24. Rigid Body Dynamics Mechanics of Manipulation

Matt Mason
matt.mason@cs.cmu.edu
http://www.cs.cmu.edu/~mason

Carnegie Mellon

Chapter 1 Manipulation 1

1.1 Case 1: Manipulation by a human 1
1.2 Case 2: An automated assembly system 3
1.3 Issues in manipulation 5
1.4 A taxonomy of manipulation techniques 7
1.5 Bibliographic notes 8

Exercises 8

Chapter 2 Kinematics 11

2.1 Preliminaries 11
2.2 Planar kinematics 15
2.3 Spherical kinematics 20
2.4 Spatial kinematics 22
2.5 Kinematic constraint 25
2.6 Kinematic mechanisms 34
2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

3.1 Representation of spatial rotations 41
3.2 Representation of spatial displacements 58
3.3 Kinematic constraints 68
3.4 Bibliographic notes 72

Exercises 72

Chapter 4 Kinematic Manipulation 7

4.1 Path planning 77
4.2 Path planning for nonholonomic systems 84
4.3 Kinematic models of contact 86
4.4 Bibliographic notes 88

Exercises 88

Chapter 5 Rigid Body Statics 93
5.1 Forces acting on rigid bodies 93
5.2 Polyhedral convex cones 99
5.3 Contact wrenches and wrench cones 102
5.4 Cones in velocity twist space 104
5.5 The oriented plane 105
5.6 Instantaneous centers and Reuleaux's method 109
5.7 Line of force; moment labeling 110
5.8 Force dual 112
5.9 Summary 117
5.10 Bibliographic notes 117

Exercises 118

Chapter 6 Friction 12

6.1 Coulomb's Law 121
6.2 Single degree-of-freedom problems 123
6.3 Planar single contact problems 126
6.4 Graphical representation of friction cones 127
6.5 Static equilibrium problems 128
6.6 Planar sliding 130
6.7 Bibliographic notes 139

Exercises 139

Chapter 7 Quasistatic Manipulation 143
7.1 Grasping and fixturing 143
7.2 Pushing 147
7.3 Stable pushing 153
7.4 Parts orienting 162
7.5 Assembly 168
7.6 Bibliographic notes 173

Exercises 175

Chapter 8 Dynamics 181

8.1 Newton's laws 181
8.2 A particle in three dimensions 181
8.3 Moment of force; moment of momentum 183
8.4 Dynamics of a system of particles 184
8.5 Rigid body dynamics 186
8.6 The angular inertia matrix 189
8.7 Motion of a freely rotating body 195
8.8 Planar single contact problems 197
8.9 Graphical methods for the plane 203
8.10 Planar multiple-contact problems 205
8.11 Bibliographic notes 207

Exercises 208

Chapter 9 Impact 211

9.1 A particle 211
9.2 Rigid body impact 217
9.3 Bibliographic notes 223

Exercises 223

Chapter 10 Dynamic Manipulation 225
10.1 Quasidynamic manipulation 225
10.2 Briefly dynamic manipulation 229
10.3 Continuously dynamic manipulation 230
10.4 Bibliographic notes 232

Exercises 235
Appendix A Infinity 237

First a quiz

Outline.

Newtonian mechanics of a single particle; of a system of several particles; of a rigid body.

Newton's laws

1. Every body continues at rest, or in uniform motion in a straight line, unless forces act upon it.
2. The rate of change of momentum is proportional to the applied force.
3. The forces acting between two bodies are equal and opposite.

Define momentum to be mass times velocity.

Consider a particle . . .

