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Abstract— This paper describes a test-bed for planar micro
manipulation tasks and a framework for planning based on quasi-
static models of mechanical systems with frictional contacts. We
show how planar peg-in-the-hole assembly tasks can be designed
using randomized motion planning techniques with Mason’s
models for quasi-static manipulation. Finally, we present sim-
ulation and experimental results in support of our methodology.

I. INTRODUCTION

While mass production techniques derived from hard au-

tomation are routinely applied to micro and meso scale parts,

we are not able to achieve micro and meso scale assembly

in a semi-structured environment with uncertainties. Indeed,

reliably manipulating parts at this scale remains challenging.

There are many reasons for this. We lack good models of

mechanics of contact interactions at this scale. It is difficult

to measure forces at the micro-netwon level reliably using

off-the-shelf force sensors and force-feedback control schemes

have not proved successful. Finally, it is even more difficult to

grasp and manipulate parts at the micro and meso level than

it is at the macro level.

A natural question, one that has been asked before [1]–

[3], is if simple open loop plans that do not require precise

feedback in real-time, can be designed to accomplish such

tasks. In this paper we explore such open loop plans for micro-

assembly 1 tasks. We limit ourselves to manipulation in a

plane and to pushing operations that involve pushing planar

parts with a simple probe. The open-loop manipulation task

that we are interested in is complicated due to the fact that

the manipulated object is subject to an unknown and hard-

to-model distribution of contact forces between the support

surface and the object as well as unknown frictional contact

forces between the probe (pusher) and the object and between

the object and its environment. This is further complicated

by the fact that contacts are intermittent. Clearly analytical

solutions to the forward dynamics problem are impossible

1Although the characteristic lengths of parts of interest are around 1
mm (meso-scale and not micro-scale), we still use the term micro-scale to
distinguish us from the macro-scale world in which inertial and gravitational
forces generally dominate.

except in the simplest of cases, so simulation-based solutions

are the only option.

The derivation of the fundamental mechanics of pushing

operations and sliding objects have been extensively studied by

[4]–[6]. There is also extensive work addressing the analysis

and simulation of mechanical systems with frictional contacts.

In particular, semi-implicit and instantaneous-time models for

predicting motion and contact forces for quasi-static multi-

rigid-body systems have recently been developed [7], [8].

Pushing operations and the instantaneous motions of a

sliding object during multiple contact pushing are examined

and the manipulation primitive of stable rotational pushing is

defined in [9]. The problem of planning pushing paths using

stable pushes is discussed in [10].

Open-loop motion strategies, without the use of sensors,

can be used to eliminate uncertainty and to orient polygonal

parts [1], [2], [11]. In [1], planar parts are considered polygons

if their convex hull is a polygon. Given a list of n vertices

describing the polygonal part with an unknown initial orienta-

tion, the shortest sequence of mechanical parallel-jaw gripper

actions that will guarantee the orientation of the part up to

symmetry is determined. In [2], a randomly oriented planar

object is dropped into a tray. Then, using the mechanics of

sliding, an automatic planner is created. The planner finds a

sequence of tilting operations to leave the object’s orientation

completely determined. In [11], the authors study the problem

of posing a planar part given initial and goal poses. Specif-

ically, they prove that a multiple push strategy always exists

(in the absence of obstacles) and they develop a complete,

polynomial-time algorithm to design one possible plan.

Sensorless orientation of parts is applied to micro-scale

parts in [3]. At the micro scale, sticking effects due to Van

der Walls forces and static electricity make the manipulator

motions and part release more complicated [12], [13]. Micro-

manipulators also have limited degrees of freedom when

compared to manipulators at the macro-scale. These problems

are addressed in [3] with a parallel-jaw gripper and squeeze

and roll primitives to orient a randomly oriented polygonal

part up to 180◦ symmetry.

On the other hand, the literature addressing micro-
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Fig. 1. Peg-in-the-Hole Problem: Move peg from configuration A to
configuration B

manipulation with real-time sensor feedback is more limited.

The primary reason for this is that obtaining accurate sensor

data is a difficult problem at this scale. Sensors cannot easily

be affixed to tiny precision instruments without compromising

their functionality [13]. The use of high resolution optical

systems with controllable parameters for micro-assembly tasks

are examined by [14]. Specifically, depth-from-defocus and

visual servoing strategies are presented. Even with this sensor

data, calibration and vision-based control at this scale can

present technical difficulties. Without accurate sensor data, it

is hard to to develop models, and therefore controllers, for

micro manipulation.

