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Outline.
• The angular inertia tensor;

• Euler’s equations;

• Poinsot’s construction for a tumbling rigid body.
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Last time . . .

. . . we defined the angular inertia matrix I:

I =
∑

mk

(

|xk|
2I3 − xkxt

k

)

so that moment of momentum is

L = Iω

where Newton’s second law gives

N =
dL
dt
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Differentiating L = Iω

I is constant in the body frame, not in an inertial frame.

N =
d(Iω)

dt
(1)

= I
dω

dt
+

dI

dt
ω (2)

= I
dω

dt
+ ω × (Iω) (3)

Zero torque implies constant angular momentum.

Zero torque does not imply constant angular velocity.

What can you say about how angular velocity changes? First we
need to look closer at the angular inertia tensor.
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Coordinate frame issue in differentiation
Did we differentiate L in an inertial frame? Origin coinciding with
possibly accelerating center of mass? Yes! We used inertial frame
instantaneously coincident with body frame.

That’s inconvenient: If we solved for dω
dt

, it would be expressed in a
different frame for every value of t.

Convert Euler’s equations to moving body frame from coincident
fixed frame. N, I, ω unchanged. New angular acceleration is

dω

dt
+ ω × ω

I.e., Euler’s equations work in the moving body frame. Yay.
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The inertia tensor
Let body be continuous with density ρ.

I =

∫

ρ
(

|x|2I3 − xxt
)

dV (4)

In components:

I =

∫

ρ







x2

2
+ x2

3
−x1x2 −x1x3

−x1x2 x2

1
+ x2

3
−x2x3

−x1x3 −x2x3 x2

1
+ x2

2






dV (5)
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Moments of inertia; products of inertia
Diagonal elements: moments of inertia w.r.t. the coordinate axes:

I11 =

∫

ρ(x2

2
+ x2

3
) dV (6)

etc. (7)

Off-Diagonal elements: the products of inertia:

I12 = I21 = −

∫

ρx1x2 dV (8)

etc. (9)

We could try to understand them, or we could get rid of them . . .
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Principal axes; principal moments of inertia
Inertia matrix is symmetric—diagonal in the right frame. Define A:

AI =







AI11 0 0

0 AI22 0

0 0 AI33






(10)

I in A-coordinates can be obtained by:

AI = AIAT (11)

where matrix A transforms to A-coordinates.

principal axes: coordinate axes of A—eigenvectors of I.

principal moments: diagonal elements of AI—eigenvalues of I.

Distinct eigenvalues implies uniquely determined principal axes.
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Scalar angular inertia. Radius of gyration.
Consider moment of momentum L = Iω. When are L and ω parallel?

Consider rotation about some fixed axis in direction n̂. Scalar
angular inertia In is

In = n̂tIn̂ (12)

radius of gyration kn with respect to the axis n̂:

In = Mk2

n (13)

The radius of gyration represents the distance of a point mass that
would give the same angular inertia.
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Inertia ellipsoid
Consider the surface described by the equation

rtIr = a (14)

In principal coordinates, since moments are positive, we get an
ellipsoid:

Ixxr2

x + Iyyr2

y + Izzr
2

z = a (15)

Let r = rn̂. Then

In = n̂tIn̂ =
1

r2
rtIr =

a

r2
(16)

So distance to ellipsoid surface is inverse of radius of gyration.

Mk2

n =
a

r2
(17)
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Cylinder and its inertia ellipsoid

x y

z

x y

z
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Principal axes by inspection
There are theorems:

• Any plane of symmetry is perpendicular to a principal axis.

• Any line of symmetry is a principal axis.

If you start in the principal frame, you know the products of inertia are
zero, so you can get the inertia tensor by just doing three integrals.
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Rigid body tumbling

N =







I1ω̇1

I2ω̇2

I3ω̇3






+







ω1

ω2

ω3






×







I1ω1

I2ω2

I3ω3






(18)

=







I1ω̇1 + (I3ω2ω3 − I2ω2ω3)

I2ω̇2 + (I1ω3ω1 − I3ω3ω1)

I3ω̇3 + (I2ω1ω2 − I1ω1ω2)






(19)

If N = 0 we get what looks like Euler’s equations:

ω̇1 =
I2 − I3

I1

ω2ω3 (20)

ω̇2 =
I3 − I1

I2

ω3ω1 (21)

ω̇3 =
I1 − I2

I3

ω1ω2 (22)
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Poinsot’s construction

polhode

herpolhode

L
Rigid body tumbling: in-
ertia ellipsoid rolls without
slipping on a plane.
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Proof of Poinsot’s construction
If N is zero, then kinetic energy T is constant:

T =
1

2
ωtIω is constant (23)

That is, ω is on the surface of the inertia ellipsoid.

