
CSCI 2600 Principles of Software

Handout 2: Editing, Compiling, Running, and 
Testing Java Programs 
This handout describes how to perform common Java development with Eclipse. 

Starting Eclipse
You should have already performed the initial setup described in Setup handout. 

If Eclipse shows the welcome screen, containing only the text "Welcome to the Eclipse IDE for Java 
Developers" on a pretty background, switch to the code editor by going to Window > Open Perspective > 
Other... and selecting Java (default). 

Eclipse will start up, display a splash screen, and then show a workplace selection dialog asking you which 
workspace folder to use for this session. 

Opening Files; Managing Multiple Files
Switch to the "Java" perspective in Eclipse if you're not already in it (Window » Open Perspective » 
Other... » Java).

You can open multiple files in Eclipse by double-clicking each of them from the Project Explorer pane. You 
can navigate through different files using the tabs on top of the editor pane. 

Creating New Files

New Java files

To create a new Java source file (with the .java extension), select from the top menu File » New » Class. 
A window will pop up, asking you details about the class. Leave the source folder as it is, and select a 
package (e.g. hw0). Choose a name for your class (e.g. MyClass) Type this name in the "Name" field and 
click Finish. 

(If you want your new class to be executable, it will need a main method. Eclipse can generate that 
automatically for you if you check the appropriate checkbox in the New Java Class screen.) 

New Text files

There is a similar procedure for creating new non-Java files such as text files. Select File » New » File or 
File » New » Untitled Text File. In the resulting dialog box, choose the parent directory of your new file and
type the desired filename. If you want to create a new directory, you can do so by appending the directory 
name in front of your desired filename. For example, if you want to create a file problem0.txt in the 
directory hw1/answers, but the answers directory does not yet exist, you can choose hw1 as the parent 
directory, and then type answers/problem0.txt as the file name, and Eclipse will create the new 
directory and file for you. 

http://www.cs.rpi.edu/~thompw4/CSCI-2600/Fall2016/Documents/Setup.pdf


Editing Java Source Files
Here are some useful actions that you can perform when editing Java code: 

• Autocompletion 
• Organizing Imports 
• Viewing Documentation 

Autocompletion

Autocompletion is the ability of an editor to guess what you are typing after you type out only part of a word.
Using autocompletion will reduce the amount of typing that you have to do as well as the number of spelling 
mistakes, thereby increasing your efficiency. 

Eclipse continuously parses your Java files as you are editing, so it is aware of the names of variables, 
methods, etc... that you have declared thus far. 

CTRL+Space can be used to autocomplete most things inside the Eclipse Java editor. For example, if you 
have declared a variable named spanishGreeting in the current class, and have typed the letters 
spanishGree in a subsequent line, Eclipse can infer that you mean to type spanishGreeting. To use 
this feature, press CTRL+Space while your cursor is at the right of the incomplete name. You should see 
spanishGree expand to spanishGreeting.

Eclipse can also help you autocomplete method names. Suppose you have a variable myList of type List, 
and you want to call the method clear. Begin typing "myList." — at this point, a pop-up dialog will 
display a list of available methods for the type List, and you can select the appropriate method with the 
arrow keys. You can force the popup to appear with CTRL+Space.

Organizing Imports

You can press CTRL+SHIFT+o to organize your imports in a Java file. Eclipse will remove extraneous 
import statements and try to infer correct ones for types that you refer to in your code but have not yet been
imported. (If the name of the class that needs to be imported is ambiguous – for example, there is a 
java.util.List as well as a java.awt.List – then Eclipse will prompt you to choose which one to 
import.) 

Viewing Documentation

Although you can directly browse the Java API and other documentation at the Oracle website, it is often 
useful to be able to cross-reference parts of your code with the appropriate documentation from within your 
editor.

Note that you need to generate the api docs locally before you can view docs for classes in the assignment.

In Eclipse, to view the documentation of a class that is referred to in your code, place your cursor over the 
class's name, and press SHIFT+F2. A web browser window will be opened to the class's documentation 
page. If the class is provided by Java, the documentation page will be on Oracle's website. (This may not 
work for all versions of Eclipse.) 

For your own classes, you will need to tell Eclipse where to find their documentation. To do so, right click on
the project name (e.g. csci2600) in the Package Explorer pane and click "Properties". Select "Javadoc 
Location" in the left pane. Select the location, e.g. "file:YourWorkspace/csci2600/doc/". (Note: the "file:" 

http://docs.oracle.com/javase/8/docs/api/


portion is important, since the location is expected to be recognizable by a web browser.) After setting the 
Javadoc location path, click OK.

Compiling Java Source Files
You must compile your source code before running it. The javac compiler is used to transform Java 
programs into bytecode form, contained in a class file. Class files are recognized by their .class extension.
The bytecode in class files can be executed by the java interpreter.

Eclipse is set up by default to automatically recompile your code every time you save. Classes with compile 
errors are marked in the Project/Package Explorer with red cross marks. The compile errors, as well as 
compile warnings, also appear in the Problems view (usually situated at the bottom panel of Eclipse). 

If your file is saved and Eclipse says that it does not compile but you believe that it should, make sure that all
of the files on which your file depends are saved and compiled. If that does not work, try using Project » 
Clean. 

Running Java Programs
In Eclipse, to run a program, right click on the Java source file containing the main() method and choose 
Run As... » Java Application. 

There is also a button near the left-hand side of the Eclipse toolbar which will re-run the last application (or 
JUnit test, see below) that you ran. 

Testing Java Programs with JUnit
JUnit is the testing framework that you will use for writing and running tests. 

For more information, visit:

• http://junit.org, the official web site. 
• JUnit Cookbook, a brief tutorial. 
• JUnit API 

JUnit is integrated with Eclipse, so you can run the test suite from within the IDE.

• First, select the test you want to run (e.g., BallTest.java in hw0.test) from the 
Project/Package Explorer (usually the leftmost pane). You can also select an entire directory (e.g., 
hw0.test) to run all test in it. 

• From the Eclipse menu at the top of the screen, select Run » Run As » JUnit Test. You can also 
right-click on the selection and select Run As » JUnit Test. 

• The JUnit GUI should pop up and run all the tests. You can double-click on failed tests to jump to the 
code for that test. When you're done inspecting the JUnit results, close the JUnit pane to go back to 
the Project/Package Explorer. 

Most likely, you'll have to explicitly add the JUnit 4 library. Go to Project » Properties » Java Build Path »
Libraries » Add Library... » JUnit then click Next, select JUnit 4, then click Finish. 

Parts of this handout are copied from University of Wanshington's\ Software Design and Implementation 

http://courses.cs.washington.edu/courses/cse331/13sp/
http://junit.sourceforge.net/javadoc/
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.org/


course 

http://courses.cs.washington.edu/courses/cse331/13sp/

	Starting Eclipse
	Opening Files; Managing Multiple Files
	Creating New Files
	New Java files
	New Text files

	Editing Java Source Files
	Autocompletion
	Organizing Imports
	Viewing Documentation

	Compiling Java Source Files
	Running Java Programs
	Testing Java Programs with JUnit

