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Abstract

Maximizing the use of dual-arm robotic systems re-
quires the development of planning algorithms analo-
gous to those available for single-arm operations. In
this paper, the global properties of the configuration
spaces of planar n-bar mechanisms (i.e., kinematic
chains forming a single closed loop) are used to de-
sign a complete motion planning algorithm. Numerical
experiments demonstrate the algorithm’s superiority
over a typical algorithm that uses only local geometric
information.

1 Introduction

Today, software packages can efficiently compute
the solutions to arbitrary forward dynamics and kine-
matics problems for general planar and spatial mech-
anisms with multiple kinematic loops (e.g., ADAMS
and Working Model). That is, given smooth driving
inputs for a set of independent joints, the position, ve-
locity, acceleration, and reaction force histories for the
joints can be computed by methods based on numer-
ical algorithms for solving differential algebraic equa-
tions (DAEs) [1, 2, 7]. The value of such forward anal-
ysis is that it provides the designer with detailed infor-
mation about how a given design will perform under a
range of expected operating conditions. If the perfor-
mance is not acceptable, the designer might use mul-
tiple forward analyses to guide iterative modifications
of the design.

Inverse problems are those in which one must find
a driving input that can move a linkage through a se-
quence of configurations while satisfying various condi-
tions on the positions, velocities, accelerations, and/or
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reaction forces. Generalizing inverse problems by ex-
panding the search space to include kinematic and/or
dynamic parameters leads to design problems. While
one may argue that there is greater potential pay-off
in solving inverse and design problems than forward
problems, software for the former is lagging signifi-
cantly behind. Part of the reason for this lag is the
current lack of understanding of the global mathemat-
ical structure of the space of all configurations (C-
space) for an arbitrary mechanism and the space of
all C-spaces generated by varying the kinematic and
dynamic design parameters, a so-called, moduli space.

Probing further, the solution to a forward prob-
lem requires no global information. One is given the
model of the linkage and the driving input function,
and a DAE method computes the solution using local
(derivative) information. By contrast, if the objective
is to find a continuous path connecting a pair of config-
urations of an n-bar mechanism (an inverse problem),
then one must first be able to answer the question,
“Does such a path exist?” This question cannot be
answered without knowledge of the global properties
of the C-space. In the case of planar four-bar mecha-
nisms, this kind of information has been available for
some time [3]. However, for planar n-bars with n > 4,
previous results [4, 8, 9] are less complete. While the
path existence question may seem unimportant, given
the designer’s knowledge and intuition about mecha-
nisms and their applications, it is far from trivial when
trying to build software to automate the design pro-
cess. Further, it may be possible to achieve superior
performance from designs outside a designer’s normal
range of design options (i.e., from portions of the de-
sign space he would never consider). The encoding of
global information in interactive design software will
enable the designer to painlessly explore non-standard
designs.

This paper takes a step toward solving general in-
verse and design problems and thus toward enabling
enhanced computer-aided design software. It does so
by building on recent results on the global properties of
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the C-spaces of planar n-bar mechanisms [6]. The spe-
cific result presented here is a complete1 algorithm for
solving motion planning problems for arbitrary planar
n-bar mechanisms with a single kinematic loop. Joint
limits and collisions between links and obstacles are
not considered.

Motion Planning Problem:

Given two valid configurations, S and G, of a planar
n-bar mechanism with all revolute joints, determine if
a continuous path connecting S and G exists, and if
so, determine one.

The new theory and algorithm presented here, help
to extend our fundamental understanding of the kine-
matics of planar n-bar mechanisms and clearly have
applications in machine design. However, other im-
portant applications are in the area of robot manip-
ulation planning. In robotics it is of interest to plan
coordinated movements of two arms collaborating to
move and manipulate an object too large or heavy to
be handled safely by a single arm. While holding the
object, the arms form a closed loop - an n-bar mecha-
nism. Planning to move the object from one position
to another is a motion planning problem. If one knew
an acceptable motion for the held object, then inverse
kinematics could be used to determine compatible mo-
tions of the arms. However, there are two reasons that
this approach is not desirable. First, it requires that
the individual arms have 6 or more degrees of free-
dom, which may not be required for successful task
execution. Second, choosing a collision-free motion for
the held object does not guarantee a valid motion for
the arms; the motion could force collisions, joint limit
violations, and/or near-singular configurations. The
problem should be solved in its fully coupled form,
not in an arbitrarily partitioned form.

