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Abstract 
T h e  contact format ion  cells of a polygonal pla- 

n a r  sys tem of rigid bodies in contact have been stud- 
ied in [l]. There,  it was shown that the CF-cells are 
smooth manifolds, but the methods used were too 
complicated t o  extend to  three-dimensional polygo- 
nal rigid body systems.  In this  paper, we develop a n  
alternative w a y  to  define contact format ion  cells. 
Under  the n e w  definit ion,  we show that the contact 

format ion  cells are smooth manifolds, and fu r ther  
that  all intersections of contact format ion  cells are 
smooth manifolds. T h e  simplicity of the new defi- 
ni t ion makes  it easy t o  prove the smoothness  results 
for three-dimensional systems.  Also, we investigate 
other  extensions of the results i n  [l]. 

Section 1: Introduction 

The concept of a contact formation cell (CF- 
cell) of a two-dimensional polygonal workpiece- 
manipulator system has been studied in [l], where 
they are shown to be smooth submanifolds of con- 
figuration space (C-space). The primary goal of 
this paper is to extend the study of CF-cells to 
three-dimensional systems, obtain the correspond- 
ing smoothness results, and derive other useful facts. 
The principal application of this work is to dexter- 
ous manipulation planning. 

Section 2 concentrates on a new construction 
for CF-cells. We begin in section 2.1 with a review 
of the necessary background on the original con- 
struction of CF-cells. Next we give the new method 
of construction (section 2.2). We show that the 
CF-cells, under this new construction, are smooth 
manifolds. Also, the CF-cells as constructed orig- 
inally and the new construction are shown to be 
equivalent geometrically, in the sense that there is 
a one-to-one correspondence het,ween the CF-cells 
that  preserves their geometric structure (i.e. a dif- 
feomorphism). With this new definition, we are 

able to show that all the intersections of various 
CF-cells are also smooth manifolds (section 2.3). 
Finally, we extend the notion of CF-cell to three- 
dimensional systems (section 3) and show that they 
too are smooth manifolds. 

Besides the smoothness results, we also study 
the extension of other results in [l] to three- 
dimensional systems. In section 4, we examine the 
number of possible workpiece configurations for a 
fixed manipulator configuration. The results for a 
planar system are known, but the general result for 
a three-dimensional system is not known. We in- 
vestigate the case of a cube as the workpiece and 
find that the number is bounded by 16. Under 
some special conditions, we show in section 5 that 
there can be infinite number of workpiece config- 
urations that maintain the contacts with a fixed 
manipulator configuration. 

Section 2: Contact Formation Cells 
for Two-dimensional Systems 

The origiiial CF-cells are constructed by using 
C-functions [l]. However, this construction is very 
complicated to work with when dealing with three- 
dimensional systems. An alternative construction 
is developed in this section. We prove that the 
two coiistruct,ions are equivalent by establishing an 
diffeomorphisni between them. The new construc- 
tion is easy to extend to three-dimensional systems. 
We also show that all intersections of CF-cells are 
smooth manifolds in the ambient C-space. 

2.1 Basic definition and the original con- 
struction of CF-cells 

Consider a two-dimensional system consisting 
of a workpiece and three manipulators (Figure 1). 
We assume that all are polygonal rigid bodies, and 
that only the manipulators are under active con- 
trol. 
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3 Manipulators v Workpiec 
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Figure 1. A two-dimensional  sys tem.  

There are two types of elementary contacts[2]. 
A type A contact is formed when an edge of the 
workpiece contacts a vertex of a manipulator. A 
type B contact is formed when a vertex of the work- 
piece contacts an edge of a manipulator. Each col- 
lection of elementary contacts constitutes a contact 
formation and leads to a CF-cell. Note that we as- 
sume that all of the contacts are only geometrically 
admissible, that  is, we consider a contact to occur 
when the specified vertex is in contact with any 
point on the straight line supporting the specified 
edge without regard to penetration. 

