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Abstract—This paper develops a formal connection between the 2"d_order dynamical models can be reduceditborder
the Power Dissipation Method and Lagrangian mechanics, with kinematic models of the form in Definition 4.1. The necessary

specific application to robotic systems. Such a connection is g gyfficient conditions for kinematic reducibility of smooth
necessary for understanding how some of the successes in motion

planning and stabilization for smooth kinematic robotic systems dynammal systems vyere_ f'rSt_ developed bY Lewis ,[7]' One
can be extended to systems with frictional interactions and Of this paper’s contributions is the extension of kinematic
overconstrained systems. We establish this connection using thereducibility theory to the multiple model case.

idea of a multiple model system, and then show that multiple  While our kinematic reducibility results can be applied to
model systems arise naturally in a number of instances, including a large class of problems, we are particularly motivated by
those arising in cases traditionally addressed using the Power . ’ . . .
Dissipation Method (PDM). We then give necessary and suffi- the multlple mode! systems that arise frequently in robot|_cs
cient conditions for a dynamic multiple model systems to be Practice. The multiple model framework has received an in-
reducible to a kinematic multiple model system. We use this creasing amount of attention in the control community recently
result to show that solutions to the PDM are actually kinematic  [g], [9], [10], [11], so there are many control results available
reductions of solutions fo the Euler-Lagrange equations. We fo oy yse. Therefore, understanding the connection between

are particularly motivated by mechanical systems undergoing - - . .
multiple intermittent frictional contacts, such as distributed problems in robotics and the multiple model framework will

manipulators, overconstrained wheeled vehicles, and objects that b€ productive. Examples of multiple model systems include
are manipulated by grasping or pushing. Examples illustrate how robotic systems involving intermittent mechanical contacts,

these results can provide insight into the analysis and control of such as distributed manipulators, overconstrained wheeled

physical systems. vehicles, and objects that are manipulated by grasping or
_Index Terms—kinematic analysis, dynamics, contact modeling, pushing (see Section X). A number of similar approaches have
frictional contacts, modeling for control. been proposed or used to create “quasi-static” models of such
systems. Most representative of these is the Power Dissipation

I. INTRODUCTION Method (PDM) (see Section V) introduced by Alexander

ANY hanical ¢ thouah intrinsicall nd Maddocks [1] in the context of overconstrained wheeled
mechanical syslems, though intrinsically SECongepicies. peshkin also used similar ideas in the study of pushed
order in their governing dynamics, can be adequate

q ibed by first ord i ¢ motion. That i jects [12]. Based on this method, one can develop first-order
escribed by Tirs ”or er equ.a,!ons“o. mo |o_n.” atis, one c kinematic) equations of motion for mechanical systems that
often propose a “quasi-static” or “kinematic” version of th

. . X ndergo intermittent sliding contacts. We show in Section VII
governing equations of motion for the purposes of SYStefflat solutions to the PDM are multiple model systems. We

analysis or control d_esign._ The benefits of this simplificatioH ve used the PDM to model distributed manipulation systems
are numerous. the dlmen3|or_1 of the s‘Fate space Qrops by _that generate motion via frictional contacts [13]. The resulting
the control inputs go from being force inputs to being velocit ultiple model descriptions are very amenable to control

inputs (which are often more easily realized in practice), ang alysis, and the associated nonsmooth control laws worked

the governing equations typically take a simpler form than tr\ﬁe” in practice.

full dyr_lamic moglel. Additionally, ki_nemat_ic systems, although As a second goal of this paper, we address a key question:
potentially nonlinear, do not typically involve drift terms. 4 Jas the PDM produce models that are consistent with a

There is a greater quality and quantity of nonlinear Comf% mplete dynamic (Lagrangian) analysis? The formalization

results available for driftless systems, as compared to systegpsy, ; . : . .
. : . e PDM and the analysis of its relationship to Lagrangian
W'E:_]hqnﬁ' See r[]l]’ [2]. (3], I[L'l]’ [5]. [|6] fodrjustlafe(;v exafmﬁles. analysis are the other main contributions of this work. For-
IS paper has several inter-related goals. One of the m%lly, in Section IX we show that every solution to the power

techmpal goals of th's paper is to _determme the fo.rmag sipation method is precisely a reduction of a solution to
conditions under which such reductions can be achiev Lagrangian formulation. Moreover, this is true fal

for multiple model systemsn multiple model systems (Seesolutions, which is important, as solutions are not unique in

Section IV) the system's governing equations switch betwe%ﬂher the power dissipation method nor are they unique in the

_sri\_/eral possible mct)dels that descrlge thf? _systtem Sd(.et\.mlu“f;ﬁlgrangian formulation (when nonsmooth interactions such as
IS paper presents necessary and sulicient conartions iﬁ’lpacts and friction are taken into consideration).

a multiple model system to be kinematically reducible—i.e., The paper is organized as follows. To motivate our results,

This work was largely supported by the National Science Foundation (gre}’r‘(fa first e).(amir?e some examplgs of m?ChanismS that naFura”y
NSF9402726) through its Engineering Research Center (ERC) program. involve stick/slip phenomenon in Section Il. Then we briefly
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review the classical Lagrangian approach in Section Ill before

covering the basic ideas of the multiple model formalism

in Section IV. We then specifically address an example in

Section VI using these ideas. In Section VII we cover charac-

teristics of the power dissipation method and we then move on

to reduction theory for multiple model systems in Section VIII. a)
Section IX relates solutions to the power dissipation method

to solutions to the Lagrangian analysis. We end in Section X

with a detailed look at several examples where we have found

our analysis practically useful.

Il. EXAMPLES

To show the potential breadth of applications for our results,
we summarize here four typical robotic and physical systems
to which our theory applies (Fig. 1): a wheeled bicycle, the
Rocky 7 prototype of the NASA Mars rover family, a dis- b)
tributed manipulation system whose function is to manipulate
a planar object via roll-slide contacts, and a multi-fingered
robotic hand. All of these systems are characterized by com-
plex mechanical interactions involving contact mechanics and
slip. More specifically, all of these systems can be modeled
and analyzed using the multiple-model framework developed
in this paper.

Consider the bicycle of Fig. 1(a) . For simplicity, we assume
that the bicycle is constrained to move along a line, and c)
that both wheels are actuated. (We will repeatedly return to
this example, as it exhibits many of the features that are
relevant to our discussions). If both wheels are actuated using
non-backdrivable motors, driving both wheels at exactly the
same velocity is a difficult task, and thus this bicycle would
typically experience small amounts of slipping in practice.
More interestingly, this slipping is likely to change over time
due to variability in contact friction characteristics, leading to
a multiple model, or hybrid, mechanical system. The multiple
model methodology introduced in this paper and companion :
papers is well suited to analyze such systems. d) o