... of mass m,
with position represented by a vector \mathbf{x}, total applied force \mathbf{F}, momentum

$$
\mathbf{p}=m \mathbf{v}=m \frac{d \mathbf{x}}{d t}
$$

so Newton's second law can be written

$$
m \frac{d^{2} \mathbf{x}}{d t^{2}}=\mathbf{F}
$$

Impulse, kinetic energy

Integrating Newton's second law:

$$
\mathbf{p}_{2}-\mathbf{p}_{1}=\int_{t_{1}}^{t_{2}} \mathbf{F} d t
$$

stating that the change in momentum is equal to the impulse.
We can also define kinetic energy T

$$
T=\frac{m}{2}|\mathbf{v}|^{2}
$$

Power

Differentiating kinetic energy yields

$$
\begin{aligned}
\frac{d T}{d t} & =\frac{m}{2} \frac{d}{d t}(\mathbf{v} \cdot \mathbf{v}) \\
& =\frac{m}{2}\left(\frac{d \mathbf{v}}{d t} \cdot \mathbf{v}+\mathbf{v} \cdot \frac{d \mathbf{v}}{d t}\right) \\
& =m \frac{d \mathbf{v}}{d t} \cdot \mathbf{v} \\
& =\mathbf{F} \cdot \mathbf{v}
\end{aligned}
$$

stating that the time rate of change of kinetic energy is power.

Work

Integrating the power over a time interval,

$$
T_{2}-T_{1}=\int_{t_{1}}^{t_{2}} \mathbf{F} \cdot \mathbf{v} d t
$$

or

$$
T_{2}-T_{1}=\int_{\mathbf{x}_{1}}^{\mathbf{x}_{2}} \mathbf{F} \cdot \mathbf{d} \mathbf{x}
$$

stating that the change in kinetic energy is work.

Moment of force; moment of momentum

Recall definition of moment of force about a point \mathbf{x} :

$$
\mathbf{n}=\mathbf{x} \times \mathbf{f}
$$

and about a line l through origin with direction $\hat{\mathbf{I}}$

$$
n_{l}=\hat{\mathbf{l}} \cdot \mathbf{n}
$$

Similarly, suppose a particle at \mathbf{x} has momentum \mathbf{p}.

- Define moment of momentum about the origin

$$
\mathbf{L}=\mathbf{x} \times \mathbf{p}
$$

- and about the line l

$$
L_{l}=\hat{\mathbf{l}} \cdot \mathbf{L}
$$

Rate of change of moment of momentum

Differentiating the moment of momentum:

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\frac{d}{d t}(\mathbf{x} \times \mathbf{p}) \\
& =\frac{d}{d t}(\mathbf{x} \times m \mathbf{v}) \\
& =m\left(\frac{d \mathbf{x}}{d t} \times \mathbf{v}+\mathbf{x} \times \frac{d \mathbf{v}}{d t}\right) \\
& =\mathbf{x} \times m \frac{d \mathbf{v}}{d t} \\
& =\mathbf{x} \times \mathbf{F} \\
& =\mathbf{N}
\end{aligned}
$$

which is essentially a restatement of Newton's second law, but using moments of force and momentum.

So, for a particle . . .

Using either $\mathbf{F}=d \mathbf{p} / d t$ or $\mathbf{N}=d \mathbf{L} / d t$, we have three second order differential equations.
If \mathbf{F} or \mathbf{N} is uniquely determined by the state (\mathbf{x}, \mathbf{v}), then there is a unique solution giving $\mathbf{x}(t)$ and $\mathbf{v}(t)$ for any given initial conditions $\mathbf{x}(0)=\mathbf{x}_{0}, \mathbf{v}(0)=\mathbf{v}_{0}$.

For a bunch of particles

For the k th particle

- Let m_{k} be the mass,
- let \mathbf{x}_{k} be the position vector,
- and let \mathbf{p}_{k} be the momentum.
- Let the force be composed of internal force (from interactions with other particles in the system) and external forces

$$
\mathbf{F}_{k}=\mathbf{F}_{k}^{i}+\mathbf{F}_{k}^{e}
$$

Momentum and force

We define the momentum of the system to be

$$
\mathbf{P}=\sum \mathbf{p}_{k}
$$

and the total force on the system to be

$$
\mathbf{F}=\sum \mathbf{F}_{k}^{e}
$$

(The sum of all internal forces is zero, by Newton's third law.)

