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Abstract 

Planning t>he motion of bodies in cont,act requires 
a model of contact rnechanics in order to predict 
sliding, rolling, and jamming. Such a model t’ypi- 
cally includes estimates of the coefficients of fric- 
tion. Though, usually assumed t,o be constant, 
these coefficients vary and are difficult to measure. 
In this paper, we treat, the coefficient,s of friction 
as independent variables and derive regions in t,he 
space of friction coefficients that correspond to par- 
ticiilar modes of motion; three sliding corit,acts or 
one sliding and one rolling coiit,act, all otlier coil- 
tacts separating. 

1 Introduction 

The planning of dexterous manipulation and as- 
sembly by robotic systems involves predicting the 
motions of systems of bodies in contact, where the 
positions and orientations of some bodies are ac- 
tively controlled while others move only in responsc 
to  the motion of the controlled bodies. The goal 
of planning is to det,ermine a sequence of manipii- 
1at)or motion commands which, if executed, would 
achieve a prespecified relat,ive arrangement of the 
bodies, e.g., a new grasp or completed assembly. 
However, because of the large computat,ional de- 
mands of planning geometrically valid trajectories, 
tlie physical models of body interactions are usw 
ally simplified, so t,hat tlic computational cost, is 
not greatly increas 

The most commonly rnadc simplifying assump- 
tions arc that  the bodies are rigid, that, “dry” or 
Couloiiib friction acts a t  the contact points, and 
that, the syst,em’s motion is yuasi-static. The quasi- 
st.at,ic assumption is applicable when dynamic ef- 
fects are negligible [9] and implies that the systemis 
eqiiilibrium equations are satisfied at all times. 
In this case, the accuracy of motion prediction is 
t,ied to the quality of t,he estimates of the coef- 
ficients of friction; t,he parameters describing tlir 
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body’s geomet,ry. the contact posit,ioiis. the con- 
tact, normals, the external wrench applied to  t,he 
body, and t,he motion of the controlled bodies. 
However, because these parameters can never be 
measured exact . many researchers ha\-e studied 
mot,ion plannin problems under paraniet,er un- 
certainty (e.g., Mason[9], Brost[2]: Erdrnanri[5], 
Caine[4] Buckley[3]. Lozano-Perez e t  n,Z. [SI). 

It has been shown that  the difficulty of one of the 
most important assembly tasks, peg-in-hole inser- 
tions, is -reatly increased witah increasing friction 
[14] [la] fl6] [4]. I t  is also linown that  the effec- 
tive coefficients of friction depend strongly on mi- 
croscopic details of the coiit,acting surfaces and on 
foreign fluids and particles in the contact interfaces. 
Thus the coefficients can \-ary quickly through rel- 
at,ively- large excursions during manipulation [l 11 . 
Despite these facts, the open l i t e rahre  does not 
contain papers directly addressing t>he effects of t>he 
variations of tlie coefficients of friction on the quasi- 
st,at,ic niot,ion of systrms of rigid bodies in contact,. 
The purpose of this paper is to  st,iidy those effects 
for the case of a single passive botly nioving in re- 
sponse t,o frictional contact, wit,li a iiuinher of mov- 
ing point bodies. 

1.1 Relation to  Previous Work 

The most, closely related line of research was init,i- 
at,ed by Mason[S] in tlie 19SO‘s, wlio studied slid- 
ing friction during general planar motion of a rigid 
body. His work xvas niotivatrd b>- difficiilties in 
executing manilplat,ion and assenibly t,aslis with 
robot manipulators. hlason primarily was cori- 
cerned wit,h the prediction of tlic instant,aneous ve- 
1ocit)y of a pushed object moving yuasi-staticallj- on 
a supporting plane. His results were based on the 
fact that, the “center of friction” was computable 
even though the si1 porting force distribution was 
iinknown. LIason[Sf Peshkin[l3], and others have 
used the resiilts with siiccess in parts orienting ex- 
periments with single “pushers” with one or more 
points of cont,act. 
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Also relevant to the present, work are previous 
quasi-static analyses of the “peg-in-hole” problem. 
The most thorough study of the effect of varia- 
tions in the coefficient of friction was performed 
by Whitney[lG]. He reformulat,ed Simunovic’s work 
[ 141, using small angle approximations to derive 
closed-form solutions for reaction forces and nio- 
ments occurring during peg insertions. These so- 
lutions were presented in [16], as families of plots 
parameterized by the coefficient of friction, thus 
showing how the insertion force increased wit,li in- 
creasing friction. 

