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Outline.

e The angular inertia tensor;
e Euler’s equations;
e Poinsot’s construction for a tumbling rigid body.
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Last time . ..

... we defined the angular inertia matrix I:

I = ka (‘Xk|213 — XkX};)

so that moment of momentum is
L=1w

where Newton’s second law gives

N=—
dt
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Differentiating L = /w
I is constant in the body frame, not in an inertial frame.

d(Iw)
dt

_ glw  dl 5
T a” @)

dw
:IE—F(A)X(IW) (3)

N =

Zero torque implies constant angular momentum.
Zero torque does not imply constant angular velocity.

What can you say about how angular velocity changes? First we
need to look closer at the angular inertia tensor.
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Coordinate frame issue in differentiation

Did we differentiate L in an inertial frame? Origin coinciding with
possibly accelerating center of mass? Yes! We used inertial frame

instantaneously coincident with body frame.

That’s inconvenient: If we solved for 2 it would be expressed in a
different frame for every value of ¢.

Convert Euler’s equations to moving body frame from coincident
fixed frame. N, I, w unchanged. New angular acceleration is

dw b x
— +w X W
dt

l.e., Euler’s equations work in the moving body frame. Yay.
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The inertia tensor

Let body be continuous with density p.

I = /p (1x[°15 — xx") dV (4)
In components:
x% + x% — X129 —2X1X3
I = /p —XT1X2 x% —|—$§ — I3 dV (5)

—T1T3  —I2X3 :r;% + x%
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Moments of inertia; products of inertia

Diagonal elements: moments of inertia w.r.t. the coordinate axes:

I = /p(xg + x3)dV (6)
efc. (7)
Off-Diagonal elements: the products of inertia:
Lo =I5 = — /Pflflilfz av (8)
etc. (9)

We could try to understand them, or we could get rid of them . ..
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Principal axes; principal moments of inertia

Inertia matrix is symmetric—diagonal in the right frame. Define A:

Ay 0 0
A7 = 0 Al 0 (10)
0 0 Al

I in A-coordinates can be obtained by:
Al = ATAT (11)

where matrix A transforms to A-coordinates.
principal axes: coordinate axes of A—eigenvectors of 1.
principal moments: diagonal elements of 4I—eigenvalues of 1.

Distinct eigenvalues implies uniquely determined principal axes.
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Scalar angular inertia. Radius of gyration.

Consider moment of momentum L = Iw. When are L and w parallel?

Consider rotation about some fixed axis in direction n. Scalar
angular inertia I,, is
I, =n'In (12)

radius of gyration k,, with respect to the axis n:
I, = Mk (13)

The radius of gyration represents the distance of a point mass that
would give the same angular inertia.
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Inertia ellipsoid
Consider the surface described by the equation
r'lIr =a (14)

In principal coordinates, since moments are positive, we get an
ellipsoid:

Imri + Iyyrz + Izzrg =a (15)
Let r = rn. Then
ot 1
I, =n"Tn= —r'Ir= % (16)
r r

So distance to ellipsoid surface is inverse of radius of gyration.

Mk2 = = (17)
T
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Cylinder and its inertia ellipsoid

“ 4 i

P ;
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Principal axes by inspection

There are theorems:

e Any plane of symmetry is perpendicular to a principal axis.
e Any line of symmetry is a principal axis.

If you start in the principal frame, you know the products of inertia are
Zero, so you can get the inertia tensor by just doing three integrals.
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Rigid body tumbling

I1wy w1 I1wy
N = IQCZ)Q —+ w9 X IQWQ (18)
I3ws w3 Isws

Lw + ([zwaws — Tawows)
= | lws + ([1wswi — Iswswy) (19)

Isws + (Tawiwa — [1wiws)

If N =0 we get what looks like Euler’'s equations:

Iy — 1
d}lz 2 BCUQCU3 (20)
I
Is —1
CZJ2= & 1&)3&)1 (21)
Iy
I —1
w3 = L 2(4)1(4)2 (22
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Poinsot’s construction

Rigid body tumbling: in-
I ertia ellipsoid rolls without
slipping on a plane.
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Proof of Poinsot’s construction

If NV is zero, then Kinetic energy T is constant:
1,
T = §w Iw Is constant

That is, w is on the surface of the inertia ellipsoid.

What is the tangent plane normal at w?

1 1
V?utlw = Vi(wfll + wily + wils)

= ([1w1, Iowe, I3ws) = LL

The attitude of the tangent plane is constant!
How far from center of mass to tangent plane?

w - L B 2T
L] |L|
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polhodes

Take an ellipsoid, hold the
center a fixed distance
from an inkpad, and roll it
around.

Near the pointy end you
get little loops.

Near the center of mass
you get little loops.

Near the third principal
axis, you get sent away.
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Video of tumbling body
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8.8  Planar single contact problems 197
8.9  Graphical methods for the plane 203
8.10 Planar multiple-contact problems 205
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