
912 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL 34, NO. 2, APRIL 2004

A Generalized Framework for Interactive Dynamic
Simulation for MultiRigid Bodies

Wookho Son, Kyunghwan Kim, Nancy M. Amato, Member, IEEE, and Jeffrey C. Trinkle, Member, IEEE

Abstract—This paper presents a generalized framework for
dynamic simulation realized in a prototype simulator called
the Interactive Generalized Motion Simulator (I-GMS), which
can simulate motions of multirigid-body systems with contact
interaction in virtual environments. I-GMS is designed to meet
two important goals: generality and interactivity. By generality,
we mean a dynamic simulator which can easily support various
systems of rigid bodies, ranging from a single free-flying rigid
object to complex linkages such as those needed for robotic
systems or human body simulation. To provide this generality,
we have developed I-GMS in an object-oriented framework. The
user interactivity is supported through a haptic interface for
articulated bodies, introducing interactive dynamic simulation
schemes. This user-interaction is achieved by performing push
and pull operations via the PHANToM haptic device, which
runs as an integrated part of I-GMS. Also, a hybrid scheme
was used for simulating internal contacts (between bodies in
the multirigid-body system) in the presence of friction, which
could avoid the nonexistent solution problem often faced when
solving contact problems with Coulomb friction. In our hybrid
scheme, two impulse-based methods are exploited so that different
methods are applied adaptively, depending on whether the current
contact situation is characterized as “bouncing” or “steady.” We
demonstrate the user-interaction capability of I-GMS through
on-line editing of trajectories of a 6-degree of freedom (dof)
articulated structure.

Index Terms—Articulated dynamics, contact dynamics, dy-
namic simulation, haptic interaction, interactive simulation,
object-oriented design, rigid-body contact.

I. INTRODUCTION

DYNAMIC simulation (possibly with contact interactions)
arises in many engineering application domains such as

virtual reality (VR), graphics, robot motion simulators, and
computer games. The VR community is motivated by the desire
to enhance the realism of the virtual environment in which the
VR user is immersed. Robot engineers and motion animators
want to describe at a very high level a task or action for a

Manuscript received July 2, 2002; revised December 27, 2002. This
work was supported in part by the National Science Foundation under
CAREER Award CCR-9624315 and Grants IIS-9619850, EIA-9805823, and
EIA-9810937 and by the Texas Higher Education Coordinating Board under
Grant ARP-036327-017. This paper was recommended by Associate Editor C.
T. Lin.

W. Son is with the Virtual Reality Department, Electronics and Telecom-
munications Research Institute (ETRI), Taejon 305-350, Korea (e-mail:
whson@etri.re.kr).

K. Kim is with the Wooshin Mechatronics Co. Ltd., Seoul 150-816, Korea
(e-mail: kimk@wooshin-m.com).

N. M. Amato is with the Department of Computer Science, Texas A&M Uni-
versity, College Station, TX 77843-3112 USA (e-mail: amato@cs.tamu.edu).

J. C. Trinkle is with the Department of Computer Science, Rensselaer Poly-
technic Institute, Troy, NY 12180-3590 USA (e-mail: trink@cs.rpi.edu).

Digital Object Identifier 10.1109/TSMCB.2003.818434

complex mechanical system and then use dynamic simulations
to determine input trajectories to accomplish those tasks.

A simulation environment can be thought of containing mul-
tirigid-body systems, each of which consists of a number of pas-
sive bodies, called freebodies, that move in response to external
forces or forces arising from contacts, and a number of active
bodies which are actuated. Dynamic simulation predicts the ac-
celerations (and contact forces of rigid bodies in contact) of the
multirigid-body systems in the environment.

Most current prototype dynamic simulators have been de-
veloped for specific types of environments, such as simulating
motions of robot manipulators or interactions between the
robot manipulator/free body and the environment. Generally,
they have not been widely applied to more complex struc-
tures such as multibranch linkages with movable bases or
free bodies with frequent contact interaction. This is due to
limitations in their design, which makes it extremely difficult
to accommodate more general environments. Although many
proprietary dynamic simulation packages are general and
powerful enough to handle most application purposes, it is
quite difficult or impossible for robotics researchers to extend
or customize them to meet some experimental or research
needs. Also, their user-interaction capabilities are very limited
with most providing no interactive capabilities at all. Those
that do support user interaction generally use keyboard input or
graphical interfaces to enable parameter tuning.

Our general goal is to design and develop a general-purpose
dynamic simulator which supports user interaction through hap-
tics and is easily extensible to accommodate various kinematics
and dynamics. A dynamic simulator with these qualities could
be used as a backbone system by many researchers so that they
could build their applications on top of it by providing the nec-
essary customization.

Dealing with contacts, possibly with frictional effects among
rigid bodies, is crucial to realize physically-plausible simula-
tion in virtual environments. This is because true virtual envi-
ronments would enable multiple types of interaction between
bodies in contact or collision. During simulation of a system
of rigid bodies in contact, there are various contact modes that
need to be considered such as rolling, sliding, and breaking of
contact. These should be dealt with cautiously as microscopic
behaviors by incorporating appropriate contact dynamics when-
ever contact occurs. On the other hand, “bouncing” and “steady”
contacts are two frequently occurring contact situations which
should be viewed as macroscopic motions during simulation of
a system of rigid bodies in contact. So far, no single existing
method has been found to work well for both these contact sit-
uations.

1083-4419/04$20.00 © 2004 IEEE

SON et al.: GENERALIZED FRAMEWORK FOR INTERACTIVE DYNAMIC SIMULATION 913

TABLE I
COMPARISON OF PUBLICLY AVAILABLE DYNAMIC SIMULATORS

Adding haptic interaction to the dynamic simulation has
the effect of exerting user-applied external forces to the active
bodies in the scene to change their dynamic behavior. In
other words, it changes the course of simulation trajectories
by updating the dynamics due to outside disturbances such
as contact. This has many applications such as teleoperation
of robots for remote inspection, virtual training, etc. Haptic
interaction enables people to ’perform’ work which requires
touching or sophisticated grasping of any part without the phys-
ical presence of the operator in the scene. To our knowledge,
no known simulator supports interactive dynamic simulation
via haptic feedback while simulating dynamic motions of
multirigid-bodies in the general sense. In particular, the use
of user interaction for on-line creation and modification of
trajectories of articulated robots is unknown so far.

Although much work has been done, research has not yet pro-
vided a dynamic simulator which is extensible to multiple var-
ious rigid-body systems or one which supports haptic user in-
teraction. This paper describes the design and development of a
multirigid-body dynamic simulator called the Interactive Gen-
eralized Motion Simulator (I-GMS), which addresses four dif-
ferent issues mentioned above; object-oriented framework, ex-
tensibility, efficient contact simulation, and interactive simula-
tion.

The paper is organized as follows: Section II describes the
related work in three different, related categories of topic. In
Section III, we give the system overview in terms of the design
principle and the dynamic models used for both simulation and
haptic interaction. Section IV gives the experimental results for
the interactive dynamic simulation for a linkage structure, which
is applied to on-line trajectory modification for a robot manip-
ulator. Finally, Section V concludes our work.

II. RELATED WORKS

Some simulators currently available in the public domain are
compared according to some features of interest to us:

1) articulated-body dynamics;
2) methods for handling rigid-body contact with friction;
3) interactive simulation via haptic interaction (see Table I).

A. Existing Dynamic Simulators

Some packages are specifically for simulating robot manipu-
lators (e.g., Robotics TOOLBOX [1], SPACELIB [9], and RO-
BOOP [10], the former being written in Matlab, while the latter
two are developed in C++). RCCL [2] is a special language in
C for robot control which provides Unix-based integration of
external software modules. A graphic simulator is available for
robot control in the simulation environment using RCCL [11].