Our work in this paper is in the spirit of our own earlier

work [15], where the designer chooses the system parameters

relating to geometric, material, and dynamic properties to

optimize the performance of the design of an assembly/feeding

device. We consider the canonical assembly problem as shown

in Figure 1. It consists of moving a peg from configuration A

to configuration B by means of a series of pushing operations.

The peg-in-the-hole insertion task at the micro scale involves

small parts moving at slow speeds (and accelerations) so that

the inertial forces are negligible. Indeed surface friction forces

are the dominant forces at this scale.

Our goal, in this paper, is to use simulation and motion

planning tools to design open loop manipulation plans that rely

only on an estimate of initial position and orientation. We use

Mason’s quasi-static models for manipulation of planar parts

with surface friction [4]. The method for 3-D simulation pre-

sented in [8] is adapted to solve the “2.5-dimensional” problem

with surface friction. An application of the Rapidly Exploring

Random Tree (RRT) algorithm [16] with modifications for

dynamic systems described in [17] is used to solve the peg-

in-hole insertion task.

II. QUASI-STATIC SIMULATION AND PLANNING

Since the inertial forces are negligible compared to frictional

forces in our problem, the problem of solving for the motion

of the peg is quasi-static in nature. This quasi-static problem

together with the frictional constraints and the rigid body

constraints can be posed as a complementarity problem [18],

[19] and subsequently solved to determine the overall motion

of the system at every time-step. Simulation based randomized

planning algorithms are then used to design manipulation plans

for the peg insertion problem.

A. 2.5D Complementarity Formulation

The problem of a planar polygonal part sliding with sur-

face friction and quasi-static constraints can be formulated

in 3-dimensions as a mixed linear complementarity problem

(MLCP) as shown in [8]. For a multi-body system with nq

degrees of freedom, the quasi-static equations of motion and

time-stepping are:

0 = Wnλl+1
n + Wfλl+1

f + Fext (1)

ql+1 − ql = hG(q)νl+1 (2)

where ql ∈ Rnq is the generalized configuration vector,

νl+1 ∈ Rnν is the generalized velocity vector, G(q) ∈
Rnq×nν is the Jacobian matrix , Wn ∈ Rnν×(nc+ns) contains

the normal wrenches for each of the nc + ns pushing (nc)

and support (ns) contacts with normal constraint forces λn ∈
R(nc+ns). Wf ∈ Rnν×(2nc+ndns) contains the frictional

wrenches (with the friction cone linearized into nd directions

for each contact) with frictional forces λf ∈ R2nc+ndns ,

and Fext represents the external forces. The rigid body non-

penetration constraint and linearized Coulomb friction law

result in a set of complementarity conditions.
The uncertainty in surface pressure distribution between the

support surface and the peg can be parameterized by arbitrary

three-point support distributions between the support surface

and the polygonal object being pushed in the plane as shown in

[4]. Assuming a fixed center of mass (COM) of the polygonal

body, the normal support forces can be determined uniquely

for any three-point planar support distribution.
By partitioning the mixed LCP formulation in [8], we are

able to take advantage of these known normal forces for

the support points and the assumption that our bodies are

constrained to the plane to reduce the dimension of the MLCP

that must be solved. The partitioned MLCP is shown below,

with the subscript nk indicating known quantities relating to

the normal force at support points.

⎛
⎜⎜⎜⎜⎝

0
ρl+1

n

ρl+1
nk

ρl+1
f

sl+1

⎞
⎟⎟⎟⎟⎠ = B

⎛
⎜⎜⎜⎜⎝

ql+1

λl+1
n

λl+1
nk

λl+1
f

σl+1

⎞
⎟⎟⎟⎟⎠ + b (3)