The NASA Mars rover family members have six indeperrig. 1. Here are a) a bicycle with both wheels driven, b) the Mars rover
dently driven wheels as well as two wheels independengrcky750joumer prototype, c) a distributed manipulation test bed developed
steered. As discussed in [14]' [15] and reviewed in Secti Caltech (see description below), and d) a hand capable of grasping objects
X, this vehicle’s suspension is kinematically overconstrained,
implying some of these wheels are always slipping. Moreover,
it can be difficult to predict which wheels slip at any given Distributed manipulation has received recent attention in the
moment. There is already an extensive literature on wheeledotics community [19], [20]. Fig. 1(c) shows a distributed
vehicles, establishing controllability based on a Lie Algebnaanipulation test-bed developed by the authors in which nine
Rank Condition (LARC) [16], [17], stability based on centenctuated wheels can be used to manipulate planar objects
manifold theory [6] and hybrid systems theory [11], motioset upon the manipulation surface. All of these wheels can
planning based on Voronoi diagrams [18], and rapidly explobe independently driven and steered, giving the system 18
ing random trees [2]. However, all of these methods assumentrol inputs, with only the position and orientation of
that the vehicle motions are governed by smooth, kinematlee manipulated object as the output. Hence, this system is
equations of motion. Because of the inherent and unpredictablassively over-actuated. The idea of many actuated devices
switches in slipping, the governing dynamics are not smoothteracting with an object to achieve some desired manip-
Nevertheless, the methods developed in this paper show thkgtion goal is appealing partially because of its scalability
such vehicles are still kinematic systems, albeit nonsmoaihd the possibility of using many inexpensive actuators rather
ones. Moreover, in related work, we have made progress thian a few expensive ones. Moreover, micro-electromechanical
extending classical nonlinear control concepts, such as #stem (MEMS) fabrication technologies potentially enable
LARC, to the domain of multiple model systems [14]. Walistributed manipulation to be a leading candidate for micro-
will discuss this more in Section X-B. manipulation. We have shown in prior work how distributed
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manipulators that employ frictional contacts fall into thés not slipping,\; corresponds to the tangential reaction force
multiple-model domain [13]. The multiple model kinematidhat is needed to maintain the no-slip constraint at He
reducibility theory developed in this paper provides a simplontact. We generally assume in this work that the contact
but rigorous framework for the design of stabilizing contrahormal forces,{F}¥} are known. If this is not the case,
laws that take into account the non-smooth effects of frictiothen solving for the reaction forces can be difficult, involving
We have used kinematic reductions both to show the potentddebraic relationships [17]. However, additional Lagrange
shortcomings of control laws based on smooth idealizationaultipliers may often be added to solve for these normal
and to explicitly compute stabilizing control laws that workorces. Note that this description involves a choice of coordi-
well experimentally (see [13]). nates. The equivalent, coordinate independent, representation
Grasping and locomotion continue to be active areas isfthe formalism in which we address these problems, and is
robotics research. Current methods often use kinematic modaiefly reviewed in the Appendix.
[3] to represent the system dynamics, yet grasping implicitly There are two primary practical problems with the La-
contains many of the previously mentioned difficulties. lgrangian modeling approach. First, one must solve for the La-
particular, although stick/slip phenomena occur in a graspiggange multipliers—a tedious task that often leads to complex
problem, there are not very convincing ways to show that tleguations. Second, an additional (and often sensitive) analysis
kinematic methods typically used for grasping are robust with necessary to determine which contacts are slipping at any
respect to the variation in stick and slip states for a givagiven instant. Consequently, the practical need to analyze
contact. The analytical methods presented here create a methaoch systems in a tractable way motivates the use of quasi-
for analyzing these difficulties without resorting to dynamicstatic or kinematic approximations, and in particular the Power
second order analysis. Dissipation Method that is reviewed in the Section V. A
In Section X we will revisit these examples in order to showatural question arises when using quasi-static analysis: what
how the kinematic reduction theory of this paper can provide the relationship between the equations of motion predicted

simplification or insight. by quasi-static analysis and those generated by Lagrangian
analysis? Moreover, can the quasi-static equations properly

I1l. BACKGROUND: LAGRANGIAN MODELS WITH predict the motions of the true system? The next section briefly
FRICTIONAL CONTACTS reviews the concept of a multiple-model system, which is the

This work has been largely motivated by the problem @ppropriate mathematical setting for this question in the case

modeling and controlling mechanical systems that experien%fe'merm'ttent frictional contacts. We describe a method for

multiple, possibly intermittent, contacts that involve friction|nding quasi-static equations of motion in Section V and we
particularly Coulomb friction. Clearly, the contacts plac@"SWer these questions in Section IX.
constraints on the system’s evolving motions. Constrained

mechanical systems can be modeled using conventional La- |V. BACKGROUND: MULTIPLE MODEL SYSTEMS

grangian mechanics through the use of Lagrange multipliersyye yse the formalism of multiple model systems to address
Consider a generic mechanical system with up:thictional  kinematic reducibility of systems involving frictional and
contacts between rigid body surfaces, where the contacts ¢&@rmittent contact.

be intermittently slide or stick. Such a system admits Up pefinjtion 4.1: A control systen® evolving on a smooth-

to 27 possible contact states which represent all possitignensional manifold) with m inputs is said to be eultiple

permutations of sliding and sticking. Lét(g, ¢) denote the oqel driftless affine system (MMDA)it can be expressed
system’s Lagrangian (kinetic minus potential energy), Whe[§ the form

q € @ denotes the configuration of the mechanical syst@m,

is then-dimensional configuration manifold. If th# physical Y g= filg,t)ur + falg, t)uz + - + fn(q, ), (2)
contact does not slip, the contact imposes a nonholonomi ,
constraint on the mechanical system’s motion. This constram%ereq < Q. qu anyq andt, the_ vector fieldf; assumes
can be expressed in the foray(q)¢ = 0. If the i contact a value in a finite set of vector field¥; € {ga,|o; € Ii},
slips, the Coulomb friction law (which is reasonably ac:cura\gIth fi an index set. The vector fields,, are assumed to

for low-speed/low-acceleration manuevering) states that t g ana]yuc in(q,t) for all a;, and th? controlay; € R are
~  pleécewise constant and bounded forialMoreover, lettings;

tangential reaction for t that cont = — i, FY L . . .
angentia e]?c on force attha cq ack(s o177 denote the “switching signals” associated wjth
where y;, F;¥, andv; are respectively the Coulomb friction

coefficient, normal force to the contacting surface, and slipping o QxR — N
velocity of the contact at thé" contact. Hence, the mechanical (g,t) — o

system’s overall equations of motion can described by: the o; are measurable iy, ¢)
K2 3 .

d (0L oL R T\ Definition 4.1 implies that the control vector fields may
dt (&j) - 9q TR Aef@=T O change, or switch, among a finite collection of vector fields,
€s ¢S each representing a single smooth model in a set of models
whereS is theslipping contact sethe{);} are undetermined P. An example of such a system is a vehicle whose wheels
Lagrange multipliers, an@ are the generalized applied forcescan potentially skid. The system’s governing dynamics will
That is, k € S if the k™ contact is slipping. If thé:™ contact vary when the wheels slip or do not slip. Such systems are
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intimately related to multiple model systems such as studiedriglative motions between moving objects at a point contact
[11]. However, we should emphasize that the “switching” isan be written in the formu(q)q. If w(q)¢ = 0, then the

not like the switching phenomena found in [21], [22], [23],contact point is not slipping, while i&(q)¢ # 0, thenw(q)¢

[24], or as typically studied in the hybrid control systemsescribes the contact point’s slipping velocity. Tmwver dis-
literature (e.g., [25], [26]). In these studies, the switchingipation functionmeasures the object’s total frictional energy
phenomena is part of a control strategy to be implementdisipation due to contact slippage.

in the controller. In our case, the switching is induced by Definition 5.1: Consider a mechanical system (which con-
environmental factors, such as variations in the contact staists of a single rigid body or a set of rigid bodies) that main-
between rigid bodies. Since the phenomena which govern thins « frictional contacts, where some or all of the contacts
switching behavior may not be precisely characterized, weay be slipping. Th®issipationor Friction Functionalfor «-
make no assumptions about the nature of the switching furg@ntact states that are governed by Coulomb friction is defined
tions, except that they are measurable (ceis a Lesbesgue to be

measurable function in Def. 4.1). A long term goal of our

work is to develop systematic methods for analyzing control Z”Z
systems with the type of hybrid (and therefore nonsmooth)

structure seen in Definition 4.1. wherew;(q)¢ describes the relative slipping velocity; is the

To distinguish between the overall control system and ti§&oulomb friction coefficient, and”¥ is the normal force at
smooth control systems that comprise it, we defindridevid- the i contact.
ual control systems$o be the smooth control systems making The form of this function reflects the Coulomb friction
up the multiple model system, comprising@¥ ¢1(q,t)u; + model, but it can easily be extended to different friction

A+ gr(g, )up -+ gnlg, )un for gulg,t) = ga,(q,t) for models (see [27]) by replacing the linear tepmF}¥ with a
some ;. A system will be termed anultiple model affine more general state-dependent functibp(g). Now, it is clear
system if it has the form = fo(q, t)+ f1(q, t)ui+f2(q,t)us+ from the form of D(q) that if w(q)¢ # 0, thenD(q) > 0.