ARCL [12] is a more modular and portable version of RCCL.
Lee et al. [13] provide an interactive package that can be run
in tandem with a physical robotics environment. Mirtich [5] has
implemented an impulse-based approach to deal with contact in-
teraction. Multibody [3] has been developed for simulating mo-
tions of articulated bodies. This package is similar to I-GMS in
some features in that it is designed in an object-oriented manner.
However, while it is intended as a basic system upon which
more sophisticated dynamic simulators could be built, it does
not handle user interaction and requires some effort to tailor it
to a specific application. Symbolic Dynamic/Fortran Simulation
Toolkit (SD/FAST) [14] generates codes for a particular phys-
ical model (in this case, rigid-body dynamics) of mechanical
systems by taking a short description of an articulated system
of rigid bodies. Isaac [4] is an ongoing project aimed at ex-
tending VR into the realm of multibody dynamics, focusing
on unifying existing major technologies in geometric modeling,
model-driven dynamic simulation, collision handling, motion
control, sensory feedback, knowledge representation of the en-
vironement, planning, and computational modeling. There are
also a number of efforts which specifically focus on human body
simulation by developing dynamic control algorithms that deal
with realistic human motions [15], [16]. Also, [17] uses various
control methods to implement a physics-based torso simulation
for humanoid robot, and applied to the task of performing a con-
tinous sequence of smooth movements by articulated agents.

More general and powerful simulation packages that can
be found in the proprietary systems lack user-interaction
capability when it is considered in the context of simulation
[14], [18]–[21].

B. Articulated Dynamics

Walker et al. [22] have performed pioneering work in dy-
namics of articulated rigid bodies or constrained bodies. They
have developed an algorithm for computing forward dy-
namics of an link manipulator, which explicitly builds the
mass matrix for the system and inverts it to solve for joint accel-
erations. Featherstone’s algorithm [23] is an time method
for computing forward dynamics, which exploits structural re-
cursiveness for a loop-free -link manipulator. Extensions of
this basic serial chain algorithm to handle tree-like linkages and
floating linkages are provided in [5]. In particular, recursive al-
gorithms with time complexity on processors
were presented in [24] and [25], which is applicable to artic-
ulated-bodies with kinematic trees and close loops. These are
generalized coordinate approaches, meaning that there are as
many state variables as degrees of freedom in the system. In
these approaches, the constraints are automatically enforced be-
cause there are no invalid state configurations.

914 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL 34, NO. 2, APRIL 2004

A maximal coordinate method is given in Baraff [26], which
runs in time using Lagrange multipliers. This provides the
algorithmic framework for computing linkage dynamics with
general constraint settings. In the multiplier method, more state
variables are employed than there are degrees of freedom, which
means that constraints must be continuously enforced unlike the
generalized coordinate methods. This is because of drift prob-
lems due to coordinate redundancy.

C. Contact Simulation

Forces or impulses must be applied at contact points to pre-
vent two contacting (or colliding) bodies from interpenetrating.
Various methods have been developed for computing contact re-
action forces, each with their own strengths and weaknesses.

Penalty methods are the simplest approach to computing con-
tact forces [27], [28]. These methods introduce restoring forces
when objects interpenetrate each other and do not strictly en-
force nonpenetration. Instead, they keep penetrations negligible
relative to the scale of the system. Constraint-based methods
cast the contact-force computation problem as a nonlinear com-
plementarity problem (NCP) [29]–[32].

Friction can be incorporated into the framework of NCP by
modifying or adding constraints to it. To accomplish this, the
Coulomb friction cone is usually approximated by a pyramid.
Frictional constraints nullify the convexity of the LCP formu-
lation and this in turn can cause solution nonexistence. This is
because the use of Coulomb’s friction law with the principles
of classical rigid body dynamics introduces mathematical in-
consistencies. As such, most existing constraint-based formula-
tions do not guarantee a solution [29], [32]–[34]. They occa-
sionally fail to give solutions depending on the frictional as-
sumptions and contact status. Thus, these NCP-based contact
dynamic formulations with Coulomb friction and acceleration
variables have difficulties when applied to simulation, since they
may yield inconsistencies (due to no solution cases) or indeter-
minate results (due to multiple solution cases).

To overcome these limitations, Song et al. [35] used a
compliant contact model to derive stability criteria that yield a
unique solution in terms of accelerations and forces for planar
systems.

Impulse-based method model all contacts between bodies by
collisions at contact points [5], [27], [36]. If friction and resti-
tution are incorporated into the collision model, then sequences
of collision impulses can approximate persistent contact modes
such as rolling, sliding, and resting. The major advantage of an
impulse-based method is that only a single contact point is han-
dled each time; the key is that many of the computational prob-
lems associated with simultaneous contacts as in LCP methods
are avoided. In this method, there is always a solution when
computing the collision impulses between two colliding bodies.
Impulse-based methods show promise for real-time simulation
because they offer computational efficiency and solution exis-
tence coupled with reasonable physical accuracy [5].

Unlike other numerical methods for rigid-body formulations
with friction, time-stepping methods easily allows for the in-
corporation of impulses. These relatively new methods do not
explicitly identify impulsive forces. Instead, they use the inte-
grals of the forces over each time step, which are finite even if

there are impulsive forces [37]–[41]. These methods avoid the
nonexistent solution problem that plagues acceleration-based
methods. An advantage of this method is that it handles “steady
contact” well because it implicitly assumes a zero coefficient of
restitution.

D. Interactive Simulation via Haptics

Early work on haptic interaction has focused on haptic ren-
dering of graphical environments, which focused on simulating
the forces generated by contact with a virtual model so that a
person’s sense of touch can be used to interrogate the model.
This force feedback coupled with the visual display has been
used to realize surface shading, friction and texture [42], [43].
Thompson et al. introduced a tracing algorithm that supports
haptic rendering of non-uniform rational B-splines (NURBS)
surfaces without the use of any intermediate representation [44].

Colgate et al. [45] were the first to propose a virtual coupling
between a simulation and a haptic display to simplify design
and ensure stability [45]. There are some dynamic simulators
with haptic interaction capability. The use of an impulse-based
simulation as a general purpose multibody simulator for haptic
display is presented in [46]. Haptic interaction for a point con-
tact for rigid body dynamics is studied in [47]. Berkelman et al.
[6] provide high-fidelity tool-based haptic interaction for a dy-
namic simulated rigid-body environment. In this system, a user
can grasp a tool handle on the haptic device to interact in real
time with the simulated environment while feeling the detailed
reaction forces of the tool due to solid contacts, friction, and
texture. A haptic interaction method for a virtual hand was pre-
sented for grasping dynamic objects and physical modeling of
plasticity [48]. The use of an interpolation scheme for local up-
date of an intermediate representation for the haptic device with
simulation at a slower servo rate has been proposed in [47], [49].

Donald and Henle used haptics to browse and edit abstract
representations of animation trajectories [50]. This approach
uses a vector field method to allow the user to manipulate
high degree-of-freedom motion-captured data with a lower
degree-of-freedom control space.

To our knowledge, a framework provided for multirigid-body
dynamic simulation in [7] is the most relevant to our work in
terms of haptic interaction capability. This framework has been
used to develop a simulator that can model interaction between
generalized articulated mechanical systems and permit direct
“hand-on” haptic interaction with the virtual environment. In
fact, it has provided only a push operation using a stiff spring
attached between the user’s real finger and a “virtual proxy”
as a means of haptic interaction, whereas I-GMS is providing
both push and pull operations. This has been used to realize an
interactive method of commanding a virtual robot to manipulate
an object in a virtual world as is discussed in [51].

