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Abstract

Dexterous manipulation refers to the skillful execution of
object reorienting and repositioning maneuvers, especially
when performed within the grasp of an articulated mechani-
cal hand. In this paper we study the problem of gaining a
secure and enveloping grasp of a two-dimensional object by
exploiting sliding at the contacts between the object and the
hand. This is done in two steps: first, choosing an initial
grasp with which the object can be manipulated away from
the support, and second, continuously altering the grasp so
that envelopment is achieved. The plans generated by our
technique could be executed with only position control. How-
ever, it would be prudent to incorporate contact force sensing
to prevent damage during unexpected events.

The main contributions of this paper are the derivation of
liftability regions of a planar object for use in manipulation
planning: the use of the lifting phase plane in manipulation
planning; and the derivation of the quasi-static forward object
motion problem, which provides a basis for general three-
dimensional manipulation planning with rolling and/or
sliding contacts.

1. Introduction

One desirable application of robotic technology is
automatic assembly using articulated mechanical
hands and flexible fixturing systems. Assuming that
the parts of the product to be assembled are within
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reach of the robot and the sequence of assembly oper-
ations is known. the following fundamental problems
must be addressed: (1) part acquisition, by which is
meant the synthesis and achievement of the desired
grasp; (2) fixture set-up, which is closely related to
grasp synthesis but additionally requires the design of
an accessible partial fixture (Asada and By 1984) as an
intermediate step; and (3) parts mating, which requires
path planning (Brooks 1983) and compliant motion
control (Mason 1979; Whitney 1982; Mason and Sa-
lisbury 1985).

Part acquisition includes the achievement of the
desired grasp, which if not initially accessible, will re-
quire dexterous manipulation actions to be performed.
We define dexterous manipulation as the controlled
movement of the grasped part relative to the hand. In
this paper, we concentrate on part acquisition via
dexterous manipulation. especially for the case of fric-
tionless objects. In so doing, we define the liftability
regions that provide a sound means to synthesize a
suitable initial grasp of an object resting on a support
and a geometric method for pianning subsequent dex-
terous manipulations. Contact forces are not con-
trolled; they are rendered insignificant by the geometry
of the grasp. Therefore manipulation can proceed
under position control. However, contact force sensing
(as opposed to contact force servoing) could be useful
to detect jamming and to prevent damaging fragile
parts.

1.1. Grasp Synthesis

Techniques for synthesizing stable grasps for articu-
lated mechanical hands have been developed based on
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quasi-static analysis coupled with optimization
methods (Jameson 1985), independent regions of
stable contact (Paul 1972; Nguyen 1986), expected
task forces and fine motion requirements (Kobayashi
1984: Li and Sastry 1987), the forces required to cause
one or more contacts to slip (Cutkosky 1985; Holz-
mann and McCarthy 1985), minimization of the con-
tact forces arising from external forces ( Trinkle 1985),
and the potential energy in compliant fingers (Hana-
fusa and Asada 1982). If obstacles such as the part’s
supporting surface do not interfere with placing the
fingers in their designated grasping configurations,
then the synthesized grasp may be executed (i.e., the
part is acquired). If on the other hand. one is not so
lucky, then grasp acquisition must be achieved through
dexterous manipulation beginning with an accessible
but suboptimal grasp. This suboptimal grasp could be
synthesized by adding accessibility constraints to most
any grasp synthesis technique [as was done by Laugier
and Pertin (1983) and Wolter et al. (1984) for the case
of parallel-jawed grippers].

.2. Manipulation

Most researchers considering dexterous manipulation
begin their analysis from the point of an acquired
grasp. For example, Okada (1982) controlled a hand
to turn a nut onto a bolt, Kobayashi’s (1984) experni-
mental hand drew simple figures with a pencil. and
Kerr (1984) deveioped the general differential equa-
tions for dexterous manipulation. These studies
were done assuming only rolling contacts exist. En-
forcing this assumption requires that manipulation
be carried out under force and position control

and unduly limits the manipulation that can be
performed.

Attempts to quantify the effects of sliding during
manipulation were first made by Mason and Salisbury
(1985) for the case of pushed objects sliding quasi-stat-
ically in a horizontal plane. Peshkin and Sanderson
(1988) found quantitative bounds on several of
Mason’s qualitative results by considering all possible
supporting contact distributions. Also working in the

plane. Brost (1985) and Erdmann and Mason (1986)
developed techniques to remove aii uncertainty in the
ortentation of planar objects, the former through
squeeze grasping operations with a parailel-jawed grip-
per and the latter by planning a sequence of tilting
operations of a rectangular tray containing the object.
Another planar manipulation problem was studied by
Fearing (1986; 1987), who developed a manipulation
algorithm (utilizing both sliding and rolling contact
states) to enable the Salisbury hand to “twirl a baton”
in a vertical plane. Also using the Salisbury hand,
Brock (1988) demonstrated manipulation with “con-
trolled slip.” For manipulation of a three-fingertip
grasp, his method can be viewed as choosing two fin-
gertip contacts to define an axis of rotation. Those two
fingers apply a somewhat larger normal force than the
third fingertip, which is dragged across the object so
that its friction force applies a moment and induces
rotation about the axis defined by the two fingertips.
One other study on contact slippage was undertaken
by Nguyen (1986). He was concerned with the stability
of static grasps for which manipulation occurred *pas-
sively” (that is, the object’s motion resulted from the
deformation of the hand in response to changes in the
external wrench applied to the object). Active manipu-
lation was not considered.

The only work on active sliding manipulation for
general three-dimensional objects has been done by Ji
(1987) and Trinkle (1987). Ji's dissertation contains
results for fingertip grasps analogous to those devel-
oped by Kerr (1984) for fingertips with rolling con-
tacts. His result’s major weakness is that it relies on the
contacts’ constraining the object such that there is a
unique kinematically admissible motion. Trinkle de-
veloped the frictionless object motion problem specifi-
cally to predict the motion of the grasped object in
response to the motion of the robot when there is more
than one (usually an infinite set of)) kinematically
admissible motion.

In the following analysis, we consider the quasi-
static motion of a manipulated object. Even though
uncertainty exists in the precise descriptions of the
contact forces, the resuitant force and the object’s
geometry are always known. These facts allow ex-
act computation of the object’s instantaneous velo-
city given the instantaneous velocity of the paim and
fingers.
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2. Liftability of Rigid Bodies

One reason to grasp an object is to gain complete con-
trol over its position and orientation. Thus we propose
that an object is grasped by a robot if the object con-
tacts only the robot’s hand. If other bodies such as the
support are allowed to contact the object, then those
bodies will usurp a portion of the control over the
object’s motion. Therefore the first goal in grasping is
to manipulate the object so that it loses all contact
with the support. For this to be possible. the object
must be /iftable. The notion of liftability is a general-
ization of tippability, which is discussed elsewhere
(Trinkle 1988).

Definition: An object is /iftable if and only if there
exist finger contact positions on its surface for
which increasing the magnitudes of the internal
grasp forces (i.e., squeezing) applied by the fingers
initiates motion, causing at least one of the sup-
porting contacts to break.

In this definition of liftability regions, we focus on
lifting by manipulation with sliding contacts; we are
not concerned with the possibility that the object may
be lifted by a hand using a non-sliding, force closure
grasp achievable on accessible portions of the object’s
surface. Previous research results may be applied to
this problem in a straightforward manner (Nguyen
1986).