In this paper, we study the planar yuasi-st,atic 
motion of an arbitrary rigid lamina in frickional 
contact with any number of moving rigid point ob- 
jects. Our goal is to show how the instantaneous 
velocity of the lamina depcnds on t,he coefficient>s 
of friction by partitioning the space of friction co- 
efficients into cells such that withiii each cell the 
motion of the lainiiia i s  governed by  a single set of 
kinematic constraints. 

2 Problem Statement 

An arbitrary rigid lamina moves quasi-statically in 
a plane due t,o frictional contact with n,, moving 
rigid point bodies. The exact, posit>ions, contact 
normals, and instantaneous velocities of t,he point 
bodies and the position and orientat,ion of t,lie lam- 
ina are known. Given the ext>ernal force acting on 
the lamina, our purpose i s  t o  determine the in- 
stantaneous velocity of the lamina and t,he cont,act 
forces. 

I t  is convenient, t,o define a “worlcY’ frame, chosen 
arbitrarily, and several “contact” framcs. One con- 
tact frame is assigned to each cont,act, point aiid is 
positioned with i t s  origin at the contact poiiit and 
with its “n”-axis, hi, alignecl with the coiitact nor- 
mal (pointing inward witjh respect to the lamina’s 
surface), its ‘%”-axis, &, aligned with the contact, 
tangent, such that the cross prodiict of iii aiid & >  
point>s out, of the plane of niotioii (sec Figure 1). 

Let the vector ci = [(;in, c i f ] “~  represent, the force 
at the it” contact such that ci7, and cit are t,he nor- 
mal and tangential coniponents, where i s  the ma- 
trix t,ranspose operator. The vect80r ci is known 
as the iiidividual wrench intensity vect,or of thc i”’ 
cont,act,. To writ,e t>lie equat,ions of cquilihrium, we 
transform the contact forces into the world frame 
by premult,iplying each wrench intensity vcctor by 
its corresponding wrench mat,rix, Wj. which is (le- 
fined as follows 

where fit, E , ,  r, are all expressed in the world CO- 

ordinate frame, rt is the position of tIie [‘” con- 

.LAMINA 

i OF n ‘MOVING ln- 
POINT BODIES 

k’igure I : Lamina iii Contact, with Moving Points. 

tact poiiit. the g operator applied to two vectors, 
[ a l ,  q] [h,, hL] is defiiied as alb2 - a2bl, and the 
c,ubscript (Jx2)  indicates the dimension of the ma- 
tiix. Summiiig all jorces and rriomeiits in the world 
flame yields the ccpat ions of static equilibrium 

n 

W2ci + ge,t = 0 ( 2 )  
,=1 

wlicre geZl  is the external wrench ( 1  e , force and 
moment) applied to the lamina. Castiiig equation 
(2) into matrix forin yields 

wc+g,,, = Wncn +W&l + gczt = 0 ( 3 )  

where W and c arc  known its tlie global wrench 
matrix and the global wrench intensity vector and 
have diiiiciisioiis (:$ x anc) aiicl (an,  x I), respcc- 
tively. The noimal and tangential wrench matri- 
ces. W, aiid W+, both of dimen5ioii ( 3  x nc),  are 
formed liy tlie lior m n t a l  concatenation of all the 
i ndividiial normal c t ~ ~ d  tangential contact wrenches 
w,, ailcl w,f Correipondingly. the normcLl and tan- 
gential wrench iiitmsitj vc ors, c ,  and ct ,  both 
hnve length nC aiid are forined by the veitical con- 
catenation of all the normal and tangential wrench 
iltiteiisity coinponelit$. c,,, and C l t .  

The motion of tlie lamina is also subject to  kiiie- 
nrlatic velocity cons traints, the satisfaction of whitli 
erisurC5 that tlie pcliiit bodies do not penetrate the 
lcmiina’S \ i i i fc ic  c. Denoting the relati\e linear 1 e- 
locity at the l t h  cointact expiessecl n i th  respect to  
the t f l ’  contact frame as vz y [ z ~ , , , , ~ ~ , t ] ~ ,  then the 
i~oiipenctr~ttion constraint is givcii by the followiiig 
ii iequalit?. 