As a preview of our results, Figure 1 shows two mo-
tion planning problems for two six-bars with the same
base link (bold and horizontal), but with slightly dif-
ferent link lengths. The start and goal configurations
are shown in bold and thin lines, respectively. While
not intuitively obvious, only one of these two problems
has a solution, which our algorithm (implemented in
Matlab on a 366 MHz Pentium II PC) found in less
than 0.1 cpu seconds. This same algorithm has been
successful in solving motion planning problems for n-
bars with up to 10,000 links for one class of n-bars,
but only up to about 40 links for the other class. The
reason for this disparity will become clear later.

1By “complete” it is meant that if a path exists, our algo-
rithm will find one in finite time, and if not, it will report that
this is the case, also in finite time.

Figure 1: Start and goal configurations of two similar
six-bars. For one no connecting path exists.

2 Configuration Spaces of Planar n-

Bars

To develop provably maximally efficient algorithms
for solving inverse problems for planar n-bars, one
must completely understand the structure and prop-
erties of their C-spaces and know how to properly pa-
rameterize them.

2.1 C-spaces of Planar Four-Bars

The global structure of C-space for any four-bar
mechanism is characterized by the sum of the longest
and shortest links relative to the sum of the other two
[3]. Letting Li denote the i

th longest link, then the
Grashof conditions for a planar four-bar are:

L1 + L4 < L2 + L3 (1)

The four-bar shown in Figure 2, satisfies the Grashof
conditions with L1 = l2 and L4 = l4. Two well-
known properties of Grashofian four-bars are, first,
the shortest link is a crank (i.e., it can rotate 2π ra-
dians) relative to the other links. Second, when the
linkage is in an “elbow-up” (“elbow-down”) config-
uration, it cannot reach an “elbow-down” (“elbow-
up”) configuration without breaking at least one joint
connection.2 These properties are direct consequences
of the fact that the structure of C-space is two discon-
nected (topological) circles [4].

When the sum of the longest and shortest (L1 = l1
and L4 = l4 in Figure 3) is greater than the sum of the
other two, a four-bar is referred to as non-Grashofian.
In this case, C-space is topologically equivalent to a
single circle, and thus, all configurations are connected.
However, some non-Grashofian four-bars do not have
cranks (for example, the linkage in Figure 3). This

2“Elbow-up” (“elbow-down”) configurations as those for
which l2 and l3 lie above (below) the dashed line λ passing
though the joint axes shown in Figure 2.
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Figure 2: Grashofian planar four-bar.

means that when planning smooth motions connect-
ing pairs of valid configurations, one cannot parame-
terize all motions by a single joint angle. Referring to
Figure 3, suppose one were planning to move from the
“elbow-up” configuration shown to the corresponding
“elbow-down” configuration. Any path to accomplish-
ing this task requires φ4 (the angle of l4 relative to the
base link) to reach an extreme value along the way.
Since l2 and l3 are colinear for extreme values of φ4,
φ4 cannot be used at those values to control the linkage
to obtain an “elbow-down” configuration.
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Figure 3: Non-Grashofian planar four-bar.

2.2 C-spaces of Planar n-Bars

Recognizing that scaling the link lengths uniformly
does not change the global topological properties, it
will be assumed henceforth, that the link lengths have
been normalized to sum to 1. In previous work by
Kapovich and Millson [4], it was shown that the prop-
erties of the C-space of a planar n-bar depend strongly
on the number of long links.

Definition 1 A subset L of the links is referred to as
the “long links” if and only if the sum of the lengths
of any two distinct links in L is greater than 1

2 .

Since L is not unique, the number of long links is de-
fined as the maximum cardinality of all possible L.
However, when there are three long links, L is unique.
Three conclusions applicable to the set of all n-bar

mechanisms are immediately obvious:

1. By definition, there cannot be only one long link.

2. If an n-bar has a link longer than 0.5, then its
C-space is empty.

3. There can be no more than three long links.

Thus the number of long links can be only zero, two,
or three.
The following two less obvious Theorems by

Kapovich and Millson can be viewed as a generaliza-
tion of the Grashof/non-Grashof designation:

Theorem 1 C-space is connected if and only if the
mechanism does not have three long links.

Theorem 2 If there are three long links, then C-space
has exactly two components and each component is a
torus (S1)n−3.

The implication of the toroidal structure of C-space
in Theorem 2 is that for n-bars with three long links,
all the other links (the short links) are independent
cranks. That is, each of these links can rotate through
a full circle regardless of the orientations of the other
short links, and the long links can comply to maintain
the closed-loop structure of the mechanism. In motion
planning, as long as the start and goal configurations
are in the same C-space component, one can drive the
mechanism from the start to goal configuration by any
continuous path connecting the start and goal angles of
the short links. No such path exists that will violate
the closed-loop constraint of the mechanism. It was
our exploitation of this theorem that allowed us to
generate a path for a 10,000-bar mechanism in several
seconds in Matlab.
While the results of Kapovich and Millson provide

important global information about the C-spaces of all
planar n-bars, the development of our complete mo-
tion planning algorithm was enabled by the following
two theorems first presented and proved in [6] (and
specialized to the planar case here):

Theorem 3 Let N be an n-bar with given lengths,
l1, . . . , ln Then:

a) Except for a finite number of base lengths, l1, the
C-space of N is a closed compact manifold of di-
mension n− 3.

b) Whenever the C-space is a manifold, it is the
boundary of a manifold of dimension n−2, which
is given as the union of sub-manifolds of the form

(S1)s × I(n−s−2)

where S1 is the (topological) circle and the set of
s that occur depend on the link lengths.



