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Abstract

Planning the motion of bodies in contact requires
a model of contact mechanics in order to predict
sliding, rolling, and jamming. Such a model typi-
cally includes estimates of the coefficients of fric-
tion. Though, usually assumed to be constant,
these coefficients vary and are difficult to measure.
In this paper, we treat the coeflicients of friction
as independent variables and derive regions in the
space of friction coefficients that correspond to par-
ticular modes of motion; three sliding contacts or
one sliding and one rolling contact, all other con-
tacts separating.

1 Introduction

The planning of dexterous manipulation and as-
sembly by robotic systems involves predicting the
motions of systems of bodies in contact, where the
positions and orientations of some bodies are ac-
tively controlled while others move only in response
to the motion of the controlled bodies. The goal
of planning is to determine a sequence of manipu-
lator motion commands which, if executed, would
achieve a prespecified relative arrangement of the
bodies, e.g., a new grasp or completed assembly.
However, because of the large computational de-
mands of planning geometrically valid trajectories,
the physical models of body interactions are usu-
ally simplified, so that the computational cost is
not greatly increased.

The most commonly made simplifying assump-
tions are that the bodies are rigid, that “dry” or
Coulomb friction acts at the contact points, and
that the system’s motion is quasi-static. The quasi-
static assumption is applicable when dynamic ef-
fects are negligible [9] and implies that the system’s
equilibrium equations are satisfied at all times.
In this case, the accuracy of motion prediction is
tied to the quality of the estimates of the coef-
ficients of friction, the parameters describing the
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body’s geometry, the contact positions. the con-
tact normals, the external wrench applied to the
body, and the motion of the controlled bodies.
However, because these parameters can never be
measured exactly, many researchers have studied
motion planning problems under parameter un-
certainty (e.g., Mason[9], Brost[2], Erdmann[5],
Caine[4], Buckley[3], Lozano-Perez et al. [8]).

It has been shown that the difficulty of one of the
most important assembly tasks, peg-in-hole inser-
tions, is greatly increased with increasing friction
[14] [12] [16] [4]. It is also known that the effec-
tive coeflicients of friction depend strongly on mi-
croscopic details of the contacting surfaces and on
foreign fluids and particles in the contact interfaces.
Thus the coefficients can vary quickly through rel-
atively large excursions during manipulation [11].
Despite these facts, the open literature does not
contain papers directly addressing the effects of the
variations of the coefficients of friction on the quasi-
static motion of systems of rigid bodies in contact.
The purpose of this paper is to study those effects
for the case of a single passive body moving in re-
sponse to frictional contact with a number of mov-
ing point bodies.

1.1 Relation to Previous Work

The most closely related line of research was initi-
ated by Mason[9] in the 1980’s, who studied slid-
ing friction during general planar motion of a rigid
body. His work was motivated by difficulties in
executing manipulation and assembly tasks with
robot manipulators. Mason primarily was con-
cerned with the prediction of the instantaneous ve-
locity of a pushed object moving quasi-statically on
a supporting plane. His results were based on the
fact that the “center of friction” was computable
even though the supporting force distribution was
unknown. Mason[9], Peshkin[13], and others have
used the results with success 1 parts orienting ex-
periments with single “pushers” with one or more
points of contact.
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Also relevant to the present work are previous
quasi-static analyses of the “peg-in-hole” problem.
The most thorough study of the effect of varia-
tions in the coefhicient of friction was performed
by Whitney([16]. He reformulated Simunovic’s work
[14], using small angle approximations to derive
closed-form solutions for reaction forces and mo-
ments occurring during peg insertions. These so-
lutions were presented in [16], as families of plots
parameterized by the coefficient of friction, thus
showing how the insertion force increased with in-
creasing friction.

In this paper, we study the planar quasi-static
motion of an arbitrary rigid lamina in frictional
contact with any number of moving rigid point ob-
jects. Our goal is to show how the instantancous
velocity of the lamina depends on the coefficients
of friction by partitioning the space of friction co-
efficients into cells such that within each cell the
motion of the lamina is governed by a single set of
kinematic constraints.

2 Problem Statement

An arbitrary rigid lamina moves quasi-statically in
a plane due to frictional contact with n, moving
rigid point bodies. The exact positions, contact
normals, and instantaneous velocities of the point
bodies and the position and orientation of the lam-
ina are known. Given the external force acting on
the lamina, our purpose is to determine the in-
stantaneous velocity of the lamina and the contact
forces.