Ifmc Ict q = [Q,, (it,, & I T  iepiesrnt the linear aiid dii- 

gular vclocitj of the poiiit on the lamina coincident 
with the origin of tlie world frame, then WTq is the 
linear ve1ocitT of the ti’’ contact point oii the lam- 
ind [GI. X\siiming 1 hat tlic hodies in contact with 

1 1 1 1 ,  2 0: YL. (4) 
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the lamina are points on nianipu1at)ors. then t,he 
h e a r  velocity of the it” point body niay be writt>eii 
as t,he product of the Jacobian matrix (excluding 
the rows correspoiiding to rotat,ioiial velocit,y) as- 

sociated with the point., Ji = [ !;; ] , alld tlie 
( 2 x n s )  

joint velocity vector, Q of length no. t,he nuiriher of 
joints in the niaiiipulat,ors. Thus the r e h i v e  linear 
velocity a t  the it’’ coiit,act is given by 

WTq - J;B = vi , 

W:q - J,e 2 0 

(5) 
Casting constraints (4 )  in inat,ris forni yiclds 

(6) 
where J, was formed by vert>ically concat,eiiat,iiig 
t,hc rows. j i n ,  of the individual c;ontjactj Jacobian 
matrices Ji. The reinairling constraiiit,s enforce t>he 
Coulomb friction model, which for the planar case 
may be written as a systeiri of linear inequalities as 
follows 

where 
Bc 2 0 (7 

U = d i a g { p l ,  . . . . / L ~ ~ , }  is t,he diagonal matrix of ef- 
fective coefficients of friction, and I is the (n, x n,,) 
identity matrix. To complete the contact model, 
we d s o  require the following complementary coli- 
strailitas which define the three possible types of 
contact’ int,eract>ions: 
Rolling contact: b’i E R 

0iT, = 7lit = 0. Cf, 2 0, -picin 5 Cit 5 pfci,, (9) 
Sliding contact: b’i E S 

Breaking contact. b’z E B 

U,, > 0, e,,, = 0. C,t =!z 0. (11) 

where the disjoiiit sets R, S ,  and G contain the 111- 
dices of the contacts assumed to be rolling, sliding, 
a id  breaking, respecti.irely. 

to 3”. possible modes of motzon and their corre- 
sponcling systems of equations and inequalities. To 
facilitate our analysis, we introduce tlie selection 
matrices. ER . Es . and E B  , which identify the 
currently considered motion mode. Letting n~ be 
the number of rolling contacts and e: be the row 
vector of length n,  with z t h  element equal to one; all 
others 7ero Then ER is the nH x n, matrix formed 
by the vertical concatenation of one row vector, e?, 
for each I E R. The matrices Es and EB and the 
iiuinbers ns and i ig  are analogously defined. 

Given an  hypothesized set of contact interactions, 
the correspoiidiiig sct of kinematic requirements 
call be written as follows 

W$q = J , i  (12) 

where the active wrench and Jacobian matrices are 
defined as follows 

Wzo = E$W,’, and J,d = E,jJ,, with Q E { 7 2 , t }  

and 3 E {I?, S, B } .  Addit,ionally, the contacts as- 
sumed to  be breaking must, satisfy t,he following 
inequality 

W T B ; l >  J , B ~ .  (14) 
The wrench int,ensity vect!ors of the sliding con- 

tacts are knowh to lie along the edges of their re- 
spective friction cones. To writ e these constraints 
in matrix form. we define the diagonal tangential 
directions nzutrix, 8, as follows 

(15) 

where = sgn(w:q-j:i) and sg72.0 is the signum 
function. Given these definitions, the tangential 
wrench int>ensity vector for the sliding contacts is 
given by 

cts = -u,&c,,s (16) 
where cap = EJC,, Us = EsUE? and Es = 
E,~EE;. with cy E {n .  t }  and d E { R ,  S, B} .  Sub- 
stituting into tlie equilibrium equatioii ( 3 )  yields 

W.4pc~ [WA + W ~ ] C A  = -gert (17) 

where W,, = -W,sU,@s. The applicable wrench 
intensity vector, c . 4 >  is defined as follows 

