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ABSTRACT

The purpose of this research is to study the structure of social networks with an

added temporal element. Specifically, we examine dynamic community behavior

within social networks. We base our experiments on a simple theoretical foundation

which allows us to efficiently identify dynamic community evolutions. Based on this

framework, we empirically study evolutions in large social networks and structural

features of evolutions across all networks. Results show that structural properties

remain similar across multiple social networks and it is possible to correlate the

lifespan of a community to specific features of its early evolution.

We also develop a framework for generating social networks with structures

similar to those found in real world systems. Using this framework, we examine

the behavior of evolution detection algorithms in full networks and more isolated

situations. Finally we examine the robustness of our developed community evolution

tracking framework in noisy systems.

viii



CHAPTER 1

Introduction

Extremely complex systems can arise from the interactions between a group of

entities. These systems could involve people interacting via friendships and conver-

sations, words that occur in the same documents, or proteins that bind with one

another. Understanding the structure and characteristics of these systems provides

insight into the underlying mechanics of the system. Unfortunately, these systems

are frequently extremely large and complex. Advances in technology have been es-

pecially responsible for both an increase in the size of some interaction systems and

an increase in the ability to accurately and efficiently represent and document those

systems.

The study of interaction systems has classically focused on representing them

as a single, static network. There have been many approaches to understanding

the structure of these networks, one of which involves detecting a mesoscopic, com-

munity structure. A community is a group of entities or vertices that share some

characteristic or interest and can therefore be considered a single entity in some

respect. The community structure of the network simply provides a large reduction

in the number of entities to consider in order to understand the network, from the

number of vertices to the number of communities. For example, it is often easier to

understand a political voting system when considering the voting patterns of polit-

ical parties rather than looking at each individual voter’s actions separately. The

members of a single party typically have similar goals and beliefs, and hence end up

voting in a similar way.

Community detection algorithms try to recreate coherent groups of entities

based off of their interactions. To continue the political example, a community

detection algorithm would consider all of the votes cast by each member of Congress

and try to reconstruct the political parties. These algorithms are necessary because

helpful community structures are generally unknown for a vast majority of real world

networks. For instance, many complex biological [9] and economic [57] systems that

1
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can be modelled as interaction networks are not yet fully understood and have been

studied with such algorithms.

Time play a crucial role in many interaction networks. Congresspeople will

vote differently on different bills, proteins in biological processes will interact with

different proteins as the process, and stock prices are constantly changing. Modelling

these systems as a single, static network may miss important information. As a

simple example, consider three people, Alice, Bob and Eve, who decide to meet for

lunch. Bob tells Eve to meet at 12:00, but Alice later tells Bob to meet at 1:00. The

information cannot reach Eve unless one of Alice or Bob talks to her again. However,

if the two interactions were modelled in a static network, then Alice is shown talking

to Bob, who is talking to Eve, so there is a (false) line of communication from Alice

to Eve.

With the network changing over time, it is imperative to understand both

the structure of the network at any given point in time, and the dynamics of how

the network structure is changing. One way is to use a generalization of static

community detection approaches. In this report, we first describe a model for repre-

senting temporal networks and define a two step framework for tracking the changing

community structure in temporal networks. Specifically, we track each individual

community as it changes throughout the life of the network, calling it a community

evolution. In the first step, we detect continuously active community evolutions

using a simple, axiomatic framework. The second step merges these continuously

active evolutions together in order to detect community evolutions that may only

be periodically active.

We then use this framework to detect evolutions in real world networks and

use structural properties of the early stages of evolutions to predict how long it

will survive. Being able to successfully predict the survival time of evolutions may

allow algorithms to be developed that control the dynamics of the network in future

iterations. For example, if we can say that dense communities of proteins tend to

survive longer in a biological process, a process that to forces proteins to densely

interact with one another may succeed in making them last longer.

We also develop a framework for generating temporal networks which mimic
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many of the characteristics of real world networks, including having an embedded

community evolution structure. The ability to quickly generate networks with an

embedded evolutionary structure allows us to test and evaluate community evolution

detection algorithms quickly and efficiently. We use our framework to evaluate four

evolution detection algorithms on detecting single evolutionary events in isolation,

and complete evolutions in a multi step network. Finally, we test the robustness of

our framework on instances of temporal networks where some entities have unknown

identities.



CHAPTER 2

Related Works

2.1 Static Social Networks

Classically, social network analysis focuses on a single, static graph G =

{V,E,W} where the vertices V represent the entities of the social network and

the edges E represent the interactions between entities. In addition, there is a

weight function W : e ∈ E → R, which maps each edge to a real number represent-

ing the importance or strength of the interaction. Since much of the analysis and

algorithms used on static networks is easily applied or extended to the temporal

framework, we discuss some of the most popular metrics and methods used in static

networks. Throughout the rest of this report, we use the terms ‘network’ and ‘graph’

interchangeably, unless explicitly stated otherwise.

2.1.1 Network Characteristics

A number of structural characteristics have been found to be common in social

networks. These characteristics distinguish social networks from random structures

and provide quantitative metrics for comparing two networks. We quickly discuss

four of the main distinguishing properties here. A more complete treatment of the

structural differences between random and real world networks can be found in

reviews such as [49] and [59].

2.1.1.1 Degree Distribution

Social networks exhibit degree distributions that approximate power law as

opposed to the exponential distributions found in many random network models

[5, 13]. In a power law distribution, the probability that a vertex v is connected

to k other vertices is about k−γ. The appearance of power laws is classically mod-

elled using a ‘preferential attachment’ mechanism [5] (see Section 2.1.4), but the

underlying reasons for the appearance of power laws is still being studied [55].

Many other properties of social networks have been shown to follow power

4
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laws as well, including the clustering coefficient of vertices [83] and the eigenvalues

of the characteristic matrix [51]. In addition, slight deviations from the power law

have also been observed in social networks. In some systems, there seems to be

a soft maximum threshold on vertex degree, causing the distribution to be more

accurately modelled with an exponential cut-off [58]. Many other systems display

concavity in the log-log plot of vertex degree frequencies, which has been shown to

be closely modelled with a discrete Gaussian exponential [7].

2.1.1.2 ‘Small-World’ Property

The small-world property of social networks is more commonly known as the

‘six degrees of separation’ phenomenon, made famous by Milgram’s well-known

study [52]. A network is said to have the small-world property if, starting from

any vertex, any other vertex can be reached by traversing only a few edges in the

network. More specifically, if we define the distance between a pair of vertices in a

network as the length of the shortest path between them, the diameter of the net-

work is defined as the maximum distance over all pairs of vertices in the network.

The small-world property states that the diameter of a social network is very small.

The model of Watts and Strogatz [85] shows that this behavior arises due to a small

number of ‘short cuts’ in a network that might otherwise have a large diameter.

Because the diameter is a maximum, it can be susceptible to a single outlier.

As a result, an ‘effective’ diameter is usually considered. The effective diameter is the

minimum distance required to connect some fraction (usually 90%) of the vertices.

Calculating the exact effective diameter of a large network can be extremely time

consuming, however, as it takes time at least in O(N2) due to having to calculate

shortest paths between all pairs of vertices. The effective diameter is therefore

usually estimated using sampling [34, 69].

2.1.1.3 Clustering Coefficient

In social networks, it has been observed that if two vertices share a neighbor,

they are more likely to be connected to each other than vertices that do not share a

neighbor [30, 85]. The clustering coefficient was designed to quantify the degree to

which this phenomenon occurs in a network. The clustering coefficient of a node v
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is defined as the fraction of pairs of neighbors of v that share an edge [85]. Formally,

if there are t edges between neighbors of v and dv is the degree of v, the clustering

coefficient of v can be written as:

µv =
2t

(dv − 1)dv

There are a couple of different ways to characterize the global clustering of a

network G. One way is to simply average the clustering coefficients of each vertex,

so that

µG =
1

|V |
∑
v∈V

µv

The values calculated using this definition can be difficult to interpret due to vertices

with low degrees. Consider a vertex v with degree dv and only a single pair of

neighbors that share an edge. The clustering coefficient is then 2
(dv−1)dv

, which

evaluates to 1 for a vertex of degree 2, but quickly drops to only 1
3

for a vertex with

a degree of 3. The highly volatile clustering coefficients of the low degree vertices

can therefore skew the global clustering coefficient one way or the other.

There is an alternate formulation for the global clustering which is easier to

interpret and has cleaner mathematical properties [63]. Let ω denote the number

of ‘wedges’ in the network, defined as triples of vertices {u, v, w} where (v, u) ∈ E
and (v, w) ∈ E. If ∆ is the number of ‘closed wedges’, or triples where (u,w) ∈ E
as well, the clustering coefficient is simply ∆

ω
, or the fraction of all wedges that are

closed.

A number of extensions of the clustering coefficient to handle weighted and

directed networks have been proposed [74, 67, 18].

2.1.1.4 Community Structure

Entities in social networks that share a common interest, function or role often

tend to form densely connected groups called communities. It is even possible that a

hierarchical structure develops in a network where smaller communities are present

within larger ones. Communities have been observed in a wide variety of networks,

including the graph representation of the world wide web [19], social networks, and
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protein interaction networks [22]. The community structure provides insight into

organizational patterns and can help with understanding the underlying processes

of the network. The problem of determining the community structure of a network

has received a lot of attention in the past couple of decades and still remains an

active area of research.

2.1.2 Community Detection

While most network properties, such as clustering coefficient and diameter,

are directly calculable, community structures are more ambiguous. To begin with,

there is no specific, widely accepted definition of what a community is. Generally, a

community is understood as a set of vertices that are more densely connected with

each other than with other vertices in the network. Even with a specific community

definition, however, detecting all the communities in a network is frequently an NP-

hard task, and requires the use of an approximation scheme. As a result, detected

community structures are often highly sensitive to noise. Even so, community de-

tection has been successfully applied to a wide variety of fields including computer

networking [33], biology [9], and economics [57], with new algorithms constantly

being developed. In this section we review some of the most popular approaches to

community detection. More in depth reviews can be found in [88] and [20].