Newton's 2nd law for system of particles

Newton's 2nd law for k th particle:

$$
\frac{d \mathbf{p}_{k}}{d t}=\mathbf{F}_{k}^{e}+\mathbf{F}_{k}^{i}
$$

Summing:

$$
\sum \frac{d \mathbf{p}_{k}}{d t}=\sum\left(\mathbf{F}_{k}^{e}+\mathbf{F}_{k}^{i}\right)
$$

Hence

$$
\frac{d \mathbf{P}}{d t}=\mathbf{F}
$$

Newton's second law extends to the system of particles.

Center of mass

Define total mass:

$$
M=\sum m_{k}
$$

and the center of mass,

$$
\mathbf{X}=\frac{1}{M} \sum m_{k} \mathbf{x}_{k}
$$

Then

$$
\mathbf{P}=M \frac{d \mathbf{X}}{d t}
$$

and

$$
\mathbf{F}=M \frac{d^{2} \mathbf{X}}{d t^{2}}
$$

which means that the center of mass behaves just like a single particle.

Moments for systems of particles

Define \mathbf{L}_{k} to be the angular momentum of the k th point,
Define the total angular momentum to be the sum,

$$
\mathbf{L}=\sum \mathbf{L}_{k}
$$

Define the total torque,

$$
\mathbf{N}=\sum \mathbf{x}_{k} \times \mathbf{F}_{k}^{e}
$$

Rate of change of moment of momentum

Now for the k th particle

$$
\frac{d \mathbf{L}_{k}}{d t}=\mathbf{x}_{k} \times \mathbf{F}_{k}^{e}+\mathbf{x}_{k} \times \mathbf{F}_{k}^{i}
$$

Summing over all the particles,

$$
\frac{d \mathbf{L}}{d t}=\mathbf{N}+\sum \mathbf{x}_{k} \times \mathbf{F}_{k}^{i}
$$

By Newton's third law the sum of the internal moments is zero, so that the second term vanishes:

$$
\frac{d \mathbf{L}}{d t}=\mathbf{N}
$$

which is grand, but six equations is not enough to determine the motion of several particles.

Rigid body dynamics

A rigid body is a bunch of particles, but with all distances fixed. Six degrees of freedom. Wouldn't it be keen if the six equations

$$
\begin{aligned}
\mathbf{F} & =d \mathbf{P} / d t \\
\mathbf{N} & =d \mathbf{L} / d t
\end{aligned}
$$

were enough?

Angular inertia, part one

For a rigid body, velocity of k th particle is

$$
\mathbf{v}=\mathbf{v}_{0}+\omega \times \mathbf{x}
$$

Substituting into moment of momentum

$$
\mathbf{L}_{k}=m_{k} \mathbf{x}_{k} \times\left(\mathbf{v}_{0}+\omega \times \mathbf{x}_{k}\right)
$$

Summing to obtain the total angular momentum,

$$
\begin{aligned}
\mathbf{L} & =\sum m_{k} \mathbf{x}_{k} \times \mathbf{v}_{0}+\sum m_{k} \mathbf{x}_{k} \times\left(\omega \times \mathbf{x}_{k}\right) \\
& =M \mathbf{X} \times \mathbf{v}_{0}+\sum m_{k} \mathbf{x}_{k} \times\left(\omega \times \mathbf{x}_{k}\right)
\end{aligned}
$$

Place origin at center of mass to eliminate first term on right

$$
\mathbf{L}=\sum m_{k} \mathbf{x}_{k} \times\left(\omega \times \mathbf{x}_{k}\right)
$$

Angular inertia, part two

How can we get that pesky ω out of the sum?

$$
\mathbf{L}=\sum m_{k} \mathbf{x}_{k} \times\left(\omega \times \mathbf{x}_{k}\right)
$$