-+ fm(q,t)u,, where the vector fieldfy(q,t) (or “drift That is, whenever a contact slips energy is dissipated. Based
term”) is also selected from a set of analytic vector fieldsn this observation, Alexander and Maddocks [1] proposed
{900 (g, )} the following axiomatic statement of the Power Dissipation

Method for anx contact system:

| wi(q)q | ®)

V. OVERVIEW OF THE POWER DISSIPATION Power Dissipation Principle: Given a system with
METHODOLOGY configurationg = (¢4,4) € Q4 x Q- = Q andg,

The idea that many systems minimize power or energy |/1Xed, @ system’s motion at any given instant is the

dissipation during their state evolution is an old one, but as | ©n€ that minimizesD(q) (Eq. 3) with respect taj,.
far as the authors are aware was first applied in a robotics | That is, findgg such that :
context _in [1]. This idea, called the _Poyver Dissipation Method D((dg, ) (4%, 4r)) = min_ D((qq,9:))((dg, dr))
(PDM), is a powerful one because it gives an alternate method 49€Tag Qg
for deriving equations of motion. In fact, the equations of
motion it predicts are first-order, as we shall see. Moreover, tiibe power dissipation methods built upon this axiom. It
resulting equation of motion have some unintuitive propertieatlows one to compute equations of motion purely based
they are discontinuous, sometimes set-valued, and do et the Dissipation FunctionaD(q). Note that because the
typically have unique solutions. Despite these technicalitiesinimization occurs over, € T, Q,, the solution to the
the equations of motion are very useful for resolving overcominimization problem is an element &fQ. Therefore, the
strained systems’ equations of motion. This section descril@guations one gets using this method are necessarily first order
the principle in the form relevant to multiple point contactequtaions. Hence, we may get rid of some of the complexities
Section VI goes through a detailed example as illustrati@ssociated with the Lagrangian mechanics. However, simple
and as a way of comparing the PDM to the more tradition@ not always correct, so we must understand the relationship
Lagrangian mechanics. Section VII then discusses some bdsitween the Euler-Lagrange equations, which are known to
properties of the PDM, primarily focusing on uniqueness dfe equivalent to Newton’s laws, and solutions to the PDM. In
solutions. Then, after developing some relevant mathematiGsction IX we draw this connection by showing that solutions
machinery in Section VIII, we show that solutions to théo the PDM are in one-to-one correspondence to a special
PDM can be directly related to solutions of the Lagrangiasubset of the solutions to the Euler-Lagrange equations. The
formulation of the equations of motion. fact that solutions to the PDM cannot represalttpossible

Now we consider the mathematical statement of the PDIolutions to the Lagrangian formulation can be easily seen
Let ¢ € @ again denote a system configuration. This comy considering the following example. Consider a patrticle
figuration will potentially consist of both group variablgg constrained to move on a surface, with friction between the
(that correspond to the unknowns in the state evolution) apdrticle and the surface. There are no controls, (k0=
shape variableg, (that correspond to the control inputs inQ,. Lagrangian analysis suggests that there are two possible
the system). In this case the configuration manifold can kentact states—one slipping and one not slipping. Because
written as the product af), and@.. (i.e.,@ = Q, x Q). The D(q)(¢) = uF|¢| and¢ = 0 is the unique minimizer for
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min D(q)(¢) = 0, the PDM predicts that the particle will ) 27+ mR? 2R
4Ty @ T : q= smEr | T s | 2 A
not slip. Hence, it misses some of the contact states predicted 2J+1 - 2J+1 -
by the Lagrangian framework. However, the non-slip motion [ PR " : :
that it does predict is consistent with a Lagrangian analysis. J;;??Q N v N 7.”61132 ®)
For overconstrained systems with control inputs, the PDM ¢~ Tn a1 |7

. . . i mR2
leads to more interesting and useful results. When a configura- Tn};m e
tion ¢ can be decomposed into two components (¢, ¢-) € Fa T :

. N . g J+m§£ J+mR2 0
Qg x Qr = Q, thenD(q)(¢) = piF;" |w(gg, ¢r)(dg, ¢r)| and Q= | A | i | Tt 0l (©
the PDM minimization becomes min  D(q)(¢). That is, the RFR / 7
. . . . . dgClqg &g i L J . d -
PDM will predict ¢, given ¢,. In most cases of interest, the Fft+ Ry 07 0
variableg, corresponds to the control inpl_Jts, while the variable = Flr + S 0| (D)
g4 corresponds to the system motion of interest. In Section VI riR 0] 2]
we consider this case using the simple example of a two wheel I
drive bicycle constrained to move on a line. TABLE |
THE LAGRANGIAN DYNAMICS OF THE PLANAR BICYCLE IN THE FOUR
VI. EXAMPLE: A TWO-WHEELED BICYCLE POSSIBLE CONTACT STATES.J IS A WHEEL' S MOMENT OF INERTIA ABOUT
ITS ROTATIONAL AXIS, m IS TOTAL BICYCLE MASS, AND R IS THE WHEEL
RADIUS.

wheel slips, Eqg. (C) where the rear wheel slips, and Eq. (D)
where both wheels slip.

When thei™ wheel slips, the tangential reaction force at
the ™ contact point is governed by the Coulomb friction law:

T _ _ _%—R¢; , N i icti
Fl = ”i_Rqﬁ.allFi , Where p; is the Coulomb friction

coefficient, andF is the normal force bearing down upon
the i wheel contact. When thé" wheel does not slip, the

_ _ ) ) ) i tangential reaction force is given by the Lagrange multiplier
.T.h|s.§ect|on cqn3|ders in detail an example to_lllustrate tt)s' The Coulomb friction model implies that the boundary
similarities and differences between the Lagrangian and PQMeen slipping and nonslipping states occurs at some value

formulations of the equations of motion. Consider the plangg e Lagrange multiplier, denoted by**™. When \; >
bicycl_e (Fig._l(a_)) which is constrain_ed to move along a Iing\.?om, the i contact slips. Consequently, the space is
We will revisit this example shortly using the PDM formalismyiyiged into regions corresponding to different contact slipping
but for now we treat it in the Lagrangian framework. lge&  gtates. The problem of contact state determination arises from
[, 61, ¢2]", where, is the front wheel anglep, is the rear o inherently complicated dependency bfon the current
wheel angle, and: denotes the bicycle’s relative translationyiaie For the planar bicycle model, the Lagrange multipliers
of its body frameB along thez-axis of the world framéV. ;< ime the following values when model (A) holds:
The downward normal forc&”¥ on each wheel depends upon
the bicycle’s weight distribution and at each point of contact J(11 — ) — R*mm
the coefficient of friction isy;. Assume that each wheel is A= R(R?m + 2J)
actuated, with torques; and 7», and that each wheels may
possibly slip. Each wheel has the same moment of ingrtia Under the Coulomb friction model, the critical value »f
%mwhee;RQ, where R is the radius of the wheel anch,nee for this example takes the valug,,,, = uiFiN . However,
is the mass of the wheel. Lastly, the bicycle’s total mass depending on the friction model,,,, will take different
m. Hence, the Lagrangian for this systemlis= %m;tQ + values. This fact implies that the boundary of these regions
Jp2+J 3. There are two nonholonomic constraints associatésl both terrain dependent and sensitive to the details of the
with this sytem—one for the nonslip constraint associated wittiction model. One of the purposes of this paper is to provide a
the front wheel and one for the back wheel. These non-slipodeling foundation for control strategies that are not sensitive
constraints can be written as;(¢q)¢ = @ — R¢; = 0 and to the friction model, such as those we employ in [13].
wa(q)g =2 — Ry = 0. Now we consider the PDM formulation of the equations of

Using Eq. (1) and solving for the Lagrange multipliersmotion for the two-wheeled bicycle. For this systeg= =
there are four different governing equations of motion (semdgq, = (¢1, ¢2) because, andg, correspond to our control
Table 1), each corresponding to a different type of contagiputs to the system. We are soIvingg1TinQ D(¢q)(¢) =

qxg

state. The analysis based on Lagrangian mechanics suggests o= . .
y ol 998N 101 P w1 (9)dl + |12 ws (q)dl, which implies thati —

Fig. 2. Planar bicycle

J(ra — 1) — R*mmy

>\ =
2 R(R?m + 2J)

that there ardour possible contact states, corresponding ﬂ&‘gﬁ )
Eq. (A) where neither wheel slips, Eq. (B) where the fronR¢; or & = R¢,. Hence, the equations of motion may be
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written as ) Proposition 7.1:1f ¢; andg, both minimize the dissipation
= R¢; i€{l,2} (4) functional found in Definition 5.1, then so does{q;, ¢=}.
Proof: AssumeD(q)(¢1) = D(q)(¢2) = a andé € [0,1].

where ¢ can change over time. Therefore, this is a multiplsla en

model system as described in Def. 4.1. Note that whe
mFY = poFY this minimization does not have a unique D(q) (6¢;, + (1 — 6)ds)

so!utloh._ In_ fact, all values in the convex hull d{gbl_and =30 i FN |wi (641 + (1 = 0)do)|

R@ minimize D(q). We should qdd, however, th_at this same < S N Jwi (d1)] + (1 —6) S0, i BN |wi (42)]
indeterminate situation occurs in the Lagrangian dynamics- ¢

when Ao = 1 FN at thei" contact. Therefore, the PDM

has only two dynamic states while the Lagrangian dynamibéoreover, equality must hold because we know that the
have four. We will see in Section IX that the two dynamigninimum is in Q. Therefore, the convex hull of; and g»
states coming from the PDM correspond to Egs. (B) and (@)inimizesD(q). The proof for higher numbers af; having

in Table I. Moreover, they include Eq. (A) as a degeneraggjual dissipation is by induction on this argument. ~ ®
case (Whenp, = ¢, implying thatw; = w,). Only Eq. (D) is This result formalizes the intuition that if the power dis-
not included in the PDM representation. sipated is equal for two velocitieg;, then all possible tra-

