16. Friction *Mechanics of Manipulation*

Matt Mason

matt.mason@cs.cmu.edu

http://www.cs.cmu.edu/~mason

Carnegie Mellon

Chapter 1 Manipulation 1

- 1.1 Case 1: Manipulation by a human 1
- 1.2 Case 2: An automated assembly system 3
- 1.3 Issues in manipulation 5
- 1.4 A taxonomy of manipulation techniques 7

1.5 Bibliographic notes 8 Exercises 8

Chapter 2 Kinematics 11

- 2.1 Preliminaries 11
- 2.2 Planar kinematics 15
- 2.3 Spherical kinematics 20
- 2.4 Spatial kinematics 22
- 2.5 Kinematic constraint 25
- 2.6 Kinematic mechanisms 34
- 2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

- 3.1 Representation of spatial rotations 41
- 3.2 Representation of spatial displacements 58
- 3.3 Kinematic constraints 68
- 3.4 Bibliographic notes 72 Exercises 72

Chapter 4 Kinematic Manipulation 77

- 4.1 Path planning 77
- 4.2 Path planning for nonholonomic systems 84
- 4.3 Kinematic models of contact 86
- 4.4 Bibliographic notes 88 Exercises 88

Chapter 5 Rigid Body Statics 93

- 5.1 Forces acting on rigid bodies 93
- 5.2 Polyhedral convex cones 99
- 5.3 Contact wrenches and wrench cones 102
- 5.4 Cones in velocity twist space 104
- 5.5 The oriented plane 105
- 5.6 Instantaneous centers and Reuleaux's method 109
- 5.7 Line of force; moment labeling 110
- 5.8 Force dual 112
- 5.9 Summary 117
- 5.10 Bibliographic notes 117 Exercises 118

Chapter 6 Friction 121

- 6.1 Coulomb's Law 121
- 6.2 Single degree-of-freedom problems 123
- 6.3 Planar single contact problems 126
- 6.4 Graphical representation of friction cones 127
- 6.5 Static equilibrium problems 128
- 6.6 Planar sliding 130
- 6.7 Bibliographic notes 139 Exercises 139

Chapter 7 Quasistatic Manipulation 143

- 7.1 Grasping and fixturing 143
- 7.2 Pushing 147
- 7.3 Stable pushing 153
- 7.4 Parts orienting 162
- 7.5 Assembly 168
- 7.6 Bibliographic notes 173 Exercises 175

Chapter 8 Dynamics 181

- 8.1 Newton's laws 181
- 8.2 A particle in three dimensions 181
- 8.3 Moment of force; moment of momentum 183
- 8.4 Dynamics of a system of particles 184
- 8.5 Rigid body dynamics 186
- 8.6 The angular inertia matrix 189
- 8.7 Motion of a freely rotating body 195
- 8.8 Planar single contact problems 197
- 8.9 Graphical methods for the plane 203
- 8.10 Planar multiple-contact problems 205
- 8.11 Bibliographic notes 207 Exercises 208

Chapter 9 Impact 211

- 9.1 A particle 211
- 9.2 Rigid body impact 217
- 9.3 Bibliographic notes 223 Exercises 223

Chapter 10 Dynamic Manipulation 225

- 10.1 Quasidynamic manipulation 225
- 10.2 Briefly dynamic manipulation 229
- 10.3 Continuously dynamic manipulation 230
- 10.4 Bibliographic notes 232 Exercises 235

Appendix A Infinity 237

Outline.

Coulomb's Law. Friction angle, friction cone. Moment labeling of friction cone. Static equilibrium problems.

How do you move things around?

Kinematics, kinematic constraint.

Force.

Force of constraint;

Gravity;

Friction;

Momentum.

Coulomb's experiments

An experiment:

Clean surfaces, but not too clean. Dry. Unlubricated.

Pull on string with force \mathbf{f}_a , ramping up from 0.

Friction force \mathbf{f}_f will balance \mathbf{f}_a , up to a point.

Max \mathbf{f}_f when not moving: $\mu_s mg$.

Max \mathbf{f}_f when moving: $\mu_d mg$. From now on we will assume $\mu_s = \mu_d = \mu$.

Coulomb's observations

Coulomb conducted hundreds of experiments, and over a *broad range* of conditions observed:

Frictional force is *approximately* independent of contact area.

Frictional force is *approximately* independent of velocity magnitude.

Coefficient of friction depends on pairs of materials.

Materials	μ
metal on metal	0.15–0.6
rubber on concrete	0.6–0.9
plastic wrap on lettuce	∞
Leonardo's number	0.25

Think when using Coulomb's law!

It holds over a broad range, but not nearly everywhere.

It is approximate.

Coefficients of friction tables are terrible.

How can you use something so unreliable?

But, how can you *not* use it?

Contact modes

We can write Coulomb's law:

<i>x</i>	ÿ		
< 0		$f_t = \mu f_n$	left sliding
> 0		$f_t = -\mu f_n$	right sliding
= 0	< 0	$f_t = \mu f_n$	left sliding
= 0	> 0	$f_t = -\mu f_n$	right sliding
= 0	= 0	$ f_t \le \mu f_n $	rest

Friction angle

Block at rest on plane with angle α :

$$f_n = mg \cos \alpha$$
$$f_t = mg \sin \alpha$$

At rest $|f_t| \leq \mu f_n$. Maximum α :

$$f_t = \mu f_n$$

Substituting,

$$mg\sin\alpha = \mu mg\cos\alpha$$
$$\alpha = \tan^{-1}\mu$$

Sometimes called the *friction angle* or the *angle of repose*.