2. Liftability Regions of Frictionless Planar Objects

Liftability regions define the qualitative motion of a
squeezed object (i.e., rotate left, rotate right, translate,
or jam) based on the geometry of the grasp. To deter-
mine these regions, we need a contact model that ac-
curately represents the kinematic constraints and the
appropriate limiting cases of the contact force distribu-
tions that identify the qualitative motion. The exact
force distribution of a contact region is irrelevant. A
model that satisfies these requirements is to consider
all contacts as a set of one or more point contacts. A
contact of small area is considered to be a single point.
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Fig. 1. Two-point initial
grasp.
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One with a large planar area is approximated by the
set of points defining the vertices of the convex huil of
the contact. Curved contact areas can be approxi-
mated by several polygons. During the following de-
velopment, objects are assumed to be two-dimen-
sional. However, any three-dimensional object that
can be approximated as a generalized cylinder can be
analyzed by our method by considering a suitable
cross section of the cylinder.

Consider the two-point initial grasp of the friction-
less. rigid, planar object depicted in Figure 1. The
forces acting on the object are the finger contact forces
(f, and f,), the supporting contact forces (f; and f, ),
and the weight of the object (mg).

Under quasi-static conditions. the object must
always satisfv the equilibrium relationships. which
may be written as

We=—g,, (1)

c=0, (2)

(41
i, i, A, A || ¢, B i,
[d, d, d, da] G mg[dx]
Ca

d;=r; X ii;

=

The International Journal of Robotics Research



where W is the (3 X 4) wrench matrix, c is the vector
of wrench intensities, g is the external wrench (i.e..
force and moment) (Ohwovoriole 1980) acting on the
object, fi; is the ith contact’s unit normal vector di-
rected inward with respect to the object, @i, is the di-
rection in which the external force acts on the object,
d, is the moment arm of the ith contact normal mea-
sured with respect to the summing point g, which is
defined by the intersections of ii, and d,, and d, is the
moment arm of the external force. The vector in-
equality (2) applies element by element. If we choose
the external wrench g, to be that caused by gravity,
the solution to equation (1) is given by

Cy 0 bll
€y 0 1
= +c 3)
4 €y ? by (
Cs Cao baa
where
cm——’g‘gﬁi‘>0, Cao mgi‘%‘*—-—d‘l>0, (4)
3 3
_ _Cosya) __4
b2 = " Cos wy) ba= " ©)

bz‘ dz + Sln (Wl - '//2)

=22 6
dy cos (¥,) ©)

w, is the angle of the ith inward contact normal mea-
sured counterclockwise with respect to horizontal.
Note that the second term on the right side of equation
(3) is known as the internal grasping force (Salisbury
1982), because increasing ¢, increases the contact
forces without changing the total force applied to the
object.

To lift the object by squeezing, either ¢; or ¢, must
be reduced to zero by increasing ¢, and ¢,. The first
row of equation (3) implies that for ¢, to increase with
¢;, the following inequalities must hold:

cosy, <0 (7)

cosy, >0 )]

where without loss of generality, the first contact has
arbitrarily been chosen to be on the right side of the
object. If inequalities (7) and (8) are not simuita-
neously satisfied, then squeezing will resuit in an un-
stable grasp; the object will slide out of the grasp to the
left. For c; or c, to be driven to zero, at least one of by,
and b,, must be negative. Equating the third and
fourth rows of equation (3) to zero gives the values of
¢, required to break the third and fourth contacts,
respectively

d,

med,
= ©)

=

o= —mg(d; + d,) cos (y1)
¥ dycos (y,) + dysin (y, — ¥2)

(10)

Since c, is increased gradually after achieving the ini-
tial grasp, the contact that will break is the one corre-
sponding to the smaller nonnegative value of ¢, {nega-
tive values of ¢, violate inequality (2)]. Thus equations
(9) and (10) with inequalities (7) and (8) can be used
to predict the motion caused by squeezing for every
possible grasping configuration.

The magnitudes c,; and ¢,, depend on the grasp
parameters ¥, ¥/, and d,. If we fix the position of the
first finger’s contact. then y, is constant. and y, and
d, vary. Considering all possible contact points (and
angles at vertices) for the second finger, the perimeter
P may be partitioned into five mutually exclusive
liftability regions S, J, B3, B4, and T that satisfy the
following relationship:

SUJUB3UBAUT=P (1

These regions correspond to possible contact points
for the second finger for which squeezing causes the
object to: slide along the support (S); jam the fingers
(J), resulting in the object’s being pressed against the
support; tip, breaking the third contact (B3); tip,
breaking the fourth contact (B4); and translate (T") or
rotate, breaking the third and fourth contacts simuita-
neously. Figure 2 shows the liftability regions using a
coded curve offset from the perimeter of the object.
The codes corresponding to S, J, B3, B4, and T are:
dashed curve, no curve, solid bold curve, thin solid
curve, and double-bold solid curve. In Figure 2 the
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Fig. 2. Liftability regions.
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translation region is a set of distinct points, so no dou-
ble-boid curve segments are visible.

2.2. Liftability Regions of Frictionless Polygons

A polygon can be used to approximate any two-di-
mensional object with arbitrary precision. Therefore
we discuss the liftability regions of polygons in detail
and then show how the resuits can be applied to
curved objects.

The sliding region S is the portion of the perimeter
for which the inward normal of the second contact has
either no horizontal component or has a horizontal
component with the same sense as that of f; . In Figure
3, S is comprised of edges 0. 1, 2. and 3; vertices 1. 2.
and 3; and a portion of vertex 4.! If the second finger
contacts the polygon in S, squeezing will cause sliding
to the left.

The regions J, B3, B4, and T are partitions of the
remaining perimeter denoted by S’. Consider the kth
edge of the polygon in Figure 3. Points p lying on the

What is meant by a portion of a vertex will be made clear later.
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Fig. 3. Quanuities for edge
lifiability regions.
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line /, containing the edge can be wntten in paramet-
ric form as
(1= 5)Ve + SV =P (12)
where v, represents the ith vertex of the polygon and
the kth edge is defined by s € [0, 1]. The line /,,, is the
unique line that is perpendicular to /, and contains the
point q,,. The intersection of /,,, with the kth edge
defines the contact point where d,, the moment arm
of the second contact force. is zero. The vanables s
and d, are linearly related by
d2 =S5 d4a. (l3 )
where a is the value of s at the intersection of /, and
L,pa- Since @, varies linearly along the edge, ¢,3 and ¢y
describe hyperboias along /, as shown in Figure 4.
Note that the vertical asymptote of ¢y, is located at a
positive value of d,. This is the case defined by the
following inequality:
sin (¥, — y;) <0. (14)
When inequality (14) is satisfied. a jamming region J
lies between the vertical asymptotes of the two hyper-
bolas, and the jamming window JW is the closed line
segment [q,3, 4,4]. The breaking regions B3 and B4
lie to the right and left of the jamming region. Since
the values of ¢,; and ¢,, are not equal at any point on
the edge, the translation region T is empty, implying
that translational lifting is impossible if the second
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Fig. 4. Formation of edge
regions B3, B4, and J.

dy sin(y,-y,)

f3 f4

finger contacts that edge. Note that the physical signif-
icance of inequality (14) is that the resultant of the
finger contact forces is in the direction of the gravity
force. Therefore, to avoid jamming and to cause tip-
ping, one must push down on the edge at a suitable
point.

If the sense of inequality (14) is reversed.

sin (y, — y3) > 0.

then the functions ¢,; and ¢, overlap, eliminating the
jamming region (Fig. 5). The regions B3 and B4 meet
at the crossover point dy,:

dy, = dgsin (v, — ¥3)

cos (y,) (16)
For the edge in question, d,_ is the only point that is
an element of T. The contact normal from the point
d,. passes through the point q,,, called the transiation
window TW. If inequality (15) is satisfied, then the
resultant of the finger’s contact forces opposes gravity.
Therefore, as the hand squeezes more and more
tightly, the object must rise, because its weight is over-
come.

