
PARALLEL LOGIC SIMULATION OF MILLION-GATE
VLSI CIRCUITS

By

Lijuan Zhu

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF COMPUTER SCIENCE

Approved:

Boleslaw Szymanski
Thesis Adviser

Rensselaer Polytechnic Institute
Troy, New York

July 2005
(For Graduation August 2005)

c© Copyright 2005

by

Lijuan Zhu

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGMENT . vii

ABSTRACT . viii

1. Introduction and background . 1

1.1 VLSI Circuit simulation . 1

1.1.1 FPGA/ASIC Design Flow . 1

1.1.2 Four groups of circuit simulation 1

1.1.3 Timing granularity . 3

1.1.4 Sequential simulation strategies 4

1.2 Special purpose hardware techniques 4

1.3 Parallel Discrete Event-driven Simulation (PDES) 4

1.3.1 Event Scheduling . 5

1.3.2 Conservative approach . 5

1.3.3 Optimistic approach . 6

1.4 A Viterbi decoder design . 7

1.5 Outline of the thesis . 8

2. Related work on parallel logic simulation 9

3. Verilog Simulation . 15

3.1 Translator . 15

3.2 Parser . 17

3.3 DSIM . 17

3.4 Building a circuit simulation in DSIM 19

3.5 Circuit partitioning . 22

4. Simulation experiments and their results 23

4.1 Experiments and results . 23

4.2 Observation and Analysis . 25

iii

5. Conclusions and future work . 26

5.1 Conclusions . 26

5.2 Future work . 26

iv

LIST OF TABLES

4.1 Simulation results for the circuit of 1.2M gates with 1500 input vectors 23

4.2 Simulation results for the circuit of 1.2M gates with 500 input vectors . 24

5.1 Partitioning times using hMeTiS (shmetis) 27

v

LIST OF FIGURES

1.1 FPGA/ASIC Design Flow . 2

1.2 A gate-level circuit example . 3

1.3 (a) The block diagram of state-parallel Viterbi decoder, and (b) example
four-state register exchange structure for SMU. 7

2.1 Events scheduled for one input vector 13

3.1 The architecture of our simulator . 15

3.2 Module definition of the example in Figure1.2 16

3.3 Module hierarchy . 16

3.4 Primary inputs . 19

3.5 An example of wire connection between gates (LPs) 20

3.6 Procedure of the simulation . 21

4.1 Simulation speedup (1500 input vector) 24

4.2 Simulation speedup (500 input vector) 24

vi

ACKNOWLEDGMENT

I am deeply indebted to my advisor, Prof. Boleslaw Szymanski, for continuous

support, patience, encouragement and stimulating suggestions in all the time of my

research and writing of this thesis. Without his support and help, this thesis would

not be possible.

I thank Prof. Carl Tropper from School of Computer Science, McGill Univer-

sity. I appreciate his good advice and nice cooperation. I thank Prof. Tong Zhang

from ECSE, RPI, who providing me the circuits to make experiments with. I also

appriciate the fruitful discussion with him and it is a great pleasure to work with

him. I thank Prof. Christopher Carothers, who gave a great lecture about parallel

simulation, which helped a lot on my research work.

I thank my colleague Gilbert Chen, who really helped me a lot during the past

2 years. I appreciate his invaluable suggestions and experience for me to finish this

work. I am very thankful to him that he always can help me out when I get stuck.

I thank my friend Fei, Sun, who helped producing the circuits for my experi-

mental use. I appreciate his help for me to understand the circuit and the Synopsys

library.

Finally, I would like to express my sincere gratitude to my parents for their

constant support and love.

vii

ABSTRACT

The complexity of today’s VLSI chip designs makes verification a step necessary

before fabrication. The increasing size of the chips requires very efficient simula-

tion strategies to accelerate the simulation process. As a result, gate-level logic

simulation has became an integral component of a VLSI circuit design process that

verifies the design and analyzes its behavior. Since the designs constantly grow in

size and complexity, there is a need for ever more efficient simulations to keep the

gate-level logic verification time acceptably small. The most promising approach is

the use of multiple machines to simulate the circuit in parallel, which is referred to

parallel logic simulation of circuits. The parallel simulation takes advantage of the

concurrency available in the VLSI system to accelerate the simulation task.

Parallel logic simulation has been paid a lot of attention during the past sev-

eral years, but a high performance simulator is not yet available to VLSI designs.

The focus of this thesis is an efficient simulation of large chip designs. We start

with a survey of the research done in this field to date, concentrating on parallel

logic simulations. Then, we present a design and implementation of a new parallel

simulator, called DSIM. Finally, we demonstrate DSIM’s efficiency and speed by

simulating a large, million gate circuit using different number of processors.

viii

CHAPTER 1

Introduction and background

1.1 VLSI Circuit simulation

The development process of a hardware unit may take several months or even

years, and the costs of its fabrication instrumentation may reach several billions

of dollars. Therefore circuit simulations done before fabrication have became an

important and necessary step to avoid design errors. If undetected, such errors may

waste all the time and money invested in the design, because repair of fabricated

circuits is currently impractical.

1.1.1 FPGA/ASIC Design Flow

Hardware designs are supported by hardware description languages, or HDLs,

such as VHDL (Very High Speed IC Hardware Description Languages) [29] and

Verilog [2]. By using a HDL, one can describe arbitrary digital hardware at any

level. Chips are designed either in bottom-up or top-down fashion. The preferred

style of most Verilog based designs is top-down. Figure 1.1 shows a top-down design

and implementation of a FPGA/ASIC unit [34]. HDLs support also different ways

to describe the chips. Verilog, for example, provides three levels of abstraction:

behavioral level, register-transfer level and gate level.

1.1.2 Four groups of circuit simulation

According to the level of detail, circuit simulation can be classified into four

groups [34]:

• Behavioral or functional simulation: Circuit elements are modeled as func-

tional blocks that correspond to the architecture’s hardware functional blocks.

Functional simulation can take place at the earliest stages of the design. The

simulators allow sophisticated data representations and model only the behav-

ior of a design.

