
 Life at the Near Petascale Edge: A
Tale of Two Applications

Christopher D. Carothers
Department of Computer Science
Rensselaer Polytechnic Institute

chrisc@cs.rpi.edu

2

Outline
 Overview of HPC Platforms

 CUDA – Compute Unified Device Architecture

 IBM Blue Gene/L, /P & /Q

 App 1: PHASTA -- CFD Solver using MPI
 Implementation

 Performance Results

App 2: ROSS – PDES using MPI
 Implementation

 Performance Results

Summary and Future Challenges

CUDA – Massively Parallel Desktop Computing
• Impressive Performance Capability

• Calc: 1288 GFLOPS vs. 32 GFLOPS
• Memory BW: 144 GB/s vs. 8 GB/s
• Threads: 10’s of 1000s of active

threads
• Upto 512 cores

• Highly available platform & relatively
low cost:
• Telsa C2050: $2500
• GTX 480: $500

• No free lunch:
• Push lots of details onto

programmer!!
• Exposes all layers of memory

hierarchy
• Radically changes program

structure from serial
• Cards have limited memory

resources (peak of 6 GB today)

DRAM

CUDA Example: Reduction

• What are challenges and optimizations
to performing a reduction operation
– E.g., sum, min or max across an array of

data elements

– Turns out memory bandwidth is the key
limiting factor

– There are seven levels of optimization
required to obtain peak performance

G80 Performance for 4M element reduction

Kernel 1:
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Kernel 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Kernel 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Kernel 4:
first add during global load

0.965 ms 17.377 GB/s 1.78x 8.34x

Kernel 5:
unroll last warp

0.536 ms 31.289 GB/s 1.8x 15.01x

Kernel 6:
completely unrolled

0.381 ms 43.996 GB/s 1.41x 21.16x

Kernel 7:
multiple elements per thread

0.268 ms 62.671 GB/s 1.42x 30.04x

Kernel 7 on 32M elements: 73 GB/s!

Step
Speedup Bandwidth Time (222 ints)

Cumulative
Speedup

template <unsigned int blockSize>
__global__ void reduce6(int *g_idata, int *g_odata, unsigned int n)
{
 extern __shared__ int sdata[];

 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*(blockSize*2) + tid;
 unsigned int gridSize = blockSize*2*gridDim.x;
 sdata[tid] = 0;

 while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
 __syncthreads();

 if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
 if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
 if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }

 if (tid < 32) {
 if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
 if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
 if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
 if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
 if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
 if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
 }

 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

Final Optimized
Kernel

// int specific reduce on CPU
int reduceCPU(int *data, int size)
{
 int sum = data[0];
 for (int i = 1; i < size; i++)
 {
 sum += data[i];
 }
 return sum;
}

Blue Gene /L Layout

CCNI “fen”

• 32K cores/ 16 racks

• 12 TB / 8 TB usable RAM

• ~1 PB of disk over GPFS

• Custom OS kernel

Blue Gene /P Layout

ALCF/ANL “Intrepid”

•163K cores/ 40 racks

• ~80TB RAM

• ~8 PB of disk over GPFS

• Custom OS kernel

Blue Gene: L vs. P

Blue Gene /Q will have 1.6M cores (6.4 M threads) & use a 5-D Torus

10

NSF PetaApps: Parallel Adaptive CFD

PetaApps Components

 CFD Solver

 Adaptivity

 Petascale Perf Sim

 Fault Recovery

 Demonstration Apps

 Cardiovascular Flow

 Flow Control

 Two-phase Flow

Ken Jansen (PD),

Onkar Sahni,

 Chris Carothers,

 Mark S. Shephard

Scientific Computation Research Center

Rensselaer Polytechnic Institute

 Acknowledgments: Partners: Simmetrix, Acusim, Kitware, IBM

 NSF: PetaApps, ITR, CTS; DOE: SciDAC-ITAPS, NERI; AFOSR

 Industry:IBM, Northrup Grumman, Boeing, Lockheed Martin, Motorola

 Computer Resources: TeraGrid, ANL, NERSC, RPI-CCNI

11

PHASTA Flow Solver Parallel Paradigm

Time-accurate, stabilized FEM flow solver

Two types of work:

 Equation formation
 O(40) peer-to-peer non/blocking comms

 Overlapping comms with comp

 Scales well on many machines

 Implicit, iterative equation solution
 Matrix assembled on processor ONLY

 Each Krylov vector is:

 q=Ap (matrix-vector product)

 Same peer-to-peer comm of q PLUS

 Orthogonalize against prior vectors

 REQUIRES NORMS=>MPI_Allreduce

 This sets up a cycle of global comms. separated by modest amount of work

 Not currently able to overlap Comms

P1
P2

P3

12

Parallel Implicit Flow Solver – Incompressible
Abdominal Aorta Aneurysm (AAA)

Cores
(avg. elems./core)

IBM BG/L
 RPI-CCNI

t (secs.) scale
factor

512 (204800) 2119.7 1 (base)

1024 (102400) 1052.4 1.01

2048 (51200) 529.1 1.00

4096 (25600) 267.0 0.99

8192 (12800) 130.5 1.02

16384 (6400) 64.5 1.03

 32768 (3200) 35.6 0.93

32K parts shows modest degradation

due to 15% node imbalance

13

Scaling of “AAA” 105M Case

AAA Adapted to 109 Elements:
Scaling on Blue Gene /P

#of cores Rgn imb Vtx imb Time (s) Scaling

32k 1.72% 8.11% 112.43 0.987

128k 5.49% 17.85% 31.35 0.885

New: @ 294,912 cores  85% scaling
relative to base of 16K cores

Work Analysis on Linux Cluster

• Equation Formation Implicit Solve

• Issue can be avoided by keeping element/node count
high to shelter communication.