The second contact point need not occur on an

Fig. 5. Formation of edge

: Fig. 6. Vertex liftability
regions B3, B4, and T.

regions.

edge of the polygon. It may occur on the kth vertex, in
which case the contact angle y, is free to vary between
the inward normals of edges k and & — 1 (Fig. 6), so
that d, varies according to

d, = ipyal sin (g — ¥2), (17)
where the vector p,, is the position of the second con-
tact point with respect to q ., and g is the angle of p,4
measured counterclockwise with respect to horizontal.
Substituting equation (17) into equations (9) and (10)
allows one to determine the liftability regions of a
vertex. Figure 6 shows the edge of the second finger
against the kth vertex in the region B3. Examination
of the polar plots of ¢,; and ¢, allows one to see that
rotating the finger clockwise or counterclockwise
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Fig. 7. Liftability regions of
an edge.

places the contact in region B4. Thus for a vertex, the
liftability regions are defined as partitions of the range
of possible contact normai angles.

2.3. Translational Liftoff

The first goal during dexterous manipulation is to
break all contact with the support. Therefore it makes
sense to use the translation region in planning the
initial grasp. With only two finger contacts. the trans-
lation region is a set of distinct points and is impossi-
ble to contact (practically speaking).2 However, a
three-point initial grasp generates a translation region
with finite length, making its use practical.

One way to achieve a third finger contact is by lay-
ing a finger against an edge of the polygon. This con-
dition is indicated by two solid black triangles denoting
two points of contact on a single edge (Fig. 7). Equi-
librium equation (1) becomes

We=—g. (1)

41

f, B, A, A, A]| ;

[1 2 D3 N4 “5] " =_mg[ﬂg]

d d, dy d, ds } d,
Ca
[ Cs

di=r; X u= , S

The particular solution of equation (1) in which we
are interested is the one for which the third and fourth
contacts break. and the first, second. and fifth contacts
are maintained. These conditions can be stated as
;=0 ¢,=0 >0 >0 ¢>0.
Removing the third and fourth columns from W and
noting that y, = y; and #, = i, = —ii,, equation (1)
can be solved for the type of initial grasp shown in

Figure 7. Substituting the result into inequality (18)
vields

sin(y, ¥,)>0
dy>0
dg sin (Y, — y,) |, ds cos (y,)
cos (¥,) cos (y,)
<dy<BESnWiTv)
cos (¥,)

Inequalities (19)® and (20) are necessary conditions for
translation. We observe that inequality (20) can
always be satisfied by suitably numbering the contact
points. However, inequality (19) can only be satisfied
by contacting the polygon on certain edges or portions
of vertices. Inequality (21) defines the transiation re-
gion T in which squeezing with the second finger
causes the object to translate along the first finger
breaking both support contacts. This region consists of

2. The points can be vertices of the polygon, but precise contact
angles are required for translation. Positioning errors make it impos-
sible to achieve the exact contact angles.

30

3. Note that inequality (19) is identical to inequality (15), which
was seen above to be a necessary condition for translation with a
two-point initial grasp.
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Fig. 8. Liftability regions of
a vertex.

Fig. 9. Regions S and §' and
PT and PJ.

all points external to the sliding region S whose nor-
mals satisfy inequality (19) and pass through the trans-
lation window. The addition of the fifth contact has
caused the translation window to grow from the point
q,, to the open line segment (q,,, qs,). Figure 7 illus-
trates the translation window THW and the translation
region T (and B3 and B4) of one edge for a specific
placement of the first finger. For a vertex, the transla-
tion region is determined by substituting equation (17)
into inequality (21) (Fig. 8).

2.4. Graphical Construction of Liftability Regions

A graphical method to determine the liftability regions
of any planar curve with or without vertices for two-
and three-point initial grasps has been developed based
on the above analysis. It is best to illustrate the method
with the following example.

Two-Point Initial Grasps

First, the perimeter of the object is partioned into the
complementary regions S and S’ as shown inside the
object’s perimeter in Figure 9. The region S is the set

Fig. 10. Regions B3y, B4+,
and T.

of points p for which all local contact normals have a
nonpositive component in the x direction. The region
S’ is the set of points whose normals have positive x
components.

S={p: cos(y)=<0)

S'={p: cos(y)>0)
where the prime denotes the set complement operation.
Second, the first finger’s contact is chosen to satisfy
inequality (7) (i.e., the first contact point is in the inte-
rior of S). Therefore, to satisfy equilibrium relation-
ships (1) and (2), the second finger’s contact must be in
S’. Next we divide S’ into regions of possible transia-
tion PT and possible jamming PJ based on inequalities
(14) and (19):

PT={p: sin(y,—y;)>0 and pES’)

PJ={p: sin(y;,—y,;)=<0 and peS’). (25)
The partitions are shown outside the object’s perimeter
in Figure 9.

Third, we define the points q,3, q,4, and q,,. They
are at the intersections of the lines of action of the
third, fourth, and gravity forces, respectively, with the
line of action of the first contact force (Fig. 10).

Fourth, the region PT is broken into B3, B4r, and
T. Points in PT whose contact normals pass through
the transiation window q,, belong to T. Points whose
normals produce positive or negative moments with
respect to the translation window belong to Z4, or
B3, respectively (see Fig. 10):

B3;=(p: p,XH,<0and pEPT} (26)

Bar={p: p,,Xii,>0and pEPT) (27)
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Fig. 11. Regions B3,, B4,

Fig. 12. Liftability regions
and].

Jor a two-point initial grasp.
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T={(p: p,Xi,=0 and p € PT)

(28)

where recall p;; is the position of the second contact
point relative to q;;, and i, is the normal unit vector
of the second contact.

Fifth, PJis divided into B3,, B4,, and J. Points in
PJ whose contact normals intersect the jamming win-
dow [q,3, 4,4] are elements of J. The points whose
normals do not intersect the jamming window and
generate a positive or negative moment with respect to
q,, belong to region B4, or B3, respectively (Fig. 11).

B3, ={p: pX0,<0 and p€E PJ) (29)

B4, =(p: p; X10,>0 and p € PJ} (30)

J={p: paXf,<0and pXi,=0 31)
and p € PJ}

Finally, the liftability regions J and T are complete.
However, the regions B3 and B4 must be formed by
the unions of the individual B3s and B4s found in
steps 4 and 5.

32

Fig. 13. Lifiability regions
Jor a three-point initial grasp.

N
Q3
Qs
J S finger
Jr
J ¥ G
T\ Q|5
T J QW
77777777 WMA77 227 7777777777777 777A777777777
/q/'( Tfa
B3 13113
B3 = B3,U B3, (32)
B4 = B4, U B4,.

Figure 12 shows the liftability regions. Note that by
construction, the liftability regions are mutually exclu-
sive and contain every point on the perimeter P.

Three-Point Initial Grasp

The liftability regions for a three-point initial grasp
can be formed by combining the liftability regions cor-
responding to the two possible two-point initial
grasps.* Let S;, J;, B3;, B4,, and T, denote the liftabil-
ity regions when considering only the ith contact;

i € (1, 5). Denote by S, J, B3. B4, and T the liftability
regions for the three-point grasp. In the appendix we
show that the following reiationships hoid:

§=5,=S5,

I FASPATHA
B3 = B3, N B3,
B4 = B4, (N B,

T =(B3,N Ba;NJ/)U(T, N Bd;) U (TN B4,)

4. There are three possible initial two-point grasps, one of which
must cause the object to slide left or nght.
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Fig. 14. Liftability regions
Jor two-point and three-point
initial grasps of several
polygons. Note that the ob-
Ject on the left does not de-
velop a translation region.
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Equations (35)-(39) imply that the regions Jand T
grow at the expense of B3 and B4. Thus we see that
including an extra contact point allows a grasp to be
achieved in the translation region but leaves less of the
perimeter available for tipping grasps.