III. SYSTEM OVERVIEW

In general, a simulation (virtual) environment is comprised
of several multirigid-body systems which could differ in nature
(i.e., in terms of dynamics and kinematics). Having different
simulators for each different multirigid-body system does not
lend itself to systematic construction of virtual environments

SON et al.: GENERALIZED FRAMEWORK FOR INTERACTIVE DYNAMIC SIMULATION 915

from the application programmer’s view and complicates the
development of an efficient real-time dynamic simulator from
the viewpoint of developer.

To remedy this, we need a generic framework in which in-
cremental addition of functionalities can be performed with rel-
atively little effort. This will, at the same time, facilitate an
easy and systematic composition of a complex environment.
We use an object-oriented approach, which is well suited to this
purpose. This is due to the reusability of classes through class
derivation and the virtual function mechanism for function over-
loading, which are two powerful features of object-oriented de-
sign.

A. Construction of an Environment

In I-GMS, we introduce the term MultiBody to refer to a
system of bodies which are under the influence of the same
dynamic motion equation during simulation. For example, a
free-flying robot, a robotic manipulator, and a free-falling cube
are all considered as individual MultiBodies, each of which may
use different motion equations for dynamic update during simu-
lation. Generally, a virtual environment contains multiple Multi-
Bodies. We also introduce the terms FixedBody and FreeBody to
distinguish an unmovable body from a movable body. These are
the basic building blocks for constructing any kind of MultiBody
in three-dimensional (3-D) space. In other words, a MultiBody
is a collection of one or more FreeBodies and FixedBodies that
are connected by joints.

The generality of I-GMS is that various kinds of robots
and mechanical systems can be constructed through appro-
priate composition of both FreeBodies and FixedBodies in
a hierarchical manner, such as human-body models, robot
manipulators, etc. Thus, a MultiBody is characterized by its
component body types. For example, we consider a robot
manipulator as a single MultiBody, which has a FixedBody
as a base and multiple FreeBody as linkage bodies. On the
other hand, a free-flying robot is considered a MultiBody
with a FreeBody as a floating base. Also, a free-falling cube
is considered to be a MultiBody that has a FreeBody as its
only component. Many such free bodies could coexist at the
same time without connections (e.g., a particle system), in
which case, each individual body is considered a separate
MultiBody. An obstacle in the environment is a MultiBody with
one or more FixedBodies stacked together. This hierarchy in
the environment is illustrated in Fig. 1. I-GMS’s expressive
power is illustrated by the exemplary construction of various
mechanical systems shown in Table II.

In I-GMS, we can use the above-described hierarchical com-
position method to build multirigid-body systems as shown in
the examples in Fig. 2. Fig. 2(a) describes a 6-degree of freedom
(dof) robot manipulator, while Fig. 2(b) shows a human model
with 34-dof which has all the necessary skeletal structure such
as head, neck, arms, elbows, torso, waist, legs, and feet.

B. Object-Oriented Design

There exist several different basic dynamic engines in
I-GMS. Through function overloading, these are available to
different types of multirigid-body systems which need different

Fig. 1. Environment represented as a hierarchical structure of geometric
components.

dynamics. Thus, a simulation driver can simply invoke a
function of a standard name for motion simulation, without
requiring detailed knowledge of the underlying structure of
the system (see Fig. 3). Internally, the dynamic functions
(kinematic functions, also) are provided as virtual functions
through class derivations from the basic MultiBody class. This
feature of object-oriented design provides the extensibility in
I-GMS. In fact, a variety of multirigid-body systems can be
supported through class derivation as needed. In particular,
I-GMS is developed in the C++ programming language due
to its desirable features which support our objectives, such as
reusability and efficiency for real-time implementation. I-GMS
is comprised of object classes representing geometric entities
in the virtual environment: Environment, MultiBody, Body,
FixedBody, and FreeBody. It also contains abstract classes
Transformation, Orientation, DHparameters, Connection, etc.
Each geometric class contains its own kinematic and dynamic
functions as core member functions. Users can construct a
virtual environment through an appropriate composition of
these entities in a hierarchical manner. Abstract classes support
the geometric classes in that they characterize the connections
among the component bodies and determine their positions and
orientations via appropriate kinematic linkages.

I-GMS provides a framework so that applications can be
written by following several high-level steps:

• specification of a multirigid-body system (through an
input file to the system);

• building an appropriate internal functions;
• specification of a simulation scenario by a high-level

driver.
With this philosophy in mind, construction of the virtual

environment itself requires careful examination of the hierar-
chical characteristics inherent in the system so that the virtual
function concept can be exploited with the Body class, which
propagates characteristics of kinematic and dynamic function-
alities to its derived classes. This is indicated in Fig. 4. Here,
classes FreeBody and FixedBody are derived from the parent
class Body for the purpose of differentiating between movable
and unmovable. We can also think of deriving another class
from each of these, such as attFixedBody and attFreeBody,
respectively, where att (which is an acronym for “attribute”)
could be any relevant name, depending on the application. For
our purposes, we have named them RigidDynFixedBody and
RigidDynFreeBody to indicate that all the bodies are used for
rigid-body dynamic simulation. On the other hand, the names

916 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL 34, NO. 2, APRIL 2004

TABLE II
CONSTRUCTION OF MULTI-RIGID-BODY SYSTEMS IN I-GMS

Fig. 2. (a) Six-dof robot manipulator (left). (b) Human model with 34-dof
(right).

Fig. 3. Realization of dynamics in I-GMS.

obprmFixedBody and obprmFreeBody are used for a motion
planning application, called the Obstacle-Based Probablistic
Roadmap Method (OBPRM) [52]. In fact, I-GMS is used as the
geometric and kinematic backbone of the motion planner where
the planning environment (robot and obstacles) is constructed
as defined above. The major classes available within I-GMS
are listed in Table III along with brief descriptions of their
functionalities.

The extensibility of I-GMS is mainly achieved through ex-
ploiting class derivation and virtual functions to apply common
kinematic and dynamic functionalities to various types of rigid
body systems. For example, to simulate a human-body model,
we need to derive a new class (say, HumanBody) from the base
class MultiBody. Since MultiBody already has all the neces-
sary dynamic functions (and kinematic functions) as members,
we need to overload these functions. This can be achieved by
using virtual functions. In this way, the same names can be
used for these functions across different multibody systems in
the simulation driver at the high-level. These virtual functions

Fig. 4. Class hierarchy within the I-GMS.

are ForwardKinematics, InverseKinematics, ForwardDynamics,
and InverseDynamics.

Dynamics for other complex mechanisms such as biped,
quadped, or hexaped can be supported in the same way. In
general, in I-GMS, adding support for a different type of
multirigid-body system does not require substantial reimple-
mentation effort. Instead, we just need to overload the virtual
functions provided in the class derivation. This gives great
generality to I-GMS in terms of extensibility.

C. Dynamic Model

The classical rigid-body dynamics is used for free body, while
the recursive Newton–Euler equation is extended to accommo-
date both the movable base and the multilinkage characteristics
of general articulated structures. A detailed description of this
extension is shown using the modified DH parameter notation
as given in [53]. In particular, Euler parameters and modified
Rodrigues parameters (MRP) [54] are used to represent orien-
tation parameters for free rigid bodies, since they provide a sin-
gularity-free representation.

D. Dynamics for multiLinkage Structures

The governing equations of motion for the multibody systems
are Newton-Euler equations. We have distinguished between
linked and nonlinked bodies in deriving the motion equations.
The dynamics of linked bodies are further categorized into those
having multibranch or single-branch connections and fixed or
movable base. As described in Section III-B, these motion equa-
tions are used to implement the underlying dynamic engines of
I-GMS.