Figure 4 shows a two-dimensional manifold, whose
boundary (at the left side) is the C-space of a four-
bar with l1 a bit less than l2 + l3 − l4. The C-space
can be seen to be S1

⋃

S1, which is the boundary of
the “thickened circle” (generalized cylinder).
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Figure 4: Two-dimensional manifold of four-bar C-
spaces parameterized by the length of the base link,
l1.

Theorem 4 If there are exactly two long links, then
C-space is the double along the boundary of a thicken-
ing of the type of a union of (S1)s × In−s−2.

Here, “double along the boundary” means that the
manifold is duplicated in place, and connected to the
original manifold only along the boundary. The dis-
connected surfaces can then be separated to yield the
new manifold composed of “mirror image” copies on
either side of the original boundary. In the case of a
four-bar, the initial manifold is an arc whose boundary
is the two end points. The double along the boundary
is a circle.

3 Complete Motion Planning Algo-

rithm

We have developed a complete motion planning al-
gorithm, which is divided into two cases based on the
number of components of C-space - one or two. Given
a normalized set of link lengths, C-space is a connected
manifold if and only if the sum of the second and third
longest links is less than 0.5 (i.e., L2+L3 < 0.5). If and
only if the sense of the inequality is reversed, C-space
is the union of two disconnected toroidal manifolds. If
the inequality is replaced by equality, C-space is not a
manifold.

3.1 Case 1: C-Space is not Connected

With two components, one must first be sure that
the start and goal configurations are in the same com-
ponent of C-space. Figure 5 shows a typical linkage
with three long links in configurations belonging to
different components. Regardless of how one stretches
out the short links, the long links cannot move from
“elbow-up” on the left, to “elbow-down” on the right.
Therefore, membership in a particular component can
be checked by simply determining the sign of the angle
between any pair of long links.
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Figure 5: A pair of disconnected configurations of an
n-bar with three long links.

If the start and goal configurations are in different
components, then a connecting path does not exist.
Otherwise, an infinite number of trajectories exist and
planning is a simple matter of generating any continu-
ous connecting path on the surface of the hyper-torus
corresponding to the angles of the short links. In our
implementation, the path is computed by linear inter-
polation (i.e., we follow a geodesic of the hyper-torus).

3.2 Case 2: C-Space is Connected

When C-space is connected, planning is more diffi-
cult. The complexity is proportional to the number of
sub-tori contained in C-space. This number, in turn,
is roughly inversely proportional to number of distinct
“critical radii,” rj , of the linkage, defined as follows:

rj =
n−1
∑

i=1

σili (2)

where σi = ±1. Since the number of critical radii is
generally exponential in the number of links, it is not
practical to construct the full information, that would
be needed for planning “optimal” trajectories. An ex-
ception is when the number of distinct link lengths is



restricted (as would be the case in modular robotic
systems). For example, if there were only two distinct
link lengths, then the number of distinct types of C-
spaces would be proportional to n2, and they are easy
to construct.

For the remainder of this paper, it will be assumed
that link lengths are arbitrary, and that “optimal” al-
gorithms are impractical. The basis of our algorithm
is a procedure we refer to as accordion-move. The
link connected to the left end of the base, lleft, is
moved into its correct final orientation with respect
to the base, lbase, while the remaining links comply
(see Figure 6). Next, the angle between lleft and lbase

Figure 6: An accordion-move for a 6-bar.

is fixed, effectively fusing them into a single link and
reducing the overall link count by one. Figure 7 shows
an accordion-move of the five-bar resulting from the
accordion-move shown in Figure 6. Note that since
kinematic loop closure is independent of link order, for
convenience, our implementation chooses the longest
link as the base while processing each accordion-move.

Figure 7: An accordion-move for the resulting 5-bar.