The additional jamming region J; and the new
translation region T can be found graphicaily by using
the new transiation window (q,,, qs,) (Fig. 13). There
are two cases: qs on the right of the translation win-
dow and q,;5 on the left. For q,5 on the right, the trans-
lation region consists of those points, elements of S’,
whose contact normals pass through the transiation
window and (qs,, q;s). The region J; contains ail
points in S’ whose normals pass through the transla-
tion window and (q,4, 4,s).- For q,5 on the left, the
translation region consists of the points in S’ whose
contact normals pass through the translation window
and (q,,, q,5)- The region J contains all points in S’
whose normals pass through the translation window
and (q,s, qs3)- These facts can be used to find the

B3
e

TT7777XI7777777777777777

B3

.

841 -<
/////f}'//f/f/// 7777777
B3

most important liftability region, 7, without comput-
ing all the liftability regions for both two-point grasps.

Figure 14 shows the positions of contacts | and 5
for several polygons. The perimeter of each object is
grown and coded as described in the last paragraph of
section 2.1. The first row of the figure shows the lifta-
bility regions for two-point initial grasps, and therefore
no translation regions are visible. The second row
shows the regions for three-point initial grasps. Note
that translation regions have appeared, but the jam-
ming regions have grown.

2.5. Liftability Regions with Friction

When friction is present, the method for computing
the liftability regions becomes more complicated.
However, a conservative subset of the translation re-
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Fig. 15. Grasp in T with
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gion can be determined much like before. The transla-
tion window is the portion of the line of action of the
gravitational force lying between the friction cones of
the forces f, and f; as illustrated in Figure 15. The
translation region consists of the points on the object’s
perimeter for which the cone of f, is completely within
the translation window. Under these conditions all
finger contacts will be maintained during squeezing or
releasing. As in the frictionless case, we can guarantee
that the object will translate on finger 1 if the follow-
ing sufficient conditions are met. First,

sin (@5 — ¢,) > 0 (40)
where ¢,5 = max (¢,, @), ¢, and ¢ are the angles of
the counterclockwise-most edges of cones | and 5, and
¢, is the angle of the clockwise-most edge of cone 2.
Second, finger 2 contacts the object in the translation
region. It may seem, because the translation region is
smaller with friction than without, that lifting has
become more difficult. However, the correct interpre-
tation is that friction hinders (translational) sliding
manipulation while facilitating lifting via grasps with
rolling contacts.

Figure 16 shows a force diagram for the grasp de-
picted in Figure 15. The lower cone f, corresponds to
the possible forces acting at the second contact point.
The upper cone represents all possible linear combina-
tions of the forces generated at the other two contact
points. The point E represents a particular combina-
tion of contact forces that result in the object’s equilib-
rium. If E is on the interior of the quadrilateral ABCD,
then the object remains fixed relative to the hand. As

34

Fig. 16. Grasp force diagram.

the internal grasp force is increased, the magnitude of
f, increases. Eventually E reaches the boundary 4B, at
which point the object begins sliding up finger 1. Al-
ternatively, the internal grasp force could be reduced
until the object slides down. Because sliding on finger
1 typically results in sliding on finger 2, it is expected
that the trajectory of E will terminate at points B and
D. If termination occurs on AB or CD, then the sec-
ond finger’s motion would be required to comply with
that of the object. For example, if E lies on the inte-
nior of the line segment 4B, then contacts | and § are
sliding, because the contact forces f, and f; lie on the
edge of their friction cone. However, contact force f,
lies within its cone, which implies that the second
contact point on the object and finger must have iden-
tical velocities.

If inequality (40) is not satisfied, edges AB and BC
become infinite, making it impossible to cause the
object to slide up finger 1 by squeezing. An example
of this situation occurs when the contacts are on paral-
lel edges of an object. It should be noted, however,
that edges AD and DC are always finite for stable
grasps, which implies that an object will always slide
out of the hand if the internal grasp force is reduced
enough.

One remaining concern is that the boundaries AB
and CD of the quadrilateral are conservative estimates.
The cone —(f, U f;) allows for all possible combina-
tions of the first and fifth contact forces. Since effects
of deformation will determine the nature of load shar-
ing between contacts | and 5, realistic boundaries AB
and CD will be on the interior of the quadrilateral, so
that the predicted internal grasp force to cause sliding
will be greater than the actual value.
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In pianning, one must specify the intended motion
of the object (i.e., up or down finger 1). Given this
knowledge, the conservatively formed transiation win-
dow may be expanded to the upper edge of the cone f;
for upward sliding or expanded to the lower edge of
the cone f, for downward sliding. If, in addition, one
knows the intended contact velocity of finger 2, then
the translation region may be determined by requiring
the appropriate edge of the cone of f, (rather than the
entire cone) to pass through the translation window.
Thus when translation manipulation is prespecified,
the translation region is found as though the object
were frictionless but with the contact normals rotated
in the appropriate directions by the amounts of the
friction angles.

The motion of the object for all other frictionless
grasp configurations and finger motions can be pre-
dicted by solving the forward object motion problem.
Trinkle (1987) found the velocity of a frictionless ob-
ject as the solution of a linear program. It was deter-
mined that such an object will move to minimize its
rate of gain of potential energy while adhering to the
velocity constraints imposed by the fingers. The fric-
tionless assumption is quite limiting but is successfully
removed in the following section.

2.6. Forward Object Motion Problem with Coulomb
Friction

The forward object motion problem can be extended to
include Coulomb friction using Peshkin’s minimum
power principle (Peshkin and Sanderson 1989).
Roughly speaking the “. . . minimum power princi-
ple states that a system chooses at every instant the
lowest energy of ‘easiest’ motion in conformity with
the constraints.” This principle applies only to quasi-
static systems subject to forces of constraint (i.e., nor-
mal forces), Coulomb friction forces, and forces inde-
pendent of velocity. For this principle, the power is
defined as

Pe== i Vi (41)
i

where v, is the velocity of the ith point of application

of external forces, and f; is the sum of the external
forces, excluding constraint forces, applied to the ith
point. Included in P, are the friction and gravitational
forces. The normal forces at the contacts are omitted.
Thus P, is only a fraction of the object’s power.

The wrench w;, applied to the object through the ith
point contact with friction, can be written as the prod-
uct of the ith contact’s unit wrench matrix W, and the
wrench intensity vector ¢;,

w, = W;¢;;

i= s Pes

where 7. is the number of contact points,

a - Cit
o, i, _
t, Xy r,-Xii]’ G \:Cw]' (43)

Cin

r; is the position of the ith contact point, i, is the con-
tact’s unit normal directed inward with respect to the
object, t, and §, are orthogonal unit vectors defining
the contact tangent plane, and the elements of c; are
the components of the ith contact force in the t;, o,
and i, directions. Including all contacts, the equilib-
rium equation (1) can be partitioned as follows:

cl
(W, W, W.]l¢c

where

with W,, W,, c,, and ¢, defined in parallel fashion.
The above partitioning of the wrench matrix allows us
to write the sum of the friction wrenches as W, ¢, +
W, ¢, and the sum of the contact normal wrenches as
W, c,. We now form the equation for the power as
follows:

Pee= —«w{gm + W, W] [;]}
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where q,, represents the object’s linear and angular
velocities and the superscript T denotes matrix trans-
position. Given the joint velocities of the hand and
arm, 6, the velocity of the object may be found by
minimizing P, subject to the rigid body velocity con-
straints and the Coulomb friction constraints. The
velocity constraints disallow interference between rigid
bodies and may be written as
wanob = Jn 09 (47)
where J,, is the partition of the global grasp Jacobian
[Kerr 1984; also called the global transmitted grasp
Jacobian (Trinkle 1987)] corresponding to the normal
components of the contact velocities, and W, T 4,
and J, 6 are the vectors of the normal velocity compo-
nents of the contact points on the object and the
hand. respectively.
The Coulomb friction constraints require that the
ith contact force lie within the friction cone given by
htchsuich  i=1,

, N (48)

Cn=0: = , N, (49)
where ; is the coefficient of friction acting at the ith
contact point. Inequality (48) may be written in matrix
form as follows

¢TD;c;=0: i= , N (50)
where
-t 0 0
D=0 -1 0 (51)
0 0 p?

