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Abstract— This paper develops a formal connection between
the Power Dissipation Method and Lagrangian mechanics, with
specific application to robotic systems. Such a connection is
necessary for understanding how some of the successes in motion
planning and stabilization for smooth kinematic robotic systems
can be extended to systems with frictional interactions and
overconstrained systems. We establish this connection using the
idea of a multiple model system, and then show that multiple
model systems arise naturally in a number of instances, including
those arising in cases traditionally addressed using the Power
Dissipation Method (PDM). We then give necessary and suffi-
cient conditions for a dynamic multiple model systems to be
reducible to a kinematic multiple model system. We use this
result to show that solutions to the PDM are actually kinematic
reductions of solutions to the Euler-Lagrange equations. We
are particularly motivated by mechanical systems undergoing
multiple intermittent frictional contacts, such as distributed
manipulators, overconstrained wheeled vehicles, and objects that
are manipulated by grasping or pushing. Examples illustrate how
these results can provide insight into the analysis and control of
physical systems.

Index Terms— kinematic analysis, dynamics, contact modeling,
frictional contacts, modeling for control.

I. I NTRODUCTION

M ANY mechanical systems, though intrinsically second
order in their governing dynamics, can be adequately

described by first order equations of motion. That is, one can
often propose a “quasi-static” or “kinematic” version of the
governing equations of motion for the purposes of system
analysis or control design. The benefits of this simplification
are numerous: the dimension of the state space drops by half,
the control inputs go from being force inputs to being velocity
inputs (which are often more easily realized in practice), and
the governing equations typically take a simpler form than the
full dynamic model. Additionally, kinematic systems, although
potentially nonlinear, do not typically involve drift terms.
There is a greater quality and quantity of nonlinear control
results available for driftless systems, as compared to systems
with drift. See [1], [2], [3], [4], [5], [6] for just a few examples.

This paper has several inter-related goals. One of the main
technical goals of this paper is to determine the formal
conditions under which such reductions can be achieved
for multiple model systems. In multiple model systems (see
Section IV) the system’s governing equations switch between
several possible models that describe the system’s evolution.
This paper presents necessary and sufficient conditions for
a multiple model system to be kinematically reducible—i.e.,
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the 2nd-order dynamical models can be reduced to1st-order
kinematic models of the form in Definition 4.1. The necessary
and sufficient conditions for kinematic reducibility of smooth
dynamical systems were first developed by Lewis [7]. One
of this paper’s contributions is the extension of kinematic
reducibility theory to the multiple model case.

While our kinematic reducibility results can be applied to
a large class of problems, we are particularly motivated by
the multiple model systems that arise frequently in robotics
practice. The multiple model framework has received an in-
creasing amount of attention in the control community recently
[8], [9], [10], [11], so there are many control results available
for our use. Therefore, understanding the connection between
problems in robotics and the multiple model framework will
be productive. Examples of multiple model systems include
robotic systems involving intermittent mechanical contacts,
such as distributed manipulators, overconstrained wheeled
vehicles, and objects that are manipulated by grasping or
pushing (see Section X). A number of similar approaches have
been proposed or used to create “quasi-static” models of such
systems. Most representative of these is the Power Dissipation
Method (PDM) (see Section V) introduced by Alexander
and Maddocks [1] in the context of overconstrained wheeled
vehicles. Peshkin also used similar ideas in the study of pushed
objects [12]. Based on this method, one can develop first-order
(or kinematic) equations of motion for mechanical systems that
undergo intermittent sliding contacts. We show in Section VII
that solutions to the PDM are multiple model systems. We
have used the PDM to model distributed manipulation systems
that generate motion via frictional contacts [13]. The resulting
multiple model descriptions are very amenable to control
analysis, and the associated nonsmooth control laws worked
well in practice.

As a second goal of this paper, we address a key question:
does the PDM produce models that are consistent with a
complete dynamic (Lagrangian) analysis? The formalization
of the PDM and the analysis of its relationship to Lagrangian
analysis are the other main contributions of this work. For-
mally, in Section IX we show that every solution to the power
dissipation method is precisely a reduction of a solution to
the Lagrangian formulation. Moreover, this is true forall
solutions, which is important, as solutions are not unique in
either the power dissipation method nor are they unique in the
Lagrangian formulation (when nonsmooth interactions such as
impacts and friction are taken into consideration).

The paper is organized as follows. To motivate our results,
we first examine some examples of mechanisms that naturally
involve stick/slip phenomenon in Section II. Then we briefly
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review the classical Lagrangian approach in Section III before
covering the basic ideas of the multiple model formalism
in Section IV. We then specifically address an example in
Section VI using these ideas. In Section VII we cover charac-
teristics of the power dissipation method and we then move on
to reduction theory for multiple model systems in Section VIII.
Section IX relates solutions to the power dissipation method
to solutions to the Lagrangian analysis. We end in Section X
with a detailed look at several examples where we have found
our analysis practically useful.

II. EXAMPLES

To show the potential breadth of applications for our results,
we summarize here four typical robotic and physical systems
to which our theory applies (Fig. 1): a wheeled bicycle, the
Rocky 7 prototype of the NASA Mars rover family, a dis-
tributed manipulation system whose function is to manipulate
a planar object via roll-slide contacts, and a multi-fingered
robotic hand. All of these systems are characterized by com-
plex mechanical interactions involving contact mechanics and
slip. More specifically, all of these systems can be modeled
and analyzed using the multiple-model framework developed
in this paper.

Consider the bicycle of Fig. 1(a) . For simplicity, we assume
that the bicycle is constrained to move along a line, and
that both wheels are actuated. (We will repeatedly return to
this example, as it exhibits many of the features that are
relevant to our discussions). If both wheels are actuated using
non-backdrivable motors, driving both wheels at exactly the
same velocity is a difficult task, and thus this bicycle would
typically experience small amounts of slipping in practice.
More interestingly, this slipping is likely to change over time
due to variability in contact friction characteristics, leading to
a multiple model, or hybrid, mechanical system. The multiple
model methodology introduced in this paper and companion
papers is well suited to analyze such systems.

The NASA Mars rover family members have six indepen-
dently driven wheels as well as two wheels independently
steered. As discussed in [14], [15] and reviewed in Section
X, this vehicle’s suspension is kinematically overconstrained,
implying some of these wheels are always slipping. Moreover,
it can be difficult to predict which wheels slip at any given
moment. There is already an extensive literature on wheeled
vehicles, establishing controllability based on a Lie Algebra
Rank Condition (LARC) [16], [17], stability based on center
manifold theory [6] and hybrid systems theory [11], motion
planning based on Voronoi diagrams [18], and rapidly explor-
ing random trees [2]. However, all of these methods assume
that the vehicle motions are governed by smooth, kinematic
equations of motion. Because of the inherent and unpredictable
switches in slipping, the governing dynamics are not smooth.
Nevertheless, the methods developed in this paper show that
such vehicles are still kinematic systems, albeit nonsmooth
ones. Moreover, in related work, we have made progress on
extending classical nonlinear control concepts, such as the
LARC, to the domain of multiple model systems [14]. We
will discuss this more in Section X-B.
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Fig. 1. Here are a) a bicycle with both wheels driven, b) the Mars rover
Rocky 7 Sojourner prototype, c) a distributed manipulation test bed developed
at Caltech (see description below), and d) a hand capable of grasping objects

Distributed manipulation has received recent attention in the
robotics community [19], [20]. Fig. 1(c) shows a distributed
manipulation test-bed developed by the authors in which nine
actuated wheels can be used to manipulate planar objects
set upon the manipulation surface. All of these wheels can
be independently driven and steered, giving the system 18
control inputs, with only the position and orientation of
the manipulated object as the output. Hence, this system is
massively over-actuated. The idea of many actuated devices
interacting with an object to achieve some desired manip-
ulation goal is appealing partially because of its scalability
and the possibility of using many inexpensive actuators rather
than a few expensive ones. Moreover, micro-electromechanical
system (MEMS) fabrication technologies potentially enable
distributed manipulation to be a leading candidate for micro-
manipulation. We have shown in prior work how distributed
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manipulators that employ frictional contacts fall into the
multiple-model domain [13]. The multiple model kinematic
reducibility theory developed in this paper provides a simple
but rigorous framework for the design of stabilizing control
laws that take into account the non-smooth effects of friction.
We have used kinematic reductions both to show the potential
shortcomings of control laws based on smooth idealizations
and to explicitly compute stabilizing control laws that work
well experimentally (see [13]).

Grasping and locomotion continue to be active areas of
robotics research. Current methods often use kinematic models
[3] to represent the system dynamics, yet grasping implicitly
contains many of the previously mentioned difficulties. In
particular, although stick/slip phenomena occur in a grasping
problem, there are not very convincing ways to show that the
kinematic methods typically used for grasping are robust with
respect to the variation in stick and slip states for a given
contact. The analytical methods presented here create a method
for analyzing these difficulties without resorting to dynamic,
second order analysis.

In Section X we will revisit these examples in order to show
how the kinematic reduction theory of this paper can provide
simplification or insight.