A CF-cell composed of three type A contacts 
is called a 3A CF-cell. The other possible types of 
CF-cells studied in [l] are 2AB, 2BA and 3B. We 
will discuss only 3A CF-cells here. The other types 
of CF-cells can be treated similarly. 

Consider now a vertex of the ith manipulator 
polygon and an edge of the workpiece (Fig. 2). Let 
ki ,  yi and ei denote the position and orientation of 
a frame on the i th  ma,nipulator polygon relative to 
a world frame 0. Let 2,y and 8 denote the posi- 
tion and orientation of a frame W on the workpiece 
relative to 0. 

ith manipulator 
Outward unit normal 

Figure 2. Illustration of parameters relevant 
to a type A contac t .  

We define the workpiece configuration ;1, the 
manipulator configuration t, and the system con- 
figuration fi as follows: 

q =  [ k ,  9 ,  C ,  SIT1 f. = [21, f2,&, 8 1 , 0 2 ,  83 ,81 ,&,  &IT 

fi =[;.I 9, c,s, 51,;.2,53, i l , i 2 ,  Y 3 , k  4 2 ,  &IT 
where c = cos(e^) and s = sin(8). The distance 
between the vertex and the edge is given by 

Ci(fi) = tii + biC + d i S  - e ixc  + f i 2 S  - f i y c  - diys 

iii = - C O S ( & ) G i  - sin(&)& 

C O S ( & ) i i  

d i = -  szn(q4; ’ - 6i )Qi  + cos(& - &)6i + cos(&)yi- 
sin(&)i i  

e^i = cos(&), f i  = sin(42). 

where 

~~ 

bi =  COS(^^ - 6i)Qi + ~ i n ( J i  - 8i) . i i  + sin(&)yi+ 

, . , .  

, . A  

The Ci’s are called contact functions (C-functions). 
The condition for a contact is Ci(i3) = 0, and the 
CF-cell formed by a 3A contact formation is de- 
fined by: 

CF’={i, I Ci(i,) = 0 and c2+s2--1 = 0, i = 1,2 ,3}  

2.2 A new construction for the CF-cells 
We want to develop a method of constructing 

the CF-cells by studying the possible rigid body 
motions of the whole workpiece-manipulator sys- 
tem. First let us consider three edges Ei with sup- 
porting lines given by Li(x ,  y) = uix + biy + ci = 0 
relative to the frame W ,  for i=1,2,3 (Figure 3). Let 
Pi = (xi ,yi)  be the point on Li that  the vertex of 
the i f h  manipulator contacts relative to the frame 
W .  We define 

X = { ( P I , P ~ , P ~ )  E R6 I &(Pi) = 0 , i  = 1 , 2 , 3 } .  

X contains the contact information of the CF-cell. 

F i g u r e  3. Rigid  b o d y  motion of the whole 
workpiece-manipula tor  s y s t e m .  

Two pieces of information remain to  be deter- 
mined. First is the position and orientation of the 
workpiece. This information can be represented by 
the rigid motion group in two dimensions which 
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is diffeomorphic to R2 x S ' ,  where S' is the unit 
circle. Second is that  relative to a fixed workpiece 
and a choice of (PI ,  P2, P3) E X ,  each manipulator 
has one degree of freedom, namely rotation around 
the contact point relative to the frame W .  This 

Note that (Ci, 6i) = 0,  i=1,2,3. Let CF' and CF be 
defined by the old and new methods respectively 
for a 3A contact formation. 

information can be represented by S1 for each ina- 
nipulator. Hence, we define a 3A CF-cell a.s 

CF = X x R2 x 

Theorem 1. CF is a smooth manifold. 