3 Solution Approach 

To find the solut,ion(s), to the quasi-static mot,ioii 
relationships given above, we must. consider every 
possible combination of assumptions of rolling, slid- 
iiig, aiid breaking at, t,he contact,s. This gives rise 

where C,,R arid C ~ K  are t>he rolling normal and tan- 
gent,ial wrench intensitay vectors, respectively, and 
cns is the sliding normal wrench intensity vector. 
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To satisfy the Couloinh model c ~ ~ i t l  to giiarantcc 
that all contat t forces are c oinpressivc, tlie mrench 
inteiisities must also satisfy the folloniiig 
inequalities 

B?CA 2 0 (19) 
where B A  i i  defined as follow 

I R  

BA = [iz - 1 ~  1 . (20)  

ul1ere Ix ant1 I\  ale the 1711- and II~-tlllllellsloll~~l 
idciitity matrices, respectivch. 

It i c p  
icseiits all external forcm ftorri soiirces otlwr than 
contact with the moving point bodies ancl is <is- 
surned to  be lmowii. 

To piedict the cliiasi-st;ttit x elotity of the lmiina. 
one must find ctll T C C  tois, e ancl c .  ciiid cocfficicnts 
of friction, p l :  i E (1, .  . . , 17,) which satisfl tlic 
liincmatic constraints arid renclrr tlw Couloiiil-I ancl 
eqiiilibrium constraints feasible. If the cocfficicnts 
of friction were 1;nown. tlieii we (oiiltl use the fol- 
lowing straight foii%aicl ap11rox1i. Given the (011- 

figuration of the system, gfrL, arid 8: first, Bsqjotlic- 
sise a mode of motion: second. sol\e thc applicahlc 
kinematic equations (12)  for q; third, sulxtitute q 
into (14 to ensure that presumccl lneakiiig (oil- 
tacts wi i 1 actiially hrcal;; fourth, solve the applica- 
hle eqiiilibriuin ecluations, (17). for c 1; and hfth, 
su1,stitute c4 into iiiecluality (19) to ensure tlidt 
the Couloirib friction constraints x e  satisfied. If 

tu (>  satisfietl. then the hypothesi7c~l 
n is feasil~le. SO the sliding tangen- 

tial wrench intensity vector, cf 5 ,  citii he roinpntecl 
using equation (16). 

Sin( e we aSwine that tlie cordTicicnts of fiictiori 
at the contact points die unkiio~v-n, tlie al>ovc a p  
pronch must he slightly modified. Sinc c,  tlie ltiiie- 
matic ( oiistrairits do not depend on tlic coc4Ecieiits 
of friction, the first thrcc steps above need not 
lie alteied. Howevei, in the fourth step, we niiist 
solve for crl analytically and then iubstitute the 
result into tlie applicaldc Couloinli flit tion c 011- 
5tiaints (19) to yield il set of inequalities in tlic 
iinl;nowii cocEcients of friction. 

In this paper. we consider onljr thc situations for 
mliicli WA is iioiisiiigulai. plating no tonstiaiiits 
oii 8. IVe further as5iinie that the presumed break- 
iiig toritacts SatiSfy the reqiiircd constraints (14).  
Cases for ah ich  W 1 is singular arc disciisset1 in 

O ' 5  ( ( 'Ln ,+nc)x (L1 / ,+ , i i ) )  

The final untlist ussed qiidntitv i s  gpLt. 

VI 

4 Exact Decomposition of p-space 

Given that the tliiiieiision of W;1 is ( 3  x ( 2 1 2 1 2  + n 5 ) )  
a n c ~  our restric tion that w,' inlist exist. the mocIcs 

of iiiotioii c onsidercd here must have either three 
sliding contacts wLth all other contacts breaking or 
one sliding and  on^ rolling contact, all others break- 
ing. IYe clrnotc these rnodes of motion by 3s and 
RS. Note that tliere are ('>) and n,(n, - 1) distinct 
rnotlcs of types 3s' mcl RS,  respectively. 