SON et al.: GENERALIZED FRAMEWORK FOR INTERACTIVE DYNAMIC SIMULATION 917

TABLE III
OBJECT CLASSES AVAILABLE IN I-GMS

We have extended the recursive Newton-Euler dynamics al-
gorithm [53] (used for the fixed-base case) to describe the in-
verse dynamics. Here, the base is considered as a free-falling
body in deriving the equations of inverse dynamics. Thus, we
have attached a moving frame to the base, which results in an ad-
ditional 6 dof for representing its position and orientation. This
situation is depicted in Fig. 5.

To consider the movable base, we add the following equa-
tions to the outward iteration of the fixed-base case, so that the
positional and angular acceleration of every link is propagated
starting from the moving base link. (The notation is adopted
from [53].)

Outward iteration: As a base case, we have

Here, , , and are the linear acceleration, angular ve-
locity, and angular acceleration of the center of mass of the base
body, respectively. refers to the linear acceleration of the
mass center of the th body, and is the gravity vector.

where and refer to the position and orientation of the
th body frame origin in the th body frame, respectively. (

refers to the position of the mass center of the th body in the
th body frame.) Also, and refer to the linear velocity and

Fig. 5. Human body model as a multibranch linkage structure with a
free-falling base.

acceleration of the th body frame origin, respectively. (Analo-
gously, and refer to the angular velocity and accelera-
tion of the th body frame origin, respectively. and are the
velovity and acceleration of the th joint angle.) is the in-
ertia tensor of the th body in a frame located at the center of
mass of the th body, and is the total mass of the th body.

and refer to the force and torque acting at the center of
mass of the th body-fixed origin, respectively. (Note that ,
in the base case above, is an inverse of the orientation of the
transformation from the inertia frame to the base body.)

Multiple-branch linkage connections are taken into consider-
ation during the inward iteration in order to accommodate the
external force due to contacts at a link in computing appropriate
force and torque acting on it.

Inward iterations:

918 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL 34, NO. 2, APRIL 2004

Here, refers to the th one among all the external forces
acting on the th link, refering to the set of indices corre-
sponding to all the branching links from the th body. Also,
and refer to the force and torque exerted on the th body, re-
spectively, while is the torque required on the th joint. Note
that is the transformation from a body-fixed frame (indexed
by) to the contact on it. The boldfaced terms account for both
the effects due to multibranch links on an incident body and ex-
ternal forces acting on it.

Also, the force and moment acting at the floating base of the
multilinkage structure is defined as

where and are the force and moment acting at the base
body, is the orientation of the base in the inertial frame,
and and are the force and moment at the base in the
body-fixed local frame, respectively.

To write all these equations in a state-space representation,
we introduce the following notation:

where
vector specifying base-link position;
matrix specifying base-link attitude;
vector specifying joint angle;

vector specifying base-link velocity;
vector specifying angular velocity of base link;

vector specifying joint angular velocity;
force vector acting on base-link;
torque vector acting on base-link;
torque vector acting on joints;

number of joints in the system;
Recall that we have extended the system’s state vector with

an additional 6-dof to represent the position and orientation of
the base. The state-space representation of the inverse dynamics
is the following:

(1)

where
inertia matrix;
matrix specifying centrifugal and

Coriolis’s effects;
vector specifying gravity effect;
vector specifying generalized force gen-

erated by actuation;
vector specifying generalized force gen-

erated by external forces.

E. Hybrid Simulation for Rigid Body Contact With Coulomb
Friction

As a first step toward correctly handling contact situations
among free rigid bodies, I-GMS introduces an adaptive scheme
for handling two different contact situations (“bouncing con-

tact” and “steady contact”),which commonly occur during sim-
ulation of a system of rigid-bodies [55]. In reality, a bouncing
contact will be gradually diminished to a “steady contact” after
sliding and rolling, where it is considered that no more bouncing
occurs. In simulation, we consider bouncing to have ended when
the bounces are so small that, numerically, the contact is steady
state. Correctly tracking these changes in contact situations and
applying appropriate contact dynamics is very important for
physically correct motion simulation. Unfortunately, no single
existing method handles all the contact situations well.

To deal with bouncing contact interactions between bodies,
we have used the impulse-based approach introduced by Mir-
tich [5]. In this scheme, all types of contact (colliding, rolling,
sliding, and resting) are modeled as a series of collision impulses
between the bodies in contact. This method works well on sys-
tems of bodies where the contact modes change rapidly. How-
ever, they cannot efficiently handle more than a few simulta-
neous and persistent contacts. To handle “steady contact,” we
use an implicit time-stepping method for simulating systems
of rigid bodies developed by Stewart and Trinkle [39]. Unlike
other methods which take an instantaneous point of view [32],
this relatively new method does not explicitly identify impul-
sive forces. Instead, the method uses the integrals of the forces
over each time step, which are finite even if there are impulsive
forces.

In particular, the Stewart and Trinkle’s method is formulated
as a complementarity problem which is distinguished as fol-
lows: Given , find such that

Here, and are vectors of equal length , roughly de-
scribed as relative accelerations and contact forces expressed in
coordinate frames attached to the contact points (assumed iso-
lated). This complimentarity constraint enforces the idea that a
nonzero force can only exist if the contact is being
maintained . And a contact force may not exist

if the contact is breaking . Problems with solution ex-
istence of the individual complementarity problems have been
at least partially solved by casting the dynamics problem in
terms of impulse and meomentum variables rather than force
and acceleration variables [29]. In fact, a linearized version of
this complementarity problem (LCP), which is applied to our
hybrid scheme, is proven to have solution(s) which are unique
for most problems, although uniqueness is not guaranteed [56].
[Anitescue et al. proved the existence of the solution(s) of this
LCP formulation [40].] This effectively has allowed the search
for solutions to include impulsive forces (as finite impulses).

Our adaptive scheme for handling contact during simulation
is represented in the state transition diagram shown in Fig. 6.
During simulation of rigid bodies, whenever a bouncing con-
tact is detected, Mirtich’s algorithm is applied, while Stewart’s
method is applied to cases of steady contact. A steady contact is
detected when the bounces become so small that it is considered
that the bouncing has ended. We use a tolerance to detect this
during contact simulation. All these transitions in contact dy-
namics occur automatically during simulation by our adaptive
scheme which keeps track of changes in the contact situation.

SON et al.: GENERALIZED FRAMEWORK FOR INTERACTIVE DYNAMIC SIMULATION 919

Fig. 6. Control flow of adaptive contact simulation.

In particular, the simulation for contact situations is driven
by contacts. This means that a “Contact” class is instantiated at
each time step in which a collision is detected and an explicit
(via Mirtich’s algorithm) or implicit (via Stewart’s LCP algo-
rithm) calculation of the impulse is performed using the kine-
matics and dynamic information available within it. This ap-
proach provides scalability when it is applied to the multiple
contact case. The formulation for computing contact dynamics
is correspondingly scaled in a natural manner in proportion to
the complexity of the number of contacts. In this way, we are
able to maintain real-time capability, while at the same time
achieving physically correct motions.

The LCP formulations were solved using a numerical library
developed based on Lemke’s algorithm which is a pivoting
method similar to the simplex method for linear programming.
Specifically, we have used the mathematical library, Meschach
[57], which is written in C. We call Meschach’s functions from
I-GMS.

F. Interactive Simulation Through Haptic Interaction

In robotics, handling the interaction between the manipulator
and the environment has been a fundamental capability for car-
rying out successful robot task. Thus, much work has been done
toward developing efficient control strategy to deal with this
issue. In particular, a few effective force control strategies are
presented in [58] for a theoretical and experimental treatment
of robot interaction control: stiffness and impedance control,
motion control, and some advanced force and position control
schemes.

