDiagnostic

potential energy
kinetic energy
total energy

compute total energy

ParticleDistribution

number of particles in x, y, z
total number in species
thermal velocity in x, y, z
drift velocity in x, y, z
absolute drift velocity in x, y, z
spatial density in x, y, z

set/read number of particles
set/read thermal velocity
set/read(absolute)
read spatial density

GeneralField3D

global field geometry
SlabPartition:field region

read field geometry

FieldPoint3D<T>

electric force x, y, z

(field point3D ops)

Species<T>

DynamicStorage1D<T>
simulation geometry
number of particles on Proc.
total number of particles
charge of species
charge/mass of species
kinetic energy of species
SlabPartition:plasma region

ParticleDistribution
Resize
CopyOnResize
set/read kinetic energy

Plasma

Advance
ChargeDeposition
UpdateDistribution
read kinetic energy
read potential energy
Visualize Particles

SlabPartition

number of guard rows
left/right borders
region size
border global indices

set/read borders
set/read region size
UniformPartitioning
set/read global indices

Monitor

monitor variables

polymorphic operations

utilizes

utilizes

computed by

utilizes

computed by

initializes
describes

partitioned by

VectorField3D<T>

field:DynamicMatrix3D<FieldPoint3D<T>>
field energy

set/read field energy
Resize
(vector field matrix ops)

Figure ���	� C�� three
dimensional parallel hierarchy with implicit monitoring
class mechanism applied to Plasma and Species classes�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

Object�based Instrumentation of Program Segment

void Plasma

UpdateDistribution� Species� Particle�D �� spec�

const VPMachine� vm �

�

�� Code Omitted			

spec	mon�compwgt� float�spec	npp� �� �� monitor species			

mon�compwgt� spec	mon�compwgt�� �� �� monitor plasma			

�� Code Omitted			

�

Figure ���
� A plasma class code segment is instrumented to monitor the move

ment of electron and ion particle species across processors� The num

ber of particles� for each species in the current partition� is monitored
automatically based on the species type� Additionally� the plasma
object monitors the species for usage in load balancing routines� Call

ing the UpdateDistribution routine on the plasma object collects
instrumentation data implicitly�

are evenly distributed in the center of the simulation region �c�f� ����a��� Dynamic

repartitioning balances the electrons and ions across processors as they move from the

dense particle region into the vacuum region� A variety of boundary conditions can be

applied including re�ecting� emitting� absorbing� or combinations� which may allow

for thermal reservoirs of particles to remain beyond the simulation region boundary

�	��� In this particular experiment� due to the periodic boundaries� we simply halted

the simulation when particles reached the outermost boundaries�

The movement of electron and ion species are the source of irregularity� therefore�

these collections were monitored using the species class� This involved calling a mon


itor generic function �mon compwgt� to set the number of particles for each species

per processor� Since electrons and ions are stored on each processor� and since they

must be used in computing new partitions� a monitor was added to the plasma class

to track the entire collection� The UpdateDistribution routine contains the instru


mentation� as seen in �gure ��	��

When the main program calls the UpdateDistribution routine on the plasma ob




CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

ject for a speci�c species� the number of particles monitored for that object is adjusted

implicitly�

plasma	UpdateDistribution� electrons� vpm �� �� monitor objects

plasma	UpdateDistribution� ions� vpm �� �� implicitly			

where the information monitored on an object can now be accessed within load bal�

ancing routines via monitor class member functions�

Virtual functions� are applied to the species and to the plasma class objects�

Since UpdateDistribution is called once for the electron species� and again for the

ion species� only one code segment for the mon compwgt call is needed� but it will

be applied to the proper species� Furthermore� since the plasma class object owns

UpdateDistribution� it calls a new virtual de�nition of the mon compwgt routine�

This version computes the running sum for all species moved across partitions when

multiple species contribute to irregular particle distributions� By monitoring the

speci�c species� and the collection of plasma particles� this information can be used

by the load balancing code segment to determine if the imbalance is su�cient to

require recomputation of new partition borders� as seen in �gure ��	�� The load

balancing code internally refers to monitor routines based on the objects it needs to

balance� The implicit monitoring method encapsulates the features of load balancing

while providing a technique to instrument and operate upon objects targeted for

redistribution�

Figure ��	
 on page 	�� shows the movement of partition borders for a small

expansion experiment using four processors� The initial balanced partitioning is

modi�ed as the plasma expands� The time steps when load balancing occurs are

indicated with the changes in partition borders� Table ��� on page 	�� shows the

initial and �nal partition border locations for the processors where particle domains

�The �� operator is typically used to invoke a virtual function in C��� Since a reference argument
is passed to the routine� the ��� operator is applied instead� Also� since the plasma object is
monitored from within its own member function� the this� pointer automatically invokes the virtual
monitor function�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

Usage of Monitored Information in Load Balancing

�� Load balancing call from main program			

plasma	BalanceDistributionRB� electrons� ions�

cdensity� efield� vpm ��

�� Access monitored data on plasma object within call			

is�balanced�required � f� mon�compwgt��� 			 ��

mon�init��� �� reinitialize monitor on object			

Figure ����� Load balancing operations can be called on the plasma object� Within
the routine� the monitored information is automatically available�
where the data has been collected implicitly by other object oper

ations�

are shaded� Although the plasma expands uniformly requiring load balancing� there

is an extended period after which repartitioning is no longer required� Nevertheless�

the �nal partitioning could be improved if additional computations were applied in

evaluating the quality of the partitioning� This has also a�ected the appearance of

the intermediate partitioning in �gure ��	
�

The monitoring mechanism can easily be extended to retain information collected�

useful in examining trends in object distribution� Such an extension allows for new

partitions to be created� or new load balancing conditions to be applied� based on

preferential movement of objects in the simulation� This was not necessary for our

purposes since particles are the only objects to balance� but the methodology does

allow for such extensions� Figure A�	� on page �		 shows the main program for this

experiment�

Gravitation Experiment Although implicit monitoring using object
oriented tech


niques allowed for load balancing in the free expansion experiment� the nature of the

expansion did not introduce a high degree of imbalance� The plasma PIC code can

be modi�ed for experiments in gravitation� as described in Chapter �� where high and

low density particle regions are easily introduced from clustering�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

0

5

10

15

20

25

30

35

0 20 40 60 80 100

B
or

de
r 

Lo
ca

tio
n 

in
 P

ar
tit

io
ni

ng
 D

ire
ct

io
n

Time Step

Movement in Partition Borders for Load Balancing

Figure ����� Movement in partition borders for free
expansion experiment using
four processors and the implicit monitoring technique� The particle
expansion is symmetric� however� the partitioning scheme is simplistic
so symmetry in border movement is not maintained�

In this experiment� the motion of a single particle species will be followed� A

cubic geometry with triply periodic boundary conditions is applied so that the average

mass density within the simulation region remains constant ����� Figure ���� shows

the change in partition borders during the gravitational experiment� indicating the

creation and movement of high density regions during the experiment�

In �gure ��� on page �� the initial distribution of bodies� projected against the

partition direction� was illustrated �c�f� ����a��� as well as a three
dimensional view of

the simulation space during execution �c�f� ����b��� Figure ���	 on page 	�� shows a

portion of the evolution of the system� and the partitioning for one time step� when

load balancing is applied using the implicit monitoring technique� The approach is

identical to that of the free expansion experiment� however� only the electron species

is monitored� Table ��� on page 	�
 shows the partitioning addresses� The ability to

observe speci�c objects in this manner simpli�ed the load balancing issues associated

with modifying the code for this new experiment� Appendix A�	� on page �	� shows

the main program for the gravitational problem� although the major changes were



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

�a� Final partitioning for free expansion�

Processor Initial Position Final Position

ID Left Right Left Right

P� � 	� � �

P� 	� 	� � 	�

P� 	� 	� 	� ��

P� 	� �� �� ��

�b� Partition border locations�

Table ���� Initial and �nal locations of moving partition borders when load balanc

ing is applied in the free expansion experiment�

limited to modifying system parameters�

Concluding Remarks Regarding the dynamic load balancing algorithm that uses

data from the continuous implicit monitoring technique� a slab
partitioning bisection

method was applied� Although the monitoring was continuous� the bisection method

examined monitored objects to determine if repartitioning was necessary� When the

variance�the monitored computation weight representing the number of particles

per processor�di�ered from an empirically determined amount� load balancing was

applied� If the di�erence between the optimal number of particles per processor



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	�


0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800

B
or

de
r 

Lo
ca

tio
n 

in
 P

ar
tit

io
ni

ng
 D

ire
ct

io
n

Time Step

Movement in Partition Borders for Load Balancing

Figure ���
� Movement in partition borders for gravitational experiment using four
processors and the implicit monitoring technique�

Processor Initial Position New Position

ID Left Right Left Right

P� � � � 		

P� � 	� 		 	�

P� 	� �� 	� 	�

P� �� �� 	� ��

Table ���� Moving partition border locations at the initial time step and step ���

and the amount dynamically measured was not signi�cant� control was immediately

returned from the load balancing segment to the main program�

The bisection approach introduced is actually a fast approximation to recursive

bisection methods commonly used� Since each processor has all of the particle density

information� new borders can be computed based on the processor number and the

number of particles expected for a perfectly balanced load� This approximation is

su�cient� since the partitions are resolved to integral �eld addresses and perfect

balancing cannot be achieved� Distributions that are nearly balanced tend to be

good enough� Moving partition borders can be mapped to real numbers rather than



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	��

�a� Body distribution for gravitational
problem at time step ���

�b� Body distribution at time step ���

�c� Body distribution for gravitational
problem at time step ���

�d� Body distribution at time step ��
�overhead view��

Figure ����� Intermediate development of gravitational experiment when dynamic
load balancing is applied�



CHAPTER 
� IRREGULAR COMPUTATION IN PLASMA MODELING 	�	

integers� however� the integer scheme was applied since we were concerned with object


oriented monitoring� not improving upon partitioning schemes� Our choice of the

balancing threshold that triggers repartitioning was 	�$ above or below the known

value for a perfect balance across processors� The performance of these programs will

be discussed in Chapter ��



Chapter �

The Implications of Abstraction

The chapter explores how abstraction modeling can be in�uenced by programming lan�

guage features� This a�ects how programs must be organized at a high level and illustrates

how language selection impacts design decisions� In some instances� language constructs

open new alternatives useful in abstraction modeling of scienti�c programs� while in others�

these alternatives impose design reorganization�


�� The In�uence of Language Statements on Object�

Oriented Modeling and Programming

Object
oriented methodology is gaining attention as an approach to model abstract

concepts and relationships in scienti�c programming� However� particular language

features can in�uence the ability to design and program with objects� Rather than

providing support to represent your ideas� in many instances the language may restrict

how concepts can be modeled� Indeed� language features may inversely a�ect how

your program is written instead of providing a mechanism to clearly represent your

ideas�

Object technology in scienti�c programming is appealing since we gain abstrac


tion� application
oriented views� �exibility in design modi�cation� readability� and

	��



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

Object Oriented Program

Abstract OO Design

The Application Problem

OO Language

Class modeling and

Program affected by
language feature...

Apply OO Analysis

Inversion
construction affected

Figure 	��� Inversion in programming� indicating how language statements can
cause the redesign of abstraction models�

enhanced collaboration� Valid reasons not to consider object
oriented programming�

however� include the di�culty of problem modeling� uncertainty in compiler technol


ogy� lack of design standards� the large learning investment� and frequently� perfor


mance� The question remains� where does programming �t in! Do we ever consider

how well a language supports the object model and methodology! Do language prop


erties a�ect how we model problems in an object
oriented way!

Figure ��	 illustrates the typical design process for an object
oriented program�

Given an application� analysis techniques are employed leading to an object
oriented

design� This design� represented by classes� is then implemented in a programming

language� During implementation� however� the construction of the program may be

in�uenced by a language speci�c feature which may prevent representing the abstract

design as expected� This a�ects the class model design� causing an inversion�the

design of the abstract model must be modi�ed based on a language speci�c feature�

Inversion often causes programmers to build software based not on their modeling

abstractions� but on the features a speci�c programming language provides which

reasonably approximates these abstractions�

Inversion in object modeling may not necessarily be harmful� at times it can be

bene�cial� This is particularly true in scienti�c programming where abstractions must

maintain simulation and physical viewpoints� These modeling issues are important



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

since they a�ect reuse� in�uence programming decisions� determine software under


standability� and most signi�cantly� may impose the choice of language� Scienti�c

programming does not represent the origin of object
oriented technology� The mod


eling techniques applicable to the �real
world applications driving the creation and

development of this technology may apply di�erently to scienti�c applications� This

issue is examined in C�� and Fortran 
� programming for modeling various plasma

PIC abstractions�


�� Comparing C�� and Fortran 	
 Models of

Abstraction

The design goals of the object
oriented PIC model were discussed in previous chapters�

We can compare and evaluate the implications of abstraction by examining how C��

and Fortran 
� features a�ected the organization of basic program segments�

Field Modeling A Fortran 
� one
dimensional fields module segment� seen in

�gure ���� shows how the scalar charge density and scalar electric �eld derived type

de�nitions are included with the numerical routines that manipulate these �elds�

This module organization simpli�es extension to higher dimensional problems� or

mixed
dimensional codes� since additional derived types can be included preserving

the original context� as seen in �gure ��� on page 	��� where vfield�d de�nes a

two
dimensional vector �eld�

Fortran 
� statements allow routines to be de�ned together with any number of

related objects� yet these objects remain independent� This is because objects in

Fortran 
� are arguments to routines made available by use
association� This repre


sents physical and computational abstractions well since separate objects� cdensity

and efield� can be modi�ed individually �as in fields fftrx� or collectively �as in

fields pois� by encapsulated module routines� The module routines are not bound



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

Sketch of Fortran 	
 Scalar Field Module

MODULE fields�module

IMPLICIT NONE

TYPE sfields�d � field definition			

INTEGER 

 nx � field dimension

REAL 

 wp � field energy

REAL� DIMENSION �
�� POINTER 

 p � field elements

END TYPE sfields�d

CONTAINS

SUBROUTINE fields�pois�cdensity� efield�

TYPE �sfields�d�� INTENT �in� 

 cdensity

TYPE �sfields�d�� INTENT �out� 

 efield

� poisson solver routine

END SUBROUTINE fields�pois

SUBROUTINE fields�fftrx�fields�

TYPE �sfields�d�� INTENT �inout� 

 fields

� fft solver routine

END SUBROUTINE fields�fftrx

END MODULE fields�module

Figure 	��� Fortran 
� design of a module for scalar �elds� Both the charge density
and electric �eld objects can be created� where the de�nition of the
object types are included with the numerical routines that manipulate
them�

to a single object and objects of di�erent types can be created and used from the

fields module�

In C��� however� if the �eld solver routines are de�ned with the scalar and vector

�eld objects� we might prefer to encapsulate this into a single class�

class Field �

private


float cdensity
 DIM�X �
 DIM�Y �� �� scalar field

Vector�D� float � efield
 DIM�X �
 DIM�Y �� �� vector field

public


void FFT�D��� �� Routines have direct access

void Poisson�D��� �� to all field components			

��

where Vector�D�T� de�nes the components of a two
dimensional vector �eld point�



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

Fortran 	
 Module Extended for Vector Fields

MODULE fields�module

IMPLICIT NONE

� sfields�d derived type definition			

TYPE point�d

REAL 

 x� y

END TYPE point�d

TYPE vfields�d � �d�vector field derived type			

INTEGER 

 nx� ny

REAL 

 wp

TYPE �point�d�� DIMENSION �
�
�� POINTER 

 p

END TYPE vfields�d

CONTAINS

SUBROUTINE fields�pois�cdensity� efield�

TYPE �sfields�d�� INTENT �in� 

 cdensity

TYPE �vfields�d�� INTENT �out� 

 efield

� poisson solver routine

END SUBROUTINE fields�pois

END MODULE fields�module

Figure 	��� Fortran 
� design of a module for two
dimensional scalar and vector
�elds extended from the one
dimensional version� New �eld derived
types and related functions can be added� preserving the structure of
the original one
dimensional de�nition�

Then� all operations are bound to one object� This approach restricts the accessibility

and hides the visibility of the �elds since they are deeply encapsulated into the �eld

class� The implications of this organization are that all operations on the charge

density and electric �elds must be performed on behalf of the single �eld class object�

While this design has one of the bene�ts of the Fortran 
� version� the �elds are imme


diately accessible to the appropriate numerical routines� they cannot be manipulated

as independent objects�

Since it is preferable to manipulate the �elds individually� while supporting �eld

solver operations collectively� inversion causes a reorganization of the C�� design�

A new class has been added �Fields�D� supporting �eld interactions� as seen in

�gure ���� where many supporting details have been omitted� �The dynamically al




CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

C�� Structural Design for Separate Fields

template �class T� class ScalarField�D 
 public GeneralField�D �

private


DynamicMatrix�D� T � �p� �� scalar field

public


float wp� �� field energy

��

template �class T� class VectorField�D 
 public GeneralField�D �

private


DynamicMatrix�D� point�D� T � � �p� �� vector field

public


float wp� �� field energy

��

class Fields�D �

public


void Poisson�D� const ScalarField�D� complex �� cdensity�

VectorField�D� complex �� efield ��

void FFT�D� GeneralField�D� complex �� fields ��

��

Figure 	��� C�� design of classes supporting the de�nition and usage of individual
scalar and vector �elds in numerical �eld operations� C�� templates
allow �elds to be resized dynamically while supporting Fortran 
�
style
array operations�

located �elds support Fortran 
�
style array operations�� Now� charge density and

electric �elds can be manipulated individually� and made available to numerical rou


tines� at the high level of the main program rather than the low level of the �eld class

de�nition�

If a mixed
dimensional code was of interest we might try to create a single module�

which simply �collects de�nitions from previously de�ned modules� where routine

argument types distinguish which function will be called� An example is illustrated

in �gure ���� While this kind of member function overloading is very natural in C���

Fortran 
� requires a di�erent organization� The routine names must be distinct in

the implementation� but a Fortran 
� module procedure can be introduced to perform

the overloading� as seen in �gure ��� on page 	�
�



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

Fortran 	
 Incorrect Design for Multiple Field Solvers

MODULE wrong�fields�module

IMPLICIT NONE

� sfields�d derived type definitions			

� sfields�d derived type definitions			

� vfields�d derived type definitions			

CONTAINS

SUBROUTINE fields�pois�cdensity� efield�

TYPE �sfields�d�� INTENT �in� 

 cdensity

TYPE �sfields�d�� INTENT �out� 

 efield

� �d poisson solver routine

END SUBROUTINE fields�pois

SUBROUTINE fields�pois�cdensity� efield� � Error� incorrect

TYPE �sfields�d�� INTENT �in� 

 cdensity � overloading			

TYPE �vfields�d�� INTENT �out� 

 efield

� �d poisson solver routine

END SUBROUTINE fields�pois

END MODULE wrong�fields�module

Figure 	��� Incorrect Fortran 
� attempt to unify multiple �eld solvers and de�ni

tions into a single abstraction� Function overloading requires Fortran 
�
module procedures with user
speci�ed resolution of routine name con

�icts�

This allows multiple �eld solvers with multiple �eld objects to be de�ned� col


lectively� in a module� In this case� creating the �eld module abstraction requires

resolution of operation names by the programmer by use of a Fortran 
� interface

block� Resolution of overloaded names is handled automatically in C���

Particle and Collective Abstractions Field modeling is just one example� par


ticle abstractions can also be a�ected by language features� We have seen that de


scribing particles as vectors had advantages in preserving mathematical operations

across simulation dimensions� Position and velocity components were represented

individually� however� since they must be modi�ed independently when vectors are

used� Since there was no mechanism to operate on only a single component �position

or velocity� of the vector representation using vector operations� a reorganization was



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	�


Fortran 	
 Correct Design for Multiple Field Solvers

MODULE fields�module

IMPLICIT NONE

PRIVATE 

 sfields�pois� vfields�pois

INTERFACE fields�pois

MODULE PROCEDURE sfields�pois

MODULE PROCEDURE vfields�pois

END INTEFACE

CONTAINS

SUBROUTINE sfields�pois�cdensity� efield� � details

SUBROUTINE vfields�pois�cdensity� efield� � omitted			

END MODULE fields�module

Figure 	�	� Correct Fortran 
� design unifying multiple �eld solvers and de�nitions
into a single abstraction� Scalar and vector �elds can be solved by
calling the fields pois routine� where the correct function is called
based on the �eld type�

induced leading to the species classes already described�

Additionally� Fortran 
� modules and the use statement encourage uni�cation

of concepts� Building a plasma module with mixed species and �eld operations is

straightforward�

MODULE plasma�module

USE species�module

USE fields�module

CONTAINS

SUBROUTINE plasma�dpost �species�sfields�

			

SUBROUTINE plasma�push �species�fields�dt�

			

END MODULE plasma�module

where the use statement makes the features of the species and �elds modules available

to routines in the plasma module� Multiple inheritance might be applied to form a

similar model in C��� where the features of existing classes are combined into a new

class� Unfortunately� this would not be an accurate representation of the abstraction



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

since the plasma class should not be viewed as a species and a �eld by an IS
A

relationship� only as the uni�cation �collection� of these abstractions� In this case�

the reorganization introduces a plasma class which only contains functions and no

data�

class Plasma �

public


void ChargeDeposition� const Species� Particle�D �� spec�

ScalarField�D� float �� cdensity ��

void Advance� Species� Particle�D �� spec�

const VectorField�D� float �� efield�

const float DT ��

��

These organizational abstractions can be very useful in scienti�c programming� De


signers should not feel that every class must contain data�

Performance Implications of Abstraction The design of abstractions a�ects

performance� in particular� objects need to be designed so that the abstractions do not

adversely a�ect e�ciency� While it is not possible to generalize how speci�c abstrac


tions a�ect performance� we can illustrate when this has occured from our experience�

This represents an additional instance where program modeling was a�ected by lan


guage features� �Formal performance measurements are covered in Chapter �� which

include measurements for various Fortran 
� constructs used in an object
oriented

manner��

Our original Fortran 
� programs used allocatable arrays� which allows abstrac


tions� like the �elds� to be created based on simulation parameters at run
time� To

build better �eld abstractions we wanted to use dynamic arrays within derived types�

Since allocatable arrays are not permitted as components of derived types� pointers

to arrays were introduced instead� Pointers can be e�cient in Fortran 
� when the

target attribute speci�es variables pointers can reference� Additionally� the use of

Fortran 
� pointers includes restrictions to improve e�ciency �
�� Unfortunately� pro




CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	�	

grams containing pointers to arrays apparently execute more slowly than those using

allocatable arrays� The compilers are very new however� so this could be a temporary

problem� Nevertheless� de�ning �eld and species elements within derived types pre


serves important abstractions� currently the performance di�erence is tolerable given

these advantages�

Fortran 
� supports multidimensional dynamic data structures� which use array

syntax operations� Compilers can remove some performance problems through opti


mization of array loops after the initial intermediate code is generated ����� Sometimes

the optimizations are very bene�cial and other times they can still induce performance

degradation� Array operations are very useful� but they are not part of the C�� lan


guage� Various e�orts are in progress to include array libraries� such as in the HPC��

project ����� Usually most programmers develop their own multidimensional dynamic

array libraries which are complex to design and make e�cient� Our multidimensional

array libraries use dynamic one
dimensional arrays with index sets for addressing�

Still� we must take care in their usage and implementation� For instance� updating a

vector �eld element often involves propagation of overloaded array operators through

the template �eld components de�nition classes� down to the template dynamic ar


ray de�nition and back again� While the �eld abstraction is bene�cial� many of these

operations could be removed if the compiler generated the array operation code with

known optimizations �such as temporary elimination ��	��� Some compilers allow the

in
lining depth� the number of levels to which in
lining will be applied� to be speci�ed�

Unfortunately� only one level of in
lining was usually allowed�


�� Comparing Fortran ��� Fortran 	
� and C��

Paradigms

Our experience allows for the comparison of applications developed across a variety

of languages and programming paradigms� There has always been some interest



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

in how traditional object
oriented languages compare to each other ����� but this

has not been based on comparisons for a single complex scienti�c application� Now

that we have seen examples of these languages used in a variety of ways� we can

compare them against each other to assess their impact on the future directions of

scienti�c programming� Some of this commentary will be supported by performance

comparisons in Chapter ��

Implications for Parallel Programming Conceptual abstractions introduced by

object
oriented methods can be extended into bene�ts toward the programming of

parallel distributed
memory machines� Maintaining distributed data requires mecha


nisms for preserving consistency across processor boundaries� Using object
oriented

paradigms� the de�nition of classes that represent distributed data� such as the �eld

and particle classes� can provide features to maintain consistency� Abstractions� such

as the C�� VirtualParallelMachine class� support parallel programming with ob


ject methods that transport data using its full object type� The Fortran 
� MPI

Module provides access to message passing routines by use
association� Fortran ��

or C implementation paradigms with message passing calls di�er from the object

paradigm due to abstraction modeling� Implementation of the abstractions at the

lowest level must be created to work within the class hierarchy and features of the

architecture� but once created� we observed that many parallel programming details

can be information hidden within C�� classes and Fortran 
� modules� As HPF

becomes more widely available� data parallel programming through distribution di


rectives combined with the object methodology could be an important programming

paradigm for this language�

Compiler Stability Issues The e�ciency of Fortran programs is commonly cited

as the major bene�t over C��� yet this may not be as important an issue as com


piler stability across machines� As we will see in Chapter �� this was a major problem

in C�� across various architectures� The modi�cations for abstractions necessarily



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

caused our Fortran 
� and C�� source programs to be longer �about � and ��� times

respectively� on average� than the equivalent Fortran �� versions in the plasma simu


lations� To design e�cient C�� programs� the programmer must be aware of many

�behind the scenes operations that take place during execution� The learning curve

for C�� is probably much longer than for Fortran 
� since many details must be

considered when writing large C�� programs� C�� programs often are slower than

Fortran �� and Fortran 
� programs since optimization across pointer structures is of


ten limited compared to static arrays� This issue must be weighed against the costs of

program maintenance� which is a growing concern of many application programmers�

Bene�ts of Fortran 	
 over C�� Fortran 
� has a number of strengths over

C�� for scienti�c computing� These include the built
in array operations� multidi


mensional dynamic memory management and backward compatibility to Fortran ��

for incremental development� Fortran 
� is also a straightforward extension of For


tran ��� although Fortran 
� is a very di�erent language when the modern features are

used� The protection mechanisms� intrinsics� e�ciency� object
oriented features� and

relation to High Performance Fortran also make Fortran 
� attractive for advanced

parallel computations� The Fortran 
� pointer system and usage is very cleverly de


signed� Many of the standard features in Fortran 
�� such as array operations� are

being developed as library extensions in C���

Many other features including intent attributes� optional arguments �which are

more general than simple default values�� and stronger type checking are additional

bene�ts that Fortran 
� has over C��� The type checking issue can be both a bene�t

and a weakness since certain features� such as inheritance� had to be constructed

explicitly� Nevertheless� strict typing in Fortran 
� leads to a safer program as source

code is shared and modi�ed by multiple developers� and it allows the compiler to �nd

even more programming errors�

The most signi�cant bene�t of Fortran 
� over C�� is that experienced program




CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

mers can apply abstraction modeling to their software development without changing

to an entirely di�erent language� Many major scienti�c software projects are based on

Fortran ��� While C�� o�ers the highly publicized bene�ts of object
oriented model


ing� it is unlikely that most Fortran programmers will adopt a new programming style

and language simultaneously�particularly if this means rewriting extensive programs

from scratch�

Advantages of C�� over Fortran 	
 C�� is very popular�it is much more

well
known than Fortran 
� since the language has been available longer� The tem


plate mechanism and typing system are bene�cial in abstraction modeling� Addi


tionally� the language can be integrated with modern tools� such as visualization

systems� The foreign language interface supports multi
paradigm programming and

new additions� such as meta
types and the Standard Template Library� introduce

new modeling options that will in�uence the design of advanced software systems�

C�� is a rich language with many features� but it is also very complex and it can

be di�cult to determine the implications of using advanced techniques� Unfortu


nately� many C�� compilers have faults� particularly in the template instantiation

mechanisms and in data structure memory alignment� The performance is less e�


cient compared to equivalent Fortran 
� programs and there is a smaller user base in

scienti�c computing compared to Fortran ���

While templates were used in the advanced C�� programs� this feature currently

is not supported in Fortran 
�� The particle species� for instance� could be parame


terized using C�� templates which is bene�cial in adding new species types quickly�

In Fortran 
�� new species can also be added to the simulation by including a new

derived type in the species module� Modeling abstractions without templates did not

adversely a�ect the Fortran 
� design� but usage of this feature was convenient in

C�� programming�

Our experience indicates that the e�ciency of Fortran �� and abstraction modeling



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

capabilities of C�� are desirable features for scienti�c programming� Converting

Fortran �� programs to Fortran 
� was always faster than converting to C��� A

similar experience may occur if C programs were converted to Fortran 
� and C���

but such an experiment was never performed�

Emulation of certain C�� features in Fortran 
�� such as sub
typing inheritance�

may be too complicated to �nd general usage� One of the major bene�ts of C�� over

Fortran 
� is the wealth of educational materials and experienced users� Addition


ally� advanced features including namespaces� expression
templates� and exception

handling may �nd extensive usage in scienti�c programming as compilers are devel


oped to support these features�


�� Commentary

When considering the implications of abstraction an important issue is how well

abstractions support program modi�cations and extensions� Furthermore� how well

does a program designed for extension compare to an equivalent version that is not

so designed and what implications does this have on abstraction modeling!

When extending the C�� program from the instability experiment to the free


expansion problem moving ions were introduced� In �gure A�	� on page �		� the code

shows how the species class was used to create the collective ion species where pa


rameters specify the attributes of the objects created� A number of important events

occur when this object is created� including storage allocation and species partition


ing across processors� Since the C�� species constructor already accounts for these

issues� introducing ions into the system only requires adding the ion collection�

Species� Particle�D � ions� ICHARGE� ICHGMASS�

�backidf	npxyz�� � beamidf	npxyz����

SYSLENX� SYSLENY� SYSLENZ� vpm ��

Including the ion species implies that some routines need to be called multiple

times� once for the electrons and again for the ions� such as Advance and Deposit�



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

Additionally� more costly routines must also be called on the individual species in


cluding UpdateDistribution�

plasma	UpdateDistribution� electrons� vpm ��

plasma	UpdateDistribution� ions� vpm ��

which requires message passing communication� The electron and ion abstractions

only di�er in parameterized constants� so they could be organized into a single ab


straction� perhaps as charged particles� This reorganization would reduce the number

of function calls on objects� Nevertheless� the simplicity of adding the new species�

while preserving existing routines� outweighs any possible bene�t to designing a new

code that may be less �exible� A less noticeable bene�t of this approach is that rever


sion to existing codes simply consists of removing existing statements� The gravitation

code was designed by removing the ions from the load balancing free
expansion code�

with additional small modi�cations� This is the greatest bene�t and implication of

abstraction in scienti�c programming�

Abstraction modeling can introduce dependencies in object
oriented programming

that may or may not be bene�cial� In particular� the construction of some objects

may depend on the state of other objects in the system based on the simulation

performed� In fact� in scienti�c programming� this may be prevalent�

For example� in the C�� free
expansion experiment the scalar and vector �eld

object partitioning depends on the initial particle distribution� This distribution is

based on the species distribution function objects� When the scalar and vector �elds

are created the distribution objects �backdf� beamdf� must be included since they

have access to the particle distribution�

ScalarField�D� float � cdensity� SYSLENX� SYSLENY�

SYSLENZ� vpm� backdf ��

VectorField�D� float � efield� SYSLENX� SYSLENY�

SYSLENZ� vpm� backdf ��

The distribution objects are passed to the GeneralField�D base class constructor

which computes the partitioning information for every processor� This information



CHAPTER �� THE IMPLICATIONS OF ABSTRACTION 	��

is passed to the scalar and vector �eld derived class constructors which dynamically

allocate the �elds based on the distribution information� This scheme encapsulates

�eld border computations in the �eld base class constructors with memory allocation

delegated to the derived class constructors based on the properties of the distribution

objects�

The bene�t is that many detailed features can be handled automatically� but codes

must be fully documented to make such dependencies clear� Dependencies that are

not essential should never be introduced� nor should dependencies that cannot be

applied consistently�



Chapter �

Machine 
 Compiler Performance

Comparisons

This chapter evaluates the performance of the programs developed when compared across

various machines� languages� and compilers� The plasma PIC algorithm has been bench�

marked thoroughly and is known to be scalable� therefore we address basic performance

comparison issues rather than scalability issues�

��� Development Experiences Across Compilers �

Machines

Our development environment consists of the Intel Paragon XP�S� IBM SP	�SP�

and Cray T�D distributed memory MIMD parallel machines� Each Paragon node

contains two or more i��� computational processors and a message
passing processor�

Interprocessor communication over the rectangular mesh uses the NXmessage
passing

library� The SP series uses RS���� processors interconnected via a high performance

switch �as well as Ethernet� with the MPL communication library� The T�D supports

shared and distributed memory paradigms using DEC Alpha processors over a three


dimensional toroidal
wrap topology� Communication on the T�D uses a modi�ed

	��



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	�


version of PVM� The Paragon� SP series and T�D also support the Message Passing

Interface �MPI� standard� We used GNU g�� and Intel C�� on the Paragon� IBM

xlC on the SP	�SP� and Cray C�� on the T�D�

The Fortran �� versions of the plasma simulations compiled without di�culty

across these machines due to the extensive support provided for this language in

scienti�c computing� A major goal of our C�� development e�ort was to maintain

machine and compiler independent versions of the programs� Modi�cations to system