4.1 Regions in /*.-Space for 3s 

Sincc for the 3s rnodes of motion. all rnaintainetl 
contacts arc sliding. the equilibrium equation. (17). 
and Coiilonib conF,traint5, (19). 4mplify to  yield 

c n i  2 0 ' (22) 
Analvtic ally determining the inverse of W,, 7 - 
Wt SZ 5 Us yields the following inequalities which 
rriiist 1)c satisfied for the 3 s  solution to be valid 

1; 
rn .S ,  == - x V i  E { 1. 2 ,3}  ( 2 3 )  

whete 

-y = zApl/L2}/.3 + BlP-12113 f BLI*lp*3 + B3P11-12 
fC'11-11 + CLPL + c(3p.3 + D (24) 

Ji  = E ~ / / L P ~  t- F I Z P L  + Fi3pu3 + GI (25) 
11 = EL/LIPI t- Fzi/li + F21/13 + Gz (26) 
I:, = E3PlP2 t- F31P1 + F32PL + G.3 (27)  

where the coefficients. A,, B,, C,, D ,  E,. Ft3. and 6, 
( an be written as thiee-by-three determinants with 
( olumns consisting of individud contact wrenches 
, ~ n d  the external wren(-h multiplied by up to three 
elernents of the t<ingential directions matrix (see 
[ 171 for dcfiiiitions) Thus the analytical expres- 
',ions fot the regiorii of 1 dlid 3s niotioii in p-space 
A ~ C  as follow, 

x > o  

OR 
'T < 0 

1; 2 0. V l  ( 2 8 )  

Y; 5 0; V? (29) 

If all I / ,  are different, Collins' decomposition could 
hc usecl to generate descriptions of regions of / I -  
*,pace in which 3s motion can exist. However, if one 
(.ai1 justify that the friction coefficients are nom- 
inally the samc ancl don't vary greatly. then the 
a1)ove inequalities reduce to cubic and quadratic in- 
eclualitie~ in / / .  The roots of these inequalities can 
1 ) ~  used to dctciniirir tlie rctngr(s) of 11 for which 
JS motioii is coilsisterit with the cpasi-.;tatic and 
Coulornl) frirtioii assumptions. It is important to 
notc. liowex er. that the cocfficierits of the inequal- 
itics. and therefore tlic 3s regions in p-spare. are 
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dependent, on 4. Thus, 3s niot,ioii of t,he lainilia in 
oiie direction, 8, niay be possible for "large" coeffi- 
cients of friction, while 3s niotioii in t,he opposite 
direction may only bc possible for '.small" friction 
coefficients. 

Figure 2 below shows a randomly chosen grasp for 
which the 3s regions in 7717~-space were computed. 
Figure 3 shows two slices of the 3s regions talien 
perpendicxlar to the p3-axis. The areas in the p1- 
p2 planes coiit,aining t,he 1's represent, slices of the 
3s region. The areas containing t,he 2's belorig to 
the RS region corresponding to contact 1 rolling. 
contact, 2 sliding, and cont>act 3 brcaking. The dot- 
ted lines are the exact 3s boundaries defiiied b>- 
the most, restrictive iriequalitjies in t,he sets (28) and 
(29). The t,hin. solid, 1iorizoiit.al liiie, aiicl the dot- 
t,ed line with positive slope bouiid the RS region 
(tlie portion of the solid line to  the left of t>lie dott,ecl 
lines is not constraining). Thc blank areas denote 
t,liat, t,he proposed mode of motion i s  infeasible, i 
jamming or instlability will occur. -4s one would 
expect,, for this grasp, the points in the infeasible 
region correspond t,o large coefficients of frict,ion. 
If the coefficients of friction are constrained to bc 
equal, then t,he 3s regions i s  given by 0 5 Ai, 5 0.8, 
where 0.8 is t,he approximate valuc of for which 
the friction cones of contact,s 1 and 2. in the words 
of Nguyen, .'see each ot,her [lo]." 

A X 
tl 

Figure 2 Randomlj Chosen Giasp 

Inequalities (28) and (29) embody the feasibility 
of the equilibrium and Coulomb constraints given 
the presurned mode of motion. As pointed out by 
Zeiig [17], they also have a simple graphical iii- 
terpretatioii which i i  <urnrnarized in the following 
corollary. 