In the context of robot interaction with the environment, the
capability of editing the trajectory of a robot is a very pow-
erful tool for environments which change dynamically. For ex-
ample, obstacles in the environment can move, invalidating a
preplanned trajectory. In this situation, replanning is very costly
as is widely discussed in [59]. An efficient way of modifying
the invalid portion of the planned trajectory would offer a po-
tentially more efficient solution.

I-GMS supports interactive simulation via haptic interaction.
Through real-time user interaction, we are able to modify an ex-
isting path or generate an arbitrary trajectory during simulation.
Generating a trajectory can be a tedious offline job if the code
must be modified every time we need a modified (or new) tra-
jectory for a robot to follow. With interactive simulation, we can
adjust or create trajectories during the simulation. In particular,

the user interaction in I-GMS is focused on the online editing
and creation of trajectories for articulated robots. (Refer to [8].)

1) On-Line Trajectory Modification: The PHANToM
haptic device [60] is used as a means for achieving interactive
simulation in two modes in I-GMS: push and pull operations.
A push operation occurs at the point of contact between the
PHANToM and the virtual object, which triggers the contact
force at the contact point and is incorporated as an external dis-
turbance into the forward dynamics [see (1) in Section III-F2].
In this way, a new acceleration is computed whenever haptic
interaction occurs. This new acceleration determines the new
starting state of the system from which trajectory generation
is resumed (or integration is performed using the new accel-
eration) and continued until the occurrence of the next haptic
interaction event. The change in the trajectory after the haptic
touch occurs in real time.

A pull operation occurs by attaching the PHANToM to the
body and allowing the user to drag it around the workspace. For
example, the PHANToM can be attached to the end-effector of
an articulated structure in the workspace so that the joint motion
can be followed dynamically as the user intends. Since we attach
the PHANToM to the end-effector, the user is also able to feel
the dragging force which corresponds to the dynamic motion of
the robot. Since the operation occurs in the Cartesian space, this
operation allows a more intuitive interaction for the user.

Note that a user usually performs haptic interaction in a spo-
radic manner. Hence computations of the new system state and
the ensuing trajectory generation are repeated in an interleaved
fashion during simulation. This situation is illustrated in Fig. 7.

2) Dynamics for Haptic Interaction: Push operation: For
the push operation, I-GMS considers the haptic interaction on
a multirigid-body system as an external force applied to it by
the user, acting at a contact point on the body surface. Thus,
haptic touch on an articulate structure is regarded as an external
contact force (by the haptic device) acting on it, which leads to
a modification of the forward dynamic equation [derived from
(1)]:

(2)

accounts for the joint torque vector corresponding to the
contact force due to collision as follows:

(3)

This induces accelerations on the system in response to the
haptic touch. The contact force at the contact point due to
the haptic interaction is computed by a lumped spring model,
where is the position gain, and is the penetration
distance between the haptic device and the virtual object.

In our case, is determined by the distance be-
tween the the actual position of the haptic touch and the pro-
jection of the haptic position [we call the projected position of
the haptic touch the surface contact point (SCP)].

Pull operation: For the pull operation, I-GMS uses an
impedance controller approach introduced by [61]. The
impedance controller calculates the force from the virtual
spring, damper, and mass. This method is very similiar to the
cartesian impedance approach used by [17], except we used

920 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL 34, NO. 2, APRIL 2004

Fig. 7. Interactive simulation as a sequence of interleaved operations with
I-GMS.

haptics as a means of interaction. In particular, the virtual force
is computed by attaching a virtual spring and damper from

the end-effector position to the PHANToM position
, as in (3), which represents a special case of impedance

control.

(4)

where and are 6-D vectors defining the actual and
desired position/orientation of the end-effector in the cartesian
space, and and are 6-D vectors representing the
actual and desired velocities of the positions/orientations of
the end-effector, respectively. Also, and are stiffness and
damping matrices, respectively. These last two tunable param-
eters affect the sense of contact the operator feels through the
haptic device. Then, the desired force is produced by applying
torque at the joints, which are calculated using the Jacobian

as in the following relation:

(5)

This in turn is fed into (1) to compute the corresponding joint
motions for the articulated structure.

3) Integration of I-GMS With Phantom: Our prototype hard-
ware system for performing haptic interaction consisted of a
3-dof PHANToM haptic device [60], an SGI O2 graphics work-
station (graphics display), and an SGI Octane (dynamic com-
putation server). The PHANToM is a force-feedback device in
which an operator generates position commands by moving a
pencil-like interface.

Our PHANToM cannot exert moments since although the
finger tip has 6 dof, it has only 3 dof for exerting forces. It has
a finger controller with three active degrees of freedom (dof)
and a 3 dof passive gimbal that permits users to feel the force
that arises from point interactions with virtual objects. A multi-
lateral connection exists between the PHANToM, the SGI O2
(the graphics display), and the SGI Octane (the computation
server). The graphics keeps track of the position updates of the
PHANToM finger tip. The PHANToM generates force-feed-
back using collision/penetration information between the finger
tip and the body. The operator can use the PHANToM to touch
a rigid object in the virtual scene.

Currently, we have integrated I-GMS’s manipulator dy-
namics into our haptic-interaction applications which were
developed using the C++ General Haptic Open Software
Toolkit (GHOST SDK) [62] in such a way that both haptic
and dynamic computations occur at the same servo cycle. This

Fig. 8. Integration of I-GMS with PHANToM.

was necessary to reflect I-GMS’s state change due to dynamic
computation appropriately within the GHOST application. This
integration is described in Fig. 8.

Motion simulation of any articulated figure involves trajec-
tory generation, computation of inverse dynamics, and compu-
tation of forward dynamics. Interactive simulation needs an ad-
ditional step for performing haptic interaction whenever there is
a contact (touch) by the user during the simulation. The overall
computational cost for performing these steps increases in pro-
portion to the dofs of the multirigid-body system. Thus, the dy-
namic simulation will be slower for complex models, causing
some visual lag at each time step which in turn may result in
nonreal-time simulation. It poses an even more serious problem
when interactive simulation is performed during real-time sim-
ulation, since stable haptic interaction requires 1 kHz servo rate,
which is very hard to attain for a high dof model. This situation
is illustrated by the approximate computational costs for articu-
lated structures of various dof as shown in Table IV.

To achieve realistic feedback, all steps should be executed
with 1-kHz frequency. However, in our applications, the servo
rate was usually around 250 Hz for a 6-dof robot manipulator,
which is four times slower than needed. Thus, to achieve real-
istic interaction, we use two techniques: one is the distribution
of the computations over the network and the other is the use of
an interpolation of the system’s state between network relays.
Having a sound interpolation scheme is very important for the
distributed computation. This is because it is quite difficult to
achieve a reasonable dynamic feedback upon touch if the delay
is too large to be compensated for by just a simple interpolation.

4) Distributed Computation of Haptics: For the distribution
of computations, we have divided the two major tasks (hap-
tics and dynamics) into separate processors using socket pro-
gramming over the UDP/IP layer on the Ethernet. The UDP
protocol is a connectionless client/server communication mech-
anism, which facilitates transmission of data somewhat faster
than that of TCP, but this is at the cost of reliable transmission of
data packets. However, for our own purposes, transmitting data
at a faster servo rate is more crucial than the possible minimum
loss of data to maintain realistic haptic interaction between the
simulator and the user.