Application of the minimum power principle re-
quires that P, be minimized subject to inequalities
(47), (49), and (50). One might think that the equilib-
rium equation (1) should also be used to constrain the
minimization. However, by formulating and examin-
ing the dual optimization problem, one finds that
equilibrium equation (1) is implicitly satisfied and that
inequality (49) is redundant. Thus the primal problem
is given by
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Minimize P_= —qwr{g‘, + (W, W,] [:]} (46)

Subjectto: W,T q,=J, 8 (47)

¢t D; ¢, =0; [= s N
with unknowns q,,, ¢,, ¢, and ¢, (implicit in the vec-
tors ¢;).

Applying the Kuhn-Tucker optimality conditions
{Beveridge and Schechter 1970) to the primal problem
vields the dual constraints. The dual objective func-
tion is derived by substituting the velocity constraints
into the primal objective function and considering the
implications of maximizing the result. After some
manipulation, the dual problem is seen to be

Maximize P.=6%J, 4
Subject to: 2.+ [W, WO][:'] +W, A=0

WT q,+2NT D, c,=0 (54)

W, 4, +2NT D, c,=0 (55)

ANT D, c,=0 (56)

Az0 (57)

nz0 (58

where 1 is the vector of Lagrange multipliers associated
with inequality (47), N is a diagonal matrix whose
nonzero elements are the Lagrange multipliers #; asso-
ciated with inequalities (50), D, and D, are identity
matrices. and D, is a diagonal matrix with nonzero el-
ements given by —u2. It is well known that the value
of the Lagrange multiplier associated with a specific
rigid contact constraint is equal to the magnitude of
the normal force necessary to maintain contact
(Lanczos 1986). Therefore the vector A is equivalent to
c,, and it is evident that constraint (53) is equivalent
to the equilibrium equation (1), and constraint (57) is
equivalent to inequality (49).

At the optimal solution, both the primal constraints
and the dual constraints are satisfied: therefore the
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primal problem defined by the nonlinear program.
(46), (47), and (50), need not include the equilibrium
equation. Another interesting point is that for all feasi-
ble solutions, the primal and duai objective functions
satisfy the following relationship

éT JnT €, S —‘iobT Ber — ‘iobT[wx wo] [sr]’ (59)

with equality holding only at the optimal solution.
The term on the left side of the inequality is the power
applied to the object by the forces of constraint. The
terms on the right are the rate of gain of potential
energy and the power dissipation through Coulomb
friction. Thus at the optimal solution, expression (59)
has the following physical interpretation. The motion
of the fingers in the direction of the contact normals
supplies power to the object. Some of that power is
lost to friction. What remains goes into lifting the
object. Consequently every suboptimal solution must
defy conservation of energy.

2.7. Extension: Sliding Contacts

The primal forward object motion problem (46), (47),
and (50) is complete for rolling contacts but not for
sliding contacts. If sliding occurs at the ith contact,
then the ith inequality in (47) and inequality (50)
must be satisfied as equalities. The former implies the
sliding condition, and the latter requires the contact
force to lie on the boundary of the friction cone. The
Coulomb model of friction also specifies that the con-
tact force be anti-parallel to the relative contact veloc-
ity. This specification was concisely expressed by Ja-
meson (1985) as

(60)

., N

., n.  (61)
where €v,, is the relative contact velocity (or simply
contact velocity) expressed with respect to the ith con-
tact frame. Constraint (60) requires that contact force
to lie in the plane formed by the sliding velocity vector

and the contact normal. Constraint (61) implies :nat
the friction force opposes the contact velocity, tnzreby
dissipating power. The contact velocity is given by

Va=WTdp—J; 6, i=1,...,n, (62
where J; is the transmitted Jacobian of the ith contact
(Trinkle 1987). Relations (60) and (61) may be written
in terms of the wrench intensities and the object and
arm velocities as the following set of nonsmooth, non-
convex constraints

TAWTG,~c¢TAJ 6=0 = 5 (63)

TWT q,—cTJ 60 (64)

i=1, . N

where A, is the skew-symmetric cross product matrix
associated with the unit normal at the ith contact f;.
The complete primal problem is now given by

Minimize P, =—q,T {g‘, +(W, W,] [::]} (46)
Subject to: W, 4,217, 6 47
¢"D, c,20. i€Q (50)
TAWTG,—cTAJO=0 €Y (63)

T WT qe—cTJ 0. i€ (64)

where Q and ¥ represent the set of contact points
assumed to be maintained and sliding, respectively.
More precisely. we write

wniT (iob =jm'T 6}

Q={i

¥Y={( ieQng! D;c;=0}
where w, T is the ith row of W, T, and j,;" is the ith
row of J,. Constraints (63) and (64) complete the
Coulomb friction model without which friction forces
could create rather than dissipate power, resulting in
an unbounded objective function. ‘
To determine q,,, P, must be minimized subject to
the rigid body velocity constraints (47) and the Cou-
lomb friction constraints (50), (63), and (64). The
object will execute the motion corresponding to the
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feasible solution of least power. If no feasible solution
exists. then the proposed motion of the robot is kine-
matically inadmissibie (i.e., the mechanism will jam).
If the minimum power solution is unbounded, then
the proposed motion causes the grasp configuration to
become unstable (i.e., danger of dropping the object is
imminent).

Clearly the general forward object motion problem
depends not only on the grasp configuration but also
on the velocities of the contacts. Therefore it is not
possible to define liftability regions and use them in
planning. Each grasp and desired vector of joint veloc-
ities must be considered separately.

2.8. Special Case: Frictionless Contacts

The forward object motion problem given above re-
duces to a linear program when friction is absent. This
simplification may be seen by noting that the only
nonlinear constraints, (50), (63), and (64), are re-
moved, because they are a result of the Coulomb fric-
tion model. In addition, since friction forces no longer
dissipate power, the second term in the primal object
function (and the associated variables ¢, and ¢,) be-
comes zero. Thus in the frictionless case, the primal
forward object motion problem reduces to the follow-
ing single linear program, called the velocity formuia-
tion of the frictionless object motion problem:

Minimize P, =—q," L. (65)

Subject to: W,T 4= J, 6. (47)
The input of this formulation is, as before, the vector
of joint velocities of the robot. Its output is the contact
forces [i.e., the Lagrange multipliers associated with
inequality (47)], the velocity of the object, and the
nature of the contact interactions. The contact interac-
tions are indicated by the values of the Lagrange mul-
tipliers: if the ith multiplier is zero, then the bodies are
separating at the ith contact; if the ith multiplier is
positive, then the bodies are sliding on one another at
the ith contact; negative values of the mulitipliers are
impossible. Note that this linear program (derived
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beginning with Peshkin’s minimum power principle)
is identical to that derived by Trinkle (1987), who
began with the assumption that a manipulated fric-
tionless object would move upward as little as possible.

The dual linear program is called the force formula-
tion of the frictionless object motion problem and is
stated as follows:

Maximize P.=6T J, ,
Subject to: g, +W, c,=0
¢, = 0.

The velocity and force formulations are equivalent.
and therefore the input-output relationship for the
dual is identical to that of the primal. As was the case
for the formulations with friction, the primal and dual
solutions are equivalent at the optimal solution so that
energy is conserved.