0 ≤

⎛
⎜⎜⎝

ρl+1
n

ρl+1
nk

ρl+1
f

sl+1

⎞
⎟⎟⎠ ⊥

⎛
⎜⎜⎝

λl+1
n

λl+1
nk

λl+1
f

σl+1

⎞
⎟⎟⎠ ≥ 0 (4)

where

B =

⎛
⎜⎜⎜⎜⎝

0 Wn Wnk Wf 0
Wn

T 0 0 0 0
Wnk

T 0 0 0 0
Wf

T 0 0 0 E
0 U Uk −ET 0

⎞
⎟⎟⎟⎟⎠ (5)

b =

⎛
⎜⎜⎜⎜⎜⎜⎝

Fext

ψl
n + h

∂ψl
n

∂t − WT
n ql

ψl
nk + h

∂ψl
nk

∂t − WT
nkql

h
∂ψl

f

∂t − WT
f ql

0

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

638



and W k
n ∈ Rnν×ns corresponds to the normal support forces

λk
n ∈ Rns . The friction coefficient matrix U is partitioned into

Uk ∈ Rns×ns for surface contacts and U ∈ Rnc×nc denotes

the friction coefficient matrix at the pushing supports. Notice

that the GT matrices have been dropped here as they are

identity matrices in our problem. ψn and λn are the vectors of

gap functions and multipliers associated with the separations

in the plane, while ψnk and λnk are similar quantities for

contact forces perpendicular to the plane.

For parts fixed in the plane, the support point gaps ψl
nk and

their time derivatives
∂ψl

nk

∂t are both zero. Since the contact

support forces are known, we can remove the constraints

necessary to solve for these values (the third row of Eq 3).

Known support normal forces λnk and Ukλnk are moved into

the b vector. The reduced system is:⎛
⎜⎜⎝

0
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f
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Note that control input(s) to the system appear in the time-

varying function ψn(t) and is derivative ∂ψn

∂t .

B. Randomized Planning

We developed a sampling based motion planning algorithm

inspired by the RRT algorithm [16] with modifications for

dynamic systems described in [17]. Instead of searching for

continuous input trajectories u(q, t), we parameterize the input

by a r-dimensional vector u using piecewise-constant func-

tions with compact support.

III. PEG-IN-THE-HOLE TASK

A. Problem Formulation

The goal is to determine a sequence of manipulator steps

that will successfully accomplish the peg-in-hole task as shown

in Figure 1. To model this system, suppose the rectangular

peg has three support points at positions r1, r2, r3 from the

COM. The peg is oriented at θ degrees from horizontal and

the manipulator (probe) is pushing at a point p.

The configuration of the peg q ∈ R3 is [x, y, θ]T .

Following the formulation in the previous section, nc = 1,

ns = 3. In our implementation, we have chosen to use nd = 8
as we have found an agreeable tradeoff between accuracy and

performance with this linearization. U is a 1 × 1 matrix with

value μ. Uk is 3 × 3 with the surface friction coefficient in

Y1

X1
Y2

Y3
X2

Y4
X3

Initial Setup Step 1

Step 2 Step 3

Step 4 Step 5

Step 6 Step 7

Fig. 2. Open-Loop motion plan for assembly

diagonal entries. λnk is a column vector with the normal forces

calculated based on support point locations.

The E matrix is a binary block-diagonal matrix, each

column of which has a non-zero entry corresponding to

the directions along which friction acts. The first column

corresponds to the directions along which friction between the

probe and peg can act. The other three columns correspond to

the support point friction directions.

In Equation 9, the gap until peg collision with the fixture

or probe is given by ψl
n with time derivatives

∂ψl
n

∂t and
∂ψl

f

∂t
giving the normal velocity and sliding velocity of a contact.

The particular ψl
n for the probe contact will be zero and the

associated
∂ψl

n

∂t will be the probe velocity.

B. Manipulation Plan

For a given configuration of the peg, the control inputs

explored by the motion planner are determined by calculating

and discretizing the peg edges that can be pushed by the probe.

Further, we required one of the two components of the motion

of the probe to be zero. In other words, for simplicity, we

restricted ourselves to motions along the x or y axes.

When a peg state near the specified goal is reached, the

algorithm computes the series of manipulator movements to

apply each necessary control input. The manipulation plan is

completely represented as a vector u where each element cor-

responds to a probe movement command. Each element Δui is

related to the quasi-static time-stepping model by:
∂ψl

n

∂t = Δui

Ti

where Ti is the duration of the push and determined by the

probe velocity. A probe movement command will be Δui =

(Δx,0) or (0,Δy) corresponding to a probe movement of X or

Y along the x-axis or y-axis, respectively (see Figure 2).