Corollary 1 If the kinematic constraints are as- 
s?i,mcd to he sat isf ied already, the,n the  m f f i c i e n t  a,nd 
,necessary conditions fo. the exis tence of a 3s sola- 
t i on  are as follows. 

e If t h e  l ines  of action of the three contact 
uirenches do n,ot intersect a t  one poin t ,  t hen  
for  every pair of contacts, t h e  lines of actions 
of the external uirench u,nd th,e unpaired con- 
tact wrench must produce nionie,izts of opposite 

scnse about t h e  intersection point of t h e  lines of 
ac t ion  of t h e  paired contacts. 

e If the h e s  of action of the  three contact 
wrenckes do  i,ri,tersect at  one poi,nt, t h e n  th,e 
line of action of th,e external wrench m u s t  pass 
th'roiiqlz t h e  intersection point arid i t s  direction 
nzusf lie in the co.n,e &fined hy t h e  n,egatiae span, 
of t h e  directio,ns of the  l i m s  of action, of th,e 
contact wrenches. 

1 1 i 1 1 i i 1 1 1 1 r e t  2 2 2 2 

1 1 1 1 1 1 1 1 i 1 1 r.2 2 2 2 2 

I 1  I I 1  i 1 i I v . 2  2 2 2 2 2 2 

1 I ? I I t  i I (..*2 2 2 2 2 2 2 2 

I I I I 1 1 1 2 . 2  2 2 2 2 2 2 2 2 

i i i i i i r 2 2 2 2 2 2 2 2 2 2  

1 I 1 I 1 L.'2 2 2 2 2 2 2 2 2 2 2 

I I I T82 2 2 2 2 2 2 2 2 2 2 2 2 

1 ,  t $ 1  1 i i I 4  $ 1 2 2  2 2  2 2 

1 I 1 1  1 1 1  1 i l . 4 ' 2  2 2 2 2 2 

I , I  I 1 1  1 1 * . i 2 2 2 2 2 2 2 2  

1 3 1 1 1 - 2  2 2 2 2 2 2 2 2 2 2 2 

1 1 ,..+'2 2 2 2 2 2 2 2 2 2 2 2 2 

1 1 / 2  2 2  2 2  2 2  2 2 2  2 2 2  2 

1;-2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 I 2  2 2  2 2 2 2 2 1 2  1 7  2 1 

P1 1.0 

I 
I I 

IQ 

I 1  

0.0 I i i  

I I I i i I p'2 2 2 2 2 2 2 2 2 2 

1 1 I 1 i . A  2 2 2 2 2 2 2 2 2 2 2 

1 1  i l , i  2 2 2 2 2 2 2 2 2 2 2 2 

1 1  1 * . 4 * 2 2  2 2  2 2  2 2 2  2 2  2 2 

i 1 1 2  2 2  2 2  2 2  2 2 2  2 2  2 2 

1 . i . 2  2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2'2 2 2 2 2  2 2 2 1 2  t 7 7 7 ? 7 

1 1  I i i i 8 . 2 2  2 2 2  2 2  2 2  2 2 

Pl 1.0 

p= 1.0 

Figure 3 :  p-Space Decomposition for Random Grasp 

This Corollary is graphically illustrated in Fig- 
ure 4. Given that tht  kinematic constraints are 
feasible, then q is kiiowii. This implies that  t,he 
lines of act,ion of t,he three sliding contacts are also 
known. 111 Figure 4, these lines of act,ion are la- 
beled W1, W2, and Wy. Figures 4a and 4b illus- 
trate t,wo possible sets of c o i h c t  wrenches which 

as a common point. In Figure 4a. 
the corollary requires the line of action of the possi- 
ble external wreiichs (tlic unlabeled arrows) to pass 
through t,he segnients P I ~ P L ~  and P ~ J ' I ~  such that 
in pointx int>o the cone formed by the negative span 
of the direct,ions of tlie lines of action of the con- 
t,act wrenches, W1. W?. and Ws, ( s h o ~ v n  t,o the 
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left of the grasp). In Figure 4b, the lines of action 
of the contact wrenches, W1, Wl, and Wi, nega- 
tively span the plane of the paper, $0 the direction 
of the line of action of the externd wrench is un- 
constrained. However, its line of action must cause 
a negative moment with respect to all points in the 
triangle, AP&'&1. Several external wrenches 
consistent with feasible, cpasi-static , 3s motion are 
shown. Note that the wrenches acting a t  the slidiiig 
contacts and the external wrench form two coiiics 
whic1i"see each other." 

Figure 4: Conditions for Existence of 3s hlotle. 