1

2

FPGA/ASIC

Place & Route

Synthesis &
Optimization

Hardware
Description Language

(HDL)

Gate-level
Simulation

Gate-level Netlist Functional
Simulation

Gate-level Netlist Timing
Simulation

Figure 1.1: FPGA/ASIC Design Flow

• Gate-level logic simulation: Circuit elements are modeled as the collection of

logic gates (for example, NAND, OR, D flip-flop) and wires with connectivity

information. Figure 1.2 shows a simple example of a gate-level circuit with

three logic elements. The input to gate-level simulators is two-valued (0 or

1), and the output is computed based on the truth table modeling the gate.

A delay model is associated with each gate, such as zero-delay, unit-delay or

multiple-delay models.

• Switch-level simulation: Simulators use the same logic values as gate-level

simulators use, but circuit elements are modeled as transistors rather than

gates.

• Circuit level simulation: Circuit elements are modeled as transistors, resistors

and wires with propagation delays determined by their geometric structure

and the underlying technology. These simulators rely on basic physical prin-

ciples and thus can be highly accurate and general. However, the simulators

determine the analog waveforms at nodes of the design, so they are rather slow

and unable to process very large design in a reasonable amount of time.

3

a
b

c

d

e f3ns

3ns 2ns

Figure 1.2: A gate-level circuit example

1.1.3 Timing granularity

In logic simulation, there are several possibilities to model the behavior of

circuits, each with different timing granularity from very fine-grained timing to

coarse-grained timing. Fine-grained timing usually use a time resolution in the

range of 0.1ns or smaller, which is more accurate than the coarse-grained timing.

Some gate-level simulators may use a single delay for a given element, others may

have different days depending on the output or whether the signal is rising or falling.

The models can be grouped as the following [43]:

• Continuous time: It is mainly for analog simulations of the lowest level. The

currency and voltage is expressed as differential equations in dependency of

the time.

• Unit delay: It takes exactly one time unit for the change of a signal to become

available.

• Fixed delay: Each element has a constant delay time through the whole sim-

ulation time. By this model, the circuit can be simulated more accurately,

since different falling and rising times can be simulated.

• Variable delay: This is the most flexible model for the elements. Each element

can have variable delays, which is dependent on the output capacity or the

state of the simulated system.

4

1.1.4 Sequential simulation strategies

Gate-level (logic) simulation can be classified into two categories: oblivious

and event-driven [34]. In the oblivious simulation, every gate is evaluated once

at each simulation cycle, whether or not the inputs have changed. The workload

is fixed, and the scheduling can be statically performed at the compile time, thus

there is no overhead incurred during the run time. In the event driven simulation, a

gate is evaluated only when any of its inputs has changed. For large circuits, event-

driven simulation is more efficient because fewer logic gates are evaluated at any

time instance. For several reasons, very large and complex systems take substantial

amounts of time to simulate even with event-driven simulators [7]. First, increasing

the number of simulated gates results in the increase of the number of functional

evaluations. Second, the overhead of managing the event queue in the simulator

grows with the increase in the number of unprocessed events in the queue. Third,

larger the circuit is, larger the number of input vector needed to verify its behavior.

1.2 Special purpose hardware techniques

There are some special purpose hardware techniques used to achieve better

performance, such as the Yorktown Simulation Engine (YSE) [46] from IBM and the

XP Simulation Booster from Zycad. These hardware accelerator have disadvantages

[40]: they are more expensive than general purpose hardware, and the type of

elements and delay models that they can handle are very limited. For these reasons,

we are not considering hardware accelerators in this paper. Instead, we focus on an

event-driven logic simulation for general-purpose computers.

1.3 Parallel Discrete Event-driven Simulation (PDES)

To speed up simulations, parallel discrete event simulation (PDES) for large

circuits has been advocated and used. In this approach, the model is composed

of some disjoint submodels [43]. The simulation of each submodel is carried by

the so-called Logical Process (LP). Each processor takes charge of simulating one

or more submodels, or LPs, and each LP interacts with all of the LPs which are

influenced by the given LP’s local changes. These interactions are accomplished by

5

messages carrying events between LPs, each event timestamped with the simulation

time at which those event should execute. In parallel simulation of circuits, each

gate is modeled as an LP, and assigned to a processor. A gate propagates its output

signals to the connected gates. If the LP of a connected gate resides on a different

processor, the output generates a messages sent to that processor. Each processor

maintains an event queue. In order to achieve the correct simulation, it is crucial to

ensure that events selected preserve causality.

1.3.1 Event Scheduling

The above requirement is easily satisfied in the sequential simulation by re-

quiring that an event can only produce new events with the time-stamp equal to or

greater to its own. This is also natural as the results of the events should not im-

pact the simulated past, but only the simulated present and future. As a result, an

event with the smallest time-stamp in the event queue of the sequential simulation

is safe to execute (any other event, either already present in the queue or produced

in the future must have a time-stamp at least as large as the time-stamp of this

event). Even though the same rule about events generating new events applies to

each LP in parallel simulation, no longer this rule is sufficient for correctness. LPs

exchange messages with events, so there is a danger that a message with the event

arriving from some other processor might have a time-stamp smaller than the event

at the head of the local queue. Ensuring that such arrival does not invalidate the

simulation is the main challenge for the parallel simulation protocols.

1.3.2 Conservative approach

PDES techniques employs two major classes of parallel simulation protocols:

conservative and optimistic [25]. A new class of simulation protocol, called lookback,

has been recently discovered and presented in [16–18], but the discussion of this

protocol is beyond the scope of this thesis as it was not yet applied to circuit

simulation.

Under a conservative protocol, an LP executes an event only if it is certain that

an event with a smaller time-stamp will not arrive at the LP. LPs with no safe event

to process block, which may result in deadlock. Deadlock avoidance and deadlock

6

detection with recovery are the two ways of dealing with deadlocks in conservative

algorithms. We focus on optimistic protocols in this paper. In deadlock avoidance,

null messages (a special type of message containing time-stamp but no content) are

used to give the lower bounds for the time stamps of the next unprocessed event.

This lower bound is used to determine if the event at the head of the event queue is

safe to process. This approach reduces the potential of a deadlock, but creates large

amount of null messages, thus degrading the performance. The deadlock detection

and recovery algorithm eliminates the use of null messages at the cost of deadlock

recovery when the deadlock occurs.

