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Chapter 9 Impact 211
9.1 Anparticle 211
9.2 Rigid body impact 217
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Outline.

e Impulse-momentum equations

e Impact of a particle
Plastic and elastic impact
Newtonian and Poisson restitution
Impulse space

e Impact of a planar rigid body
Solution of the sliding rod problem
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Frictional impact

When rigid bodies collide:
e Discontinuity in velocity,
e Infinite forces,
e Zero time,
e Even for simple cases there is no agreement on laws,
e For multiple contact indeterminacies abound.

We will adopt Routh’s analysis of planar impact, which uses Poisson
restitution.
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Impulse momentum equations

Recall:

Integrating:

t1
AP:/ F dt

to

tq
AL :/ N dt

to

where AP =P, — Py, AL =L, — Ly, [ Fdtis the impulse, and [ Ndt
IS the impulsive moment.
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Determining impulse. Particle in plane.

We need impulse and impulsive moment as a function of state and
physical parameters.

Start with a frictionless particle on plane. Velocity changes
discontinuously from v to v;:

where
AV = V| — Vg

The tangential impulse I, is zero, so
V1t = Vot

1
Vin = Von + _In
m
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Plastic and elastic

How to get the normal impulse I,,? Two special cases: plastic impact

In — —MVYon
— V1, =0
and elastic impact
1, = —2muy,

— VUln =— —Von
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Newtonian restitution

Newton hypothesized a continuum from plastic to elastic, defined by
a coefficient of restitution

e:—fUﬂ (1)

Von

so that plastic impact corresponds to e = 0, and elastic impact
corresponds to e = 1.
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Poisson restitution

A competing definition of the coefficient of restitution was given by
Poisson. Divide the collision into two stages.

vy < 0 compression
v, = 0

vy, > 0 restitution

Let 1. be impulse accumulated during compression, and let I, be
iImpulse accumulated during restitution. Poisson’s hypothesis is that
the ratio of these two parts is governed by material properties:

_IT 2
e=7 &)

For simple cases no advantage over Newton, but for frictional rigid
bodies Poisson restitution is superior.
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Applying Poisson restitution for frictionless parti

Given m, vg, and e, first find I.:

I. = mvon,
then restitution impulse I,

I, = emug,
then total impulse I

I=1.+1.= (14 e)muy,

and resulting normal velocity:

Uin = —€Uon

The tangential velocity is unchanged.
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Frictional particle

Consider frictional particle with initial leftward velocity. There should
be some frictional impulse acting toward the right. Suppose we apply
Coulomb’s law, by looking at initial contact mode, and multiplying I,
by 1. The result is absurd, and violates conservation of energy!
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A better model

I, A
(1 + E)Inc o I A . . A
? revstlt:tt)on compression line
7 " (c-line)
e { clin®
. n —
compression _
/ \/ vp <0 \ 7 fn = s
m /
ol _
0 ) . I,
left-sliding | right-sliding
Uy < 0 Vy > 0
=
Q
o
=

sticking line

k (s-line)

Vy = 0
I; = —muvyy;
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The left-drifting particle

In A s-line
Vo — —€
0=\ —1
e = ||
1 é c-line
H = A
o =tan"' 3 A
m —
c-line: o /"f
I, = —mvy, =1 —V
. 0
s-line: ¢ Solution:
I; = —mvy; = €
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Rigid body. Kinematics.

First, we observe some kinematic re-
lations

C=X-+r
C=X-+r
=X+ wXTr

Ac=Ax+Aw xXr
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Impulse momentum laws

Now we can write the impulse-momentum laws:

mAx =1 (3)

p*mAw =r x 1 (4)

Substituting into the expression for Ac¢ yields:

.1 1
Ac= —I+ —5—(rxI)xr (5)

m  p*m
1 1

:EI—pQ—mrX(er) (6)
1

= - (Pl - R°)1 )
p*m

where I3 is the three by three identity matrix, and R is the
cross-product matrix.
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Compression line and restitution line

Substituting above and expanding, we obtain

Aee N\ 1 [ (pPFr)  —rm Ly @)
N ) pPPm N\ =y (p 47D I
The sticking line is defined by the equation ¢; = 0,

2 2
pe+ry T+T"n
p%zh_éahzo (9)

Cot +

and the compression line is defined the equation ¢,, = 0,

2 2
. TeTn +7
p°m 0’m
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Rigid body example

Y
—

eeeeeeeeee

e =0.5

uw = 0.25

o =1

m =

()
—1

wg =0




Analysis of rigid body example

Terminate at [,, = (1 + e) 1.

At the c-line.
Maximum compression.
Switch to restitution.

At the s-line.
Switch to right-sliding.

Commence in compression,
left-sliding.

o

20
naA
1.0+

n
S = ~
Zr”’u‘

(1+e)le |

N |

\

o\

left- shc& right-sliding

s-line
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Sliding rod problem

e =0.5
u = tan(30°)




Sliding rod solution

Y
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Chapter 10 Dynamic Manipulation 225
10.1 Quasidynamic manipulation 225
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