3. Manipulation Planning

The ultimate goal of our analysis is to provide a
framework in which intelligent dexterous manipula-
tion can be planned for articulated mechanical hands.
Intelligent dexterous manipulation can be considered
to be the continuous evolution of a stable grasp from
an undesirable configuration to one appropriate to the
performance of a given task. The simplest task is a
pick-and-place operation, which can be easily per-
formed with a parallel-jawed gripper if friction is sig-
nificant. However, such a gripper is useless in the fric-
tionless case. To hold an object without friction
requires that the hand envelop the gbject much as one
would grip a wet piece of ice. Therefore under slippery
conditions an articulated hand is necessary.

Figure 17(A) shows the simplest two-dimensional
articulated hand performing an enveloping grasp [also
called a form closure grasp (Lakshminarayana 1978)]
of a frictionless object. For the remainder of this arti-
cle, objects are considered to be convex frictionless

polygons, and the hand is assumed to be the one pic-
tured in Figure 17.
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Fig. 17. A, A form closure
grasp of the object. B, A
typical force closure grasp.

(@) (b)

A frictionless enveloping grasp must satisfy the
equilibrium relationships

wn Ch= T Bex (1)
c, =0, (2)

for any external wrench acting on the object (recall
that the subscript n identifies the normai components
of the contact forces). Equivalently, the nonnegative
column span of W, must be equal to the space of pos-
sible external wrenches (for the two-dimensional prob-
lem, g,,, € R?, where R3 represents Euclidean three-
space). Another way to think of envelopment is that if
the joints are locked, then the object cannot move.
That is. the object is completely restrained by the form
or surface of the hand. This constraint condition is
expressed by substituting O for 8 in inequality (47),

W,T 4, =0 (68)
and requiring that only the trivial solution exist (i.e.,
c‘lob = 0)-

A second type of stable grasp is called a force closure
grasp. It still satisfies relationships (1) and (2), but not
for all possible external wrenches. For force closure,
the nonnegative column span of W, defines a convex
cone C* (Goodman and Tucker 1956) that is a subset
of the space of possible external wrenches. If the nega-
tive of the external wrench lies within C*, then the
grasp exhibits force closure. Therefore stability de-
pends on the external wrench or force, hence the name
“force closure.” Figure 17(B) shows a force closure
grasp. If gravity were acting up the page instead of
down, the object would fall toward the palm.

Assuming our goal is to perform safe pick-and-place
operations, each object must be manipulated away

Fig. 18. Intended initial
grasp.

from its support surface and into an enveloping grasp.
To achieve this goal, planning is broken into two
phases: the pre-liftoff phase and the /ifting phase.

3. Pre-Liftoff Phase

The objective of the pre-liftoff phase is to find a realiz-
able initial grasp that guarantees that the object can be
manipulated away from the support while moving
closer to the palm. The simplest way to achieve this
objective is 1o choose a grasp in the translation region.
Squeezing then causes the object to transiate upward,
breaking all contact with the support (Fig. [8). All
possible initial grasps of this type can be found using
the following procedure:

1. Designate one finger to lie along an edge of the

polygon.

2. Compute the transiation region 7.

3. Solve for the joint angles to contact the object

in T with the other finger.

4. Check for geometric interference.

. If T is empty or step 3 has no solution or inter-
ference is detected, reject the grasp; otherwise
accept the grasp as feasible.

6. Return to step | until all combinations of

finger and edge have been considered.

wn

When choosing an initial grasp, preference should
be given to those for which the second contact point is
near the center of a large translation region, because
those grasps will be least sensitive to position errors.
For example, consider the intended initial grasp shown
in Figure 18. Position errors could cause any or all of
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the following scenarios:

1. Error in vertical position of finger 1, dy: q,,
moves up or down.

2. Error in the angle of finger 2, dy,: the normal
of contact 2 is altered.

3. Error in the angle of finger 1, di,: contact | or
contact 5 is not achieved.

Errors of types 1 and 2 do not deleteriously affect the
nature of liftoff of the object as long as the verticai
error dv and the angular error di, adhere to the fol-
lowing inequality:

B YT

) Peg COS ¥, < IZga (69)

where p,, is the distance from the center of gravity of
the object to the second contact point, and /,, is the
distance between the points q,, and q,,. Inequality
(69) is valid if Sy, is small.’ Violation of inequality
(69) implies that the second contact normal i, passes
below the translation window, placing the contact in
region B4. Thus the object will tip maintaining the
third contact, defeating our goal. The third type of
error causes the translation window to shrink to a
point. either q,, Or qs,. Therefore ii, passes either
above or below the transiation window, respectively.
In the former case. the angle of finger 1 is less than
commanded. Since the translation window becomes
the point q,,, i, passes above it, so the grasp is in
region B3. Upon squeezing, the object will rotate
clockwise, aligning its edge with finger 1. This align-
ment opens the translation window and changes the
nature of the grasp back to what was onginally in-
tended. Continued squeezing causes the object to
translate up finger 1. In the latter case, the angle of
finger | is too large, causing the translation window to
become the point qs,, and the second contact to be in
region B4. Again, squeezing causes an aligning rota-
tion of the polygon followed by translation up the
finger as planned. Figure 19(A) illustrates an initial
grasp exhibiting the third type of error. As squeezing
commences, the polygon’s rightmost edge aligns with

5. A similar expression applies if the contact is on an edge of the
object rather than a vertex.
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Fig. 19. Grasp with seif-cor-
recting type 3 error.

(a} (b)

_the edge of the finger [Fig. 19(B)]. Continued squeez-
ing causes the object to translate up the finger [Fig.
19(C)).

3.2. Lifting Phase

The lifting phase begins when the object no longer
contacts the support. For this to occur, the object must
be in a force closure grasp in the hand. No contact
may remain on the support.

The goal of the lifting phase is to manipulate the
object into an enveloping grasp. In doing so, the object
may either be stable through force closure or unstable.
Instability is undesirable, because it resuits in the ob-
ject’s falling. Even though an unstable object will
eventuaily come to rest in a stable configuration, the
final configuration cannot be predicted by our quasi-
static technique. Therefore it is imperative that an
enveloping grasp be gained without ever losing force
closure.

Assume that the initial grasp has been chosen in the
translation region. As lifting begins. the object con-
tacts the hand at two points on one finger and at one
point on the other. Since force closure requires three
contacts, all must be maintained until a fourth contact
is achieved. If the object is enveloped (i.e., the grasp
has form closure), then the grasp is complete, and the
lifting phase ends. If not, one contact must break as
manipulation continues. Thus during the lifting phase.
the object must translate relative to one of the fingers
(assuming flat fingers) until the object contacts the
palm. Once the palm has been contacted, translation
is possible only if one finger loses contact with the
object. In an enveloping grasp, both fingers and the
palm must contact the object. Therefore we prefer to
manipulate the object maintaining contact with both
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Fig. 20. Convex cone C*
projected onto the lifting

phase plane.
b
/‘» ¥s
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fingers. However, we analyze one planning strategy

that allows contact to be lost with one finger as the ob-

ject slides on the other.

A force closure grasp is one for which the negative
of the gravitational wrench acting on the object is
within the convex cone C* defined by equations (1)
and (2). Examination of the equilibrium relationships
(1) and (2) reveals how to manipulate 2 force closure
grasp to achieve envelopment. Denote by y;, the ith
column of W,

cos ¥;
sin y;
d;

Yi=

where recall y, is the angle of the ith contact normal,

and d, is the moment of that contact normal measured
with respect to the summing point q. Choosing q to be

the center of gravity of the object, the gravity moment
is zero during manipulation. Thus the convex cone
can be projected onto the lifting phase plane (LPP)
formed by the cos y; and d; axes. In this plane, the
cone becomes the LPP triangle, the gravity wrench

maps to the origin, and two contacts on a flat link map

to points on a vertical line separated by the distance
that separates the contacts on the link (Fig. 20). The
necessary and sufficient conditions for a grasp to have
force closure are that (1) the LPP triangle enclose the
origin and (2) the sine of the difference of the contact
angles on the two fingers be greater than zero:

sin (y, — ¥2) > 0.

