
1) Two bodies in the plane
touch at a contact point
with Caulomb friction.
Let
$$\lambda = \begin{bmatrix} \lambda_n \\ \lambda_n \end{bmatrix}$$
 be the contact force
applied to body 2 by body 1.
The relative velocity of the contact point of body 2
wrt. body 1 is $\begin{bmatrix} N_n \\ N_t \end{bmatrix}$.
Assume $N_n = 0$, $\mu \ge 0$, $\lambda_n \ge 0$.
Let N_t be represented by the difference of its positive
and negative parts, i.e.,
 $N_t = N_{f_1} - N_{f_2}$, $N_{f_1} \ge 0$, $N_{f_2} \ge 0$
I claim that the following pair of linear complementarity

Body 2

conditions model planar Coulomb Friction:

$$0 \leq \mu \lambda_n - \lambda_t \perp N_{f_1} \geq 0$$

 $0 \leq \mu \lambda_n - \lambda_t \perp N_{f_2} \geq 0$

Demonstrate that I am right or wrong.

A hand with two fingers is grasping an object with contact points in a hole.

c. Construct G and J (If the assumed order of
$$V_{ec}$$

is $V_{ec} = [N_{in} N_{i+} N_{2n} N_{2b}]^T$
then a possible basis of
 $\mathcal{N}(G)$ is $[10.10]^T$)

b. What are the dimensions of the four subspaces of

G and the four of J?

$$\underline{C}$$
. Show that the grasp has frictimal form closure for any $\mu > 0$.

(3.) A particle moving in
$$y \bigwedge \psi_{in}^{\ell} = 1$$

the plane is near a corner $\{N\}$ \times (1)

the plane is near a corner.
$$\{N\}$$
 \times $\sum_{i=1}^{n}$
Assume mass = 1, h = 1,
 $N_x^1 = 0$, $N_y^1 = -2$, $F_y = 1$
 \subseteq Set up the time-stepping LCP
taking both edges into account.
 E Solve for $v^{e_{H}}$, $u^{e_{H}}$, $p^{e_{H}}$
 \subseteq If you did part E correctly, then $N_x^{e_{H}} > 0$.
Since $g_{app} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \notin N_x^1 = 0$,

what caused Nxl+1 to change?