When the area of the triangle. A P ~ ~ P L J P ~ ~ ,  dp- 
pioaches zero, the denominator, A-, of c,sz also ap- 
proaches zero. If the line of action of the external 
wrench does not pass through tlie intersection point 
(the degenerate triangle), then the numerator has 
a finite value. If this is the case, the elemelits of 
tlie normal wrench illtensity vector go to  infinity, 
which implies that no feasible solution exists. 

When the f n c  tion coefficients change, tlie lines 
of action of the contact ~ w i i c h ~ <  cliange If siith 
change does not result in the change of the mo- 
ments of the external wrench with respect to the 
vertices of the triangle, then the saiiie 3s motion is 
valid. Otherwise, the external wrench will not be 
balanced by the thrce modified contact wiriithcs 

4.2 

For the RS motiton, W2+, BA, and CA are defined 
as follows 

Regions iin p-Space for RS 

W A p  = [wm WTI ( w s n  - < s / L s w s t ) ]  (30) 

1 0  
B A =  [ ii -1 0 1  (31) 

cs n 0 0 1  
C A =  

where the subscripts 1 and s are tlie indices of the 
rolling and sliding contacts, respectively. and t8 is 
the direction of relative tangential velocity at the 
sliding contact. Solving for the wrench intensities 
yields 

where the coefficients A, B: c l i 3  a i d  Di, can be writ- 
ten as three-by-three detexmiiiants with columns 
consisting of indi-vidual contact wreiiclies and the 
ext,eriial wrench miiltiplicd by 111-1 t,o three elernent,s 
o f the  t,angent,ial directions matrix (see [17] for def- 
init,ioiis). 

Substituting the wrench intensities into the 
Coulomb frictiori coiist,ra,jnt, (19) yiclds t,he analyt- 
ical expressions for the region of p-space in which 
the chosen RS motion mode exists 

Aps + B > 0 
C I / L v / L s  + Dipr - Czps - D 2 - 0 }  i fD3>O 
Cipvps + Dip,, + G p A  + D2 2 0 

( 3 2 )  
OR 

i 
1 1 clp7.p$ + D1pr + c2ps  + 0 2  F 0 

Ci/Lvps + DipT - c2ps - D;, 5 0 
*4ps + 13 < 0 

i fD3 I 0 

(33)  
The graphical interpret,ation of the RS mode in- 
equalities (32) aiitl (33)  can be shown to  icleiitical 
t>o t,liat, of t,he 35' mode. One need merely replace 
two wrenches gen.erat,ed by sliding contacts wit,h 
t,he wrenches corresponding t,o the two edges of the 
friction cone of t,he rolling contact. 

Figure 5 belom~ !;bows a thin rigid rod supportled 

gether. The coeffic:ieiit of frict,ion a t  contact 1 t,akcs 
on a value p 1 ~  during rolling and a lower lralue. p l , ~ ,  
when sliding. Siniilarly t,lic effective coefficient of 
friction at, the seclond contact, is eit,her p2R or pa,?. 
Of tlie iiiiie possible niodes of motion, five involve 

hy two points of contact which inove slowly to- 
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one or inore lxealcing contmcts. These are qiia4- 
statically infeasible, because ccliiilibriuin cannot be 
maintained. The 2R mode is lcinemclticall) infeasi- 
hle since the bodics are rigid. Thus we need only 
consider t h e e  modes: 2s. RIS2. aiid R ~ S I .  

Figure 5: Rod on Two Fingers 

Irieqiialities (32)  a i d  ( 3 3 )  foi tlie RLSl inode c m  
he shomn to exist if tlie coefficiciits of friction define 
a point 111 thc portion of p q x ~ c c  311oxe or on the 
line. l l p 2  = Zlp1. uliicli we call  tlie partitioiiirig line 
(sec Figiire 6 ) .  Similar . points iii p-space below 
01 on thc I”rtltlonlng I e (011espo11d to the RlSL 
1110 de. 

Suppose I 1  and I 2  are sucli that the rectangle 
formed 1)y t h r  coefficients of friction lies entirely 
within the RlSl region as shown. As the slipports 
iiiove, l i  mill reduce, 12 will be uiich~ngcd, and the 
coefficients of friction will assume the xalues p l  
and ~ r 2 ~ .  defining the upper left vcrtex of the rect- 
angle. 