(70

(19)

Fig. 21. Trajectory of y,.

valid
region

\

We desire to squeeze the object until it contacts the
palm. However. while squeezing we must make sure
that the LPP triangle always contains the origin and
inequality (19) is never violated. If the initial grasp is
in the translation region. then initially both of the
conditions are satisfied. As the fingers are squeezed
together. the quantity y, — y, may only decrease (if
the singly contacted finger contacts a vertex of the
object) or remain constant (if the singly contacted
finger contacts an edge of the object). Because the
paim eventually prevents squeezing from continuing,
the quantity is bounded from below by zero. At the
state of manipulation, the angular difference between
the contact normals. ¥, — ¥, is in the interval
bounded by zero and pi. During squeezing, the differ-
ence reduces but remains in the interval. Because the
sine function is positive in that interval. the second
condition is guaranteed to be satisfied thrqughout the
entire manipulation.

The condition that the LPP triangle always contain
the origin must be checked by considering the trajec-
tories of the triangle’s vertices. Their positions are
affected by three variables, the two joint angles. 6, and
6,, and the angle of the palm 6, (see Fig. 18). Consider
the hypothetical trajectory shown in Figure 21. Be-
cause the object will translate up finger 1, finger 2
(called the pusher), is rotated counterclockwise while
finger | is held stationary. As the pusher rotates, - 2I-
tices y, and y; of the LPP triangle remain fixed wiile
vertex y, follows a path qualitatively like the one
shown beginning at point 4. At the point C, y, jumps
to D. The discontinuity is caused by the edge of the
second finger contacting the kth vertex v, of the object

Trinkle and Paul 41



Fig. 22. Failed pusher strai-

egy.
T7777777777777777777 177777777 77777777777
(a) (b)
77 77
(c) (d)

(see Fig. 18). At the instant the discontinuity occurs,
there are four contacts. but only three can be main-
tained as the fingers continue to squeeze. Since D is
within the valid region for the second vertex, the new
contact remains, and the previous contact on that
finger breaks. At the point E, the trajectory jumps out-
side the valid region to the point F. If the new contact
were to remain (as it did at D), the interior of the LPP
triangle would exclude the origin, and the object
would become unstable. However, the trajectory
jumped into the region labeled BS. This means that
the fifth contact point (which is on finger 1) will break.
The new LPP trniangle has vertices labeled y,, y,, and
¥s. Since the new vertices contain the origin, the grasp
is still stable, but now the object will slide up the sec-
ond finger rather than the first. Continuing squeezing,
the first finger now acts as the pusher, rotating clock-
wise, and the second finger is held fixed. This strategy
of using one finger as a pusher and holding the other
finger fixed is called the pusher strategy.

An interesting property of the LPP trajectory is that
if a vertex moves out of the valid region in a continu-
ous manner, the object becomes unstable, because a
contact point is lost without gaining a new one. How-
ever, if the vertex jumps outside the valid region (as at
F), the object remains stable, and the finger on which
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Fig. 23. LPP trajectories for
hand rolling strategy.

cos ¥,

the object translates switches. Any motion of the tra-
jectory (continuous or not) within the valid region
represents stable translation of the object without
switching pushers.

If direct appiication of the pusher strategy fails ( Fig.
22), one could try the roll strategy during which the
finger angles are fixed as the palm is rotated (and
translated upward if necessary). If the hand can be
rotated far enough without losing force closure, the
object will slide down the finger until it touches the
palm, Afterward. the fingers may be closed around the
object creating an enveloping grasp. Figure 23 shows
the trajectories of the vertices of the LPP triangle cor-
responding to a clockwise rotation of the hand shown
in Figure 18. As the hand rotates. the object does not
move relative to it, and therefore the moment arms,
d;; i€ {1, 2, 5), of the contacts do not change. The
result is that the corners of the LPP triangle can move
only horizontally, and since the normais of contacts 1
and 5 have the same direction. y, and ys move at a
common rate. At B the right finger becomes horizon-
tal. After slightly more rotation, the second contact
breaks, and the object slides toward the palm. Closing
the fingers around the object achieves the enveloping
grasp.

We would like to know what conditions guarantee
the success of the roll strategy. A condition of necessity
is that d, and d, have opposite signs. If they have the
same sign, the object could not be stable when sliding
down the finger, because the gravity force would not
pass between the two supporting contacts. Given that
necessity is met, a sufficient condition is that 4, equal
zero. The validity of this condition can be argued for
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24. Successful push and
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as follows. Since the grasp satisfies inequality (19), y, is
always on the left side of the lifting phase plane. As
the hand rotates clockwise, y, and ys move toward the
left. Until the right finger becomes horizontal, y, and
ys are on the right side of the LPP. Therefore the LPP
triangle always contains the origin. As the right finger
passes through horizontal, y, and y; cross the d; axis,
causing the second contact to break as the object slides
toward the palm on finger 1.

The pusher and roll strategies can be combined as
illustrated in Figure 24. If possible. the pusher strategy
should be used to cause vertex y, to move to the cos y;
axis (see point B in Figure 21). After this, the roll
strategy can be used to widen the valid region in the
LPP so that manipulation can be safely completed.
This is easily done in the manipulation sequence
shown in Figure 24, because d, and ds have opposite
signs.

If friction is present, the same strategies are valid,
but inequality (40)

sin (5 — @) > 0 (40)
must be satisfied rather than inequality (19), and each
edge, y;, of the convex cone must be replaced with ¥,
the appropriate edge of the friction cone for each con-

tact:
s0s (y; + @) os (v, a)
g,=|sinwita) |; i€{l,5} ¥.= sin(qszta) (79)
2

3

JT7777777777777777777

(c)

77777777777777777

(d)

where d, is the moment arm of the ith contact force
and « is the friction angle. The sign of a in the expres-
sion for ¥, is dependent on the relative velocity of the
second contact point. Since it would be useful to con-
trol the sign of a, it would be preferable that the sec-
ond finger have more than one link.

4. Conclusion

Manipulation with articulated hands is usually carned
out under force control to prevent slipping at the con-
tacts. Dissallowing slipping unnecessarily limits the
dexterous capability of a hand and cannot be done in
the absence of friction. We have addressed the problem
of achieving an enveloping grasp in the plane based on
sliding contacts. Our solution was based on the fric-
tionless case but extended where possible to include
Coulomb friction. Planning was broken into two
phases, the pre-lifioff phase and the lifting phase. The
goal of the pre-liftoff phase was to manipulate the
object to cause it to lose contact with its support. This
led us to define and analyze the liftability of planar
objects. Given the contact configuration of one finger,
the liftability regions of the object could be deter-
mined and used to plan the placement of the other
finger to complete the initial grasp. It was determined
that initial grasps in the translation region of the ob-
ject should be used, because they achieve the goal of
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the pre-liftoff phase most directly and are insensitive to
position errors. For the lifting phase. planning was
done geometrically in the /ifting phase plane, providing
a simple method to monitor grasp stability and to
predict which contacts were gained and lost as the
grasp evolved. Manipulation trajectories generated by
our planning technique can be executed under posi-
tion control; servo control of contact forces is unnec-
essary even when friction is active. However, a modi-
cum of contact force sensing or monitoring would be
useful to abort execution of manipulation plans if
unexpected jamming is detected.

Even though our analysis in section 3 was two di-
menstonal. the planning methods can be applied to
three-dimensional objects that can be modeled as gen-
eralized cylinders by planning manipulation using the
appropriate cross sections of the cylinders. In the
event that such modeling is inappropriate, the forward
object motion problem that we have formulated can be
used incrementally to plan manipulation trajectories
in three dimensions. By-products of planning using
the forward object motion problem are the predicted
time histories of the contact forces. These histories
could be used to determine whether the planned ma-
nipulation would be likely to damage the proposed
(fragile) work piece.

