20. Quasistatic manipulation Mechanics of Manipulation

Matt Mason
matt.mason@cs.cmu.edu
http://www.cs.cmu.edu/~mason

Carnegie Mellon

Chapter 1 Manipulation 1

1.1 Case 1: Manipulation by a human 1
1.2 Case 2: An automated assembly system 3
1.3 Issues in manipulation 5
1.4 A taxonomy of manipulation techniques 7
1.5 Bibliographic notes 8

Exercises 8

Chapter 2 Kinematics 11

2.1 Preliminaries 11
2.2 Planar kinematics 15
2.3 Spherical kinematics 20
2.4 Spatial kinematics 22
2.5 Kinematic constraint 25
2.6 Kinematic mechanisms 34
2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

3.1 Representation of spatial rotations 41
3.2 Representation of spatial displacements 58
3.3 Kinematic constraints 68
3.4 Bibliographic notes 72

Exercises 72

Chapter 4 Kinematic Manipulation 77
4.1 Path planning 77
4.2 Path planning for nonholonomic systems 84
4.3 Kinematic models of contact 86
4.4 Bibliographic notes 88

Exercises 88

Chapter 5 Rigid Body Statics 93
5.1 Forces acting on rigid bodies 93
5.2 Polyhedral convex cones 99
5.3 Contact wrenches and wrench cones 102
5.4 Cones in velocity twist space 104
5.5 The oriented plane 105
5.6 Instantaneous centers and Reuleaux's method 109
5.7 Line of force; moment labeling 110
5.8 Force dual 112
5.9 Summary 117
5.10 Bibliographic notes 117

Exercises 118

Chapter 6 Friction 12

6.1 Coulomb's Law 121
6.2 Single degree-of-freedom problems 123
6.3 Planar single contact problems 126
6.4 Graphical representation of friction cones 127
6.5 Static equilibrium problems 128
6.6 Planar sliding 130
6.7 Bibliographic notes 139

Exercises 139

Chapter 7 Quasistatic Manipulation 143

7.1 Grasping and fixturing 143

7.2 Pushing 147
7.3 Stable pushing 153
7.4 Parts orienting 162
7.5 Assembly 168
7.6 Bibliographic notes 173

Exercises 175

Chapter 8 Dynamics 18

8.1 Newton's laws 181
8.2 A particle in three dimensions 181
8.3 Moment of force; moment of momentum 183
8.4 Dynamics of a system of particles 184
8.5 Rigid body dynamics 186
8.6 The angular inertia matrix 189
8.7 Motion of a freely rotating body 195
8.8 Planar single contact problems 197
8.9 Graphical methods for the plane 203
8.10 Planar multiple-contact problems 205
8.11 Bibliographic notes 207

Exercises 208

Chapter 9 Impact 211

9.1 A particle 211
9.2 Rigid body impact 217
9.3 Bibliographic notes 223

Exercises 223

Chapter 10 Dynamic Manipulation 225
10.1 Quasidynamic manipulation 225
10.2 Briefly dynamic manipulation 229
10.3 Continuously dynamic manipulation 230
10.4 Bibliographic notes 232

Exercises 235
Appendix A Infinity 237

Outline.

Quasistatic manipulation.
Form closure and force closure.
Grasp and fixture planning.
Pushing.

Static and Quasistatic manipulation

Some tasks involve force balance with no motion.
Fixture planning.
Some tasks involve motion but with negligible inertial forces.
Grasp planning.
Pushing.
A cool application: parts orienting.

Grasping and fixturing

Fixture: immobilize something.
Grasp: immobilize something relative to the hand.

Form and force closure

Form closure: the object is at an isolated point in configuration space.

First order form closure: Every nonzero velocity twist is contrary to some contact screw.

Force closure: the contacts can apply an arbitrary wrench to the object.

Equilibrium: the contact forces can balance the object's weight and other external forces.

Stability: ...

Flavors of closure

Frictionless force closure \equiv first order form closure

First order form closure \longrightarrow form closure

Frictionless force closure \longrightarrow force closure

Form closure does not imply force closure

Force closure does not imply form closure

Form closure \nrightarrow force closure
Force closure \nrightarrow form closure

Issues in fixture and grasp design

Analysis. Given an object, a set of contacts, and possibly other information, determine whether closure applies.
Existence. Given an object, and possibly some constraints on the allowable contacts, does a set of contacts exist to produce closure?

Synthesis. Given an object, and possibly some constraints on the allowable contacts, find a suitable set of contacts.

Grasp and fixture analysis

Force closure: check positive linear span of friction cones.
Frictionless force closure or first order form closure: check positive linear span of contact normals.

Form closure: beyond the scope of the course! See Elon Rimon and Joel Burdick's work.

Existence

Given an object, does a force closure grasp exist?

Put fingers everywhere: the "zigzag locus". Check whether positive linear span is all of wrench space.
Are there are any shapes that do not have force closure grasps.
Theorem (Mishra Schwartz and Sharir): For any bounded shape that is not a surface of revolution, a force closure (or first order form closure) grasp exists.

Synthesis

Consider a finger to be redundant if it can be deleted without reducing the positive linear span of all the fingers

```
procedure GRASP
    put fingers "everywhere"
    while redundant finger exists
        delete any redundant finger
```

Everywhere means a dense sampling of the object boundary. Clearly the algorithm generates a grasp for any object not a surface of revolution, if the sampling is dense enough. But how many fingers does it take?

How many fingers?

Theorem (Steinitz): Let X be a set of points in \mathbf{R}^{d}, with some point p in the interior of the convex hull of X. Then there is some subset Y of X, with $2 d$ points or less, such that p is in the interior of the convex hull of Y.