Friction cone

Define the **friction cone** to be the set of all wrenches satisfying Coulomb's law for an object at rest, i.e. all the wrenches satisfying:

 $|f_t| \le \mu |f_n|$

This set of forces describes a cone in wrench space.

Each wrench is applied at the contact point.

The dihedral angle is $2 \tan^{-1} \mu$.

Then we can state Coulomb's law: For left sliding $\mathbf{f}_n + \mathbf{f}_t \in \text{right edge of friction cone}$ For right sliding $\mathbf{f}_n + \mathbf{f}_t \in \text{left edge of friction cone}$ For rest

 $\mathbf{f}_n + \mathbf{f}_t \in \text{friction cone}$

Pipe clamp design problem

Why does pipe clamp work?

Let diameter be 2 cm.

Let length be 2 cm.

Assume μ of 0.25.

Find min moment arm.

Extend to woodpecker toy?

Sliding rod

If we consider normal velocities. and accelerations:

\dot{p}_{cn}	\ddot{p}_{cn}	\dot{p}_{ct}	\ddot{p}_{ct}		
< 0					impact
> 0					separation
= 0	< 0				impact
= 0	> 0				separation
= 0	= 0	< 0		$f_t = \mu f_n$	left sliding
= 0	= 0	> 0		$f_t = -\mu f_n$	right sliding
= 0	= 0	= 0	< 0	$f_t = \mu f_n$	left sliding
= 0	= 0	= 0	> 0	$f_t = -\mu f_n$	right sliding
= 0	= 0	= 0	= 0	$ f_t \le \mu f_n $	fixed

We're assuming pointy contact. Rolling is more complicated. Lecture 16.

Moment labeling of friction cone

Friction cone is positive linear span of left edge unit vector and right edge unit vector.

Examples

Block on table.

Wedged plank and piranha.

Triangle and three fingers.

What exactly does any of this prove?

Force closure versus stability.

Force closure versus first order form closure.

Chapter 1 Manipulation 1

- 1.1 Case 1: Manipulation by a human 1
- 1.2 Case 2: An automated assembly system 3
- 1.3 Issues in manipulation 5
- 1.4 A taxonomy of manipulation techniques 7

1.5 Bibliographic notes 8 Exercises 8

Chapter 2 Kinematics 11

- 2.1 Preliminaries 11
- 2.2 Planar kinematics 15
- 2.3 Spherical kinematics 20
- 2.4 Spatial kinematics 22
- 2.5 Kinematic constraint 25
- 2.6 Kinematic mechanisms 34
- 2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

- 3.1 Representation of spatial rotations 41
- 3.2 Representation of spatial displacements 58
- 3.3 Kinematic constraints 68
- 3.4 Bibliographic notes 72 Exercises 72

Chapter 4 Kinematic Manipulation 77

- 4.1 Path planning 77
- 4.2 Path planning for nonholonomic systems 84
- 4.3 Kinematic models of contact 86
- 4.4 Bibliographic notes 88 Exercises 88

Chapter 5 Rigid Body Statics 93

- 5.1 Forces acting on rigid bodies 93
- 5.2 Polyhedral convex cones 99
- 5.3 Contact wrenches and wrench cones 102
- 5.4 Cones in velocity twist space 104
- 5.5 The oriented plane 105
- 5.6 Instantaneous centers and Reuleaux's method 109
- 5.7 Line of force; moment labeling 110
- 5.8 Force dual 112
- 5.9 Summary 117
- 5.10 Bibliographic notes 117 Exercises 118

Chapter 6 Friction 121

- 6.1 Coulomb's Law 121
- 6.2 Single degree-of-freedom problems 123
- 6.3 Planar single contact problems 126
- 6.4 Graphical representation of friction cones 127
- 6.5 Static equilibrium problems 128
- 6.6 Planar sliding 130
- 6.7 Bibliographic notes 139 Exercises 139

Chapter 7 Quasistatic Manipulation 143

- 7.1 Grasping and fixturing 143
- 7.2 Pushing 147
- 7.3 Stable pushing 153
- 7.4 Parts orienting 162
- 7.5 Assembly 168
- 7.6 Bibliographic notes 173 Exercises 175

Chapter 8 Dynamics 181

- 8.1 Newton's laws 181
- 8.2 A particle in three dimensions 181
- 8.3 Moment of force; moment of momentum 183
- 8.4 Dynamics of a system of particles 184
- 8.5 Rigid body dynamics 186
- 8.6 The angular inertia matrix 189
- 8.7 Motion of a freely rotating body 195
- 8.8 Planar single contact problems 197
- 8.9 Graphical methods for the plane 203
- 8.10 Planar multiple-contact problems 205
- 8.11 Bibliographic notes 207 Exercises 208

Chapter 9 Impact 211

- 9.1 A particle 211
- 9.2 Rigid body impact 217
- 9.3 Bibliographic notes 223 Exercises 223

Chapter 10 Dynamic Manipulation 225

- 10.1 Quasidynamic manipulation 225
- 10.2 Briefly dynamic manipulation 229
- 10.3 Continuously dynamic manipulation 230
- 10.4 Bibliographic notes 232 Exercises 235

Appendix A Infinity 237