1.3.3 Optimistic approach

The original optimistic protocol is known as Time Warp [22, 24]. In Time

Warp, an event is processed as soon as it is at the head of the future event queue

sorted in the increasing time-stamp. A causality error may occur when a message

is received containing an event with a time-stamp which is smaller than the local

simulation time. Such a message is called a straggler. After receiving a straggler, an

LP recovers by un-doing the effects of processed events with time-stamps larger than

that of the straggler. This is accomplished by rolling back the LP to a state which

preceding the straggler and by sending negative messages to annihilate events sent

to neighboring LPs which have time-stamps larger than that of the straggler. The

LP periodically saves its state, so it can restore a previous state when it needs to

roll back. In Time Warp, global virtual time (GVT) is defined as the smallest time-

stamp among all of the unprocessed positive and negative messages. It is always safe

to process an event with a time-stamp equal to or smaller than GVT. Therefore,

the events with time-stamp smaller than GVT will never be rolled back, so the

memory used to store these events can be reclaimed [25]. Lazy cancellation [26] and

aggressive cancellation [25] are two ways of annihilating messages sent out by the

rollbacked events. Lazy cancellation cancels those messages only when it is known

that they will not be resent again after the rollback, while aggressive cancellation

cancels them immediately when the roll back occurs.

7

1.4 A Viterbi decoder design

As our benchmark, we selected the Viterbi decoder circuits implementing a

state-parallel RE Viterbi decoder whose block diagram is shown in Figure 1.3(a).

The decoder contains three functional blocks: branch metric unit (BMU) that cal-

culates all the branch metrics; add-compare-select (ACS) units that update the

accumulative survivor path metrics; survivor memory unit (SMU) that stores the

survivor paths and generate the decoder output. For a trellis with N states, a

state-parallel decoder implements all the N ACS units that operate in parallel.

Figure 1.3: (a) The block diagram of state-parallel Viterbi decoder, and
(b) example four-state register exchange structure for SMU.

As extensively discussed in the literature (e.g., [9,10,47]), SMU is convention-

ally designed in two different styles, register exchange (RE) and trace back (TB),

targeting different power/complexity versus throughput trade-offs. Basically speak-

ing, RE can easily support very high decoding throughput (e.g., hundreds Mbps or

even Gbps) but requires large number of transistors and consumes a lot of power.

TB decreases implementation complexity and is quite power-efficient but cannot

support very high decoding throughput. In RE Viterbi decoder, as illustrated in

Figure 1.3, the decoder output is obtained by simple register shift operation and

the critical path typically lies in ACS recursion. On the other hand, in TB Viterbi

decoder, certain number of memory accesses are required to obtain each decoder

output, which often results in the trace back being the critical path. One impor-

tant parameter in both RE and TB Viterbi decoders is the decoding decision depth,

8

which is the length path memory. For convolutional codes, the decision depth selec-

tion has been well discussed [3]. What we use is the designed RE Viterbi decoders

with the constraint length of 11, corresponding to the number of NAND gates of

1.2 millon.

1.5 Outline of the thesis

The rest of the thesis is organized as follows. The next chapter describes

previous research work already done in gate-level circuit simulation. Chapter 3

contains a description of our circuit simulator, introduction of DSIM, and how to

build the circuit simulation in DSIM. Chapter 4 provides performance results for

our simulations of the Viterbi decoder. Finally, Chapter 5 contains our concluding

remarks and plans for future work.

CHAPTER 2

Related work on parallel logic simulation

Many researchers have been developed parallel simulation techniques to speed up

logic simulation. Meister gave a good albeit bit dated review of parallel logic simu-

lation in [43].

Briner et al [30] implemented a parallel simulator using Time Warp with lazy

cancellation. He achieved the speedup of 23 times over sequential simulation on

32 processors of a BBN GP1000 system, running mixed-level simulations. Briner

also proposed several improvements over the standard Time Warp to increase the

speedup, including incremental state saving, bounding window, and synchronization

granularity. In PDES, roll back is achieved by periodically save the entire state of

a processor before a next event is processed. The last processed event changes the

previous state. In this incremental state saving method, the entire state is saved

after every several events processed. All the already processed events are kept in a

linked list. When the roll back occurs, the processor restores to the nearest state

saved before the straggler. The events between the state and the straggler are re-

processed.Bounding window is used to reduce the roll back. Simulation on some

processors may get ahead of others, thus receive messages with smaller time-stamp,

then roll back needs to be carried out. The bounding window, or time frame is used

to prevent the processors from executing events greater than some delta from the

GVT to reduce the roll back. That is, The simulation time of a processor can not

be advanced exceeding the time frame. However, the bounding window should be

carefully chosen. If the bounding window is too large, the time stamps of the events

to be processed should be within the bounding window, then the bounding window

is useless, any event can be processed as usual. If the bounding window is too small,

the processor will block.In synchronization granularity, two synchronization schemes

are implemented: inter-processor, and inter-component. In inter-processor synchro-

nization, all LPs in a processor have the same time clock. When roll back occurs,

the entire processor needs to be rolled back. In inter-component synchronization,

9

10

one LP or several LPs (these LPs can send messages to each other) can have the

same time clock. Thus, the straggler event cause the associated LP and the LPs

in the same time clock to roll back. This approach can lead to less events rolled

back [30].

Bauer et al [8] proposed a parallel logic simulator based on event-driven gate-

level simulator LDSIM [28]. It achieved speedups between 2 and 4 over the se-

quential LDSIM simulator on 12 processors for medium sized gates from ISCAS89

benchmarks (sizes of the circuits ranged from 3,500 to 19,200 gates).

Manjikian and Loucks [41] implemented a parallel gate-level simulator on a

local area network of workstations. Simulations with large circuits from the ISCAS89

benchmark suite achieved speedups between 2 and 4.2 on 7 processors. The higher

speedup of 4.2 was achieved through well-balanced cone partitions [50]. In this

partition algorithm, the circuits are regarded as a collection of cones [49]. A circuit

can be modeled as a graph. A gate is represented as a node, and a wire connecting

two gates is regarded as a link of these two nodes. A cone is formed in the process

starting with a primary output of a circuit (the initial set of one node). The nodes

with connections to the newly added nodes in the set are added to the set recursively,

until the newly added nodes are primary inputs. The partition algorithm is to

partition the circuits into blocks with equal number of gates using a depth-first

traversal of the circuit to guarantee that the fan-in cone to a primary output is in

the same partition as the gate this primary output is in.