III. B ACKGROUND: LAGRANGIAN MODELS WITH

FRICTIONAL CONTACTS

This work has been largely motivated by the problem of
modeling and controlling mechanical systems that experience
multiple, possibly intermittent, contacts that involve friction,
particularly Coulomb friction. Clearly, the contacts place
constraints on the system’s evolving motions. Constrained
mechanical systems can be modeled using conventional La-
grangian mechanics through the use of Lagrange multipliers.
Consider a generic mechanical system with up toκ frictional
contacts between rigid body surfaces, where the contacts can
be intermittently slide or stick. Such a system admits up
to 2κ possible contact states which represent all possible
permutations of sliding and sticking. LetL(q, q̇) denote the
system’s Lagrangian (kinetic minus potential energy), where
q ∈ Q denotes the configuration of the mechanical system,Q
is then-dimensional configuration manifold. If theith physical
contact does not slip, the contact imposes a nonholonomic
constraint on the mechanical system’s motion. This constraint
can be expressed in the formωi(q)q̇ = 0. If the ith contact
slips, the Coulomb friction law (which is reasonably accurate
for low-speed/low-acceleration manuevering) states that the
tangential reaction force at that contact isFR

i = − vi

||vi||µiF
N
i ,

whereµi, FN
i , and vi are respectively the Coulomb friction

coefficient, normal force to the contacting surface, and slipping
velocity of the contact at theith contact. Hence, the mechanical
system’s overall equations of motion can described by:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+

∑
i∈S

FR
i +

∑
j 6∈S

λjω
T
j (q) = T (1)

whereS is theslipping contact set, the{λj} are undetermined
Lagrange multipliers, andT are the generalized applied forces.
That is,k ∈ S if the kth contact is slipping. If thekth contact

is not slipping,λk corresponds to the tangential reaction force
that is needed to maintain the no-slip constraint at thekth

contact. We generally assume in this work that the contact
normal forces,{FN

i } are known. If this is not the case,
then solving for the reaction forces can be difficult, involving
algebraic relationships [17]. However, additional Lagrange
multipliers may often be added to solve for these normal
forces. Note that this description involves a choice of coordi-
nates. The equivalent, coordinate independent, representation
is the formalism in which we address these problems, and is
briefly reviewed in the Appendix.

There are two primary practical problems with the La-
grangian modeling approach. First, one must solve for the La-
grange multipliers—a tedious task that often leads to complex
equations. Second, an additional (and often sensitive) analysis
is necessary to determine which contacts are slipping at any
given instant. Consequently, the practical need to analyze
such systems in a tractable way motivates the use of quasi-
static or kinematic approximations, and in particular the Power
Dissipation Method that is reviewed in the Section V. A
natural question arises when using quasi-static analysis: what
is the relationship between the equations of motion predicted
by quasi-static analysis and those generated by Lagrangian
analysis? Moreover, can the quasi-static equations properly
predict the motions of the true system? The next section briefly
reviews the concept of a multiple-model system, which is the
appropriate mathematical setting for this question in the case
of intermittent frictional contacts. We describe a method for
finding quasi-static equations of motion in Section V and we
answer these questions in Section IX.

IV. BACKGROUND: MULTIPLE MODEL SYSTEMS

We use the formalism of multiple model systems to address
kinematic reducibility of systems involving frictional and
intermittent contact.

Definition 4.1: A control systemΣ evolving on a smoothn-
dimensional manifoldQ with m inputs is said to be amultiple
model driftless affine system (MMDA)if it can be expressed
in the form

Σ : q̇ = f1(q, t)u1 + f2(q, t)u2 + · · ·+ fm(q, t)um (2)

where q ∈ Q. For anyq and t, the vector fieldfi assumes
a value in a finite set of vector fields:fi ∈ {gαi

|αi ∈ Ii},
with Ii an index set. The vector fieldsgαi

are assumed to
be analytic in(q, t) for all αi, and the controlsui ∈ R are
piecewise constant and bounded for alli. Moreover, lettingσi

denote the “switching signals” associated withfi

σi : Q× R → N
(q, t) 7→ αi

the σi are measurable in(q, t).
Definition 4.1 implies that the control vector fields may

change, or switch, among a finite collection of vector fields,
each representing a single smooth model in a set of models
P. An example of such a system is a vehicle whose wheels
can potentially skid. The system’s governing dynamics will
vary when the wheels slip or do not slip. Such systems are
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intimately related to multiple model systems such as studied in
[11]. However, we should emphasize that the “switching” is
not like the switching phenomena found in [21], [22], [23],
[24], or as typically studied in the hybrid control systems
literature (e.g., [25], [26]). In these studies, the switching
phenomena is part of a control strategy to be implemented
in the controller. In our case, the switching is induced by
environmental factors, such as variations in the contact state
between rigid bodies. Since the phenomena which govern the
switching behavior may not be precisely characterized, we
make no assumptions about the nature of the switching func-
tions, except that they are measurable (i.e.,σ is a Lesbesgue
measurable function in Def. 4.1). A long term goal of our
work is to develop systematic methods for analyzing control
systems with the type of hybrid (and therefore nonsmooth)
structure seen in Definition 4.1.

To distinguish between the overall control system and the
smooth control systems that comprise it, we define theindivid-
ual control systemsto be the smooth control systems making
up the multiple model system, comprising ofq̇ = g1(q, t)u1 +
· · · + gk(q, t)uk · · · + gn(q, t)un for gk(q, t) = gαi(q, t) for
someαi. A system will be termed amultiple model affine
system if it has the forṁq = f0(q, t)+f1(q, t)u1+f2(q, t)u2+
· · · + fm(q, t)um, where the vector fieldf0(q, t) (or “drift
term”) is also selected from a set of analytic vector fields
{gσ0(q, t)}.

V. OVERVIEW OF THE POWER DISSIPATION

METHODOLOGY

The idea that many systems minimize power or energy
dissipation during their state evolution is an old one, but as
far as the authors are aware was first applied in a robotics
context in [1]. This idea, called the Power Dissipation Method
(PDM), is a powerful one because it gives an alternate method
for deriving equations of motion. In fact, the equations of
motion it predicts are first-order, as we shall see. Moreover, the
resulting equation of motion have some unintuitive properties;
they are discontinuous, sometimes set-valued, and do not
typically have unique solutions. Despite these technicalities,
the equations of motion are very useful for resolving overcon-
strained systems’ equations of motion. This section describes
the principle in the form relevant to multiple point contact.
Section VI goes through a detailed example as illustration
and as a way of comparing the PDM to the more traditional
Lagrangian mechanics. Section VII then discusses some basic
properties of the PDM, primarily focusing on uniqueness of
solutions. Then, after developing some relevant mathematical
machinery in Section VIII, we show that solutions to the
PDM can be directly related to solutions of the Lagrangian
formulation of the equations of motion.

Now we consider the mathematical statement of the PDM.
Let q ∈ Q again denote a system configuration. This con-
figuration will potentially consist of both group variablesqg
(that correspond to the unknowns in the state evolution) and
shape variablesqr (that correspond to the control inputs in
the system). In this case the configuration manifold can be
written as the product ofQg andQr (i.e.,Q = Qg×Qr). The

relative motions between moving objects at a point contact
can be written in the formω(q)q̇. If ω(q)q̇ = 0, then the
contact point is not slipping, while ifω(q)q̇ 6= 0, thenω(q)q̇
describes the contact point’s slipping velocity. Thepower dis-
sipation functionmeasures the object’s total frictional energy
dissipation due to contact slippage.

Definition 5.1: Consider a mechanical system (which con-
sists of a single rigid body or a set of rigid bodies) that main-
tainsκ frictional contacts, where some or all of the contacts
may be slipping. TheDissipationor Friction Functionalfor κ-
contact states that are governed by Coulomb friction is defined
to be

D(q)(q̇) =
κ∑

i=1

µiF
N
i | ωi(q)q̇ | (3)

whereωi(q)q̇ describes the relative slipping velocity,µi is the
Coulomb friction coefficient, andFN

i is the normal force at
the ith contact.

The form of this function reflects the Coulomb friction
model, but it can easily be extended to different friction
models (see [27]) by replacing the linear termµiF

N
i with a

more general state-dependent function,hi(q). Now, it is clear
from the form ofD(q) that if ω(q)q̇ 6= 0, thenD(q) > 0.
That is, whenever a contact slips energy is dissipated. Based
on this observation, Alexander and Maddocks [1] proposed
the following axiomatic statement of the Power Dissipation
Method for anκ contact system:

Power Dissipation Principle: Given a system with
configurationq = (qg, qr) ∈ Qg × Qr = Q and qr
fixed, a system’s motion at any given instant is the
one that minimizesD(q) (Eq. 3) with respect tȯqg.
That is, findq̇∗g such that :

D((qg, qr))((q̇∗g , q̇r)) = min
q̇g∈Tqg Qg

D((qg, qr))((q̇g, q̇r))

The power dissipation methodis built upon this axiom. It
allows one to compute equations of motion purely based
on the Dissipation FunctionalD(q). Note that because the
minimization occurs overq̇g ∈ Tqg

Qg, the solution to the
minimization problem is an element ofTQ. Therefore, the
equations one gets using this method are necessarily first order
equtaions. Hence, we may get rid of some of the complexities
associated with the Lagrangian mechanics. However, simple
is not always correct, so we must understand the relationship
between the Euler-Lagrange equations, which are known to
be equivalent to Newton’s laws, and solutions to the PDM. In
Section IX we draw this connection by showing that solutions
to the PDM are in one-to-one correspondence to a special
subset of the solutions to the Euler-Lagrange equations. The
fact that solutions to the PDM cannot representall possible
solutions to the Lagrangian formulation can be easily seen
by considering the following example. Consider a particle
constrained to move on a surface, with friction between the
particle and the surface. There are no controls, soQ =
Qg. Lagrangian analysis suggests that there are two possible
contact states–one slipping and one not slipping. Because
D(q)(q̇) = µFN |q̇| and q̇ = 0 is the unique minimizer for
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min
q̇∈TqQ

D(q)(q̇) = 0, the PDM predicts that the particle will

not slip. Hence, it misses some of the contact states predicted
by the Lagrangian framework. However, the non-slip motion
that it does predict is consistent with a Lagrangian analysis.