Our algorithm begins with the starting configura-
tion and performs accordion-moves until one of the
following special states is obtained:

1. The linkage is a four-bar with a connected C-
space.

2. The linkage has two components and the current
and goal configurations are in the same compo-
nent.

3. The linkage has two components and the current
and goal configurations are in different compo-
nents.

Upon reaching the first state, a complete solution is
at hand, since algorithms exist to plan motions of ar-
bitrary four-bars with connected C-spaces. Arrival in
the second state implies that the remainder of the path
can be completed by linear interpolation as discussed
above. If, however, the algorithm obtains the third
state, one can achieve the second state (and hence,
a solution) with one carefully chosen accordion move.
Since prior to the last accordion-move the C-space of
the linkage was connected, the last accordion-move was
responsible for disconnecting the C-space and placing
the current and goal configurations in different com-
ponents. However, one can show that a more carefully
chosen accordion-move can be designed that will dis-
connect C-space in a way that puts the current and
goal configurations in the same component (see [10]
for details).

The algorithm is summarized below under the as-
sumption that a path exists:

0. Given: start and goal states, S and G.

1. Perform an {accordion-move}.

2. Test for arrival in special state.

3. If 1st special state, then complete with

one {4-bar-move}. DONE.

4. Else if 2nd special state, then complete

with linear interpolation. DONE.

5. Else if 3rd special state, then backtrack

and perform special {accordion-move}.

Go to step 2.

6. Else, Go to step 1.

4 Numerical Results

Our algorithm was compared to a simple algorithm
that used only local geometric information. The local
algorithm can be thought of as a proportional con-
troller applied to an open kinematic chain. Imagine
breaking the linkage at the left end of the base link,
yielding an open chain with n−1 revolute joints based
on the right side of the fixed base link. The propor-
tional controller generates corrections to the current
configuration by comparing it with the goal configura-
tion as follows:

[

J

αI

]

dφ =

[

xdesired − xcurrent

φgoal − φcurrent

]

. (3)



where J is the Jacobian matrix for position of the end
point of the (n− 1)-joint open chain, I is the identity
matrix, xdesired is the location of the left end of the
base link, xcurrent is the current location (numerically)
of the left end of the base link, φgoal is goal configu-
ration, of the linkage, φcurrent is the current config-
uration of the linkage, and α is a scalar weight that
determines the relative importance of maintaining the
loop closure constraint and attracting the mechanism
to its goal configuration.

A number of tests were run to verify the correct-
ness of our algorithm and to compare its performance
with the local algorithm just described. For link-
ages with from 4-16 links, link lengths and start and
goal configurations were chosen at random. There-
fore, planning problems with connected and discon-
nected C-spaces were attempted. Since the complete
algorithm was able to recognize solution existence and
then find a solution whenever one existed, the ta-
ble only contains the results of the local algorithm.

numLinks numExist numLocal

4 102 59
5 160 67
6 192 87
8 199 107
10 200 157
12 200 171
16 200 191

For each number of links considered (left-most col-
umn), 200 random problems were generated. The sec-
ond column shows the number of problems for which
solutions existed and the last column shows the num-
ber of problems solved by the local method. Notice
that as the number of links increased, the probabil-
ity of success of the local path planner increased. For
problems with over about 30 links, the local method
solved every problem we generated, but it is guaran-
teed that the local method (and all other purely local
methods) will fail for certain problems even when so-
lutions exists for large numbers of links.

Figure 8 shows a problem drawn from our test set
for which the local algorithm failed. While the local
method generated a smooth motion, it failed to con-
nect the start and goal configurations. Figure 9 shows
the individual joint angle trajectories not achieving
the goal angle targets (the circles on the right side
of the plot). On the other hand, the complete algo-
rithm found a solution with two accordion-moves and
one four-bar-move (see Figure 10). The slope disconti-
nuities at the 20 and 40 steps point indicate the ends
of the accordion-moves.

Figure 8: Planning problem with solution not found
by the local algorithm.
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Figure 9: Faulty trajectory found by the local algo-
rithm.

5 Conclusion

The motion planning problem discussed here ap-
pears at the outset to be a simple motion planning
problem restricted to a smooth manifold described by
holonomic constraints [5]. However, such planning
problems are not easily solved without knowledge of
the topology of the configuration space. The power
of the this knowledge was demonstrated through the
development of a complete algorithm for the planar,
n-bars with all revolute joints. It is able to solve all
problems with solutions, but is slower and produces
less smooth trajectories than typical local algorithms.
While not exhaustive, our numerical experiments sug-
gested that the complete and local algorithms be used
in tandem. The local algorithm should be applied first
on large problems (more than about 15 links). Then,
if it fails, one can call the global algorithm.

While our algorithm works in its current basic form,
there are two primary improvements that we plan to
make: 1) extending accordion-move to bringing more
than one link into its goal orientation in a single move;
and 2) enhancing link selection in accordion-move to
obtain a two-component C-space more rapidly.
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Figure 10: Trajectory found by our complete algo-
rithm.
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