To ensure reliable haptic interaction through maintaining a
high servo rate, we have used a simple interpolation scheme
when implementing the above-mentioned distributed computa-
tion. If the remote server does not return the dynamics results
after a certain preset time duration, the client (haptic compu-
tation) uses the results computed at a previous time cycle. To

SON et al.: GENERALIZED FRAMEWORK FOR INTERACTIVE DYNAMIC SIMULATION 921

TABLE IV
COMPUTATIONAL OVERHEADS MEASURED FOR SYSTEMS OF

VARIOUS COMPLEXITIES

Fig. 9. (a) Original environment. (b) Changed environment.

preset this time duration which in turn determines the servo rate,
I-GMS uses an alarm clock available within the Unix system.
This mechanism allows I-GMS to poll the socket on the client
side at a specified time interval to check if renewed data have
been received. If there are renewed data available, I-GMS uses it
to update the system’s state. Otherwise, it uses the interpolated
data. The preset time interval is adjustable within I-GMS, and
setting it to approximately 2 ms gives reasonable haptic interac-
tion from our experimentation.

IV. SIMULATION EXAMPLE

We have demonstrated interactive simulations on a 6-dof
robot manipulator through online editing of preplanned tra-
jectories. We consider a simple scenario where a 6-dof robot
manipulator (see Fig. 9) is supposed to follow a straight-line
trajectory from its starting point until it reaches a wall. When
there is no obstacle between the robot and the wall as in
Fig. 9(a), it is not very hard to plan the trajectory and have
the robot to follow it. A straight-line trajectory is given in
Fig. 10. However, when an obstacle is introduced in the way of
preplanned trajectory, as shown in Fig. 9(b), it is hard to find a
collision-free trajectory for the robot. The real problem is that
this change in the environment could happen dynamically, thus
requiring replanning every time there is a change.

A. Push for 6-Dof Robot Manipulator

An interactive way of modifying an existing trajectory is
an efficient way of avoiding the costly preprocessing. In our
scheme of modifying the trajectory, the user is supposed to use
visual cues to edit the pre-planned trajectory using the haptic
interaction push mode to avoid the collision. The resulting
trajectory is a path modified by the change in dynamic motion
of the manipulator via haptic touch. Here, we have tried to push
the second link of the manipulator away from the obstacle,
since it was touching the obstacle while nominally following
the pre-planned (straight-line) trajectory.

Fig. 10. Nominal trajectory.

Fig. 11. Trajectory disturbed by push operation.

The initial steps in Fig. 11 (top) show the portion of the
original pre-planned trajectory. This lasts until there is the
first haptic touch by the user, which is indicated by the force
calculation at step 11 in Fig. 11 (bottom). Then modified
trajectories resulting from real-time haptic interaction by the
user are followed. The forces computed by haptic touches
are also given in Fig. 11 (bottom). Note that there is some
instantaneous change of accelerations due to the user’s haptic
interaction. These changes in accelerations correspond to the
starts of new states to be used for subsequent dynamic update
(refer to Fig. 7) during the interleaved operations. In fact, the

922 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL 34, NO. 2, APRIL 2004

Fig. 12. Simulation snapshots of the 6-dof robot manipulator following the modified trajectory.

first such change (“pushing1”) is for the robot to avoid the first
collision with the obstacle, while the second (“pushing2”) is
to direct the robot toward the wall as the original intention of
the trajectory does. Once haptic interaction occurs, the joint
accelerations are maintained until subsequent user interaction,
which is evident in the plot. The external forces acting at the
contact points are computed by (2) at time steps 11 and 23 (the
magnitude unit is newton-centimeters).

The simulation snapshots of the modified trajectory are given
in Fig. 12. This shows the 6-dof manipulator taking a detour
around the obstacle rather than taking the original straight-line
trajectory to avoid the obstacle. This example shows that just
a few haptic pushes at appropriate points on the manipulator
bodies could change the preplanned trajectory to avoid colliding
with an obstacle. (In Fig. 12, all the legend items data1, data2,
…, correspond to joint1, joint2, …, respectively.)

B. Pull for 6-Dof Robot Manipulator

We also performed pull operations on a 6-dof robot manipu-
lator. We used the same scenario as in the push mode example.
This time, to avoid the collision, the user dragged the end-ef-
fector around the obstacle, which required some care to ensure
that the second link was not placed in collision.

The plots in Fig. 13 show the same information as in the push
mode example. In other words, the first pulling (“pulling1”) is
for the robot to avoid the first collision with the obstacle, while
the second (“pulling2”) is to direct the robot toward the wall as
the original intention of the trajectory does. The actual differ-
ence here is that the force is computed by a virtual spring con-
necting the PHANToM and the robot’s end effector, as opposed
to the contact effect for the push mode.

Generally, we observed that it was easier for the user to use
the pulling mode than the pushing mode to change trajectories.
However, there are some tradeoffs in terms of advantages and
disadvantages in using these two modes of operation for the
trajectory modifications. We note that relatively greater forces
are required for the dragging operation than the push operation
and this is considered natural. This is because the articulated
object’s end-effector is supposed to follow the user’s finger tip
position (which is basically the position of haptic touch). On
the other hand, it is relatively much harder for the user to guide
the articulated bodies toward a target position, since the pushing
operation is an indirect way of achieving the desired motion.
Thus, it usually takes more sophisticated effort for the user to
be able to manipulate the articulated bodies haptically, but the
pushing operation requires less force to move the articulated
bodies.

Fig. 13. Trajectory disturbed by pull operation.

V. CONCLUSION AND FUTURE WORK

We have proposed a generic framework for a generalized
dynamic simulator I-GMS, and have provided a prototype
implementation of it which supports haptic user interaction.
This framework is general enough to accommodate new
multirigid-body systems (mostly complex linkage structures)
whenever they are needed. Simulation results of our prototype
system showed some promise toward its claim of extensibility
and interactivity.

In particular, we have developed a hybrid scheme to simu-
late contact with Coulomb friction of a system of rigid bodies.
This scheme has the capability to adaptively change contact dy-
namics depending on two contact situations: “bouncing” and
“steady.” So far, no existing contact dynamic formulation han-
dles all types of the contact situations well, since most instan-
taneous formulations (such as most LCPs) do not guarantee so-
lution existence. This is an important step toward a more so-
phisticated dynamic simulator to deal with general situations of
contacts.

The user-interaction capability of I-GMS allows the user to
adjust the behaviors of articulated structures in real-time. This
shows promise for user-interaction of fairly complex articulated
structures as well, once performance issues can be resolved to
ensure stable haptic interaction.

There are still some stability issues remaining to be solved.
Especially, dynamic simulation with contact involves fine step
size tuning during simulation which requires applying an adap-
tive step size for correct simulation without numerical failure. In

SON et al.: GENERALIZED FRAMEWORK FOR INTERACTIVE DYNAMIC SIMULATION 923

a hybrid scheme like the one introduced here, using the correct
step size for the integration is extremely important since it helps
avoid some erratic system states which are unexpected when one
type of contact dynamics is applied. The stability of the haptic
interaction could be improved further by devising good interpo-
lation schemes for enhancing the dynamic feedback upon haptic
touch by the user in the case of highly articulated structures.

We would also like to work on incorporating haptic interac-
tion for free bodies having a secondary contact with an environ-
ment. For example, we can consider a ball rolling and sliding
on a flat surface. We regard the contact where the haptics oc-
curs as the primary one and the one between the ball and the
surface as secondary. Our goal is to implement correct haptic
interaction even in the presence of secondary contact. This is a
complicated problem that requires exact contact mechanics to
predict physically correct contact modes at the secondary con-
tact whose effect is in turn propagated to the primary contact
for the appropriate haptic interaction. This exact haptic interac-
tion will support more sophisticated user interaction in general
simulation environments which include free bodies in contact
as well as articulated structures.

REFERENCES

[1] Robotics Toolbox for Use With Matlab (Release 4), CSIRO Div. Manu-
facturing Technol., Canberra, Australia, 1996.