In the next section we will turn to some of the morgectories whose velocity lies in the convex hull of thewill
mathematical properties of the PDM that generalize some gtisfy the minimum also. That is, in the nongeneric case when
our observations about the two-wheeled bicycle. In particuldp(q) does not have a uniqgue minimum, we can still bound
we show that the PDM leads to multiple model systems atite object’'s motion. Let us consider the extent to which the
show that in general the model determination is unique, wittinction D(¢) having a unique minimum ovey, is generic.
only occassional occurance of indeterminant solutions. We denote the function space of the coefficient of frictiorEby

and the function space of normal forces by The following
VIlI. CHARACTERISTICS OF THEPDM is a rephrasing of a result in [1] using the notation developed

In this section we formalize the Power Dissipation MethoBiere.
and show that the PDM generically gives rise rtmiltiple ~ Proposition 7.2: Assume
model driftless affinesystems, as described in Section IVP(¢)(4) : (E,N,T,Q) — R is of the form in Definition 5.1.
Specifically, the PDM generically yields unique solutions, anfihen, giveng,., the dissipation functionaD(q) has a unique
when the equations of motion are not unique they can still Béinimum with respect tay, almost always (i.e., except on a
bounded. set of measure zetaelative to the spacé=, NV, TQ)).

Before proceeding, let us recall a few facts that were alreadyThis result states that solving for equations of motion using
established by Alexander and Maddocks [1]. They showed thhe PDM will almost alwaygield a unique solution. However,
the dissipation function of Eq. 3 is convex, so that its locavhenever the system is transitioning from one solution to
minima are also its global minima, should they exist. They alsmother because of a changeinor FV, the solution will
show that if such a minimum exists, it must exist at a poirftecome a set instead of a singleton. This set is bounded by the
of nondifferentiability ofD(q) due to the piecewise continuity elements ofQ that minimizeD(q). This makes rigorous the
of D(q). comment made in [1] referring to the physical expectation of

Let Q = {wy, - ,w,} denote theconstraint 1-formsFor continually switching back and forth between the dominance
our purposes, these constraint 1-forms generally will repres@fione wheel or another, rather than staying in an indeterminate
the nonholonomic constraints associated with point contastate. Proposition 7.2 additionally establishes a relationship
Furthermore, le© = {¢1,d2,--- , G, } consist of the velocities between solutions that minimizB(¢q) and MMDA systems.
that have the property thag, € Q c T,Q is a kinematic Moreover, we will see that the contact states predicted by the
solution to a non-overconstrained subgét— Q2 consisting of PDM are (i, U) reductions of a class of mechanical control
j constraints, i.e., systems o' Q.

Proposition 7.2 also implies that multiple model systems
. _ ) are a natural result of frictional interactions. Consequently,
Y = Pl =0 multiple model modeling and control techniques should be de-

Wi; veloped for systems involving frictional contact. In Section 1X

V)

wkl

It is straightforward to show that at least one minimizer of

D(q) must ben an element aP. See, for instance, Alexan- Lintuitively, sets of measuré can be as sparse as disjoint pointsgnor
! ’ as replete as a submanifold @ For example, consider a vehicle moving on

der and MaddOCkS[l]and Clarke [28]- Reorde®r so th_at smooth terrain. In its ambient Euclidean space, a vehicle is always constrained
D(¢)(d1) < D(g)(g2) < --- < D(g)(¢p). Although Q is to a set of measure 0, yet that set is precisely where the interesting dynamics

associated with at least one of the minima achieved)bey), occur. On_the other hand, sets of measure 0 can represent arbitrary al_gebraic
relationships between parameters and the state space. Unless there is some

it does not necessa”l_y Cont_a'_n all of them. In fact, if MO Eaason to believe that these relationships are necessarily satisfied, we can feel
than one element of is a minimum, then every element ofphysically motivated in asserting they will not occur in practice. This is the

the convex hull of these minima are also minima. Hence. Gise that we are considering, and therefore we feel that the ensuing results
' do imply the genericity we assert. Nevertheless, whether or not these sets are

there 'S. more than one solution, there are an infinite numbﬁﬂbortam in the analysis is physical assumptigmot a mathematical result.
of solutions. For a reference on measure theory, see [29].
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we will explore more formally the relationship between soluthe case wheré = K.E. (i.e.,V = 0). Denote byy, elements
tions to the PDM and solutions to the Lagrangian dynamidsi the tangent space 6f atg, 7;,Q. With zero potential energy,
However, before we can go to that we must explore in detdliie system Lagrangian takes the forfin= %G(vq,vq).

the notion of kinematic reducibility for mechanical systems Given a metricG on the manifold@, constraints modeled
and how it can be extended to multiple model systems. as 1l-forms inl*Q, and inputsu®, it is possible to show that

the Euler-Lagrange dynamical equations, can be written in the
VIIl. K INEMATIC REDUCIBILITY FOR MULTIPLE MopeL  form:
SYSTEMS IV y€ (1) = u®(t) Ya(c(t)) (5)

This section introduces the formal tools and results requir@gheret — c(t) is a path onQ andc/(t) = %c(t) and€V is

to relate solutions arising from the power dissipation method {Re constrained affine connection associated with the métric
solutions arising from the full Lagrangian analysis. A rigorougsee Appendix). Note that Eq. (5) is a second order differential
understanding of the PDM’s properties and its relationship guation evolving on the manifold. On the other hand, given

conventional Lagrangian mechanical analysis has heretof@igut velocitiesu®, kinematicequations can be written in the
been missing. We structure our analysis of this issue f§rm:

two steps. In the previous section we developed a more i) = () Xalqt)) (6)
formal mathematical framework for the PDM. In particular,

we showed that the PDM leads generically to multiple mod&lur goal is to formally reduce Eq. (5) to Eq.(6). Moreover, if
systems. This section introduces kinematic reducibility theofly¥i} aré kinematic vector fields anid’; } are dynamic vector
for multiple model systems. We then use our multi-moddlelds, we let thedistributions Dy, and Day,, be defined by
reduction theory to formally study the relationship between tHékin = span{X;} and Da,,, = span{Y;}. Relating these

properties of the PDM solutions and those of the associa®¢p Sets of vector fields will be of primary importance to us.
Lagrangian models (in Section 9.2). Now we say what what we mean by a solution to a control

system.
Definition 8.2: Let X, be a smooth control system =
¢,u) on a smooth manifold/ and letu € U C R™.

We briefly review the relevant notions of kinematic rea (U, T)-solutionto ¥, is a pair(c, ), whereu : [0,T] — U
duction here, without going into details of the underlyingindc : [0, 7] — M satisfy ¢/ (t) = f(c(t), u(t)).
formalism. For some of these details, refer to the Appendiote that Def.8.2 only makes sense for first order equations
and to [7]. The notion ofi/,!/)-reducibility formalizes what evolving on M and Eq.(5) is a second order differential
is meant by kinematic reducibility. For mechanical systemgquation evolving onQ. Hence, we must rewrite Eq.(5) as

we consider inputsu : [0,7] — R™ that are essentially 3 first order equation evolving ofiQ. To do this, we must
bounded and Lebesgue integrable. In Lewis [7], it was agtroduce thevertical lift, defined by

sumed that inputs are absolutely continuous functions, since d
piecewise continuity implies that instantaneous changes in verlift(X)(vg) = %hzovq +tX(q),

system velocity are possible. In the presence of inertial effects,

such changes can only occur when infinite forces are allowdwhere X is a vector field on@) and thegeodesic spray
We keep this assumption on the inputs. However, here stdfined in coordinates by

transitions are beingpproximatedwith piecewise continuous ) A,
signals. This is a common approximation in many areas of Z — v’ o=

= Uli.
aqz J ot ’
physical modeling [30], such as impacting bodies. Thereforeh ; _ i )
we only require that absolute continuity hold locally rathef/nerel’;;, are theChristoffel symbol@ssociated withtz (see

A. Review of Kinematic Reducibility for Smooth Systems £

than globally. Appendix). Letrq
Definition 8.1: f : [a,b] — R™ is absolutely continuoug o TQ — Q
for eache > 0 3 § > 0 such that for every finite collection vy g

{(ti,t;)}1<i<n Of non-overlapping intervals ifu, b] with the

property that denote the tangent bundle projection. Then, Eq.(5) written as

a first order system evolving dh@Q is

N N
STl —til <6 we have Y |If(t) — f(t:)] < e b(t) = Z(v(t)) + u (tyverlift(Yo(rg o v(t)))  (7)

