Simulation and Experiments in Vibratory Manipulation: Rigid Bodies on a Vibrating Surface

Tom Vose, Paul Umbanhowar, and Kevin M. Lynch
Laboratory for Intelligent Mechanical Systems
Mechanical Engineering Department
lims.mech.northwestern.edu
and
Northwestern Institute on Complex Systems (NICO) nico.northwestern.edu
Northwestern University

hand controls ball: grasping
shared control: nonprehensile manipulation
environment controls ball

throwing and batting (U Tokyo)

pushing

Examples

bat juggling

pushing and toppling

dribbling (TU Munich)

vibratory feeding
rolling (Michael Moschen)

rolling on a constraint surface (dung beetle, Natl Geo)

Why Nonprehensile Manipulation?

Why Nonprehensile Manipulation?

- Given a robot, increase the set of solvable tasks
- Given a task, use cheaper, simpler robots (automation)
- Most manipulation is nonprehensile! (pushing, throwing, tapping, sliding, rolling, batting, kicking, ...)

Why Nonprehensile Manipulation?

- Given a robot, increase the set of solvable tasks
- Given a task, use cheaper, simpler robots (automation)
- Most manipulation is nonprehensile! (pushing, throwing, tapping, sliding, rolling, batting, kicking, ...)

Research Topics

- sensing/observability/uncertainty
- mechanics and modeling
- motion planning
- feedback control
- understanding what tasks are solvable (e.g., accessibility, controllability)

Outline

a nonprehensile primitive: vibratory sliding

- asymptotic velocity fields
- velocity fields for rigid bodies

Outline

a nonprehensile primitive: vibratory sliding

- asymptotic velocity fields
- velocity fields for rigid bodies

Batting and Sliding

3-DOF "VPOD" vibratory vertical plane manipulator with 3D high-speed vision

Sliding Manipulation

15 Hz vibration, 20x slow motion

Sliding Manipulation

square wave vertical and horizontal acceleration

Sliding Manipulation

square wave vertical and horizontal acceleration

The 6-DOF PPOD

(Programmable Parts-feeding Oscillatory Device)

accelerometers

PPOD2: flexure-based Stewart platform

The 6-DOF PPOD

(Programmable Parts-feeding Oscillatory Device)

asymptotic average velocity field

The 6-DOF PPOD

(Programmable Parts-feeding Oscillatory Device)

	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	
1	1	1	1	1	1	1	

Related Work

horizontally-vibrating plate
[Reznik, Canny
Bohringer, Goldberg, et al.]
vibratory linear conveyors

pizza manipulation [Higashimori, Utsumi, Kaneko]

arrays of vibrating plates, MEMS, airjets, wheels [Frei et al., Bohringer and Donald, Luntz et al., Murphey and Burdick, Kavraki, Goldberg et al.]

Outline

a nonprehensile primitive: vibratory sliding

- asymptotic velocity fields
- velocity fields for rigid bodies

Part Dynamics

$$
\mathbf{f}_{\mathrm{fric}_{i}}=\mu_{i} N_{i} \frac{\mathbf{v}_{\mathrm{rel}_{i}}}{\left\|\mathbf{v}_{\mathrm{rel}_{i}}\right\|}
$$

- direction of relative velocity between part and plate determines direction of friction force
- vertical acceleration of plate determines normal force and therefore magnitude of friction force
- by exploiting full 6-DOF motion, the direction and magnitude of the friction forces on a part can be made configuration-dependent

Part Dynamics

Given:

1. Periodic control signal (plate acceleration)
2. Part parameters (inertia, contact locations)
3. Friction parameters (friction coefficients)

Part Dynamics

Given:

1. Periodic control signal (plate acceleration)
2. Part parameters (inertia, contact locations)
3. Friction parameters (friction coefficients)

$$
\begin{aligned}
\dot{x}=f(x, u) \quad & x=\left(q_{\text {plate }}, q_{\text {part }}, v_{\text {plate }}, v_{\text {part }}\right) \\
u & =\dot{v}_{\text {plate }}
\end{aligned}
$$

Part Dynamics

Given:

1. Periodic control signal (plate acceleration)
2. Part parameters (inertia, contact locations)
3. Friction parameters (friction coefficients)

$$
\begin{array}{ll}
\dot{x}=f(x, u) & x=\left(q_{\text {plate }}, q_{\text {part }}, v_{\text {plate }}, v_{\text {part }}\right) \\
u=\dot{v}_{\text {plate }}
\end{array}
$$