Theorem (Mishra, Schwartz, and Sharir): For any surface not a surface of revolution, GRASP yields a grasp with at most 6 fingers in the plane, at most 12 fingers in three space.
In the absence of coincidences among the initial sampling of contact normals, how many fingers will GRASP terminate with?

Problem

Reuleaux's triangle is a figure of constant diameter. Each edge is a circular arc centered on the opposite vertex.

If only parallel jaw grippers are used, show that six fingers are required for frictionless form closure.
Construct a four-finger grasp. (Hint: don't use parallel jaw grippers!)

Examples of pushing

Pushing

Can we predict direction of rotation?
Line of pushing l_{P} defined along vel of point in pusher.
Line of motion l_{M} defined along vel of point in slider.
Line of force l_{F} defined as usual.
Two edges of friction cone l_{L} and l_{R}.

Rightsliding

Fixed

Leftsliding

Which way will it turn?

Easy to predict from l_{M} or from l_{F}, but what you know is l_{L}, l_{R}, and l_{P}.
Main result: l_{L}, l_{R}, and l_{P} vote on rotation direction.
First: l_{M} dictates rotation direction.
Second: l_{F} dictates rotation direction.

Rightsliding

Fixed

Leftsliding

Line of motion dictates

Theorem: For quasistatic pushing of a rigid body in the plane, with uniform coefficient of friction, the line of motion dictates the rotation direction.

Let y-axis be line of motion, let origin be contact point, let $x_{\text {IC }}$ be IC coordinate, let $m_{f}\left(x_{\text {IC }}\right)$ be frictional moment as function of IC.
Show $m_{f}\left(x_{\mathrm{IC}}\right)$ is monotone decreasing.
Look at values at $0^{+}, 0^{-}, \infty$, apply intermediate value theorem.

Line of force dictates . . .

Theorem: For quasistatic pushing of a rigid body in the plane, with uniform coefficient of friction, the line of force dictates the rotation direction.
Proof:
Choose origin at center of friction, construct limit surface.
Normals at $f_{x}-f_{y}$ plane are horizontal.
By convexity, normals in upper half point up, in lower half point down.

Voting theorem

Theorem: For quasistatic pushing of a planar rigid body with uniform coefficient of friction, rotation direction is determined by a vote l_{P}, l_{L}, and l_{R}.

Construct voting tree.

If edges of friction agree, then so does
 line of force, and theorem follows.
Consider case where edges do not agree.
l_{L} votes,$- l_{R}$ votes + , and l_{P} votes - .
The majority is -.
Assume positive rotation. So l_{F} and
l_{M} would vote + by previous
theorems. If l_{M} is right of \mathbf{r}_{0} then it is right of l_{P}, so we have right sliding. So
$l_{F}=l_{L}:$ a contradiction.

The voting theorem really works.

Demo on overhead.
It tells you which way it turns but
not how fast, and not about what IC.
Very useful when pushing with a translating edge.

Chapter 1 Manipulation 1

1.1 Case 1: Manipulation by a human 1
1.2 Case 2: An automated assembly system 3
1.3 Issues in manipulation 5
1.4 A taxonomy of manipulation techniques 7
1.5 Bibliographic notes 8

Exercises 8

Chapter 2 Kinematics 11

2.1 Preliminaries 11
2.2 Planar kinematics 15
2.3 Spherical kinematics 20
2.4 Spatial kinematics 22
2.5 Kinematic constraint 25
2.6 Kinematic mechanisms 34
2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

3.1 Representation of spatial rotations 41
3.2 Representation of spatial displacements 58
3.3 Kinematic constraints 68
3.4 Bibliographic notes 72

Exercises 72

Chapter 4 Kinematic Manipulation 7

4.1 Path planning 77
4.2 Path planning for nonholonomic systems 84
4.3 Kinematic models of contact 86
4.4 Bibliographic notes 88

Exercises 88

Chapter 5 Rigid Body Statics 93

5.1 Forces acting on rigid bodies 93
5.2 Polyhedral convex cones 99
5.3 Contact wrenches and wrench cones 102
5.4 Cones in velocity twist space 104
5.5 The oriented plane 105
5.6 Instantaneous centers and Reuleaux's method 109
5.7 Line of force; moment labeling 110
5.8 Force dual 112
5.9 Summary 117
5.10 Bibliographic notes 117

Exercises 118

Chapter 6 Friction 12

6.1 Coulomb's Law 121
6.2 Single degree-of-freedom problems 123
6.3 Planar single contact problems 126
6.4 Graphical representation of friction cones 127
6.5 Static equilibrium problems 128
6.6 Planar sliding 130
6.7 Bibliographic notes 139

Exercises 139

Chapter 7 Quasistatic Manipulation 143
7.1 Grasping and fixturing 143
7.2 Pushing 147
7.3 Stable pushing 153
7.4 Parts orienting 162
7.5 Assembly 168
7.6 Bibliographic notes 173

Exercises 175

Chapter 8 Dynamics 18

8.1 Newton's laws 181
8.2 A particle in three dimensions 181
8.3 Moment of force; moment of momentum 183
8.4 Dynamics of a system of particles 184
8.5 Rigid body dynamics 186
8.6 The angular inertia matrix 189
8.7 Motion of a freely rotating body 195
8.8 Planar single contact problems 197
8.9 Graphical methods for the plane 203
8.10 Planar multiple-contact problems 205
8.11 Bibliographic notes 207

Exercises 208

Chapter 9 Impact 211

9.1 A particle 211
9.2 Rigid body impact 217
9.3 Bibliographic notes 223

Exercises 223

Chapter 10 Dynamic Manipulation 225
10.1 Quasidynamic manipulation 225
10.2 Briefly dynamic manipulation 229
10.3 Continuously dynamic manipulation 230
10.4 Bibliographic notes 232

Exercises 235
Appendix A Infinity 237

