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ABSTRACT 
With the growth of computer networking, electronic commerce, and web 
services, security of networking systems has become very important.  Many 
companies now rely on web services as a major source of revenue.  Computer 
hacking poses significant problems to these companies, as distributed attacks 
can render their cyber-storefront inoperable for long periods of time.  This 
happens so often, that an entire area of research, called Intrusion Detection, has 
been devoted to detecting this activity.  We show that evidence of many of 
these attacks can be found in a careful analysis of network data.  We also 
illustrate that the learning abilities of neural networks can serve to detect this 
activity.  We test our systems against denial of service attacks, distributed 
denial of service attacks, portscans, and even some doorknobs attacks.  Finally, 
we also show how our systems detect long-term attacks, which occur when 
attackers space out their efforts to evade detection.  In this work, we explore 
network based intrusion detection using a Perceptron-based, feed-forward 
neural network system  and a system based on classifying, self-organizing 
maps.   Both of these systems are tested on data provided from the DARPA 
intrusion detection evaluation program as well as live attacks in an isolated 
computer network.  

INTRODUCTION 
Intrusion Detection  is a relatively new field which tries to detect computer 

attacks from examining various data records observed by processes on the same 
network.  These attacks are normally split into two categories, host-based 
attacks and  network-based attacks.  Host-based attacks are generally attacks that 
target a machine on a network.  These attacks are used to gain access to some 
feature of the machine upon which it is attacking, such as user accounts or files 
on the machine.  Network-based attacks are types of attacks that generally cause 
some denial of service to a machine on a network, by disallowing normal or 
legitimate users access to services on a machine, or by slowing down the 
netowork connectivity on a network, so that legitimate users cannot do what is 
needed as the network is being attacked.  Host-based detection routines normally 
use system call data from an audit-process that tracks all system calls made on 
behalf of each user on a particular machine.  These audit processes must be run 
on each monitored machine.  Network-based attacks detection routines typically 
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use network traffic data from a network packet sniffer.  Many organizational 
computer networks including the widely accepted Ethernet (IEEE 802.3) 
network use a shared medium for communication.  Therefore, the packet sniffer 
only needs to be running on the same shared subnet as the monitored machines.  
Using this process of sniffing packets on a network, it is believed that enough 
data can be gathered in order to build a Perceptron-based feed-forward neural 
network system to detect the occurances of attacks against a network.  The 
premise or idea behind creating such a system is that most network based attacks 
usually flood a network with a large number of packets, which are higher than 
the packets seen when an attack is not occurring.  This system, is not a system 
that will prevent the attacks to a network, which is very hard to do, but is a 
system to alert that there is suspicious/anolomous activity occurring on a 
network. 

ATTACKS THE SYSTEM SHOULD DETECT 
     As stated above, the neural network will be used for the detection of denial of 
service attacks.  Some attacks and their description to be detected by the neural 
network are as follows: 

• SYNFLOOD – This attack affects every operating system that 
implements the TCP protocol.  This attack bombards a machine by 
sending dozens of falsified connection requests in short periods of time 
to prevent legitimate connection requests.  These connections are seen 
by the number of times the service is requested by the attacker. 

• UDPSTORM – This attack uses the UDP protocol to create denial of 
service.  The attack is usually an echo-echo attack where it creates 
communication between 2 echo ports on two different machines 
causing a great number of packets to be sent from machine to machine 
since the echo ports on both machine will keep echoing to each other.  
With this, slowing of the network is easy and it would prevent normal 
users from accessing machines on a network upon which the attack is 
unleashed. 