Proof. R2 and S' are smooth manifolds. It re- 
mains to show that X is a smooth manifold, since 0 

the product of smooth manifolds is a. smooth man- 
ifold. Let 

Figure 4. The workpiece in a position where 
14' coincides with 0. T P = [ ~ 1 , Y 1 , 2 2 , Y 2 , 2 3 1 Y 3 1  

Note also that since the frame W coincides fi(p) = a i q  + biyi + c i ,  i = 1 , 2 , 3 .  

with the world frame 0, the position and orienta- 
tion of the workpiece is (0,O) and 0, respectively. 
So for fixed contact points Pi = (xi, yi) and ma- 
nipulator orienta.tions Bi (i=1,2,3), we have a point 

Then X is defined by f = 0, where 

f(P) = [fl(P)I fi(P), f3(P)lT. 

To show that X is a manifold. it suffices to show 
clo= (p1,p2,p3,o,o,o,81,O2,e3) ECF, 

that  the Jacobian matrix (c) has a rank 3. It is 

easy to see that It corresponds to a. point 

( 8 f )  ("' bl 0 0 0 0 )  Go = [ O , O ,  1,O,~c,~2,~3,Yl,Y2,Y3,~l,~z,e3]' E C 3 ' .  
= O O a z b g O O  - 

0 0 0 O a 3 b 3  We also ha.ve the relations Ci(G0) = 0, for i=1,2,3. 
Or explicitly, 

8P 

Since ai and bi are not both zero for each i, there 
is a 3 x 3 non-singular minor of the form -COS(&).rit i  -sin($&)& + sin(&)yi + C O S ( & ) Z i  = 0. (T i2 a!) 
where ai E { a i , b i }  i = 1 , 2 , 3 .  m 

(1) 
Now, translate the whole workpiece-manipulator 
system by ( U ,  v) and rotate it about W by an amount 
0 .  The new configuration gives us a point 

q =  (P1,~2,P3,~,~,6,81,82,03) E C 3 .  
Note that d i m ( X )  = 6-3 = 3. And therefore 

dim(CF) = 3+2+4 = 9. So a 3A CF-cell is a 9- 
dimensional smooth manifold. 6, where 

Next we show that the two constructions of 

We define a map from C 3  to CF' by sending q to 

CF-cells are essentially the same, by establishing a 
diffeomorphism between CF and CF'. 

6 = 1') ' 9  s i n ( e ) ~  Tz(P1) ,  Tz(p2)9 Tz(P3) ,  

Ty(P1)iTy(P2), Ty(P3), O1 + O ,  O2 + O i  O3 + 
Theorem 2. CF is diffeomorphic to CF'. 

Proof. Consider that  the workpiece is put in a po- 
sition where the frame W coincides with the world 

a manipulator is placed a t  the contact point with 
the x-axis lined up with one of the edges of the ma- 
nipulator adjacent to the contact vertex (Figure 4). 

and 

T,(P;) = z;cos(O) - yisin(8) + U 

T,(P;) = zisin(e) + yicos(q + o, i = i , 2 , 3 .  frame 0. And suppose that each frame attached to 

It is easy to see that this map is one-to-one, onto 
and Cm-differentiable. So if the map is actually 
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well-defined, then we get the required diffeomor- 
phism. That  is, we need to  show that 

where 

This is easy to  check by using (1). 

2.3 The intersection of CF-cells 

The intersection of two 3A CF-cells represents 
the intermediate state of moving one or more ma- 
nipulators from one edge to  another edge of the 
workpiece (Figure 5). There are different types of 
intersections that arise from different contacts and 
different numbers of manipulators moving across 
edges. Our new construction allows 11s to  show 
that  all of these intersections are in fact smooth 
manifolds of the expected dimensions. Again, we 
do this here only for the simple case of one manip- 
ulator moving across an edge for a 3A-contact. In 
other words, we consider the intersection of two 3A 
CF-cells. 

0 t 
Figure 5. The intersection of two 3A CF-cells. 

Theorem 3. The intersection of two 3A CF-cells 
is a smooth manifold. 