Applying the identity $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$,

$$
\mathbf{L}=\sum m_{k}\left[\left(\mathbf{x}_{k} \cdot \mathbf{x}_{k}\right) \omega-\mathbf{x}_{k}\left(\mathbf{x}_{k} \cdot \omega\right)\right]
$$

Represent each vector as a column matrix, and substitute $\mathbf{x}_{k}^{t} \omega$ for $\mathbf{x}_{k} \cdot \omega$:

$$
\mathbf{L}=\left(\sum m_{k}\left(\left|\mathbf{x}_{k}\right|^{2} I_{3}-\mathbf{x}_{k} \mathbf{x}_{k}^{t}\right)\right) \omega
$$

where I_{3} is the three-by-three identity matrix.

Angular inertia part three

Define the angular inertia matrix I :

$$
I=\sum m_{k}\left(\left|\mathbf{x}_{k}\right|^{2} I_{3}-\mathbf{x}_{k} \mathbf{x}_{k}^{t}\right)
$$

Substituting above,

$$
\mathbf{L}=I \omega
$$

Chapter 1 Manipulation 1

1.1 Case 1: Manipulation by a human 1
1.2 Case 2: An automated assembly system 3
1.3 Issues in manipulation 5
1.4 A taxonomy of manipulation techniques
1.5 Bibliographic notes 8

Exercises 8

Chapter 2 Kinematics 11

2.1 Preliminaries 11
2.2 Planar kinematics 15
2.3 Spherical kinematics 20
2.4 Spatial kinematics 22
2.5 Kinematic constraint 25
2.6 Kinematic mechanisms 34
2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

3.1 Representation of spatial rotations 41
3.2 Representation of spatial displacements 58
3.3 Kinematic constraints 68
3.4 Bibliographic notes 72

Exercises 72

Chapter 4 Kinematic Manipulation 7

4.1 Path planning 77
4.2 Path planning for nonholonomic systems 84
4.3 Kinematic models of contact 86
4.4 Bibliographic notes 88

Exercises 88

Chapter 5 Rigid Body Statics 93

5.1 Forces acting on rigid bodies 93
5.2 Polyhedral convex cones 99
5.3 Contact wrenches and wrench cones 102
5.4 Cones in velocity twist space 104
5.5 The oriented plane 105
5.6 Instantaneous centers and Reuleaux's method 109
5.7 Line of force; moment labeling 110
5.8 Force dual 112
5.9 Summary 117
5.10 Bibliographic notes 117

Exercises 118

Chapter 6 Friction 12

6.1 Coulomb's Law 121
6.2 Single degree-of-freedom problems 123
6.3 Planar single contact problems 126
6.4 Graphical representation of friction cones 127
6.5 Static equilibrium problems 128
6.6 Planar sliding 130
6.7 Bibliographic notes 139

Exercises 139

Chapter 7 Quasistatic Manipulation 143
7.1 Grasping and fixturing 143
7.2 Pushing 147
7.3 Stable pushing 153
7.4 Parts orienting 162
7.5 Assembly 168
7.6 Bibliographic notes 173

Exercises 175

Chapter 8 Dynamics 181

8.1 Newton's laws 181
8.2 A particle in three dimensions 181
8.3 Moment of force; moment of momentum 183
8.4 Dynamics of a system of particles 184
8.5 Rigid body dynamics 186
8.6 The angular inertia matrix 189
8.7 Motion of a freely rotating body 195
8.8 Planar single contact problems 197
8.9 Graphical methods for the plane 203
8.10 Planar multiple-contact problems 205
8.11 Bibliographic notes 207

Exercises 208

Chapter 9 Impact 211

9.1 A particle 211
9.2 Rigid body impact 217
9.3 Bibliographic notes 223

Exercises 223

Chapter 10 Dynamic Manipulation 225
10.1 Quasidynamic manipulation 225
10.2 Briefly dynamic manipulation 229
10.3 Continuously dynamic manipulation 23
10.4 Bibliographic notes 232

Exercises 235
Appendix A Infinity 237