• SMURF – This attack uses ICMP broadcast addresses to unleash its 
power to a victim machine.  The attack sends ICMP echo requests to 
many IP broadcast addresses.  Every machine on the same networks as 
the broadcast addresses that are listening will respond by sending 
ICMP echo replies back to the victim.  This is a very large attack for 
the reason that there can be as many as 255 hosts on a subnet that can 
respond to the echo requests, and if there are many broadcast addresses 
used in the attack, the replies can increase by a magnitude of 255 per 
broadcast address, causing a great number of packets destined to the 
victim, which in turn causes the victim to be flooded, possibly denying 
services to legitimate users. 
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BACKGROUND 
      There are a few different groups that have attempted and successfully use 
neural networks for intrusion detection each having different approaches.  At 
MIT Lincoln Laboratory, a neural network was applied to misuse detection.  The 
data they obtained for the neural network consisted of attack-specific keywords 
in network traffic from Unix-host attacks and attacks that allows the attacker to 
obtain root privileges on a server (Lippmann, 1999).  In order to see the attack 
keywords in the network traffic, the payload of the packets needs to be 
evaluated.  The differences between this neural network and the neural network 
for the project are not only the fact that they don’t look at the hits to the ports, 
but also, they look into the payload of the network traffic in order to pick out the 
keywords that can be used in an attack.  Testing the neural network, results were 
17 out of 20 attacks were detected and they got one false alarm.  At UBILAB 
Laboratory, a Self-Organizing Map approach was used along with a neural 
network.  The self-organizing map clustered the network traffic in a two 
dimension space for visualization (Girardin, 1998).  This process is similar to 
the project except they use the visual effects of self-organizing maps, where for 
this project, we want the self-organizing map to tell us which cluster the data 
belongs to not show us.  Also, they would need someone to look at the graphical 
representation of the data and have the person determine if an attack is 
occurring.  This project would not require such.  The results of this approach is 
that it detected IP spoofing, FTP password guessing, network scanning.  In a 
different approach from misuse, Reliable Software Technologies created a 
neural network for anomaly detection.  It analyzed program behavior profiles, 
which are system calls made by programs running on a system (Ghosh, 99).  
Another visualization tool used for intrusion detection is a clustering of network 
traffic(Oliver, 2001).  This lets us know that it is not abnormal to use a tool to 
cluster network traffic together, if they contains patterns that are similar. This 
tool by aggregating clusters of network traffic they have found that it can help 
an administrator to detect network anomalies.   The difference between this 
method and the method described in this paper is that they require a 
visualization of the traffic for the administrator to notice an anomaly, but this 
project doesn’t require that, since it will encorporate a neural network to notice 
the anomaly.  

DEFINITION OF NEURAL NETWORKS 
    Neural networks also known as artificial neural networks are used to allow 
computers to learn and adapt to different tasks that they are presented with.  It 
can be seen as a computer representation of the human brain.  In the human 
brain, there are neurons interconnected to each other, and depending on an 
impulse the neurons receive, a response will occur.  This impulse that neurons in 
the human brain receives is equivalent to the input that is given to an artificial 
neural network, so as the response that follows an impulse is similar to a 
decision the neural network outputs. 
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Figure 1 – A single neuron for a neural network taking input x with an 
output A 

 

Figure 2 – Graphical representation of neurons interconnected receiving 
many inputs and produces 2 outputs 

 
There are many different types of neural networks, which are not in the scope of 
this paper.  However, the types of neural networks used for this project are the 
multilayer feed forward perceptron and the self-organizing map.   
     The multilayer feed forward perceptron neural network can be seen as a fully 
connected graph.  Similar to the neurons in the human brain, the neurons in a 
neural network each take the input that is given to them and multiplies each 
input by a weight factor, takes the sum of the results of the multiplications and 
sends the results forward to the next set of neurons that are available.   To make 
decisions, the neural network, again similar to the human brain, needs to learn as 
much as it can about the subject or problem it needs to solve.  It is similar to a 
young child learning his or her ABCs’.  Sample data with end results must be 
given to the neural network before it can make decisions.  The way this learning 
period occurs is by using the process of traversing the sum of the weights of the 
inputs, throughout the network until the resulting factor is close enough to the 
final result by some error.  To get the final result, each node in the network 
periodically adjusts the weights that are multiplied to the input until up to some 
error; resulting in values as close to the final result that was told to the neural 
network in the beginning stages as possible.   After learning, then the neural 
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network can be given problems that are similar to the ones that it was trained on 
and it would make decisions about the data that it is currently processing.  This 
whole process of training and manipulating a neural network can be said as: the 
neural network is in the beginning to be presented with as much data as you can 
about the subject that you want it to learn and when it encounters a similar 
problem that it has never encountered before, it will make a decision on what the 
solution should be (fortunecity.com).   
     The self-organizing map is a neural network that organizes data into groups 
that contain similar attributes.  It takes patterns of arbitrary dimensions and 
transforms them in a one or two-dimensional map (Haykin, 1999).  It contains 
neurons just as the multilayer feed forward perceptron neural network, except 
they make decisions differently.  The difference is that the self-organizing map 
is a self-learning neural network, unlike the multiplayer feed forward 
perceptron.  It is self-learning by not requiring an example of the output in order 
to make decisions, but requires the neurons to compete with each other about 
who represents the data better and the winner is seen as the neuron that matches 
the data the best.  This way, the data will be formed into clusters of data that are 
somehow related to each other.  Another difference between a multiplayer feed 
forward perceptron and a self-organizing map is that a multilayer feed forward 
perceptron is static being infeasible in the number of inputs it can receive, while 
the self-organizing map is not due to the self-leaning and clustering structure of 
the map. 
 