Proof. Refer to  figure 5. Suppose we move the 
first manipulator from edge E1 of the workpiece to 
edge E;. Let the supporting line for E[ be given 
by Li (z ,y)  = a i z + b ~ y + c ~ .  Let 

Xint = ( ( P i , P 2 , P 3 )  E RG I Li(Pi) = 0 , i  = 1 ,2 ,3 ,  
and  Li(P1) = O }  

and 
T P = [ z l , Y l , Q , Y 2 , z 3 > Y 3 1  . 

Here PI is forced to  be the common vertex. Then 
Xint  is defined by f’ = 0 where 

f’(Pj = Ifl(P), f:(P), f2(P), f3(P>lT 

fl(P) = 4.1 + b:Yl + c: 

f i ( p ) = a i ~ i + b i y i + c i ,  i = 1 , 2 , 3  

To show that Xint  is a manifold, it suffices to show 

that (g) has a rank 4. I t  is easy t o  see that 

/ a i  bl 0 0 0 O \  

ai and bj are not both zero for each i. Also a i  and 
b i  are not both zero. Since edge El and E; are not 
parallel, the upper left 2 x 2 minor (whose rows are 
the normals of these lines) is not zero. Therefore, 
there exists a 4 x 4 non-singular minor of the form 

(:: b l  b’, 0 0 !) 
0 0 cy:! 

O O O a 3  

where ai E { a i , b i }  i = 2,3.  
Note that in general, when n ( n  = 1,2 ,3)  ma- 

nipulators are moved to  the edge intersection posi- 
tions, the dimension of the intersection of the CF- 
cells is given by 6 - ( n  + 3) + 2 + 4 = 9 - n. 

Section 3: Contact Formation Cells 
for Three-Diineiisional Systems 

Now we are ready to  extend the above con- 
struction of CF-cells to a three-dimensional poly- 
hedral workpiece-manipulator system. Note that 
for such a system, the workpiece has six degrees 
of freedom, so we will need six manipulator con- 
tacts to fully determine its position and orienta- 
tion. There are three types of elementary contacts 
possible. A type A contact is formed when a face 
of the workpiece contacts with a vertex of a manip- 
ulator. A type B contact is formed when a vertex 
of the workpiece contacts a face of a manipulator. 
Finally, a type C contact is formed when an edge 
of the workpiece contacts an edge of a manipula- 
tor. Here, we will demonstrate the construction of 
a. GA CF-cell and show that it is a smooth mani- 
fold. All the others types of CF-cells can be treated 
similarly. 
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Let us consider six faces Fi with the support- 
ing planes given by Pl i (z ,  y, z )  = aiz  + b;y + ciz + 
di = 0, for i=1,2 ,..., 6. Let Pi = (zi ,yi ,  zi) be the 
point on Pl i  at which the specified vertex of the 
ith manipulator is in contact. We define 

Again, Y contains the contact information. 
The six degrees of freedom of the workpiece 

are represented by the rigid motion group which is 
diffeomorphic to R3 x S0(3 ) ,  where SO(3) is the 
rotational group in three dimensions. Each manip- 
ulator has three degrees of freedom, namely it can 
rotate around the contact point. It is easy to see 
that these three degrees of freedom can be repre- 
sented by SO(3) for each manipulator. Hence, we 
can define a 6A CF-cell as 

Note that in general, dim(Y) = 18 - 6 = 12. 
And therefore dim(CF6A) = 12 + 3 + 3 + 6(3) = 
36. So a GA CF-cell is in general a 36-dimensional 
manifold. Also, all the intersections of CF-cells in 
a three-dimensional system are smooth manifolds. 
Proofs are similar to Theorem 3. 

Y 
$. 3 Manipulators 

n +/qq Workpiece 

Figure 6. An example of non-smooth con- 
tact formation cell. 

