16. Friction

Mechanics of Manipulation

Matt Mason
matt.mason@cs.cmu.edu

http://www.cs.cmu.edu/~mason

Carnegie Mellon
Outline.

Coulomb’s Law.
Friction angle, friction cone.
Moment labeling of friction cone.
Static equilibrium problems.
How do you move things around?

Kinematics, kinematic constraint.
Force.
 Force of constraint;
 Gravity;
 Friction;
Momentum.
Coulomb’s experiments

An experiment:
Clean surfaces, but not too clean. Dry. Unlubricated.
Pull on string with force f_a, ramping up from 0.
Friction force f_f will balance f_a, up to a point.
Max f_f when not moving: $\mu_s mg$.
Max f_f when moving: $\mu_d mg$.
From now on we will assume $\mu_s = \mu_d = \mu$.
Coulomb’s observations

Coulomb conducted hundreds of experiments, and over a broad range of conditions observed:
Frictional force is \textit{approximately} independent of contact area.
Frictional force is \textit{approximately} independent of velocity magnitude.
Coefficient of friction depends on pairs of materials.

\begin{tabular}{|l|c|}
\hline
\textbf{Materials} & \textbf{μ} \\
\hline
metal on metal & 0.15–0.6 \\
rubber on concrete & 0.6–0.9 \\
plastic wrap on lettuce & ∞ \\
Leonardo’s number & 0.25 \\
\hline
\end{tabular}
Think when using Coulomb’s law!

It holds over a *broad range*, but not nearly everywhere.
It is approximate.
Coefficients of friction tables are terrible.
How can you use something so unreliable?
But, how can you *not* use it?
Contact modes

We can write Coulomb’s law:

<table>
<thead>
<tr>
<th>\dot{x}</th>
<th>\ddot{x}</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0</td>
<td>$f_t = \mu f_n$</td>
<td>left sliding</td>
</tr>
<tr>
<td>> 0</td>
<td>$f_t = -\mu f_n$</td>
<td>right sliding</td>
</tr>
<tr>
<td>= 0 < 0</td>
<td>$f_t = \mu f_n$</td>
<td>left sliding</td>
</tr>
<tr>
<td>= 0 > 0</td>
<td>$f_t = -\mu f_n$</td>
<td>right sliding</td>
</tr>
<tr>
<td>= 0 = 0</td>
<td>$</td>
<td>f_t</td>
</tr>
</tbody>
</table>

![Diagram showing contact modes](image)
Friction angle

Block at rest on plane with angle α:

$$f_n = mg \cos \alpha$$

$$f_t = mg \sin \alpha$$

At rest $|f_t| \leq \mu f_n$. Maximum α:

$$f_t = \mu f_n$$

Substituting,

$$mg \sin \alpha = \mu mg \cos \alpha$$

$$\alpha = \tan^{-1} \mu$$

Sometimes called the *friction angle* or the *angle of repose*.
Friction cone

Define the \textbf{friction cone} to be the set of all wrenches satisfying Coulomb's law for an object at rest, i.e. all the wrenches satisfying:

\[|f_t| \leq \mu |f_n| \]

This set of forces describes a cone in wrench space. Each wrench is applied at the contact point. The dihedral angle is \(\frac{2 \tan^{-1} \mu}{2} \).

Then we can state Coulomb's law:

For left sliding \(f_n + f_t \in \text{right edge of friction cone} \)

For right sliding \(f_n + f_t \in \text{left edge of friction cone} \)

For rest \(f_n + f_t \in \text{friction cone} \)
Pipe clamp design problem

Why does pipe clamp work?

Let diameter be 2 cm.

Let length be 2 cm.

Assume μ of 0.25.

Find min moment arm.

Extend to woodpecker toy?
Sliding rod

If we consider normal velocities and accelerations:

<table>
<thead>
<tr>
<th>\dot{p}_{cn}</th>
<th>\ddot{p}_{cn}</th>
<th>\dot{p}_{ct}</th>
<th>\ddot{p}_{ct}</th>
<th>Impact</th>
<th>Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0</td>
<td></td>
<td></td>
<td></td>
<td>impact</td>
<td></td>
</tr>
<tr>
<td>> 0</td>
<td></td>
<td></td>
<td></td>
<td>separation</td>
<td></td>
</tr>
<tr>
<td>$= 0$</td>
<td>< 0</td>
<td></td>
<td></td>
<td>impact</td>
<td></td>
</tr>
<tr>
<td>$= 0$</td>
<td>> 0</td>
<td></td>
<td></td>
<td>separation</td>
<td></td>
</tr>
<tr>
<td>$= 0$</td>
<td>$= 0$</td>
<td>< 0</td>
<td>$f_t = \mu f_n$</td>
<td>left sliding</td>
<td></td>
</tr>
<tr>
<td>$= 0$</td>
<td>$= 0$</td>
<td>> 0</td>
<td>$f_t = -\mu f_n$</td>
<td>right sliding</td>
<td></td>
</tr>
<tr>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
<td>< 0</td>
<td>$f_t = \mu f_n$</td>
<td>left sliding</td>
</tr>
<tr>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
<td>> 0</td>
<td>$f_t = -\mu f_n$</td>
<td>right sliding</td>
</tr>
<tr>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$</td>
<td>f_t</td>
</tr>
</tbody>
</table>

We’re assuming pointy contact. Rolling is more complicated.

Lecture 16. Mechanics of Manipulation
Moment labeling of friction cone

Friction cone is positive linear span of left edge unit vector and right edge unit vector.
Examples

Block on table.
Wedged plank and piranha.
Triangle and three fingers.
What exactly does any of this prove?

Force closure versus stability.
Force closure versus first order form closure.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manipulation</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>Case 1: Manipulation by a human</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Case 2: An automated assembly system</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Issues in manipulation</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>A taxonomy of manipulation techniques</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Bibliographic notes</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Kinematics</td>
<td>11-37</td>
</tr>
<tr>
<td></td>
<td>Preliminaries</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Planar kinematics</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Spherical kinematics</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Spatial kinematics</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Kinematic constraint</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Kinematic mechanisms</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Bibliographic notes</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Kinematic Representation</td>
<td>41-72</td>
</tr>
<tr>
<td></td>
<td>Representation of spatial rotations</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Representation of spatial displacements</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Kinematic constraints</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Bibliographic notes</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>Kinematic Manipulation</td>
<td>77-88</td>
</tr>
<tr>
<td></td>
<td>Path planning</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Path planning for nonholonomic systems</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Kinematic models of contact</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Bibliographic notes</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>Rigid Body Statics</td>
<td>93-118</td>
</tr>
<tr>
<td></td>
<td>Forces acting on rigid bodies</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Polyhedral convex cones</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Contact wrenches and wrench cones</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Cones in velocity twist space</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>The oriented plane</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Instantaneous centers and Reuleaux’s method</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Line of force; moment labeling</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Force dual</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Bibliographic notes</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>118</td>
</tr>
<tr>
<td>6</td>
<td>Friction</td>
<td>121-139</td>
</tr>
<tr>
<td></td>
<td>Coulomb’s Law</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Single degree-of-freedom problems</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Planar single contact problems</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Graphical representation of friction cones</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Static equilibrium problems</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Planar sliding</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Bibliographic notes</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>139</td>
</tr>
<tr>
<td>7</td>
<td>Quasistatic Manipulation</td>
<td>143-175</td>
</tr>
<tr>
<td></td>
<td>Grasping and fixtureing</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Pushing</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Stable pushing</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Parts orienting</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Assembly</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Bibliographic notes</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>175</td>
</tr>
<tr>
<td>8</td>
<td>Dynamics</td>
<td>181-208</td>
</tr>
<tr>
<td></td>
<td>Newton’s laws</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>A particle in three dimensions</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Moment of force; moment of momentum</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Dynamics of a system of particles</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>Rigid body dynamics</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>The angular inertia matrix</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Motion of a freely rotating body</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Planar single contact problems</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Graphical methods for the plane</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Planar multiple-contact problems</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Bibliographic notes</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>208</td>
</tr>
<tr>
<td>9</td>
<td>Impact</td>
<td>211-223</td>
</tr>
<tr>
<td></td>
<td>A particle</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Rigid body impact</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Bibliographic notes</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>223</td>
</tr>
<tr>
<td>10</td>
<td>Dynamic Manipulation</td>
<td>225-235</td>
</tr>
<tr>
<td></td>
<td>Quasidynamic manipulation</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Briefly dynamic manipulation</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Continuously dynamic manipulation</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Bibliographic notes</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>235</td>
</tr>
<tr>
<td>Appendix</td>
<td>Infinity</td>
<td>237</td>
</tr>
</tbody>
</table>