 
METHODOLOGY 
      The most basic anomaly intrusion detection system consists of a rule-based 
system, where there are rules that define signatures of known attacks.  Whenever 
network packets enter the networks that use the rule-based system, they evaluate 
the packets and apply the rules of the known attacks to the packets to see if there 
are any matches.  If there is a match, an alert is made.  A problem with this 
system, is that if an attack that has no rules in the database is attacking the 
network, no alerts will be made until after the attack has finished running the 
course and the rules of the attack is added to the attack database.  This type of 
system, cannot detect new attacks, only attacks that it has seen before. The use 
of neural networks for intrusion detection was chosen because intrusion 
detection is a complex problem, and neural network are used to solve complex 
problems.  Also, the power of neural networks to make sound decisions about 
the problem it is knowledgeable about made them a great candidate for detecting 
anomalous patterns in a network.  The multilayer feed forward perceptron was 
one of the neural networks chosen for this project because it is the neural 
network that is the participants on this project is more knowledgeable.  Professor 
Mark Embrechts developed the neural network software used for this project, a 
professor in the Decision Sciences and Engineering Sciences department.  
Having the access to the software allowed us to use a tool that supplies sufficient 
results than having to create a different model. The second neural network that 
was chosen is the self-organizing map. It was decided that the data that will be 
supplied to the multilayer feed forward perceptron would need to be correlated 
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in some way.  Since the self-organizing map creates a correlation between data 
by grouping the inputs that are similar to the same class/cluster together, it 
seemed to be the best tool for correlating the data that will be given to the neural 
network. 

BUILDING NEURAL NETWORK STRUCTURE 
Prior to collecting and monitoring the network traffic which we belive holds 

the information to signal intrusions, we must first determine the structure of the 
neural network.  We present the current trend in network traffic to the neural 
network in the form of the number of times a host is accessed across the network 
in a certain time interval t.  To allow a machine to differentiate one 
application’s traffic from another, hosts have many ports responsible for 
services such as telnet and ftp, to which packets must travel to and from.  Most 
networking protocols use a 16-bit port number which facilitates a possible 216 or 
65,536 ports that receive network traffic at any given time (Stevens, 94).  
Monitoring all of these ports through a nueral network is not only infeasable, but 
it is unneccesary.  It is highly unlikely that all ports on a particular host are used, 
since the services available are turned off by the person(s) in control of the 
machines on a network.  Therefore, we must establish which ports are important 
for us to monitor.   

To determine the important ports to monitor and thus determine the 
beginning architecture of our neural network, we  have a architectural learning 
phase before our normal neural network learning phase.  We first establish an 
architectural multiplier F wich is multiplied by the time interval t to develop 
the length of our architectural learning phase.  The network traffic is then 
observed for F* t time, which the number of times source hosts access the 
many different ports on the target machine is cataloged.  The ports accessed in 
this period of time form the set A.  In the beginning the administrator gives the 
architectural learning phase a list of known ports to watch (the set KP), the 
number of extra ports the algorithm can choose to add to the KP list ep, and the 
number of source clusters the system should develop sc.  At the end of our 
architectural learning phase, the known ports given in the beginning is weeded 
out from the accessed ports into a set of remaining ports (REMAINING = A - 
KP) and the top ep ports are taken from the set REMAINING to complete the set 
of ports that will be monitored by the system which is called the finalset 
(FINALSET = KP 4 max(ep, A – (KP 3 A))) where the function max(x, Set x) 
returns a set containing the x highest elements of Set S. 
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Figure 3 – Process of obtaining FINALSET 