Figure 2 shows a schematic of an intuitive open-loop

manipulation plan for accomplishing the task. The motion

planning algorithm results in a plan similar in nature, but with

more steps, not pictured here.

This type of formulation and planning is not restricted to

only rectangular parts. Rather, it can be generalized to work
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for different shaped parts and other planar examples.

IV. MICRO-MANIPULATION TEST-BED

A. Experimental Setup

The experimental setup consists of an inverted optical

microscope (Nikon Eclipse TEU2000-U), 4-axis micro-

manipulator (Siskiyou Design Instruments MX7600R), con-

troller (Siskiyou Design Instruments MC2000), 25 μm tip

tungsten probe (needle), CCD camera (Sony XC-77), and

control computer (Figure 3). There is a 4X objective attached

to the microscope, producing a field of view (FOV) of 3.37

mm x 2.52 mm. The CCD camera records the images in the

FOV and sends them to the control computer at 30 Hz. The

micromanipulator and controller allows incremental motion as

small as 0.1 μm in 4 axes - X,Y,Z, and tool axes, respectively.

(a) System overview (b) Close-up

Fig. 3. Experimental setup

The test fixture and pegs were made out of mirrored acrylic,

machined using the ULS 660 Laser Cutter. The fixture is

3.175 mm (1/8”) thick and has 2 channels of different widths

machined in it. The larger channel is 2015 μm wide, while

the smaller channel is 1090 μm wide. A thin plastic sheet is

fastened to the bottom of the fixture to allow for a transparent

surface where the peg sliding can reside. This transparent

quality is needed since the light source for the inverted micro-

scope is projected up from underneath the fixture. Various size

pegs were used in testing and they have typical dimensions

of 1615 μm x 985 μm. The pegs are half the thickness of

the acrylic fixture. An image capture of the fixture, peg, and

manipulation probe under the microscope is shown in Figure

4. Due to the small size and mass of the peg, it is apparent that

the gravity or inertial forces do not dominate during pushing

operations [13]. Coupling this with the slow moving probe

(140 μm/sec), one can see that the inertial forces of the peg

are much less than the contact force so frictional forces are

needed to maintain equilibrium. Therefore, it is reasonable

to assume the frictional forces dominate to apply quasi-static

modeling of these experiments.

Fig. 4. Fixture and peg as seen in microscope FOV

Image processing techniques are applied to the images

(640x480 pixels) from the microscope to track the position

of the peg and probe during each experiment. Background

subtraction is used to remove the image of the fixture from

the original image. Thresholding is used to clean-up the image,

producing an image where the peg and probe pixels are black

while everything else is white. The image is segregated further

by exploiting the geometry of the probe to remove it from the

filtered image. During this process, the coordinates of the tip

of the probe are identified. An ellipsoid is fitted to the resulting

blob image yielding the centroid and orientation of the peg in

each image frame.

V. EXPERIMENTAL RESULTS

A. System Identification

Our simulation of the peg depends on several critical system

parameters including the location of the support points and

friction coefficients. Though our goal is to design open-loop

plans that will be robust to these uncertainties, some nominal

values still must be identified. To solve this system identifica-

tion problem, we captured data for several experimental trials

of the probe pushing the peg. We then found the support point

distributions and friction coefficients that produced simulations

to best match the experimental results.

To determine the coefficient of friction between the probe

and peg we performed a series of simulations sweeping

through the one-dimensional space of friction coefficients μ
(from 0 to 1.0). For each experimental trial we performed

100-150 simulations with randomly selected support points

that are constrained to lie within the peg dimensions and span

the center of mass. Mean squared error for position (X,Y)

and orientation (θ) was computed across the random support

distributions for each trial as shown in Table I.

TABLE I

MSE FOR UNCONSTRAINED MOTION TEST

Exp. # # of Sim Trials X ,Y MSE Θ MSE
1 121 2.9113 0.0694
2 150 2.4458 0.0691
3 150 5.4378 0.0607
4 115 2.9310 0.0724
5 123 3.1908 0.0569
6 111 7.7284 0.0788

For the support point configuration that produced the small-

est error within a given experimental trial, we ran simulations

against the other experimental trials to get a measure of the

quality of that support point choice. We found that even though

a set of support points was a good fit for a given experimental

trial it is not necessarily the best fit to simulate all pushing

operations. This serves to emphasize uncertainty in the system

and how robust a plan must be to have a high success rate.