For overconstrained systems with control inputs, the PDM
leads to more interesting and useful results. When a configura-
tion q can be decomposed into two componentsq = (qg, qr) ∈
Qg × Qr = Q, thenD(q)(q̇) = µiF

N
i |ω(qg, qr)(q̇g, q̇r)| and

the PDM minimization becomes min
q̇g∈Tqg Qg

D(q)(q̇). That is, the

PDM will predict q̇g given q̇r. In most cases of interest, the
variableq̇r corresponds to the control inputs, while the variable
q̇g corresponds to the system motion of interest. In Section VI
we consider this case using the simple example of a two wheel
drive bicycle constrained to move on a line.

VI. EXAMPLE : A TWO-WHEELED BICYCLE

x

B

φφ

R

W

y
2

1

Fig. 2. Planar bicycle

This section considers in detail an example to illustrate the
similarities and differences between the Lagrangian and PDM
formulations of the equations of motion. Consider the planar
bicycle (Fig. 1(a)) which is constrained to move along a line.
We will revisit this example shortly using the PDM formalism,
but for now we treat it in the Lagrangian framework. Letq =
[x, φ1, φ2]T , whereφ1 is the front wheel angle,φ2 is the rear
wheel angle, andx denotes the bicycle’s relative translation
of its body frameB along thex-axis of the world frameW .
The downward normal forceFN

i on each wheel depends upon
the bicycle’s weight distribution and at each point of contact
the coefficient of friction isµi. Assume that each wheel is
actuated, with torquesτ1 and τ2, and that each wheels may
possibly slip. Each wheel has the same moment of inertiaJ =
1
2mwheelR

2, whereR is the radius of the wheel andmwheel

is the mass of the wheel. Lastly, the bicycle’s total mass is
m. Hence, the Lagrangian for this system isL = 1

2mẋ
2 +

Jφ̇2
1+Jφ̇

2
2. There are two nonholonomic constraints associated

with this sytem–one for the nonslip constraint associated with
the front wheel and one for the back wheel. These non-slip
constraints can be written asω1(q)q̇ = ẋ − Rφ̇1 = 0 and
ω2(q)q̇ = ẋ−Rφ̇2 = 0.

Using Eq. (1) and solving for the Lagrange multipliers,
there are four different governing equations of motion (see
Table I), each corresponding to a different type of contact
state. The analysis based on Lagrangian mechanics suggests
that there arefour possible contact states, corresponding to
Eq. (A) where neither wheel slips, Eq. (B) where the front

q̈ =

264
R

2J+mR2
1

2J+mR2
1

2J+mR2

375 τ1 +

264
R

2J+mR2
1

2J+mR2
1

2J+mR2

375 τ2 (A)

q̈ =

26664
F R
1

J+mR2

RF R
1

J
RF R

1
J+mR2

37775 +

240
1
J
0

35 τ1 +

264 R
J+mR2

0
1

J+mR2

375 τ2 (B)

q̈ =

26664
F R
2

J+mR2

RF R
2

J+mR2

RF R
2

J

37775 +

264 R
J+mR2

1
J+mR2

0

375 τ1 +

240
0
1
J

35 τ2 (C)

q̈ =

2664
F R
1 +F R

2
m

F R
1 R

J
F R
2 R

J

3775 +

240
1
J
0

35 τ1 +

240
0
1
J

35 τ2 (D)

TABLE I

THE LAGRANGIAN DYNAMICS OF THE PLANAR BICYCLE IN THE FOUR

POSSIBLE CONTACT STATES. J IS A WHEEL’ S MOMENT OF INERTIA ABOUT

ITS ROTATIONAL AXIS , m IS TOTAL BICYCLE MASS, AND R IS THE WHEEL

RADIUS.

wheel slips, Eq. (C) where the rear wheel slips, and Eq. (D)
where both wheels slip.

When theith wheel slips, the tangential reaction force at
the ith contact point is governed by the Coulomb friction law:
FT

i = − ẋ−Rφ̇i

‖ẋ−Rφ̇i‖
µiF

N
i , where µi is the Coulomb friction

coefficient, andFN
i is the normal force bearing down upon

the ith wheel contact. When theith wheel does not slip, the
tangential reaction force is given by the Lagrange multiplier
λi. The Coulomb friction model implies that the boundary
between slipping and nonslipping states occurs at some value
of the Lagrange multiplier, denoted byλnom. When λi >
λnom

i , the ith contact slips. Consequently, theλ space is
divided into regions corresponding to different contact slipping
states. The problem of contact state determination arises from
the inherently complicated dependency ofλ on the current
state. For the planar bicycle model, the Lagrange multipliers
assume the following values when model (A) holds:

λ1 =
J(τ1 − τ2)−R2mτ1

R(R2m+ 2J)
λ2 =

J(τ2 − τ1)−R2mτ2
R(R2m+ 2J)

.

Under the Coulomb friction model, the critical value ofλ
for this example takes the valueλnom = µiF

N
i . However,

depending on the friction modelλnom will take different
values. This fact implies that the boundary of these regions
is both terrain dependent and sensitive to the details of the
friction model. One of the purposes of this paper is to provide a
modeling foundation for control strategies that are not sensitive
to the friction model, such as those we employ in [13].

Now we consider the PDM formulation of the equations of
motion for the two-wheeled bicycle. For this systemqg = x
andqr = (φ1, φ2) becauseφ1 andφ2 correspond to our control
inputs to the system. We are solvingmin

q̇g∈TqQg

D(q)(q̇) =

min
ẋ∈R

|µ1F
N
1 ω1(q)q̇|+ |µ2F

N
2 ω2(q)q̇|, which implies thatẋ =

Rφ̇1 or ẋ = Rφ̇2. Hence, the equations of motion may be
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written as
ẋ = Rφ̇i i ∈ {1, 2} (4)

where i can change over time. Therefore, this is a multiple
model system as described in Def. 4.1. Note that when
µ1F

N
1 = µ2F

N
2 this minimization does not have a unique

solution. In fact, all values in the convex hull ofRφ̇1 and
Rφ̇2 minimizeD(q). We should add, however, that this same
indeterminate situation occurs in the Lagrangian dynamics
when λnom = µiF

N
i at the ith contact. Therefore, the PDM

has only two dynamic states while the Lagrangian dynamics
have four. We will see in Section IX that the two dynamic
states coming from the PDM correspond to Eqs. (B) and (C)
in Table I. Moreover, they include Eq. (A) as a degenerate
case (whenφ̇1 = φ̇2 implying thatω1 = ω2). Only Eq. (D) is
not included in the PDM representation.

In the next section we will turn to some of the more
mathematical properties of the PDM that generalize some of
our observations about the two-wheeled bicycle. In particular,
we show that the PDM leads to multiple model systems and
show that in general the model determination is unique, with
only occassional occurance of indeterminant solutions.

VII. C HARACTERISTICS OF THEPDM

In this section we formalize the Power Dissipation Method
and show that the PDM generically gives rise tomultiple
model driftless affinesystems, as described in Section IV.
Specifically, the PDM generically yields unique solutions, and
when the equations of motion are not unique they can still be
bounded.

Before proceeding, let us recall a few facts that were already
established by Alexander and Maddocks [1]. They showed that
the dissipation function of Eq. 3 is convex, so that its local
minima are also its global minima, should they exist. They also
show that if such a minimum exists, it must exist at a point
of nondifferentiability ofD(q) due to the piecewise continuity
of D(q).

Let Ω = {ω1, · · · , ωm} denote theconstraint 1-forms. For
our purposes, these constraint 1-forms generally will represent
the nonholonomic constraints associated with point contact.
Furthermore, letQ = {q̇1, q̇2, · · · , q̇p} consist of the velocities
that have the property thaṫqk ∈ Q ⊂ TqQ is a kinematic
solution to a non-overconstrained subsetΩ′ ⊂ Ω consisting of
j constraints, i.e.,

Ω′q̇k =

 ωk1

...
ωkj

 q̇k = 0.

It is straightforward to show that at least one minimizer of
D(q) must ben an element ofQ. See, for instance, Alexan-
der and Maddocks[1]and Clarke [28]. ReorderQ so that
D(q)(q̇1) ≤ D(q)(q̇2) ≤ · · · ≤ D(q)(q̇p). Although Q is
associated with at least one of the minima achieved byD(q),
it does not necessarily contain all of them. In fact, if more
than one element ofQ is a minimum, then every element of
the convex hull of these minima are also minima. Hence, if
there is more than one solution, there are an infinite number
of solutions.