The above figure shows that the administrator first chose ports 21, 22, and 
23 for set KP, at the end of F* t, set A contains the ports and the number of 
hits the machine received during F* t.  The administrator also told the 
architectural algorithm to add 2 extra ports.  With that information, the final set 
Final Set now contains KP and extra (2) highest elements of A which are ports 
25 and 80. 

Any machine on a network usually receives some type of connections from 
other hosts that are either from the same subnet or from a different subnet.  With 
this fact it was decided to gather port information on a per source basis during 
the beginning of the neural network learning phase of the project.  This phase 
gathers the total hits per source to the monitored machine during interval t.   
The total hits to the ports in FinalSet, per source, creates an input size of N * M 
for the neural network, where N is the number of ports in FinalSet and M is the 
number of sources seen in t. The first M nodes of the neural network’s input 
receive the totals of the hits to the ports in FinalSet, from the first source.  The 
next M nodes will receive the respective totals for the second source in the same 
order as the first. An example of this architecture where there are 4 sources 
(N=4) and 5 ports (M=5) from the FinalSet from the previous figure can be 
found in the following figure.   
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Figure 4 – Neural Network with 4 sources 

Gathering total hits per source during t creates a problem for the neural 
network.  The number of sources received may change frequently from interval 

t to interval t, creating different sizes in the number of inputs the neural 
network would receive.  For example with a FinalSet containing 4 ports:  
 

At the end of the first t, 3 sources made connections to destination x, 
creating an input size of 12 for the neural network.  At another t, 6 
sources made connections to destination x, creating an input size of 24 
for the neural network. 

 
This is a huge problem for the multilayer feed forward perceptron due to the fact 
that the neural network is created on a static set of inputs, making it inflexible to 
the number of input it receives.  This inconsistency at any given t, of the 
number of sources seen, renders the neural network useless.  At any given point, 
the observed source quantity could rise far above or sink far below the N input 
nodes used by the neural network.  To allow for this incompatibility, the N 
sources are expanded to represent N clusters or N classes of sources.  Source 
traffic data, which is the hits to the monitored ports, is aggregated into the 
appropriate clusters and the aggregate cluster statistics are used as inputs to the 
neural network.   
     The technique used to cluster the source traffic data, is done by a self-
organizing map, which selects the cluster to which the source traffic data 
belongs.  Only data gathered per t is clustered together if possible and is 
placed as input for the neural network.  For example, if there are only 3 inputs to 
the neural network, and there are 4 sources in one t, the self-organizing map 
would place each source’s data into one of the 3 clusters and then aggregate the 
data in the clusters.  This aggregation of the data will then be sent to the neural 
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network for analysis. This clustering approach would guarantee that no matter 
the number of sources obtained per t, the input to the neural network would 
remain fixed to N * M input nodes in which N is the number of cluster/classes of 
sources and M is the number of ports monitored on behalf of the target.  After 
collecting all of the information and clustering by traffic from the sources, the 
neural network is then trained on the data, in order to make decisions during 
implementation of whether the data currently being looked at is an attack or not. 

 

Figure 5 – Example of clusters of sources as input for the neural network 

     Figure 5 is an example of a graphical representation of the neural network 
containing 3 clusters of aggregated sources and their hits to the monitored ports, 
as input, one hidden layer and one output layer which outputs if the data seen 
has attributes of an attack or if it has attributes of normal traffic to the host.   The 
self-organizing map is the tool that decides which cluster to put the source hit 
information.  That is the reason why source 1 is in cluster 3 and source 5 is in 
cluster 1. 