=1 where v(t) € TQ. We now can define what it means for

This definition implies thatD f exists almost everywhere. @ mechanical system of the form in Eq. (5) to (&,u)
Like Lewis [7], we restrict our attention to systems thafeducible to Eq. (6).

can be modeled asimple mechanical systentsa piecewise  Definition 8.3: Let V be an affine connection o@ (see
sense. In simple mechanical systems, the Lagrangian tak¥ Appendix), and let/ and i/ be two families of control
the form £ = K.E. — V. Assume that) is ann-dimensional functions. The system in Eq. (5) i€4,u)-reducibleto the
configuration manifold, and is a Riemannian metric oy  system in Eg. (6) if the following two conditions hold:
defining the kinetic energy. Since many of the applications of i) for each (U, 7 )-solution (n, u) of the dynamic Eq. (5)
interest are systems with no potential energy, let us simplify to  with initial conditions n(0) in the distribution Dy,
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there exists a(ﬁ, T)-solution (v,w) of the kinematic B. Main Result on Reducibility of Multiple Model Systems
Eq. (6) with the property thay = ¢ o n;

ii) for each (U, T)-solution(v,u) of the kinematic Eq. (6),
there exists a(l/, T)-solution (n,w) of the dynamic

We now consider the problem of whether or not a dynamic

multiple model system is kinematically reducible to an MMDA

X system. The following Lemma 8.2 states that if switches
Eq. (5) with the property thaj(t) = ~(t) for aimost iy gustem dynamics are separated by a small amount of
everyt c [0,T]. time (making the switching signal piecewise continuous), the

Condition i) says that for every solution of a dynamic systemgsulting solution is also kinematically reducible.

there must exist a kinematic solution that is the projection of | emma 8.2:Let & be a multiple model system where the

the dynamic system. In the case of a vehicle, this corresponf8ividual model components,, .. ,. are of the form in

to requiring that for everyrajectory of the vehicle there exists gq (5) and whose switching signal is piecewise constant.

a correspondingpath that can be obtained from kinematicthen s is (U, U) reducible iff the individual model compo-

considerations alone. Condition ii) says that for every kin@fentsggi,mg’_ are all (U4, U) reducible.

matic solution there must exist a dynamic solution that is  pyoof: Sinces is piecewise constant, switches a count-

equal to the kinematic solution coupled with its time derivativgp|e number of times. Therefore, let the times wheshanges

(so that it lies inT'Q). This means that there must exist &g value be denotedlt;, ¢, -+, } for i in some index sef.

dynamic solution for every feasible kinematic path. We shoutghen on the intervalét;, t;11), ¥ is (U, U) reducible, making

point out here that this is related to the classes of admissilp(le(u,g) reducible almost alway&.It therefore satisfies the

inputs. Because kinematic inputs must be essentially integralgyirements of Definition 8.3. n

of dynamic inputs, they must be absolutely continuous if the yye il use this lemma to prove Theorem 8.4, which says

dynamic inputs are integrable. Otherwise, infinite forces woulat solutions to the differential inclusion defined by multiple

be required (see [7]). model systems are kinematically reducible if and only if the

Let x>°(D) denote thos€'> vector fields taking values in jygividual models are kinematically reducible. Before proving
a distributionD. The following theorem states the local tesfhat this is true, we will need the following result from

for Eq. (5) to be(U/,U) reducible to Eq. (6). Filippov [31].
Theorem 8.1 (Lewis [7]):.Let V be an affine c;onnection, Theorem 8.3 (Filippov [31]):Let £ : M x R — T,M (q €
and letYs,...,Y,, and X4,..., X7 be vector fields on a M) be a compact, set-valued map and{ié} be a sequence

manifold Q. The control system in Eq. (5) ig/,2/) reducible of solutions to the differential inclusion
to a system of the form in Eq. (6) if and only if the following

two conditions hold: g € £(q,t) (8)
i spang{Xi1(q),..., Xm(q)} . _ _
= spang{Y1(q), ..., Ya(q)} such thatili%o ®; — ®. Then® is also a solution to Eq. (8).
for eachq € Q (in particular,m = m) Note that solutions to the differential inclusiérare in general
i) (X :Y) € x>(Dayy) for every not unique, meaning that there is often an infinite family of
X, Y € x**(Dayn) where(-, -) is the symmetric product solutions. This theorem says that for a compact differential
of vector fields, defined in the Appendix. inclusion, a converging sequence of solutions converges to a

This theorem says that if the input distributions of both thsolution. Theorem 8.3 will be used several times in the proof of
kinematic system and the dynamic system are the same andTtheorem 8.4. Roughly speaking, piecewise continudug/)
dynamic system is closed under symmetric products, then tleelucible solutions of the multiple model mechanical system
system is kinematic. Some other things to note about kinemat&n be used as approximations to flows of elements,in
reducibility include the following. First, all fully actuatedwheref assumes the form of the right half side of Eq. (9).
systems are automatically kinematically reducible becausheorem 8.3 can then be used to show that their kinematic
their dynamic input vector fields are always closed undebunterparts oA'Q must also converge to an element of the
symmetric products. For instance, the forward kinematics differential inclusion defined o’'Q. This brings us to our
a robotic manipulator are kinematic whether moving in aimnain result.
(where the kinematic approximation is obvious) or in a viscous Theorem 8.4:A multiple model systent: where the indi-
fluid of some sort. vidual model components,, ... ., are of the form in Eq.(5)
Note that kinematic reducibility is not the same thing agr equivalently the first order form in Eq.(7)) i€/, U)
the “quasi-static” assumption commonly made in roboticgeducible iff the individual dynamical models,, ... ,, are
This is because kinematic reducibility only requires that theggl (1/,7/) reducible.
be a complete correspondence between dynamic motions and Proof: First note that it is obviously necessary that all
kinematic motions. This implies that systems operating #ie individual models bei/,Zf)-reducible in order for the
high speeds with large forces can still be kinematic. On thesulting multiple model system to be reducible. Otherwise, a
other hand, quasi-static assumptions, when formalized at ghjid solution to a multiple model system is the smooth, non-
typically require that the system be moving slowly in somgeducible solution of one of the models in the set of models.
sense or to have forces balance such that the net forcerésshow sufficiency, we must show that when the individual

zero. We will see that the quasi-static motions predicted byodels are(U,U) reducible, all solutions to the MMDA
the PDM are indeed kinematic, but kinematic motions need

not be quasi-static. 2That is, it is reducible everywhere except for a set of measure 0.
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system are(U,U) reducible. We show this in two stepsthe fact that we assume that the switching is measurable and
The first step constructs kinematic solutions given dynamilke forces are measurable and that the Lebesgue integral of
ones, and the second step constructs dynamic solutions gimegasurable signals is absolutely continuous. This construction
kinematic ones. is useful because it allows one to produce a solution (with
o piecewise constant) that approximates the flow along any
selection of). More precisely, it converges to the flow of the

Gy Ve (t) = u® Yo (c(t)) (9) selections(Y) asn — oo. That is, by applying Theorem 8.3

to the Taylor expansion obfj’;n, we locally get

(i) A multiple model mechanical system has the form:

wherel € A C N is the index for a given modet;, is the

metric appropriate to that modéf: V is the affine connection nli_{rolo ‘I)Zi;ﬁ = ¢V,

associated with the metri&/;, and 'Y, is the vector field i

representing the force input correspondingt® of the I By assumption, we know that each segmérit V= of

model of the multiple model system. In coordinates, Eq. (B, iS (U,U)-reducible. Therefore, for every choice of

is equivalent to CDZ’;,Z is (U,U)-reducible by Lemma 8.2. These results then
it G’ijqjq’“ _ ety (10) yield us, for each, a corresponding map of:

n def 1xt myt\"
. : . . BLn (g) % (qﬁl Xk oo @om Xn) 14
where GLF;.k are the Christoffel symbols associated with the kin(@) ere (@) (14)
t.n

metric G;. Expressed as a first order system evolvingld® |\ oo ¢t (q) = 70 o BL" (q). Here eachd’: Xt s the
in natural coordinate$q,v) € T'Q, these equations take the fin 7 Q" dyn S/ . .
£ ' flow of equations that arél{,/)-reductions (as in Eq. (6))

form g = v from equations that generate the flé Y+ . Moreover, from
. . . . t, : . ..
b = _Gi p;quqk +u® Y .Theorelmt.8.3twe know th%hf;o " exists and that its limit
, o is a solution to
Using these coordinates anQ, set'Y’ = {v, =“'T"%, ¢7¢" + jeX (15)