Simplified dynamics:

1. Sliding at all contacts
2. No Coriolis or centripetal effects
3. Fixed plate and part configurations

Part Dynamics

Given:

1. Periodic control signal (plate acceleration)
2. Part parameters (inertia, contact locations)
3. Friction parameters (friction coefficients)

$$
\begin{array}{ll}
\dot{x}=f(x, u) & x=\left(q_{\text {plate }}, q_{\text {part }}, v_{\text {plate }}, v_{\text {part }}\right) \\
u=\dot{v}_{\text {plate }}
\end{array}
$$

Simplified dynamics:

1. Sliding at all contacts
2. No Coriolis or centripetal effects
3. Fixed plate and part configurations

$$
\begin{array}{ll}
\dot{x}=\tilde{f}(x, u) \quad & x=\left(v_{\text {plate }}, v_{\text {part }}\right) \quad \dot{v}_{\text {part }}=\mathbf{A}^{-1} \mathbf{b} \\
u=\dot{v}_{\text {plate }}
\end{array}
$$

Part Dynamics

Given:

1. Periodic control signal (plate acceleration)
2. Part parameters (inertia, contact locations)
3. Friction parameters (friction coefficients)

$$
\begin{array}{ll}
\dot{x}=f(x, u) & x=\left(q_{\text {plate }}, q_{\text {part }}, v_{\text {plate }}, v_{\text {part }}\right) \\
u=\dot{v}_{\text {plate }}
\end{array}
$$

Simplified dynamics:

1. Sliding at all contacts
2. No Coriolis or centripetal effects
3. Fixed plate and part configurations

$$
\begin{array}{ll}
\dot{x}=\tilde{f}(x, u) \quad & x=\left(v_{\text {plate }}, v_{\text {part }}\right) \quad \dot{v}_{\text {part }}=\mathbf{A}^{-1} \mathbf{b} \\
& u=\dot{v}_{\text {plate }}
\end{array}
$$

Natural representation of simplified part dynamics:
velocity field on part's configuration space (not force field on plate surface)

Asymptotic Behavior (Point Part)

Two velocity trajectories (red and blue) for the purple part shown at left, assuming its configuration does not change

$\dot{s}_{x}(\mathrm{~m} / \mathrm{s})$

Asymptotic Velocity (Point Part)

Asymptotic velocity field for a point part $\mathbf{v}_{a}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Asymptotic velocity at configuration (x, y) :

$$
\mathbf{v}_{a}(x, y)=\frac{1}{T} \int_{0}^{T} \mathbf{v}^{L C}(t) d t
$$

Where $\mathbf{v}^{L C}(t)$ is the limit cycle.

Asymptotic Velocity (Point Part)

Theorem
Given:

- simplified dynamics
- plate oscillation of period T

For every (valid) part configuration, the part's velocity trajectory asymptotically converges to a unique limit cycle of period T on or inside the convex hull of the plate's velocity trajectory.

Asymptotic Velocity (Point Part)

Normal force depends on part

configuration and plate acceleration, but NOT part velocity

Asymptotic Behavior (Point Part)

Pursuer-Evader: in velocity space, all parts "chase" the plate by moving directly toward it at the same speed

$$
\mathbf{f}_{\text {fric }}=\mu N \frac{\mathbf{v}_{\text {rel }}}{\left\|\mathbf{v}_{\text {rel }}\right\|}
$$

Example: LineSink

Asymptotics vs. Experiment

Asymptotics vs. Full Simulation

LineSink

Outline

a nonprehensile primitive: vibratory sliding

- asymptotic velocity fields
- velocity fields for rigid bodies

Asymptotic Behavior (Rigid Parts)

Two velocity trajectories for the purple part shown at left, assuming its configuration does not change

Asymptotic Velocity (Rigid Parts)

Two velocity trajectories for the purple part shown at left, assuming its configuration does not change

Sensorless Orienting and Positioning to a Line

Sensorless Positioning and Orienting

Sensorless Orientation and Transport

Full dynamic simulation vs. asymptotic velocity

Red path = part trajectory simulated with full dynamics
Black arrows = asymptotic velocity vectors
Gray arrows = projections of asymptotic velocity vectors

Experimental data vs. asymptotic velocity

Blue path = part trajectory obtained with an overhead camera
Black arrows = asymptotic velocity vectors
Gray arrows = projections of asymptotic velocity vectors