[2] V. Hayward and R. P. Paul, “Robot manipulator control under
unix—RCCL: A Robot control C library,” Int. J. Robotics Res., vol. 5,
no. 4, pp. 94–111, 1986.

[3] B. Mirtich. (1996) Multibody dynamic package. [Online]. Available:
http://www.merl.com/projects/rigidBodySim/multibodyDyn

[4] J. Cremer. (1994) Issac. [Online]. Available: http://www.cs.uiowa.edu/
[5] B. Mirtich, “Impulse-based dynamic simulation of rigid body systems,”

Ph.D. dissertation, Univ. California, Berkley, CA, 1996.
[6] P. J. Berkelman, R. L. Hollis, and D. Baraff, “Interaction with a real-time

dynamic environment simulation using a magnetic levitation haptic in-
terface device,” in Proc. IEEE Int. Conf. Robot. Automat., Detroit, MI,
May 1999, pp. 3261–3266.

[7] D. C. Ruspini and O. Khatib, “A framework for multicontact multibody
dynamic simulation and haptic display,” in Proc. IEEE Int. Conf. Intel.
Robotic Syst., Oct. 2000, pp. 1322–1327.

[8] W. Son, K. Kim, and N. M. Amato, “An interactive generalized motion
simulator (I-GMS) in an object-oriented framework,” in Proc. Comput.
Animation Conf, Philadelphia, PA, May 2000, pp. 176–181.

[9] SPACELIB in MATLAB Version 1.0, Univ. Brescia, Brescia, italy, 1998.
[10] R. Gourdeau, “Object-oriented programming for robotic manipulator

simulation,” IEEE Trans. Robot. Automat. Mag., vol. 4, pp. 21–29, Sept.
1999.

[11] V. Hayward and R. P. Paul, “Robot manipulator control under unix,
RCCL: A robot control c libary,” Int. J. Robotic Res., vol. 5, no. 4, pp.
94–111, 1986.

[12] “ARCL Robot Programming System,” CSIRO Division Manufacturing
Technol., Canberra, Australia, 1991.

[13] P. U. Lee, D. C. Ruspini, and O. Khatib, “Dynamic simulation of inter-
active robotic environment,” in Proc. IEEE Int. Conf. Robot. Automat.,
San Diego, CA, May 1994, pp. 1147–1152.

[14] SD/FAST User’s Manual, Symbolic Dyn., , 2001.
[15] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien, “Ani-

mating human athletics,” in Proc. SIGGRAPH, Los Angeles, CA, Aug.
1995, pp. 71–78.

[16] E. Kokkevis, D. Metaxas, and N. I. Badler, “User-controlled physics-
based animation for articulated figures,” in Proc. Comput. Animation,
Houston, TX, June 1996, pp. 16–25.

[17] M. J. Mataric, “Making complex articulated agents dance: An analysis
of control methods drawn from robotics, animation, and biology,” J. Au-
tonomous Agents MultiAgent Syst., vol. 2, no. 1, pp. 23–44, 1999.

[18] Delmia Corp.. (2002) Igrip, Auburn Hills, MI. [Online]. Available:
http://www.delmia.com

[19] MSC Software Corp., Santa Ana, CA. (2000) ADAMS. ADAMS and
M. D. Inc.. [Online]. Available: http://www.adams.com

[20] (2000) MathEngine—The Dynamics Toolkit* 2.0 SDK. [Online].
Available: http://www.mathengine.com

[21] MSC Software, Santa Ana, CA, Visual Nastran 4d, Redwood City, CA,
http://www.krev.com, 2002.

[22] M. W. Walker and D. E. Orin, “Efficient dynamic computer simulation
of robotic mechanism,” ASME J. Dyn. Syst., Meas., Contr., vol. 104, pp.
205–211, 1982.

[23] R. Featherstone, “The calculation of robot dynamics using articu-
lated-body inertias,” Int. J. Robotics Res., vol. 2, no. 1, pp. 13–30, 1983.

[24] , “A divide-and-conquer articulated-body algorithm for parallel
o(logn) calculation of rigid-body dynamics: Part1: Basic algorithm,”
Int. J. Robotics Res., vol. 18, no. 9, pp. 867–875, 1999.

[25] , “A divide-and-conquer articulated-body algorithm for parallel
o(logn) calculation of rigid-body dynamics: Part 2: Trees, loops and
accuracy,” Int. J. Robotics Res., vol. 18, no. 9, pp. 876–892, 1999.

[26] D. Baraff, “Linear-time dynamics using Lagrange multipliers,” in Proc.
SIGGRAPH, New Orleans, LA, Aug. 1996, pp. 137–146.

[27] M. Moore and J. Wilhelms, “Collision detection and response for com-
puter animation,” Comput. Graphics, vol. 22, no. 4, pp. 289–298, 1998.

[28] M. H. Railbert and J. K. Hodgins, “Animation of dynamic legged loco-
motion,” Comput. Graphics, vol. 25, no. 4, pp. 349–358, 1991.

[29] P. Lötstedt, “Numerical simulation of time-dependent contact friction
problems in rigid body mechanics,” Zeitschrift für Angewandte Mathe-
matik and Mechanik, vol. 5, no. 2, pp. 370–393, 1984.

[30] D. Baraff, “Dynamic simulation of nonpenetrating rigid bodies,” Ph.D.
dissertation, Cornell Univ., Ithaca, NY, 1992.

[31] J. S. Pang and J. C. Trinkle, “Complementarity formulations and exis-
tence of solutions of dynamic multirigid-body contact problems with
coulomb friction,” Math. Programming, vol. 73, no. 4, pp. 199–226,
1996.

[32] J. C. Trinkle, J. S. Pang, S. Sudarsky, and G. Lo, “On dynamic
multirigid-body contact problems with coulomb friction,” Zeitschrift
für Angewandte Mathematik and Mechanik, vol. 77, no. 4, pp. 267–279,
1997.

[33] D. Baraff, “Issues in computing contact forces for nonpenetrating rigid
bodies,” Algorithmica, vol. 10, no. 2–4, pp. 292–352, 1993.

[34] , “Fast contact force computation for nonpenetrating rigid bodies,”
in Proc. SIGGRAPH, Orlando, FL, Aug 1994, pp. 23–34.

[35] P. Song, P. Kraus, and V. Kumar, “Analysis of rigid body dynamic model
for simulation of systems with frictional contacts,” ASME J. Applied
Mechanics, vol. 68, no. 1, pp. 118–128, 2001.

[36] J. K. Hahn, “Realistic animation of rigid bodies,” in Proc. SIGGRAPH,
vol. 22, Atlanta, GA, Aug 1988, pp. 299–308.

[37] J. Moreau, Nonsmooth Mechanics and Applications: Unilateral Con-
tact and Dry Friction in Finite Freedom Dynamics. Berlin, Germany:
Springer-Verlag, 1988, pp. 1–82.

[38] M. Marques, Differential Inclusions in Nonsmooth Mechanical Prob-
lems: Shocks and Dry Friction. Berlin, Germany: Birkhauser-Verlag,
1993.

[39] D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid-body dynamics with inelastic collisions and coulomb friction,” Int.
J. Numerical Methods Eng., vol. 39, no. 4, pp. 2673–2691, 1996.

[40] M. Anitescu, F. A. Potra, and D. Stewart, “Time-Stepping for three-di-
mensional rigid body dynamics,” Dept. Math., Univ. Iowa, Iowa City,
IA, Tech. Rep. 98–02, 1998.

[41] D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid-body dynamics with coulomb friction,” in Proc. IEEE Int. Conf.
Robot. Autom., Seoul, Korea, May 2000, pp. 162–169.