It is convenient to define a “world” frame, chosen
arbitrarily, and several “contact” frames. One con-
tact frame is assigned to each contact point and is
positioned with its origin at the contact point and
with its “n”-axis, 1;, aligned with the coutact nor-
mal (pointing inward with respect to the lamina’s
surface), its “t"-axis, t;, aligned with the contact
tangent such that the cross product of n; and t,,
points out of the plane of motion (sec Figure 1).

Let the vector ¢; = [¢;,, c]! represent the force
at the ¢ contact such that ¢;, and ¢; are the nor-
mal and tangential components, where 7 is the ma-
trix transpose operator. The vector ¢; is known
as the individual wrench intensity vector of the "
contact. To write the equations of equilibrium, we
transform the contact forces into the world frame
by premultiplying each wrench intensity vector by
its corresponding wrench matrix, W, which is de-
fined as follows

W; = [wi, wy = o a
r; 001y
where 0;, t;, r; are all expressed in the world co-

ordinate frame, r; is the position of the " con-

LAMINA

1OF n ,MOVING ™

POINT BODIES
Figure 1: Lamina in Contact with Moving Points.

tact point, the @ operator applied to two vectors,
[a1,as] @ [b1,bs] is defined as ajby — agby, and the
subscript (3x9) Indicates the dimension of the ma-
trix. Summing all forces and moments in the world
{frame yields the equations of static equilibrium

2 Wici + Bext = 0 (2)

i=1

where g.,; is the external wrench (i.e., force and
moment) applied to the lamina. Casting equation
(2) into matrix form yields

We + Lort — Wncn + Wtct + Gert = 0 (3)

where W and ¢ are known as the global wrench
matrix and the global wrench intensity vector and
have dimensions (3 x 2n,.) and (2n. X 1), respec-
tively. The normal and tangential wrench matri-
ces, W, and W, both of dimension (3 X n.), are
formed by the horizontal concatenation of all the
individual normal and tangential contact wrenches
w;, and wy. Correspondingly, the normal and tan-
gential wrench intensity vectors, ¢, and c¢;, both
have length n. and are formed by the vertical con-
catenation of all the normal and tangential wrench
intensity components, ¢;, and ¢;.

The motion of the lamina is also subject to kine-
matic velocity constraints, the satisfaction of which
ensures that the point bodies do not penetrate the
lamina’s surface. Denoting the relative linear ve-
locity at the i contact expressed with respect to
the " contact frame as v; = [vy,, v4]7, then the
nonpenetration constraint is given by the following
inequality

v, > 0; Vi. (4)

If we let Q = [¢y, gy, gs]” represent the linear and an-
gular velocity of the point on the lamina coincident
with the origin of the world frame, then W7'q is the
linear velocity of the i*" contact point on the lam-
ina [6]. Assuming that the bodies in contact with
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the lamina are points on manipulators, then the
linear velocity of the i point body may be written
as the product of the Jacobian matrix (excluding
the rows corresponding to rotational velocity) as-
jin
Jit
joint velocity vector, 6 of length ny, the number of
joints in the manipulators. Thus the relative linear

velocity at the i*" contact is given by

sociated with the point, J; = { } , and the
(2xnp)

WIg-Jb=v;. (5)
Casting constraints (4) in matrix form yields
Wlg-J3.6>0 (6)

where J,, was formed hy vertically concatenating
the rows, J;,, of the individual contact Jacobian
matrices J;. The remaining constraints enforce the
Coulomb friction model, which for the planar case
may be written as a system of linear inequalities as
follows

Bc>0 (7)
where
I R b
- (2n,.x2n.) <t (2n,x1)
U = diag{p1, ..., ptn, } 1s the diagonal matrix of ef-

fective coefficients of friction, and I is the (n. x n.)
identity matrix. To complete the contact model,
we also require the following complementary con-
straints which define the three possible types of
contact interactions:

Rolling contact: Vi € R

Vin = v = 0, Cin >0, —piciy < it < Wicin,  (9)

Sliding contact: Vi € S

v <0, ¢ = WiCin

Vi = 0, ¢, > 0,
" P = { vit > 0, it = —picin

}, (10)

Breaking contact: Vi € B

Vin >0, cipn =0, ¢y =0, (11)
where the disjoint sets R, S, and B contain the n-
dices of the contacts assumed to be rolling, sliding,

and breaking, respectively.