Asymptotics vs. Experimental Results

Outline

a nonprehensile primitive: vibratory sliding

- asymptotic velocity fields
- velocity fields for rigid bodies
- feasible velocity fields for point parts

Basic Plate Motions／Basis Fields

（1 in－plane acceleration +1 out－of－plane acceleration at the same frequency）
Translational

Circular	Divergent Circular	
「ごニー．．．	bı，．．	1，
にここここ？	， $1, \ldots$ ：	
， $1 . . .{ }^{\prime}$		
$\ldots \ldots$	－．＇	
！	…	
ㅈ․…ころ	ここご少	
z－rotation	z－rotation	z－rotation
＋	＋	＋
z－translation	y －rotation	x－rotation

Line Sink／Line Source	
$\ldots \cdots$	$\|$1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
－：－：	
－－－	
E－：：－－	＋f
	H．1．i．
x－translation	y－translation
＋	＋
y－rotation	x－rotation

Shear	
1！： 111	C．．．．．．．．．
$\because: 10.10$	
$\because \square$	
$\square_{1} 1 \quad 11$	
－ $1: 10111$	
1．1． H_{1}	
y－translation	x－translation
＋	＋
y－rotation	x－rotation

Dynamics Are Nonlinear

(a) LineSinkX

$$
\ddot{p}_{x}=10 \sin (60 \pi t)
$$

$$
\ddot{p}_{y}=0
$$

$$
\alpha_{x}=0
$$

$$
\alpha_{y}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)
$$

$$
\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}
-0.27 x \\
0
\end{array}\right]
$$

(b) LineSourcey

$\begin{array}{lllllllll} 1 & 1 & \uparrow & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & \cdot & \cdot & \cdot & 1 & \cdot & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}$
$\begin{gathered} \ddot{p}_{x}=0 \\ \ddot{p}_{y}=10 \sin (60 \pi t) \\ \alpha_{x}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right) \\ \alpha_{y}=0 \end{gathered}$

$\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}0 \\ 0.27 y\end{array}\right]$

Dynamics Are Nonlinear

(a) LineSinkX

$$
\begin{gathered}
\ddot{p}_{x}=10 \sin (60 \pi t) \\
\ddot{p}_{y}=0 \\
\alpha_{x}=0 \\
\alpha_{y}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)
\end{gathered}
$$

$$
\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}
-0.27 x \\
0
\end{array}\right]
$$

(b) LineSourcey

$\begin{array}{llllllll} \uparrow & \uparrow \\ \uparrow & 1 \end{array}$								
11111111	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$							
.								
1111111111								
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$								
$\begin{array}{lllllll} 1 & 1 & 1 & \downarrow & \downarrow & \downarrow & 1 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & 1 \end{array}$								

$$
\ddot{p}_{x}=0
$$

$$
\ddot{p}_{y}=10 \sin (60 \pi t)
$$

$$
\alpha_{x}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)
$$

$$
\alpha_{y}=0
$$

$\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}0 \\ 0.27 y\end{array}\right]$
(d) Saddle

$$
\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}
-0.27 x \\
0.27 y
\end{array}\right]
$$

Dynamics Are Nonlinear

(a) LineSinkX

$$
\begin{gathered}
\ddot{p}_{x}=10 \sin (60 \pi t) \\
\ddot{p}_{y}=0 \\
\alpha_{x}=0
\end{gathered}
$$

$$
\alpha_{y}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)
$$

$$
\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}
-0.27 x \\
0
\end{array}\right]
$$

(b) LineSourcey

$$
\ddot{p}_{x}=0
$$

$$
\ddot{p}_{y}=10 \sin (60 \pi t)
$$

$$
\alpha_{x}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)
$$

$$
\alpha_{y}=0
$$

$\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}0 \\ 0.27 y\end{array}\right]$
(c) Shear

$\ddot{p}_{x}=10 \sin (60 \pi t)$
$\ddot{p}_{y}=10 \sin (60 \pi t)$
$\alpha_{x}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)$
$\alpha_{y}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)$
$\mathbf{v}_{\mathbf{a}} \approx\left[\begin{array}{l}-0.35 x+0.35 y \\ -0.34 x+0.35 y\end{array}\right]$

Dynamics Are Nonlinear

(a) LineSinkX

$$
\ddot{p}_{x}=10 \sin (60 \pi t)
$$

$$
\ddot{p}_{y}=0
$$

$$
\alpha_{x}=0
$$

$$
\alpha_{y}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)
$$

$$
\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}
-0.27 x \\
0
\end{array}\right]
$$