u® 'Y} and Y = co{'Y? : I € A}, with co{,-} denoting - l
the convex hull. In [31] it was shown that solutions to &hereX = cofu® X[l € L} and the{" X'} come from the re-
discontinuous system coincide with solutions of a differentificed equations in Eq. (6). Therefore, pauf Definition 8.3

inclusion of the convex hull of the discontinuous systens Satisfied.
Applying this to our systems of interest, we see that solutlo% The analysis of this second condition uses the same

to a multiple model system (viewed as a first order systefdsential steps as above, but begins with the solution to the
on TQ) coincide with solutions to the differential inclusionyinematic equations and works towards a dynamic solution.
0" € Y for v(t) € TQ, or in vector notation: Starting with the solutions from Eq. (6), we know that for an
VEY. (11) individual model with index we haveq' = u® 'X, or in
vector form:
Then, for a given solutionb(¢) of Eq. (11), we know that qg=u""'X,. (16)
%@ €Y. Therefore, we can choose a selection (an element% i ) .
of Y, denoteds(Y) € Y, such that®*(Y) locally approx- Therefore, thls_ MMDA systgm can bg written in the form of
imates the flowd. BecauseY is convex, we can rewrite a =9 (%15)' Again, for any given solutio® of Eq. (15) we
selection ofY as have 5:® € X, so we can choose a selectie(X) such that
®5(X) Jocally approximates the flow for that solution. We can
s(Y)=6'"YV+66°YV+ 46, Y (12) moreover construct a sequence of solutidfg’ converging
m to @5(X),
for any ¢; such thats; > 0 andZéj =1. From Def 8.3 we know we must show there existszan
j solution with
Now we need to approximate solutions of the differential d Hs(X)

inclusion in Eq.(11) using a piecewise constant_et ®/ be dt
the flow of a smooth vector field for time . Moreover, let By our construction, we know that
. t,ﬁ _ s(X)
(@) =0 o ®f 0.0/ 0 /. In[32], it was shown that we A, @ein (90) = 7 (40, 1) -
can chpose the following map to approximate (in the.sensel%]j assumption, for every: and ‘I’Z’; there exists a corre-
B:ilrr:twse convergence t.o a set) the flow of a selectif¥) sponding@ﬁl’;n such tha@g’;n(q) _ %@Z’%(Q)- In the limit,

g the following map:

:’]’7'

n . tn s(Y)
Tipla) < (07 Do o0 V) gy it B =
v for some selection of the differential inclusieifY). Conse-
Each of the component flovis?~ 'Y+ contributing to the flow quently,®*(Y) is a solution to Eq. (11), again by Theorem 8.3.
@td’;n(q) consists of a flow along &/,%) reducible mechan- Taking the derivative of both sides, we get
ical system. Moreove@fit;n(q) is a solution of Eq. (11) on d_.x)  d . o _ o
TQ which is absolutely continuous for eveny This is due to T = o m &y, = lim o D,

9
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= lim oy =&Y which impliesVxY + Vy X € Do VX,Y € Deop. This
e in turn implies by Theorem 8.1 th& ;¢ = u®Y, is (U, U
so partii) is satisfied. This ends the proof. reducible.p y a4 = uYa is ( .)

Notice that the proof of Theorem 8.4 relied heavily on pqrefore 14,27) reducibility of a multiple model mechan-
specifically constructing a solution with the desired properties,, system is guaranteesgardless of the metric; when
based orknownsolutions to the individual models COMPrISINGhe constraint distribution is equal to the input distribution.

the multiple model system. This result shows that determining, o ver. we already know that the power dissipation model
the kinematic properties of the individual models in a multlplsnly admits solutions where this is true. This allows us to

model system is sufficient for determining the kinematic proﬁ’ﬁterpret the use of the power dissipation method. The power
erties of the entire system. Moreover, the transitions betwe& sipation method is a way of choosing a more tractable
models as the state evolves are also kinematic if the individ bsetof contact states from the full Lagrangian contact

models are all kinematic. mechanics. In other words, when we make the “kinematic”
IX. THE PDM AND (U, Z) REDUCIBILITY assumption, we are merely restricting our attentlorquou)
] i ] ) reducible systems. Moreover, when the reaction forces due
This section addresses the relationship between the modglsyiction do not lie in Dy, then those contact states are
produced by the power dissipation methodology and the kings; (/. 77) reducible. However, we should be very clear that
matically reducible states of a generic mechanical system. fMjs only shows that the power dissipation method captures
informal restatement of this is the question: does the PDM, o) reducible states whetD — Dy,,. That is, the
produce equations of motion that are kinematic reductions &S;respondence only goes one direction: all PDM contact
Euler-Lagrange equations? First, we derive a result that will Rgyteq are kinematic states, but not all kinematic states can
shortly us_ed to show the_relatlonshlp between PDM SOIUt'Oﬂﬁcessarily be predicted by the PDM. There are examples of
and solutions of mechanical, second order, systems. mechanical systems which af&, /) reducible by virtue of

Proposition 9.1:Given a configuration manifold) and ,-5erties of the metricy. For examples of such systems, see
a set of constraintss’(¢) which span the cotangent SPacy eyis [7].

7;Q. then the input distributionDy;,(q) minimizing D(¢)  |n symmary, we have shown is the following.

will always satisfy Dy (q) = Null(€sar)(q) Where$dsai(q9)  Theorem 9.3:Given a configuration manifold) with tan-

is some collection ofw;(q) which satisfyw*(q)¢ = 0 for  gent space7Q and constraints represented by one-forms

G € Drin(q)- _ w', then all solutions to the PDM arg/, /) reductions of

Proof: Suppose that this was not the case. Then theggj,tions to Euler-Lagrange equations Bty constrained by

would existv # 0 which minimizesD(q) such that ifw, 5 gupset offwil.

are the constraints which are satisfied, there Null{w;} We should also remark on the relationship between The-

andv ¢ Dy,. This implies that for the choice ai* = 0 grem 8.1 (reduction for smooth systems) and Theorem 8.4

vk, v still minimizes D(q). However, because the,'} span  (reduction for multiple model systems). In the smooth case,

17@Q, 0 is the unique minimizer since D is convexdn This 7/ 77) reducibility is equivalent to geodesic invariance (for

contradicts the assumption thatZ 0 and is & minimizer of etajls, see Lewis [7]). However, in the nonsmooth case there

D(Q)-_ L B is no well defined notion of geodesic invariance because the
This result roughly corresponds to the intuition that thgetric changes over time. Nevertheless, we were able to extend

minimum dissipation in any unactuated direction is 10 NQhe notion of (i/,27) reducibility relatively easily. Therefore,
move at all in that direction. We should comment that this C3he concept of(U,U) reducibility is in some sense more

still lead to a solution of no motion in the group variables—if aneral than that of geodesic invariance.
the unactuated constraints dominate the motion, then the
actuators will all slip. X. EXAMPLES

Next we consider the case where we are given a meiric T4 jjlustrate how the results presented in this paper are
for some mechanical system and a set of constraints descriggs), and point towards more general applications of theories
by one-forms{w;}. What are sufficient conditions for thegeyeloped here, we now revisit the examples from Section II.
resulting system to belf, /) reducible? Lemma 9.2 giveSgirst we come back to the bicycle example to illustrate all of
one sufficient condition which is invariant with respect to thg, theory details. We study the bicycle example in detail as
metric &, and is a simple corollary to the work found in [33];jjystration, and then quickly summarize several applications in
[34]. . o other related work. For instance, we show how this analysis

Lemma 9.2:Given a “constraint distributionDeon, © TQ  helps to establish controllability characteristics for the Mars
which annihilates the constrain{s;} and an input distribu- yoyer family of vehicles and stability analysis for distributed
tion Dayn, if Dayn = Deop the mechanical system describedhanipulation problems. We end this section with a brief

by V4¢ = u®Yq is (U, U) reducible. _ _ discussion of how the method presented here can be applied
Proof: Denote by V the connection and bW the grasping and locomotion.

constrained connection defined by the Lagrangkechbert
principle (see Appendix and Lewis [7] for details of thisy Bicycle

construction). We know that Now, we return to the bicycle example of Section Il in detail.