3 Solution Approach

To find the solution(s), to the quasi-static motion
relationships given above, we must consider every
possible combination of assumptions of rolling, slid-
ing, and breaking at the contacts. This gives rise

to 3" possible modes of motion and their corre-
sponding systems of equations and inequalities. To
facilitate our analysis, we introduce the selection
matrices, Eg , Es , and Ep , which identify the
currently considered motion mode. Letting ng be
the number of rolling contacts and e! be the row

vector of length n, with i** element equal to one; all
others zero. Then Ep is the np x n, matrix formed
by the vertical concatenation of one row vector, €7
for each i € R. The matrices Eg and Epg and the

numbers ng and np are analogously defined.

Given an hypothesized set of contact interactions,
the corresponding set of kinematic requirements
can be written as follows

Whq = 3,46 (12)
where the active wrench and Jacobian matrices are
defined as follows

; Wir Jnr
WA: WtTR E JA: JtR > (13)
T ~
Wos ((2np+ng)x3) Ins ((2np+ns)xng)
ng = EJWZ, and J,3 = E3J,, with a € {n,t}

and 8 € {R,S,B}. Additionally, the contacts as-
sumed to be breaking must satisfy the following
inequality
Wisq > Japf. (14)
The wrench intensity vectors of the sliding con-
tacts are knowh to lie along the edges of their re-
spective friction cones. To write these constraints
in matrix form, we define the diagonal tangential
directions matriz, B, as follows

E = diag{&1.... &}

where §; = sgn(w£q~35€) and sgn() is the signum
function. Given these definitions, the tangential
wrench intensity vector for the sliding contacts is

given by
(16)

where c,g = Ezc,, Ug = EgUEg and g =
EgEEg with o € {n.t} and g € {R, S, B}. Sub-
stituting into the equilibrium equation (3) yields

(15)

cis = —UgEgc,s

WA;LCA - [WA -+ W,u]CA = —Bezrt (17)
where W, = —W,cUsE=s. The applicable wrench
intensity vector, c4, is defined as follows

C_nR
(18)

where ¢, g and ¢;p are the rolling normal and tan-
gential wrench intensity vectors, respectively, and
Cns is the sliding normal wrench intensity vector.
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To satisfy the Coulomb model and to guarantece
that all contact forces are compressive, the wrench
intensities must also satisfy the following system of
inequalities

BACA 2 0 (19)
where B 4 is defined as follow
U Ip 0
B,=|Ugp -1z 0 (20)
0 0 I

((2ng+ns)x(2ng+ng))

where I and Ig are the ny- and ng-dimensional
identity matrices, respectively.

The final undiscussed quantity is ge,. It rep-
resents all external forces from sources other than
contact with the moving point bodies and is as-
sumed to be known.,

To predict the quasi-static velocity of the lamina,
one must find all vectors, ¢ and ¢, and coefficients
of friction, p;; i € {1,...,n.} which satisfy the
kinematic constraints and render the Coulomb and
equilibrium constraints feasible. If the coefficients
of friction were known, then we could use the fol-
lowing straight forward approach. Given the con-
figuration of the system, g.,4. and 6: first, hypothe-
size a mode of motion; second, solve the applicable
kinematic equations (12) for q; third, substitute §
nto (143 to ensure that presumed breaking con-
tacts will actually break; fourth, solve the applica-
ble equilibrium equations, (17), for c; and fifth,
substitute ¢4 into inequality (19) to ensure that
the Coulomb friction constraints are satisfied. If
all constraints are satisfied. then the hypothesized
mode of motion is feasible, so the sliding tangen-
tial wrench intensity vector, ¢;s, can be computed
using equation (16).

Since we assume that the coeflicients of friction
at the contact points are unknown, the ahove ap-
proach must be slightly modified. Since, the kine-
matic constraints do not depend on the coeflicients
of friction, the first three steps above need not
be altered. However, in the fourth step, we must
solve for ¢, analytically and then substitute the
result into the applicable Coulomb friction con-
straints (19) to yield a set of inequalities in the
unknown coefficients of friction.

In this paper, we consider only the situations for
which W4 is nonsingular, placing no constraints

on #. We further assume that the presumed break-
ing contacts satisfy the required constraints (14).
Cases for which W, is singular are discussed in
[17].