�les were introduced to support g�� on the Paragon� also� template usage required

special attention in code generation across compilers�

The non
template based one
dimensional PIC program performed properly under

v����� of the GNU g�� compiler on the Paragon� but when recompiled using v������

incorrect energy diagnostics were reported� Although porting the two
dimensional

template
based program from the SP	 to the Paragon was straightforward� numerical

errors arose in the template references on the Paragon� which disappeared in v����	 of

g��� These compiler inconsistencies resulted in �ve months of lost development time�

The Intel C�� compiler performed well in our two
dimensional and three
dimensional

template
based programs�

The IBM SP	�SP� and xlC C�� compiler performed extremely well� however� the

SP	 would hang inde�nitely� failing to release the processors� after large simulations

executed to completion� Although this issue could not be experimentally character


ized� IBM representatives stated that recent system software releases have resolved

this problem� In fact� this issue did not occur on the SP�� Template instantiation

and usage were never a problem with the xlC compiler�

The Cray T�D C�� 	�� compiler could not instantiate template classes used

across multiple �les� Interestingly enough� the identical program did compile correctly

on the Cray Y
MP� Cray responded to our di�culty and installed Cray C�� 	�����	 in

December 	

�� The template class instantiation problem was corrected� yet problems

with the creation of template functions still persisted� We removed the template



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

functions from the source program to force compilation� but the executable would

not run on the T�D� The identical program works correctly on the Paragon and the

SP series� Our di�culties with the C�� compiler on the T�D remain unresolved as

of July 	

�� Software problem reports have been �led and are under investigation�

Experiences in Portability The C�� VirtualParallelMachine class provides

a standard interface to the machine
speci�c message
passing environment and system

calls� Utility routines� such as timing and processor communication routing opera


tions� are also provided with facilities to allow for object
based interprocessor commu


nication� Thus� rather than performing a send�receive on an array of �oating point

numbers representing particle positions� we actually transmit full Particle objects�

This preserves the object
oriented nature of the simulation environment� As MPI

becomes more widespread� we expect that machine
speci�c classes should decrease

in importance� yet the ability to perform message
passing on objects should remain

valuable� There are e�orts underway to create object
oriented versions of MPI� Some

of the work focuses on introducing C�� style language bindings ���� with other ef


forts consider the transmission of objects ���� corresponding to user de�ned classes�

We maintain MPI versions of our programs� as well as an MPI virtual machine class�

Program design and testing evolved simultaneously across multiple compilers and

machines using the VirtualParallelMachine class� hence� our codes were easily

ported among machines� This was particularly useful in �nding and reporting bugs

in the GNU and Cray compilers� Without this capability� a C�� code developed on

one machine with a single compiler would have required organizational changes for

portability�

Experiences with E�ciency Fortran is well known for its e�ciency while C��

currently has the reputation of being less e�cient� Designing e�cient and portable

C�� codes is di�cult due to di�erences in compiler implementations� In
lining is

touted as �the solution to the overhead associated with calling methods on objects�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	�	

however programmers must note that compilers are free to ignore the inline directive�

One major source of ine�ciency results from the casual use of the mathematical

operations� Our initial sequential C�� plasma simulations executed �ve times slower

than the sequential Fortran �� versions due to ine�ciencies in the standard C�� pow

routine� We realized that Fortran could optimize this routine based on the arguments

to the function� so we overloaded the pow routine in C�� to include this distinction�

This change reduced the total time used for exponentiation from ��$ of the total

computation time to less than 	$ for the sequential C�� programs�

The overhead associated with accessing memory also contributes to ine�ciency�

Our particle representations use object arrays� which require special algorithms to

maintain data structure consistency when particles cross processor partitions� This

approach allows for larger simulations since arrays use memory more productively

than lists for example� Static class variables also optimize memory since data such

as the electron charge is not replicated over millions of electron objects� only a single

copy is stored�

When writing numerical routines in an object
oriented framework� mathematical

functions should be designed to work within an object class structure� they do not

need to be object
oriented themselves� The FFTs and Poisson solver do not belong

to mathematical classes� however� they do operate on simulation class objects� The

Fortran programs have been tuned for e�ciency in ways that can be awkward for C��

programs� For example� in Fortran arrays can be used directly in message passing

routine parameters� eliminating the need for temporary bu�ers and data copying

involved in user send�receive calls� The C�� versions do not make data directly

accessible to communication routines� often due to template related issues� hence

bu�ers are required� These bu�ers collect the transmitted data which is then assigned

to the associated object using its interface� to preserve encapsulation and protect non


public data� Although direct access to protected data by the message passing routines

would violate encapsulation this may be appropriate for e�ciency reasons� similar to



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

usage of the C�� friend statement for e�ciency� Our original �eld model used

template grid points that maintained both the charge and multidimensional force

data� The interprocessor data
�ow requirements in the GCPIC algorithm require

transmission of charge data and force data as separate operations� Transmission of

charge �force� data directly to the template �eld will overwrite the force �charge� data�

since the memory for each grid template point is allocated contiguously� The derived

datatype feature of MPI� which allows for transmission of non
contiguous data� can

address this issue� Nevertheless� this illustrates how the abstraction modeling features

can in�uence the e�ciency of accessing data and code design since the new �eld

models store charge and force data separately�

Reliability Issues Many useful features for programming abstraction are provided

by C�� and Fortran 
�� nevertheless� the reliability of existing compilers must be

considered� Reliability issues are noticed most clearly during the compilation process�

Valid C�� programs which compiled correctly under one compiler could not be moved

verbatim to other compilers� Di�culties with memory alignment and problems with

linkers not resolving every external constant reference also arose� These issues cannot

be detected at compile
time� requiring extensive run
time analysis followed by minor

alternative implementation techniques� On the other hand� our Fortran 
� scalar

programs were ported without change between the IBM and HP Fortran 
� compilers�

The parallel Fortran 
� program on the SP� using the IBM xlf
� compiler was totally

reliable� Unfortunately� the Cray Fortran 
� compiler on the T�D currently does not

�as of August 	

�� support modules which are used extensively in our programs�

The basic features of the C�� compilers we used were generally stable but� as

more sophisticated programming techniques were introduced� compiler bugs severely

restricted development� Often program development on the parallel machines was de


layed while compiler issues were being resolved� In such circumstances� the ability to

continue development using simulators or sequential machines is of great importance�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

Execution Time �seconds�

Unoptimized Optimized ��O�

Fortran �� C�� Fortran �� C��

Total Time ����� ����� ���� ������ �	�
 pow���

Operations � total time in function and seconds in function alone

Advance �����$ ���� 	
�	�$ 
��	 �����$ ���� �	���$ ����

Deposit 	����$ ���	 	����$ ��	� �����$ ���� 	����$ ����

FFT 	�	�$ ���� ��
�$ ���� ����$ ���� ����$ ���	

Poisson ����$ ���� ��	�$ ���� ����$ ���� ���	$ ����

mcount ���
�$ ���� ����$ ����

Exponent ����
� ����
 ����
� ���	�

����
� Particles and ���	�
 Grid Points

Table 
��� Sequential one
dimensional Sparcstation 	� Performance Comparison
of Fortran �� �SPARCompiler Fortran from SunPro� and C�� �g��
v������� using the gprof pro�ling tool� The C�� optimized performance
improves dramatically using an optimized pow routine�

��� Analysis of Scalar Performance

A number of sequential programs were designed which are easy to analyze with per


formance monitoring tools such as gprof� For a one
dimensional code on the Sun

Sparcstation 	� for a small experiment� table ��	 shows some interesting character


istics for the major routines in the plasma PIC codes� All other operations pro�led

represent timings less than the smallest time indicated in the table�

Sequential one�dimensional Fortran �� � C�� Comparison The C�� pro


gram is based on the model of �gure ��� on page �� while the original Fortran ��

program was described in Chapter �� The total execution time of the unoptimized

versions indicates that Fortran �� is 		 seconds faster than C��� ���$ faster than



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

the total running time of the C�� program�� This is true even though the percentage

time spent in Advance� the most computationally expensive routine which updates

particle positions and velocities� is smaller in C�� and the time for a single call is

roughly equivalent� This is explained from the overwhelming time used by the C��

exponentiation routine pow� even when integer arguments are present� The optimized

times show that the pow routine prevents much improvement in the C�� program�

it �nishes in �� seconds while the Fortran version only requires ��� seconds� The

Fortran �� and C�� compilers optimize the loop and array references in Advance

and Deposit� but this is lost in C�� due to exponentiation� When an integer pow

function is overloaded� the C�� performance improves to 
 seconds�

The C�� FFT and Poisson�s Equation solver times compete well with the For


tran �� version� Since Advance and Deposit access array elements frequently within

loops� the ine�ciency of the C�� program compared to Fortran �� may be due to

inadequate loop optimizations�

Sequential two�dimensional Fortran ��� Fortran 	
� C � C�� Comparison

Table ��� on page 	�� shows performance comparisons for a small two
dimensional

simulation in Fortran ��� Fortran 
�� C� and C��� The C program models the

same abstractions as the C�� program� except C structures are used to represent

objects and object collections� Additionally all data structures are statically allocated�

whereas in C�� dynamic data structures are used� For example� a collection of

particles is de�ned in C as follows�

typedef struct particle �

float pos�x� pos�y� vel�x� vel�y�

� PARTICLE� �PARTICLE�PTR�

PARTICLE elec
 NP �� �� Array of Particles ��

where the function prototype for routines� such as Advance� appear as follows�

void Advance� PARTICLE elec
 NP �� EFIELD efield
 X�DIM �
 Y�DIM ��

float �� int ��



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

OPTIMIZED ��O� Execution Time �seconds�

Fortran �� Fortran 	
 C C��

total time without �with� pro�ling instrumentation

����� ����
�� �	�

 ��
���� �
�

 ������� ���

 ��
��	�

Operations � total time in function and seconds in function alone

Advance �	���$ ����� �����$ ���
� 	����$ ���

 �
���$ ����


Deposit �����$ ���� �����$ ���� 
���$ ���� �	�	�$ 	����

FFT ��
�$ 	��� ����$ 	��� ����$ ��
� 	
���$ 
��


Poisson ����$ ��	� ����$ ���	 ����$ ��	� ����$ ����

itrunc �����$ ���� �	��
$ ���� ��
�$ ���� 	��
�$ ����

mcount �	��
� ����� 
�	
� ����

Exponent ���

� ���
	

����
� Particles and ����
 Grid Points

Table 
��� Sequential two
dimensional IBM RS���� Performance Comparison of
Fortran �� �IBM xlf�� Fortran 
� �IBM xlf
��� C �IBM xlc� and C��
�IBM xlC� using the gprof pro�ling tool�

The C�� program is based on the model in �gure ��� on page �
 while the Fortran 
�

program is from the model in �gure ��	� on page 
��

To learn more about the e�ects of the integer optimized pow�� routine� we com


puted integer exponentials explicitly in the Advance and Deposit functions� The

execution time per call of pow�� is too small to measure accurately� The cumulative

e�ect is noticeable since ���������
 is the invocation count� The e�ects of this modi


�cation are shown in table ��� on page 	��� The amount of time per call in Advance

and Deposit has decreased slightly due to this modi�cation �compare to table ��� on

page 	��� since the pow�� routine is not called�

Comparatively� the C�� versions are very competitive to the Fortran versions�

but this e�ciency is not seen in the overall execution times� Although there was a

signi�cant collection of small class member functions within the C�� programs �not



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

Execution Time �seconds�

C�� Unoptimized C�� Opt ��O� C Opt ��O�

Total time without �with� pro�ling instrumentation

�
�

 �		����� �
�

 �����	� ���

 ��
����

Operations � total time in function and seconds in function alone

Advance �	���$ ����� �����$ ����� �����$ �����

Deposit 	����$ 	���� ���	�$ ���� 	����$ ����

FFT ����$ ���� �	���$ 
��� 	����$ ����

Poisson ����$ ���� ����$ ��	� ����$ ��	�

itrunc ����$ ���� 	����$ ���� 	��	�$ ����

mcount ����� ����� �
��
� ���� ����
� ����

Exponent 
��
� 
���

complex fcns �
��
� 
�		

����
� Particles and ����
 Grid Points

Table 
��� Sequential two
dimensional IBM RS���� Performance Comparison of
C�� �IBM xlC� and C �IBM xlc� without optimized exponentiation
calls in major loops� using the gprof pro�ling tool�

shown�� when in
lined by the C�� optimizer they only represented about �$ of the

total execution time� As a result� in
lining did not contribute very much to perfor


mance improvement when the optimizer was applied� Additionally� the time spent in

the FFT routine is signi�cant compared to the Fortran �� and Fortran 
� programs�

The one
dimensional FFT routine used a static array allocated at compile
time� The

two
dimensional implementation used indirect
addressing�� Storage was dynamically

allocated as a one
dimensional pointer array where each element pointed to a dynam


ically allocated one
dimensional array� This approach allows the standard C�� index

operator to be used in addressing dynamically allocated two
dimensional arrays� The

�All of the other programs with dynamic �elds used a linear�addressing scheme where a pointer
to a dynamically allocated one�dimensional array with linear index functions was applied�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

FFT performance worsened when the optimizer was applied� so we replaced the dy


namic allocation scheme with a static allocation scheme for both the FFT and the

Poisson�s Equation solver� The performance of the FFT and the other portions of

the code remained essentially the same� Apparently the dynamic allocation scheme

did not contribute to the performance problems in the FFT�

There was an overhead associated with calling complex multiplications from the

C�� complex library� yet only 	��� seconds of the 
��� seconds spent in the FFT rep


resented the time used within this function� The routine was called ��������� times�

however� within the FFT� Since the pro�ler provided no other signi�cant information

on the FFT� the overhead in calling the complex multiplication could account for

much of the overall performance problem�

Table ���� and table ��� on page 	��� indicate that the object
oriented Fortran 
�

performance is competitive with the Fortran �� programs� however� this may not al


ways be the case�� Finally� the C�� optimized program outperformed the optimized

C version even though an integer C exponentiation function was used� Table ���

on page 	�� shows performance results where exponentiation was removed from the

Advance and Deposit routines� however� the C�� program still had a slight advan


tage over the C program� The overhead within the C program came from calling

routines written to perform complex arithmetic� Cumulatively� the time spent in cre


ation of complex numbers with addition� multiplication� subtraction� and conjugate

operations are listed in table ��� under the complex fcns heading�

This issue of the pow�� routine and complex library functions might seem be


labored� but this brings attention to how library routines may a�ect performance�

When these routines are not implemented with care� the e�ects can be dramatic� and

unknown� unless programs are pro�led� It is impossible to guess at causes for poor

performance� this issue illustrates the importance of measurements�

�Viktor Decyk has performed experiments with Fortran 
� compilers on the RS����� �
H� Sun
Sparcstation��� Silicon Graphics Indy� and Cray C
� where performance has varied widely when the
Fortran 
� programs were compared to Fortran ���



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

Machine Language Compiler Number of Time
Particles �seconds�

One�Dimensional Program

IBM RS���� Fortran �� IBM xlf ������� �����


IBM RS���� Fortran 
� IBM xlf
� ������� ������

IBM RS���� C�� IBM xlC ������� ������

Two�Dimensional Program

IBM RS���� Fortran 
� IBM xlf
� ������� �����	

IBM RS���� Fortran �� IBM xlf ������� ��
���

IBM RS���� C�� IBM xlC ������� ������

Three�Dimensional Program

IBM RS���� Fortran �� IBM xlf �
��
	� �������

IBM RS���� C�� IBM xlC �
��
	� ��	����

Table 
��� Sequential Performance Characteristics for various programs on the IBM
RS�����

Additional Sequential Performance Comparisons The performance of the

object
oriented one
dimensional and two
dimensional sequential Fortran 
� programs

are compared to Fortran �� and C�� versions in Table ��� for a larger problem� �The

original sequential C�� program executed correctly with GNU g�� v����� on the

Sun Sparcstations� When recompiled on the RS���� under g�� v����� and IBM xlC�

incorrect numerical results in complex arithmetic were detected� Reorganizing the

memory layout of the data structures corrected this problem�� Modeling the C��

technique of invoking a method to access private data contributed a performance

overhead to the one
dimensional Fortran 
� program�

The two
dimensional Fortran 
� program �c�f� table ��� � based on the model

of �gure ��	� on page 
� slightly outperformed the Fortran �� version in this larger

problem while the C�� version was very competitive� The C�� three
dimensional

program from the model of �gure ��� on page �� is also competitive with the For


tran �� version�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	�


Features Intel Paragon IBM SP� Cray T�D

Processor Power 	�� MFlops �single� ��� MFlops 	�� MFlops �peak�

�� MFlops �double�

Network Speed 	�� MB�sec ����� MB�sec �u�s�� ��� MB�sec

Table 
��� Paragon XP�S� SP� � T�D Basic System Characteristics �From Spec�
Reports��

��� Parallel Simulation Results and Performance

The instability experiment measured the �eld� kinetic� and total energies of the sys


tem at each simulated time step� Since the original Fortran �� codes have been well

benchmarked ���� we will continue to restrict our performance overview to arbitrarily

selected cases across the machines of interest�which are signi�cantly smaller than

production
oriented simulations� These results are only intended to illustrate how

this code performs in Fortran ��� Fortran 
�� and C�� with standard optimization

�&O� on various machines using the same number of processors� Although these archi


tectures di�er in technical speci�cations we show two basic parameters� the processor

power and interconnection speed� in table ���� For the purposes of pro�ling we will

continue to use small problem size examples�

In Table ��� we show processor simulation results for a few million particles across

various simulation dimension sizes� Additional simulation comparisons are shown in

Table ��� where these programs are based on the model in �gure ��� on page ��� Note

that the Paragon �D C�� �MPI� timings are much larger than the Fortran �� timings�

These runs were performed with the Intel C�� compiler which seemed to �ignore 

our more e�cient overloaded mathematical routines� The remaining Paragon runs

used GNU g�� v����	� Additionally� we did not make any attempts to manipulate

cache usage in the C�� programs� Work performed in this area for sequential PIC

codes have reported up to 
�$ of Fortran �� e�ciency �����

The C�� version appears more competitive as more processors are used since the



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

Machine PEs Language � Number of Time
MP Library Particles �sec�

Intel Paragon XP�S �� Fortran �� �NX� ��������� �	D� ��	���

Intel Paragon XP�S �� C�� �NX� ��������� �	D� ������

IBM SP� 	� Fortran �� �MPL� ����	��	� ��D� ������

IBM SP� 	� C�� �MPL� ����	��	� ��D� 	������

IBM SP� 	� Fortran �� �MPL� ����	��	� ��D� ������

IBM SP� 	� C�� �MPL� ����	��	� ��D� �	����

IBM SP� �� Fortran �� �MPL� ��
������ ��D� 	��
���

IBM SP� �� C�� �MPI� ��
������ ��D� ��
����

Cray T�D �� Fortran �� �PVM� ��
������ ��D� �������

Cray T�D ��� Fortran �� �PVM� 	�����	�
�� ��D� �����	�

Table 
�	� Paragon XP�S� SP	�SP� Multi
Million Particle Parallel Performance
Characteristics�

problem size remains �xed as illustrated in Figure ��	 on page 	��� This shows how

performance results can be misleading since the ratio of computation to communi


cation dropped with decreasing numbers of particles within critical loop iterations�

Outstanding C�� compiler problems prevented us from providing simulation results

for the Cray T�D�

An object
oriented parallel Fortran 
� program for the SP� �in two
dimensions�

based on the model in �gure ��	� on page 
� has been written� The performance

of this code� compared to the parallel Fortran �� and C�� versions� is illustrated

in table ��� on page 	�� where the three
dimensional C�� program of �gure ��� on

page �� is used�

Table ��
 on page 	�� compares the parallel performance of the two
dimensional

Fortran ��� Fortran 
� and C�� programs on the IBM SP� using � processors� The

Fortran �� and C�� programs use the IBM MPL message passing library� while the

Fortran 
� program uses MPI� The C�� program is based on the two
dimensional

particle vector model�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	�	

Execution Time 
seconds�

PEs Paragon �D Paragon �D Paragon �D

Fortran �� C�� Fortran �� C�� Fortran �� C�� �MPI�

� 		���� ��
��� �
��	� 

��	
 	������ ����	�
�


 ����� 	����� ��	��� �
���� ������ ��������

�� ����� ����� 		���� ��
��� �
���	 	�������

�� ���		 ���	� ����
 	�	�	� N�A N�A

��
��	
 Particles ��
�	�
 Particles ������� Particles

��
�� Grid Points ����� Grid Points ���
�� Grid Points

Execution Time 
seconds�

PEs SP� �D SP� �D SP� �D

Fortran �� C�� Fortran �� C�� Fortran �� C�� �MPI�

� 	���
� �	���� 		
��� ������ �
���� ������


 
���� ������ �	��
 	����� 	���		 ������

�� ����
 			��� ����� ����� ����� 	
����

��
�	�
 Particles ������� Particles

����� Grid Points ���
�� Grid Points

Table 
�
� Paragon XP�S and SP	�SP� Fixed Problem Size Parallel Performance
Characteristics�

The gprof pro�ling tool returns data from each processor� The variance on a

per processor basis was small� however� so table ��
 only provides information from

an arbitrarily selected processor� Additionally� while gprof can combine data from

multiple nodes into a single pro�le� this information is accumulated� making com


parison to the actual running time not very useful� The copy constructors for the

ChargedParticle and Vector�D objects were called �������
� and 	����
����� times

each for the ������ and ������� particle simulations respectively� We accumulated

the performance statistics for these calls and added them to table ��
 under Copy

Constructors�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

0

100

200

300

400

500

600

700

800

900

1000

4 8 12 16

T
im

e 
(s

ec
on

ds
)

Number of Processors

"Paragon w/C++"
"Paragon w/F77"

"SP2 w/C++"
"SP2 w/F77"

Figure 
��� Paragon � SP� Two
Dimensional Fortran �� and C�� Execution Pro

�le for a Fixed Problem Size�

Again� the Fortran 
� object
oriented program is very competitive with the For


tran �� version� while the C�� program falls behind by about a factor of two� The

major message passing routine �Update Positions� which moves particles across pro


cessors is fairly competitive among all the programs� However� the intensive Advance

and Deposit routines in C�� do not compete with the Fortran programs� Even the

FFT routine has fallen behind in C��� but this still represents a small portion of the

performance problem�

In table ��	� on page 	�� we show performance results for the three
dimensional

C�� program of �gure ��	� on page 	��� where load balancing is not applied� The

overhead of the mapping algorithm is fairly low when the performance is compared to

omitting the algorithm� The mapping algorithm will be applied every time step in the

worst possible manner since the static Fourier �eld partitions match the static electric

and charge density �eld partitions� This implies that there are no local communication

steps� since the mapping algorithm described in Chapter � will always communicate

�eld data� even to itself� While it is possible to examine the communication operations

allowing self
messages not to be transmitted� this introduces an inconsistency in the

algorithm and it only occurs in this special instance� Therefore� this check was not

introduced to preserve code clarity�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

Machine Language Compiler Number of Time
Particles �seconds�

Two�Dimensional Program

IBM SP� Fortran �� IBM xlf ����	��	� 	
����

IBM SP� Fortran 
� IBM xlf
� ����	��	� ������

IBM SP� C�� IBM xlC ����	��	� ��
���

Three�Dimensional Program

IBM SP� Fortran �� IBM xlf ��
������ 	������

IBM SP� C�� IBM xlC ��
������ ��
����

Table 
��� Performance characteristics for �D and �D two
stream beam
plasma in

stability experiment on IBM SP� �AIX ��	� with ��� million and � million
particles on �� processors�

The performance of the C�� programs is poor compared to the Fortran �� ver


sions� When comparing the performance of the code designed from �gure ��	� on

page 	��� much of the overhead is probably associated with the Fortran 
�
style dy


namic array operations introduced into the C�� programs� While the array classes

have been designed with e�ciency in mind� indexing overloaded multidimensional

array operations on template class arguments often involves resolving a sequence of

high
level overloaded operators to perform low
level operations�

For example� the following code segment �which uses message passing to move the

complex Fourier �eld into the real electric force �eld� contains a number of overloaded

statements� Each of these statements may cause a series of events to occur�

void Fields�D

DLBCmplxToElectricField� VectorField�D�float�� efield�

const VPMachine� vm �

�

TransportBuffer�D� Fpt�D�float� � rgbuf� GEOM�X� GEOM�Y� GEOM�Z ��

�� code omitted above and below			

efield� x� y� OFFSET � z � � rgbuf� x� y� z �� �� Innocent statement

�

The operation indicated moves three
dimensional �eld components from the receive



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

ALL OPTIMIZED ��O� Execution Time �seconds�

Fortran �� Fortran 	
 C��

total time without �with� pro�ling instrumentation

	��� �
���� 	�
� �	����� �
�

 ��
����

Operations � total time in function and seconds in function alone

Advance �����$ ���� �����$ ���� 	����$ ��
�

Deposit 	����$ 	��� 	����$ 	��� ����$ ����

Update Positions ����$ ���� ��	�$ ���� 	���$ ����

FFT ��	�$ ���
 ����$ ���� ����$ 	�
	

Poisson ��	�$ ���	 ����$ ���� ����$ ����

itrunc 	����$ 	��� 	����$ 	��� ����$ 	���

mcount 	���$ ��	� 	���$ ��	� ���	
� �����

Copy Constructors 
��
� ����

����
� Particles and � Processors

Fortran �� Fortran 	
 C��

total time without �with� pro�ling instrumentation

������ �		��	�� �����	 �	�	��	� ��	�

 ��	��

�

Operations � total time in function and seconds in function alone

Advance ���	�$ ����� �����$ ����� 	
���$ 		���

Deposit �����$ ����� �	���$ ���	� 	����$ �����

Update Positions ����$ 	���� ����$ 	���� ����$ 	���


FFT 	���$ 	�
� 	���$ ���� 	���$ ��	�

Poisson ��	�$ ��		 ��	�$ ��	� ��	�$ ����

itrunc �����$ ����� �����$ ����� ����$ �����

mcount 	���$ 	��� 	���$ 	�
� ����
� ��
���

Copy Constructors ����
� �
���

��	��
� Particles and � Processors

Table 
��� Parallel two
dimensional IBM SP� Performance Comparison of For

tran �� �IBM xlf�� Fortran 
� �IBM xlf
�� and C�� �IBM xlC��



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

PEs Language Compiler Number of Time
Particles �seconds�


 Fortran �� IBM xlf �
��
	� 	���		

�� Fortran �� IBM xlf �
��
	� �����

�� Fortran �� Paragon f�� �
��
	� �
����

Mapping Algorithm Applied���


 C�� IBM xlC �
��
	� ������

�� C�� IBM xlC �
��
	� �����


Mapping Algorithm Not Applied���


 C�� IBM xlC �
��
	� ��	���

�� C�� IBM xlC �
��
	� ������

�� C�� Paragon CC �
��
	� 	�

���

Vector Particle Program Model���


 C�� IBM xlC �
��
	� ��	���

�� C�� IBM xlC �
��
	� 	�����

�� C�� Paragon CC �
��
	� 	������

Table 
��
� Three
Dimensional parallel programs for IBM SP� and Intel Paragon
in the beam
plasma experiment� The modern class design� where the
scanning partition mapping algorithm is used without load balancing�
is compared to the same model without the mapping algorithm and the
vector program model�

bu�er into the electric �eld object within a loop� where each element has six words

of data� The operation must perform the following functions�

	� Access T� operator�� for the template object rgbuf which converts a three

component address into a linear storage address� The TransportBuffer�D�T�

template class handles the storage allocation and management�

�� Access T� operator�� for the template object efield performing a similar

conversion into dynamic storage used by the VectorField�D�T� template class�

�� The VectorField�D�T� template class dynamic storge is provided by a pointer

object from the DynamicMatrix�D�T� template class� Thus� the T� operator��



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

Problem PEs Compiler Number of Balancing Time
Particles Applied! �seconds�

Gravitation 	� IBM xlC �
��
	� No ����	�

Gravitation 	� IBM xlC �
��
	� Yes 	������

Table 
���� The e�ect of load balancing in the gravitational problem�

from the DynamicMatrix�D�T� class resolves the three
dimensional index ad


dress into its dynamic linear storage management system�

�� Since a �eld template object of type Fpt�D�float� is used as the lowest level

template argument� the assignment operator �Fpt�D�T�� operator�� is called

to perform memberwise assignment for the �eld components in rgbuf and

efield�

�� Memberwise assignment of �eld components occurs� completing the operation

above for a single iteration of the assignment loop�

While the dynamic storage features have obvious advantages� particularly when

�elds must be dynamically manipulated� the overhead associated with this simple

assignment statement is obviously apparent� The performance of the vector particle

program model based on the hierarchy of �gure ��� is much more e�cient because the

�eld modeling is less sophisticated� it�s static� and the details of the vector template

class implementation are elementary in comparison�

The Load Balancing Programs Since the load balancing programs were written

in C��� they can only be compared to themselves� The free expansion experiment

only requires balancing in a minor way� so examining this problem is not very infor


mative� The gravitational problem does contain regions of large density variations�

For our purposes� we can compare the e�ects of load balancing to the performance

with �xed partitions�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

Table ��		 shows the performance of the C�� load balancing code for a gravita


tional problem on the IBM SP�� Notice that the performance of the code which uses

static partitions is better than the code which load balances the partitions� Actually�

this is not all that surprising� Using 	� processors� the �elds are partitioned into 	�

components� In Chapter � we mentioned that our load balancing algorithm computes

the particle density function� used in repartitioning� by mapping every particle to a

global density distribution array� This is expensive� If we modi�ed the scheme to use

the existing charge distribution then examining every particle would not be necessary�

only the �eld would be inspected� improving the performance �	��� Additionally� we

decided to check if repartitioning is needed after the particle positions were updated

since the exact number of particles per processor is only known at this time� This

implies that when load balancing is required� particles must again be moved among

processors before the PIC loop can continue� This essentially doubles the amount of

communication required when load balancing is applied� adding to poor performance�

Nevertheless� the major contributor to poor performance is the dynamic resizing� cre


ation� and destruction of �elds that occurs since partitions are modi�ed frequently

as the particle distribution changes� The mapping algorithm between the static and

moving �elds is fast� but the quality of partitions is poor since simple partitioning

schemes were applied�

Similarly� many of the objects used including the particle species� various �elds�

and transport bu�ers for object based message passing� automatically resize them


selves when memory requirements cannot be satis�ed or when the geometry of the

object has changed� These operations are also implemented at the lowest level de�


nition for components of these complex objects where the calling sequences are com


parable to the object assignment example recently discussed� This also contributes

to the performance overhead�

Obviously� load balancing should be applied only when the overhead of manag


ing the run
time system does not outweigh using a static partitioning scheme� Most



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

charge
neutral plasma experiments tend to have self
balancing characteristics� so load

balancing may not always be necessary� In our examples� balancing was bene�cial

in maintaining nearly equal portions of work among processors� but the overhead

involved in �nding the density distribution exceeded the bene�t of repartitioning�

This is encapsulated into the �eld management code� so more e�cient schemes which

do not inspect particle positions explicitly can be introduced to help improve per


formance� Advanced memory management schemes to reuse allocated storage space

would also help� As mentioned in Chapter �� our interest involved exploring a context

for object based load balancing� not on improving existing balancing methods� so a

simple balancing scheme was introduced for this purpose� The monitoring technique

did not contribute to the performance e�ects�

��� Measuring the Performance E�ects of Object�

Oriented Abstractions in Fortran 	


In the spirit of the Stepanov C

 Benchmark ��
�� we have been investigating the

performance e�ects of using object
oriented features in Fortran 
� programs� The

Stepanov benchmark computes an abstraction penalty that represents the cost of

applying increasing levels of abstraction in a Fortran
style loop computation� A

series of tests� written using STL
based iterator constructs in C��� are used� Ideally�

compilers should remove the overhead associated with using abstraction features so

that the subsequent tests perform as well as the initial test�

The Stepanov benchmark brings attention to an important issue� abstraction mod�

eling may degrade performance� Our benchmark for Fortran 
� addresses the same

issue� A series of tests are performed� however� our tests more appropriately re�ect

how actual programs may be developed in Fortran 
�� We return three kinds of ab


straction measurements that indicate the e�ects of the tests� abstraction of Fortran 
�

array
types� inheritance abstraction� and the overall abstraction�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	�


Illustration of base test multiplication routine

SUBROUTINE base�multiply�ix�iy�iz�iter�isize�

DIMENSION ix�isize�� iy�isize�� iz�isize�

INTEGER� INTENT�in� 

 iter� isize

INTEGER 

 i� iterations � Variable declarations

DO i���isize � Initialize			

ix�i� � �� � iy�i� � �

END DO

DO iterations���iter � Multiply Op			

DO i���isize

iz�i� � ix�i� � iy�i�

END DO

END DO

END SUBROUTINE base�multiply

Figure 
��� Structure of the Fortran ��
based multiplication test that is replicated
with various Fortran 
� array
syntax and object
oriented abstractions�

The Benchmark Tests This benchmark currently performs twenty tests measur


ing the e�ects of using every kind of Fortran 
� style array�along with the use of

advanced features including modules� use
association� pointers� and object
oriented

features including encapsulation� and inheritance by composition and sub
typing� Ev


ery tests is based upon a Fortran �� style component
wise array multiplication� as

seen in �gure ����

As in the Stepanov test� which performs a di�erent computation� our benchmark

reports on a kernel
by
kernel basis the run
time ratio of the current abstraction test to

the base multiply test� All of the tests that are performed involve the component


wise multiplication in some form� For example test ��� which multiplies two static

arrays de�ned by a Fortran 
� derived type� allows arrays to be created and initialized

from a module�

� Create array objects from STATIC�ARRAY�MODULE and initialize

TYPE �static�array� 

 sx� sy� sz

call init�sx� iter� � call init�sy� iter� � call init�sz� iter�

Then� the actual multiplication test is performed�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

sz � sx � sy

where the �#� operator has actually been overloaded to perform the multiplication

on the derived types� Note that the initialization of these arrays also includes the

number of iterations of test � style multiplications� Part of the module de�nition is

shown in �gure ��� on page 	�	�

The Benchmark Results Figure ��� on page 	�� shows a sample run of the For


tran 
� benchmark program� The results are generally consistent regardless of the

number of iterations applied� The benchmark has been applied to a variety of com


pilers� some of which are in the beta
test stage� Due to release restrictions the results

of these tests cannot be described� We can mention� however� that some compilers

fail to build the benchmark while the performance of other depends greatly on the

optimization switches applied�

The overhead of applying array syntax abstractions is very low� while the usage of

inheritance
based features is also small� This implies that both of these techniques can

be used to improve the modeling of programs without major concern for performance

degradation e�ects� The abstraction measurement ratios computed do depend on

how well the compiler performs on test �� This benchmark program will continue to

grow with the addition of new tests including� array subsection operations and other

object
oriented features including dynamic dispatching� Detailed descriptions of the

speci�c tests performed are available �����

��� Commentary

Now and then statements are made claiming that object
oriented codes can run faster

than procedural codes� where �object
oriented is synonymous with C�� and �pro


cedural is synonymous with Fortran� In general� we have found the performance of

Fortran �� to remain ahead of C�� and C� while the performance of object
oriented



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	�	

Illustration of module and multiplication routine from test ��

MODULE static�array�module

USE global�data

IMPLICIT NONE

SAVE

TYPE static�array � Array definition and loop iterations

INTEGER 

 iter

INTEGER� DIMENSION�gdim� 

 p

END TYPE static�array

INTERFACE init � Define constructor interface

MODULE PROCEDURE sa�create

END INTERFACE

INTERFACE operator��� � Overload multiplication operator

MODULE PROCEDURE sa�mult

END INTERFACE

CONTAINS

SUBROUTINE sa�create�this�range� � Constructor

TYPE �static�array�� INTENT�out� 

 this

INTEGER� INTENT�in� 

 range

this�iter � range � Assign components

this�p � ��

END SUBROUTINE sa�create

TYPE �static�array� FUNCTION sa�mult�x�y�

TYPE �static�array�� INTENT�in� 

 x� y

INTEGER 

 iterations

DO iterations���x�iter � Multiply operation			

sa�mult�p � x�p � y�p

END DO

END FUNCTION sa�mult

END MODULE static�array�module

Figure 
��� Structure of the of static array module multiplication test� Array ob

jects can be created from the module where overloaded operations�in
combination with array syntax�are applied in multiplication�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

Sample Benchmark Run on IBM RS��




Iterations ����� minimum� 
 ����

Working 																				

Test Time Base Ratio Test Time Base Ratio

� �	��� �	��� �� �	� � �	���

� �	� � �	��� �� �	�!� �	���

� �	��� �	��� �� �	��� �	�� 

� �	��� �	��� �� �	��� �	��!

� �	��� �	��� �� �	��� �	���

� �	��� �	�!� �� �	��� �	�� 

! �	� � �	��� �! �	�!� �	���

 �	�!� �	��� � �	��� �	���

� �	� � �	��� �� �	� � �	���

�� �	��� �	� � �� �	��� �	���

Array Syntax Abstraction Measure
 �	�! 

Inheritance Abstraction Measure
 �	���

Overall Abstraction Measure
 �	���

Figure 
��� Abstraction benchmark results applied to IBM RS����� with the IBM
xlf
� Fortran 
� compiler �optimization 
O� with AIX ��	�� Note that
test � �automatic array test with use
association� always returns �����
as the execution time� regardless of the iteration length� The time in

dicated for that test is a loose approximation based on test �� Ab

straction measurements close to 	���� are desired�

Fortran 
� programs have been better than C�� and very competitive with For


tran ��� particularly for parallel programming� The abstraction capabilities of C���

for those most experienced with this language� may o�set the performance di�erences

compared to Fortran� This is especially true if features such as templates are used

which currently are not part of Fortran 
�� Additionally� it could be misleading to

generalize about performance �gures for all kinds of codes based on our experience

since these programs contain features that may favor the years of optimization e�ort

already present in Fortran compilers� Nevertheless� all indications seem to imply that

for numerical loop intensive codes with large memory and computation requirements�



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

Fortran remains more e�cient than C���

Many researchers are successfully working on improving the performance of C��

compilers by examining how language constructs are used ����� including the Stepanov

��
� and OOPACK ���� benchmarks� Unfortunately� most of these tests examine pro


gramming features in isolation without the context of a larger problem� This work is

extremely bene�cial and important� however� leading to improvements in C�� com


piler technology� Indeed� Robison suggests that the notion of an abstraction penalty�

a terminology introduced by Stepanov used to gauge the e�ciency of programs that

use abstraction modeling features� will � 	 	 	 a�ect how programmers use them or

even whether programmers will use the language at all ����� He brings attention to

the performance penalties lack of optimization for small objects� virtual functions�

and exceptions may produce�

Additional� very interesting work� involves the use of C�� templates to represent

parse trees of mathematical expressions as types�to reduce the creation of tempo


raries and additional loops in chained expressions� The �rst work described on this

topic is by Vandevoorde ���� in the valarray�Troy� numerical array library imple


mentation� This approach allows expression evaluation to be delayed through the

creation of static expression trees� A similar technique� published shortly afterward

by Veldhuizen ���� introduces �Expression Templates which pass expression
types as

template parameters and function arguments� Delayed evaluation with parse trees are

also used� leading to performance bene�ts� Member templates are required to exploit

the fullest potential of this work�this feature has only recently become available on

commercial compilers ����� Both implementations introduce a workaround for the lack

of member templates that induce a small �xed cost in performance� and less general

applicability ����� This kind of research should help reduce the abstraction penalty of

applying sophisticated mathematical constructs for C�� compilers capable of using

the technique e�ectively�

We only introduced virtual functions in the load balancing codes and their use



CHAPTER �� MACHINE 
 COMPILER PERFORMANCE COMPARISONS 	��

did not introduce serious performance problems compared to issues already addressed�

The other benchmarks do not use virtual functions at all� yet poor compiler perfor


mance was still reported� Our programs contain a mixture of very large numbers

of small objects�in the millions� a small number of extremely large objects�the

�elds for example� and object collections which vary in size and extent�the �elds

and species� To alleviate any potential penalty from accessing small objects through

member functions which might not be in
lined� data visible for read�write access was

always public� This does not lower the level of abstraction and it produced per


formance improvements in the Fortran 
� programs where in
lining was not always

available�

Given the variety� extent� and level of interaction of abstract components in these

programs� determining the best course of action to improve performance may be

di�cult� A methodology for determining the absolute performance of any object


oriented program is still open� This kind of study would be very useful since there

may be inherent limits to performance when abstraction is introduced� This would

help to establish if expecting the performance of a C��
based program to match or

exceed a Fortran
based program is an appropriate question to consider�



Chapter �

Discussion� Conclusions� and New

Directions

The importance of paradigm�related studies is reviewed as researchers contemplate what

programming languages and approaches to consider for application development� Addi�

tionally� we discuss how this research may in�uence other popular contemporary topics in

object�oriented scienti�c programming�

��� The Impact of Paradigm Studies on Modern

Software Development

Performance and programmability are the two most important factors mentioned in

software support for scienti�c programming� Comparative analysis allows one to ex


amine the state of software technology� provided an application typical of how various

languages are used is selected� The study of modern language paradigms renews our

insight into how applications are developed� while critiquing current programming

techniques against new directions proposed to enhance advanced software design�

Object
oriented programming simultaneously makes application development eas


ier and more complex since development and usage of objects occurs over a variety

	��



CHAPTER �� DISCUSSION� CONCLUSIONS� AND NEW DIRECTIONS 	��

of levels� Given a problem� an abstract model must be created which is then mapped

onto the features of a language that supports object
oriented programming� Appli


cation programming begins with a high
level view of major operations on simulation

objects� Infrastructure development forms the next deeper level� supporting the high


level view� This involves the design of classes with support for their interaction� Lower

levels feature the implementation of class components that have an object
oriented

view of their own�which may di�er from the high
level view they support� Un


derstanding how languages support development of abstractions across these levels

is important in scienti�c programming since computational abstractions often exist

simultaneously across levels� Paradigm studies among languages bring greater un


derstanding to this issue� including the e�ects this may have on performance and

abstraction modeling� based on constructs provided by di�erent languages�

The objective of this thesis has been to apply a systematic approach to the study

of language paradigms in scienti�c programming on high performance computers�

Current and future applications will require greater �exibility in design and organiza


tion while providing performance good enough to support Grand
challenge software

programming� The e�ects of our study are already prevalent throughout national lab


oratories� universities� and industrial corporations by a renewed interest in paradigm

comparison issues� We review the major goals and impact of this research in this

concluding chapter�

��� Review of Thesis Research

The major original contribution of this work is that comparative paradigm
related

issues have been addressed in object
oriented programming for a single scienti�c ap


plication using existing and emerging languages on scalar and parallel architectures�

One of the main objectives was to bring new ideas and concepts to research� aca


demic� and industrial laboratories with an evaluation of their e�ects when compared



CHAPTER �� DISCUSSION� CONCLUSIONS� AND NEW DIRECTIONS 	��

to traditional ways of implementing software� The most important contribution is

that our objective study provides experiences that often cannot be realized in orga


nizations due to various constraints that may be imposed� whether they are technical

or managerial� A formal description of the speci�c contributions has been presented

in Chapter 	� however� we comment on many of these issues in the following sections�

Object�Oriented Development of Plasma Programs Various designs for object


oriented scalar and parallel plasma particle
in
cell codes were designed and presented�

These were implemented from the initial Fortran �� programs using object
oriented

techniques in C�� and Fortran 
�� A discussion of how a scienti�c computation

is analyzed and modeled in an object
oriented fashion� with progressive development

and re�nement of the models including the consequences of implementation decisions�

was presented� This analysis provides insight into the design process and the factors

that in�uence design decisions�

The C�� language provided many powerful mechanisms for development of ad


vanced plasma programs with abstraction modeling� The template features were very

useful while popular object
oriented features� such as inheritance� saw limited use


fulness� Object models which support interactions among abstractions with multiple

views were very easy to model� While the goals and design organization of the C��

programming language are sound ��	�� speci�c compiler implementations make many

of these bene�ts di�cult to use e�ectively� Our development on the IBM SP and

Intel Paragon systems and compilers have been largely successful� but the Cray T�D

compiler problems did not allow for useful development work on this machine using

the C�� programming language�

The need to modernize languages such as Fortran �� has led to the development of

Fortran 
� and High Performance Fortran �HPF�� which leverage the infrastructure

of existing programs and knowledge of experienced users with new techniques to

simplify code development� Although new features such as array operations and data



CHAPTER �� DISCUSSION� CONCLUSIONS� AND NEW DIRECTIONS 	��

distribution directives are very bene�cial� supporting object
oriented concepts such as

abstraction� encapsulation of ideas� and enhanced collaboration appeared to remain

inaccessible to the Fortran community�

While Fortran 
� may not be considered an object
oriented language by some

de�nitions� we have found that many of its new features support object
oriented con


cepts� This can simplify the process of extending existing programs into a parallel

environment since modi�cations to encapsulated components can be introduced in a

safe manner without unwanted side
e�ects� These techniques may bene�t Fortran ��

programmers looking to use the object paradigm in their existing scienti�c programs�

While languages such as C�� also have many advanced and useful features for so


phisticated programming� such as templates� in general Fortran 
� provides an easier

transition to object modeling and programming for Fortran programmers interested

in the bene�ts of this methodology� This is true because Fortran 
� is still geared

toward scienti�c programming� not necessarily general purpose programming� For


tran 
� also contains advanced features� including the array operations� pointers� and

a clearly de�ned way to create multidimensional dynamic structures� to name a few�

Additional material on object
oriented programming in Fortran 
�� beyond the

scope of Chapter �� will be available in future publications ����� Some of our modern

work with this language falls beyond the scope of this thesis�length concerns restrict

our ability to present every detail� This includes features like code migration� The

migration of Fortran �� codes to Fortran 
�� using language free abstractions� was

straightforward� Code migration is important since it provides a way to modernize

existing parallel applications within a familiar context� Similarly� HPF is designed

around Fortran 
� so it will be possible to combine the object paradigm with this

language as HPF compilers mature�

Object Paradigms for Dynamic Load Balancing Load balancing is an impor


tant requirement in scienti�c parallel programming� We have designed an object




CHAPTER �� DISCUSSION� CONCLUSIONS� AND NEW DIRECTIONS 	�


oriented instrumentation technique which allows speci�c objects to be monitored on

a continuous basis� in an implicit fashion� based on normal object usage� This sim


pli�es the context of how load balancing can be handled for object
oriented scienti�c

programs�

Our experience with the plasma programs found that the technique was e�ec


tive� providing useful information to the load balancer in a non
obtrusive manner�

However� the load balancing algorithm applied was simplistic� the overhead in com


puting new partition addresses was more expensive than necessary� although dynamic

memory management of large �elds was the major cause of poor performance� The

technique was applied to a collisionless free expansion and gravitational experiment

which exhibit two di�erent forms of irregularity�

Performance Comparisons Among Language Paradigms A detailed anal


ysis of the performance of various object
oriented models for programs written in

Fortran 
�� C� and C�� were compared across compilers and architectures on scalar

and parallel machines� The Fortran �� performance usually outperformed Fortran 
��

but the results were always comparable� The C�� performance typically was twice

as slow as Fortran �� for all simulation problems and machine environments�

Many comparative issues were addressed for the �rst time� including performance

of Fortran ��� Fortran 
� and C�� for a single complete scienti�c application on

workstations and supercomputers� Careful implementation of library functions was

identi�ed as an issue of concern� while features thought to provide performance im


provements� such as in
lining� sometimes had a minimal e�ect on performance� The

introduction and overhead of using complex operations on abstractions can lead to

performance e�ects as operators are pushed through an abstraction hierarchy to the

base level implementation� Techniques to optimize code associated with these oper


ations could lead to signi�cant performance enhancements�



CHAPTER �� DISCUSSION� CONCLUSIONS� AND NEW DIRECTIONS 	��

��� Final Commentary and New Directions

It is now safe to move toward modern programming paradigms� in particular object


oriented methods in scienti�c programming� This safety comes in a variety of forms�

mainly that developers have a larger selection among languages� Fortran 
� can

be used very e�ectively to program in this paradigm� For those who have other

requirements beyond highest performance� such as graphics� interfaces to devices�

and so on� C�� can be used with �a perhaps manageable� performance penalty� In

each case� users should be aware of the state of compiler technology and make their

decisions not based on hearsay� but on empirical evidence and comparative analysis�

This is the kind of information this thesis provides�

There are many new directions to explore from topics covered within this thesis

research� This includes the integration of related codes that support the design of

object models� and frameworks for simulations which share common features� The

design e�ects of abstraction is an interesting and serious issue that can bene�t from

further study� Although the object
oriented methodology is speci�ed independently

of a particular programming language� we have learned that features of Fortran 
�

and C�� can a�ect the modeling of the problem� In particular� when comparing

or converting from one language to the other� it may not be possible to maintain

identical object
oriented representations� Object
Oriented abstractions also a�ect the

e�ciency of scienti�c computations� Since the manner in which the program is mod


eled can a�ect performance� studying strategies that maximize performance based

on various representations is required� We have already seen examples of this issue�

but new e�orts geared toward minimizing the performance impact of abstraction are

needed� As our research has illustrated� such approaches should be experimental�

The notion of design patterns� which try to capture the experience of recurring

successful designs� have become popular� Many scienti�c simulations share common

features that most likely contain patterns� Discovery of these features� which could

then be modeled in an abstract way� may ease the development of templates and



CHAPTER �� DISCUSSION� CONCLUSIONS� AND NEW DIRECTIONS 	�	

extension of scienti�c software components to related problems� Although we do not

agree with all of the claims o�ered by the patterns community� this paradigm must

be investigated further to access its applicability in scienti�c programming� One

obvious pattern appropriate to parallel scienti�c programming is the guard region�

This concept is used often to minimize message passing of partitioned data� Many

other important patterns certainly exist�

As mentioned in the preface� the impact of this study has found it way into

many organizations� Researchers are curious about comparisons between Fortran 
�

and C�� while corporations and laboratories are re
thinking their software design

strategies based on early access to this research� Additionally� much of the design

work in object
oriented modeling for the plasma simulation problems is leading into

new e�orts in Fortran 
� development for the next generation of modern plasma

simulation programs�

Readers may now con�dently consider what aspects of various paradigms are

useful or inappropriate� how should a scienti�c computation be designed to take

advantage of object
oriented techniques� what are the bene�ts and pitfalls of the

methodology� what languages are most appropriate to allow researchers who are not

familiar with object
oriented programming� but have signi�cant backgrounds in other

languages� to enter the �eld! The signi�cance of this work is broad since it addresses

concerns programmers must address when evaluating the usage of new paradigms

for current and future development projects� Since paradigms a�ect scienti�c pro


gramming directly� the impact of this study has been immediate� These issues are

relevant as developers in academia� government� and industry make decisions regard


ing programming approaches for current and future scienti�c development projects�

There is a need for a comprehensive and serious study of the options available when

considering languages for important projects� particularly when issues such as legacy

codes and the need to design for extension are considered� We hope that our analysis

of programming paradigms will positively a�ect application development�



Literature Cited

�	� C� K� Birdsall and A� B� Langdon� Plasma Physics via Computer Simulation�
The Adam Hilger Series on Plasma Physics� Adam Hilger� New York� 	

	�

��� F� Bodin� P� Beckman� D� Gannon� S� Narayana� and S� Yang� Distributed pC

�
Basic Ideas for an Object Parallel Language� Irisa� U� of Rennes and Department
of Computer Science� Indiana University� January 	

��

��� G� Booch� Object
Oriented Development� IEEE Transactions on Software En�
gineering� SE&	������		&��	� February 	
���

��� Z� Bozkus� A� Choudhary� G� Fox� T� Haupt� and S� Ranka� Fortran 
�D�HPF
Compiler for Distributed Memory MIMD Computers� Design� Implementation�
and Performance Results� In Proc� Supercomputing ���� pages ��	&���� Portland�
Oregon� November 	�&	
 	

�� IEEE Computer Society�

��� B� I� Cohen� D� C� Barnes� J� M� Dawson� G� W� Hammett� W� W� Lee� G� D�
Kerbel� J�
N� Leboeuf� P� C� Liewer� T� Tajima� and R� E� Waltz� The numerical
tokamak project� simulation of turbulent transport� Computer Physics Commu�
nications� ���	����	&	�� May II 	

��

��� W� Cook� W� Hill� and P� Canning� Inheritance Is Not Subtyping� In Proc�
��th ACM Symposium on Principles of Programming Languages� pages 	��&	���
January 	

��

��� V� K� Decyk� Skeleton PIC Codes for Parallel Computers� Computer Physics
Communications� ���	������&
�� May II 	

��

��� V� K� Decyk� C� D� Norton� and B� K� Szymanski� Experiences with Object
Oriented Parallel Plasma PIC Simulation� In Proc� Computing in High Energy
Physics 
CHEP ����� Singapore� Sept� 	�&�� 	

�� Lafex�Fermilab� World Scien

ti�c� Invited Plenary Talk at Computing in High Energy Physics �
� Conference�
Rio de Janeiro� Brazil�

�
� V� K� Decyk� C� D� Norton� and B� K� Szymanski� Introduction to Object

Oriented Concepts Using Fortran 
�� Technical Report PPG&	���� Institute

	��



LITERATURE CITED 	��

of Plasma and Fusion Research� UCLA Dept� of Physics and Astronomy� Los
Angeles� CA 
��
�
	���� July 	

�� Submitted to Computers in Physics�

�	�� J� Denavit� Collisionless plasma expansion into a vacuum� Phys� Fluids�
������	���&	�
�� July 	
�
�

�		� T� M� R� Ellis� I� R� Philips� and T� M� Lahey� Fortran �� Programming� Addison&
Wesley� Reading� M�A�� 	

��

�	�� R� D� Ferraro� P� C� Liewer� and V� K� Decyk� Dynamic Load Balancing for a
�D Concurrent Plasma PIC Code� J� Computational Physics� 	�
������
&����
December 	

��

�	�� K� Fisher and J� C� Mitchell� Notes on typed object
oriented programming� In
M� Hagiya and J� C� Mitchell� editors� Theoretical Aspects of Computer Software�
Springer LNCS ��
� 	

�� Proc� of International Symp� TACS �
�� Sendai� Japan
& April 	

��

�	�� K� Fisher and J� C� Mitchell� What is an Object
Oriented Programming Lan

guage� From �Notes of typed object
oriented programming� Proc� Theoretical
Aspects of Computer Software� Springer LNCS ��
� 	

�� pages ���
���� June
	

��

�	�� D� W� Forslund� J� S� Junkins� and C� A� Wingate� WAVE��� A Distributed�
Object
Oriented Plasma Simulation Code� In Proc� US�Japan Workshop on Ad�
vances in Simulation Techniques Applied to Plasmas and Fusion� pages 	&�� Los
Angeles� California� September ��&�� 	

��

�	�� I� T� Foster and K� M� Chandy� Fortran M� A Language for Modular Parallel Pro�
gramming� Argonne National Laboratory and California Institute of Technology�
June 	

��

�	�� I� T� Foster and D� W�Walker� Paradigms and Strategies for Scienti�c Computing
on Distributed Memory Concurrent Computers� In Proc� Conference on High
Performance Computing� pages ���&���� La Jolla� California� April 		&	� 	

��
IEEE Computer Society�

�	�� General Electric Company� Advanced Concepts Center� King of Prussia� PA�
OMTool User Guide� release 	�� edition� February 	

��

�	
� A� S� Grimshaw� Easy
to
Use Object
Oriented Parallel Processing with Mentat�
IEEE Computer� �������
&�	� May 	

��

���� W� Gropp� E� Lusk� and A� Skjellum� Using MPI� Portable Parallel Programming
with the Message Passing Interface� MIT Press ISBN �
���
��	��
�� Cambridge�
Massachusetts� 	

��



LITERATURE CITED 	��

��	� S� W� Haney� Is C�� Fast Enough for Scienti�c Computing! J� Computers in
Physics� ������
�&�
�� Nov�Dec 	

��

���� S� W� Haney and J� A� Crotinger� C�� Proves Useful in Writing a Tokamak
Systems Code� J� Computers in Physics� ��������&���� Sep�Oct 	

	�

���� High Performance Fortran Forum� High Performance Fortran Language Speci��
cation� version 	�� edition� May 	

�� Technical Report CRPC
TR
����� Rice
University� Houston� January 	

��

���� S� Hiranandani� K� Kennedy� and C� Tseng� Compiler Support for Machine

Independent Parallel Programming in Fortran D� In J� Saltz and P� Mehro

tra� editors� Languages� Compilers and Run�Time Environments for Distributed
Memory Machines� pages 	�
&	��� North&Holland� Amsterdam� 	

�� Elsevier
Science Publishers B�V�

���� R� W� Hockney and J� W� Eastwood� Computer Simulation Using Particles�
Institute of Physics Publishing� Philadelphia� 	

��

���� J� K� Hollingsworth and B� P� Miller� An Adaptive Cost Model for Parallel
Program Instrumentation� In Proc� EuroPar���� Lyon� France� Aug 	

��

���� J� K� Hollingsworth� B� P� Miller� and J� Cargille� Dynamic Program Instru

mentation for Scalable Performance Tools� In Proc� Scalable High Performance
Computing Conference� pages ��	&���� Knoxville� Tennessee� May 	

�� IEEE
Computer Society�

���� D� Kafura and L� Huang� mpi��� A C�� Language Binding for MPI� In Proc�
MPI Developers Conference� Notre Dame� IN� June 	

��

��
� L� V� Kale and S� Krishnan� Charm��� A Portable Concurrent Object Oriented
System Based on C��� Technical Report UIUCDCS
R

�
	�
�� Department of
Computer Science� University of Illinois� Urbana
Champaign� March 	

��

���� V� Karamcheti and A� Chien� Concert 
 E�cient Runtime Support for Con

current Object
Oriented Programming Languages on Stock Hardware� In Proc�
Supercomputing ���� pages �
�&���� Portland� Oregon� November 	�&	
 	

��
IEEE Computer Society�

��	� S� R� Kohn and S� B� Baden� The Parallelization of an Adaptive Multigrid
Eigenvalue Solver with LPARX� In Proc� Seventh SIAM Conference on Parallel
Processing for Scienti�c Computing� pages ���&���� San Francisco� California�
February 	�&	�� 	

��

���� G� A� Kohring� Dynamic Load Balancing for parallelized particle simulations on
MIMD computers� Parallel Computing� �	����&�
�� 	

��



LITERATURE CITED 	��

���� B� B� Kristensen and K� 'sterbye� A Conceptual Perspective on the Comparison
of Object
Oriented Programming Languages� ACM SIGPLAN Notices� �	������&
��� Feb 	

��

���� P� C� Liewer and V� K� Decyk� A General Concurrent Algorithm for Plasma
Particle
in
Cell Simulation Codes� J� of Computational Physics� ������&����
	
�
�

���� P� C� Liewer� E� W� Leaver� V� K� Decyk� and J� M� Dawson� Dynamic Load Bal

ancing in a Concurrent Plasma PIC Code on the JPL�Caltech Mark III Hyper

cube� In Proc� Fifth Distributed Memory Computing Conference� pages 
�
&
���
	

��

���� S� B� Lippman� C

 Primer� Addison&Wesley� Reading� MA� second edition�
	

	�

���� L� Martin� Writing Optimizable Code using Fortran 
�� Invited presentation at
SHARE ��� Orlando� Fl� August 	

��

���� D� R� Musser and A� Saini� STL Tutorial and Reference Guide� C

 Program�
ming with the Standard Template Library� Addison
Wesley� Reading� MA� 	

��

��
� C� Neusius� A Concurrent Object
Oriented Programming Language and its Dis

tributed Implementation� In Proc� Fifth Distributed Memory Computing Con�
ference� pages 	���&	��
� 	

��

���� M� Nibhanupudi� C� Norton� and B� Szymanski� Plasma Simulation on Networks
of Workstations using the Bulk Synchronous Parallel Model� In Proc� Intl� Conf�
on Parallel and Distributed Processing Techniques and Applications� pages 	�&���
Athens� Georgia� November �&� 	

��

��	� O� Nierstrasz� A Survey of Object
Oriented Concepts� In W� Kim and F� Lo

chovsky� editors� Object�Oriented Concepts� Databases and Applications� pages
�&�	� ACM Press and Addison&Wesley� 	
�
�

���� C� D� Norton� Abstraction benchmark measurements for object
oriented For

tran 
� programming�awhite paper� Unpublished Manuscript� September 	

��

���� C� D� Norton� An E�cient Mapping Algorithm for Irregularly Coupled Fields
in Load Balancing for Plasma PIC Simulations� Unpublished Manuscript� July
	

��

���� C� D� Norton� V� K� Decyk� and B� K� Szymanski� High Performance Object

Oriented Programming in Fortran 
�� Internet Web Pages� October 	

��
http���www�cs�rpi�edu�(nortonc�oof
��html�



LITERATURE CITED 	��

���� C� D� Norton� V� K� Decyk� and B� K� Szymanski� On Parallel Object Oriented
Programming in Fortran 
�� ACM SIGAPP Applied Computing Review� ��	����&
�	� Spring 	

��

���� C� D� Norton� B� K� Szymanski� and V� K� Decyk� Object Oriented Parallel
Computation for Plasma Simulation� Communications of the ACM� ���	�����&
	��� October 	

��

���� C� D� Norton� B� K� Szymanski� and V� K� Decyk� Parallel Object Oriented
Implementation of a �D Bounded Electrostatic Plasma PIC Simulation� In Proc�
Seventh SIAM Conference on Parallel Processing for Scienti�c Computing� pages
���&�	�� San Francisco� California� February 	�&	�� 	

��

���� Overview of JPL�s Participation in NASA�s HPCC Earth and Space Science
�ESS� Project� Internal Document� 	

��

��
� S� Parkes� J� A� Chandy� and P� Banerjee� A Library
based Approach to Portable�
Parallel� Object
Oriented Programming� Interface� Implementation and Appli

cation� In Proc� Supercomputing ���� pages �
&��� Washington� D�C�� November
	�&	� 	

�� IEEE Computer Society�

���� J� V� W� Reynders� Object
Oriented Particle Simulation on Parallel Computers�
In ��th International Conference on the Numerical Simulation of Plasmas� pages
	B� 	&�� King of Prussia� Pennsylvania� September �

 	

��

��	� J� V� W� Reynders� D� W� Forslund� P� J� Hinker� M� Tholburn� D� G� Kilman�
and W� F� Humphrey� Object
Oriented Particle Simulation on Parallel Comput

ers� In Object Oriented Numerics Conference� pages ���&��
� 	

��

���� A� D� Robison� C�� Gets Faster for Scienti�c Computing� J� Computers in
Physics� 	��������&���� Sep�Oct 	

��

���� A� D� Robison� OOPACK� a Benchmark for Comparing OOP vs C
style pro

gramming� http���www�kai�com�oopack�oopack�html� 	

��

���� A� D� Robison� The Abstraction Penalty for Small Objects in C��� Kuck and
Associates� Champaign IL� 	

��

���� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and W� Lorensen� Object�
Oriented Modeling and Design� Prentice Hall� Englewood Cli�s� NJ� 	

	�

���� E� Seidewitz� Object
Oriented Programming in Smalltalk and ADA� ACM SIG�
PLAN Notices� ���	������&�	�� December 	
��� In Proc� OOPSLA �� edited by
N� Meyrowitz�



LITERATURE CITED 	��

���� P� H� Smith and S� M� Gri�n� editors� Workshop and Conference on Grand Chal�
lenges Applications and Software Technology� Pittsburgh� Pennsylvania� May �&
�� 	

�� GCW
��
��

���� J� M� Squyres� B� C� McCandless� and A� Lumsdaine� Object Oriented MPI� A
Class Library for the Message Passing Interface� POOMA �
� Conference� Sante
Fe� New Mexico� 	

��

��
� A� Stepanov� KAI�s Version of Stepanov Benchmark & Version 	���
http���www�kai�com�C plus plus�benchmarks�ftp�html� 	

��

���� B� Stroustrup� The C

 Programming Language� Addison&Wesley� Reading�
MA� second edition� 	

	�

��	� B� Stroustrup� Why C�� is not just an Object
Oriented Programming Lan

guage� OOPS Messenger� �����	&	�� October 	

�� Addendum to Proc� OOP

SLA �
��

���� B� K� Szymanski and C� D� Norton� Object Oriented Programming in Parallel
Scienti�c Computing� ACM SIGAPP Applied Computing Review� Oct 	

�� �in
press��

���� The HPC�� Working Group� HPC�� Whitepapers� Technical Report TR

����� Center for Research on Parallel Computation� 	

��

���� M� Turner� Experience with PIC
MCC and C��� In ��th International Con�
ference on the Numerical Simulation of Plasmas� King of Prussia� Pennsylvania�
September �

 	

��

���� D� Vandevoorde� valarray�Troy� an implementation of a numerical array� In

ternet Web Pages� February 	

�� ftp���ftp�cs�rpi�edu�pub�vandevod�Valarray�
and ANSI X�J	� papers�

���� D� Vandevoorde� Personal Communication� Electronic&Mail� October 	

��

���� T� Veldhuizen� Expression Templates� C

 Report� �������&�	� June 	

��

���� J� P� Verboncoeur� A� B� Langdon� and N� T� Gladd� An Object
Oriented Elec

tromagnetic PIC Code� Technical Report UCB�ERL M
���	� Electronic Re

search Laboratory� College of Engineering� UC Berkeley� Berkeley� CA 
�����
September 	

��

��
� I� Wells� Personal Communication� Electronic&Mail� September 	

��

���� R� D� Williams� DIME��� A Parallel Language for Indirect Addressing� Tech

nical Report CCSF
�
� CCSF� California Institute of Technology� Pasadena� CA�
January 	