2.1.2.1 Local Search

A popular approach to defining a community is to use a heuristic function

that takes an arbitrary set of vertices and calculates a community ‘score’. If the

function returns a high score, the input set of vertices is considered to be a well

defined community. A community detection algorithm then searches for sets of

vertices in a network with the highest scores. Many different functions have been

investigated. For example, algorithms have been developed with statistical functions

[41], functions based on random walks [46], and density and conductance functions

[24, 39]. All of these functions only consider the local structure surrounding a set

of vertices when calculating the score, which allows for a quick computation time.

Detecting communities by calculating the heuristic on every possible set of

vertices from the network is computationally prohibitive. Instead, local search al-
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gorithms typically detect communities one at a time, starting from a given set of

vertices, commonly called a ‘seed’. Local search algorithms then proceed in a two

step process. The first step adds neighbors of the seed to the seed if doing so would

increase the community score of the seed. Similarly, the second step removes mem-

bers of the seed if the removal would increase the seeds score. The process continues

until a stopping criterion - usually a maximum community size or convergence of

the quality function - is reached, at which point the final set of vertices is considered

a community. In order to find the full community structure of a network, the pro-

cess is repeated multiple times, starting from seeds taken from across the network

structure.

All local search algorithms must consider two main issues. First, the set of

seeds chosen for the algorithm greatly influences the calculation time and accuracy.

Too many seeds will result in a long run time while not enough - or poorly chosen

- seeds will result in inaccuracy. More subtly, each algorithm needs to determine

the order in which new vertices are added to the seed and members are removed.

Simply adding the vertex that gives the largest increase in quality can cause certain

areas of the network to go unexplored.

2.1.2.2 Spectral Algorithms

Any algorithm that considers the eigenvalues or eigenvectors of a representa-

tive matrix of a network in order to find a community structure is referred to as

a spectral algorithm. Spectral algorithms typically deal with a characteristic ma-

trix of the network called the Laplacian. Let A be the adjacency matrix where

Aij = Aji is the weight of the edge from vertex i to vertex j. In addition, let

D be the diagonal matrix with Dii =
∑

j Aij. The unnormalized Laplacian of a

network can then be written as L = DA. There are multiple ways to normalize the

matrix, including Lnorm = D−
1
2 LD−

1
2 or Lnorm = D−1L, but the basic approach to

community detection remains the same regardless of which version of the matrix is

considered.

Once the Laplacian for a network is constructed, spectral algorithms calculate

the k eigenvectors corresponding to the k smallest eigenvalues of the Laplacian. The
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rows of the nk matrix constructed by combining the eigenvectors are then considered

as data points in Rk and are clustered using more traditional methods such as

fitting Gaussian mixture models [47]. It may not be immediately clear why the

spectral method of community detection even works, but analyzing the eigenvectors

of a graph Laplacian had been equated to approaches such as minimizing cuts in a

network [84] or maximizing modularity [86].

The main downside to spectral clustering is that the number of communities

present in the network, which is almost always an unknown value for real world

networks, must be passed as an argument. The algorithm could be run multiple

times, detecting a different number of communities each time, but this approach

relies on a heuristic method to determine which run has the best results and can

require significantly more computation time. Still, the spectral approach remains

popular since approximations can result in very fast algorithms and the method can

utilize existing linear algebra software.

2.1.2.3 Hierarchical

Hierarchical community detection algorithms attempt to capture the struc-

ture of a network at different scopes. One common example used to motivate the

approach is that students at a university may be grouped into classes at one level,

department at a higher level, and even by institution. Hierarchical algorithms fall in

one of two categories - agglomerative and divisive. Agglomerative algorithms start

with a large number of small communities and iteratively merge similar communi-

ties together until only a single community consisting of all vertices in a network

remains. Divisive algorithms proceed in the opposite direction, starting from a

single community consisting of all vertices and iteratively splitting it into smaller

communities until the communities become small enough.

The main difference between hierarchical algorithms is the criteria used to

merge or split communities. Some algorithms merge small communities simply

based on the weights of edges between communities [76, 35] or use a more global

method such as modularity [59], while some use a variation of centralities [27] to

split a network into communities. The process of these algorithms can be visualized
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Figure 2.1: A sample weighted network and the accompanying dendro-
gram for single-link hierarchical clustering based off of edge
weights. The horizontal dotted line represents the cut in the
dendrogram associated with breaking the network into two
communities - {A,B,C} and {D,E, F,G}

using a dendrogram, like the one shown in Figure 2.1. A single, flat community

structure can be retrieved by considering the structure at some horizontal point

in the dengrogram. A heuristic function, such as modularity, is typically used to

determine where the optimal point of the dendrogram lies.

2.1.2.4 Other Algorithms

One of the first algorithms to allow for overlapping communities was clique

percolation [1, 15]. A clique in a network is a set of vertices that are all connected

with one another. A k-clique is a clique of k vertices. In the method, two k-cliques

are considered adjacent if they share k − 1 vertices. For a given k, a community is

defined as a maximal set of k-cliques that can reach each other by moving through

adjacent k-cliques. This can be an overly strict definition in many applications, and

finding all k-cliques in a network can become computationally prohibitive.
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Label propagation has also been used for community detection [28, 90]. In

these algorithms, each vertex starts as its own community, being associated with a

unique community label. The algorithms then proceed iteratively, with each vertex

randomly sending community labels its neighbors. Each vertex also tracks the labels

that it has received from its neighbors and, after a certain number of iterations, is

assigned to communities whose labels have been received enough times.

2.1.3 Evaluation

2.1.3.1 Extrinsic Metrics

When evaluating a community structure, extrinsic metrics require a knowledge

of the actual communities in a network, commonly referred to as the ‘true’ commu-

nity structure or the ‘ground truth’. A detected community structure is considered

good if it comes close to reproducing the ground truth. An accurate, useful and

efficient definition of ‘close’, however, is difficult to attain and many different defi-

nitions have been proposed. In this section, we describe some of the most popular

metrics used for evaluating the quality of an overlapping community structure.

Set Matching

An intuitive and popular approach to evaluating community structure is to

find a one-to-one matching from the detected communities to the ground truth

community structure [22]. If a pair in the matching is strong enough, the true com-

munity is considered to be recovered by the detected structure. Detected commu-

nity structures that recover more ground truth communities can then be considered

more accurate. We only consider one-to-one matchings in this report, but similar

approaches can be used with one-to-many matchings.

To construct a matching and determine the closeness between any two com-

munities, we use a similarity function, S(·, ·), which takes, as input, two communi-

ties, A and B, and produces a numeric value. The function should be symmetric

(S(A,B) = S(B,A)) and represent either a similarity or distance between the two

communities. There are many ways to define such a function (see Table 2.1). The

choice of function will affect the actual results of a comparison, but does not af-
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Table 2.1: Possible metrics for the similarity between two communities,
A and B, in set matching.

|A∩B|
|A∪B| Jaccard Index

2|A∩B|
|A|+|B| Sorenson Coefficient

|A ∩ B̄|+ |Ā ∩B| Edit Distance (no swapping)

H(A|B) Entropy

fect the procedure. Also, if S(·, ·) is asymmetric, similar metrics can be defined

as long as the asymmetry is taken into account. Let T = {T1, T2, . . . , Tk} be the

true community structure of a network and C = {C1, C2, . . . , Cn} be a community

structure detected by an algorithm. A matching is constructed by first calculating

the similarity value between every true community and every detected community,

S(Ti, Cj)∀i,j . This requires computing kn values, which can become computation-

ally prohibitive if done explicitly, depending on the choice of S(·, ·). In practice,

many of the pairs may have a zero value (especially for similarity measures), and

the efficiency can usually be improved by indexing communities in order to skip

such pairs. Once all values are known, any bipartite matching algorithm can then

be used to construct a one-to-one matching from communities in T to communities

in C that either maximizes similarity or minimizes distance. If one set of commu-

nities is larger than the other, there will be unmatched communities. We assume

that these communities are artificially mapped with an empty community. Given

such a matching, M , let M(Ti) represent the community that is matched to Ti (and

similarly for a community Cj ).

If S(·, ·) is a similarity measure and γ represents a user defined threshold,

the communities in T and C can then be grouped into three categories: true pos-

itives, which are Ti where S(Ti,M(Ti)) >= γ, false positives, which are Cj where

S(Cj,M(Cj)) < γ, and false negatives, which are Ti where S(Ti,M(Ti)) < γ. The

corresponding definitions for a distance measure simply reverse the inequalities.

Each of these groups, taken independently, gives a very narrow view of the commu-

nity structure quality. For instance, if we just considered true positives, a structure
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that included every possible community would be optimal. Two slightly more useful

metrics that combine these values are precision (true positives / (true positives +

false positives)) and recall (true positives / (true positives + false negatives)). Both

have a restricted range of values ([0, 1]), but taken separately, these two metrics still

have drawbacks - detecting a single true community out of 100 returns the maximum

precision. Going one step further, the F1 score is defined as

F1 = 2

(
precision× recall
precision+ recall

)
and also ranges from 0 to 1 with higher scores more desirable. This metric is sym-

metric, and can therefore be used as a choice for S(·, ·) where vertices are considered

in place of communities. The score can also be tuned to weight the relative impor-

tance of precision or recall, but the metric then becomes asymmetric.

More complex measures can also be constructed from matchings, such as nor-

malized mutual information (NMI). Developed by borrowing concepts from infor-

mation theory, the measure tries to quantify the amount of information that is lost

from the true community structure when only considering the detected community

structure. It was originally proposed for evaluating partitions in [50], the metric

was extended to consider overlapping structures in [39]. The metric was further

developed in [48] to fix unintuitive behavior when the community structure sizes

became disparate. This version of NMI is defined as (see Appendix A for an in

depth description):

NMI(X, Y ) =
1
2
(H(X)−H(X|Y ) +H(Y )−H(Y |X))

max(H(X), H(Y ))

Pairwise Evaluation

In [72], the authors propose a method for comparing partitions, where each

vertex is assigned to a single community, that considers pairs of vertices. If a pair

of vertices share a community (or are in different communities) in both the true

partition and in the detected partition, then the pair is considered to be correctly

recovered. The metric, called the Rand Index, is simply the ratio of correctly re-

covered pairs to the total number of vertex pairs,
(
N
2

)
. It was shown that the Rand
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Index suffers from a bias due to the fact that some fraction of vertex pairs will be

correctly recovered even in random community structures. A normalized version of

the measure, called the Adjusted Rand Index, was proposed in [32] to remove this

bias.