CF6,4 = Y X R3 X s0(3) X (SO(3)) ' .  The fact that  CF-cells are smooth manifolds 
depends on the geometry of the workpiece and the 
ma.nipulators. The CF-cells that  we consider in Theorem 4. C F 6 A  is a smooth manifold. 
this paper are formed by polygonal (polyhedral) 
workpieces and manipulators. Workpiece-manipu- 
lator systems with different geometries may lead 

Proof. We need only show that Y is a smooth 
manifold. Let 

- 
to non-smooth contact formation cells. For exam- 
ple, consider a workpiece with edges supported by 
1 1 ( x , y ) = y 2 - x 3 = O w i t h y > 0 , 1 2 ( x , y ) = y - 1 =  
0, /3(z,y) = y + 1 = 0, /4(x,y) = z - 3 = 0, and 
/5(z, y) = y2 - x3 = 0 (Figure 6) with y 5 0. Three 
polygona.1 ma.nipulators contact (type A contacts) 
the first three edges a t  ( O , O ) ,  ( 2 , l )  and (2, -1) re- 
spectively. Let 

We see that a.nd 
p = [zl1Y1,z2,Y2,x3,Y31 T 

We know that not all of u,i, bi and ci are zero We see that, 
for each i. So there is a G x G non. 

/ N *  n n \  

And (2)  has rank 2 < 3 at p = [ O , O ,  2 , 1 , 2 ,  -1IT. 

So the above configuration does not lead to a smooth 
contact formation cell. What is important here is 

where cui E {a i ,  b i ,  ci} i=1,2 ,..., 6. Hence Y is a 
smooth manifold. m 
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that  (3) is ill-conditioned when the vertex of the 

manipulator slides to (0,O). 
Section 4: A Bound For The Nuni- 
ber of Workpiece Coiifiguratioii Uii- 
der A Fixed Maiiipulator Coiifigura- 
tions While Maiiitaiiiing Coiitacts 

Refer to  the two-dimensional system in section 
2.1. Given a fixed manipulator configuration E, let 

1 
i 

( 
( d3 cos(&) s in(&)  

1 ( b g  cos(&) 

pl cos(61) sin(<l) 
G = Det b2 s i n ( f z )  

63 cos(&) sin(d3) 

6 ,  cos(f1) s in(&)  

b1 cos@1) S i n ( & )  

H = Det d 2  cos(&) s in(&)  

I =  Det ti2 cos(+) sin(d2)  . 

The vector E is said to  be generic if G2 + H 2  > 0 
and G2+H2 # 12.  In this case, either there are two 
distinct workpiece configurations that maintain the 
specified contacts with the manipulators, or there 
are none. 

The corresponding general result for a three- 
dimensional system is not known. We study this 
property for a simple case where t.he workpiece is a 
cube with a 6A contact formation. Let the number 
of possible workpiece configurations that maintain 
contact with a fixed manipulator configuration be 
N .  In section 4.1, we show tha.t N is bounded by 
16. An example of N=8 is displayed in section 4.2, 
and we believe that the maximum is 8. 

4.1 A bound for N 

We start with a cube of two units length. It 
is placed such that the faces are supported by the 
following planes : fa.ce 1 : y = 1, fa.ce 2 : z = 1, 
face 3 : y = -1, face 4 : z = -1, face 5 : z = 1 and 
face 6 : x = -1. We consider a fixed BA manipu- 
lator configuration where the it" maiiipulator COII- 

tacts face i, for i=1,2, ..., 6. The question we need 
to answer is : w1ia.t is the ma.ximum number of 
geometrically a.dmissible workpiece configurations 
that maintain the contacts assuming this fixed po- 
sition of the manipulators. In other words, we need 
to  find the number of ways that one can t.ransla.te 
and orientate the cube to achieve the contact for- 
mation with the fixed manipulator configuration. 

unit n e  ""7 clunits 

Figures  7 and 8. Parallel planes that contac t  
w i t h  P5 and Pe and the u n i t  vec tors  f r o m  P5 
forming  a cone. 