Figure 5 shows both the best and worst case trials with the

chosen support distribution and our choice of μ = 0.8.

B. Planning Algorithms Experimental Results

When using an RRT algorithm for dynamic systems, there is

always a tradeoff between the coarseness of the discretization
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(b) Worst Case

Fig. 5. Comparison of best and worst trials for matching simulation to
experiment with a given choice of support point locations

and the number of iterations necessary to find a goal. For

our problem, we found that discretizing the reachable peg

surface into 100 pushing locations led to solutions in as few

as 12 iterations of the RRT algorithm. However, since the

number of control inputs to test at each iteration is large and

the LCP based method of simulation can be computationally

expensive, the algorithm took on the order of 10 - 20 minutes

(on a 1.8GHz PC) to find a solution. Typical solutions include

about 7-10 pushing operations which is comparable to our

initial, intuitive, solution to the problem. We found that while

RRT produced manipulation plans were feasible when used in

experimentation and sometimes succeeded, the plans are not

robust to error in the support friction modeling or the initial

positioning of the peg.

On the other hand, manipulation plans designed with user

intuition could be parameterized and tuned using simulation

to increase the robustness of the operation to both modeling

and positioning error. Table II shows a plan designed with this

methodology. Note, the origin for the coordinate frame is the

top left corner of the fixture in the image.

Several trials of the intuitive plan with the parameters

determined from the simulations were executed on the micro-

manipulation test-bed. In the trials, the starting position for

the peg varied from the nominal starting position by at most

26 μm, 74 μm, and 3◦ in the x, y, and θ coordinates. The

maximum differences between the peg starting and nominal

positions were 11μm and 21μm in x and y, respectively. All

of the trials resulted in successful placement of the peg in the

hole. A plot of the peg and probe tip trajectories for a trial is

shown in Figure 6. The starting and ending configuration of

TABLE II

MANIPULATION PLAN PARAMETERS FROM SIMULATOR

Peg Start Pos. (X,Y,θ) (2.33 mm, 1.21 mm, 89◦)
Tip Start Pos. (X,Y) (3.05 mm, 1.24 mm)

Δu1 (0,−600)μm
Δu2 (−1500, 0)μm
Δu3 (0, 50)μm
Δu4 (0,−50)μm
Δu5 (1550, 0)μm
Δu6 (0, 775)μm
Δu7 (−2550, 0)μm

0 100 200 300 400 500 600

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

Fig. 6. Data captured from experimental trial using intuitive plan.

the peg are shown in solid lines, while the intermediate steps

are pictured with dotted lines. The tip locations are represented

with triangles.

Figure 7 shows a detailed comparison between simulation

and experimental results for an intuitively designed plan. The

discrepancy at time t = 0 can easily be explained by the initial

peg position error. Subsequent errors are both a result of this

initial error as well as inaccuracies of the time-stepping model

and its parameters. Note that even with the error in the initial

peg position and model inaccuracies, the plan is successful in

experimentation and closely matches the simulated data.

VI. DISCUSSION

This paper addressed the modeling, simulation, and plan-

ning of a simple micro-assembly task in which a peg with a

characteristic length of 1 mm is reoriented by pushing with a

probe and inserted into a hole. We relied on vision to estimate

the initial configuration of the system rather than for feedback

control. An RRT algorithm was used to produce feasible ma-

nipulation plans. While these plans were sometimes successful

when carried out experimentally, they were not robust to error

associated with the uncertainty in the support friction models

or to those associated with the initial positioning of the peg.

An intuitive motion plan was generated to increase robustness

and executed experimentally to successfully accomplish the

task.

While the preliminary results in this paper are promising

and illustrate the potential for the use of quasi-static mechanics

with models of frictional contact, there are some shortcomings

of this study which are also directions of ongoing work.

First, it is necessary to incorporate the uncertainty in surface

friction. The three-point support model obtained via system
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Fig. 7. Plot comparison of insertion plan in simulation and in experimental
trial.

Fig. 8. Photochemically machined parts.

identification provides only a nominal starting point. Our

experimental data for unconstrained manipulation allows us

to characterize the set of possible three-point supports that

might better describe the pressure distribution for the peg.

