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Outline 
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 CUDA – Compute Unified Device Architecture 

 IBM Blue Gene/L, /P & /Q 

 App 1: PHASTA -- CFD Solver using MPI 
 Implementation 

 Performance Results 

App 2: ROSS – PDES using MPI 
 Implementation 

 Performance Results 

Summary and Future Challenges 



CUDA – Massively Parallel Desktop Computing  
• Impressive Performance Capability 

• Calc: 1288 GFLOPS vs. 32 GFLOPS 
• Memory BW: 144 GB/s vs. 8 GB/s 
• Threads: 10’s of 1000s of active 

threads 
• Upto 512 cores 

• Highly available platform & relatively 
low cost: 
• Telsa C2050: $2500 
• GTX 480: $500 

• No free lunch: 
• Push lots of details onto 

programmer!! 
• Exposes all layers of memory 

hierarchy 
• Radically changes program 

structure from serial 
• Cards have limited memory 

resources (peak of 6 GB today) 

DRAM 



CUDA Example: Reduction 

• What are challenges and optimizations 
to performing a reduction operation  
– E.g., sum, min or max across an array of 

data elements 

– Turns out memory bandwidth is the key 
limiting factor 

– There are seven levels of optimization 
required to obtain peak performance 



G80 Performance for 4M element reduction 

Kernel 1:  
interleaved addressing 

with divergent branching 

8.054 ms 2.083 GB/s 

Kernel 2: 
interleaved addressing 

with bank conflicts 

3.456 ms 4.854 GB/s 2.33x 2.33x 

Kernel 3: 
sequential addressing 

1.722 ms 9.741 GB/s 2.01x 4.68x 

Kernel 4: 
first add during global load 

0.965 ms 17.377 GB/s 1.78x 8.34x 

Kernel 5: 
unroll last warp 

0.536 ms 31.289 GB/s 1.8x 15.01x 

Kernel 6: 
completely unrolled 

0.381 ms 43.996 GB/s 1.41x 21.16x 

Kernel 7: 
multiple elements per thread 

0.268 ms 62.671 GB/s 1.42x 30.04x 

Kernel 7 on 32M elements: 73 GB/s! 

Step 
Speedup Bandwidth Time (222 ints) 

Cumulative 
Speedup 



template <unsigned int blockSize> 
__global__ void reduce6(int *g_idata, int *g_odata, unsigned int n) 
{ 
    extern __shared__ int sdata[]; 
 
    unsigned int tid = threadIdx.x; 
    unsigned int i = blockIdx.x*(blockSize*2) + tid; 
    unsigned int gridSize = blockSize*2*gridDim.x; 
    sdata[tid] = 0; 
 
    while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize];  i += gridSize;  } 
    __syncthreads(); 
 
    if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); } 
    if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); } 
    if (blockSize >= 128) { if (tid <   64) { sdata[tid] += sdata[tid +   64]; } __syncthreads(); } 
     
    if (tid < 32) { 
        if (blockSize >=  64) sdata[tid] += sdata[tid + 32];    
        if (blockSize >=  32) sdata[tid] += sdata[tid + 16]; 
        if (blockSize >=  16) sdata[tid] += sdata[tid +  8]; 
        if (blockSize >=    8) sdata[tid] += sdata[tid +  4]; 
        if (blockSize >=    4) sdata[tid] += sdata[tid +  2]; 
        if (blockSize >=    2) sdata[tid] += sdata[tid +  1]; 
    } 
 
    if (tid == 0) g_odata[blockIdx.x] = sdata[0]; 
} 

Final Optimized 
Kernel 

// int specific reduce on CPU 
int reduceCPU(int *data, int size) 
{ 
    int sum = data[0]; 
    for (int i = 1; i < size; i++) 
       {  
      sum += data[i]; 
       } 
    return sum; 
} 



Blue Gene /L Layout  

CCNI “fen” 

•  32K cores/ 16 racks 

•  12 TB / 8 TB usable RAM 

•  ~1 PB of disk over GPFS 

• Custom OS kernel 



Blue Gene /P Layout 

ALCF/ANL “Intrepid” 