Proposition 7.1: If q̇1 and q̇2 both minimize the dissipation
functional found in Definition 5.1, then so doesco{q̇1, q̇2}.

Proof: AssumeD(q)(q̇1) = D(q)(q̇2) = a andδ ∈ [0, 1].
Then

D(q) (δq̇1 + (1− δ)q̇2)
=

∑n
i=1 µiF

N
i |ωi (δq̇1 + (1− δ)q̇2)|

≤ δ
∑n

i=1 µiF
N
i |ωi (q̇1)|+ (1− δ)

∑n
i=1 µiF

N
i |ωi (q̇2)|

= a

Moreover, equality must hold because we know that the
minimum is inQ. Therefore, the convex hull oḟq1 and q̇2
minimizesD(q). The proof for higher numbers oḟqi having
equal dissipation is by induction on this argument.

This result formalizes the intuition that if the power dis-
sipated is equal for two velocitieṡqi, then all possible tra-
jectories whose velocity lies in the convex hull of theq̇i will
satisfy the minimum also. That is, in the nongeneric case when
D(q) does not have a unique minimum, we can still bound
the object’s motion. Let us consider the extent to which the
functionD(q) having a unique minimum overqg is generic.
We denote the function space of the coefficient of friction byΞ
and the function space of normal forces byN . The following
is a rephrasing of a result in [1] using the notation developed
here.

Proposition 7.2:Assume
D(q)(q̇) : (Ξ,N , TqQ) → R is of the form in Definition 5.1.
Then, givenqr, the dissipation functionalD(q) has a unique
minimum with respect toqg almost always (i.e., except on a
set of measure zero1 relative to the space(Ξ,N , TQ)).

This result states that solving for equations of motion using
the PDM will almost alwaysyield a unique solution. However,
whenever the system is transitioning from one solution to
another because of a change inµ or FN , the solution will
become a set instead of a singleton. This set is bounded by the
elements ofQ that minimizeD(q). This makes rigorous the
comment made in [1] referring to the physical expectation of
continually switching back and forth between the dominance
of one wheel or another, rather than staying in an indeterminate
state. Proposition 7.2 additionally establishes a relationship
between solutions that minimizeD(q) and MMDA systems.
Moreover, we will see that the contact states predicted by the
PDM are(U ,U) reductions of a class of mechanical control
systems onTQ.

Proposition 7.2 also implies that multiple model systems
are a natural result of frictional interactions. Consequently,
multiple model modeling and control techniques should be de-
veloped for systems involving frictional contact. In Section IX

1Intuitively, sets of measure0 can be as sparse as disjoint points inQ or
as replete as a submanifold ofQ. For example, consider a vehicle moving on
smooth terrain. In its ambient Euclidean space, a vehicle is always constrained
to a set of measure 0, yet that set is precisely where the interesting dynamics
occur. On the other hand, sets of measure 0 can represent arbitrary algebraic
relationships between parameters and the state space. Unless there is some
reason to believe that these relationships are necessarily satisfied, we can feel
physically motivated in asserting they will not occur in practice. This is the
case that we are considering, and therefore we feel that the ensuing results
do imply the genericity we assert. Nevertheless, whether or not these sets are
important in the analysis is aphysical assumption, not a mathematical result.
For a reference on measure theory, see [29].
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we will explore more formally the relationship between solu-
tions to the PDM and solutions to the Lagrangian dynamics.
However, before we can go to that we must explore in detail
the notion of kinematic reducibility for mechanical systems
and how it can be extended to multiple model systems.

VIII. K INEMATIC REDUCIBILITY FOR MULTIPLE MODEL

SYSTEMS

This section introduces the formal tools and results required
to relate solutions arising from the power dissipation method to
solutions arising from the full Lagrangian analysis. A rigorous
understanding of the PDM’s properties and its relationship to
conventional Lagrangian mechanical analysis has heretofore
been missing. We structure our analysis of this issue in
two steps. In the previous section we developed a more
formal mathematical framework for the PDM. In particular,
we showed that the PDM leads generically to multiple model
systems. This section introduces kinematic reducibility theory
for multiple model systems. We then use our multi-model
reduction theory to formally study the relationship between the
properties of the PDM solutions and those of the associated
Lagrangian models (in Section 9.2).

A. Review of Kinematic Reducibility for Smooth Systems

We briefly review the relevant notions of kinematic re-
duction here, without going into details of the underlying
formalism. For some of these details, refer to the Appendix
and to [7]. The notion of(U ,U)-reducibility formalizes what
is meant by kinematic reducibility. For mechanical systems,
we consider inputsu : [0, T ] → Rm that are essentially
bounded and Lebesgue integrable. In Lewis [7], it was as-
sumed that inputs are absolutely continuous functions, since
piecewise continuity implies that instantaneous changes in
system velocity are possible. In the presence of inertial effects,
such changes can only occur when infinite forces are allowed.
We keep this assumption on the inputs. However, here state
transitions are beingapproximatedwith piecewise continuous
signals. This is a common approximation in many areas of
physical modeling [30], such as impacting bodies. Therefore,
we only require that absolute continuity hold locally rather
than globally.

Definition 8.1: f : [a, b] → Rm is absolutely continuousif
for eachε > 0 ∃ δ > 0 such that for every finite collection
{(ti, t

′

i)}1≤i≤N of non-overlapping intervals in[a, b] with the
property that

N∑
i=1

|t
′

i − ti| < δ we have
N∑

i=1

‖f(t
′

i)− f(ti)‖ < ε

This definition implies thatDf exists almost everywhere.
Like Lewis [7], we restrict our attention to systems that

can be modeled assimple mechanical systemsin a piecewise
sense. In simple mechanical systems, the Lagrangian takes
the formL = K.E.− V . Assume thatQ is ann-dimensional
configuration manifold, andG is a Riemannian metric onQ
defining the kinetic energy. Since many of the applications of
interest are systems with no potential energy, let us simplify to

the case whereL = K.E. (i.e.,V = 0). Denote byvq elements
in the tangent space ofQ atq, TqQ. With zero potential energy,
the system Lagrangian takes the formL = 1

2G(vq, vq).
Given a metricG on the manifoldQ, constraints modeled

as 1-forms inT ∗Q, and inputsua, it is possible to show that
the Euler-Lagrange dynamical equations, can be written in the
form:

G∇c′(t)c
′(t) = ua(t)Ya(c(t)) (5)

wheret 7→ c(t) is a path onQ andc′(t) = d
dtc(t) andG∇ is

the constrained affine connection associated with the metricG
(see Appendix). Note that Eq. (5) is a second order differential
equation evolving on the manifoldQ. On the other hand, given
input velocitiesuα, kinematicequations can be written in the
form:

q̇(t) = uα(t)Xα(q(t)) (6)

Our goal is to formally reduce Eq. (5) to Eq.(6). Moreover, if
{Xi} are kinematic vector fields and{Yj} are dynamic vector
fields, we let thedistributionsDkin andDdyn be defined by
Dkin = span{Xi} and Ddyn = span{Yj}. Relating these
two sets of vector fields will be of primary importance to us.
Now we say what what we mean by a solution to a control
system.

Definition 8.2: Let Σs be a smooth control systeṁq =
f(q, u) on a smooth manifoldM and letu ∈ U ⊆ Rm.
A (U , T )-solutionto Σs is a pair(c, u), whereu : [0, T ] → U
andc : [0, T ] →M satisfyc′(t) = f(c(t), u(t)).
Note that Def.8.2 only makes sense for first order equations
evolving on M and Eq.(5) is a second order differential
equation evolving onQ. Hence, we must rewrite Eq.(5) as
a first order equation evolving onTQ. To do this, we must
introduce thevertical lift, defined by

verlift(X)(vq) =
d

dt
|t=0vq + tX(q),

(whereX is a vector field onQ) and thegeodesic spray,
defined in coordinates by

Z = vi ∂

∂qi
− Γi

jkv
jvk ∂

∂vi
,

whereΓi
jk are theChristoffel symbolsassociated withG (see

Appendix). LetτQ

τQ : TQ → Q
vq 7→ q

denote the tangent bundle projection. Then, Eq.(5) written as
a first order system evolving onTQ is

v̇(t) = Z(v(t)) + ua(t)verlift(Ya(τQ ◦ v(t))) (7)

where v(t) ∈ TQ. We now can define what it means for
a mechanical system of the form in Eq. (5) to be(U ,U)
reducible to Eq. (6).

Definition 8.3: Let ∇ be an affine connection onQ (see
the Appendix), and letU and U be two families of control
functions. The system in Eq. (5) is

(
U ,U

)
-reducible to the

system in Eq. (6) if the following two conditions hold:

i) for each(U , T )-solution (η, u) of the dynamic Eq. (5)
with initial conditions η(0) in the distributionDkin,
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there exists a
(
U , T

)
-solution (γ, u) of the kinematic

Eq. (6) with the property thatγ = τQ ◦ η;
ii) for each

(
U , T

)
-solution(γ, u) of the kinematic Eq. (6),

there exists a(U , T )-solution (η, u) of the dynamic
Eq. (5) with the property thatη(t) = γ′(t) for almost
every t ∈ [0, T ].