Suppose P, = (z,, yz, zz) is the position of the 
contact vertex of the ith manipulator. Then the 
contact points on opposite faces, say Ps and Ps, 
have a distance greater than or equal to 2. Us- 
ing a rigid body motion, we can move P5 to  the 
origin and PS to (-d,O,O) where d is the distance 
between P5 and Ps. After doing this, we still have 
one degree of freedom, namely rotation about the 
x-axis. This set of choices is parameterized by a 
circle. Each choice amounts to finding a pair of 
parallel planes 2 units apart such that P5 is on one 
of them and Pc is on the other one (Figure 7). One 
can visualize all this by considering the collection 
of the unit normal vectors for each choice of planes 
as pointing out from P5 to form a cone with circular 
base (Figure 8). Each angle 6' E [0, 2a) determine a 
point on a circle which in turn determines one unit 
normal vector and thus a choice of parallel planes. 

Let PI0 be the plane passing through P5 that  
has unit normal vector ne pointed out from P5 for 
the parameter 6'. Let us project Pi, i=1,2,3,4, onto 
Pl0. Denote the resulting points as P,' (Figure 9). 

F i g u r e  9. The pro jec t ion  of Pi, i=1,..,4 to 
Pie. 

If we can put a square of two units length in 
contact with Pi, i=1,..,4, then we will have a cube 
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configuration that contacts the fixed manipulators. 
Thus we have to find out which 0 will give us valid 
cube configurations. In order to make calculations 
easy, we further rotate (also a rigid body motion) 
ne so that Ple coincides with the yz-plane. De- 
note by Pl‘ = (U:’,.:‘) the resulting points on the 
yz- plane that correspond to the P i ,  i=1,..,4 (Fig- 
ure 8). Then P;” is given by 

{ u i  11 - - qxi + +cos(e) + +i+q 
VI’ = -yisin(0) + %iCOS(0). 

Referring to the notation fromsection 2.1, let (Ci, .ii) = 
( O , O ) ,  ( i i , y i )  = ( U : , # ) ,  for i=1,..,4. Also let 

( & , i 4 )  = (0,-l) ,  $1 = 0, $2 = 5,  $3 = i7 and 

for the points Pi‘, PT and P t .  Denote by GI, H’ 
and I’ the corresponding parameters for the points 
P;, P! and P t .  By a result from [l], Pl’, i=1,..4 
are on the corresponding edges of the square iff 

(c l ,  i l )  = (1,o) ~ ( ~ 2 1  22) = (0, I), (G3i 23) = (-11 o), 
4 4 - - 3r 7. Consider G,H and I (as defined above) 

Gcos(8) + H s i n ( 6 )  + I = 0 

and 
G’cos(6) + JI’sin(8) + I’ = 0. 

Or, explicitly 

(U: - u;)cos(S) + (U: - v!)sin(8) - 2 = 0 

and 

(U; - v:)cos(e) + ( U ;  - u ; ) S i ? ? ( o )  - 2 = 0. 

If we put t = tan($)  and 
equations can be rewritten as 

( 2 )  A + Bt + Ct2 = 0 

where 

= t u n ( $ ) ,  the above 

P + Qt + Rt2 = 0 

After eliminating t from (a), the equation in t̂  is 

I C  B A O \  

This is known as the resultant of ( 2 ) .  It is a poly- 
nomial in t^ of degree $. Thus in general, the max- 
imum number of solutions (i ,c)  of (2) is 16. And 
each pair (t , t^)  determines a pair (0,O). Note that 
only the real solutions contribute to workpiece con- 
figurations, so N is bounded by 16. 

Working with examples leads us to believe that 
N should be bounded by 8. However, an analytical 
proof is so far not available. We give an example 
of N=8 in the next subsection. 