Second, although our experimental set-up is conducive to

measuring contact forces between the probe and the peg, we

have not made these measurements for system identification

or for ground truth. This is will be addressed in our future

work.

Finally, our laser cutting fabrication technique for meso-

scale parts was crude as seen from the silhouette in the Figure

4. We have since used a photochemical machining (PCM)

process to manufacture a new set of parts. These parts exhibit

much better corner and edge features, as seen in Figure 8. Our

ability to generate successful manipulation plans for imperfect

parts suggests we should be able to do even better with better

made components, which we hope to prove with these new

parts.

ACKNOWLEDGMENT

This work was supported by NSF grants DMS01-39747,

IIS-0413138 and IIS02-22927.

REFERENCES

[1] K. Goldberg, “Orientating polygonal parts without sensing,” Algorith-
mica, vol. 10, no. 2/3/4, pp. 210–225, August/September/October 1993.

[2] M. Erdmann and M. Mason, “An exploration of sensorless manipula-
tion,” IEEE Journal of Robotics and Automation, vol. 4, no. 4, August
1998.

[3] M. Moll, K. Goldberg, M. Erdmann, and R. Fearing, “Orienting micro-
scale parts with squeeze and roll primitives,” IEEE Int. Conf. on Robotics
and Automation, Washington, DC, May 11-15 2002.

[4] M. Mason, “Manipulator grasping and pushing operations,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, 1982.

[5] ——, “Mechanics and planning of manipulator pushing operations,”
International Journal of Robotics Research, vol. 5, no. 3, pp. 53–71,
1986.

[6] M. Peshkin and A. Sanderson, “The motion of a pushed, sliding object,
part1: Sliding friction,” Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMU-RI-TR-85-18, September 1985.

[7] P. Song, J. Pang, and V. Kumar, “A semi-implicit time-stepping model
for frictional compliant contact problems,” International Journal for
Numerical Methods in Engineering, Accepted for publication 2004.

[8] J. Trinkle, S. Berard, and J. Pang, “A time-stepping scheme for qua-
sistatic multibody systems,” International Symposium of Assembly and
Task Planning, July 2005.

[9] K. Lynch, “The mechanics of fine manipulation by pushing,” IEEE Int.
Conf. on Robotics and Automation, Nice, France, pp. 2269–2276, May
1992.

[10] K. Lynch and M. Mason, “Stable pushing: Mechanics, controllability,
and planning,” International Journal of Robotics Research, vol. 15, no. 6,
pp. 553–556, December 1996.

[11] S. Akella and M. T. Mason, “Posing polygonal objects in the plane by
pushing,” International Journal of Robotics Research, vol. 17, no. 1, pp.
70–88, Jan. 1998.

[12] R. Fearing, “Survey of sticking effects for micro parts handling,”
IEEE/RSJ Int. Conf. on Intelligent Robotics and Sys.(IROS), Pittsburgh,
PA, vol. 2, pp. 212–217, August 5-9 1995.

[13] K. Boehringer, R.Fearing, and K. Goldberg, Handbook of Industrial
Robotics, 2nd Ed. John Wiley and Sons, 1999, ch. Microassembly, pp.
1045–1066.

[14] B. Vikramaditya and B. Nelson, “Visually guided microassembly using
optical microscopes and active vision techniques,” IEEE Int. Conf. on
Robotics and Automation, Albuquerque, New Mexico, 1997.

[15] P. Song, J. Trinkle, V. Kumar, and J. Pang, “Design of part feeding and
assembly processes with dynamics,” IEEE Int. Conf. on Robotics and
Automation, New Orleans, LA, April 2004.

[16] S. LaValle, “Rapidly-exploring random trees: A new
tool for path planning,” 1998. [Online]. Available: cite-
seer.ist.psu.edu/lavalle98rapidlyexploring.html

[17] J. Kim, J. M. Esposito, and V. Kumar, “An rrt-based algorithm for testing
and validating multi-robot controllers,” in Robotic Science and Systems,
June 2005.

[18] M. Anitescu and F. Potra, “Formulating dynamic multi-rigid-body con-
tact problems with friction as solvable linear complementarity prob-
lems,” Nonlinear Dynamics, vol. 14, no. 3, pp. 231–247, 1997.

[19] D. Stewart and J. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb friction,”
International Journal of Numerical Methods in Engineering, vol. 39,
pp. 2673–2691, 1996.

642