CONTRIBUTIONS MADE TO THE PROJECT, PHASE I 
      
Collecting Data files 
     In the beginning, in order to create the architectural learning phase and the 
introductory phase of the neural network learning phase, network traffic had to 
be gathered, which came from the DARPA Intrusion Detection evaluation 
program 1999 data set.  The DARPA Intrusion Detection evaluation contained 5 
weeks of sniffed network traffic.  Of those, the data collected were the 4th and 5th 
weeks of sniffed network traffic.  These two sets of data were selected since 
they both contained network-based attacks, normal network traffic, as well as 
documentation about the names of the attacks, start time of each attack, and the 
duration of each attack. This data is helpful, for the reason that in training the 
neural network, it needs to be given examples of both normal and abnormal 
behavior so that it can make decisions about the data it receives after training.  If 
the neural network were trained on only normal data, it wouldn’t be able to 
make decisions about an attack since the training data didn’t contain any attacks.  
If the neural network were trained on only attacks, it would give flag everything 
it sees as an attack being biased on the data that it was trained which was on 
attacks.  Based on those two facts, the neural network needs to be trained on an 
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even number of both normal and abnormal traffic.  Each data file obtained from 
the evaluation program consists of sniffed network traffic starting at 8:00am one 
day and ends 6:00am the next day.  The files obtained are in binary format, 
where the only way to view the contents of the files are by running tcpdump (a 
network sniffing tool) on the contents of the file.  
 
Gather.java 
     During this phase, work was being done in the projects/intrusion space on the 
machines in the department to ensure that there was enough space for work on 
this project.  A problem with working in the intrusion space was that there were 
no access to the tcpdump program that will allow access to the contents of the 
sniffed network traffic.  Therefore, it was created on a Linux machine (where 
unlimited access to tcpdump was available), which ran tcpdump as a process and 
opened the binary files and created a simplified parsed version of the file in text 
format.  Tcpdump was run using the format: tcpdump –qnttr <filename>.  The 
most important option used to run tcpdump is the tt option.  This option prints an 
unformatted timestamp for each packet.  Normal timestamp in tcpdump is 
written in the hh:mm:ss.microsecond format, while the unformatted tcpdump 
format is the number of seconds since 1970.  Parsing of the data contained in the 
binary files by the program created a smaller of the file containing only the 
information of the packet pertaining to the project, which were the timestamp of 
the packet, who it came from, who it was destined to and the port that the packet 
was destined: 
 

Original data in the binary file were in the format 
922713037.440370 135.13.216.191.1559 > 172.16.114.148.21: tcp 0 [tos 0x10] 

 
Parsed data in text file 

922713037.440370 135.13.216.191 172.16.114.148 21 
 
Each field in this new file is important to the collection of source data for the 
neural network.  The timestamp is used to aid in the differentiation from attacks 
and normal traffic, since information about the attacks that are in the binary file 
were documented on the DARPA Intrusion Detection evaluation program and 
separating the traffic based on the timestamp of the packet would be the only 
option.  Also, the timestamp of the packets are used to help manipulate the 
intervals for collection of the data for the neural network.  The source is 
important, being one of the basis for the collection of hits to the ports, since the 
clustering techniques uses the information gathered per source to create 
correlations between the collected data.  The destination is also important simply 
being, the machine that will be monitored by the system.  Lastly, the port 
number is important in keeping track of the number of times there were hits to 
the ports by different sources during a specific time interval.  The extra fields 
about each packet aren’t needed, given that they are not used for implementation 
of the project. 
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Configuration file  
     A configuration file called Neural.config was created that contains 
configuration information for the collection of data for the neural network.  This 
configuration file contains all of the information about the attacks pertaining to 
the data file that the attacks occurred.  The premise behind creating this 
configuration file is to be able to run the finished project once on a data structure 
that contains all the information needed for data collection.  This configuration 
file supplied information that is used to help gather the hits to the ports for 
attacks that is given to the neural network, such as the binary files to use, the 
name of the attack, the start time of the attack, and the duration of the attack. For 
each file, the date of the binary file is needed to help convert the start times of 
the attacks to the same unformatted time stamp used when tcpdump was run to 
create the parsed data file.  This file can contain as many information about the 
binary files as needed: 

 
 

Figure 6 – Example of configuration file 

GetConf.java 
     GetConf is used to read the configuration file and set up the data structures  
to start the collection of source data for the neural network.  The program can be 
run by:  
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javac GetConf <configuration file><host you want to monitor><port 1>…<port 
n><number of extra ports to get><interval for architectural learning><interval 

t>.   
• Configuration file - The program reads the attacks from the specified 

configuration file.  By looking at figure 6, it can be seen that there is a 
delimiter # between each file.  The delimiter is used for the to help in 
the collection of sets of data. The data between the delimiter is read 
first, put into a data structure for accessibility, and then sent to the data 
collection process.  On return, the process is repeated for every attack 
instance that is recorded in the file.  