Condition i) says that for every solution of a dynamic system
there must exist a kinematic solution that is the projection of
the dynamic system. In the case of a vehicle, this corresponds
to requiring that for everytrajectoryof the vehicle there exists
a correspondingpath that can be obtained from kinematic
considerations alone. Condition ii) says that for every kine-
matic solution there must exist a dynamic solution that is
equal to the kinematic solution coupled with its time derivative
(so that it lies inTQ). This means that there must exist a
dynamic solution for every feasible kinematic path. We should
point out here that this is related to the classes of admissible
inputs. Because kinematic inputs must be essentially integrals
of dynamic inputs, they must be absolutely continuous if the
dynamic inputs are integrable. Otherwise, infinite forces would
be required (see [7]).

Let χ∞(D) denote thoseC∞ vector fields taking values in
a distributionD. The following theorem states the local test
for Eq. (5) to be(U ,U) reducible to Eq. (6).

Theorem 8.1 (Lewis [7]):Let ∇ be an affine connection,
and let Y1, . . . , Ym and X1, . . . , Xm be vector fields on a
manifoldQ. The control system in Eq. (5) is

(
U ,U

)
reducible

to a system of the form in Eq. (6) if and only if the following
two conditions hold:

i)
spanR{X1(q), . . . , Xm(q)}
= spanR{Y1(q), . . . , Ym(q)}

for eachq ∈ Q (in particular,m = m)
ii) 〈X : Y 〉 ∈ χ∞(Ddyn) for every
X,Y ∈ χ∞(Ddyn) where〈·, ·〉 is the symmetric product
of vector fields, defined in the Appendix.

This theorem says that if the input distributions of both the
kinematic system and the dynamic system are the same and the
dynamic system is closed under symmetric products, then the
system is kinematic. Some other things to note about kinematic
reducibility include the following. First, all fully actuated
systems are automatically kinematically reducible because
their dynamic input vector fields are always closed under
symmetric products. For instance, the forward kinematics of
a robotic manipulator are kinematic whether moving in air
(where the kinematic approximation is obvious) or in a viscous
fluid of some sort.

Note that kinematic reducibility is not the same thing as
the “quasi-static” assumption commonly made in robotics.
This is because kinematic reducibility only requires that there
be a complete correspondence between dynamic motions and
kinematic motions. This implies that systems operating at
high speeds with large forces can still be kinematic. On the
other hand, quasi-static assumptions, when formalized at all,
typically require that the system be moving slowly in some
sense or to have forces balance such that the net force is
zero. We will see that the quasi-static motions predicted by
the PDM are indeed kinematic, but kinematic motions need
not be quasi-static.

B. Main Result on Reducibility of Multiple Model Systems

We now consider the problem of whether or not a dynamic
multiple model system is kinematically reducible to an MMDA
system. The following Lemma 8.2 states that if switches
in system dynamics are separated by a small amount of
time (making the switching signal piecewise continuous), the
resulting solution is also kinematically reducible.

Lemma 8.2:Let Σ be a multiple model system where the
individual model componentsΣσi,··· ,σj

are of the form in
Eq.(5) and whose switching signalσ is piecewise constant.
Then,Σ is (U ,U) reducible iff the individual model compo-
nentsΣσi,··· ,σj are all (U ,U) reducible.

Proof: Sinceσ is piecewise constant,σ switches a count-
able number of times. Therefore, let the times whenσ changes
its value be denoted{t1, t2, · · · , } for i in some index setI.
Then on the intervals(ti, ti+1), Σ is (U ,U) reducible, making
it (U ,U) reducible almost always.2 It therefore satisfies the
requirements of Definition 8.3.

We will use this lemma to prove Theorem 8.4, which says
that solutions to the differential inclusion defined by multiple
model systems are kinematically reducible if and only if the
individual models are kinematically reducible. Before proving
that this is true, we will need the following result from
Filippov [31].

Theorem 8.3 (Filippov [31]):Let f : M × R → TqM (q ∈
M ) be a compact, set-valued map and let{Φi} be a sequence
of solutions to the differential inclusion

q̇ ∈ f(q, t) (8)

such that lim
i→∞

Φi → Φ. ThenΦ is also a solution to Eq. (8).

Note that solutions to the differential inclusionf are in general
not unique, meaning that there is often an infinite family of
solutions. This theorem says that for a compact differential
inclusion, a converging sequence of solutions converges to a
solution. Theorem 8.3 will be used several times in the proof of
Theorem 8.4. Roughly speaking, piecewise continuous(U ,U)
reducible solutions of the multiple model mechanical system
can be used as approximations to flows of elements inf ,
where f assumes the form of the right half side of Eq. (9).
Theorem 8.3 can then be used to show that their kinematic
counterparts onTQ must also converge to an element of the
differential inclusion defined onTQ. This brings us to our
main result.

Theorem 8.4:A multiple model systemΣ where the indi-
vidual model componentsΣσi,··· ,σj are of the form in Eq.(5)
(or equivalently the first order form in Eq.(7)) is(U ,U)
reducible iff the individual dynamical modelsΣσi,··· ,σj

are
all (U ,U) reducible.

Proof: First note that it is obviously necessary that all
the individual models be(U ,U)-reducible in order for the
resulting multiple model system to be reducible. Otherwise, a
valid solution to a multiple model system is the smooth, non-
reducible solution of one of the models in the set of models.
To show sufficiency, we must show that when the individual
models are(U ,U) reducible, all solutions to the MMDA

2That is, it is reducible everywhere except for a set of measure 0.
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system are(U ,U) reducible. We show this in two steps.
The first step constructs kinematic solutions given dynamic
ones, and the second step constructs dynamic solutions given
kinematic ones.

(i) A multiple model mechanical system has the form:

Gl∇c′(t)c
′(t) = uα lYα(c(t)) (9)

where l ∈ Λ ⊂ N is the index for a given model,Gl is the
metric appropriate to that model,Gl∇ is the affine connection
associated with the metricGl, and lYα is the vector field
representing the force input corresponding touα of the lth

model of the multiple model system. In coordinates, Eq. (9)
is equivalent to

q̈i + GlΓi
jk q̇

j q̇k = uα lY i
α, (10)

whereGlΓi
jk are the Christoffel symbols associated with the

metricGl. Expressed as a first order system evolving onTQ
in natural coordinates(q, v) ∈ TQ, these equations take the
form

q̇ = v
v̇ = −GlΓi

jk q̇
j q̇k + uα lY i

α.

Using these coordinates onTQ, set lYi = {v,−GlΓi
jk q̇

j q̇k +
uα lY i

α} and Yi = co{lYi : l ∈ Λ}, with co{·, ·} denoting
the convex hull. In [31] it was shown that solutions to a
discontinuous system coincide with solutions of a differential
inclusion of the convex hull of the discontinuous system.
Applying this to our systems of interest, we see that solutions
to a multiple model system (viewed as a first order system
on TQ) coincide with solutions to the differential inclusion
v̇i ∈ Yi for v(t) ∈ TQ, or in vector notation:

v̇ ∈ Y. (11)

Then, for a given solutionΦ(t) of Eq. (11), we know that
d
dtΦ ∈ Y. Therefore, we can choose a selection (an element)
of Y, denoteds(Y) ∈ Y, such thatΦs(Y) locally approx-
imates the flowΦ. BecauseY is convex, we can rewrite a
selection ofY as

s(Y) = δ1
1Y + δ2

2Y + · · ·+ δm
mY (12)

for any δj such thatδj > 0 and
m∑
j

δj = 1.

Now we need to approximate solutions of the differential
inclusion in Eq.(11) using a piecewise constantσ. Let Φf

ε be
the flow of a smooth vector fieldf for time ε. Moreover, let

(Φf
ε )n =

n︷ ︸︸ ︷
Φf

ε ◦ Φf
ε ◦ · · ·Φf

ε ◦ Φf
ε . In [32], it was shown that we

can choose the following map to approximate (in the sense of
pointwise convergence to a set) the flow of a selections(Y)
using the following map:

Φt,n
dyn(q)

def
=

(
Φδ1

1Y t
n ◦ · · · ◦ Φδm

mY t
n

)n

(q) (13)

Each of the component flowsΦδm
iY t

n contributing to the flow
Φt,n

dyn(q) consists of a flow along a(U ,U) reducible mechan-
ical system. Moreover,Φt,n

dyn(q) is a solution of Eq. (11) on
TQ which is absolutely continuous for everyn. This is due to

the fact that we assume that the switching is measurable and
the forces are measurable and that the Lebesgue integral of
measurable signals is absolutely continuous. This construction
is useful because it allows one to produce a solution (with
σ piecewise constant) that approximates the flow along any
selection ofY. More precisely, it converges to the flow of the
selections(Y) asn→∞. That is, by applying Theorem 8.3
to the Taylor expansion ofΦt,n

dyn, we locally get

lim
n→∞

Φt,n
dyn = Φs(Y).

By assumption, we know that each segmentΦδi
iY t

n of
Φt,n

dyn is (U ,U)-reducible. Therefore, for every choice ofn,
Φt,n

dyn is (U ,U)-reducible by Lemma 8.2. These results then
yield us, for eachn, a corresponding map onQ:

Φt,n
kin(q)

def
=

(
Φδ1

1X t
n ◦ · · · ◦ Φδm

mX t
n

)n

(q) (14)

where Φt,n
kin(q) = τQ ◦ Φt,n

dyn(q). Here eachΦδi
iX t

n is the
flow of equations that are(U ,U)-reductions (as in Eq. (6))
from equations that generate the flowΦδi

iY t
n . Moreover, from

Theorem 8.3 we know thatlim
n→∞

Φt,n
kin exists and that its limit

is a solution to
q̇ ∈ X (15)

whereX = co{ua lXa|l ∈ L} and the{lX} come from the re-
duced equations in Eq. (6). Therefore, parti) of Definition 8.3
is satisfied.