(b) LineSourceY

$$
\begin{gathered}
\ddot{p}_{x}=0 \\
\ddot{p}_{y}=10 \sin (60 \pi t) \\
\alpha_{x}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)
\end{gathered}
$$

$$
\alpha_{y}=0
$$

$\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}0 \\ 0.27 y\end{array}\right]$
(c) Shear

$$
\begin{gathered}
\ddot{p}_{x}=10 \sin (60 \pi t) \\
\ddot{p}_{y}=10 \sin (60 \pi t) \\
\alpha_{x}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right) \\
\alpha_{y}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right) \\
\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{l}
-0.35 x+0.35 y \\
-0.34 x+0.35 y
\end{array}\right]
\end{gathered}
$$

(d) Saddle

$\ddot{p}_{x}=10 \sin (60 \pi t)$
$\ddot{p}_{y}=10 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$
$\alpha_{x}=57 \sin \left(60 \pi t+\frac{5}{32} \pi\right)$
$\alpha_{y}=57 \sin \left(60 \pi t+\frac{53}{32} \pi\right)$
$\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}-0.27 x \\ 0.27 y\end{array}\right]$
design by nonlinear optimization, initial guess from linear superposition of "basis" fields

$\ddot{p}_{z}=10 \sin (60 \pi t)$
$\bar{p}_{y}=10 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$
$\ddot{p}_{z}=5 \sin \left(60 \pi t+\frac{3}{20} \pi\right)$
$\alpha_{y}=100 \sin \left(60 \pi t+\frac{5}{3} \pi\right)$
$\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}-0.41 x \\ 0.02\end{array}\right]$
(e) Sink

$\ddot{p}_{z}=10 \sin (60 \pi t)$
$\bar{p}_{y}=10 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$
$\alpha_{z}=100 \sin \left(60 \pi t+\frac{75}{64} \pi\right)$
$\alpha_{y}=100 \sin \left(60 \pi t+\frac{107}{64} \pi\right)$
$\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{l}-0.42 x \\ -0.42 y\end{array}\right]$
(i) Saddle

$\ddot{p}_{z}=10 \sin (60 \pi t)$
$\bar{p}_{y}=10 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$
$\alpha_{z}=100 \sin \left(60 \pi t+\frac{75}{64} \pi\right)$
$\alpha_{y}=100 \sin \left(60 \pi t+\frac{43}{64} \pi\right)$
(b) DivTrans

$\ddot{p}_{x}=10 \sin (60 \pi t)$
$\ddot{p}_{y}=10 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$
$\ddot{p}_{z}=5 \sin \left(60 \pi t+\frac{3}{20} \pi\right)$
$\alpha_{y}=100 \sin \left(60 \pi t+\frac{2}{3} \pi\right)$

$$
\mathbf{v}_{\mathrm{u}} \approx\left[\begin{array}{c}
0.41 x \\
0.02
\end{array}\right]
$$

(f) Source

$\ddot{p}_{x}=10 \sin (60 \pi t)$ $\ddot{p}_{y}=10 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$ $\alpha_{x}=100 \sin \left(60 \pi t+\frac{11}{64} \pi\right)$ $\alpha_{y}=100 \sin \left(60 \pi t+\frac{43}{64} \pi\right)$
$\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{l}0.42 x \\ 0.42 y\end{array}\right]$
(j)

$\ddot{p}_{z}=10 \sin (60 \pi t)$ $\ddot{p}_{y}=10 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$ $\ddot{p}_{z}=2 \sin \left(60 \pi t+\frac{107}{64} \pi\right)$ $\alpha_{x}=100 \sin \left(60 \pi t+\frac{75}{64} \pi\right)$ $\alpha_{y}=50 \sin \left(60 \pi t+\frac{107}{64} \pi\right)$
(c) SkewLineSink

$\ddot{p}_{x}=10 \sin (60 \pi t)$
$\bar{p}_{y}=10 \sin (60 \pi t)$
$\alpha_{y}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)$

$$
\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{l}
-0.34 x \\
-0.34 x
\end{array}\right]
$$

$$
\mathbf{v}_{\mathrm{A}} \approx\left[\begin{array}{l}
0.34 x \\
0.34 x
\end{array}\right]
$$