4 Exact Decomposition of p-space

Given that the dimension of W4 is (3 X (2np+ng))
and our restriction that W1 must exist, the modes

of motion considered here must have either three
sliding contacts with all other contacts breaking or
one sliding and one rolling contact, all others break-
ing. We denote these modes of motion by 3$ and
RS. Note that there are ("3) and n.(n.—1) distinct
modes of types 35 and RS, respectively.

4.1 Regions in p-Space for 35

Since for the 35 modes of motion, all maintained
contacts are sliding, the equilibritun equation, {17),
and Coulomb constraints, {19), simplify to yield

(WnS - .WASESUS)CnS = —Lexi (21)

Cns 2 0. (22)

Analytically determining the inverse of W,s —
W, sEsUg yields the following inequalities which
must be satisfied for the 35 solution to be valid

Cpgi = -S? Vi e {1 2, 3} (23)
where
X = Apypops + Bupops + Bopyps + Bapiipia
+Chpg + Copry + Cyps + D (24)
Yi = Evpops + Fiop + Figpus + Gy (25)
Yy = Eypyps 4 o + Fosps + G (26)
Yy = Espipes + Fyipn + Fyapn + G (27)

where the coefficients. 4;, B;, C;, D, E;, Fi;, and G;
can be written as three-by-three determinants with
columns consisting of individual contact wrenches
and the external wrench multiplied by up to three
elements of the tangential directions matrix (see
[17] for definitions). Thus the analytical expres-
stons for the regions of a valid 35 motion in pu-space
are as follows,

X >0

Y, > 0, Vi (28)
OR

X <0

Y, < 0; Wi (29)

If all ji; are different, Collins’ decomposition could
be used to generate descriptions of regions of u-
space in which 3.5 motion can exist. However, if one
can justify that the friction coefficients are nom-
inally the same and don’t vary greatly, then the
above inequalities reduce to cubic and quadratic in-
equalities in y. The roots of these inequalities can
be used to determine the range(s) of u for which
35 motion is consistent with the quasi-static and
Coulomb friction assumptions. It is important to
note, however, that the cocfficients of the inequal-
ities, and therefore the 3S regions in p-space, are
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dependent on 6. Thus. 35 motion of the lamina in
one direction, f, may be possible for “large” coeffi-
cients of friction, while 35 motion in the opposite
direction may only be possible for “small” friction
coefficients.

Figure 2 below shows a randomly chosen grasp for
which the 35 regions in mu-space were computed.
Figure 3 shows two slices of the 35 regions taken
perpendicular to the pg-axis. The areas in the p-
12 planes containing the 1’s represent slices of the
3S region. The areas containing the 2’s belong to
the RS region corresponding to contact 1 rolling,
contact 2 sliding, and contact 3 breaking. The dot-
ted lines are the exact 35 boundaries defined by
the most restrictive inequalities in the sets (28) and
(29). The thin, solid, horizontal line, and the dot-
ted line with positive slope bound the RS region
(the portion of the solid line to the left of the dotted
lines is not constraining). The blank areas denote
that the proposed mode of motion is infeasible, i.e.,
jamming or instability will occur. As one would
expect, for this grasp, the points in the infeasible
region correspond to large coefficients of friction.
If the coefficients of friction are constrained to be
equal, then the 35 regions is given by 0 < ¢ < 0.8,
where 0.8 is the approximate value of p for which
the friction cones of contacts 1 and 2, in the words
of Nguyen, “see each other [10].”

y
J36
A
1,
)
/N ol ’y X
ty 1, 128
/N
hoe n,
ty

Lext

Figure 2: Randomly Chosen Grasp.

Inequalities (28) and (29) embody the feasibility
of the equilibrium and Coulomb constraints given
the presumed mode of motion. As pointed out by
Zeng [17], they also have a simple graphical in-
terpretation which is summarized in the following
corollary.