What is the tangent plane normal at ω?

∇
1

2
ωtIω = ∇

1

2
(ω2

1
I1 + ω2

2
I2 + ω2

3
I3) (24)

= (I1ω1, I2ω2, I3ω3) = L (25)

The attitude of the tangent plane is constant!

How far from center of mass to tangent plane?

ω · L
|L|

=
2T

|L|
(26)

which is also constant!

So the tangent plane is fixed: the invariable plane. The ellipsoid rolls
without slipping on the invariable plane.
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polhodes
Take an ellipsoid, hold the
center a fixed distance
from an inkpad, and roll it
around.

Near the pointy end you
get little loops.

Near the center of mass
you get little loops.

Near the third principal
axis, you get sent away.
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Video of tumbling body

Lecture 25. Mechanics of Manipulation – p.18



Next: ?

Chapter 1 Manipulation 1

1.1 Case 1: Manipulation by a human 1

1.2 Case 2: An automated assembly system 3

1.3 Issues in manipulation 5

1.4 A taxonomy of manipulation techniques 7

1.5 Bibliographic notes 8

Exercises 8

Chapter 2 Kinematics 11

2.1 Preliminaries 11

2.2 Planar kinematics 15

2.3 Spherical kinematics 20

2.4 Spatial kinematics 22

2.5 Kinematic constraint 25

2.6 Kinematic mechanisms 34

2.7 Bibliographic notes 36

Exercises 37

Chapter 3 Kinematic Representation 41

3.1 Representation of spatial rotations 41

3.2 Representation of spatial displacements 58

3.3 Kinematic constraints 68

3.4 Bibliographic notes 72

Exercises 72

Chapter 4 Kinematic Manipulation 77

4.1 Path planning 77

4.2 Path planning for nonholonomic systems 84

4.3 Kinematic models of contact 86

4.4 Bibliographic notes 88

Exercises 88

Chapter 5 Rigid Body Statics 93

5.1 Forces acting on rigid bodies 93

5.2 Polyhedral convex cones 99

5.3 Contact wrenches and wrench cones 102

5.4 Cones in velocity twist space 104

5.5 The oriented plane 105

5.6 Instantaneous centers and Reuleaux's method 109

5.7 Line of force; moment labeling 110

5.8 Force dual 112

5.9 Summary 117

5.10 Bibliographic notes 117

Exercises 118

Chapter 6 Friction 121

6.1 Coulomb's Law 121

6.2 Single degree-of-freedom problems 123

6.3 Planar single contact problems 126

6.4 Graphical representation of friction cones 127

6.5 Static equilibrium problems 128

6.6 Planar sliding 130

6.7 Bibliographic notes 139

Exercises 139

Chapter 7 Quasistatic Manipulation 143

7.1 Grasping and fixturing 143

7.2 Pushing 147

7.3 Stable pushing 153

7.4 Parts orienting 162

7.5 Assembly 168

7.6 Bibliographic notes 173

Exercises 175

Chapter 8 Dynamics 181

8.1 Newton's laws 181

8.2 A particle in three dimensions 181

8.3 Moment of force; moment of momentum 183

8.4 Dynamics of a system of particles 184

8.5 Rigid body dynamics 186

8.6 The angular inertia matrix 189

8.7 Motion of a freely rotating body 195

8.8 Planar single contact problems 197

8.9 Graphical methods for the plane 203

8.10 Planar multiple-contact problems 205

8.11 Bibliographic notes 207

Exercises 208

Chapter 9 Impact 211

9.1 A particle 211

9.2 Rigid body impact 217

9.3 Bibliographic notes 223

Exercises 223

Chapter 10 Dynamic Manipulation 225

10.1 Quasidynamic manipulation 225

10.2 Briefly dynamic manipulation 229

10.3 Continuously dynamic manipulation 230

10.4 Bibliographic notes 232

Exercises 235

Appendix A Infinity 237

Lecture 25. Mechanics of Manipulation – p.19


	Lecture 25. Tumbling rigid bodies.
	Outline.
	Last time $ldots $
	Differentiating $vv L = I vv �omega $
	Coordinate frame issue in differentiation
	The inertia tensor
	Moments of inertia; products of inertia
	Principal axes; principal moments of inertia
	Scalar angular inertia. Radius of gyration.
	Inertia ellipsoid
	Cylinder and its inertia ellipsoid
	Principal axes by inspection
	Rigid body tumbling
	Poinsot's construction
	Proof of Poinsot's construction
	polhodes
	Video of tumbling body
	Next: ?