• Host you want to monitor – This is the IP address of the machine that 
the number of hits per source is collected for. 

• Port 1…Port n – This is the set KP that the administrator chooses. 
• Number of extra ports to get – The architectural learning phase uses 

this number to obtain the FinalSet list that was explained above.  
Before the FinalSet list is created, a check is made to see if at least 
extra number of ports active at the host.  If the total has not met the 
minimum needed, then the remainder needed is randomly chosen to 
fulfill the amount of ports to be monitored for the host.    

 

Figure 7 

For the figure above, the administrator entered 3 ports (shown in the 
Ports Given table), and is requesting 3 extra ports. At the end of the 
architectural learning interval, only 3 ports were found that were active.  
The results for ports to monitor will (shown in Ports to Monitor) the 
ports given by the administrator, along with the 2 ports that are not 
from the set of given ports and a random port number.  Altogether, 
there will be 6 ports that will be monitored at the host machine. 
 

• Interval for architectural learning – This parameter sets the length of 
the architectural learning phase.  At the end of this phase, the FinalSet 
list is formed. 

• Interval t – The collection of hits per source is collected ever t 
time interval.  At the end of each t the results collected are put into a 
data structure for later use. During this interval, the number of sources 
varies from interval to interval, varying from 0 to N.  There can be no 
sources seen in certain time intervals for two reasons, one being the fact 
that no source might be communicating to the host at that time, and the 
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other being that there is communication between a source and the host, 
but not to any of the ports in the list of ports that are being monitored.  
Those connections to the ports not being monitored cannot be added to 
the list since adding them will change the architecture to the neural 
network, requiring new training of the network, as explained above, the 
input to the neural network is fixed and changing the input will render 
it useless, unless the architecture is changed. 

 
     As the data is gathered per source according to the ports that are being 
monitored, at the end of each interval, the data is placed into a data structure for 
later use.  The data collected containing normal packet behavior is placed into a 
separate data structure than the data collected containing attack packets.  These 
two data structures will be used to distinguish the attack data from the normal 
data, when they are sent to the neural network for training.   
 
Parse.java 
     The backbone to the collection of the data for clustering and input to the 
neural network is the file. In the beginning the FinalSet is found during the 
architectural learning phase for the architectural learning phase time interval.  
After this phase has ended, the collection of normal and attack data structures 
can be formed.  For normal data, source data is collected every t interval.  At 
the end of each t, the data is placed into the normal hits data structure.  Attack 
data is collected a little differently than the normal data, since attack data needs 
the start of the attack and the duration of the attack to help in the collection of 
attack information. To collect the hits to the monitored ports per source in an 
attack, if the time timestamp for the incoming packet matches the time for which 
an attack starts, the hits per source is gathered every t interval during the 
length of the attack.  This process guarantees that some normal traffic will be 
aggregated together with the traffic of an attack because if the interval for 
normal traffic has not ended before the attack started, then in order to keep the 
integrity of the algorithm, using a consistent time interval, the normal data needs 
to be merged with the attack data.  If an attack ends before t time period ends, 
then the remaining time is collected and saved as an attack.  The gathering for 
the attack does not end if the attack ends before t ends due to the fact the data 
is collected every t time interval and the integrity of the data collected during 
this process needs to be consistent throughout the whole application. 

 

Figure 8 

Figure 8 is an example showing that the attack started during the 1st t where 
normal data was being collected, and ended at the end of the last interval.  



 
 

14 

Before the attack started the data gathered is normal, but since the attack started 
during the time the normal traffic was gathered, the group of sources will now 
not  be seen as normal data but be seen an attack data.  If not, it will cause 
inconsistencies in the data to train the neural network, where each data per 
source will be of different intervals.  To prevent this, the data is transferred to be 
part of an attack, meaning, the data collected during the attack in this figure is 
during a total of 3 ts instead of 2 or 2.5.  The next figure shows a similar 
example as above with the difference of the attack starting at the beginning of 

t and ends before another t ends; but the same premise stays with there 
being 3 intervals of the attack. 
 