[42] D. C. Ruspini, K. Kolarov, and O. Khatib, “The haptic display of com-
plex graphi,” in Proc. SIGGRAPH, Los Angeles, CA, Aug. 1997, pp.
345–352.

[43] C. Zilles and K. Salisbury, “A constraint-based god-object method for
haptic display,” in Proc. IEEE Int. Conf. Intell. Robotic Syst., Pittsburgh,
PA, Aug. 1995, pp. 146–151.

[44] T. V. T. Il, D. E. Johnson, and E. Cohen, “Direct haptic rendering
of sculptured models,” in Proc. Symp. Interactive 3D Graphics,
Providence, RI, Apr. 1997, pp. 167–176.

[45] J. E. Colgate, M. C. Stanley, and J. M. Brown, “Issues in the haptic
display of tool use,” in Proc. IEEE Int. Conf. Intell. Robotic Syst., Pitts-
burgh, PA, Aug. 1999, pp. 140–145.

[46] B. Chang and J. E. Colgate, “Real-time impulse-based simulation of
rigid body system for haptic display,” in Proc. ASME Dyn. Syst. Contr.
Divisions, Houston, TX, Apr. 1997, pp. 1–8.

924 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL 34, NO. 2, APRIL 2004

[47] S. Vedula and D. Baraff, “Force feedback in interactive dynamic simula-
tion,” in Proc. First PHANToM User’s Group Workshop, Dedham, MA,
Sept 1996, pp. 25–31.

[48] V. Popescu, G. Burdea, and M. Bouzit, Proc. Comput. Animation Virtual
Reality Simulation Modeling Haptic Glove, Geneva, Switzerland, May
1999, pp. 195–200.

[49] Y. Adachi, T. Kumano, and K. Ogino, “Intermediate representation for
stiff virtual objects,” in Proc. IEEE Virtual Reality Annu. Int. Symp.,
Research Triangle Park, NC, Mar. 1995, pp. 203–210.

[50] B. R. Donald and F. Henle, “Using haptic vector fields for animation
motion control,” in Proc. IEEE Int. Conf. Robotic Automat., San Fran-
cisco, CA, Apr. 2000, pp. 3435–3442.

[51] O. Khatib, O. Brock, K. S. Chang, F. Conti, D. C. Ruspini, and L. Sentis,
“Robotics and interactive simulation,” Commun. ACM, vol. 45, no. 3, pp.
46–51, 2002.

[52] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,” in Proc. Int.
Workshop Algorithmic Foundations Robotics, Houston, TX, Mar. 1998,
pp. 155–168.

[53] J. J. Craig, Introduction to Robotics, Mechanics, and Con-
trol. Reading, MA: Addison-Wesley, 1986.

[54] P. Tsiotras, J. L. Junkins, and H. Schaub, “Higher-order cayley trans-
forms with applications to attitude representations,” J. Guidance, Contr.
Dyn., vol. 20, no. 3, pp. 528–535, 1997.

[55] W. Son, J. C. Trinkle, and N. M. Amato, “An interactive generalized mo-
tion simulator (I-GMS) in an object-oriented framework,” in Proc. IEEE
Int. Conf. Robotics Automat., Seoul, Korea, May 2001, pp. 3789–3794.

[56] R. W. Cottle, J. S. Pang, and R. E. Stone, The Linear Complementarity
Problem, ser. Computer Science and Scientific Computing. New York:
Academic, 1992.

[57] Meschach: Matrix Computations in C. Canberra, Australia: Center
Math. Applicat., School Math. Sci., Australian Nat. Univ., 1994.

[58] B. Siciliano and L. Villani, Robot Force Control. Boston, MA: Kluwer,
2000.

[59] J. C. Latombe, Probot Motion Planning. Boston, MA: Kluwer, 1990.
[60] T. H. Massie and J. K. Salisbury, “The phantom haptic interface: A de-

vice for probing virtual objects,” in ASME Haptic Interfaces for Vir-
tual Environment Teleoperator Systems. New York: ASME, 1994, pp.
295–302.

[61] N. Hogan, “Impedance control: An approach to manipulation,” J. Dyn.
Syst., Meas., Contr., vol. 107, no. 4, pp. 1–23, 1985.

[62] GHOST Software Developer’s Toolkit Programmer’s Guide Version
1.21, Sensable Technologies, Woburn, MA, 1999.

Wookho Son was born in Kyoungju, Korea, in 1964. He received the B.S. degree
in computer science from Yonsei University, Seoul, Korea, in 1987 and the M.S.
and Ph.D. degrees in computer science from the Texas AM University, College
Station, in 1996 and 2001, respectively.

He is currently a senior research scientist with the Virtual Reality Research
Center, Electronics and Telecommunications Research Institute (ETRI), Tae-
jeon, Korea. His research interests include robotics, virtual reality (especially
haptic interaction), and physically based dynamic simulation.

Kyunghwan Kim was born in Milryang, Korea, in 1967. He received the B.E.
degree in electrical engineering from Yonsei University, Seoul, Korea in 1992
and the M.E. and the Ph.D. degrees in electrical engineering from the University
of Tokyo, Tokyo, Japan in 1994 and 1997, respectively.

From September 1997 to August 1999, he was a postdoctoral research asso-
ciate with the University of Wisconsin, Madison and Texas A&M University,
College Station. From September 1999 to June 2002, he was a senior research
scientist with the Korea Institute of Science and Technology (KIST), Seoul. He
is currently a director of Wooshin Mechatronics Co., Ltd., Seoul. His research
interests include in robotics (especially, human-computer interface), micro and
nano robotics, and semiconductor handling.

Nancy M. Amato (S’93–M’95) received the B.S. and A.B. degrees in mathe-
matical sciences and economics, respectively, from Stanford University, Stan-
ford, CA, and the M.S. and Ph.D. degrees in computer science from the Univer-
sity of California, Berkeley, and the University of Illinois at Urbana-Champaign,
respectively.

She is currently an associate professor of computer science at Texas A&M
University, College Station. Her main areas of research focus are motion plan-
ning, high-performance computing, and computational biology and geometry.

She is an Associate Editor of the IEEE TRANSACTIONS ON ROBOTICS AND

AUTOMATION and of the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS. She is a member of the Computing Research Association’s Com-
mittee on the Status of Women in Computing Research (CRA-W), and she
directs the CRA-W’s Distributed Mentor Program (http://www.cra.org/Activ-
ities/craw/dmp/). She is a recipient of a CAREER Award from the National Sci-
ence Foundation and was an AT&T Bell Laboratories Ph.D. Scholar.

Jeffrey C. Trinkle (S’84–M’03) received the bachelor’s degree in physics in
1979 and engineering science and mechanics in 1979 from Ursinus College,
Collegeville, PA, and Georgia Institute of Technology, Atlanta, respectively. He
received the Ph.D. degree from the Department of Systems Engineering at the
University of Pennsylvania, Philadelphia, in 1987.

He was a member of the Fiber Composites Group at Lawrence Livermore
National Laboratory, Livermore, CA, for two and one half years before returing
to graduate school in 1982. Since 1987, he has held faculty positions in the De-
partment of Systems and Industrial Engineering at the University of Arizona,
Tucson, and the Department of Computer Science, Texas A&M University, Col-
lege Station. He was also a Principal member of Technical Staff with the Intelli-
gent Systems and Robotics Center, Sandia National Laboratories, Albuquerque,
NM, from 1998 to 2003. He is currently a Professor and Chairman of the De-
partment of Computer Science at Rensselaer Polytechnic Institute, Troy, NY.
His primary research interests lie in the areas of robotic manipulation planning,
mutibody dynamics, and automated fixturing.