(ii) The analysis of this second condition uses the same
essential steps as above, but begins with the solution to the
kinematic equations and works towards a dynamic solution.
Starting with the solutions from Eq. (6), we know that for an
individual model with indexl we haveq̇i = ua lXi

a, or in
vector form:

q̇ = ua lXa. (16)

Therefore, this MMDA system can be written in the form of
Eq. (15). Again, for any given solutionΦ of Eq. (15) we
have d

dtΦ ∈ X, so we can choose a selections(X) such that
Φs(X) locally approximates the flow for that solution. We can
moreover construct a sequence of solutionsΦt,n

kin converging
to Φs(X).

From Def 8.3 we know we must show there exists anη
solution with

d

dt
Φs(X) = η.

By our construction, we know that

lim
n→∞

Φt,n
kin(q0) = Φs(X)(q0, t) .

By assumption, for everyn and Φt,n
kin there exists a corre-

spondingΦt,n
dyn such thatΦt,n

dyn(q) = d
dtΦ

t,n
kin(q). In the limit,

lim
n→∞

Φt,n
dyn = Φs(Y),

for some selection of the differential inclusions(Y). Conse-
quently,Φs(Y) is a solution to Eq. (11), again by Theorem 8.3.
Taking the derivative of both sides, we get

d

dt
Φs(X) =

d

dt
lim

n→∞
Φt,n

kin = lim
n→∞

d

dt
Φt,n

kin
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= lim
n→∞

Φt,n
dyn = Φs(Y)

so partii) is satisfied. This ends the proof.
Notice that the proof of Theorem 8.4 relied heavily on

specifically constructing a solution with the desired properties
based onknownsolutions to the individual models comprising
the multiple model system. This result shows that determining
the kinematic properties of the individual models in a multiple
model system is sufficient for determining the kinematic prop-
erties of the entire system. Moreover, the transitions between
models as the state evolves are also kinematic if the individual
models are all kinematic.

IX. T HE PDM AND (U ,U) REDUCIBILITY

This section addresses the relationship between the models
produced by the power dissipation methodology and the kine-
matically reducible states of a generic mechanical system. An
informal restatement of this is the question: does the PDM
produce equations of motion that are kinematic reductions of
Euler-Lagrange equations? First, we derive a result that will be
shortly used to show the relationship between PDM solutions
and solutions of mechanical, second order, systems.

Proposition 9.1:Given a configuration manifoldQ and
a set of constraintsωi(q) which span the cotangent space
T ∗q Q, then the input distributionDkin(q) minimizing D(q)
will always satisfyDkin(q) = Null(Ωsat)(q) whereΩsat(q)
is some collection ofwi(q) which satisfywi(q)q̇ = 0 for
q̇ ∈ Dkin(q).

Proof: Suppose that this was not the case. Then there
would exist v 6= 0 which minimizesD(q) such that ifωi

s

are the constraints which are satisfied, thenv ∈ Null{ωi
s}

and v /∈ Dkin. This implies that for the choice ofuk = 0
∀k, v still minimizesD(q). However, because the{ωi} span
T ∗Q, 0 is the unique minimizer since D is convex iṅq. This
contradicts the assumption thatv 6= 0 and is a minimizer of
D(q).

This result roughly corresponds to the intuition that the
minimum dissipation in any unactuated direction is to not
move at all in that direction. We should comment that this can
still lead to a solution of no motion in the group variables–if
the unactuated constraints dominate the motion, then the
actuators will all slip.

Next we consider the case where we are given a metricG
for some mechanical system and a set of constraints described
by one-forms{ωj}. What are sufficient conditions for the
resulting system to be(U ,U) reducible? Lemma 9.2 gives
one sufficient condition which is invariant with respect to the
metricG, and is a simple corollary to the work found in [33],
[34].

Lemma 9.2:Given a “constraint distribution”Dcon ⊆ TQ
which annihilates the constraints{ωj} and an input distribu-
tion Ddyn, if Ddyn = Dcon the mechanical system described
by ∇q̇ q̇ = uαYα is (U ,U) reducible.

Proof: Denote by∇ the connection and by∇ the
constrained connection defined by the Lagrange-dÁlembert
principle (see Appendix and Lewis [7] for details of this
construction). We know that

∇XY ∈ Dcon ∀ Y ∈ Dcon and X ∈ T (M),

which implies∇XY + ∇Y X ∈ Dcon ∀X,Y ∈ Dcon. This
in turn implies by Theorem 8.1 that∇q̇ q̇ = uαYα is (U ,U)
reducible.

Therefore,(U ,U) reducibility of a multiple model mechan-
ical system is guaranteedregardless of the metricG when
the constraint distribution is equal to the input distribution.
Moreover, we already know that the power dissipation model
only admits solutions where this is true. This allows us to
interpret the use of the power dissipation method. The power
dissipation method is a way of choosing a more tractable
subset of contact states from the full Lagrangian contact
mechanics. In other words, when we make the “kinematic”
assumption, we are merely restricting our attention to(U ,U)
reducible systems. Moreover, when the reaction forces due
to friction do not lie inDkin, then those contact states are
not (U ,U) reducible. However, we should be very clear that
this only shows that the power dissipation method captures
(U ,U) reducible states whenDcon = Dkin. That is, the
correspondence only goes one direction: all PDM contact
states are kinematic states, but not all kinematic states can
necessarily be predicted by the PDM. There are examples of
mechanical systems which are(U ,U) reducible by virtue of
properties of the metricG. For examples of such systems, see
Lewis [7].

In summary, we have shown is the following.
Theorem 9.3:Given a configuration manifoldQ with tan-

gent spaceTQ and constraints represented by one-forms
ωi, then all solutions to the PDM are(U ,U) reductions of
solutions to Euler-Lagrange equations onTQ constrained by
a subset of{ωi}.

We should also remark on the relationship between The-
orem 8.1 (reduction for smooth systems) and Theorem 8.4
(reduction for multiple model systems). In the smooth case,
(U ,U) reducibility is equivalent to geodesic invariance (for
details, see Lewis [7]). However, in the nonsmooth case there
is no well defined notion of geodesic invariance because the
metric changes over time. Nevertheless, we were able to extend
the notion of(U ,U) reducibility relatively easily. Therefore,
the concept of(U ,U) reducibility is in some sense more
general than that of geodesic invariance.

X. EXAMPLES

To illustrate how the results presented in this paper are
useful, and point towards more general applications of theories
developed here, we now revisit the examples from Section II.
First, we come back to the bicycle example to illustrate all of
the theory details. We study the bicycle example in detail as
illustration, and then quickly summarize several applications in
other related work. For instance, we show how this analysis
helps to establish controllability characteristics for the Mars
rover family of vehicles and stability analysis for distributed
manipulation problems. We end this section with a brief
discussion of how the method presented here can be applied
to grasping and locomotion.

A. Bicycle

Now, we return to the bicycle example of Section II in detail.
Assume that the bicycle is constrained to move on a line.
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Recall that the bicycle has a total mass ofm, each wheel has
a moment of inertiaJ and radiusR, and that the reaction
forcesFR

i are at the point of contact between the wheel and
the ground. Using the mechanics formulation as described in
the Appendix, the configuration space is{x, φ1, φ2} ∈ R×T 2

(whereT 2 = S1×S1), and the Riemannian metric describing
the kinetic energy is

G = m dx⊗ dx+ J dφ1 ⊗ dφ1 + J dφ2 ⊗ dφ2.

The two non-rolling constraints are

ẋ−Rφ̇1 = 0 ẋ−Rφ̇2 = 0

and the constraint covectors can be written as

ω1 = dx−Rdφ1 ω2 = dx−Rdφ2

As inputs, we have

F 1 = dφ1 F 2 = dφ2.

Now, for each combination of slipping and no slipping of the
wheels, we have a set of equations to solve. Therefore, we have
four sets of equations to solve. Note that because the metric
does not depend on the configuration, the Christoffel symbols
Γi

jk are all identically zero for this problem. Moreover, as we
shall see, theG-orthogonal projection operatorP ′ onto D⊥

also does not depend on the configuration, indicating that the
Christoffel symbolsAΓi

jk for the constrained system (found
in Eq. (26)) are also identically zero. Therefore, the equations
depend entirely on the input forces and external forces due to
friction.

1) No slipping: When both wheels do not slip, both con-
straintsω1 andω2 are satisfied. This implies that the constraint
distribution is 1-dimensional, spanned by

R
∂

∂x
+

∂

∂φ1
+

∂

∂φ2
.

Moreover, one can compute that theG-orthogonal complement
of D is

span

{
−J ∂

∂x
+mR

∂

∂φ1
,−J ∂

∂x
+mR

∂

∂φ2

}
.