•163K cores/ 40 racks 

•  ~80TB RAM 

•  ~8 PB of disk over GPFS 

• Custom OS kernel 



Blue Gene: L vs. P 

Blue Gene /Q will have 1.6M cores (6.4 M threads) & use a 5-D Torus 



10 

NSF PetaApps: Parallel Adaptive CFD 

PetaApps Components 

 CFD Solver 

 Adaptivity 

 Petascale Perf Sim 

 Fault Recovery 

 Demonstration Apps 

 Cardiovascular Flow 

 Flow Control 

 Two-phase Flow 
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PHASTA Flow Solver Parallel Paradigm 

Time-accurate, stabilized FEM flow solver 

Two types of work: 

 Equation formation 
 O(40) peer-to-peer non/blocking comms 

 Overlapping comms with comp 

 Scales well on many machines 

 Implicit, iterative equation solution 
 Matrix assembled on processor ONLY 

 Each  Krylov vector is: 

 q=Ap (matrix-vector product)  

 Same peer-to-peer comm of q PLUS 

 Orthogonalize against prior vectors  

 REQUIRES NORMS=>MPI_Allreduce 

 This sets up a cycle of  global comms. separated by modest amount of work 

 Not currently able to overlap Comms 

 

P1 
P2 

P3 
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Parallel Implicit Flow Solver – Incompressible 
Abdominal Aorta Aneurysm (AAA)                   

 

 

Cores  
(avg. elems./core) 

IBM BG/L 
 RPI-CCNI 

t (secs.) scale 
factor 

512 (204800) 2119.7 1 (base) 

1024 (102400) 1052.4 1.01 

2048 (51200) 529.1 1.00 

4096 (25600) 267.0 0.99 

8192 (12800) 130.5 1.02 

16384 (6400) 64.5 1.03 

 32768 (3200) 35.6 0.93 

32K parts shows modest degradation 

due to 15% node imbalance 
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Scaling of “AAA” 105M Case 



AAA Adapted to 109 Elements: 
Scaling on Blue Gene /P 

#of cores Rgn imb Vtx imb Time (s)  Scaling  

32k 1.72% 8.11% 112.43 0.987 

128k 5.49% 17.85% 31.35 0.885 

New: @ 294,912 cores  85% scaling 
relative to base of 16K cores  



Work Analysis on Linux Cluster   

•     Equation Formation              Implicit Solve 
 
 
 
 
 
 
 

• Issue can be avoided by keeping element/node count 
high to shelter communication. 

• Allows bigger problems to be solved but misses 
opportunity for time compression. 



16 

Flow Solver Parallel Paradigm (REVIEW) 

Time-accurate, stabilized FEM flow solver 

Two types of work: 
 Equation formation 

 O(40) peer-to-peer non/blocking comms 

 Overlapping comms with comp 

 Scales well on many machines 

 Implicit, iterative equation solution 
 Each  Krylov vector is: 

 q=Ap (matrix-vector product)  

 Same peer-to-peer comm of q PLUS 

 Orthogonalize against prior vectors  

 REQUIRES NORMS=>MPI_Allreduce 

 This sets up a cycle of  global comms. separated by modest amount of work 

 Not currently able to overlap Comms 

 Even if work is balanced perfectly, OS jitter can  imbalance it. 

 Imbalance WILL show up in MPI_Allreduce 

 Scales well on machines with low noise (like Blue Gene) 

 

P1 P2 

P3 
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OS Noise Test Problem 
• Test code created to mimic the problem 

• For iter=1..LARGE-NUMBER 

•  do 1 million MADDS  (WORK) 

•  MPI_Allreduce           (COMM) 

• Endfor 

 

• Timers can be wrapped around WORK or COMM 

 

Observe that REAL work is being done and not just a fixed 
timer amount of fake work. 