The Adjusted Rand Index is unsuitable for overlapping community structures,

however, where pairs can share multiple communities. To account for this, an ex-

tension called the Omega Index was proposed in [14]. For a pair of vertices to be

correctly recovered in this case, they must share the same number of community

memberships in the detected structure as they do in the true structure.

While recent studies have used the Omega Index as a way to evaluate over-

lapping community structure (see [56], for instance), the definition of a correctly

recovered pair can be extremely harsh. In the case where two vertices share 6 true

communities, but are detected as sharing only 5, the pair is not considered to be

correctly recovered. It would be treated with the same importance as a pair of

vertices that truly share a single community, but are detected as sharing 6. A mea-

sure similar to the Omega Index, named Bcubed, that takes this into account was

proposed in [3].

The Bcubed measure is defined in terms of the ‘multiplicity precision’ and

‘multiplicity recall’ of a community structure. Let T(u) (similarly C(u)) be the set

of communities that vertex u belongs to in T (resp. C). Then, the multiplicity

precision and recall of a pair of vertices u and v are defined as:

Pre(u, v) =
Min(|T(u) ∩ T(v)|, |C(u) ∩ C(v)|)

|C(u) ∩ C(v)|

Rec(u, v) =
Min(|T(u) ∩ T(v)|, |C(u) ∩ C(v)|)

|T(u) ∩ T(v)|

It is important to note that the precision value is only defined when the two

vertices share at least one detected community and the recall value is only defined

when the vertices share a true community. To get the final Bcubed precision and

recall values, the defined pairwise precision and recall values are simply averaged:

BcubedPre = Avgu
[
Avgv,|C(u)C(v)|=0(Pre(u, v))

]
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BcubedRec = Avgu
[
Avgv,|T (u)T (v)|=0(Rec(u, v))

]
2.1.3.2 Intrinsic Metrics

Unfortunately, the ground truth communities are frequently unknown in real

world networks. Intrinsic metrics focus on the structural properties of the given net-

work in order to determine the quality of a community. Many different community

quality functions have been proposed, such as the density or conductance, and the

quality of a full community structure is usually an average, maximum, or equivalent

statistic of all community quality values. Personal preferences and structural prop-

erties of the network being studied usually dictate which quality measure should be

applied.

Modularity

One of most popular and widely-used measures is called modularity, originally

developed to analyze graph partitions [62]. The quality of a graph partition has

classically been corresponded with the cut size of the partition, defined as the num-

ber of edges that connect vertices from different sets of the partition. Since the goal

is to split the graph into strongly cohesive components, a smaller number of such

edges signifies a better partitioning. Conversely, a larger portion of the edges of the

network should reside within the partition sets.

A community is considered well defined with respect to the modularity measure

if the number of edges connecting vertices inside the community is significantly larger

than what would be expected in a random ‘null model’ graph. The actual values

and usefulness of the measure depend on what type of graph is chosen as the null

model. The most popular choice for a null model has become the configuration

model, which randomly rewires the edges of a network while keeping the vertex

degrees constant. Random graph models are discussed more in Section 2.1.4.

Suppose we have determined or been given a community structure on a graph

with the adjacency matrix A. Assume the network is unweighted and undirected in

this case, so Aij is defined to be 1 if there is an edge between vertices i and j in the

network and 0 otherwise. Also, let δ(i, j) be defined as equal to 1 if vertices i and
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j are assigned to the same community and 0 otherwise. The probability that two

vertices are connected in a random network using the configuration model is
kikj
2m

(in

the limit of large m) where m is the total number of edges in the network and ki is

the degree of vertex i. Modularity is then defined as

Q =
1

2m

∑
ij

(
Aij

kikj
2m

)
δij

Modularity has been criticized with regards to issues such as interpretation

[29, 73, 25] and resolution limits [21, 38]. Nevertheless, it has been used successfully

in a number of algorithms and applications [39, 60, 12], and has also been extended

to consider directed and weighted networks with overlapping communities [42, 64].

2.1.4 Network Generation Models

Real world networks can be difficult to acquire, both from the practical stand-

point of having to collect all the data and the moral issues such as privacy concerns.

Random network generators offer an alternative. A good generator can help with a

number of tasks, including testing algorithms and simulating processes in different

network structures, network compression, and anonymization.

Any discussion of random networks begins with Erdos-Renyi networks [17],

where, to generate a network with N vertices, each of the
(
N
2

)
possible edges is

generated with the same probability. Unfortunately, the characteristics of networks

generated this way do not display the distinctive characteristics of real world social

networks. For instance, the degree distribution of an Erdos-Renyi network generally

follows a Poisson distribution as opposed to the power law distribution commonly

found in real world networks. As a result, numerous models have since been devel-

oped with the explicit goal of modelling specific characteristics of social networks.

The model of [85], which we refer to as the WS model, was developed to

capture the small-world properties of social networks. In the model, the vertices

are first organized in a one-dimensional lattice, and each vertex is connected the k

vertices immediately to either side of it. Next, each edge is rewired, with probability

p, to a random edge not already in the network. It was shown that with a small p,
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the clustering coefficient of the network remains relatively high while the diameter

of the network is reduced considerably. However, the degree distribution of these

graphs did not follow a power law.

The preferential attachment model (PA) [6] has become one of the most well-

known models for generating networks with a power law degree distribution. The

original PA model starts with a small number of vertices and then simulates network

growth by iteratively grows the network by adding a single vertex v connected to

m existing vertices at each step. An existing vertex is connected to the new vertex

with a probability proportional to the existing vertexs degree, resulting in a power

law degree distribution. Numerous extensions to this model have been developed in

order to capture different network characteristics such as clustering coefficient or a

slightly different degree distribution [2, 71].

While the PA model was developed to explicitly generate networks with a

power law degree distribution, the configuration model [54] was developed to gen-

erate networks with any given degree sequence. Given a specific degree sequence

{d1, d2, d3, . . . , dn}, the configuration model constructs disconnected ‘stubs’ for each

vertex where di stubs are generated for vertex i. Then, two disconnected stubs are

chosen at random to be connected until no disconnected stubs remain. Given a

degree sequence sampled from a power law, the resulting network will have a power

law degree distribution. The original formulation of the model allowed for self-edges

and multiple edges, although the probability of these edges being generated tends

towards zero as the number of vertices considered grows large and they can simply be

ignored in most cases. Alternatively, graph construction strategies that incorporate

‘forbidden’ edges [36] can be adopted. In addition, the model has been extended to

include a ‘triangle membership’ distribution in order to more directly control the

clustering coefficient of the network [61].

More recently, the Kronecker model has gained popularity [44, 43, 75]. This

model uses the Kronecker matrix product in order to produce networks that are

self-similar at different scopes. The general Kronecker matrix product is defined as
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A⊗B =


a11B a12B . . . a1kB

a21B a22B . . . a2kB
...

... . . .
...

an1B an2B . . . ankB


where A is an nk matrix and B is of any size.

The nth Kronecker power of a matrix A is then A⊗A . . .⊗A. The Kronecker

model can be seen as generating a probabilistic adjacency matrix by taking the nth

Kronecker power of a small (usually 2 x 2) seed matrix with entries between 0 and

1. This produces a 2n x 2n matrix, An , with entries between 0 and 1, with the

value of n determined by the desired size of the network. To construct a realization

of the network, an edge is placed between vertices u and v with probability Anu,v .

The two main drawbacks of explicitly calculating the nth Kronecker power of even a

small matrix are the time required for the calculation and the fact that the network

must have a number of vertices that is a power of 2. Both of these drawbacks can

be averted using an equivalent, more direct approach described in [44].

None of the previously discussed network generation models have explicit com-

munity structure in the generated networks. One of the first models that incorpo-

rated community structure is that of Girvan and Newman [22], where each graph

has four groups of 32 vertices each. Similar to the Erdos-Renyi model, each possible

edge in the network is generated with some probability. The difference in this model

is that an edge between vertices in the same community is constructed with prob-

ability pin while an edge between vertices in different communities is constructed

with probability pout (with pin > pout ). However, networks generated with this

model are still missing many of the distinctive characteristics of real world networks

as each vertex has the same expected degree in this model, and each community is

the same size.

A more recent model was proposed in [40], which we refer to as the LFR model

or benchmark. The LFR model uses the configuration model described above. In

this model, each vertex is explicitly assigned to some number of communities and

given a specific degree. In addition, a global parameter determines what fraction
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of each vertexs edges is connected to vertices that share a community. Then, us-

ing the configuration model approach and the parameters given, a sub-network is

constructed for each community. Finally, the configuration model is used a second

time to construct edges that connected vertices between communities. While the

clustering coefficient is difficult to control in this model, the generated networks

portray a power law degree distribution, have a small diameter, and have a known

community structure. In addition, the model has been extended to weighted and

directed networks [37], and it has become one of the most widely used benchmarks

for clustering algorithms.

2.2 Temporal Networks

Many times, the connections or interactions between entities in a social net-

work change frequently over time. For example, researchers will co-author papers

with different colleagues and actors will co-star with different actors in different

movies. Representing such a system with a single, static network can lead to mis-

leading conclusions. Entities in the graph that appear to be closely related may, in

fact, be very distant with respect to time.

These systems can be more accurately modelled by temporal networks. In a

static network, an interaction can be represented by a triple < u, v, w >, where u and

v are the interacting entities, and w is a valuation on the strength of the connection.

In temporal networks, we consider an interaction as a tuple < u, v, t, δt >, where

u and v are still entities, t is the time that the interaction began, and δt is the

duration of the interaction. This representation captures more information about

the system, but it is difficult to visualize both the temporal and structural properties

of this representation. Figure 2.2 shows a few popular approaches. We use the

time-aggregated graph construction and visualization in this report. Specifically, we

assume all interactions take place within some time interval [0 . . . T ].