• Allows bigger problems to be solved but misses
opportunity for time compression.

16

Flow Solver Parallel Paradigm (REVIEW)

Time-accurate, stabilized FEM flow solver

Two types of work:
 Equation formation

 O(40) peer-to-peer non/blocking comms

 Overlapping comms with comp

 Scales well on many machines

 Implicit, iterative equation solution
 Each Krylov vector is:

 q=Ap (matrix-vector product)

 Same peer-to-peer comm of q PLUS

 Orthogonalize against prior vectors

 REQUIRES NORMS=>MPI_Allreduce

 This sets up a cycle of global comms. separated by modest amount of work

 Not currently able to overlap Comms

 Even if work is balanced perfectly, OS jitter can imbalance it.

 Imbalance WILL show up in MPI_Allreduce

 Scales well on machines with low noise (like Blue Gene)

P1 P2

P3

17

OS Noise Test Problem
• Test code created to mimic the problem

• For iter=1..LARGE-NUMBER

• do 1 million MADDS (WORK)

• MPI_Allreduce (COMM)

• Endfor

• Timers can be wrapped around WORK or COMM

Observe that REAL work is being done and not just a fixed
timer amount of fake work.

Care needs to be taken to avoid compiler optimizing the
work loop away…

18

How OS Jitter Effects MPI_Allreduce

19

Phasta Summary…
Complex geometry/physics=> Real world Apps

Implicit solvers: Complexity but nstep

Excellent scaling results

Understanding influence of OS noise

Big Science AND FAST SCIENCE

Methods used (FEM) representative of commercial
Computer Aided Engineering (CAE) software

Adaptivity brings real geometry problems into reach of
solution in a USEFUL time frame

Activity on viz co-processing with Kitware (ParaView)

Approaching the era where time compression is sufficient
to enable experiential fluid dynamic design: where
“domain experts” can visually interact/iterate a design and
experience fluid dynamic response to each tweak

DES Ex: Movies over the Internet
• Suppose we want to

model 1 million home ISP
customers downloading a
2 GB movie

• How long to compute?
– Assume a nominal 100K

ev/sec seq. simulator

– Assume on avg. each
packet takes 8 hops

– 2GB movies yields 2
trillion 1K data packets.

– @ 8 hops yields 16+
trillion events

• 16+ trillion events @ 100K ev/sec

Over 1,900 days!!! Or

5+ years!!!

Need massively parallel simulation
to make tractable

How to Synchronize Parallel Simulations?

parallel time-stepped simulation:
lock-step execution

PE 1 PE 2 PE 3

barrier

Virtual

Time

parallel discrete-event simulation:
must allow for sparse, irregular

event computations

PE 1 PE 2 PE 3

Virtual

Time

Problem: events arriving

in the past

Solution: Time Warp

processed event

“straggler” event

Local Control Implementation

Local Control Mechanism:

error detection and rollback

LP 1 LP 2 LP 3

V

i

r

t

u

a

l

T

i

m

e

(1) undo

state D’s

(2) cancel

“sent” events

• MPI_ISend/MPI_Irecv
used to send/recv off core
events

• Event & Network memory is
managed directly.
– Pool is allocated @ startup

• Event list keep sorted using
a Splay Tree (logN)

• LP-2-Core mapping tables
are computed and not
stored to avoid the need
for large global LP maps.

Global Control Implementation
GVT (kicks off when memory is low):

1. Each core counts #sent, #recv
2. Recv all pending MPI msgs.
3. MPI_Allreduce Sum on (#sent

- #recv)
4. If #sent - #recv != 0 goto 2
5. Compute local core’s lower

bound time-stamp (LVT).
6. GVT = MPI_Allreduce Min on

LVTs

Algorithms needs efficient MPI
collective

LC/GC can be very sensitive to OS
jitter

Global Control Mechanism:

compute Global Virtual Time (GVT)

LP 1 LP 2 LP 3

V

i

r

t

u

a

l

T

i

m

e

GVT

collect versions

of state / events

& perform I/O

operations

that are < GVT

So, how does this translate into Time Warp performance
on BG/L & BG/P?

7.5 billion ev/sec
for 10% remote on
32,768 cores!!

2.7 billion ev/sec
for 100% remote
on 32,768 cores!!

Stable performance
across processor
configurations
attributed to near
noiseless OS…

12.27 billion ev/sec
for 10% remote on
65,536 cores!!

4 billion ev/sec for
100% remote on
65,536 cores!!

Movies over the Internet Revisited
• Suppose we want to

model 1 million home ISP
customers over AT&T
downloading a 2 GB
movie

• How long to compute
with massively parallel
DES?

• 16+ trillion events @ 1 Billion ev/sec …

~4.5 hours!!

Summary
– Significant opportunities for using massively parallel

computing systems in robotics system’s research

– GPUs/CUDA

– PRO: massive amount of compute power per $$
– PRO: very available

– CONS: very hard to program

– CONS: Problem sizes limited by GPU memory space

– Supercomputer Systems

– PRO: Growth in size (1.6M cores in 2012)

– PRO: Relatively easier to program (student developer
time less than GPU typically).

– CON: batch queuing of jobs leads to longer wait
times than desktop

– CON: CPU hours limited, need proposals and win time!