Bagrodia et al [5] developed a parallel gate-level circuit simulator in the Maisie

simulation language [6] and implemented it on both distributed memory and shared

memory parallel architectures. They achieved speedup of about 3 on 8 processors of

a Sparc1000 for a conservative protocol and about 2 for an optimistic protocol for

the four largest circuits (with gates number of 1193, 1667, 2307, and 2418) in the

ISCAS85 benchmark suite. The K-FM [11] and K-MAFM [21] partition algorithms

were used to partition the circuits. The K-FM algorithm begins with a balanced

partition as the initial partition, which is randomly generated. At each step, a gate

is moved to another partition, resulting in a currently best partition (has a highest

reduction in the cut size, referred as a highest gain. Here, cut size is the number of

11

links which can be removed to disconnect two partitions.) but no violation of the

balance constraint. The algorithm iterates this process until it reaches to a specified

number of iterations or no improvement can be made to the partition. K-MAFM

is derived from K-FM, with the difference that the given circuits contain no cycles,

and they are clustered using the maximum fan-out free cone (MFFC) [31] method

before partition.

Meister [44] developed a framework called DVSIM for a parallel event-driven

simulator of VLSI designs described in VHDL. Both conservative and optimistic

(Time Warp) protocols were implemented. This simulator evolved from the sequen-

tial simulator VSIM developed by Levitan [37]. In DVSIM, the four different par-

titioning algorithms were implemented: round-robin, Kernighan-Lin, K-FM, and

soccer partitioning. The round-robin partitioning algorithm assigns gates to the

available processors in a circular way. In the acyclic partitioning algorithm, the

circuits are represented as directed graph, and partitioned into subgraphs. Each

subgraph is mapped to one processor. The Kernighan-Lin the K-FM partitioning

algorithms attempt to minimize the number of connections cut by partitions, thus

to reduce the communication costs. Their difference between the two is that the

Kernighan-Lin algorithm exchanges pairs of gates between two partitions, while the

K-FM algorithm moves a gate from one partition to another. The last algorithm

discussed in the paper is the soccer partitioning algorithm. It starts by regarding

each LP (gate) as a node in a graph. The node with the maximal distance to all

other nodes is selected as the first node in one block, then nodes closer to it are

added to this block until the number of nodes in this block exceeds a value (this

value can be calculated by total number of nodes dividing number of partitions).

Then a block is formed, and the nodes in this block are excluded from the graph for

later partition. This process is recursively carried out until it reaches to the number

of partitions. The author provided simulation results obtained using a conservative

protocol on three different sequential circuits with gates 892, 15709, and 40685 from

the ISCAS89 benchmark. The results showed that there was no speedup at all for

the small circuit. For larger benchmark circuits, the speed up was about 4 on 12

processors. Preliminary results showed that Time Warp protocol with soccer parti-

12

tioning outperformed the conservative protocol, but Time Warp performed poorly

with acyclic partitioning scheme.

Kim [34] implemented a parallel logic simulator on MIMD distributed mem-

ory machines. A new partition algorithm, improved Concurrency Preserving Parti-

tioning (iCPP), was proposed. It preserves computation concurrency by assigning

gates that can be evaluated at about the same time to the same processor. The

iCPP algorithm results in a balance computational load throughout the simulation.

Event-lookahead Time Warp (ETW) [35], the hybrid integration of event-lookahead

conservative protocol and the Time Warp optimistic protocol was proposed and

implemented on an IBM SP2 parallel machine with 10 processors. In the logic sim-

ulation of a digital circuits, a gate may be evaluated many times for one primary

input vector. For example in Figure 2.1, LP1 schedules four events with different

time-stamp to LP2 during the time of one input vector. Actually, the effects of

event e1, e2, and e3 are overridden by e4. LP1 can send only e4 to achieve the

same effect. That is, e1, e2, and e3 are not necessary. The ETW attempts to look

ahead to future events and if possible, to combine multiple events into one with the

same effect for the receiving gate. In this example, instead of executing four events,

only one event e4 can be executed by LP2. Therefore, this approach speeds up

the simulation. The results were compared to the two commercial VHDL sequential

simulators: Active VHDL and Quick VHDL simulator. The authors showed that the

pure sequential event-driven simulator took about 57-69% of the simulation time of

the Active VHDL. The ETW simulation took about 34-95% of the simulation time

of the pure sequential simulation. These results were obtained by simulating four

circuits with sizes of 2416, 5597, 7951, and 19253 gates. Compared to the Time

Warp algorithm, the ETW achieved 20% speed up for a 23843 gate circuit s38417

from the ISCAS89 benchmark.

Lungeanu and Shi [48] developed a parallel compiler and simulator of VHDL

designs, achieving almost linear speedup. They proposed a new approach using both

a conservative and an optimistic protocols, which they call the dynamic approach.

In their dynamic protocol, LPs switch from an optimistic to a conservative protocol

if they roll back too much, and vice-versa if they block too much. Simulations were

13

LP1 LP2

(e1,10) (e2,11)

(e3,10) (e4,11)

Figure 2.1: Events scheduled for one input vector

carried out on an SGI Challenge parallel machine with 16 processors. The results

showed that the speedup was about 11 on a circuit with 14704 gates using dynamic

approach.

Williams [51] developed Icarus Verilog, an open-source Electronic Design Au-

tomation (EDA) sequential Verilog simulator. Icarus Verilog includes a IVerilog

compiler and a Verilog Virtual Processor (VPP), with the VVP assembly code, an

intermediate representation of the original circuits. The IVerilog compiler flattens

the hierarchical structure of modules, generating a flattened internal netlist. VVP

assembly code is the default target format generated from the netlist. The VVP

simulator acts as an interpreter of the assembly code. It first parses VVP assembly

code to achieve netlist of structural items (inputs, outputs or delay values), then

employs the primary input to initialize and drive the simulation.