Figure 6: p-Space Decomposition for Rod 

As motion progresses, the partit5oniiig liiie rotat,es 
counterclockwise about the origin. Assuming the 
coefficients of friction remain fixed, then only the 
R2S1 mode is feasible until the instant, t,he par& 
tioning line passes t,lirough the upper left, corner 

are feasible, but t,lie rriodc must swit,ch to RI&. 
because if it, dicl not,. t,lien in t’he nest  instant, thc 
R2S1 mode would become infeasilde with only RI Sz 
feasible. At, t,he instant t,he mode switches, the co- 
efficients of friction switxh t’o their other values. 
-4s the supports contiriuc to approach each ot,her. 
the partitioning line “bounces” hack and forth be- 
tween the upper left aiid lower right, corners of t,he 
rectangle. switching 1)et)weeii RS modes. seemingly 
chasing tjhe ciirreiit, point in p-space. The 2s mode 
is never active, because it is only feasible when the 
partitioning line reaches t,he lower left, corner of t,he 

of t h o  rectangle. At this point. both RS inodes 

rectangle and if the coefficients of friction are equal 
t,o their sliding values. However. one of the coeffi- 
cients of friction is always equal to it,s rolling value. 
Xot,e that, if the coefficients of frict’ion were ran- 
dom variables. with means at) thc coriiers of the 
rectangle. the samc bbbounc.ing” behavior would be 
observed, but the corners of t,he rectangle would 
riot he  fixed. 

Iii the above example. two modes were feasible 
simultaneously at, the inst,ant s that  t,he partitioning 
liiie reached the upper left, and lower right corners of 

angle. This is not, surprising) since dynamic 
models of rigid body interaction have been sliowii 
t,o yield iiiult,iple feasible solutions [7]. One might 
tliirilc that multiple solutions are feasible only for 
an instant of t,inie. hiit this is not, true. 

Figure 7 shows a grasp with four clist,inct feasi- 
ble modes of motion (35’. RIS3, R2S1. and R3Sl), 
t h e e  of which are sirnu1t)aneously feasible for suit- 
ably small perturbat,ions in t,he coefficicnt,s of fric- 
tion aiid tlie posit,ioiis and oricnt,ations of the c o w  
tacts. Figure 8 sliows t,liat, multiple modes of mo- 
tion are simultaneously feasible over large regions 
of frict,ion space. Note that, in Figure 8 )  1‘s. 3‘s. 4’s) 
aiid G’s correspond to the modes. 3S,  RlS3, R2S1, 
and R3SI. respectively. 

Figure 7 .  Three-Point Grasp with Multiple Modes 

p3= 0.7 

Figurr 8: Partial / / -Space Decomposition for Figure 7. 
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The quasi-static planar motion of a. rigid lamina 
in frictional contact with any number of moving 
point, bodies depends 011 the coefficients of fi.ict,ion 
a t  tjlie contacts. Using the equat,ions of ccliiilihriuin, 
t)lic 1iinemat)ic velocity constraints, and a Coulomh 
model of friction. we have derived polyiioinial in- 
equalities defining regions in p-space in which par- 
ticular modes of motion are feasildc. The exam- 
ples discussed here have pointed out that the rela- 
t,ioiisliips defining quasi-static inotioii inay have no 
so1ut)ioii or multiplc solutions; a fact which is not, 
surprising given that dynamic equations of motion 
of rigid bodies in corit,act also exhibit nonunique 
solut~ion[7]. 

The analysis presentcd can be applied tjo clexkr- 
ous manipulation and assembly plainiiig for sys- 
tenis consisting of parts of const,aiit cross scct’ion. 
One particular app1icat)iori that, we are currently 
piirsuirig relates to dexterous inaiiipulatiori plan- 
ning. We have succeeded in planning under the 
frictionless assumption[ 151, but would like t,o exe- 
cut,e “frictionless” plans in real environirients with 
friction. Since frictionless plans have all sliding con- 
tacts, it  is possible to apply our results for tlic valid 
regions of 3s solutiolis in a poinbwise inanncr along 
a givcn path. The results for all tlic poiiit,s call 
be cornhined t,o deterniiiie a frict,ioii bouiicl, below 
which, the frictionless plan can he successfully ex- 
ecut,ed. Siich analyses can yield useful coiistraint,s 
0x1 mat,erials selectioii during t,lie design of assern- 
hly systems, by simulating nominal traject,ories or 
planning nominal t,aslis prior t,o manufact,ure. 
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