7. Appendix

Here we show how the liftability regions of two two-
point initial grasps can be combined to form the lifta-
bility regions of one three-point initial grasp.

7.1. The Sliding Region. S

The sliding region S for an object is independent of
the number and positions of finger contacts; it depends
only on the geometry of the object [see inequality
(22)]. Therefore we immediately write the following
equation:

§S=S§,=5S;. (35)

7.2. The Region S’

The other relevant liftability regions are J, B3, B4, T,
Ji, B3,, B4\, T,, Js, B3, B4, and T, where the
non-subscripted regions are a result of the three-point
initial grasp, and the subscript {; i € {1, 5) implies a
two-point grasp using contacts 2 and i. The liftability
regions of the two two-point initial grasps must satisfy
the following equations:

J,UB3,UB4UT,=S"

We begin our derivation of equations (36)~(39)
with the following true statement:

S'Ns'=§"

Substituting equations (A1) and (A2) into (A3) and
expanding gives

(,NJ) U, N B3,)U(J,NBa)U(J, N Ty)

U (B3, N J,)U (B3, N B3,)U (B3, N B4,)U(B3, N T,)
U (B4, N J,)U (B4, N B3,)U (B4, N B4,)U (B4, N Ty)
U(T,NJ,)U(T, N B3,) U(T, N B4,) U(T, N T,)=S".

(A4)

Because the liftability regions for each two-point initial
grasp are mutually exclusive, the 16 sets formed by
intersection in equation (A4) are mutually exclusive.

Any set that is formed by intersection with J, or Js
belongs to J. This statement is motivated physically by
the fact that for a two-point initial grasp in the jam-
ming region. the object can only be further constrained
by adding another contact point. Noting that the top
row and the leftmost column of the left side of equa-
tion (A4) are equivalent to J, and J, respectively, we
write:

JDOJ,UJs. (AS)

Equation (AS5) accounts for seven of the sets in equa-
tion (A4).

The nature of liftoff for the remaining nine sets can
be deduced by considering Figure Al using the follow-
ing facts:
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Fig. Al. Formation of the
region B3, N B3,.

'qﬁq
) finger |
Csa B
-~y
Q54 5
TW f;
Qia 95>~ Ds
'
III/////////A/I’//////
fa

1. A stable grasp must have three contact points
during manipulation (more contacts cause
static indeterminacy and interference: fewer
lead to grasp instability).

2. The positive or negative cones of a stable grasp
must “see each other”” (Nguyen 1986) where
the positive force cone of f, and f; is labeled in
Figure Al as Cy,.

3. The positive or negative force cone is the set of
points defined respectively by a positive or
negative linear combination of the forces using
their intersection as the cone’s apex.

4. A pair of cones see each other or are mutually
visible if each cone contains the other’s apex.

Consider the set B3, N B3;. Referring to Figure Al,
a point in S’ can only belong to both B3, and B35in
two ways: the contact normal fi, passes upward
through both open half lines (as,, =¥ ) and (q,4, <7)
(as shown in Figure Al) or downward through both
half lines (q,4, *7) and (qs4, ©5). Let one force cone
be C,, as shown.” To determine the nature of liftoff. we
must find a cone within sight of C,, that can see Cy,.
Only cones Cy, and Csq satisfy this requirement. Since

6. By*. . . upward through the half-line (qs,, 23) . - -+ WE
imply the satisfaction of sin (ws — ¥,) > 0. Similarly, “downward”
implies satisfaction with the inequality reversed. To define upward
and downward with respect 10 half lines along the line of the first
contact force, substitute y, for vs.

7. To make two CODES rEQUIres four forces. They are the three
contact forces and the gravity force.

neither cone is constructed using the third contact
force, that contact must break (i.e., the grasp must be
in B3). Both cones include the fourth contact force so
that contact is maintained. However, to maintain
exactly three contacts during manipulation, either the
first or fifth contact must also break. The one that will
break is determined by considering the motions that
will be made by the fingers. For example, if finger 1
remains fixed as finger 2 squeezes, then the first con-
tact will break while the fifth contact is maintained. In
this case the instantaneous center of rotation of the
object is either the point q,4 Or Qs,. If we assume that
the fifth contact breaks, this implies that the center of
rotation is q,,. Rotation counterclockwise about q,4
causes interference at the third contact: clockwise
rotation causes interference at the fifth contact. Thus
the assumption that the fifth contact breaks is incon-
sistent with the instantaneous kinematics of the grasp.
Therefore the first contact (and the third contact)
must break. while the fifth contact (along with the
second and fourth contacts) is maintained. This con-
clusion is validated by the fact that instantaneous
clockwise rotation about qs, does not cause interference.

The resuit of the above arguments is that we may
write:

B3 D B3,N B3,
By a similar argument one can show that
B4 D B4, N B4,
TDOB3,NT;
TDOBa;NT,
Also. because in S’ the contact normals fi, must have
a horizontal component to the right, we note that itis
impossible for any contact point to be in both sets B4,
and B3s:
B4, N B3,=0,
where @ represents the null set. For a contact point to
be elements of both sets would require that the contact

normal pass upward through (q, o7 ) or downward
through (q,3, =7) and upward through (gs,, o¥) or
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t1g. A2. Partitioning of the
region B3, N B4, into re-
gions Jy and T.

of_.-~" dalfs

downward through (qs,, ©7), which is impossible.
Similar arguments result in the following three equa-
tions:

B}NT,=0 (Al1)
B4, NT, =0 (A12)
T,NT,=0Q. (A13)

The only set not accounted for is B3, N B4,. All
contact normals belonging to this set must pass
through the translation window (q,, qs,). Consider the
cone C,, shown in Figure A2. If i, passes through
(Qsg> Q15), then Cy5 and C,, see each other (i.e., the
grasp is in the translation region). If fi, passes through
(q14> 915),® then the only pairs of mutually visible
cones are C,,, C,, and —C,,, — Cs;. The correspond-
ing instantaneous centers of rotation are the points q,,
and qs;, respectively. The first pair of cones implies
that the third contact must break, which requires
counterclockwise rotation about q,,. This rotation
causes interference at the fifth contact. The second pair
of cones implies that the fourth contact must break,
which requires clockwise rotation about qs;. This
rotation causes interference at the first contact. There-
fore we conclude that motion is impossible. Thus

8. Note that contact normals that pass through TH and (q,,, ;4]
have already been assigned to the jamming region by relationship
(AS).

46

points in S’ whose normals pass through the transia-
tion window 7W and through (914, q;5) belong to J;,
which is a subset of J. For the case of qys on the left of
the translation region, the procedure for defining T
and Jr is identical, except the segments (qs,, q45) and
(414, 5) must be replaced by (q,5, q,,) and (q,s, qs5),
respectively. The set (B3, N B4,) can now be written
as the union of two mutually exclusive sets:
B3, NB4;=J U (J/ NB3;NB4,), (Al4)

where the second term on the right side represents the
portion of the set (B3, N B4,) that is in the translation
region. Also note that for a grasp in the translation
region with finger 1 fixed, q,, is the instantaneous
center of rotation and must lie to the left or right of
the line of action of f, or f,, respectively. If qs lies
between f, and f,, rotation counterclockwise or clock-
wise causes interference at the third and fourth con-
tacts, respectively, a contradiction that both contacts
three and four break simultaneously.

The nature of liftoff for all 16 sets of S’ have been
determined and are now combined to yield the liftabil-
ity regions for the three-point initial grasp:

B3 =B3,n B3, (36)
B4 = B4, N B4, (37
VEFACFATHA (38)

T=(B3,NBANJ/)U(B3,NT,)U(B4NT,). (39

Q.E.D.
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