In [38,39], Li et al designed and implemented DVS, an objected-oriented frame-

work for distributed Verilog simulation. The DVS takes the VVP assembly code as

input. The VVP parser constructs the structural items, represented by functors and

stored in a functor list, which are used by the distributed simulation engine after

the circuit partitioning. The distributed simulation engine integrates the original se-

quential VVP simulator with the Object-oriented Clustered Time Warp (OOCTW)

simulator based on the Clustered Time Warp (CTW) [4]. In this algorithm, LPs

are grouped into clusters. A sequential algorithm is used within each cluster (that

is, events are executed sequentially within a cluster). A Time Warp protocol is used

between clusters. The authors conducted experiments on a network of 8 computers

simulating a 16bit multiplier with 2416 gates. The results showed that the DVS ran

slower than the sequential Icarus Verilog simulator. According to the authors, it

14

was attributed to the large communication cost, the load imbalance and the small

size of the circuits. Large circuits should be simulated by DVS to demonstrate its

scalability.

All these parallel logic simulators simulated circuits of quite modest size of

about several thousands gates. The simulator described in this thesis has been

developed with the explicit goal of simulating large circuits, having millions of gates.

CHAPTER 3

Verilog Simulation

The simulator which we have designed and implemented consists of a translator, a

parser and a simulator proper as shown in Figure 3.1.

Simulation Results

Simulator

Parser

Flattened File

Translator

Verilog Source File

Figure 3.1: The architecture of our simulator

3.1 Translator

Verilog defines modules in a hierarchical structure to enhance the modularity

and encapsulation. However, this structure is difficult to process by a simulator.

Figure 3.2 shows a module definition for the example in Figure 1.2, and Figure 3.3

shows a hierarchical structure of modules. The goal of the translator is to flatten the

hierarchical modules into a netlist without a hierarchical structure, and to gener-

ate/output the source file of the netlist with the flattened structure. It is composed

of the following components:

15

16

• Parsing: The translator first reads in the source file in Verilog format, per-

forming the syntax checking, semantic checking and stores each module in lists

of gates, wires, inputs, and outputs.

• Flattening: During the parsing, each time there is a module instantiation,

the translator expands the instantiation with the original module definition,

renaming all gates and wires.

• Outputting: Using the information stored for the root module (normally, the

last module processed), the translator outputs the netlist of this module.

module example(a, b, c, f);
input a, b, c;
output f;
wire d, e;
and(.ip1(a), .ip2(b), .op(d));
or(.ip1(d), .ip2(c), .op(e));
inv(.ip(e), .op(f));
endmodule

Figure 3.2: Module definition of the example in Figure1.2

module t1(...);
...

endmodule
module t2(...);
...

endmodule
module top(...);
t1 child1(...);
t2 child2(...);
...

endmodule

Figure 3.3: Module hierarchy

17

3.2 Parser

The parser mimics the parsing process in the translator, except that its input

file is already in the flattened structure. The parser reads in the output from the

translator, and then analyzes and stores the gate structures together with the wire

connectivity information into the simulator memory.

The reason why we use parsing twice is that after the first parsing process we

obtained a file with flattened structure, which is reusable. Had we used only one

parsing phrase, the process would have been more complicated, since it would need

to do two jobs-deal with the hierarchy, and collect the information about gates.

Every time we want to do the simulation, we would need to perform both of these

functions. Using two parsing processes to get these two jobs done separately we only

need to parse the hierarchical structure once. In this way, we simplify the parsing

process and reduce the simulation time.

3.3 DSIM

DSIM outgrew of the project COST [15] that aimed at designing a component

oriented discrete event simulation [12–14]. DSIM is a new generation Time Warp

simulator developed to support efficient Time Warp simulation on distributed clus-

ters with up to thousands of processors [19]. DSIM features an efficient and scalable

GVT (Global Virtual Time) algorithm, referred to as the Time Quantum GVT

(TQ-GVT) algorithm, which does not require message acknowledgments, relies on

short messages with constant length, and does not use any vector.

The key idea of TQ-GVT is to construct two cuts, as in Mattern’s GVT

algorithm [42], such that any message sent before the first cut are guaranteed to

be received by the time the second cut is completed. However, Mattern’s GVT

algorithm, or its variants proposed by Mattern and many others ([20, 42, 45]), has

to either use multiple rounds to finish the second cut, or, if it can be done within

one round, incur waiting time on each processor. In TQ-GVT, the two cuts are

dynamically chosen by the GVT master, a processor devoted to running the core

of TQ-GVT. Other processors are required to report GVT-relevant information to

the GVT master periodically according to a preset interval. After collecting these

18

reports, the GVT master then constructs the first cut dynamically, by determining

the earliest time quantum such that some messages sent from this time quantum are

still in transit. The second cut simply consists of the latest reports received from

each processor. Thus, the construction of the two cuts always utilizes the latest

information available, without using multiple rounds and without incurring extra

waiting time, resulting in efficient computation of accurate GVT estimates. TQ-

GVT was shown to be able deliver a continuous stream of GVT estimates every 0.1

second even on 1,024 processors [19]. The aggregate network bandwidth consumed

by TQ-GVT with such a high update frequency is still less than 1M bytes/second.

In addition to the new GVT algorithm, DSIM uses a modified fossil collection

mechanism called Local Fossil Collection, in which fossil collection is done sepa-

rately by each LP individually, right before an LP attempts to process a new event.

Although this technique does not decrease the number of operations, it improves

the locality of memory references, since the event memory released in the fossil col-

lection procedure can be immediately reused in the processing of the new event (if

there are new events to be scheduled).

DSIM also employs an efficient event management system. For each type of

events, it pre-allocates a memory buffer, whose size can be dynamically increased,

in order to make constant the complexity of event allocation. To minimize the

memory overhead, the event data representing an unprocessed event can share the

same memory block with the event data representing the corresponding processed

event after the unprocessed event is processed.

DSIM has been demonstrated to simulate a large PHOLD model, consisting

of 67,108,862 LPs and 1,073,741,824 events, on 1,024 processors, yielding an event

processing rate of 228 million events per second and a speedup of 296. In another

study, DSIM has been able to simulate a quarter million spiking neurons, with 50

synaptic connections per neuron, yielding an event processing rate of 351 million

events per second and a speedup of 379.