If we compute theG-orthogonal projectionP onto the
distribution D, we get P (x, φ1, φ2) · (vx, vφ1 , vφ2) =

1
2J+mR2 {R(J(vφ1 + vφ2) + mRvx), J(vφ1 + vφ2) +
mRvx, J(vφ2 + vφ1) +mRvx}. The unprojected input vector
fields are

Y1 =
1
J

∂

∂φ1
, Y2 =

1
J

∂

∂φ2

Hence, the projected input vector fields are

PY1 = PY2 =
1

2J +mR2

(
R
∂

∂x
+

∂

∂φ1
+

∂

∂φ2

)
and the equations of motion are therefore:

q̈ = PY1u
1 + PY2u

2.

It is easy to see that〈PY1 : PY2〉 = 0, so this is a kinematic
system (that is, it is reducible to Eq. (4)).

2) One wheel slipping:In the case where one wheel slips,
we may assume without loss of generality that the slipping
wheel is wheel number 2. In this case, the constraint distribu-
tion is

span

{
R
∂

∂x
+

∂

∂φ1
,
∂

∂φ2

}
.

Moreover, one can compute that the orthogonal complement
of D is

−J ∂

∂x
+mR

∂

∂φ1
.

To compute the reaction force due to the other wheel slipping,
note that such a reaction force can be considered an external
force, and can therefore be added to the right hand side of
Eq. (5) with the associated control assuming constant unity
valueua ≡ 1. If we compute theG-orthogonal projectionP
onto the distributionD, we getP (x, φ1, φ2) · (vx, vφ1 , vφ2) =

1
J+mR2 {R(Jvφ1 + mRvx), Jvφ1 + mRvx, (J + mR2)vφ2}.
The unprojected nominal inputs vector fields are the same as
before,

Y1 =
1
J

∂

∂φ1
Y2 =

1
J

∂

∂φ2
.

and the projected inputs vector fields are

PY1 =
R

J +mR2

∂

∂x
+

1
J +mR2

∂

∂φ1
PY2 =

1
J

∂

∂φ2
.

The unprojected reaction force coming from the friction reac-
tion force is:

E = FR ∂

∂x
+ FR ∂

∂φ2

which, when projected onto the distributionD becomes

PE =
FRmR2

J +mR2

∂

∂x
+

FRmR

J +mR2

∂

∂φ1
+
FRR

J

∂

∂φ2
.

The equations of motion are therefore:

q̈ = PY1u
1 + PY2u

2 + E.

To determine whether this system is kinematically reducible
or not, we first note that〈PY1 : PY2〉 is again identically zero.
Moreover, note that although Theorem 8.1 does not directly
address the case of external forces, we can by direct inspection
of Definition 8.3 see that ifE /∈ span{Yi} then the system
cannot in general be reducible. However, ifE ∈ span{Yi} and
the{Yi} satisfy the conditions for reducibility, then the system
is automatically reducible because the external forces are
“covered” by the inputs. Therefore, we need only check thatE
lies in the span ofY1 andY2. Indeed,E ∈ span{Y1, Y2} for
this example. Therefore, this system is kinematically reducible.
Note that this property does not depend on the particular
description of the reaction force, and is moreover invariant
with respect to the reaction forces’ differentiability.

3) Both wheels slipping:When both wheels slip, there
are no constraints to enforce. In this case, the constraint
distribution is identically zero and the orthogonal complement
is trivially the entire tangent space. Moreover, we can compute
the reaction force due to the wheels slipping to bew1(FR

1 )
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andw2(FR
2 ). The associated input vector fields and external

vector fields are

Y1 = 1
J

∂
∂φ1

Y2 = 1
J

∂
∂φ2

E = F R
1 +F R

1
m

∂
∂x −

RF R
1

J
∂

∂φ1
− RF R

2
J

∂
∂φ2

and the equations of motion are therefore:

q̈ = Y1u
1 + Y2u

2 + E.

In this case, it is clear thatE /∈ span{Y1, Y2}. Therefore
this system (not surprisingly) is not kinematically reducible,
at least for genericFR.

B. Simplified Mars Rover

θ

ψ
ψ

θ

x

y

a) b)

Fig. 3. Simplified Rocky 7: a) a schematic of a six wheeled rover, and b)
a schematic of a simplification of the rover. The configuration of this vehicle
consists of thex, y, θ coordinates and the steering angleψ (shown) as well
as the three wheel angles(φ1, φ2, φ3) (not shown).

Next we revisit the example of Fig. 1(b), the geometry
geometry of which we simplify here for the sake of discussion.
This simplification has three wheels, with all three wheels
driven. This model can be interpreted as a simplification of
the Mars rover Rocky 7 vehicle, also seen in Fig. 1. The three
wheeled vehicle seen in the schematic has a configuration
space consisting of(x, y, θ, ψ, φ1, φ2, φ3) ∈ R2 × T 5 =
SE(2)×T 4. Hence, in this exampleQg = SE(2) (the Special
Euclidean group of distance preserving transformation in the
plane) andQr = T 4 (the four dimensional input set). This
system has six nonholonomic constraints (one associated with
each wheel having both a no roll constraint and a no sideways
slip constraint). Therefore, there are26 = 64 possible models
governing the dynamics of the vehicle. For this reason, we
do not relate all the calculations for this vehicle. However,
one can show, using a symbolic mathematics package such as
Mathematica, that this system also has a subset of kinematic
solutions, and that these solutions correspond to the the
solutions to the PDM for this system. One can show that there

only exist

(
6
3

)
=20 kinematic solutions for this system. Such

a correspondence is important because the power dissipation
method is very straight forward to solve and these solutions
can be used for both controllability analysis and for purposes

of motion planning (we have carried out this analysis in [14],
[15]).

In [14], [15] we showed that this system’s controllability
properties can be analyzed using a set-valued extension of
the Lie bracket (the prerequisite calculation for understanding
controllability using the classical Lie Algebra Rank Condition
(LARC)) that arises naturally in MMDA analysis. Control-
lability is important for systems like the Rocky 7 primar-
ily because many motion planning algorithms for vehicles
are based on controllability properties. For instance, Rapidly
Exploring Random Trees (RRT) have been used with much
success to develop motion planning strategies. However, the
computational intensity of these calculations is formidable, and
recently [2] showed that significant advantage can be taken by
reducing mechanical systems to kinematic ones when using
RRTs for motion planning. Work is currently underway to
extend RRTs to the multiple model systems of this paper. See
[32] for a preliminary motion planning that is based on the
MMDA structure found here.

We should comment on the relationship between kinematic
reducibility results and controllability results which can be
obtained for multiple model systems [14], [15]. One of the
intuitive aspects of Theorem 8.4 is precisely that it is sufficient
for each model to be(U ,U) reducible in order to guarantee
that the multiple model mechanical system is(U ,U) reducible.
That is, piecewise(U ,U) reducibility is enough to guarantee
(U ,U) reducibility across discontinuities. However, in the case
of controllability, this no longer holds. An MMDA system can
switch among individually controllable systems in such a way
as to destroy controllability [15]. Thus, controllability of each
model in an MMDA is not sufficient for overall controllability.

The fact that there is such a high number of models for
the Rocky 7 suggests the need for a reduction theory for
multiple model systems. Indeed, for a six-wheeled system like
the actual Rocky 7, there are212 = 4096 possible models
governing its dynamics, a completely unmanageable number.
For the three wheeled vehicle in the schematic, 20 kinematic
models is also perhaps an unreasonably large number of
models to analyze. In [15] we did an ad-hoc reduction of
this model which turned it into a two model multiple model
system (although it can be shown that no additional reduction
is possible). Combining kinematic reduction with this multiple
model reduction reduced the number of models from4096
to 2. Therefore, formally utilizing reductions (both discrete
and continuous) to reduce the dimensionality of the problem
will be very useful, both for motion planning and estimation
purposes. This will be a focus of future research.

C. Distributed Manipulation with Changing Contacts

Figure 4(a) shows a photograph of a particular configuration
of a distributed manipulation experiment developed by the
authors pictured in Fig. 1(c) which has been used previously
to test algorithms for distributed manipulation [13].3 In the
photograph we see four driving wheels whose rims are ori-
ented towards the origin. Each actuator is a one degree of

3Video of these experiments can be found at the website
http://robotics.colorado.edu/∼murphey.
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Fig. 4. Photograph and schematic of 4 cell distributed manipulator.

freedom actuator. We use a piece of plexiglass (for purposes
of visualization) on top of the four wheels to represent a
manipulated object. The white line seen in the photograph
indicates the outline of the plexiglass. The goal is to control
the center of mass to the origin inR2 with a desired orientation
of θ = 0. To do this, we obtain feedback of the plexiglass’
configuration by affixing a piece of paper with a black triangle
(also seen in the photo) whose right angle corner coincides
with the plexiglass’ center of mass. Using this, we obtain
the position and orientation of the plexiglass through visual
feedback. Figure 4(b) is a schematic of the experiment, where
the four arrows correspond to actuators and the regions de-
noted byI-VIII and0-7π

4 will be important in our subsequent
description of the equations of motion described by the PDM.

