21. Pushing
 Mechanics of Manipulation

Matt Mason
matt.mason@cs.cmu.edu
http://www.cs.cmu.edu/~mason

Carnegie Mellon

Chapter 1 Manipulation 1

1.1 Case 1: Manipulation by a human 1
1.2 Case 2: An automated assembly system 3
1.3 Issues in manipulation 5
1.4 A taxonomy of manipulation techniques 7
1.5 Bibliographic notes 8

Exercises 8

Chapter 2 Kinematics 11

2.1 Preliminaries 11
2.2 Planar kinematics 15
2.3 Spherical kinematics 20
2.4 Spatial kinematics 22
2.5 Kinematic constraint 25
2.6 Kinematic mechanisms 34
2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

3.1 Representation of spatial rotations 41
3.2 Representation of spatial displacements 58
3.3 Kinematic constraints 68
3.4 Bibliographic notes 72

Exercises 72

Chapter 4 Kinematic Manipulation 7

4.1 Path planning 77
4.2 Path planning for nonholonomic systems 84
4.3 Kinematic models of contact 86
4.4 Bibliographic notes 88

Exercises 88

Chapter 5 Rigid Body Statics 93
5.1 Forces acting on rigid bodies 93
5.2 Polyhedral convex cones 99
5.3 Contact wrenches and wrench cones 102
5.4 Cones in velocity twist space 104
5.5 The oriented plane 105
5.6 Instantaneous centers and Reuleaux's method 109
5.7 Line of force; moment labeling 110
5.8 Force dual 112
5.9 Summary 117
5.10 Bibliographic notes 117

Exercises 118

Chapter 6 Friction 12

6.1 Coulomb's Law 121
6.2 Single degree-of-freedom problems 123
6.3 Planar single contact problems 126
6.4 Graphical representation of friction cones 127
6.5 Static equilibrium problems 128
6.6 Planar sliding 130
6.7 Bibliographic notes 139

Exercises 139

Chapter 7 Quasistatic Manipulation 143
7.1 Grasping and fixturing 143
7.2 Pushing 147
7.3 Stable pushing 153
7.4 Parts orienting 162
7.5 Assembly 168
7.6 Bibliographic notes 173

Exercises 175

Chapter 8 Dynamics 18

8.1 Newton's laws 181
8.2 A particle in three dimensions 181
8.3 Moment of force; moment of momentum 183
8.4 Dynamics of a system of particles 184
8.5 Rigid body dynamics 186
8.6 The angular inertia matrix 189
8.7 Motion of a freely rotating body 195
8.8 Planar single contact problems 197
8.9 Graphical methods for the plane 203
8.10 Planar multiple-contact problems 205
8.11 Bibliographic notes 207

Exercises 208

Chapter 9 Impact 211

9.1 A particle 211
9.2 Rigid body impact 217
9.3 Bibliographic notes 223

Exercises 223

Chapter 10 Dynamic Manipulation 225
10.1 Quasidynamic manipulation 225
10.2 Briefly dynamic manipulation 229
10.3 Continuously dynamic manipulation 230
10.4 Bibliographic notes 232

Exercises 235
Appendix A Infinity 237

Outline.

- Finish the "voting theorem".
- We've proven that line of motion dictates rotation direction.
- Prove that line of force dictates rotation direction.
- Prove the voting theorem.
- Application to stable pushing.

Pushing

Can we predict direction of rotation?
Line of pushing l_{P} defined along vel of point in pusher.
Line of motion l_{M} defined along vel of point in slider.
Line of force l_{F} defined as usual.
Two edges of friction cone l_{L} and l_{R}.

Rightsliding

Fixed

Leftsliding

Which way will it turn?

Easy to predict from l_{M} or from l_{F}, but what you know is l_{L}, l_{R}, and l_{P}.
Main result: l_{L}, l_{R}, and l_{P} vote on rotation direction.
First: l_{M} dictates rotation direction.
Second: l_{F} dictates rotation direction.

Rightsliding

Fixed

Leftsliding

Line of motion dictates

Theorem: For quasistatic pushing of a rigid body in the plane, with uniform coefficient of friction, the line of motion dictates the rotation direction.

Let y-axis be line of motion, let origin be contact point, let $x_{\text {IC }}$ be IC coordinate, let $m_{f}\left(x_{\text {IC }}\right)$ be frictional moment as function of IC.
Show $m_{f}\left(x_{\mathrm{IC}}\right)$ is monotone decreasing.
Look at values at $0^{+}, 0^{-}, \infty$, apply intermediate value theorem.

Line of force dictates . . .

Theorem: For quasistatic pushing of a rigid body in the plane, with uniform coefficient of friction, the line of force dictates the rotation direction.
Proof:
Choose origin at center of friction, construct limit surface.
Normals at $f_{x}-f_{y}$ plane are horizontal.
By convexity, normals in upper half point up, in lower half point down.

Voting theorem

Theorem: For quasistatic pushing of a planar rigid body with uniform coefficient of friction, rotation direction is determined by a vote l_{P}, l_{L}, and l_{R}.