4.2 Example of a 6A manipulator config- 
uration with N=8 

Let PI = (O,I,O), P2 = (O,O,I), P3 = 
( -k , - l , -$) ,  P4 = (t,i ,--l),  Ps = (1,0,0) and 
P6 = (-1, 3 ,  - 3 ) .  The following is one of seven 
matrices (the other one is the identity matrix) rep- 
resenting the rigid body motions that take the cube 
from its original configuration to a new configura- 
tion that achieves the specified contact formation. 

,3243 -.43 x -.Of3867 
,946 -.21 x -.03360 

0 0 1 .oo 
One can verify the results by actually acting on 

the cube by the rigid body motion given by each 
inatrice and see that the points Pi, i=1, ..., 6 are 
contacting the correct faces. Equivalently, we can 
move the points Pi by the inverse of these matrices 
and see that they a.re contacting the correspond- 
ing faces of the cube in the original position. For 
example, after applying the inverse of the above 
matrix, call it My1 , we have the following points: 

M;’P1 = (-- .270270,1.000000, -.000000) 
M r 1 P 2  = (.054055, .054054,1.000000) 
My1 P3 = (.0630631, -1.000000, -.333333) 
Ml-lP4 = ( .261261, .477477. - 1.000000) 
My1 Ps = (1.000000, ,378378, -.OOOOOO) 
M1-’Pe = (--1.000000, ,0450450, -.333333). 

One can easily see that they are on the correct 
faces, modulo round-off error. 
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Section 5: An Example of Infinite 
Number of Workpiece Configurations 
that Maintain Contact with a Fixed 
Manipulator Configuration 

In a two dimensional-system, [l] gives an ex- 
ample of a non-generic manipulator configuration 
i; such that there is a.n infinite number of workpiece 
configurations that maintain the specified contacts 
with the manipulators (Figure 10). The character- 
istic of this example is that  the lines supporting the 
contacting edges intersect at a point and the con- 
tact normals also intersect at a (possibly different) 
point. 

Figure 10. An example of inf in i te  number of 
workpiece conf igura t ions  that maintain con- 
tact with a f ixed  manipulator. 

Refer to the nota.tion in section 2.1. Ea.ch ori- 
entation of the workpiece corresponds to a point 
on the circle cos2(8)+sin2(8)  - 1 = 0,  and for each 
8, the workpiece position is calculated by (relabel 
the indices if necessary): 

~ F l D 2  - F 2 D 1  E2Dl  - ElD2  
E& - FIE? . 2 =  1 Y =  

El F 2  - F l  E 2  

where Di = aa+iic+dis ,  Ei = - 2 i c S f i s  and Fi = 
- f i c  - 2is for i=1,2. Note that the above expres- 
sions do not involve information about the third 
manipulator. Therefore, suppose there is a fourth 
manipulator contacting an edge E4 such that the 
lines supporting all four conta.ct edges intersect at 
a point and all four contact normals intersect a t  
a point (Figure 11). Again, the configuration of 
the first, second and fourth manipuhtor allows a.n 
infinite number of workpiece configura.tions which 
maintain the specified conta.ct formation. Also, 
given any orientation 8, the workpiece position is 
calculated by essentially the same formula as above. 
Hence, for this fixed configuration of four manip- 
ulators, there are an infinite number of workpiece 

configurations that maintain the specified 4A con- 
tact forma.tion. 

Figure 11. A fourth manipulator is added to 
the configuration. 

Consider the workpiece in figure 12. We add 
two manipulators, one to contact each of the top 
a.nd the bottom face, and we add four manipulators 
that  contact the side faces in such a way that their 
projections to the bottom plane coincide with the 
configuration in figure 11. Now it is easy to see 
that this workpiece has one degree of freedom and 
so there are an infinite number of configurations 
that maintain the specified conta.ct forma.tion. 

Figure 12. An example of a 6A configura- 
tion that has an inf in i te  number of work- 
piece configurations maintaining contact with 
the fixed manipulators. 
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