19

3.4 Building a circuit simulation in DSIM

In our gate-level circuit simulation, gates, primary inputs, and clocks are mod-

eled as individual Logical Processes (LPs). A primary input as well as a clock can

be considered as a gate, in which the output replicates the input. Primary inputs

to the simulator, are in the form of a list of vector (in hex format, with digits of 0-9

and letters a/A-f/F). Decomposing a vector into bits can produce individual bits

for each primary input. Figure 3.4 shows an example of fetching bits from the input

vector.

8 primary inputs a list of input vector
A[0..3]
B[0..3]

(5,8)
(3,6)
(6,2)

A[0]

A[1]

A[2]

A[3]

0101
5

0011
3

0110
6

A[0]:110

A[1]:011

A[2]:101

A[3]:000

B[0]

B[1]

B[2]

B[3]

1000 0110 0010
8 6 2

B[0]:000

B[1]:011

B[2]:010

B[3]:100

Figure 3.4: Primary inputs

The simulation starts with the LP that models the primary input. It recur-

sively reads a vector from the input list and decomposes it to get the corresponding

bits as the input to itself (we model it as a gate replicating its input). The time

interval to read the vector is either the time interval of the data supplied, referred

to as the data interval or is defined as a parameter of the simulator. The LP that

models a clock works similarly to the one that models the primary input. The clock

20

LP inputs a 0 or 1 bit alternatively every clock interval.

LPs that model gates execute the gate behavior and schedule new events ac-

cording to their outputs. An event consists of three items: the identifier of the

LP to which the event is sent, the bit (0 or 1) representing the output of the gate

(LP) sending this event, and the index of the port in the receiving gate (that is the

port that is directly connected with the gate sending the event). Each event is also

timestamped with the simulation time at which the event should be executed.

At the start of the simulation, an initialization stage activates the primary

input LPs that initialize events (with the current simulation time) to its subordinate

LPs from the first input vector in the list. They also schedule events destined to

themselves with a time-stamp equal to the current simulation time plus the input

data interval. The latter events, when executed, will simulate arrival of the next

input vector from the input list.

We use an example to illustrate how the LP modelling one primary input

fetches input from the list of input vector, and schedules events to subordinate LPs

and itself. Suppose the input data interval is 20, A[2] in Figure 3.4 is modelled

as LP1 (id=1), and LP10 (id=10), LP20 (id=20) are the subordinate LPs with

connection at the second and the first port respectively, which is shown in Figure

3.5.

LP1

LP20

LP10
1

2

1

2

Primary input A[2]
in Figure 3.4

Figure 3.5: An example of wire connection between gates (LPs)

The input list of LP1 is 101 as shown in Figure 3.4. At the start of the

simulation, LP1 is fed by bit 1 from the first input. LP1 schedules events (10,

<1,2>, 0) and (20, <1,1>, 0) to LP10 and LP20 respectively. It also schedules an

event (1, <0,1>, 20) to itself to fetch the second input. In the future, when the

simulation time is 20, event (1, <0,1>, 20) will be executed, and new events will be

21

scheduled to LP10 and LP20 because the output of LP1 will change from 1 to 0. In

the meanwhile, a new event (1, <1,1>, 20) for the third input will be sent to itself.

After the initialization stage, the simulator enters the simulation loop. In the

body of this loop, first messages from other processors are received, if any and the

received events placed in the future event queue. If there are stragglers, the roll

back will occur, otherwise the first event at the head of the future event queue is

dequeued. The time-stamp of this event becomes the current simulation time and

the event is executed, potentially generating new events that are added to the queue.

If the current simulated time reaches the predefined total simulation time or there

is no more input vector (at the end of the list), the simulation stops. Otherwise, if

the time quantum is reached, the TQ-GVT algorithm is invoked. If this is not the

case, the the simulation loop body is executed again. The procedure is shown in

Figure 3.6.

Generation of new events

Update of LPs

Evaluation

Schedule of events

Initialization
(feeding primary inputs)

Figure 3.6: Procedure of the simulation

22

3.5 Circuit partitioning

The placement of circuit elements on the processors can greatly affect the

simulation performance. One goal of partitioning is to balance the computation

among processors by assuring Before we feed the circuit to the simulator, we need

to do the circuit partitioning to distribute the work to each processor as equally as

possible. we use a tool called hMeTiS developed at the University of Minnesota [32].

hMeTiS is a tool for partitioning large hypergraphs, especially those in circuit design.

The problem is to partition the vertices of a hypergraph into K roughly equal parts

such that the hyperedges connecting different parts are minimized. Hyperedge is

an extension of an edge by that more than two vertices can be connected by a

hyperedge. The hypergraph is such a graph that the edges are replaced by the

hyperedges. The algorithms used by hMeTiS are based on multilevel hypergraph

partitioning described in [27,33]. By use these algorithsm, hMeTiS has the following

advantages: Provides high quality partitions and It is extremely fast.

CHAPTER 4

Simulation experiments and their results

We used the synthesized netlist of the Viterbi decoder obtained through the Syn-

opsys [1] design compiler, which converts a design source code to a netlist file. The

simulations were executed on a cluster. Each node of this cluster has 2 800-MHz

Intel Pentium III processors with 512 MB memory, connected by a fast Ethernet.

The Viterbi decoder circuit that we simulated consists of about 1.2M gates, with 6

primary inputs. The input supplied in our simulation is a list with 1500/500 vectors.

The circuit was previously partitioned using hMeTiS shmetis program for 2, 4, 8,

16, 32 parts.

4.1 Experiments and results

There are three factors affecting the simulation time: the total number of

events committed, the ratio of the inter-processor events, and the ratio of rollbacks.

Table 4.1 summarizes the simulation results of 1500 input vectors, and Table 4.2

summarizes the results of 500 input vectors. Each data collected is the average of 3

consecutive runs.