Corollary 1 If the kinematic constraints are as-
sumed to be satisfied already, then the sufficient and
necessary conditions for the existence of a 35 solu-
tion are as follows.

e If the lines of action of the three contact
wrenches do not intersect at ome point, then
for every pair of contacts, the lines of actions
of the external wrench and the unpaired con-
tact wrench must produce moments of opposite
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sense about the intersection point of the lines of
action of the paired contacts.

o [f the lines of action of the three contact
wrenches do intersect at one point, then the
line of action of the external wrench must pass
through the intersection point and its direction
must lie in the cone defined by the negative span
of the directions of the lines of action of the
contact wrenches.
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Figure 3: p-Space Decomposition for Random Grasp

This Corollary is graphically illustrated in Fig-
ure 4. Given that the kinematic constraints are
feasible, then ¢ is known. This implies that the
lines of action of the three sliding contacts are also
known. In Figure 4, these lines of action are la-
beled Wi, Wy, and W3. Figures 4a and 4b illus-
trate two possible sets of contact wrenches which
do not intersect as a common point. In Figure 4a,
the corollary requires the line of action of the possi-
ble external wrenchs (the unlabeled arrows) to pass
through the segments Py Ps3 and Py Pjy such that
in points into the cone formed by the negative span
of the directions of the lines of action of the con-
tact wrenches, W, Wy, and W3, (shown to the




left of the grasp). In Figure 4b, the lines of action
of the contact wrenches, Wy, Wy, and W3, nega-
tively span the plane of the paper, so the direction
of the line of action of the external wrench is un-
constrained. However, its line of action must cause
a negative moment with respect to all points in the
triangle, AP2P3Ps1.  Several external wrenches
consistent with feasible, quasi-static, 3.5 motion are
shown. Note that the wrenches acting at the sliding
contacts and the external wrench form two comes
which “see each other.”

(a)

®)

©

‘Figure 4: Conditions for Existence of 35 Mode.

When the area of the triangle, AP3Py3Fs, ap-
proaches zero, the denominator, X, of ¢,g; also ap-
proaches zero. If the line of action of the external
wrench does not pass through the intersection point
{the degenerate triangle), then the numerator has
a finite value. If this is the case, the elements of
the normal wrench intensity vector go to infinity,
which implies that no feasible solution exists.

When the friction coefficients change, the lines
of action of the contact wrenches change. If such
change does not result in the change of the mo-
ments of the external wrench with respect to the
vertices of the triangle, then the same 35 motion 1s
valid. Otherwise, the external wrench will not be
balanced by the three modified contact wrenches.
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4.2 Regions in p-Space for RS

For the RS motion, W, Ba, and ¢4 are defined
as follows

WA,u = [Wrn Wit (Wén - gsl»LsWst)] (30)
Crn e 10

Cap = | Cpt BA = | Hy -1 0 (31)
Csn 0 0 1

where the subscripts » and s are the indices of the
rolling and sliding contacts, respectively, and &, is
the direction of relative tangential velocity at the
sliding contact. Solving for the wrench intensities
yields

. Cips + Dy
" Aps+ B
. Cops + Do
: Apus + B

Ds

Csn = Aus + B

where the coefficients A, B, C;, and D;, can be writ-
ten as three-by-three determinants with columns
consisting of individual contact wrenches and the
external wrench multiplied by up to three elements
of the tangential directions matrix (see [17] for def-
initions).

Substituting the wrench intensities into the
Coulomb friction constraint (19) yields the analyt-
ical expressions for the region of p-space in which
the chosen RS motion mode exists

Aps+B >0

Crptrpts + Dipty — Copts — Dy > 0 1fD3 >0
Cipirprs + Dyji + Copg + Dy 2 0

(32)

OR

Apus+ B <0
Crpgpprs + Dipty — Coprs — Dy <0 ¢ if D3 <0
leﬂr,us + D1/1,7= + CQ/'LS +D, <0

(33)

The graphical interpretation of the RS mode in-
equalities (32) and (33) can be shown to identical
to that of the 35 mode. One need merely replace
two wrenches generated by sliding contacts with
the wrenches corresponding to the two edges of the
friction cone of the rolling contact.

Figure 5 below shows a thin rigid rod supported
by two points of contact which move slowly to-
gether. The coefficient of friction at contact 1 takes
on a value piy g during rolling and a lower value, p;g,
when sliding. Similarly the effective coefficient of
friction at the second contact is either usg or psg.
Of the nine possible modes of motion, five involve



one or more hreaking contacts. These are quasi-
statically infeasible, because equilibrium cannot be
maintained. The 2R mode is kinematically infeasi-
ble since the bodies are rigid. Thus we need ounly
consider three modes; 25, RSy, and RyS.