VxY € Deon ¥ Y € Deop, and X € T(M), Assume that the bicycle is constrained to move on a line.
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Recall that the bicycle has a total massnef each wheel has 2) One wheel slippingin the case where one wheel slips,
a moment of inertia/ and radiusR, and that the reaction we may assume without loss of generality that the slipping
forces F are at the point of contact between the wheel angheel is wheel number 2. In this case, the constraint distribu-
the ground. Using the mechanics formulation as describedtion is

the Appendix, the configuration space{is, ¢1, ¢2} € R x T span {Ra N 0 5}

(whereT? = S' x §1), and the Riemannian metric describing P Ox  0¢1 0¢y |~

the kinetic energy is

Moreover, one can compute that the orthogonal complement
G=mdr®de+J dp1 @dp1 + J dps ® dos. of D is 5 5
The two non-rolling constraints are _J% + mRaTsl'
i—Rp1 =0 i — Ry =0 To compute the reaction force due to the other wheel slipping,
) ) note that such a reaction force can be considered an external
and the constraint covectors can be written as force, and can therefore be added to the right hand side of
wi = dz — R, wy = d — Rdey Eg. (5) with the associated control assuming cqnst_ant unity
valueu® = 1. If we compute the-orthogonal projectionP
As inputs, we have onto the distributionD, we getP(z, ¢1, ¢2) - (Vg, Vg, Vgy ) =
g g m{R(-J'U(bl + mR.vl.),_quﬁ1 + mva,_(J + mR%)vy, }.
= d¢r = dga. The unprojected nominal inputs vector fields are the same as
Now, for each combination of slipping and no slipping of thgefore, 19 1 9
wheels, we have a set of equations to solve. Therefore, we have Vi=2— Yo=—-—01.
J O¢1 J 02

four sets of equations to solve. Note that because the metric
dQes not depend on the configuration, the Christoffel symbeiad the projected inputs vector fields are
I';, are all identically zero for this problem. Moreover, as we
shall see, the7-orthogonal projection operatd?’ onto D+ PY, = R 9 1 9 5 — lﬂ
also does not depend on the configuration, indicating that the J+mR?* 0z J+mR? 0¢ J 02
Christoffel symbols“T;, for the constrained system (foundthe unprojected reaction force coming from the friction reac-
in Eq. (26)) are also identically zero. Therefore, the equatiofg, force is:
depend entirely on the input forces and external forces due to r O r O
friction. E=F oz F Do
xr ¢2

1) No slipping: When both wheels do not slip, both con-
straintsw; andw, are satisfied. This implies that the constraint/
distribution is 1-dimensional, spanned by FRmR?2 o FEmR O FRR 9

PE = i 9 _
FECERE. T+mRor | TrmR20g | J 06

+ 5+
" 961 " 96,
Moreover, one can compute that theorthogonal complement

hich, when projected onto the distributidn becomes

The equations of motion are therefore:

of D is i=PYiu' + PYsu® + E.
span {_J +mR-Z —J L+ mR } _ To determlne whether this system is kmemaucglly reducible
ox toledt or ol or not, we first note thatPY; : PY3) is again identically zero.

Moreover, note that although Theorem 8.1 does not directly

address the case of external forces, we can by direct inspection

of Definition 8.3 see that if ¢ span{Y;} then the system

cannot in general be reducible. HowevetEife span{Y;} and

the {Y;} satisfy the conditions for reducibility, then the system
10 1 0 is automatically reducible because the external forces are

= J0by’ 2= J 0o “covered” by the inputs. Therefore, we need only check that

lies in the span oft; andY:. Indeed,E € span{Y1,Ys} for

this example. Therefore, this system is kinematically reducible.

1 ( 9 0 9 ) Note that this property does not depend on the particular

If we compute theG-orthogonal projectionP onto the
distribution D, we get P(z,¢1,¢P2) - (Vg, Vs V)
m{R(‘](l%l + U¢2) + m‘va)"](uﬁl + U¢2) +
mRvg, J(vgs, +v4,) + mRv, }. The unprojected input vector
fields are

Y1
Hence, the projected input vector fields are

PV =PY; = 2T + mR2 R+t 55+ 540 description of the reaction force, and is moreover invariant

Or  0¢1 O
. . with respect to the reaction forces’ differentiability.
and the equations of motion are therefore: 3) Both wheels slipping:When both wheels slip, there
i= PYiu! + PYau?. are no constraints to enforce. In this case, the constraint
distribution is identically zero and the orthogonal complement
It is easy to see thatPY; : PY3) = 0, so this is a kinematic is trivially the entire tangent space. Moreover, we can compute
system (that is, it is reducible to Eq. (4)). the reaction force due to the wheels slipping tobg F{?)
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and w (F{*). The associated input vector fields and externaf motion planning (we have carried out this analysis in [14],

vector fields are [15]).
Y, =10 In [14], [15] we showed that this system’s controllability
Vi — i t properties can be analyzed using a set-valued extension of
2 _FJR%;R RPF RER the Lie bracket (the prerequisite calculation for understanding
E=- :L -2 2 (')?n - = 322 controllability using the classical Lie Algebra Rank Condition

(LARC)) that arises naturally in MMDA analysis. Control-
lability is important for systems like the Rocky 7 primar-
j=Yiu' +You? + E. ily because many motion planning algorithms for vehicles
) o are based on controllability properties. For instance, Rapidly
In this case, it is clear that’ ¢ span{Y1,Y>}. Therefore g,oring Random Trees (RRT) have been used with much
this system (not §ur}gnsmgly) is not kinematically reducibleyccess to develop motion planning strategies. However, the
at least for generid"™. computational intensity of these calculations is formidable, and
recently [2] showed that significant advantage can be taken by
B. Simplified Mars Rover reducing mechanical systems to kinematic ones when using
RRTs for motion planning. Work is currently underway to
extend RRTs to the multiple model systems of this paper. See
[32] for a preliminary motion planning that is based on the
MMDA structure found here.

We should comment on the relationship between kinematic
reducibility results and controllability results which can be
obtained for multiple model systems [14], [15]. One of the
- 5 intuitive aspects of Theorem 8.4 is precisely that it is sufficient
for each model to bél/,i/) reducible in order to guarantee
that the multiple model mechanical systentlis i) reducible.
That is, piecewisdl/,U/) reducibility is enough to guarantee
(U,U) reducibility across discontinuities. However, in the case
of controllability, this no longer holds. An MMDA system can

a) b) switch among individually controllable systems in such a way
as to destroy controllability [15]. Thus, controllability of each
Fig. 3. Simplified Rocky 7: a) a schematic of a six wheeled rover, and bpodel in an MMDA is not sufficient for overall controllability.
a schematic of a simplification of the rover. The configuration of this vehicle The fact that there is such a high number of models for
consists of ther, y, 6 coordinates and the steering angle(shown) as well .
as the three wheel anglés1, ¢, ¢3) (not shown). the Rocky 7 suggests the need for a reduction theory for
multiple model systems. Indeed, for a six-wheeled system like

Next we revisit the example of Fig. 1(b), the geometrj€ actual Rocky 7, there a®*? = 4096 possible models
geometry of which we simplify here for the sake of discussiodOverning its dynamics, a completely unmanageable number.
This simplification has three wheels, with all three wheefsor the three wheeled vehicle in the schematic, 20 kinematic
driven. This model can be interpreted as a simplification f0dels is also perhaps an unreasonably large number of
the Mars rover Rocky 7 vehicle, also seen in Fig. 1. The thr8eodels to analyze. In [15] we did an ad-hoc reduction of

wheeled vehicle seen in the schematic has a configurati#$ model which turned it into a two model multiple model
space consisting ofz,y, 0,1, ¢1, ¢, d3) € R2 x T° = System (although it can be shown that no additional reduction

SE(2) xT*. Hence, in this exampl@, = SE(2) (the Special is possible). Combining kinematic reduction with this multiple
Euclidean group of distance preserving transformation in tfodel reduction reduced the number of models fréo96
plane) andQ, = T* (the four dimensional input set). Thist® 2. Therefore, formally utilizing reductions (both discrete
system has six nonholonomic constraints (one associated vfifl continuous) to reduce the dimensionality of the problem
each wheel having both a no roll constraint and a no sidewa{fdl beé very useful, both for motion planning and estimation
slip constraint). Therefore, there a2 = 64 possible models Purposes. This will be a focus of future research.

governing the dynamics of the vehicle. For this reason, we

do not relate all the calculations for this vehicle. HoweveG. Distributed Manipulation with Changing Contacts

one can show, using a symbolic mathematics package such asig re 4(a) shows a photograph of a particular configuration
Mathematica that this system also has a subset of kinematig 5" gistributed manipulation experiment developed by the
solutions, and that these solutions correspond to the Wgihors pictured in Fig. 1(c) which has been used previously
solutions to the PDM for this system. One can show that thegs (ot algorithms for distributed manipulation [£3]n the

only exist 6 =20 kinematic solutions for this system. Suchphotograph we see four driving wheels whose rims are ori-