  
 

Figure 9 

ConvertTime.java 
     In order to use the time given for the start of attacks, they need to be 
converted to the same format as the unformatted timestamp from above.  In 
order to do so, the date obtained from the configuration file is needed, and is 
merged with the time of the attack.  The final result is the unformatted time for 
the attack, which can be used to determine if an attack is occurring. 
 
 
CONTTRIBUTIONS MADE TO THE PROJECT - PHASE II 
 
     The programs created in Phase I is used in Phase II, with a few minor 
changes. The first change is that Gather.java is no longer needed.   This is 
because the project has been moved to a set of machines that allow access to the 
tcpdump program, which will enable direct use of the binary files without 
having to convert it to another format before it can be used.  Not doing that 
process decreases the run time of the project where doesn’t have the overhead of 
creating and reading from multiple files. With the removal of Gather.java, 
GetConf.java has been changed to run tcpdump using the same flags of –qnttr ,  
on the binary files listed in the configuration file, and use the stream outputted 
from tcpdump, to read the packets from the network data.  This way, it would be 
easy to use this system on a network, for the fact that it is configured to run 
tcpdump as a process allowing the collection of real-time network data.  The 
second change is also added to GetConf.java, to combine the data structures 
containing attacks and normal traffic, and convert that structure to a binary file.  
This is done, so that if the same data is needs to be accessed multiple time, it 
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should not be required to run everything from.   After the data is collected, it is 
sent for clustering to create the inputs for the neural network. 
 
STEPS TO OBTAINING RESULTS 
     Alan Bivens is wrote the Self-Organizing clustering technique to cluster the 
data for the neural network.   Based on the data it uses for training, the self-
organizing technique, decides the number of clusters to develop as well as which 
cluster the data belongs to.  After the number of clusters is decided, that number 
become static, since the number of clusters will be the number of inputs for the 
neural network.  Then as new data is read by the self-organizing technique, it 
decides to which cluster the data belongs, which is based on previous statistics 
obtained through creating the initial clusters, After the cluster is chosen for 
where the data belongs, the aggregation of the sources as explained in the 
introduction is done, and then the aggregation is sent to the neural network, for 
training.  After training, the neural network will be tested to see if it can 
determine if the network traffic or not, by sending it the clustered data of new 
instances that it has never seen before. 
 
 
CURRENT RESULTS 
    After all of the information is gathered for attacks and non attacks and put 
into their prospective data structures, the results about the source information 
received is shown below: 

 
           

Figure 10 – On the left for time interval 40 seconds there were 2 sources 
captured.  On the right for another interval of 40 seconds, there was only 1 

source captured. 

This data containing the hits to the ports are the data that clusters the sources 
together for each interval.  On input for clustering, the self-organizing map is 
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given a total of 50 normal traffic and 50 abnormal traffic on data similar to 
figure 10.  Based on the data it received, it formed 3 clusters.  The self-
organizing map then decides to which cluster does the sources in each interval 
belong.  For example: from the above figure, and put both sources into cluster 2.  
Since there are 3 clusters and both belong to the same cluster, their data is 
aggregated together and sent to the neural network.  At the neural network, input 
1 which represents cluster 1 will contain values of 0s, input 2 which represents 
cluster 2 will contain the aggregated values from the sources, and input 3 which 
represents cluster 3 will contain values of 0s.  After enough data is sent to the 
neural network, it can then be trained and tested to see if it can distinguish 
abnormal data from normal data. 
 
FUTURE WORK 
  The only job that needs to be accomplished is the training and testing of the 
neural network to see what decisions it makes about the problem of 
distinguishing normal traffic from abnormal traffic.  If it is discovered that it 
cannot make any correct decisions, then the actual structure of the neural 
network might probably need to be changed or the information that is being 
collected for input to the neural network might need to change.  If so more work 
will be done in trying to perfect a system that uses a neural network for intrusion 
detection. 
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