
This is a planar problem

At the current time a rigid body is in contact with a horizontal support surface (y=0) while translating to the left.

Write the instantaneous equations of motion in terms of λ_n and Ψ_n . The result should be an LCP of Size 1 in λ_n : $0 \le \lambda_n \perp A \lambda_n + b \ge 0$

Getting started:
$$u = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$
 $v = \begin{bmatrix} N_x \\ N_y \\ \omega_z \end{bmatrix}$ Write $Y_n(\theta)$.

Write Newton Euler equations.

$$[m_{J}]\dot{v} = G_{n}\lambda_{n} + G_{t}\lambda_{t} + \text{of } \lambda_{n}, \lambda_{t}$$

Translating left and in contact $\Rightarrow \omega_z = N_y = 0$ $N_x < 0$.

Use these initial conditions to eliminate λ_t ! Similarly eliminate \dot{N}_x , \dot{N}_y , $\dot{\omega}_z$, so the only Unknown is λ_n .

- 1. Derive the scalars A and b in terms of $g, m, J, d, \mu, and \theta$.
- 2. Let $m = d = \mu = 1$ and J = 0.1.
 - a. Find values of g& O such that In is unique
 - b. Find values of g & O such that no solution exists.