��



LITERATURE CITED 	��

��	� G� V� Wilson and P� Lu� editors� Parallel Programming Using C

� Cambridge�
Massachusetts� 	

�� MIT Press� Scienti�c and Engineering Computation Series�



Appendix A

Plasma PIC Programming Source

Segments

This section shows program abstracts for various segments of the plasma PIC applications

beyond what is appropriate to include in the main text� Various portions of the codes

written in Fortran 		� Fortran 
�� and C�� are illustrated to enhance comparison among

these languages� These programs generate diagnostics� and sometimes visualization data�

in an output �le�this data will be not presented� In general� only the main program

interfaces are included�

	�




APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS 	
�

A�� Fortran �� Scalar �D Initialization Section

The following is the initialization section for the scalar Fortran �� program� where

the declaration of variables has been omitted for brevity�

c prepare fft tables

isign � �

call fft�rx�q�t�isign�mixup�sct�indx�nx�nxh�

c calculate form factors

call pois� �q�fx�isign�ffc�ax�affp�we�nx�

c initialize density profile and velocity distribution

c background electrons

do ��� j � �� nx

q�j� � �	

��� continue

if �npx	gt	�� call distr� �part�vtx�zero�npx�idimp�nx�

c beam electrons

if �npxb	gt	�� call distr� �part���npx���vtdx�vdx�npxb�idimp�nx�

c deposit charge for initial distribution

call dpost� �part�q�qme�np�idimp�nx�

c add background ion density

qi� � �qme�affp

do �!� j � �� nx

q�j� � q�j� � qi�

�!� continue



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS 	
	

A�� Fortran �� Scalar �D Loop Section

The following is the loop section for the scalar Fortran �� program� where the decla


ration of variables has been omitted for brevity�

��� if �nloop	le	itime� go to ����

c transform charge to fourier space

isign � ��

call fft�rx�q�t�isign�mixup�sct�indx�nx�nxh�

c calculate force�charge in fourier space

call pois� �q�fx�isign�ffc�ax�affp�we�nx�

c transform force�charge to real space

isign � �

call fft�rx�fx�t�isign�mixup�sct�indx�nx�nxh�

c particle push and charge density update

c initialize charge density to background

do �� � j � �� nx

q�j� � qi�

�� � continue

wke � �	

c push particles

call push� �part�fx�qtme�dt�wke�idimp�np�nx�

c deposit charge

call dpost� �part�q�qme�np�idimp�nx�

c energy diagnostic

wt � we � wke

write ������� we� wke� wt

itime � itime � �

go to ���

���� continue



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS 	
�

A�� C�� Scalar �D Initialization Section

The following is the initialization section for the scalar C�� program�

�� Create simulation objects

Plasma species�

Electron elec
NP��

ParticleDist backelec� �	�F� �	�F� SYSLEN�X� N�BKELE�X ��

ParticleDist beamelec� �	�F� �	�F� SYSLEN�X� N�BMELE�X ��

Grid grid�

EnergyDiag energy�

Timer time�

�� Prepare FFT tables and initialize density profile

grid	Setup� energy ��

�� Particle spatial�velocity distribution

backelec	Maxwellian� elec ��

beamelec	Maxwellian� �elec
N�BKELE�X� ��

�� Deposit charge

grid	DepositCharge� elec� Electron

charge� NP ��

�� Add background Ion density

grid	AddIonDensity���



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS 	
�

A�� C�� Scalar �D Loop Section

The following is the loop section for the scalar C�� program� The declaration of

objects is shown in the initialization section�

for �int i � �� i � N�STEPS� i��� �

�� Calculate Force�Charge using FFT

grid	CalcEField� energy ��

�� Charge density field update

grid	InitChargeDensity���

energy	ke��	���

�� Push particles

species	Advance� elec� grid� energy� NP ��

�� Deposit charge

grid	DepositCharge� elec� Electron

charge� NP ��

�� Energy diagnostic

energy	tote�energy	pe�� � energy	ke����

curOFile �� "Time 
 " �� i �� endl�

curOFile �� energy�

�



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS 	
�

A�� C�� Scalar �D Main Program �Initial�

main��

�

Plasma plasma� �� Create Objects

BackgroundElectron bkelec
N�BKELE�X��

BeamElectron bmelec
N�BMELE�X��

Grid grid�

EnergyDiag energy�

grid	Setup� energy �� �� Initialize and construct grid

plasma	DenVelDist� bkelec� BackgroundElectron

thermal�vel�x�

BackgroundElectron

drift�vel�x� N�BKELE�X ��

plasma	DenVelDist� bmelec� BeamElectron

thermal�vel�x�

BeamElectron

drift�vel�x� N�BMELE�X ��

grid	DepositCharge� bkelec� Electron

charge� N�BKELE�X ��

grid	DepositCharge� bmelec� Electron

charge� N�BMELE�X ��

grid	AddIonDensity���

for �int i � �� i � N�STEPS� i��� �

grid	CalcEField� energy ��

grid	InitChargeDensity���

energy	ke��	���

plasma	Advance� bkelec� grid� energy� N�BKELE�X ��

plasma	Advance� bmelec� grid� energy� N�BMELE�X ��

grid	DepositCharge� bkelec� Electron

charge� N�BKELE�X ��

grid	DepositCharge� bmelec� Electron

charge� N�BMELE�X ��

energy	tote�energy	pe�� � energy	ke����

�

� �� End of Main



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS 	
�

A�
 C�� Revised Scalar �D��D Main Program

This revised one
dimensional main program has an interface identical to the two


dimensional program� In two
dimensions� distribution class objects require additional

parameters for initialization�

main��

�

Plasma plasma�

Electron elec
 NP ��

ParticleDist backelec� �	�F� �	�F� SYSLEN�X� N�BKELE�X ��

ParticleDist beamelec� �	�F� �	�F� SYSLEN�X� N�BMELE�X ��

Grid grid�

EnergyDiag energy�

grid	Setup� energy �� �� Initialize and construct grid

backelec	Maxwellian� elec ��

beamelec	Maxwellian� �elec
N�BKELE�X� ��

grid	DepositCharge� elec� Electron

charge� NP ��

grid	AddIonDensity���

for �int i � �� i � N�STEPS� i��� �

grid	CalcEField� energy ��

grid	InitChargeDensity���

energy	ke��	���

plasma	Advance� elec� grid� energy� NP ��

grid	DepositCharge� elec� Electron

charge� NP ��

energy	tote�energy	pe�� � energy	ke����

�

� �� End of Main

The program interface is identical in two dimensions� however the distribution objects

require additional parameters�

ParticleDist backelec� �	�F� �	�F� �	�F� �	�F� SYSLEN�X� SYSLEN�Y�

N�BKELE�X� N�BKELE�Y ��

ParticleDist beamelec� �	�F� �	�F� �	�F� �	�F� SYSLEN�X� SYSLEN�Y�

N�BMELE�X� N�BMELE�Y ��



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS 	
�

A�� C�� Scalar �D Main Program

The main program for the scalar three
dimensional program is illustrated� Creation

and initialization of the objects is illustrated� as well as the initialization and loop

sections are shown�

main��

�

Plasma plasma� �� Collective Plasma

Vector� ChargedParticle � elec�pos� NP �� �� Particle Vector Field

Vector� ChargedParticle � elec�vel� NP ��

ParticleDist backgnd� N�BKELE�X� N�BKELE�Y� N�BKELE�Z� BKTHERMAL�VEL�X�

BKTHERMAL�VEL�Y� BKTHERMAL�VEL�Z� BKDRIFT�VEL�X�

BKDRIFT�VEL�Y� BKDRIFT�VEL�Z ��

ParticleDist beam� N�BMELE�X� N�BMELE�Y� N�BMELE�Z� BMTHERMAL�VEL�X�

BMTHERMAL�VEL�Y� BMTHERMAL�VEL�Z� BMDRIFT�VEL�X�

BMDRIFT�VEL�Y� BMDRIFT�VEL�Z ��

Field field� energy �� �� Initialize and Create Collective Field

EnergyDiag energy�

field	InitChargeDensity���

plasma	UniformSpcMaxwellVelDist� elec�pos� elec�vel� field� backgnd ��

plasma	UniformSpcMaxwellVelDist� elec�pos� elec�vel� field� beam ��

field	ChargeDeposition� elec�pos� plasma� ChargedParticle

e�charge ��

field	AddBackgroundIonDensity���

for � int i � �� i � N�STEPS� i�� � �

field	CalcEField� energy ��

field	SetBackgroundIonDensity���

energy	ke� �	� ��

plasma	Advance� elec�pos� elec�vel� field� energy ��

field	ChargeDeposition� elec�pos� plasma�

ChargedParticle

e�charge ��

energy	tote� energy	pe�� � energy	ke�� ��

�

� �� End Main



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS 	
�

A�� C�� Parallel �D��D��D Main Program

The parallel program below was derived from the three
dimensional scalar program

in appendix A���

main��

�

VPMachine vpm� �� Parallel Machine Features

Vector� ChargedParticle � elec�pos� PTMAXNP ��

Vector� ChargedParticle � elec�vel� PTMAXNP ��

ParticleDist backgnd� N�BKELE�X� BKTHERMAL�VEL�X� BKDRIFT�VEL�X ��

ParticleDist beam� N�BMELE�X� BMTHERMAL�VEL�X� BMDRIFT�VEL�X ��

Plasma plasma�

EnergyDiag energy�

Field field� vpm� energy ��

vpm	ParInit��� �� Initialize for Parallel Processing

plasma	Partition� vpm �� �� Particle�Field Partitioning

field	Partition� vpm ��

plasma	UniformSpcMaxwellVelDist� elec�pos� elec�vel� backgnd� vpm ��

plasma	UniformSpcMaxwellVelDist� elec�pos� elec�vel� beam� vpm ��

field	ChargeDeposition� elec�pos� plasma� ChargedParticle

e�charge ��

field	BackgroundIonDensity���

for � int i � �� i � N�STEPS� i�� � �

field	CalcEField� vpm� energy ��

field	InitChargeDensity���

energy	ke� �	� ��

plasma	Advance� elec�pos� elec�vel� field� energy� vpm ��

plasma	UpdateDistribution� elec�pos� elec�vel� vpm ��

field	ChargeDeposition� elec�pos� plasma�

ChargedParticle

e�charge ��

field	BackgroundIonDensity���

energy	tote� energy	pe�� � energy	ke�� ��

�

� �� End Main

The interface to the two
dimensional and three
dimensional programs is identical



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS 	
�

to the one
dimensional version illustrated� The only visible di�erence involves the

additional arguments required by the background and beam distribution objects�

These objects are shown below�

A���� Two�Dimensional Distribution Objects

ParticleDist backgnd� N�BKELE�X� N�BKELE�Y�

BKTHERMAL�VEL�X� BKTHERMAL�VEL�Y�

BKDRIFT�VEL�X� BKDRIFT�VEL�Y ��

ParticleDist beam� N�BMELE�X� N�BMELE�Y�

BMTHERMAL�VEL�X� BMTHERMAL�VEL�Y�

BMDRIFT�VEL�X� BMDRIFT�VEL�Y ��

A���� Three�Dimensional Distribution Objects

ParticleDist backgnd� N�BKELE�X� N�BKELE�Y� N�BKELE�Z�

BKTHERMAL�VEL�X� BKTHERMAL�VEL�Y� BKTHERMAL�VEL�Z�

BKDRIFT�VEL�X� BKDRIFT�VEL�Y� BKDRIFT�VEL�Z ��

ParticleDist beam� N�BMELE�X� N�BMELE�Y� N�BMELE�Z�

BMTHERMAL�VEL�X� BMTHERMAL�VEL�Y� BMTHERMAL�VEL�Z�

BMDRIFT�VEL�X� BMDRIFT�VEL�Y� BMDRIFT�VEL�Z ��



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS 	



A�	 Fortran �� Parallel �D Main Program

Much of the Fortran �� parallel main program is shown with the speci�cation of

various data structures� This should be compared to the equivalent C�� program in