Construct voting tree.

If edges of friction agree, then so does
 line of force, and theorem follows.

Consider case where edges do not agree.
l_{L} votes,$- l_{R}$ votes + , and l_{P} votes - .
The majority is -.
Assume positive rotation. So l_{F} and
l_{M} would vote + by previous
theorems. If l_{M} is right of \mathbf{r}_{0} then it is right of l_{P}, so we have right sliding. So
$l_{F}=l_{L}:$ a contradiction.

The voting theorem really works.

Demo on overhead.
It tells you which way it turns but
not how fast, and not about what IC.
Very useful when pushing with a translating edge.

Stable pushing

Sometimes we want to turn while pushing!

How can we achieve a stable push?
No slip of slider along pusher.
No rolling of slider on pusher.
Voting theorem by itself is not enough. We need more constraints on the IC.

Peshkin's bound

The voting theorem is a bound on IC's. It tells you whether the IC is in the positive plane, the negative plane, or the line at infinity. We need tighter bounds!

Circumscribe slider support R by a circle centered at center of friction.

Construct IC for every possible support dipod.

Conjecture: resulting locus includes every possible support, not just dipods.

If we allow line of force to vary, locus sweeps out "tip line".
Note duality of tip line to contact point!

The "bisector bound"

Construct line from contact to center of friction.

Construct perpendicular bisector.
IC is on c.o.f. side of perp bisector.
Proof never published.

The vertical strip bound

Project support region R onto pushing line of force.

IC must fall in inverse projection.
Proof: Force balance impossible otherwise.

Not slipping off the pusher

Slipping of slider on pusher corresponds to left or right edge of FC.
No slipping: interior of FC.

ICs attainable only by force
direction in friction cone interior

Not rolling off the pusher

Rolling corresponds to force through left or right corner of block.

Not rolling: line of force between corners.

Combining constraints, planning a path

We eliminate all failure modes; we can also incorporate nonholo constraints of the pusher; and we plan a path using NHP.

Chapter 1 Manipulation 1

1.1 Case 1: Manipulation by a human 1
1.2 Case 2: An automated assembly system 3
1.3 Issues in manipulation 5
1.4 A taxonomy of manipulation techniques 7
1.5 Bibliographic notes 8

Exercises 8

Chapter 2 Kinematics 11

2.1 Preliminaries 11
2.2 Planar kinematics 15
2.3 Spherical kinematics 20
2.4 Spatial kinematics 22
2.5 Kinematic constraint 25
2.6 Kinematic mechanisms 34
2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

3.1 Representation of spatial rotations 41
3.2 Representation of spatial displacements 58
3.3 Kinematic constraints 68
3.4 Bibliographic notes 72

Exercises 72

Chapter 4 Kinematic Manipulation 7

4.1 Path planning 77
4.2 Path planning for nonholonomic systems 84
4.3 Kinematic models of contact 86
4.4 Bibliographic notes 88

Exercises 88

Chapter 5 Rigid Body Statics 93

5.1 Forces acting on rigid bodies 93
5.2 Polyhedral convex cones 99
5.3 Contact wrenches and wrench cones 102
5.4 Cones in velocity twist space 104
5.5 The oriented plane 105
5.6 Instantaneous centers and Reuleaux's method 109
5.7 Line of force; moment labeling 110
5.8 Force dual 112
5.9 Summary 117
5.10 Bibliographic notes 117

Exercises 118

Chapter 6 Friction 12

6.1 Coulomb's Law 121
6.2 Single degree-of-freedom problems 123
6.3 Planar single contact problems 126
6.4 Graphical representation of friction cones 127
6.5 Static equilibrium problems 128
6.6 Planar sliding 130
6.7 Bibliographic notes 139

Exercises 139

Chapter 7 Quasistatic Manipulation 143
7.1 Grasping and fixturing 143
7.2 Pushing 147
7.3 Stable pushing 153
7.4 Parts orienting 162
7.5 Assembly 168
7.6 Bibliographic notes 173

Exercises 175

Chapter 8 Dynamics 18

8.1 Newton's laws 181
8.2 A particle in three dimensions 181
8.3 Moment of force; moment of momentum 183
8.4 Dynamics of a system of particles 184
8.5 Rigid body dynamics 186
8.6 The angular inertia matrix 189
8.7 Motion of a freely rotating body 195
8.8 Planar single contact problems 197
8.9 Graphical methods for the plane 203
8.10 Planar multiple-contact problems 205
8.11 Bibliographic notes 207

Exercises 208

Chapter 9 Impact 211

9.1 A particle 211
9.2 Rigid body impact 217
9.3 Bibliographic notes 223

Exercises 223

Chapter 10 Dynamic Manipulation 225
10.1 Quasidynamic manipulation 225
10.2 Briefly dynamic manipulation 229
10.3 Continuously dynamic manipulation 230
10.4 Bibliographic notes 232

Exercises 235
Appendix A Infinity 237