Table 4.1: Simulation results for the circuit of 1.2M gates with 1500 input
vectors

Number of
processors

Event pro-
cessing rate

Speed
up

Run
time(seconds)

Remote
events ratio

Rollbacks
ratio

3 137,903 1 1318.744 0.22% 0.14%
5 390,457 2.83 469.192 1.43% 0.19%
9 931,614 6.75 197.57 1.86% 0.23%
17 2,131,558 15.46 86.55 2.34% 0.24%
33 3,839,373 27.84 48.20 4.53% 0.39%

23

24

Table 4.2: Simulation results for the circuit of 1.2M gates with 500 input
vectors

Number of
processors

Event pro-
cessing rate

Speed
up

Run
time(seconds)

Remote
events ratio

Rollbacks
ratio

3 134,061 1 438.805 0.68% 0.43%
5 377,044 2.81 160.60 2.10% 0.59%
9 849,550 6.34 72.274 5.38% 0.65%
17 1,862,908 13.90 33.182 6.40% 0.70%
33 3,033,296 22.63 20.504 11.6% 0.79%

Figure 4.1: Simulation speedup (1500 input vector)

Figure 4.2: Simulation speedup (500 input vector)

25

4.2 Observation and Analysis

The sequential simulation of this circuit were not done, because none of the

cluster nodes had memory sufficient for such a run. However, in parallel simulations,

the memory usage is distributed to all of the nodes. Hence a node needs less memory

than that in sequential simulation. In DSIM, one processor is used for GVT master,

so the results shown in Table 4.1 and Table 4.2 are for 2, 4, 8, 16, and 32 processors.

Since the sequential simulation does not complete, we calculate the speedup with

2 processors. From Figure 4.1 and Figure 4.2, we observe the superlinear speedup

between 3 and 5 processors, 5 and 9 processors, 9 and 17 processors. These speedups

are attributed to less memory needed on a processor because more processors are

used. when the available memory is enough for the needed memory on a processor,

there is no superlinear speedup between 17 and 33 processors. The speedup between

17 processors and 33 processors is 1.80 for 1500 input vector, and 1.63 for 500 input

vectors. However the speedup between 3 processors and 33 processors is as high as

27.84, and 22.63 for 1500 and 500 input vectors respectively. Hence, by increasing 3

processors by the factor of 11, we speed up the computation by the factor of 27 (or

22), a clear sign of a superlinear speedup resulting from improved memory system

performance.

The remote event ratios are less than 5% in Table 4.1, and less than 12% in

Table 4.2. The rollback ratio is less than 0.4% and 0.8% in Table 4.1 and Table 4.2

respectively. The more remote events, the higher possibility of rollbacks, thus the

longer simulation times. From the results, we could infer that the good performance

was attributed to the lower remote events ration and rollbacks ratio.

CHAPTER 5

Conclusions and future work

5.1 Conclusions

A parallel logic simulator of a million-gate VLSI circuit has been proposed and

implemented using the new simulation engine called DSIM. The circuit experimented

is large, with 1.2 Million gates, and the simulation speed is high. Results show

that this simulator is capable of efficiently simulating the large circuit with a high

speedup. Superlinear speedup is achieved for up to 17 processors. The ratio of speed

between 3 processors and 33 processors is about 28.

5.2 Future work

A good partitioning algorithms is central to the success of distributed circuit

simulation, as witnessed by our own (and others) experiments. Table 5.1 shows the

partitioning times of the circuit we used. The partition time increases a lot when

we need more parts. Also, Iterative exchange algorithms such as hMeTiS, used in

our experiments, or Clip [23], while effective, can become costly as circuits increase

in size. Hence heuristics to decrease their execution time or the use of dynamic load

balancing [4] provide important venues for the continued research.

Asynchronous chip simulation is also a very interesting topic. As CMOS is con-

tinuously scaling down and the chip is becoming more and more complex, sticking

to the conventional synchronous design methodology (the computation and commu-

nication within the circuit systems are controlled by a common clock) becomes more

and more problematic. As an alternative, asynchronous design methodology (com-

putation and communication are realized by local handshaking) shows some great

promise. However, one big problem of using asynchronous circuits is lack of design

automation tool including the testing and verification. Asynchronous simulation

could be a good extension of the current simulator.

A summary of this thesis has been published at the Proceedings of MAS-

COT05 [36].

26

27

Table 5.1: Partitioning times using hMeTiS (shmetis)

Number of partitions 2 4 8 16 32
Partitioning time(seconds) 232.656 470.236 614.662 783.870 977.857

28

[1] www.synopsys.com.

[2] Verilog hardware description language standard. IEEE 1364-2001, 2001.

[3] J. B. Anderson and K. Balachandran. Decision depths of convolutional codes. In

IEEE Transactions on Information Theory, volume 35, pages 455–459, March 1989.

[4] H. Avril and C. Tropper. Scalable clustered time warp and logic simulation. In

VLSI design, pages 1–23, 1998.

[5] R. Bagrodia, Y. an Chen, V. Jha, and N. Sonpar. Parallel gate-level circuit

simulation on shared memory architectures. In Computer Aided Design of High

Performance Network Wireless Networked Systems, pages 170–174. NSF, 1995.

[6] R. L. Bagrodia and W.-T. Liao. Maisie: A language for the design of efficient

discrete-event simulations. In IEEE Transactions on Software Engineering,

volume 20, pages 225–238, April 1994.

[7] M. L. Bailey, J. Jack V. Briner, and R. D. Chamberlain. Parallel logic simulation of

vlsi systems. In ACM Computing Surveys, volume 26, September 1994.

[8] H. Bauer, C. Sporrer, and T. Krodel. On distributed logic simulation using time

warp. In In Proc. VLSI International Conference (IFIP), Edinburgh, 1991.

[9] P. J. Black and T. H. Meng. Hybrid survivor path architectures for viterbi

decoders. In Proc. of IEEE International Conference on Acoustics, Speech, and

Signal Processing, pages 433–436, April 1993.

[10] E. Boutillon and N. Demassieux. High speed low power architecture for memory

management in a viterbi decoder. In Proc. of IEEE International Symposium on

Circuits and Systems, pages 284–287, May 1996.

[11] C.Fiduccia and R. Mattheyses. A linear time heuristic for improving network

partitions. In In Proceedings of the ACM/IEEE Design Automation Conference,

pages 175–181, 1982.

[12] G. Chen and B. Szymanski. Component-based simulation. In In Proc. Modeling

and Simulation, ESM 2001, pages 68–75, 2001.

[13] G. Chen and B. Szymanski. Component-oriented simulation architecture: Towards

interoperability and interchangeability. In In Proc. 2001 Winter Simulation

Conference, pages 495–501, 2001.

[14] G. Chen and B. Szymanski. A component model for discrete event simulation,. In

LNCS, pages 580–594, 2002.

[15] G. Chen and B. Szymanski. Cost: A component-oriented discrete event simulator.

In In Proc. Winter Simulation Conference, pages 776–782, 2002.

29

[16] G. Chen and B. Szymanski. Lookahead, rollback and lookback, searching for

parallelism in discrete event simulation. In In Proc. SCSC 2002 Summer Computer

Simulation Conference, 2002.

[17] G. Chen and B. Szymanski. Lookback: A new way of exploiting parallelism in

discrete event simulation. In In Proc. 16th Workshop on Parallel and Distributed

Simulation PADS02, pages 153–162, 2002.

[18] G. Chen and B. Szymanski. Four types of lookback. In In Proc. 17th Workshop on

Parallel and Distributed Simulation, pages 3–10, 2003.

[19] G. Chen and B. Szymanski. Dsim: Scaling time warp to 1,033. In Department of

Computer Science, Rensselaer Polytechnic Institute, 2005.

[20] M. Choe and C. Tropper. An efficient gvt computation using snapshots. In

CSMA98, pages 33–43, 1998.

[21] J. Cong, Z. Li, and R. Bagrodia. Acyclic multiway partitioning of boolean networks.

In In Proceedings of the ACM/IEEE Design Automation Conference, 1994.

[22] D.Jefferson. Virtual time. In ACM Trans. Programming Languages and Systems,

volume 7, pages 404–425, July 1985.

[23] S. Dutt and W. Deng. Cluster aware iterative improvement techniques for

partitioning large vlsi circuits. In ACM Trans on Design Automation of Electronic

Systems, pages 91–121, 2002.

[24] R. Fujimoto. Time warp on a shared memory multiprocessor. In Proc. of the 1989

International Conf. on Parallel Processing, volume 3, pages 242–249, 1989.

[25] R. M. Fujimoto. Parallel discrete event simulation. In Communications of the

ACM, volume 33, pages 30–53, 1990.

[26] A. Gafni. Rollback mechanisms for optimistic distributed simulation systems. In In

Proceedings of the SCS Multiconference on Distributed Simulation, volume 3, pages

61–67, July 1988.

[27] V. K. George Karypis, Rajat Aggarwal and S. Shekhar. Multilevel hypergraph

partitioning: Applications in vlsi domain.

[28] T. H.Krodel and K. J.Antreich. An accutate model for ambiguity delay simulation.

In Proc. EDAC, pages 122–127.

[29] IEEE Std. 1076-2002. IEEE Standard VHDL Language Reference Manual, 2002

edition.

30

[30] J. Jack V.Briner, J. L. Ellis, and G. Kedem. Breaking the barrier of parallel

simulation of digital systems. In 28th ACM/IEEE Design Automatio Conference,

pages 223–226, 1991.

[31] J.Cong and D. Y. On area/depth tradeoff in lut-based fpga mapping. In In

Proceedings of ACM/IEEE Design Automation Conference, 1993.

[32] G. Karypis and V. Kumar. Hmetis, a hypergraph partitioning package.

[33] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning.

[34] H. K. Kim. Parallel Logic Simulation of Digital Circuits. Phd thesis, Wright State

University, 1998.

[35] H. K. Kim and J. Jean. Parallel optimistic logic simulation with event lookahead.

In Proc. of the International Conference on Parallel Processing, pages 10–15, 1998.

[36] B. S. C. T. L. Zhu, G. Chen and T. Zhang. Parallel logic simulation of million-gate

vlsi circuits. In Mascots, 2005.

[37] S. Levitan. Vcomp and Vsim Reference Manual. University of Pittsburgh, 1993.

[38] L. Li, H. Huang, and C. Tropper. Towards distributed verilog simulation. I.J. of

SIMULATION, 4(3–4):44–54.

[39] L. Li, H. Huang, and C. Tropper. Dvs: An object-oriented framework for

distributed verilog simulation. In Proceedings of the Seventeenth Workshop on

Parallel and Distributed Simulation (PADS’03), 2003.

[40] L.Soule. Parallel Logic Simulation. An Evaluation of Centralized-Time and

Distributed-Time Algorithms. PhD thesis, Standford Univesity, June 1992.

[41] N. Manjikian and W. M. Loucks. High performance parallel logic simulation on a

network of workstations. In Proc. 7th Workshop on Parallel and Distributed

Simulation(PADS), volume 23, pages 76–84, 1993.

[42] F. Mattern. Efficient algorithms for distributed snapshots and global virtual time

approximation. In Journal of Parallel and Distributed Computing, pages 423–34,

1993.

[43] G. Meister. A survey on parallel logic simulation. Technical report, Department of

Computer Science, University of Saarland, 1993.

[44] G. Meister. Evaluation of parallel logic simulation using dvsim. In HICSS (1),

pages 397–406, 1996.

[45] K. Perumalla and R. Fujimoto. Virtual time synchronization over unreliable

network transport. In in Proceedings 15th Workshop on Parallel and Distributed

Simulation, page 129, 2001.

31

[46] G. Pfister. The yorktown simulation engine: Introduction. In In Preceeding of the

19th ACM/IEEE Design Automation Conference, pages 170–174, 1982.

[47] C. Rader. Memory management in a Viterbi decoder. In IEEE Transactions on

Communications, volume 29, pages 1399–1401, Sept. 1981.

[48] D. L. Richard. Parallel and distributed vhdl simulation.

[49] G. Sauier, D. Brasen, and J. Hiol. Partitioning with cone structures. In IEEE, 1993.

[50] S. Smith, M. Mercer, and B. Underwood. An analysis of several approaches to

circuit partitioning for parallel logic simulation. In Proc. Int. Conference on

Computer Design, IEEE, pages 664–667, 1987.

[51] S. Williams. Icarus verilog. Http://icarus.com/eda/verilog.