3 - .
a correspondence is important because the power dissipaﬁgﬁed towards the origin. Each actuator is a one degree of

method is very straight forward to solve and these solutionSjgeq of these experiments can be found at the website
can be used for both controllability analysis and for purposesp://robotics.colorado.eds/murphey

and the equations of motion are therefore:
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freedom actuator. We use a piece of plexiglass (for purposes 0 i
of visualization) on top of the four wheels to represent a ‘

0 10 20 BID 4I0
manipulated object. The white line seen in the photograph time(s)

indicates the outline of the plexiglass. The goal is to control

the center of mass to the originR? with a desired orientation Fig. 5. Under-actuated Distributed Manipulation Feedback Control
of # = 0. To do this, we obtain feedback of the plexiglass’

configuration by affixing a piece of paper with a black triangle

(also seen in the photo) whose right angle corner coincides )

with the plexiglass’ center of mass. Using this, we obtain x

the position and orientation of the plexiglass through visual Y | = g1ui + 921 7
feedback. Figure 4(b) is a schematic of the experiment, where 0

the four arrows correspond to actuators and the regions ¢gere

noted byl-VIII andO—%’T will be important in our subsequent S T R— :

description of the equations of motion described by the PDM. (g ~os) oin(6;)F (s ~5) cos(%s)

91 € | Ty—e)sin(@)+ wi—y;) cos(0;) (18)

Note that this system thus described is overactuated because I N— _
. (zi—w;)sin(0;)+(y; —y:) cos(0;)
there are four inputs and only three outputs. Assume the
coefficient of friction is the same for all four driving actuators. Sin(%)((ri—fci ) c_osf_ej);yi s@(_ﬁ)ﬁc%?::) cos(;)y;
In this case we can show that the model Switches as the _ cos(s.) costd s iy ity i)

c )i —sin(0i ) (z; sin(8;) — (yi —y;) cos(6;)) (19)
center of mass moves across the array. In fact, under’thes (rrmSIE(fgS)(%é(giefﬁzj)cos(Gj)
assumptions, the actuator wheel nearest to the center of mags (.

(zi—x;)sin(0;)+(y; —yi) cos(0;)
will have both its “rolling” constraint and its “sideways” slip

constraint satisfied. The actuator wheel second closest to thén these equations;, y;, and 6; refer to the planar co-
center of mass will have one of its two constraints satisfied. tmdinates and orientation of th&' actuator. The set-valued
the case of the wheels shown in the figure, it will be the rollingotation of (18) and (19) refers to the fact that at a transition
constraint. For details on this analysis, see [13]. Denote thetween actuators$ and j being the two closest actuators
actuator input associated with the closest actuator.pgnd to actuatorsk and ! being the closest the kinematics are
the actuator input associated with the second closest actuatiscontinuous. Therefore, at these points we must allow multi-
by u; using the PDM. Then these considerations lead to firghlued differentials in order to guarantee existence of solutions
order governing equations of motion of the form: to the differential equation in (17). It should be noted that here



MURPHEY AND BURDICK: THE POWER DISSIPATION METHOD AND KINEMATIC ACCEPTED FOR PUBLICATION INIEEE TRANSACTIONS ON ROBOTICS14

Consider, for example, the hand shown in Fig. 1. As the hand
manipulates the ball, its fingers will slip against the surface.
However, we generally expect such motions to not interfere
with the stability of the motion. The analysis presented in
this paper provides a forum for robustness analysis as well as
development of algorithms that explicitly require slipping.

Xl. SOME FINAL REMARKS

In this paper we derived conditions that are both necessary
and sufficient for a multiple model system to be kinematically
reducible. Moreover, we connected these solutions to solutions
of the Power Dissipation Method, a method for determining
the quasi-static equations of motion for an overconstrained
system (see [1], [12]). Such an understanding of a system’s

Fio. 6. Under-actuated Distibuted Manibulati _ hots. Th kinematic motions is important for the purposes of tasking
1g. 6. naer-actuate Istribute anipulation movie snapshots. eg . H : H

is to align the black triangle affixed to the plexiglass with the superimpos d mOtlon_ plannl_ng. The SFrUC_ture We_ dgscrlbe here_ 1S pgt to
triangle. advantage in [13] in an application to distributed manipulation

and in [15] where we analyze the controllability properties

of an example like that found in Fig. 1. Moreover, it has
the index notation should be thought of as mapiig) pairs future potential for greatly simplifying friction compensation
to equations of motion in some neighborhood (not necessarflsoblems in robotics. We have been able to show that the solu-
small) around thei™ and j" actuator. In each regiom tions to the power dissipation method correspond to kinematic
VIII between the kinematics are smooth, but when a traject@glutions of multiple model systems.
crosses a bounda@l-%’“, there is a discontinuity in the kine- We do not claim that the PDM is a better model than the
matics. It is possible to obtain point stabilization(ta y,#) = full Lagrangian description, only that it is more tractable. It
(0,0,0) from any initial condition using discontinuous controproduces first order equations of motion that are amenable
laws based on the kinematics and knowing the current model analysis. Moreover, the fact that it allows us to compute
(see [13] for details of this control design). Moreover, thiexplicit controllers that work on a real experiment is an
stability is provably exponential. Figures 5 and 6 illustratidication of its validity [13]. Nevertheless, there are certainly
experimental results from [13] for this distributed manipulatioimportant systems that must be treated in the full Lagrangian
system. Notice in particular in Fig. 5 that despite the roughechanical framework, since even in the example of the planar
behavior illustrated in the(x,y) trajectory, the Lyapunov bike there are important dynamic states not accounted for in
function monotonically decreases. These experiments shtve PDM. This determination will in general have to be made
the power of the simplified modeling techniques discusseg the control designer.
in this paper—the control laws designed in the context of thelastly, this work leaves several open questions to be an-
nonsmooth kinematic equations perform quite well, and woulivered. First of all, in the definition presented in this paper
have been much more difficult to analyze in the full dynamighe dissipation functional is only applicable to a finite number
setting. Moreover, they argtatic, and the friction model does of contacts. However, in many pushing problems the frictional
not show up in their design. Figure 6 shows nine snapshgfiseraction occurs at the interface between two continuous
illustrating the plexiglass’ progress towards the desired finaledia. The example of the Mars rover in Section X-B makes it
state. clear that reduction theory (beyond kinematic reduction theory

However, there are many questions relevant to this syst@imesented here) needs to be formally explored for multiple

which remain unanswered. In particular, we are currentiyiodel systems. Lastly, there is the question of external forces.
developing algorithms which do not require any knowledge @ur use of kinematic reducibility in the example avoids the
the slipping state, and instead use an online estimation procgssblems of differentiation of friction forces because the
based on hierarchical control like that found in [8], [9], [10]manifold and constraint data provides all the information we

[11]. need. However, this cannot be expected in general, and there
is a clear need to extend the work in [7] to cases with generic
D. Relationship to Grasping and Locomotion reaction forces entering the equations of motion.

We briefly give our vision of how the preceding ideas can be
related to both grasping and locomotion. Traditionally, analysis
of grasping and locomotion has assumed clean interactionghis appendix gives a brief introduction to the geometric
between the robot and its environment. Moreover, kinemafiermulation of control systems on manifolds, primarily fol-
analysis has proven to be a very computationally and thdowing [33], [34], [7]. We assume the reader is familiar with
retically useful venue for understanding many issues in bathe basic notation and formalism of differential geometry and
areas. However, in real robotic systems, interactions in contacinlinear controllability theory. See [17], [35], [36], [37], [38]
are often not clean, and we expect slipping to take plader more details. Asimple mechanical control systectonsists

APPENDIX
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of a manifold@ of dimensionn, a Riemannian metri&@ that where, again,A(q) is any invertible (1,1) tensor on@. In

defines the kinetic energy, a set of constraints representededer to add forces, we must ensure the forces comply with

a constraint distributiorD, and a set of external forces reprethe constraints. Hence, the final equations of motion are:

senting control inputs. Although we do not discuss potential ,

energ)? here, it alspo can be in?:luded in this formulatign [33]. Ve d () = u (0P Y{ (e(t)) (25)
First we introduce some geometric concepts. Associatedin coordinates:

with the Riemannian metric is the affine connection, which i | Api gk o i

assigns to a pair of vector fields andY another vector field ¢+ Td'¢" =u” BY,. (26)

VxY. This is referred to as theovariant derivativeof Y with  Therefore, simple mechanical control system$ can be

respect toX. represented using an affine connection. For more details and

Definition 1.1: In coordinates, the covariant derivativeXof examples worked out in detail, refer to Bullo and Lewis [33].
with respect toX is
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