5.6. Roadmap Methods for Multiple Queries.

Suppose you will need solutions for many (q_i, q_g) pairs.

Then it's worth spending extra compute time to construct a good approximation of C_{free}.

Caveat: C_{free} can have many components; in worst case the # of components is exponential in dimension of C.

Build graph G of C_{free} such that:

1) LPM can easily connect any point to G.
2) G is small so searching is fast.

General approach known as PRMs (Prob. Roadmap Methods)

(Lavalle calls them sampling-based roadmap methods)

2 Phases:

- Preprocessing phase - build G
- Query phase - connect q_i & q_g, extract path

Preprocessing

0. Select # of samples, N (from a sequence dense in C)
0. Select \# of samples, N (from a sequence dense in C)
1. \texttt{G.init(); i=0}
2. \texttt{while i < N}
3. \texttt{if \alpha(i) \in C_{free} then}
4. \texttt{G.add_vertex(\alpha(i)); i=i+1; (now call \alpha(i), \gamma)}
5. \texttt{for each \gamma \in \text{nbhd}(\alpha(i), \gamma)}
6. \texttt{if [(\text{not G.same-component}(\alpha(i), \gamma))}
 \text{and (connect(\alpha(i), \gamma))]} \text{ then}
 \texttt{G.add_edge(\alpha(i), \gamma)}

If N too large, preprocessing takes too long
If N too small, queries take too long (or fail).
If \alpha poorly chosen, too many points are required
 to get a good roadmap.

Example.

After 14 pts, \texttt{G} has seven components.
After adding 7 more points \# of components of \texttt{G} is still seven.
Time to stop?

How do you know if N was large enough?
“““““\texttt{G}'s structure mirrors that of C_{free}?"""""""
"G's structure mirrors that of \(C_{\text{free}} \)?

In the example above, since \(C_{\text{free}} \) is given, we know that \(G \) should have 1 component and 2 holes.

In general, we don't know this.

Despite the short comings, PRM have solved many complex problems that no other methods have been able to solve.

Problem w/ simple algorithm given above:

don't connect points unless the connection reduces the # of components of \(G \).

\(G \) would never close the loop.
Path for \(q_1, q_6 \) pair shown will be very long.

If you want to close the loop, replace
\[
\begin{align*}
\text{not } G.\text{same_comp}(x(i), q) \text{ with } \\
G.\text{vertex_degree}(q) < k
\end{align*}
\]

Query Phase
Treat \(q_1, q_6 \) as next two elements in sequence \(\alpha \).
If PRM fails to connect \(q_{\alpha} \) on \(q_6 \) then \(N \) was too
If LPM fails to connect \(q_i \) or \(q_6 \), then \(N \) was too small.

If \(q_i \neq q_6 \) are connected, but no path can be found, then no soln exists, or \(N \) was too small. (Perhaps a path exists thru a narrow corridor without many samples.)

Visibility Roadmap

Idea is to cover \(C_{free} \) with a small \# of points

Generalization of visibility region is reachability region. This can be very hard to compute for complex dynamic systems.

Let \(q \) be a "guard" if it cannot see any other guard.

Let \(q \) be a "connector" if it can see at least 2 guards in at least two different components of \(G \).
Visibility Roadmap Algorithm

$q_i, q_g \rightarrow G$. If can't connect q_i & q_g, then they are guards.

0. while $i < N$
1. place sample $\alpha(i)$
2. if $\alpha(i)$ is a guard, insert $\alpha(i)$ in G.
3. if $\alpha(i)$ is a connector, insert in G & connect disconnected components.
4. otherwise discard $\alpha(i)$.

How do you choose N?
Can G be constructed incrementally, stopping when done?
How do you know when to stop? When # of comps. of G stabilizes? When 1000 α's in a row have been discarded? 1,000,000?

If α is dense on C free, then the alg. is resolution complete.