This time range is then uniformly partitioned into N time windows. The ith

time window is then τi = [(i − 1) T
N
, i T
N

). In addition, a graph corresponding to

each time window, G(τi) or just Gi, is constructed by only considering interactions

< u, v, tk, δtk > where the time interval [tk, tk + δtk] overlaps with time window
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(a) Time-line plot

(b) Time series

Figure 2.2: Two possible visualizations of a temporal network. In (a),
each vertical arrow is a single entity throughout time, and an
arc represents an interaction between entities. This layout
emphasizes the temporal characteristics of the network. In
(b), the time line of interactions has been broken into time
windows, and a graph has been constructed for each window,
emphasizing the structural features of the network.

τi . We refer to the sequence of networks {G(τ1), G(τ2), . . . , G(τN)} as a temporal

network.

The number of time windows used greatly influences the dynamics of the sys-

tem [10]. Choosing the ‘right’ number of time windows for any given system is

difficult. First, a formal definition for the ‘right’ number of time windows has to

be constructed. Then an efficient method of finding that interval needs to be devel-

oped. Current approaches analyze the compression ratios and variance of network

characteristic across time windows in order to determine time slice duration [77, 78].

We use manually determined time windows in this report.

2.2.1 Metrics

All of the static network metrics discussed in Section 2.1.1 can be used to

analyze each of the networks constructed within a single time window separately.
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However, the metrics that consider the full temporal network can provide insight

into the time dependent dynamics of the network. Due to the only recent rise

in popularity of temporal network analysis, the characteristic features of temporal

networks are not as well-established as those of static networks. In this section, we

describe some of the more prominent features of temporal networks to date and the

metrics that have been developed to quantify them.

2.2.1.1 Small World Property

Paths in static networks are based on the idea of adjacency of vertices. Two

vertices are adjacent if they simply share an edge. In temporal networks, adjacency

is time dependent, as vertices are only adjacent for the duration of an edge. Similar

to static, directed graphs, this means paths in temporal graphs are not reversible in

general. For example, consider the time series in Figure 2.2. The exists a temporal

path from B to A, first traversing the edge from B to E in the first time window,

waiting at vertex E during the second time window, and then traversing the edge

from E to A in the last. There are no such temporal paths from A to B, however.

Time respecting paths have two separate intuitive lengths. The structural length is

the number of edges traversed along the path, the same as in static networks. In

addition, there is a temporal length, which is the difference in time between the end

of the paths last edge and the beginning of the paths first edge. The example path

from B to A in Figure 2.2 would therefore have a structural length of two, and a

temporal length of three. The temporal distance between two vertices is defined as

the minimum temporal length of any path between the vertices. This distance can be

used in exactly the same manner as in static networks. The diameter of a temporal

network, for instance, is taken as the maximum temporal distance between any two

vertices in the network, and has been shown to be comparable to the diameter of

temporal networks [80].

2.2.1.2 Persistence

While edges typically do not persist across all time windows, it has been

observed that if an edge between two vertices exists in a time window k, there is

a non-negligible probability that it also exists in time window k + 1 [80]. This
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(a) Exponential (b) Power Law

Figure 2.3: Comparison between interaction streams with (a) exponen-
tial wait times and (b) power law wait times. The power
law wait times result in bunches of interactions mixed with
longer periods of down time.

characteristic was quantified by a measure called temporal-correlation coefficient in

[65]. For a single vertex i, the persistence of edges across two time windows, tk and

tk+1 , is quantified by looking at the overlap between the neighborhoods of i in the

two time windows. Specifically, the topological overlap is defined as:

ϕi(tk, tk+1) =

∑
j aij(tk)aij(tk+1)√

(
∑

j aij(tk))(
∑

j aij(tk+1))

The average temporal overlap is simply the average of this value across all

adjacent pairs of time windows:

ϕi =
1

N − 1

N−1∑
k=1

ϕi(tk, tk+1)

The temporal-correlation coefficient, which we denote as ϕ, is simply the av-

erage ϕi over all vertices. Values for ϕ in real networks have been shown to be

significantly higher than values in temporal networks where the time windows have

been randomly permuted [80].

2.2.1.3 Burstiness

Burstiness looks at the pattern of interactions between entities in a social

network. Human activities were originally thought to be homogeneous with respect

to time, like in Fig 2.3a. It has been empirically shown, however, that human

activities are overwhelmingly inhomogeneous, portraying a ‘bursty’ behavior [70, 16]

such as that in Fig 2.3b. The time between interactions, which we will refer to as wait
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times, have been found to approximate power law distributions while the lengths of

consecutive wait times have been found to be highly correlated [53].

We utilize the two measures were developed in [53]. Consider a set of N

interactions between two entities. There are N − 1 wait times between consecutive

interactions with a duration wi . The burstiness measure quantifies the difference

of the distribution of waiting times from a Poisson distribution using the coefficient

of variation. If µ is the average waiting time and σ is the standard deviation of the

waiting times, the burstiness parameter is defined as :

B =
σ − µ
σ + µ

A similar parameter is constructed to quantify the correlation between pairs of

consecutive wait times < wi, wi+1 >. This measure, called the memory parameter

is defined as :

M =
1

N − 1

N−1∑
i=1

(wi − µ1)(wi+1 − µ2)

σ1σ2

where µ1 and σ1 are, respectively, the mean and standard deviation of the wi values

and µ2 and σ2 are the same for the wi+1 values.

Both measures have values that range between -1 and 1. Higher values corre-

spond to a more bursty or correlated system. Negative values indicate a much more

regular system.

2.2.2 Temporal Communities

Community detection in temporal networks is usually focused on how com-

munity structure changes over time, or community ‘evolutions’. Typically, for each

time window τk, a community structure Ck = {Ck1, Ck2, . . . , Cknk
} is constructed

using any of the community detection algorithms for static networks (see Section

2.1.2). Some methods augment the static community detection process at time win-

dow k with information from the community structures detected in previous time

windows. Usually, a ‘temporal cost’ is introduced into the detection process, pe-

nalizing an algorithm for constructing community structures that differ too greatly
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Figure 2.4: Visualization of a community evolution. Each column is a
time window and each circle represents a community detected
in that window. The edges between communities represent
transitions that have been determined to be valid evolution
steps between communities in different time windows. The
shaded communities show a maximal length evolution of a
single community.

from previous structures [45, 11].

Once communities are detected within each time window, a second process is

used to associate similar communities across time windows. Groups of associated

communities are taken to be community evolutions. Many different techniques have

been used to quantify the similarity between communities, including using the Jac-

card Index [8, 23, 26, 79], properties of random walks [45], and graph coloring [82].

In addition, the time windows do not have to be consecutive, in general.

2.2.3 Temporal Models

Just like in static networks, random temporal network models are useful for ev-

erything from testing algorithms on a wide range of different structures to providing

a mechanistic explanation of different phenomena.

2.2.3.1 Randomized Null Models

All the different metrics developed for temporal networks attempt to quanti-

tatively capture some structural property. Taken independently, however, a value

for any metric is extremely difficult to interpret. For example, a high temporal

clustering coefficient value would be meaningless if a random sequence of random

temporal networks also displayed a high temporal-clustering coefficient. These met-
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rics are most useful when compared to a baseline value calculated from random

networks.

Baseline metric values are typically calculated using a class of random networks

that provide a ‘neutral’ representation of the structure the metric quantifies. In

static networks, the configuration model is able to construct networks that keep

the same degree distribution without implicit edge correlations, and was used to

derive the modularity measure. Therefore, if the value of a metric of a specific

network, such as the clustering coefficient, differs significantly from the value of the

metric applied to networks constructed using the configuration model with the same

degree distribution, the structural characteristics of the network can be considered

meaningful.

Random models similar to the configuration model have been used in temporal

networks to remove correlations between the timing of edges. These networks keep

the static structure of the network constant and permute the time stamps associated

with the edges. One approach permutes the ordering of time slices while another

randomly switches the time stamps between pairs of edges [31]. Both approaches re-

move temporal correlation between edges, providing a neutral structure to construct

baseline values for metrics such as burstiness or persistence.

It is also possible that the time stamps themselves follow a specific pattern

of interest. For instance, human circadian rhythms may cause interactions and

communications to concentrate around certain hours of the day. In this case, a

random model may pick new time stamps for each edge in order to investigate the

impact of overall timing structure on network dynamics.

2.2.3.2 Queue Models

Another class of network models attempts to construct networks with a specific

property or characteristic. In static networks, the WS model focused on networks

with a small diameter while preferential attachment models focused on power law

degree distribution. With temporal networks, the characteristic of interest is the

burstiness of interactions.

In [4], a simple model based on priority queues was proposed to explain bursty
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behavior. In this model, every entity in the network is modelled with a fixed-size

queue of tasks. Each task is also given a priority between 0 and 1, drawn from

a uniform distribution. The model then proceeds iteratively, removing the task

with the highest priority (representing the task being performed) and replacing it

in the queue with a new task with a random priority. The resulting waiting times

of tasks, measured by the number of iterations the task is in the queue, was shown

to approximate a power law with an exponent of about 1.

The original model only considers activity of single entities, not interactions

between entities. An extension of the model that incorporates interaction tasks,

where two entities need to execute the same task at the same time, was made in

[66]. The interaction task is added to both entities’ queues with random priorities

and is not removed until it becomes the task with the highest priority in each queue.

Extensions to the model, including interaction tasks that can be initiated by a single

entity and interactions requiring more than two people, were investigated in [53].

Many of the same properties where found in all models, with waiting times between

interactions approximating a power law with an exponent between 1 and 2.

2.2.3.3 Random streams

A third class of network models attempts to construct networks with struc-

tures that mimic all of the characteristics of real world networks. One of the simplest

approaches constructs a static network for each of the time slices. Any method of

network construction for static networks can be used for each time slice. Unfortu-

nately, this method does not construct networks with temporal correlations in gen-

eral, and the networks will not display burstiness or persistence. Extra constraints

in the static network construction or an extra post-processing step is required. A

more general approach assigns a generation probability to every possible edge in

every time slice [10]. If all probabilities are equal, a conceptual extension of the

Erdos-Renyi model for static networks is recovered.
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Community Evolution Framework

In this section, we develop an algorithmic framework for analyzing evolutions in

temporal networks. We call this the LOS-Temporal or LOST framework, as it stems

from work done on the static algorithm LOS [24]. We assume that a community

structure has been detected for the network in each window of a temporal network,

resulting in a sequence of community structures, {C1, C2, . . . , CN}. An evolution

is defined as a set of communities, with no more than one community from each

window, representing the different manifestations of a single community across time.

In order to construct meaningful evolutions, we first consider continuous evolutions,

where the communities are taken from consecutive time windows. We then merge

similar evolutions together in order to detect intermittent evolutionary structures.

3.1 Continuous Evolutions

We define a chain of communities as a set of communities from consecutive time

windows, {X0, X1, . . . , Xl}, that contains a single community from each time win-

dow. Detecting continuous evolutions in temporal networks can then be formulated

as finding meaningful or interesting chains. To determine if a chain is meaningful,

we assume that there exists a function F (·), which takes a chain of communities

as input, and outputs a strength value between 0 and 1. A higher strength value

should indicate a more meaningful chain. An evolution is therefore a chain with a

strength value above some threshold θ.

Even with the function F (·), detecting such chains is non-trivial. A brute force

search over all possible chains in a temporal network will quickly become computa-

tionally prohibitive as it is possible that there are an exponential number of chains.

However, efficient detection algorithms can be utilized as long as F (·) satisfies only

a few properties. These properties are:

Identity

27
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A chain constructed by repeating a single community X has maximal strength:

F (X,X, ..., X) = 1

Monotonicity

A chains strength is no larger than the strength of any subchain:

∀0≤i≤j≤l F (X0, X1, . . . , Xl) ≤ F (Xi, Xi+1, . . . , Xj)

Extension

Consider two evolutions that have a community in common, X = {X0, X1, . . . , Xl}
and Y = {Y0, Y1, . . . , Yk} where Xi = Yj for some i and j. The chain constructed

by extending the prefix of X up to Xi with the suffix of Y from Yj+1 is also an

evolution:

F (X) ≥ θ

F (Y ) ≥ θ
⇒ F (X0, X1, . . . , Xi, Yj+1, . . . , Yk) ≥ θ

These properties are intuitive and allow an evolution X to be defined simply as

a chain {X0, X1, . . . , Xl} where the strength of each consecutive pair of communities

is above some threshold (∀0≤i<kF (Xi, Xi+1) ≥ θ). Furthermore, it allows evolutions

to be characterized by F (·) functions that are only defined for pairs of communities

instead of chains of arbitrary length.

A direct consequence of this formulation is the basis for an efficient evolution

detection algorithm. If evolution X ends at time window k, it can be extended to

an evolution that ends at time window k + 1 by adding any community Y ∈ Ck+1

where F (Xk, Y ) ≥ θ. Therefore, in order to detect evolutions, the values of F (·)
only need to be calculated for all pairs of communities in consecutive time windows.

Evolutions can then be constructed one step at a time, in one pass of the data.

Naively calculating F (·) for every possible pair of consecutive communities can

still be computationally prohibitive. This can usually be avoided using a simple in-

dexing method to avoid wasting time on pairs of communities with a strength of zero.

Consider using the Jaccard Index to compare communities. If two communities do
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not share a member, their similarity will be zero. Naively comparing the member-

ships of pairs of communities with no similar members is therefore computationally

wasteful.

To make the computation more efficient, the indexing approach first iterates

through all the vertices of the temporal network and examines the communities it is

a member of. Each pair of communities in consecutive time windows that the vertex

is a member of is kept in a list. After all the vertices have been iterated over, only

the F (·) values for pairs of communities in the list are calculated. In theory, this

may not reduce the number of necessary calculations of F (·), but normally provides

a significant speed up in practice.

3.2 Combining Evolutions

It is possible that a community evolution is not manifested in consecutive time

windows, but is intermittently active. This can be due to any of a number of factors.

If the members of the community only interact periodically, the choice of time

window duration may be short enough that a full time window falls during a period of

inactivity. In addition, community detection algorithms may miss some communities

in each time window. Whatever the reason, if the evolution construction approach

described in the previous section is used, the evolution will be detected as multiple

disjoint evolutions.

To detect intermittent evolutions, we combine continuous evolutions in a sim-

ilar manner used previously to connect similar communities. Consider two continu-

ous evolutions, X = {X0, X1, . . . , Xl} and Y = {Y0, Y1, . . . , Yk}, where Xl is in time

window l, and Y0 is in a later time window t > l. To compare the two evolutions,

we assume there exists a function R(·) that calculates a feature vector for a given

evolution. We then define the similarity between evolutions as the cosine similarity

between the two feature vectors:

L(X, Y ) =
R(X) ·R(Y )

||R(X)|| ∗ ||R(Y )||

If the similarity between two evolutions is higher than some threshold, we merge

the two evolutions together into a single evolution {X0, X1, . . . , Xl, Y0, Y1, . . . , Yk}
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Figure 3.1: Calculating the M-value between two evolutions. The nodes
in the last three communities of evolution X and the first
three evolutions of Y are shown at the top, followed by the
specific calculation.

In the analysis in this paper, we consider a feature vector based on community

memberships of X and Y . Specifically, we only consider the last p communities of

X the earlier evolution and the first p communities of Y . If p is larger than the

length of either X or Y , we just consider whatever communities are present in that

evolution. To make certain that the feature vectors are the same length, we calculate

an entry for each vertex in the union of all considered communities. The entry for

vertex v is set to be simply the number of communities in the evolution which v

is a member of. Figure 3.1 shows an example calculation of the similarity between

evolutions where p is 3.
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3.3 Empirical Experiments

We use the evolution detection framework described in the previous section

to empirically study two real world networks: the DBLP co-authorship database

and LiveJournal (BLOG). Both data sets represent systems where groups of peo-

ple collaborate on a single object. In the DBLP data set, authors collaborate on

researching and writing an academic paper while in the BLOG data set, users col-

laborate in a conversation via comment threads. The publish date of the papers in

DBLP and the comment time of comments in BLOG are used as time stamps for

interactions. A time window of one year was used in DBLP (there are 19 total time

windows), while one week was used in the BLOG data set (66 total).

The same algorithms and thresholds were used in both data sets. Specifically

we use the LOS algorithm [24] to detect static communities within each time window.

To detect continuous evolutions, we use the Jaccard Index for the F (·) function:

F (X, Y ) =
|X ∩ Y |
|X ∪ Y |

Values of F (·) above 0.2 are considered valid for evolutions. To construct a threshold

for evolution similarities, we consider the set of all similarity values between evo-

lutions. We then define the threshold as the average of this set plus two standard

deviations in order to be confident that the evolutions merges are meaningful.

Figure 3.2 shows the distribution of evolution lengths for both continuous

evolutions and merged evolutions with different thresholds for the merge process in

both data sets. The distribution is heavy-tailed, with the majority of evolutions

having a length less than four, but some evolutions growing as long as 20 time

windows.

Since there are no known ‘true’ communities in either data set, we validate

the accuracy or legitimacy of the detected evolutions manually by examining the

abstracts of papers in the same evolution for DBLP and similarly looking at blog

topic for the BLOG data set. To construct a visualization of an evolution, we use

word clouds to view the most frequently used terms in the paper abstracts or blogs.

More frequently used words are drawn bigger in the word cloud. A valid community

will have main ideas or topics that are easily recovered from word clouds while valid
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Figure 3.2: Distributions of evolution lengths for original evolutions and
evolutions found using different merging thresholds. A large
number of merges occurs between smaller evolutionos, caus-
ing the distributions to even out as the threshold is lowered.
The figure displays the most drastic changes in evolution
length distributions across thresholds and the table shows
corresponding values.

evolution will have consistency or logical development of ideas and topics throughout

the chain of communities.

Figure 3.3 shows an example set of word clouds for an evolution in DBLP.

Each column of words was originally detected as a continuous evolution and the

two evolutions were combined during the merging algorithm. In the beginning of

the first evolution, the authors main focus was on using inductive inference to solve

problems. The focus quickly becomes learning, a more general topic that includes

inductive inference. Alongside learning comes the interest in using or studying

languages. The end of the first evolution and the beginning of the second share the

main common topic of validation, a logical progression from developing techniques

for learning. Finally, the continuity of the second evolution is made clear when the
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Figure 3.3: Word clouds of paper abstracts in communities of two merged
evolutionos in the DBLP network. Word sizes are determined
by frequency in abstracts. Each column represents an original
evolution.
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focus on learning returns strongly, with the other keywords appearing frequently as

well.

3.4 Evolution Prediction

We consider the first four communities of an evolution, {X0, X1, X2, X3}, and

try to predict the length of the evolution. The same analysis could use any number

of beginning communities of an evolution. Using four communities provides a long

enough chain to give confidence that the evolution is not random, and also allows

for the examination of most of the detected evolutions.

Let si = |Xi| and di = D(Xi) be the size and conductance of a community,

respectively. The conductance of a community Xi is defined as:

D(Xi) =
Win

Win +Wout

where Win is the sum of the weights of edges connecting two members of the commu-

nity and Wout is the sum of the weights of edges connected to at least one member

of the community. We let ri = |Xi ∩Xi+1| be the size of the pairwise intersections,

define the core sizes qi = |Xi ∩Xi+1 ∩Xi+2| as the intersection sizes of the ri , and

define the hypercore size hi = |Xi∩Xi+1∩Xi+2∩Xi+3| as the size of the intersection

of the cores. In addition, let cri = D(|Xi ∩Xi+1|) be the conductances of the nodes

in the intersection of two communities in respect to the union of the graphs from

each time step. Similarly, let cqi = D(|Xi ∩Xi+1 ∩Xi+2|) be the core conductances

and chi = D(| ∩i+3
k=iXk|) be the hyper-core conductance. Using these parameters, we

derive 79 features to characterize the early stages of an evolution. For community

sizes, we use the average size, average change in size between consecutive commu-

nities, and normalizations of these values using the minimum sized community and

the first community of the evolution. Equivalent features are constructed for all of

the other properties.

We use these properties to construct features to use in a simple linear regression

framework with leave-one-out cross validation in order to identify the properties

most indicative of evolution longevity. Table 3.1 shows the results of the linear
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Table 3.1: Most predictive characteristics of evolution length in the orig-
inal and merged evolutions. The Wgt entry denotes whether
the features based on the characteristic generally had a posi-
tive (+) or negative (-) correlation with evolution length.

Parameter Score Wgt
Size (si) 29
Growth +
Average -

Density (di) 26 +
Intersection (ri) 19 +
Core (qi) 9 +

regression framework. To construct a parameters score, we consider the fifteen

features determined to be the most predictive of evolution length. The ith most

predictive feature is given a score of 15 − i. The final score of a property is the

sum of the scores of the features derived from it. The most predictive feature was

the size of the communities of the evolution. If the evolution experiences growth in

the first four communities, it is likely to last longer. If the communities are small,

however, the evolution will likely be short lived. This reflects the intuition that a

strong, meaningful community should be able to attract members as it starts to

establish itself.

3.5 Future Work

Detecting communities and evolutions in temporal social networks if from from

being a solved problem. Algorithms can consistently be improved to run faster or be

more accurate. Within our framework, experiments similarity measures other than

the Jaccard index may successfully recover more evolutions. Also, in the second step

of our framework, we only merge two evolutions if one starts in the time window

directly following the window where the other ends. Merging evolutions that are

removed by more than one time window might detect more intermittently active

evolutions. Finally, more sophisticated features or a more sophisticated learning

framework might improve our ability to predict the length of evolutions.



CHAPTER 4

Synthetic Evolutions

Validation of community detection algorithms has been a difficult task in any frame-

work. Gathering data from real world networks can be time consuming and prone

to errors or noise, even with the recent advances in technology. As a result, there

are only a few static networks with a known community structure. There are even

fewer temporal networks with a known evolution structure, thanks to increases in

[] and ambiguity. In this chapter, we develop a framework for generating synthetic

temporal networks with properties that mimic those of real world networks and use

it to compare and evaluate the performance of evolution detection algorithms.

4.1 Temporal Network Model

We construct a temporal network with M time windows in three steps. First,

we generate vertex and community structures for each time window, {V1, V2, . . . , VM}
and {C1, C2, . . . , CM}, respectively. Next, evolutionary events are embedded into

transitions between consecutive time windows. The evolutionary events that occur

between time window i and window i + 1 do not influence those between windows

i+ 1 and i+ 2.

Finally, we also define a function H(V,C), which takes a vertex structure and

a community structure as input and generates a network G = (V,E). The specific

characteristics of each static network are determined by the definition for H. The

vertex and community structures associated with each time window are then used as

inputs to the function, H(Vi, Ci), which generates the network for that time window,

Gi = (Vi, Ei). Figure 4.1 describes the overall process.

4.1.1 Seeding the network

Being the first network in the series, the vertex and community structures

of G1 do not have to take restrictions related to embedding evolutionary events in

the network into account. We assume that number of vertices in the first network

36
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Figure 4.1: Constructing a synthetic network. (1) Random vertices are
generated. (2) Random communities are generated by ran-
domly selecting vertices. (3) Using the vertex and community
structures, a network structure is generated. (4) The vertex
and community structures are perturbed to create the next
time window’s vertex and community structures.
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is explicitly specified. In order to generate a power law degree distribution, we

assign each vertex a ‘lag’ value from a predefined power law distribution. The lag

value of a vertex approximates the minimum wait time between interactions between

the vertex and any other, single vertex in units of time windows. In other words,

edges with low lag values can interact with others more frequently, resulting in more

edges with larger weights being connected to the vertex. In the DBLP co-authorship

network, the low lag vertices represent the authors that publish either frequently or

with a large number of colleagues.

Once the number of vertices and their lag values have been determined, we

generate a random community structure. The number of communities is either di-

rectly specified or given as an average community membership for vertices. The

sizes of the generated communities are generated from a specified power law dis-

tribution. Although the community memberships have no temporal restrictions to

follow, uniformly choosing random vertices to fill each community can cause issues.

Since vertices with high lag values generally end up with a small degree, if they

belong to a large number of communities, the communities either need to be highly

redundant and overlapping or the vertex needs to be weakly connected to members

in any single community. Conversely, a vertex with a low lag value in a single com-

munity will end up with a large number of edges or interactions with vertices it does

not share a community membership with. In order to help prevent high lag vertices

from becoming members of many communities, vertices with lower lag values are

given a proportionally higher probability of being chosen for the initial community

memberships.

4.1.2 Embedding Evolutions

We break transitioning between time windows into two main categories, per-

turbing the vertices of the network, and perturbing the community structure. In

both cases, we use a simple, generally accepted events empirically found in real

world networks [79, 8] to imitate real world dynamics.



39

4.1.2.1 Vertex Events

Real world interaction networks have been empirically shown to grow in size

between time windows, especially in their first few time windows. Sometimes, this

is due to a lack of data gathering. The rise of digital technologies in recent decades

has made gathering and tracking data easy, and the growth of networks is usually

attributed to increasing interest, as when starting a new social networking applica-

tion.

To mimic this phenomenon, a random number of nodes is added to the network

at each time window. The number of added vertices is equivalent to a percentage of

the current size of the network. A minimum and maximum growth rate is specified,

and a random value is uniformly sample between these boundaries for the growth

at each interval. New vertices are also given a lag value, sampled from the same

power law distribution used in the first network.

We also consider each individual vertex’s choice to either stay in the commu-

nities they are a part of or leave between time windows. We specify a probability

that a vertex will be removed from its current communities. Each community mem-

bership is considered independently, and we again keep the probability constant for

all memberships for simplicity. To keep the community sizes from drastically de-

creasing at each interval and represent the possibility of vertices choosing to join

communities between time windows, we immediately replace vertices removed from

a community with randomly selected vertices (based on lag values). There is a pos-

sibility that a removed vertex is chosen to replace itself, but it is extremely small

and does not influence network dynamics.

4.1.2.2 Community Events

Many evolution detection approaches utilize a community-level evolution event

framework to analyze evolutionary structures [79, 8]. Our framework uses six of the

commonly used events to perturb the community structure between time windows:

Merge

Two communities from the same time window, Ci,1 and Ci,2, are said to merge
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if they both evolve into the same community in the next time window Ci+1.

It is possible for groups of more than two communities to merge together be-

tween time windows, but we only consider merges between pairs of communities in

our framework. To find pairs of communities to merge, we randomly select a subset

of all communities to participate in merges. Each community is given the same

probability of being included in this set. We then randomly match the communities

in pairs and merge their memberships. If the number of communities chosen was

odd, we simply ignore one of the chosen communities.

Split

The opposite of merging, a community in some time window Ci splits into

communities Ci+1,1 and Ci+1,2 in the next time window if both Ci+1,1 and Ci+1,2

retain a high number of members from Ci.

For a community to be considered for splitting in our framework, it first must

not have been chosen for the merging process. To avoid splitting smaller communi-

ties, there is also a specified size threshold that any community must be larger than

in order to be split. A specified percentage of these communities is then chosen to be

split. To split the community, a subset of community members are chosen to ‘split

off’ and form another community. A random number of the members ‘splitting off’

are chosen to remain in the original community as well, resulting in these vertices

gaining a community membership. It is possible for no members to be copied in

this manner, resulting in a partition of the original community. We force the new

community to chose at least three members to start with and ensure the original

community retains at least three members, which is the minimum size we consider

for communities.

Grow / Shrink

This event reflects no big changes in the community from one step to the

next. Simply, a community Ci grows ( or shrinks ) into community Ci+1 if the

two communities are not part of a merge or split event and their memberships are

extremely similar.
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In our framework, every community grows or shrinks at each interval and can

then also partake in a merge or split event. The growth (shrinking) process is gov-

erned by two values. First, each community has the same probability of growing.

If it does not grow, it will shrink. Second, the amount of growth (or shrinking) is

uniformly sampled from an interval between zero and a specified upper limit, inclu-

sively. Therefore, a community may ‘grow’ by 0 vertices, which is typically referred

to as a ‘continue’ or ‘survive’ event.

Form

Communities do not have to be present from the very beginning of a temporal

network. New communities of scientific research are constantly being formed, for

example. A community Ci is said to have formed if it is not part of any event with

any community in a preceding time window. Newly formed communities provide

the starting point for new evolutions.

We embed a random number of brand new communities at each time window

in our framework. Similar to how growth works, the number of communities added

is uniformly sampled from a specified range (inclusive). It is therefore possible to

specify a temporal network that may not add any new evolutions between time win-

dows. The new community sizes are sampled from the same power law used when

constructing the original network, and member vertices are chosen randomly based

on energy values in order to keep consistent with the network that was already es-

tablished.

Dissolve

Once started, many evolutions do not last the duration of the temporal network

and end at a ‘dissolve’ event. A community Ci dissolves if it is not part of any events

with a community in any later time window.

Each community is given a probability of being removed at each interval. For

simplicity, we use a single probability for each community.
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4.1.3 Generating Edge Structures

The edge structure of a network is constructed in two rounds. The first round

iterates through every pair of vertices that share at least one community member-

ship. We place an edge between each pair with a randomly generated edge weight.

There is a relatively high probability that the generated edge weight is zero, in

which case we ignore the edge. The second round randomly adds edges between

vertices that do not share a community membership. A specified mixing parameter

0 < µ < 1 designates the fraction of edges of the network that should be found

within communities. Therefore, if |Vin| is the number of edges constructed between

vertices that share a community in the first iteration, the number of edges generated

in the second iteration is |Vin|
µ
− |Vin|.

In general networks, edge weights can represent similarity measures, physical

distances, capacities, or just be somewhat arbitrary numbers. We are interested in

generating interaction networks, where the edge weight between vertices u and v in

a certain time window represents the number of times the two entities interacted

within the time span that defines the window. As discussed in Section 2.2.1.3, it has

been empirically shown that the time between interactions in real world networks

generally exhibits bursty behavior. This is why we model the lag times of vertices

with a power law.

The power law distribution takes three parameters: ρmin, the minimum possi-

ble value of the distribution, ρmax, the maximum possible value of the distribution,

and λ, the distribution exponent, which controls the probability of higher values

being generated. We take the ρmax and λ variables as user defined, and vary ρmin

based off of the assigned vertex lag values. If, without loss of generality, the lag

value of vertex u is lower than that of vertex v, we set the minimum waiting time

for interactions between u and v as:

ρmin = ς(u) + ζ ∗ (ς(v)− ς(u)))

which is independent of the time window being considered and where ζ is

a parameter between zero and one, and ς(v) is the lag value of vertex v. Typical

distributions for edge weights between different pairs of vertices can be seen in Figure
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4.2.
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Figure 4.2: Probability distribu-

tions for edge weights

between different pairs

of vertices. Vertices
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have higher probabil-

ities of larger edge

weights. Edge weights

of zero are not included

in networks.

The ζ parameter should be be-

tween zero and one, and mainly controls

the behavior of edge generation between

a low lag vertex and a high lag vertex.

No matter what value of ζ is used, two

high lag vertices will have a relatively

low probability of being connected and

two low lag vertices will have a high

probability of being connected. Higher

values of ζ result in higher lag vertices

connecting with low lag vertices more

frequently. The network will then be-

come denser and the degree distribution

will flatten out. Conversely, if high lag

vertices do not have a high probability

of connecting to a low lag vertex ( a low

value of ζ ), they will not connect to any

vertices, and the degree distribution will

not include any hub vertices.

Using this approach, we have been

able to develop networks that mimic a

number of known characteristics of real world interaction networks (see Section 4.3).

4.2 Evaluating Evolution Detection Algorithms

A synthetic network model allows us to generate temporal networks with

known community and evolution structures, which we can then use to analyze the

performance of evolution detection algorithms.
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4.2.1 Algorithms

We evaluate four evolution detection methods using our framework for gener-

ating networks. To make this report self-contained, we provide a short description

of each algorithm here. More details can be found in the respective publications.

4.2.1.1 Community matching

The community matching approach is the same approach taken in the LOST

framework described in Chapter 3 and the algorithm from [26], which we will call the

GDC algorithm. In both approaches, it is assumed that communities have been de-

tected for each static network, and a function F (·, ·) is used to compare communities

across time windows. If the function value is above a threshold, the two commu-

nities are possible matches as a valid step of evolutions, and the possible match

that maximizes F (·, ·) is considered at an evolution transition. The only difference

between the two approaches is that, in GDC, instead of requiring communities to be

from consecutive time windows, a community from time window i can be matched

with any community from time window j > i.

In this evaluation, we test the LOST framework using two different metrics to

compare communities: the Jaccard index used previously and a similar metric we

call MinNorm:

MinNorm(A,B) =
A ∩B

min(|A|, |B|)

4.2.1.2 Clique percolation method

In the clique percolation method (CPM) [68], communities are defined to be

groups of vertices that can all be reached from one another by traversing cliques that

differ by a single vertex. For our experiments, we use cliques of size three. Evolution

detection using CPM follows the same framework as the community matching tech-

niques. First, communities for all time windows, {C1, C2, . . . , Cm}, are constructed.

Then, to match communities from window i to communities from window i+ 1, the

algorithm is used to find a community structure Ci,i+1 in the union of the networks

in both windows. Due to the properties of clique percolation, every community in Ci

or Ci+1 is a subset of exactly one community in Ci,i+1. Given a community in Ci,i+1,

the communities in Ci that are a subset of Ci,i+1 are matched to the communities
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of Ci+1 that are a subset of Ci,i+1 in decreasing order of Jaccard similarity. If a

community in Ci goes unmatched, it dissolves. Similarly, if a community in Ci+1

goes unmatched, it starts a new evolution.

4.2.1.3 CommDy

CommDy [82, 81] works a little differently from community matching algo-

rithms, generating communities and evolutions simultaneously. First, instead of

working from a typical network structure, the algorithm assumes that there were

groups of entities observed together at each time window. This algorithm assumes

that groups observed at each time window are pairwise independent, and each entity

only participates in a single group at each time window. We use the ground truth

communities at each time window as substitutes for these groups even though they

overlap.

A separate network is then constructed with vertices representing each group

at each time window, with gi,k being the ith group in window k. For each entity that

is present in at least one time window, there are also vertices which represent that

entity’s presence in every time window. We use vj,k to represent the vertex for the

jth entity’s presence in time window k. Each vertex vj,k is connected to the same

entity’s vertex in the next time window, vj,k+1, and to the group it participated in

during the current time window, gi,k.

A community structure is then equated to a vertex coloring on this network. At

each time interval, the vertices with the same color are part of the same community.

Three costs are defined on a coloring of this network to provide a quality measure.

The i-cost is a fixed cost incurred if an entity changes communities ( colors ) between

time windows. A g-cost is assessed to the coloring if a vertex is either connected

to a group of a different color or is not connected to the group of the same color.

Finally, a c-cost is assessed to a vertex for each community ( color ) it is a part of

after its first. For our experiments, we assign an i-cost of 1 and g- and c-costs of 2.

Finding the minimum cost coloring was found to be NP-complete. As a re-

sult, fast heuristics and approximations are used in the algorithm to find a suitable

network coloring.
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4.2.1.4 LabelRankT

LabelRankT [87] is a label propagation algorithm, with roots in the static

community detection algorithm LabelRank [89]. LabelRank starts by associating a

vector of values with each vertex. If N vertices are in the network, the vectors are all

of size N . Each vertex is also associated with its own, unique label. The ith value in

vertex v’s vector represents the frequency with which v has seen the label associated

with vertex i. In the beginning the vectors are set to have values all equal to zero,

except for a single value of one, which is associated with the vertex’s own label. The

algorithm then proceeds iteratively, which each vertex receiving the label vector of

all of its neighbors at each iteration. The label vector for a vertex at iteration j is

calculated as the average of the label vectors of its neighbors at iteration j− 1. The

algorithm then proceeds until convergence, at which point vertices are assigned to

communities associated with labels which have a value higher than a given threshold

in the vertex’s label vector. Label inflation and trimming procedures are used to

increase the algorithm’s efficiency.

To find communities in temporal networks, LabelRankT uses LabelRank to

detect communities in each of the static time windows. However, for time windows

other than the first, LabelRankT begins with label vectors detected in the previous

time window, and uses the approach of LabelRank to simply update them. Because

of this, the algorithm only needs to consider vertices whose neighborhoods change

between time windows, and the resulting community structures generally do not

experience extreme changes.

LabelRankT does not provide an explicit way of connecting communities in

consecutive time windows to construct evolutions. We run the community matching

approach using the Jaccard index on the communities detected by LabelRankT

to construct evolutions when necessary. For our experiments we use the default

parameters of LabelRankT described in the documentation.

4.2.2 Single Event Tests

We test each algorithm’s ability to detect four of the six common evolutionary

events mentioned in 4.1.2.2. We omit tests for the birth and death events, as the
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detection of these events relies almost exclusively on the underlying static algorithm

used to generate the community structure at each time window and we are mainly

interested in examining the approaches to grouping the detected communities into

evolutions. For each event, we generate networks consisting of two time windows

with a single instance of the event embedded within them. For instance, in the

test networks for the growth event, there is a single community in each network.

The community in the first network consists of ten vertices. The community in the

second network consists of anywhere from ten to 15 vertices, and is a superset of

the original community. For testing the shrink event, the second community falls

somewhere between five and ten vertices. The merge event test networks have two

communities with ten members each in the first time window and a single community

whose membership is the union of the first two communities in the second window.

Test networks for the split event contain a single community of twenty members in

the first window and two communities of random sizes between three and 20 in the

second network. Thirty test networks were generated for each event.

For an algorithm to successfully detect an event, all community transitions

must be detected. A successful run on a split test must result with the community

in the first window transitioning into both communities in the second window. Many

of the evolution detection algorithms that use a community matching approach, as

strictly defined, only match a community in window i, Ci, with a single community

in window i + 1, Ci+1, in order to simplify the results. For these algorithms, we

consider results that would occur if multiple matchings were allowed. For example,

when considering the community matching approach utilizing the LOST framework

with the Jaccard index, we match communities Ci to all communities Ci+1 that

result in a Jaccard index value above a given threshold.

In the cases where the algorithm also detects the communities at each time

window, we take community to be successfully detected if the Jaccard index be-

tween the true community membership and the detected membership is above 0.85.

Results for the tests can be found in Table 4.1.

The CPM algorithm does extremely well on these tests, detecting nearly all

instances of all events. The algorithm has a very strict definition of a community,
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Table 4.1: Rate of successful recovery of single, isolated evolutionary
events for each evolution detection algorithm. Values are the
fraction of the thirty test networks that each algorithm com-
pletely recovered.

Algorithm Grow Shrink Merge Split
CPM 0.97 0.97 1 0.97
Jaccard 0.4 0.27 0 0
Min 1 1 1 1
CommDy 1 1 1 0.2
LabelRankT 0.2 0.1 0 0

and in the few cases where the algorithm misses an event, a true community’s

structure is sparse enough that it is detected as two separate communities.

Using the Jaccard index to detect community transitions in the LOST frame-

work gives poor results. Consider the grow and shrink events. The community in

the first time window has a size of 10. If the community in the second time win-

dow either gains or loses more than one vertex, the Jaccard index between the two

communities drops below the threshold. Similar issues hold for the split and merge

events. If the threshold is lowered to 0.5, using the Jaccard index would identify

all grow, shrink, and merge events. It still has trouble with split events, however,

as there is a chance that the community will split unevenly. If the community of

size 20 breaks into a community of size 4 and one of size 16, the smaller community

shares a Jaccard index of 0.2 with the original community.

Using the MinNorm(·, ·) measure avoids these issues. Even if a community

were to massively shrink between time windows, all of the vertices in the smaller

community would be shared between both. This measure is not suitable for gen-

eral scenarios. Communities do not generally experience large size discrepancies

between time windows, and detecting such situations as events would be undesir-

able. The measure is extremely effective in small, controlled test environments like

this, however.

The CommDy algorithm has trouble finding a few extreme shrink events. Since

every vertex needs to belong to some community at each time window, the vertices
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that change communities during the split event can either form a new community,

incurring the i-cost and a c-cost, or simply remain as part of the same community.

The g-cost will be incurred either way as the vertices that leave will not be con-

nected to any community node. As a result, the coloring generated by the CommDy

algorithm keeps all of the vertices in the same community, forcing the Jaccard in-

dex between the true second community and the detected second community to dip

below 0.85 for larger shrink events.

LabelRankT has trouble detecting all events due to the small size of the net-

works in relation to the communities and the possibility of large changes from one

time window to the next. The small network size results in many fringe vertices

with a large fraction of their edges connected to the community, even though they

are not members. As a result, there are no competing labels to whichever label

ends up representing the community, and the fringe vertices are considered part

of the community. In other words, there are simply no other communities for the

algorithm to assign these vertices to. Again, if the community matching threshold

were reduced to 0.5 instead of 0.85, the algorithm detects 97% of grow events and

83% of shrink events.

LabelRankT has slightly different difficulty detecting split and merge events.

In the split event, all of the vertices in each of the two communities in the second

time window are seeded with the same label. There are still no other labels that

might become injected into either community, so all the vertices keep virtually the

same labelling. As a result, the split goes undetected and the community is detected

as simply continuing or surviving.

4.3 Full Evolutions

Detecting single, isolated evolutionary events is a much easier task than detect-

ing complete, multi-step evolutions. In some sense, detecting full length evolutions

can be seen as iteratively detecting single step evolutionary events between consec-

utive time windows and piecing the steps together. There are extra complications

with this, however, even if the ground truth community structures are known. If the

criteria for a community transition to be a valid evolutionary event is too relaxed,
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there are a potentially extremely large number of chains of communities that are

considered valid evolutions. Even if the true evolutions were detected, the large

number of extra evolutions would hide and overwhelm any useful information that

could be gathered. On the other hand, restrictive criteria for valid evolutions may

not detect all true evolutions.

To evaluate the performance of each evolution detection algorithm in detecting

full length evolutions, we generated ten synthetic temporal networks with ten time

windows each and randomly embedded evolutions using our model. The complete

set of parameters used are given in Table 4.2. The generated networks simulate

many of the characteristic of real world networks. Figure 4.3 shows a comparison

of the characteristics between the generated networks, the networks from Chapter

3, and two new networks. The IMDB network consists of actors connected if they

starred in the same movie together with time windows of one year. The NRON

network is the now well-known network of Enron emails collected by the Federal

Energy Regulatory Commission during its investigation of the company, with a

time window length of one week.

In order to evaluate the evolution detection algorithms, we construct a sim-

ple similarity measure. Consider two evolutions, E = {Ei, Ei+1, . . . , Ej} and F =

{Fk, Fk+1, . . . , Fl}. For each time window w between min(i, j) and max(k, l), we

calculate the Jaccard index between Ew and Fw. If any such community doesn’t

exist, it is considered an empty community. We then take the evolution similarity

to be the average Jaccard index across all time windows. If this average is above a

certain threshold λ, we consider the two evolutions a match.

Many of the algorithms have difficulty detecting full length evolutions. Com-

mDy will not run on the generated networks, citing the need for too many colors to

evaluate the temporal network. The CPM method had difficulty finding any of the

ground truth evolutions even with λ set to 0.5. Due to a relatively large amount of

overlap between some communities, clique percolation tend to discover communities

that are actually unions of multiple true communities. As a result, the Jaccard

similarity measure between detected and ground truth communities becomes very

small. LabelRankT was able to detect a few evolutions with small, smooth evolu-
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Table 4.2: Parameters used to generate syntehtic temporal networks for
testing each algorithm’s ability to detect multi-step evolutions.

Param Description Value
v Number of vertices in the network for the first time window 100
vexp
vmin
vmax

Exponent, minimum values and maximum values for the
power law sampled for [] values

1.75
0.2
1.2

vbirthmin

vbirthmax

Minimum and maximum growth percentage for number of
vertices between consecutive time windows

0.1
0.3

cexp
cmin
cmax

Exponent, minimum values and maximum values for the
power law sampled for community size values

2.75
3
15

cbirth
cdeath

Percentage of active communities added and removed be-
tween consecutive time windows.

0.05
0.05

cgrowthprob Probability that a community will grow in size from one
time window to the next. If it doesn’t grow, it shrinks.

0.55

cgrowthmax Maximum increase or decrease in size for a community be-
tween consecutive time windows

0.25

cmergeprob The probability of a community C being chosen for a merge
event is 1

|C|cmergeprob

1

csplitprob If a community C is not picked for a merge event, it has a
|C| ∗ csplitprob probability of being split.

0.01

csplitsize Minimum size a community must be in order to be consid-
ered for a split event

6

mp Mixing parameter. Percentage of all edges found between
vertices sharing at least one community membership

0.85

cavg Average community membership for a vertex. 1.2
t Time windows to generate 10

tionary events. Many events were missed due to issues similar to those discussed in

the single event test.

The LOST method was able to reconstruct the most evolutions. With λ set to

0.75, 63% of the true evolutions were recovered while 68% of the detected evolutions

matched a true evolution. Dropping λ to 0.5 raises these values to 73% and 72%

respectively. Evolutions incorporating small communities were the most troublesome

for the LOST framework. Events on small communities can cause low Jaccard values

between consecutive communities in an evolution, which causes the framework to

miss them.
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Figure 4.3: Comparison of network characteristics found in real world
and synthetic networks. Values for synthetic networks rep-
resent an average of results from 10 networks.

4.4 Anonymous

In most networks, every separate entity has its own, known label. However,

this is not always the case. Anonymous or unknown vertices can arise either from

data gathering limits or errors when constructing the network, or they be part of the

system itself. A website that allows users to remain anonymous if they want to, for

instance, will have community structures with unknown vertex identities. To test

the robustness of the LOST framework, we consider the case where the identities of
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some vertices in the network are unknown.

To generate community structures with anonymous vertices, we start from

the randomly generated community structures from the previous section. We then

take the union of all vertex identifiers from all time windows, and choose a certain

percentage of those to remove from the community structure. All instances of the

chosen vertices are relabelled as unknown.

The unknown vertices raise issues when evaluating a Jaccard similarity be-

tween two communities. There are two different ways we handle the unknown ver-

tices. The first way, which we will call the naive approach, is to ignore them, where

two unknown vertices are assumed to be different entities. The second way is to

assume that two unknowns are the same identity with some probability p. We con-

sider two different ways of setting p. One way, which we call the naive probability,

assumes that the total number of unknown vertices is known. Say there are 10 un-

known entities in total, and we are comparing community A, which has 3 unknown

members, with community B, which has 4. If we randomly select unknown vertices

to include in community B and consider the unknowns of community A to be fixed,

we can formulate the expected number of matches as the expected number of suc-

cessful Bernoulli trials out of four, with the probability of success being 0.3. This

results in an expected number of 1.2 matches. The other way is to manually set a

static probability p. Using the same A and B communities, the static probability

approach considers the unknown vertices of community A one at a time. For each

unknown in community B, the vertex from A is given a p probability of matching.

If the matching is successful, both unknown vertices are immediately removed from

consideration and the calculation continues with the next unknown vertex in A.

This method results in a much higher number of matched unknown vertices than

using the naive probability.

To test each approach, we construct networks with 10%, 20%, . . . , 90% of ver-

tices anonymized. For each value, we construct ten temporal networks and average

accuracy results calculated in the same manner as the previous section. Two evo-

lutions are considered to be a match if more than 75% of the communities (paired

by time window) have a Jaccard similarity above 0.75. The results can be seen in
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Figure 4.4.

As might be expected, the accuracy of all approaches diminishes linearly with

respect to the number of vertices anonymized. The less information known, the

harder it should be to recover the true evolutions. However, adding the mechanisms

to match possible similar anonymized vertices seem to decrease the accuracy of the

LOST method. The benefit of possibly detecting true matches of anonymized ver-

tices is outweighed by the danger of matching two vertices that are truly different

entities. This is seen more dramatically when the threshold for considering an evo-

lution matched is dropped from 0.75 to 0.25. The random matching of anonymous

vertices now holds more influence, as increasing a Jaccard similarity above 0.25 is

easier than increasing it above 0.75. Communities start to be matched based solely

on anonymized vertices, which results in random matches, random evolutions, and

a lower accuracy. Evolutions that are accurately recovered typically share enough

known vertices to break the threshold without having to match anonymized vertices.

Using a higher threshold diminishes the detrimental effects of matching anonymized

vertices, but does not introduce any benefit.

4.5 Extensions

Many mechanisms of our network generation model can be modified, and new

mechanisms added, in order to produce networks that more accurately reflect real

world systems. For instance, we could consider community merges of more than

two communities, basing the probability of merges, splits, and community member-

ships on network structure. There is also much room for optimization of the speed

of the algorithm. When considering networks with anonymous users, more sophis-

ticated algorithms, such as an Expectation-Maximization approach to determining

possible matches between anonymized vertices, may perform better than the simpler

approaches studied in this report.
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Figure 4.4: Accuracy of using different variations of the Jaccard similar-
ity in the LOST evolution detection algorithm when a frac-
tion of the vertex identities have been anonymized and the
evolution detecting similarity threshold is 0.75. Incorporat-
ing mechanisms to try to match possibly similar anonymized
vertices does not improve detection, and may actually impede
it.
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Figure 4.5: Accuracy of using different variations of the Jaccard similar-
ity in the LOST evolution detection algorithm when a frac-
tion of the vertex identities have been anonymized and the
evolution detecting similarity threshold is 0.25. Higher prob-
abilities of anonymous entities matching results in random
matching of communities, leading to randomly constructed
evolutions. It is better to depend on what little information
is known when detecting evolutions in anonymized frame-
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APPENDIX A

To define the conditional entropy between two communities, H(A|B), the vertices

are divided into four categories:

a = |Ā ∩ B̄| b = |Ā ∩B| c = |A ∩ B̄| d = |A ∩B|
The conditional entropy between two communities is then defined as:

H(A|B) =



h(a, n) + h(b, n)+ if h(a, n) + h(d, n) ≥
h(c, n) + h(d, n)− h(b, n) + h(c, n)

h(b+ d, n)− h(a+ c, n)

h(c+ d, n) + h(a+ b, n) otherwise

where h(x, y) = x× log2

(
x
y

)
and n is the number of vertices in the network.
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