Note that this system thus described is overactuated because
there are four inputs and only three outputs. Assume the
coefficient of friction is the same for all four driving actuators.
In this case we can show that the model switches as the
center of mass moves across the array. In fact, under these
assumptions, the actuator wheel nearest to the center of mass
will have both its “rolling” constraint and its “sideways” slip
constraint satisfied. The actuator wheel second closest to the
center of mass will have one of its two constraints satisfied. In
the case of the wheels shown in the figure, it will be the rolling
constraint. For details on this analysis, see [13]. Denote the
actuator input associated with the closest actuator byui and
the actuator input associated with the second closest actuator
by uj using the PDM. Then these considerations lead to first
order governing equations of motion of the form:

Fig. 5. Under-actuated Distributed Manipulation Feedback Control

 ẋ
ẏ

θ̇

 = g1ui + g2uj (17)

where

g1 ∈


−yi

(xj−xi) sin(θj)+(yi−yj) cos(θj)
xi

(xj−xi) sin(θj)+(yi−yj) cos(θj)
uj

(xi−xj) sin(θj)+(yj−yi) cos(θj)

 (18)

g2 ∈


sin(θj)((xi−xj) cos(θi)+yi sin(θi))+cos(θi) cos(θj)yj

(xj−xi) sin(θj)+(yi−yj) cos(θj)
− cos(θi) cos(θj)xi−sin(θi)(xj sin(θj)−(yi−yj) cos(θj))

(xj−xi) sin(θj)+(yi−yj) cos(θj)
− cos(θi−θj)

(xi−xj) sin(θj)+(yj−yi) cos(θj)

 (19)

In these equationsxi, yi, and θi refer to the planar co-
ordinates and orientation of theith actuator. The set-valued
notation of (18) and (19) refers to the fact that at a transition
between actuatorsi and j being the two closest actuators
to actuatorsk and l being the closest the kinematics are
discontinuous. Therefore, at these points we must allow multi-
valued differentials in order to guarantee existence of solutions
to the differential equation in (17). It should be noted that here
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Fig. 6. Under-actuated Distributed Manipulation movie snapshots. The goal
is to align the black triangle affixed to the plexiglass with the superimposed
triangle.

the index notation should be thought of as mapping(i, j) pairs
to equations of motion in some neighborhood (not necessarily
small) around theith and jth actuator. In each regionI-
VIII between the kinematics are smooth, but when a trajectory
crosses a boundary0-7π

4 , there is a discontinuity in the kine-
matics. It is possible to obtain point stabilization to(x, y, θ) =
(0, 0, 0) from any initial condition using discontinuous control
laws based on the kinematics and knowing the current model
(see [13] for details of this control design). Moreover, this
stability is provably exponential. Figures 5 and 6 illustrate
experimental results from [13] for this distributed manipulation
system. Notice in particular in Fig. 5 that despite the rough
behavior illustrated in the(x, y) trajectory, the Lyapunov
function monotonically decreases. These experiments show
the power of the simplified modeling techniques discussed
in this paper–the control laws designed in the context of the
nonsmooth kinematic equations perform quite well, and would
have been much more difficult to analyze in the full dynamic
setting. Moreover, they arestatic, and the friction model does
not show up in their design. Figure 6 shows nine snapshots
illustrating the plexiglass’ progress towards the desired final
state.

However, there are many questions relevant to this system
which remain unanswered. In particular, we are currently
developing algorithms which do not require any knowledge of
the slipping state, and instead use an online estimation process
based on hierarchical control like that found in [8], [9], [10],
[11].

D. Relationship to Grasping and Locomotion

We briefly give our vision of how the preceding ideas can be
related to both grasping and locomotion. Traditionally, analysis
of grasping and locomotion has assumed clean interactions
between the robot and its environment. Moreover, kinematic
analysis has proven to be a very computationally and theo-
retically useful venue for understanding many issues in both
areas. However, in real robotic systems, interactions in contact
are often not clean, and we expect slipping to take place.

Consider, for example, the hand shown in Fig. 1. As the hand
manipulates the ball, its fingers will slip against the surface.
However, we generally expect such motions to not interfere
with the stability of the motion. The analysis presented in
this paper provides a forum for robustness analysis as well as
development of algorithms that explicitly require slipping.

XI. SOME FINAL REMARKS

In this paper we derived conditions that are both necessary
and sufficient for a multiple model system to be kinematically
reducible. Moreover, we connected these solutions to solutions
of the Power Dissipation Method, a method for determining
the quasi-static equations of motion for an overconstrained
system (see [1], [12]). Such an understanding of a system’s
kinematic motions is important for the purposes of tasking
and motion planning. The structure we describe here is put to
advantage in [13] in an application to distributed manipulation
and in [15] where we analyze the controllability properties
of an example like that found in Fig. 1. Moreover, it has
future potential for greatly simplifying friction compensation
problems in robotics. We have been able to show that the solu-
tions to the power dissipation method correspond to kinematic
solutions of multiple model systems.

We do not claim that the PDM is a better model than the
full Lagrangian description, only that it is more tractable. It
produces first order equations of motion that are amenable
to analysis. Moreover, the fact that it allows us to compute
explicit controllers that work on a real experiment is an
indication of its validity [13]. Nevertheless, there are certainly
important systems that must be treated in the full Lagrangian
mechanical framework, since even in the example of the planar
bike there are important dynamic states not accounted for in
the PDM. This determination will in general have to be made
by the control designer.

Lastly, this work leaves several open questions to be an-
swered. First of all, in the definition presented in this paper
the dissipation functional is only applicable to a finite number
of contacts. However, in many pushing problems the frictional
interaction occurs at the interface between two continuous
media. The example of the Mars rover in Section X-B makes it
clear that reduction theory (beyond kinematic reduction theory
presented here) needs to be formally explored for multiple
model systems. Lastly, there is the question of external forces.
Our use of kinematic reducibility in the example avoids the
problems of differentiation of friction forces because the
manifold and constraint data provides all the information we
need. However, this cannot be expected in general, and there
is a clear need to extend the work in [7] to cases with generic
reaction forces entering the equations of motion.

APPENDIX

This appendix gives a brief introduction to the geometric
formulation of control systems on manifolds, primarily fol-
lowing [33], [34], [7]. We assume the reader is familiar with
the basic notation and formalism of differential geometry and
nonlinear controllability theory. See [17], [35], [36], [37], [38]
for more details. Asimple mechanical control systemconsists
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of a manifoldQ of dimensionn, a Riemannian metricG that
defines the kinetic energy, a set of constraints represented as
a constraint distributionD, and a set of external forces repre-
senting control inputs. Although we do not discuss potential
energy here, it also can be included in this formulation [33].

First we introduce some geometric concepts. Associated
with the Riemannian metric is the affine connection, which
assigns to a pair of vector fieldsX andY another vector field
∇XY . This is referred to as thecovariant derivativeof Y with
respect toX.

Definition 1.1: In coordinates, the covariant derivative ofY
with respect toX is

G∇XY =
(
∂Y i

∂qj
Xj + Γi

jkX
jY k

)
∂

∂qj
(20)

Also associated with a Riemannian metricG are what are
calledChristoffel symbols.

Definition 1.2: The Christoffel symbolsfor the connection
G∇ (associated with the metricG) are

Γi
jk =

1
2
Gil

(
∂Gjl

∂qk
+
∂Gkl

∂qj
− ∂Gjk

∂ql

)
(21)

where summation over repeated indices is implied used unless
otherwise stated, and upper indices indicate the inverse.
Lastly, we define the symmetric product, which is used in
establishing the kinematic reducibility result found in Sec-
tion VIII.

Definition 1.3: The symmetric productbetween two vector
fieldsX andY is defined to be

〈X : Y 〉 =G ∇XY +G ∇Y X (22)

As noted in Lewis [7], the symmetric product plays a similar
role in establishing

(
U ,U

)
reducibility to the Lie bracket in

establishing integrability.
Now we turn to mechanics in this context. Given a metric

G on the manifoldQ and inputsua, it is possible to show that
the Euler-Lagrange dynamical equations can be written in the
form:

G∇c′(t)c
′(t) = ua(t)Ya(c(t)) (23)

where t 7→ c(t) is a path onQ and c′(t) = d
dtc(t). In

coordinates this is written as:

q̈i + GΓi
jkq̇

j q̇k = uα Y i
α. (24)

Constrained systems, those control systems whose trajecto-
ries must lie in some distributionD, can also be described by
Eq. (23). However, the affine connection must be modified in
order to incorporate the constraints. LetD be a distribution
onQ and letD⊥ denote theG-orthogonal complement ofD.
Moreover, letP : TQ → TQ be aG-orthogonal projection
operator ontoD and letP ′ : TQ → TQ be aG-orthogonal
projection ontoD⊥. Lastly, letA(q) be any invertible(1, 1)
tensor field onQ and letB(q) be its inverse. Then, the Euler-
Lagrange equations can be written as Eq. (24) where the
Chrisoffel symbols are:

AΓi
jk =

GΓi
jk +Bi

l

∂(AP ′)l
j

∂qk +Bi
l
GΓl

km(AP ′)m
j −Bi

l
GΓm

kj(AP
′)l

m

where, again,A(q) is any invertible (1, 1) tensor onQ. In
order to add forces, we must ensure the forces comply with
the constraints. Hence, the final equations of motion are:

G∇c′(t)c
′(t) = ua(t)PjY

j
a (c(t)) (25)

or in coordinates:

q̈i + AΓi
jkq̇

j q̇k = uα PjY
i
α. (26)

Therefore, simple mechanical control systemsall can be
represented using an affine connection. For more details and
examples worked out in detail, refer to Bullo and Lewis [33].
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