Care needs to be taken to avoid compiler optimizing the 
work loop away… 
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How OS Jitter Effects MPI_Allreduce  
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Phasta Summary… 
Complex geometry/physics=> Real world Apps 

Implicit solvers: Complexity          but nstep   

Excellent scaling results 

Understanding influence of OS noise 

Big Science AND FAST SCIENCE 

Methods used (FEM) representative of commercial 
Computer Aided Engineering (CAE) software 

Adaptivity brings real geometry problems into reach of 
solution  in a USEFUL time frame 

Activity on viz co-processing with Kitware (ParaView) 

Approaching the era where time compression is sufficient 
to enable experiential fluid dynamic design: where 
“domain experts” can visually interact/iterate a design and 
experience fluid dynamic response to each tweak 



DES Ex: Movies over the Internet 
• Suppose we want to 

model 1 million home ISP 
customers downloading a 
2 GB movie 

 

• How long to compute? 
– Assume a nominal 100K 

ev/sec seq. simulator 

– Assume on avg. each 
packet takes 8 hops 

– 2GB movies yields 2 
trillion 1K data packets. 

– @ 8 hops yields 16+ 
trillion events 

 

• 16+ trillion events @ 100K ev/sec  

     

Over 1,900 days!!! Or 

5+ years!!! 

Need massively parallel simulation 
to make tractable 



How to Synchronize Parallel Simulations? 

parallel time-stepped simulation: 
lock-step execution 

PE 1 PE 2 PE 3 

barrier 

Virtual 

Time 

parallel discrete-event simulation: 
must allow for sparse, irregular 

event computations 

PE 1 PE 2 PE 3 

Virtual 

Time 

Problem: events arriving 

in the past 

Solution: Time Warp 

processed event 

“straggler” event 



Local Control Implementation 

Local Control Mechanism: 

error detection and rollback 

LP 1 LP 2 LP 3 

V 

i 
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t 

u 

a 

l 

 

T 

i 

m 

e 

(1)  undo 

state D’s 

 

(2) cancel 

“sent” events 

• MPI_ISend/MPI_Irecv 
used to send/recv off core 
events 

• Event & Network memory is 
managed directly. 
– Pool is allocated @ startup 

• Event list keep sorted using 
a Splay Tree (logN) 

• LP-2-Core mapping tables 
are computed and not 
stored to avoid the need 
for large global LP maps. 

 



Global Control Implementation 
GVT (kicks off when memory is low): 

1. Each core counts #sent, #recv 
2. Recv all pending MPI msgs. 
3. MPI_Allreduce Sum on (#sent 

- #recv) 
4. If #sent - #recv != 0 goto 2 
5. Compute local core’s lower 

bound time-stamp (LVT). 
6. GVT = MPI_Allreduce Min on 

LVTs 

Algorithms needs efficient MPI 
collective 

LC/GC can be very sensitive to OS 
jitter 

 
 

Global Control Mechanism: 

compute Global Virtual Time (GVT) 

LP 1 LP 2 LP 3 

V 
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l 

 

T 
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m 

e 

GVT 

collect versions 

of state / events 

& perform I/O 

operations 

that are < GVT 

So, how does this translate into Time Warp performance 
on BG/L & BG/P? 



7.5 billion ev/sec 
for 10% remote on 
32,768 cores!! 

2.7 billion ev/sec 
for 100% remote 
on 32,768 cores!! 

Stable performance 
across processor 
configurations 
attributed to near 
noiseless OS… 



12.27 billion ev/sec 
for 10% remote on 
65,536 cores!! 

4 billion ev/sec for 
100% remote on 
65,536 cores!! 



Movies over the Internet Revisited 
• Suppose we want to 

model 1 million home ISP 
customers over AT&T 
downloading a 2 GB 
movie 

• How long to compute 
with massively parallel 
DES? 

• 16+ trillion events @ 1 Billion ev/sec … 

 

~4.5 hours!! 



Summary 
– Significant opportunities for using massively parallel 

computing systems in robotics system’s research 

– GPUs/CUDA 

– PRO: massive amount of compute power per $$ 
– PRO: very available 

– CONS: very hard to program 

– CONS: Problem sizes limited by GPU memory space 

– Supercomputer Systems 

– PRO: Growth in size (1.6M cores in 2012) 

– PRO: Relatively easier to program (student developer 
time less than GPU typically). 

– CON: batch queuing of jobs leads to longer wait 
times than desktop 

– CON: CPU hours limited, need proposals and win time! 

 

 