appendix A���

c particles� charge�force arrays �real�complex�

dimension part�idimp�npmax�

dimension q�nxpmx�� fx�nxpmx�

dimension qc�kxp�� fc�kxp�

c poisson� FFT tables

dimension ffc�kxp�

dimension mixup�kxp�� sct�kxp�

c boundaries� particle transport buffers

dimension edges�idps�

dimension sbufl�idimp�nbmax�� sbufr�idimp�nbmax�

dimension rbufl�idimp�nbmax�� rbufr�idimp�nbmax�

dimension ihole�ntmax�

dimension jsl�idps�� jsr�idps�

c initialize for parallel processing

call ppinit�idproc�nvp�

c calculate partition variables

call dcomp��edges�nxp�noff�nx�kstrt�nvp�idps�

c prepare fft tables

isign � �

call pfft�r�qc�fc�isign�mixup�sct�indx�kstrt�kxp�

c calculate form factors

call ppois� �qc�fc�isign�ffc�ax�affp�we�nx�kstrt�kxp�

if �npx	gt	�� call pistr� �part�edges�npp�nps�vtx�zero�npx�nx�

�idimp�npmax�idps�

c beam electrons

nps � npp � �

if �npxb	gt	�� call pistr��part�edges�npp�nps�vtdx�vdx�npxb�nx�

idimp�npmax�idps�

c deposit charge for initial distribution

call pdost� �part�q�npp�noff�qme�idimp�npmax�nxpmx�

c add background ion density

qi� � �qme�affp

do �!� j � �� nxp

q�j��� � q�j��� � qi�

�!� continue



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS ���

��� if �nloop	le	itime� go to ����

c transform charge to fourier space

isign � ��

c copy data from particle to field partition� and add up guard cells

call cppfp� �q�qc�isign�scr�kstrt�nvp�nxpmx�kxp�idps�

call pfft�r�qc�fc�isign�mixup�sct�indx�kstrt�kxp�

c calculate force�charge in fourier space

call ppois� �qc�fc�isign�ffc�ax�affp�we�nx�kstrt�kxp�

c transform force�charge to real space

isign � �

call pfft�r�fc�qc�isign�mixup�sct�indx�kstrt�kxp�

c copy data from field to particle partition� and copy to guard cells

call cppfp� �fx�fc�isign�scr�kstrt�nvp�nxpmx�kxp�idps�

c particle push and charge density update

c initialize charge density to zero

do ���� j � �� nxp�

q�j� � �	

���� continue

wke � �	

c push particles

call ppush��part�fx�npp�noff�qtme�dt�wke�idimp�npmax�nxpmx�

c move particles into appropriate spatial regions

call pmove� �part�edges�npp�sbufr�sbufl�rbufr�rbufl�ihole�

�jsr�jsl�jss�nx�kstrt�nvp�idimp�npmax�idps�nbmax�ntmax�ierr�

c deposit charge

call pdost� �part�q�npp�noff�qme�idimp�npmax�nxpmx�

c add background charge

do �� � j � �� nxp

q�j��� � q�j��� � qi�

�� � continue

c energy diagnostic

wt � we � wke

if �kstrt	eq	�� write ������� we� wke� wt

itime � itime � �

go to ���

���� continue

stop

end



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS ��	

A��
 C�� Parallel �D Main Program �modi�ed�

void main� int argc� char �argv
� �

�

�� Parallel Machine Features

VPMachine vpm�

�� Initialize For Parallel Processing

vpm	ParInit� NVPE ��

�� Particle Species Distribution Characteristics

DistFunction backdf� N�BKELE�X� N�BKELE�Y� N�BKELE�Z�

SYSLENX� SYSLENY� SYSLENZ� BKTHERMAL�VEL�X�

BKTHERMAL�VEL�Y� BKTHERMAL�VEL�Z�

BKDRIFT�VEL�X� BKDRIFT�VEL�Y� BKDRIFT�VEL�Z ��

DistFunction beamdf� N�BMELE�X� N�BMELE�Y� N�BMELE�Z�

SYSLENX� SYSLENY� SYSLENZ� BMTHERMAL�VEL�X�

BMTHERMAL�VEL�Y� BMTHERMAL�VEL�Z�

BMDRIFT�VEL�X� BMDRIFT�VEL�Y� BMDRIFT�VEL�Z ��

�� The Particle Species

Species� Particle�D � electrons� ECHARGE� ECHGMASS�

�backdf	npxyz�� � beamdf	npxyz����

SYSLENX� SYSLENY� SYSLENZ� vpm ��

�� The Scalar and Vector Fields

ScalarField�D� float � cdensity� SYSLENX� SYSLENY� SYSLENZ� vpm ��

VectorField�D� float � efield� SYSLENX� SYSLENY� SYSLENZ� vpm ��

�� The Collective Field� Plasma Operations and Energy Diagnostic

Fields�D fields� INDX� INDY� INDZ� vpm ��

Plasma plasma�

EnergyDiag energy�

�� ����������������������������������������������������������������

�� Begin Periodic �D Electrostatic Particle Simulation Kernel Code

�� ����������������������������������������������������������������

vpm	startclk���

�� Prepare FFT Tables and Form Factors

fields	SolvePrepare� E�HALFWIDTH�X� E�HALFWIDTH�Y� E�HALFWIDTH�Z�

electrons� vpm ��

�� Initialize Charge Density Profile

cdensity � float� �	� ��

�� Perform Species Spatial and Velocity Distribution

electrons	UniformDistribution� backdf� vpm ��

electrons	UniformDistribution� beamdf� vpm ��

�� Deposit Particle Charge to Field for Initial Distribution

plasma	ChargeDeposition� electrons� cdensity ��



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS ���

�� Add Background Ion Density

const float QIO � � ��	� � electrons	qm � electrons	npt � �

� cdensity	DIM�X�� � cdensity	DIM�Y�� �

cdensity	DIM�Z�� ��

cdensity	add� QIO ��

�� ����������������������������������������������������������������

�� Begin Main Iteration Loop

�� ����������������������������������������������������������������

for � int i � �� i � N�STEPS� i�� � �

fields	Solve� cdensity� efield� vpm �� �� Solve Field

plasma	pe� efield� energy �� �� Field Energy

cdensity	set� float� �	� � ��

electrons	ke� �	� ��

plasma	Advance� electrons� efield� DT �� �� Push Particles

plasma	ke� electrons� energy �� �� Kinetic Energy

plasma	UpdateDistribution� electrons� vpm ��

plasma	ChargeDeposition� electrons� cdensity ��

cdensity	add� QIO ��

energy	tote��� �� Total Energy

�

vpm	stopclk���

vpm	ParFinal���

� �� End Main



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS ���

A��� Fortran 	
 �D Main Program �initial�

Below we see the main program section of the Fortran 
� scalar program modeled

after the C�� version in appendix A���

program beps�k

use Electron�m

use ParticleDist�m

use EnergyDiag�m

use Plasma�m

use Grid�m� only
 Grid�Create� Grid�Setup�

�Grid�InitChargeDensity� Grid�AddIonDensity�

�Grid�CalcEField� Grid�DepositCharge

use Timer�m

� object creation from derived types

type �particle� elec�NP�

type �species�dist� backelec

type �species�dist� beamelec

type �energy� energ

� create constructors for objects

call ParticleDist�Create�backelec�vtx�zero�SYSLEN�X�N�BKELE�X�

call ParticleDist�Create�beamelec�vtdx�vdx�SYSLEN�X�N�BMELE�X�

call Grid�Create��

call EnergyDiag�Create�energ�

� calculate form factors

void � Grid�Setup��

� initialize density profile and velocity distribution

call ParticleDist�Maxwellian �elec�backelec�

� beam electrons

call ParticleDist�Maxwellian �elec�N�BKELE�X����beamelec�

� deposit charge for initial distribution

call Grid�DepositCharge �elec�CHARGE�NP�

� add background ion density

void � Grid�AddIonDensity��

�

� � � � start main iteration loop � � �

�

do ���� i � �� N�STEPS��

void � Grid�CalcEField�energ�

� particle push and charge density update

� initialize charge density to background

void � Grid�InitChargeDensity��



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS ���

void � ke�energ�kin��	�

� push particles

call Plasma�Advance �elec�energ�NP�

� deposit charge

call Grid�DepositCharge �elec�CHARGE�NP�

� energy diagnostic

void � tote�energ�tot��pe�energ��ke�energ���

write ����� � Time
 �� i

call EnergyDiag�Write�energ�

���� continue

stop

end



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS ���

A��� Fortran 	
 �D Main Program �modi�ed�

Below we see the main program section of the Fortran 
� modi�ed scalar program�

Objects are created and initialized by module create routines�

program beps�k

use plasma�module

type �distf�d� 

 backdf� beamdf

type �species�d� 

 electrons

type �fields�d� 

 cdensity� efield

type �energy� 

 energ

call distfunc�create�backdf�npx�nx�vtx�zero�

call distfunc�create�beamdf�npxb�nx�vtdx�vdx�

call species�create�electrons�qme�qbme�np�

call fields�create�cdensity�nx�

call fields�create�efield�nx�

call energy�create�energ�

call fields�solveprp�cdensity�indx�np�ax�

c initialize density profile and velocity distribution

call fields�set �cdensity�zero�

c background electrons

noff � �

if �npx	gt	�� call species�distr��electrons�backdf�noff�

c beam electrons

if �npxb	gt	�� call species�distr��electrons�beamdf�npx�

c deposit charge for initial distribution

call plasma�dpost� �electrons�cdensity�

c add background ion density

qi� � �qme�float�np��float�nx�

call fields�add �cdensity�qi��

c

c � � � start main iteration loop � � �

c

��� if �nloop	le	itime� go to ����

write ������� itime

c calculate force�charge

call fields�solve�cdensity�efield�

call plasma�getpe�energ�efield�

c particle push and charge density update

c initialize charge density to background

call fields�set �cdensity�qi��

wke � species�ke�electrons�wks��	�



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS ���

c push particles

call plasma�push� �electrons�efield�dt�

c deposit charge

call plasma�dpost� �electrons�cdensity�

call plasma�getke�energ�electrons�

c energy diagnostic

call plasma�gette�energ�

itime � itime � �

go to ���

���� continue

c

c � � � end main iteration loop � � �

c

c unallocate data

call fields�destroy�efield�

call fields�destroy�cdensity�

call species�destroy�electrons�

stop

end



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS ���

A��� Fortran 	
 �D Main Program

Below we see the main program section of the Fortran 
� two
dimensional scalar

program� This version should be compared to the one
dimensional version of ap


pendix A�	��

program beps�k

use plasma�module

type �distf�d� 

 backdf� beamdf

type �species�d� 

 electrons

type �sfields�d� 

 cdensity

type �vfields�d� 

 efield

type �energy� 

 energ

call distfunc�create�backdf�npx�npy�nx�ny�vtx�vty�zero�zero�

call distfunc�create�beamdf�npxb�npyb�nx�ny�vtdx�vtdy�vdx�vdy�

call species�create�electrons�qme�qbme�np�

call fields�create�cdensity�nx�ny�nxv�

call fields�create�efield�nx�ny�nxv�

call energy�create�energ�

c prepare fft tables and form factors

call fields�solveprp�cdensity�indx�indy�np�ax�ay�

c initialize density profile and velocity distribution

call sfields�set�cdensity�zero�

c background electrons

noff � �

if �npxy	gt	�� call species�distr��electrons�backdf�noff�

c beam electrons

if �npxyb	gt	�� call species�distr��electrons�beamdf�npxy�

c deposit charge for initial distribution

call plasma�dpost� �electrons�cdensity�

c add background ion density

qi� � �qme�float�np��float�nx�ny�

call sfields�add�cdensity�qi��

c

c � � � start main iteration loop � � �

c

��� if �nloop	le	itime� go to ����

write ������� itime

c calculate force�charge

call fields�solve�cdensity�efield�

call plasma�getpe�energ�efield�



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS ���

c particle push and charge density update

c initialize charge density to background

call sfields�set�cdensity�qi��

wke � species�ke�electrons�wks��	�

c push particles

call plasma�push� �electrons�efield�dt�

c deposit charge

call plasma�dpost� �electrons�cdensity�

call plasma�getke�energ�electrons�

c energy diagnostic

call energy�gette�energ�

itime � itime � �

go to ���

���� continue

c

c � � � end main iteration loop � � �

c

c unallocate data

call fields�solvetrm

call fields�destroy�efield�

call fields�destroy�cdensity�

call species�destroy�electrons�

stop

end



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS ��


A��� Fortran 	
 Parallel �D Main Program

Below we see the main program section of the Fortran 
� two
dimensional parallel

program� This version should be compared to the two
dimensional scalar version of

appendix A�	�� as well as the C�� parallel program of appendix A�	��

program beps�k

use partition�module

use plasma�module

type �distf�d� 

 backdf� beamdf

type �species�d� 

 electrons

type �sfields�d� 

 cdensity

type �vfields�d� 

 efield

type �energy� 

 energ

type �slab� 

 edges

call MPI�INIT�ierror�

call ppinit�nvp�

call distfunc�create�backdf�npx�npy�nx�ny�vtx�vty�zero�zero�

call distfunc�create�beamdf�npxb�npyb�nx�ny�vtdx�vtdy�vdx�vdy�

call species�create�electrons�qme�qbme�np�nvp�

call fields�create�cdensity�nx�ny�nxv�nyv�nvp�

call fields�create�efield�nx�ny�nxv�nyv�nvp�

call energy�create�energ�

� calculate partition variables

call dcomp��edges�ny�

� prepare fft tables and form factors

call fields�solveprp�cdensity�indx�indy�np�ax�ay�nvp�

� initialize density profile and velocity distribution

call sfields�set�cdensity�zero�

� background electrons

noff � �

if �npxy	gt	�� call species�distr��electrons�edges�backdf�noff�

� beam electrons

nps � electrons�npp � �

if �npxyb	gt	�� call species�distr��electrons�edges�beamdf�nps�

� deposit charge for initial distribution

call plasma�dpost� �electrons�cdensity�edges�

� add background ion density

qi� � �qme�float�np��float�nx�ny�

call sfields�add�cdensity�edges�qi��

�



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS �	�

� � � � start main iteration loop � � �

�

��� if �nloop	le	itime� go to ����

if �kstrt	eq	�� write ������� itime

� calculate force�charge

call fields�solve�cdensity�efield�

call plasma�getpe�energ�efield�

� particle push and charge density update

� initialize charge density to zero

call sfields�set�cdensity�zero�

� initialize charge density to background

wke � species�ke�electrons�wks��	�

� push particles

call plasma�push� �electrons�efield�edges�dt�

� move particles into appropriate spatial regions

call plasma�pmove� �electrons�edges�ny�nbmax�ntmax�

� deposit charge

call plasma�dpost� �electrons�cdensity�edges�

� add background ion density

call sfields�add�cdensity�edges�qi��

call plasma�getke�energ�electrons�

� energy diagnostic

if �kstrt	eq	�� then

call energy�gette�energ�

endif

itime � itime � �

go to ���

���� continue

�

� � � � end main iteration loop � � �

�

� unallocate data

call fields�solvetrm

call fields�destroy�efield�

call fields�destroy�cdensity�

call species�destroy�electrons�

call MPI�FINALIZE�ierror�

stop

end



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS �		

A��� C�� Parallel �D Free�Expansion Main Pro�

gram Sketch

Below we see the main program section of the C�� three
dimensional parallel pro


gram with load balancing� This version should be compared to the C�� parallel

program of appendix A�	� on page ��	 since only the modi�cations are sketched�

void main� int argc� char �argv
� �

�

�� The Particle Species

Species� Particle�D � electrons� ECHARGE� ECHGMASS�

�backdf	npxyz�� � beamdf	npxyz����

SYSLENX� SYSLENY� SYSLENZ� vpm ��

Species� Particle�D � ions� ICHARGE� ICHGMASS�

�backidf	npxyz�� � beamidf	npxyz����

SYSLENX� SYSLENY� SYSLENZ� vpm ��

�� ����������������������������������������������������������������

�� Begin Main Iteration Loop

�� ����������������������������������������������������������������

for � int i � �� i � N�STEPS� i�� � �

fields	Solve� cdensity� efield� vpm ��

plasma	pe� efield� energy ��

cdensity	set� float� �	� � ��

electrons	ke� �	� ��

plasma	Advance� electrons� efield� DT ��

plasma	Advance� ions� efield� DT ��

plasma	ke� electrons� energy ��

plasma	UpdateDistribution� electrons� vpm ��

plasma	UpdateDistribution� ions� vpm ��

�� Load balance the particles �if necessary�

plasma	BalanceDistributionRB� electrons� ions�

cdensity� efield� vpm ��

plasma	ChargeDeposition� electrons� cdensity ��

plasma	ChargeDeposition� ions� cdensity ��

energy	tote���

�

� �� End Main



APPENDIX A� PLASMA PIC PROGRAMMING SOURCE SEGMENTS �	�

A��
 C�� Parallel �D Gravitation Main Program

Sketch

Below we see the main program section of the C�� three
dimensional parallel pro


gram with load balancing� This version should be compared to the C�� parallel

program of appendix A�	� on page �		 since only the modi�cations are sketched�

void main� int argc� char �argv
� �

�

�� The Particle Species

Species� Particle�D � electrons� ECHARGE� ECHGMASS�

�backdf	npxyz�� � beamdf	npxyz����

SYSLENX� SYSLENY� SYSLENZ� vpm ��

�� ����������������������������������������������������������������

�� Begin Main Iteration Loop

�� ����������������������������������������������������������������

for � int i � �� i � N�STEPS� i�� � �

fields	Solve� cdensity� efield� vpm ��

plasma	pe� efield� energy ��

cdensity	set� float� �	� � ��

electrons	ke� �	� ��

plasma	Advance� electrons� efield� DT ��

plasma	ke� electrons� energy ��

plasma	UpdateDistribution� electrons� vpm ��

�� Load balance the particles �if necessary�

plasma	BalanceDistributionRB� electrons�

cdensity� efield� vpm ��

plasma	ChargeDeposition� electrons� cdensity ��

cdensity	add� QIO �� �� Background Density

energy	tote���

�

� �� End Main



Index

abstraction� xiii� �� ��� 	��

extensibility� �


modeling� �� ��&��� ��� ��

performance� 	��

programming� 	��

aggregation� �

allocatable array� ��� 	��

Aurora Borealis� 	�

beam
plasma� see plasma� instability

C��� see object
oriented programming

language� 	
�&	
�� ��	&���� �		&

�	�

templates� �	� �����

charge density� see �elds

charge neutral plasma� ��

class� �� �


attributes� ��

operations� ��

contains� �	

data parallelism� �


derived type� �
� 	��

design patterns� 	��

dimensionless units� ��

drift velocity� ��

dynamic load balancing� 	�� ��� �

�

�������

electric �eld� see �elds

electromagnetic� see �elds

electrons� 	�� 	
� ��

electrostatic� see �elds

encapsulation� �� ��� ��� �


equivalence� ��

Fast Fourier Transform� 	�� 	�� ��&���

��� ��� 		�

�eld energy� 	�� ��� ��

�elds� 	�&��� ��� �
���
�

charge density� 	�� �
� ��

electromagnetic� 	�

electrostatic� 	�� �
� �
� ��

Fortran ��� 	�&�	� ��� ��� 	
�&	
	� 	

&

���

Fortran 
�� ��&��

intrinsic types� ��

OOP� see object
oriented program


ming� Fortran 
�

�	�



INDEX �	�

parallel programming� 
	&
�

free
expansion� see plasma� free
expansion

fusion� 	�

generic programming� 
�

ghost cells� see guard cells

gravitation� see plasma� gravitation

guard cell� 	��

guard cells� ��� ��� �
� 	�	� 	��� 	�	

implicit monitoring� 	��&	�	

implicit none� ��

information hiding� �

inheritance� �� ������ ���
�� 	�	

composition� ��� ��

sub
typing� ��� ��� �	

instrumentation� see program instrumen


tation

intent� �	

interpolation� 	�� 	�

ionization� 	�

ionosphere� 	�

ions� 	�� ��� ��� 	��

kinetic energy� 	�� ��� ��

link association� �

link attribute� �� ��

matrix transpose� �	� ��

MIMD� 	�

module� ��� ��� �


module procedure� ��� 	��

monitoring� see implicit monitoring

MPI� 	�� ��� 
	

near
neighbor grid point scheme� �


object� �

Object Modeling Technique �OMT�� ��

�


object oriented programming

Fortran 
�� ���� ���� ���� ��


object
oriented methodology� �� ��� ��&

��� ��

object
oriented programming� ��

C��� ��� ��

Fortran 
�� ��� ��� 
�

parallelism� ��

views� ��

overloading� �� ��

paradigm� see programming paradigm

parameter� ��

particle
in
cell� see plasma� particle
in


cell

partitioning� 	�� 	�� ��� 	��� �
�����

patterns� see design patterns

periodic boundary� ��

phase space� ��

plasma� ��



INDEX �	�

free expansion� 	��&	��

free
expansion� ��

gravitation� ��� 	��&	�	

instability� ��� �	

particle
in
cell� ������ ��� 		�

Poisson�s Equation� 	�� 	�� ��� ��

polymorphism� �� 
�� 	�	

pro�ling� 	��&	��

program instrumentation� 	��� 	��� 	��

programming inversion� ���

programming paradigm� 	� �� ��� 	�	�

	��

object
oriented� ��� ��� 	��

procedural� ��� ��

shadow cells� see guard cells

SIMD� 	�

skeleton program� ��

solar wind� 	�

SPMD� 	�� �	� ��

static� ��

task parallelism� �


templates� �� ������ 	��

ternary association� �� ��� ��

thermal velocity� ��

total energy� 	�

two
stream instability� ��

use� �


use only� �	

use
association� ��� ��� �
� 
�� 
�� 	��

virtual function� ��


