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hibited by his Fiancé, Meredith, when putting up with his recurring and continual

lack of presence at their place of residence.

The author would also like to thank Sahin Cem Geyik, whose previous and

current research is the starting point for this work.

viii



ABSTRACT

ix



With the use of Service Oriented Architectures in areas such as sensor network,

it becomes increasingly necessary to be able simulate the interactions of such a system

before actually implementing it. This work explores the viability of two different im-

plementations of a simulation of service composition in dynamic sensor networks. The

first simulation is written in C++ with a graphical user interface using Qt and visual-

izations supplied via Graphviz. This simulation supports distributed and centralized

composition with a type hierarchy and multiple-service statically-located nodes in

a 2-dimensional space. The second simulation uses the actor model programming

language SALSA to support concurrent distributed service composition with a type

hierarchy and dynamically located services in spherical space.
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1. INTRODUCTION AND HISTORICAL REVIEW

The software was developed with the ability to simulate both centralized and dis-

tributed service compositions in dynamic sensor networks as described in [1]. The

simulator is designed to work with abstract type and service specifications to allow

for simulation of a broad range of possible situations.

1.1 Service Oriented Architecture & Service Composition

A Service Oriented Architecture (SOA) is a system design that provides func-

tionality via a set of services that each perform a specific task. These services can

then be combined, or composed, to form a higher level function [2]. For example, a

hypothetical banking system could contain a set of services one that makes deposits

and one that makes withdrawals. To preform a transfer of funds from one account to

another, a service can be created that uses the services to preform a withdrawal from

one account and deposit it into another account.

Service Composition, within the bounds of this research, is considered the act

of determining the set of services that supply the needed inputs for a given service to

function properly.

1



2. SOFTWARE IMPLEMENTATION

2.1 Programming Language

The simulator software is written in C++, using code complaint with the

ISO/IEC 2003 specification [3]. Using features of the upcoming release of an updated

C++ [4], usually referred to as C++0x was planned, however, this was abandoned

due to possible lack of support and inconsistencies between compilers.

C++ was originally chosen for its portability between systems and speed of

execution verses its most likely alternatives [5]. It should be noted that at the initial

design and conception of this simulator software, there was no plan for a graphical

user interface (GUI). This feature was added after a working version was produced,

so the availability of GUI libraries was not taken into account at this time.

2.2 Libraries and System Tools

While C++ and it’s Standard Template Library (STL) is the basis of the sim-

ulator software, the final functionality could not be produced with just this alone,

without the creation or use of further libraries or tools.

To provide a GUI the Qt framework was selected. Qt provides all of the GUI

functionality used by the simulator software. Furthermore, many of it’s other features

were used in the simulator’s internal workings, such as Signals and Slots, and foreach.

The selection of Qt was further influenced by it’s availability on multiple platforms,

thus keeping with the intention of making this software as available as possible.

Visualization of type trees, and node, service and composition graphs is handled

using the DOT language and the Graphviz graph visualization software package, and

is displayed in the GUI without the use of temporary files through the use of Qt’s

QtSvg module.

2.3 Software Design

The design process of the simulation software can be divided into two distinct

categories. The first being the design of the core simulator. The second being the

2
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adaptation and integration of the simulator with a GUI.

2.3.1 Core Simulator Early Stages

The core simulator was first designed without a GUI. It would take a text

configuration file as a command-line argument and then run the simulation based

on the input. It would display the composition information in the standard output

and save the node, service and composition graphs as images files using Graphviz.

Further discussion of the core simulator is in Section 2.3.3.

2.3.2 GUI

The GUI is made up of a single class: Gui, containing a nested class FileLoad

and having a class TextStream.

The class Gui is generally responsible for displaying data. To do this, Gui

inherits from the Qt class QMainWindow, this allows on toolbar widget (FileLoad), and

a central widget. FileLoad will be discussed later in the text. The central widget is an

instance of Qt’s QTabWidget, allowing different graphs and other data to be displayed

simultaneously in separate tabs. The first tab always displays the TextStream class,

which will be discussed later. The following tabs can display a graph received by

the NewGraph message. The graphs received via NewGraph are expressed in the DOT

language, which are then passed through Graphviz’s dot command and displayed as

a Qt QSvgWidget in the tab.

The class FileLoad is a simple container inheriting from Qt’s QStatusBar al-

lowing several buttons (Load, Start, Pause, Stop) and a textbox to be placed in the

toolbar. When one of the buttons in FileLoad is pressed, the signal generated is fore-

worded to Gui where the needed GUI states are changed and the needed messages

are sent (see Figure 2.3).

The Class TextStream inherits from Qt’s QPlainTextEdit, which implements a

multi-line plain-text box. TextStream adds additional functionality to QPlainTextE-

dit, specifically the overloaded insertion operator (<<). The insertion operator allows

the TextStream to act as std::cout would, and displays the input stream in a tab as

a QPlainTextEdit. A single instance of TextStream is made global, so it is available

as a drop-in replacement for std::cout. There is one limitation upon TextStream
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Figure 2.1 Messages Passed Note: Does not include messages generated by Qt classes
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Figure 2.2 Class Diagram
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Figure 2.3 States

that differs from std::cout. The manipulator function std::endl is not available,

therefore, the buffer is flushed automatically, and “\n” should be used as a newline.

2.3.3 Simulation

The central class of the simulation subsystem in Simulator. This class controls

the simulation events and configuration of the simulation. Simulator has a class

Interface which is responsible for parsing the configuration file and sending the

correct signals with the command parameters. The slots connected to Interface’s
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signals are located in Simulator, which then sets member variables or calls the correct

functions.

Simulator also has a member m eventQueue a queue of class Event. Event

consists of three member variables, a time, an id, and a event type, as defined in the

Type enumeration.

Simulation data, such as the location, availability, types, and neighbors of nodes

and services, are stored in two classes: Node and Service respectively. Both Node

and Service inherit form the class GraphNode that implements the graph aspects of

each class.

GraphNode has static members that track the source and sink vertices of the

graph and static methods to access and modify them. GraphNode also provides each

vertex with lists of incoming and outgoing neighbors and related useful access and

test methods.

The Node has static members containing all of the nodes in the simulation

along with their locations. Static methods are also included for appropriate access

and testing of static members.

2.4 Used Algorithms

2.4.1 Composition

The problem of selecting services to compose a service resembles the cover set

problem. The cover set requires that a set of graph vertices be selected such that

every grouping of vertices has at least one vertex selected, as shown in Figure 2.4.

However the weighted cover set problem is even closer to the composition problem.

In the weighted cover set, vertices are selected for having the lowest cost, as shown

in 2.5.

The example of service composition in Figure 2.6 shows that this algorithm

incorporates the idea of the weighted cover set, trying to achieve the lowest cost

while including all of the required types. In this example, types are denoted by the

circles labeled A, B, C, and D, and services are denoted by a rectangle. Service 4

is a sink service, and Service 1, 2, and 3 are sources, thus reliving the burden of

distinguishing between input and output types.

As described in [1], there are both top-down and bottom-up versions of the
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Figure 2.4 Cover Set Example
(a) Before Selection (b) After Selection

Figure 2.5 Weighted Cover Set Example
(a) Before Selection (b) After Selection

service composition algorithm. Both the bottom-up and top-down algorithms are run

during centralized simulations with the lowest cost solution being selected. During a

distributed simulation, only the bottom-up algorithm is run.

2.4.1.1 Bottom-Up Composition

The bottom-up algorithm as implemented in the C++ simulation is shown in

Algorithm 2.1 with a subpart in Algorithm 2.2. These correspond to the functions
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Figure 2.6 Service Composition Example
(a) Before Composition

(b) During Composition

(c) After Composition
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Simulator::Compose(), Simulator::BottomUp(Service*), and

Service::Compose()

Algorithm 2.1 starts the bottom-up composition algorithm, it does this by first

starting with the source services in a set of the current level of services, and a set of

the remaining services to compose, which initialize to all services. As the algorithm

progresses services that have been composed are removed from the remaining set and

the current level, and their output connected neighbors are added to the next level of

services to be processed. If a service cannot compose it is added to the next level to

be composed. At the core is of Algorithm 2.1 is Algorithm 2.2, which is run on each

service.

Algorithm 2.2 forms the service composition for a given service S. First the

algorithm checks to make sure that none of the services that could supply this one

are uncomposed, if one or more is, the algorithm returns uncomposed. The main part

of the algorithm cycles while there are types left to be supplied, and selects input

neighbor services with the lowest per-type cost. All the types supplied by the selected

input service are then removed from the remaining types. This process continues until

there are no remaining types, or there are no remaining input services. A slightly

simplified version of this is shown in 2.6, the difference being the costs. In bottom-up

service composition, the cost of a service is its processing cost plus the sum of each of

its supplying services’ composition costs plus the edge weight times its sending cost.

Composition cost for a source service is its processing cost.

These costs are also shown in Equation 2.1 where Cc,j =: the composition cost

of service Sj, Cp,j =: the processing cost of Sj, S =: services supplying Sj, Cc,i =:

composition cost of Si, and Cs,i =: sending cost of Si.

Cc,j = Cp,j +
∑

∀Si

Cc,i + Cs,i · c(ei,j) (2.1)

2.4.1.2 Top-Down Composition

The top-down service composition algorithm is shown in Algorithms 2.3 & 2.4.

The bottom up algorithm starts with the sink nodes and works its way down the

service graph to the sources using much the same methods as the bottom up algorithm.
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Algorithm 2.1 Bottom-Up

procedure BottomUp(allServices, sources)
remaining ← allServices

currentLevel← sources

while remaining 6= ∅ do
nextLevel← ∅
for all Service Si ∈ currentLevel do

if Si is uncomposed then

Ci ← BottomUpServiceComp(Si) ⊲ Algorithm 2.2
if Si is uncomposed then

nextLevel← nextLevel + Si

continue

end if

end if

if Si is composed then

nextLevel← nextLevel ∪OutputNeighbors(Si)
end if

end for

end while

end procedure

It can be seen that Algorithms 2.2 & 2.4 are very similar, one of the main differences

it that the early return uncomposed has been removed, as in top-down, normally the

supplying services would not be composed. The second difference is in the definition

of cost, for top-down the cost is merely the processing cost plus the sending cost times

the edge cost. This is shown in Equation 2.2, where Cc,j =: the composition cost of

service Sj, Cp,j =: the processing cost of Sj, Cc,i =:, and Cs,i =: sending cost of Si.

Cc,j = Cp,j + Cs,j + c(ei, j) (2.2)
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Algorithm 2.2 Bottom-Up Service Composition

procedure BottomUpServiceComp(S)
composingServices← ∅
typeSuppliers← InputNeighbors(S)
if typeSuppliers ∋ Ŝ :COST(Ŝ) = uncomposed then

return uncomposed

end if

remaining ← InputTypes(S)
while |remaining| ≥ 0 ∧ |typeSuppliers| ≥ 0 do

S ′ ← min(typeSuppliers) ⊲ finds the service with lowest costS
u
ppliedTypes

typeSuppliers = typeSuppliers− S ′

for all Tk ∈ OutputTypes(S ′) do
for all Tm ∈ remaining do

for all Tn ∈ InputTypes(S’) do

if Tm canSupply Tn then

composingServices = composingServices+ S ′

for all Tl ∈ OutputTypes(S ′) do
if Tl ∈ remaining then

remaining = remaining − Tl

end if

end for

end if

break

end for

end for

end for

end while

if |remaining| ≥ 0 then

return uncomposed

end if

return
∑

∀Sh∈composingServices

cost(Sh)

end procedure
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Algorithm 2.3 Top-Down

procedure TopDown(allServices, sinks)
remaining ← allServices

currentLevel← sinks

while remaining 6= ∅ do
nextLevel← ∅
for all Service Si ∈ currentLevel do

if Si is uncomposed then

Ci ← TopDownServiceComp(Si) ⊲ Algorithm 2.4
if Si is uncomposed then

nextLevel← nextLevel + Si

continue

end if

end if

if Si is composed then

nextLevel← nextLevel ∪ InputNeighbors(Si)
end if

end for

end while

end procedure



14

Algorithm 2.4 Top-Down Service Composition

procedure TopDown(S)
composingServices← ∅
typeSuppliers← InputNeighbors(S)
remaining ← InputTypes(S)
while |remaining| ≥ 0 ∧ |typeSuppliers| ≥ 0 do

S ′ ← min(typeSuppliers) ⊲ finds the service with lowest costS
u
ppliedTypes

typeSuppliers = typeSuppliers− S ′

for all Tk ∈ OutputTypes(S ′) do
for all Tm ∈ remaining do

for all Tn ∈ InputTypes(S’) do

if Tm canSupply Tn then

composingServices = composingServices+ S ′

for all Tl ∈ OutputTypes(S ′) do
Tl ∈ remaining ⇒ remaining = remaining − Tl

end for

end if

break

end for

end for

end for

end while

if |remaining| ≥ 0 then

return uncomposed

end if

return
∑

∀Sh∈composingServices

cost(Sh)

end procedure



3. SOFTWARE OPERATION

3.1 Installation

The available package contains the code and can be extracted into a directory.

Once the simulator is extracted, then the Qt pre-compiler qmake should be run on

the file DSCSim.pro. Following this, the standard GNU-make utility make will run

the necessary compilation tasks. This procedure is exampled in Figure 3.1.

3.2 Simulation Configuration

The simulator is configured using plain-text input files constructed in a specific

format.

3.2.1 General Configuration

The first entries in the configuration file should be the options describing the

parameters of the simulations.

Composition Interval: INTERVAL

Neighbor Distance: DISTANCE

Simulation Type: DISTRIBUTED or CENTRALIZED

The Composition Interval is the length of simulation time between the initiation

of a service composition. This time is in abstract simulation units that can represent

whatever the user desires. Neighbor Distance is the maximum distance between nodes

Figure 3.1 Example Installation

name@host:~/src$ unzip DSCSim.zip

name@host:~/src$ cd DSCDSim

name@host:~/src/DSCDSim$ qmake DSCSim.pro

name@host:~/src/DSCDSim$ make

.

.

.

name@host:~/src/DSCDSim$

15
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that are considered neighbors, the units are, once again, abstract. Simulation Type is

the a selection of whether a distributed, or a centralized composition will be used. If a

centralized composition is desired, the Composition Node will have to be designated.

This will be covered further later on. Another configuration setting listed is the END,

for which the argument is a number specifying the length of time the simulation

should run. It should be noted that this is an arbitrary simulation time, not a real

time. Figure 3.2 contains an example of these settings in use.

3.2.2 Type Configuration

The next section in the configuration file consists of defining the data types used

in the simulation. A type is specified on a line beginning with the identifier T followed

by the Type Identifier with is followed any Parent Types that may exist. Figure 3.2

is an example of two types, where Vehicle is the Parent Type of Bus.

Following the types in the configuration file are the service definitions. Each

service definition is a line beginning with the identifier T followed by a unique type

name. This can be optionally followed by a space separated list of type names that

inherit from the first type. Examples of the service type definitions can be found is

Figure 3.2. Please note that types can either be defined on their own, or can combined

into a combined parent-children statement.

3.2.3 Service Configuration

The next section in the configuration file is the Service definitions. The service

definition begins with an identifier S. This is followed by a unique service name.

Following that is a list of service input types that are ended by a | symbol. Then

there is a list of service output types, also ended by a | symbol. After the types and

their ending symbols comes the service processing cost, or the cost associated with

producing the output from the inputs. The final entry in the service definition is the

cost associated with sending the output, i.e. a size of the message to be sent. an

example of a service definition can be seen in Figure 3.2. It is also important to note

that | symbols must be separated from spaces on either side, otherwise the simulator

parses it as part of the type name, resulting in an invalid instruction.
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3.2.4 Node Configuration

Once the services have been defined, they can be used in the next configuration

step, the node definitions. Node definitions consist of, as usual an identifier, W, fol-

lowed by a unique name. This is then followed by a space-delineated list of service

names that are contained by this node. Note: if a service is listed for more than one

node, it will be considered that there are two separate implementations of this service,

one on each node. At the end of the node definition is the nodes location. Listed as

a space separated set of Cartesian coordinates. Examples of node definitions can be

found in Figure 3.2.

3.2.5 Event Configuration

Once the definitions of all the required components for the simulation are listed,

then follow the definitions of events. Events consist of a node either being deactivated

or activated. An event definition consists of a identifier, either D for deactivate or E

for activate, followed by a node name, followed by a simulation time. This can be

seen in Figure 3.2.

3.3 Use

3.3.1 Load Configuration

To load the configuration into the simulation; type the configuration file name

into the text box in the upper left corner Figure 3.3. Start the loading process by

pressing the button labeled Load. This will read in the configuration file, create the

type tree, the graph of the node, and the graph of the services. In the node graph,

shown in Figure 3.5, the edge weights displayed is the distance between the two nodes.

The type tree generated for the example can be seen in Figure 3.6, note that

the direction of the edges points in the same direction as type satisfaction, meaning:

the type at the origination of the edge can be used as a replacement for the type at

the receiving edge.

In the service graph, the edge weights displayed is the path distance between the

nodes upon which the services reside, multiplied by the sending cost of the service.

The computation cost of each service is shown by a number in the vertex. The label
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Figure 3.2 Example Configuration
INTERVAL 2

DISTANCE 2.5

DISTRIBUTED

T SmallImage

T SmallImage MediumImage

T MediumImage LargeImage

T LargeImage HugeImage

T Vehicles Trucks Cars

T Objects Vehicles Faces

S FaceDetect LargeImage MediumImage | Faces | 4.3 2

S VehicleDetect LargeImage MediumImage SmallImage | Trucks Cars | 3 1

S SmallSupply | SmallImage | 1.1 1

S LargeSupply | LargeImage | 2.1 2

S MediumSupply | MediumImage | 3.2 2.6

S HugeSupply | HugeImage | 2.2 3

S DataCollection Objects | | 1.7 0

N ImageProc FaceDetect VehicleDetect | 1 2

N ImageSupply SmallSupply MediumSupply LargeSupply HugeSupply | 1 1

N DataStorage DataCollection | 1 3

D ImageSupply 2

E ImageSupply 4

D ImageProc 5

E ImageProc 7

END 9

shown in each vertex is the unique id of the service. This is made of the id specified

in the configuration file, a number, and the id of the node it is part of.

3.3.2 Start Simulation

To start the loaded simulation, press the Start button in the top center of the

window as shown in 3.4.
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Figure 3.3 Simulator Screenshot: Before Configuration Loaded

3.3.3 Running Simulation

Once the simulation is running, the Pause button will temporarily halt the

running simulation and the Start button will restart it will where it was halted. The

Stop button will halt the simulation permanently. While the simulation is running, a

new tab will be created showing the service composition for every new composition.
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Figure 3.4 Simulator Screenshot: After Configuration Loaded
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Figure 3.5 Simulator Screenshot: Displaying Node Graph
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Figure 3.6 Simulator Screenshot: Displaying Type Tree
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Figure 3.7 Simulator Screenshot: Displaying Service Graph



4. SALSA VARIATION

4.1 Idea

A variation of the original service composition simulation was created to attempt

to utilize the concurrent nature of the distributed composition implementation. This

simulation was written in SALSA, an extension upon Java that implements an actor

model programming language [6]. The actor model suits modeling of services in a

dynamic sensor network. This is due to all the communication between actors in the

actor model relying on message passing, which is quite natural for a services since

they would normally be separate entities passing messages over a network.

Further difference lies in what was being simulated. While the majority of this

research simulates services on nodes that can be enabled or disabled with static lo-

cations, in the SALSA simulation each service had static availability and dynamic

location. The world modeled by the locations in the SALSA simulation further dif-

fered from the C++ simulation. While the C++ simulation used 2-dimensional space,

the space in the SALSA simulation is 3-dimensional. The three dimensions are speci-

fied by spherical coordinates in a vector consisting of a radial distance, an inclination

angle, and an azimuth angle. The change in location was modeled assuming a con-

stant velocity specified at service creation. This velocity is given as a vector specifying

a radial velocity and two angular velocities, allowing the simulation to roughly model

an approximation of satellites in orbit around a body. Services are considered to be

connectible if they were within a specific given Cartesian distance and one can supply

a type required by the other.

Another notable difference between this simulation and the C++ simulation is

that, while in the previous simulation the services are located on a node at a location;

in this version the services are not attached to a node and they occupy a position in

space directly.

24
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Figure 4.1 SALSA Variation Class Diagram

m_pSim

1

1

m_allService
m_allsinkServices

m_connectedServices

4.2 Design

The design of the SALSA simulator is very much like that of the C++ simulator,

only simplified. The running of the simulation is controlled by a class Simulation.

Unlike the C++ version, no event queue must be maintained, since all composition

is based on the position of the services rather than their respective enabled status.

Note: most of the use of the event queue for the C++ simulation was to enable and

disable nodes at specific times.

The class Parser is the SALSA simulation’s equivalent of the Interface class.

It interprets the text configuration file from the format described in Section 4.3.1.

From this, it generates a type tree of the same style as the C++ version’s and it

generates services with an initial position and an angular velocity.

After each service is constructed, it is connected to all other services that have

compatible types and then passed an asynchronous message RunService to start

it running its composition updates. RunService chooses a random time uniformly
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Figure 4.2 SALSA Variation Messages Passed

distributed between 0 and 500 and sends an asynchronous PrepareCompose message

to itself with a after that delay, reducing the chance of all services composing at the

same time and competing for communication resources. The composition algorithm

itself works in much the same way as the C++ version’s bottom-up composition, as

described in Section 2.4.1.1

4.3 Operation

4.3.1 Configuration

It can be seen from Figure 4.3 that the configuration file for the SALSA simu-

lation is different from the C++ simulation’s configuration. The primary operational
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difference is the lack of general simulation parameters such as the composition inter-

val, neighbor distance, and simulation length. These parameters are compiled into

the code due to the simplicity of the simulation. Another difference easily spotted is

the abandonment of the single-line approach of the C++ simulation’s configuration

file. This was done as an experiment to improve upon readability.

4.3.1.1 Type Configuration

The Type configuration is begun with an identifier Type on it’s own line. The

first line after the identifier should contain the Type’s ID. The following line should

contain a list of all Types that this Type can supply, this list should be whitespace

delimited and followed by whitespace and a # symbol.

4.3.1.2 Service Configuration

The Service configuration begins with the identifier Service, followed by the

service ID on the next line. The line following contains a whitespace delimited list

of all output Types of this Service. This is followed by whitespace and a # symbol.

The next line is a whitespace delimited list of all input Types of this Service, followed

by whitespace and a # symbol. The next line is a space delimited list of the three

initial coordinates, followed by a line with the space delimited velocities, as described

in Section 4.1.

4.3.2 Compilation

The compilation of SALSA code is described in [6], Section 3.6.3. This simula-

tion’s code can be compiled using GNU Make and the included Makefile, i.e. make.

4.3.3 Running

As this simulation does not properly utilize the distributed computing aspects

of SALSA, the process for running SALSA code is described in [6] Section 3.6.3. This

simulation is run using the SimBootStrap class, and the configuration file name as

an argument.
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Figure 4.3 Example SALSA Variation Configuration
Type

LowQuality

#

Type

MedQuality

LowQuality #

Type

HighQuality

MedQuality #

Service

HighCamera

HighQuality #

#

1 1 1

0 0 1

Service

LowRecorder

#

LowQuality #

1 1 1

0 0 2



5. DISCUSSIONS AND CONCLUSION

5.1 C++ Simulator

5.1.1 Performance

The C++ simulator can be very slow for simulations of a thousand or more

services. This varies greatly depending on activation rates of nodes and the num-

ber of types each service has for inputs and outputs. Profiling has shown that a

majority of the time consumed by the service composition is spent in the function

Service::CanRecvFrom(). This function has to cycle trough every type supplied

and every type received by each Service, to determine if there are any compatible

Types in the type tree. This composition time was found be reduced by a few per-

cent by changing the method of storing each service’s types from a std::set to a

std::vector, and no perceptible increase was found in the creation or other accesses

of the types. This shows that if additional speed-up is desired, the types of other

“lists” may want to be investigated.

Initially the simulator used Pthreads to allow the services to compose concur-

rently, but this was abandoned due to seeming to be unnecessary and for portability

issues. Larger simulations have shown that this speed-up may have proven to be

useful, assuming the overhead of that many threads would be manageable. It would

be recommended to investigate a concurrent version of this simulator. However Qt’s

QThread would be advised for portability.

5.1.2 Capabilities

One difficulty that can be encountered with the GUI is that if larger simulations

are desired, Graphviz may have trouble displaying a neat and clear graph of the ser-

vices, nodes, and composition. It has been noticed, that particularly with the service

graph, Graphviz tends to produce a result that starts expanding rapidly horizontally,

but not vertically, making the text illegible.

There are many other visualization softwares available, e.g. VTK [7] and [8]

(though it should be noted that [8] also utilizes the DOT language), if large complex

29
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simulations are desired, switching to one of those would be recommended. Investigat-

ing further visualization options at the planning stages is also highly recommended.

5.1.3 Desired Enhancements

A lacking feature that would prove useful would be some built-in method of

saving the generated graphs without having to take a screenshot. This feature was

left out due to time constraints and priorities.

5.2 SALSA Simulator

The SALSA simulation was never intended to act as a comparison to the C++

version, hence the great discrepancies between capabilities and functionality. There-

fore to compare it against the C++ simulator would be unjust to its design and

function.

The current implementation of the SALSA simulation preformed its task well

with small numbers of services (i.e. a couple dozen). However even at these numbers,

the Java process would not utilize greater than a single CPU core. Given the overhead

inherent in implementing an actor model on top of Java, it can be assumed that this

would preform better if it ran with multiple cores.

As a further hindrance to the SALSA simulation’s viability, when scaled up to

larger numbers of services (in this case: more than a couple dozen), it would slow

down and cease to function. It has not yet been determined whether this is due to

deadlock or some other problem, as it does not occur with low enough service numbers

to practically trace the simulation’s operation.
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