™\ /\
ATh A2

<< <" < '
t;

t

Figure 5: Rod on Two Fingers

Inequalities (32) and (33) for the RyS] mode can
be shown to exist if the cocfficients of friction define
a point in the portion of p-space above or on the
line, Iy pts = loy1, which we call the partitioning line
(see Figure 6). Similarly. points in p-space below
or on the partitioning line correspond to the RS,
mode.

Suppose [ and [, are such that the rectangle
formed by the coefficients of friction lies entirely
within the R,S) region as shown. As the supports
move, [; will reduce, ly will be unchanged, and the
coefficients of friction will assume the values u)g
and o, defining the upper left vertex of the rect-
angle.

Ky
I'LZR" Rz Sl . ]
HosT ¢ PARTIONING LINE
82 R1 SZ
4
Mg Mg H

Figure 6: p-Space Decomposition for Rod

As motion progresses, the partitioning line rotates
counterclockwise about the origin. Assuming the
coefficients of friction remain fixed, then only the
RyS] mode is feasible until the instant the parti-
tioning line passes through the upper left corner
of the rectangle. At this point, both RS modes
are feasible, but the mode must switch to RS9,
because if it did not, then in the next instant, the
RyS5) mode would become infeasible with only RS,
feasible. At the instant the mode switches, the co-
efficients of friction switch to their other values.
As the supports continue to approach each other,
the partitioning line “bounces” back and forth be-
tween the upper left and lower right corners of the
rectangle, switching between RS modes, seemingly
chasing the current point in p-space. The 25 mode
1s never active, because it is only feasible when the
partitioning line reaches the lower left corner of the

rectangle and if the coefficients of friction are equal
to their sliding values. However, one of the coefhi-
cients of friction is always equal to its rolling value.
Note that if the coefficients of friction were ran-
dom variables, with means at the corners of the
rectangle, the same “bouncing” behavior would be
observed, but the corners of the rectangle would
not be fixed.

In the above example, two modes were feasible
simultaneously at the instants that the partitioning
line reached the upper left and lower right corners of
the rectangle. This is not surprising, since dynamic
models of rigid body interaction have been shown
to yield multiple feasible solutions [7]. One might
think that multiple solutions are feasible only for
an instant of time, but this is not true.

Figure 7 shows a grasp with four distinct feasi-
ble modes of motion (35, Ry S;, RySy, and R3S)),
three of which are simultaneously feasible for suit-
ably small perturbations in the coefficients of fric-
tion and the positions and orientations of the con-
tacts. Figure 8 shows that multiple modes of mo-
tion are simultancously feasible over large regions
of friction space. Note that in Figure 8, 1's, 3’s, 4’s,
and 6’s correspond to the modes, 35, R;S3, RyS],
and R3Sy, respectively.

J]O Eext A
/t\l n3
A
n,; ~
n,
J:6
: 1
't\2 1,0 3

Figure 7: Three-Point Grasp with Multiple Modes
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Figure 8: Partial p-Space Decomposition for Figure 7.
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5 Conclusion

The quasi-static planar motion of a rigid lamina
in frictional contact with any number of moving
point hodies depends on the coefficients of friction
at the contacts. Using the equations of equilibrium,
the kinematic velocity constraints, and a Coulomh
model of friction, we have derived polynomial in-
equalities defining regions in u-space in which par-
ticular modes of motion are feasible. The exam-
ples discussed here have pointed out that the rela-
tionships defining quasi-static motion may have no
solution or multiple solutions; a fact which is not
surprising given that dynamic equations of motion
of rigid bodies in contact also exhibit nonunique
solution[7].

The analysis presented can be applied to dexter-
ous manipulation and assembly planning for sys-
tems consisting of parts of constant cross section.
One particular application that we are currently
pursuing relates to dexterous manipulation plan-
ning. We have succeeded in planning under the
frictionless assumption[15], but would like to exe-
cute “frictionless” plans in real environments with
friction. Since frictionless plans have all sliding con-
tacts, it is possible to apply our results for the valid
regions of 35 solutions in a point-wise manner along
a given path. The results for all the points can
be combined to determine a friction bound, below
which, the frictionless plan can be successfully ex-
ecuted. Such analyses can yield useful constraints
on materials selection during the design of assem-
bly systems, by simulating nominal trajectories or
planning nominal tasks prior to manufacture.
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