(g) Whirlpool

$\ddot{p}_{x}=10 \sin (60 \pi t)$
$\bar{p}_{y}=10 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$
$\alpha_{x}=100 \sin \left(60 \pi t+\frac{3}{2} \pi\right)$
$\alpha_{y}=100 \sin (60 \pi t)$
$\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{l}-0.22 x+0.36 y \\ -0.36 x-0.22 y\end{array}\right]$
(h) Centrifuge

$\ddot{p}_{x}=10 \sin (60 \pi t)$
$\ddot{p}_{y}=10 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$ $\alpha_{z}=100 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$ $\alpha_{y}=100 \sin (60 \pi t+\pi)$
$\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}0.22 x-0.36 y \\ 0.36 x+0.22 y\end{array}\right]$
(d) SkewLineSource

$\ddot{p}_{x}=10 \sin (60 \pi t)$ $\ddot{p}_{y}=10 \sin (60 \pi t)$ $\alpha_{y}=100 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$
\qquad

$$
\square
$$$\left[\begin{array}{l}-0.22 x+0.36 y \\ -0.36 x-0.22 y\end{array}\right]$

$\bar{p}_{y}=10 \sin \left(60 \pi t+\frac{3}{2} \pi\right)$
$\bar{p}_{z}=5 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$
$\alpha_{y}=100 \sin (60 \pi t+\pi)$
$\alpha_{z}=100 \sin (60 \pi t)$

$\ddot{p}_{x}=10 \sin (60 \pi t)$
$\ddot{p}_{y}=10 \sin \left(60 \pi t+\frac{1}{2} \pi\right)$
$\alpha_{x}=100 \sin \left(60 \pi t+\frac{75}{64} \pi\right)$
$\alpha_{y}=100 \sin \left(60 \pi t+\frac{30}{64} \pi\right)$

$$
\mathbf{v}_{\mathrm{a}} \approx\left[\begin{array}{c}
0.42 x \\
-0.42 y
\end{array}\right]
$$

One-Frequency Plate Motions

11-dimensional space of plate motions

- 6 amplitudes
- 5 phases
$\mathbf{u}=\left[\begin{array}{c}\ddot{p}_{x} \\ \ddot{p}_{y} \\ \ddot{p}_{z} \\ \alpha_{x} \\ \alpha_{y} \\ \alpha_{z}\end{array}\right]=\left[\begin{array}{c}A_{x} \sin (2 \pi f t) \\ A_{y} \sin \left(2 \pi f t+\phi_{y}\right) \\ A_{z} \sin \left(2 \pi f t+\phi_{z}\right) \\ A_{\theta} \sin \left(2 \pi f t+\phi_{\theta}\right) \\ A_{\varphi} \sin \left(2 \pi f t+\phi_{\varphi}\right) \\ A_{\psi} \sin \left(2 \pi f t+\phi_{\psi}\right)\end{array}\right]$
8^{+}-dimensional space of fields
- All constant fields
- All linear fields
- Some quadratic fields
- others

$$
\begin{aligned}
& v_{x}(x, y)=a_{1} y^{2}+a_{2} x y+b_{1} x+b_{2} y+c_{1} \\
& v_{y}(x, y)=a_{2} y^{2}+a_{1} x y+b_{3} x+b_{4} y+c_{2}
\end{aligned}
$$

Two-Frequency Plate Motions

23-dimensional space of plate motions

- 12 amplitudes
- 11 phases

$$
\mathbf{u}=\left[\begin{array}{c}
\ddot{p}_{x} \\
\ddot{p}_{y} \\
\ddot{p}_{z} \\
\alpha_{x} \\
\alpha_{y} \\
\alpha_{z}
\end{array}\right]=\left[\begin{array}{c}
A_{x, 1} \sin (2 \pi f t)+A_{x, 2} \sin \left(4 \pi f t+\phi_{x, 2}\right) \\
A_{y, 1} \sin \left(2 \pi f t+\phi_{y, 1}\right)+A_{y, 2} \sin \left(4 \pi f t+\phi_{y, 2}\right) \\
A_{z, 1} \sin \left(2 \pi f t+\phi_{z, 1}\right)+A_{z, 2} \sin \left(4 \pi f t+\phi_{z, 2}\right) \\
A_{\theta, 1} \sin \left(2 \pi f t+\phi_{\theta, 1}\right)+A_{\theta, 2} \sin \left(4 \pi f t+\phi_{\theta, 2}\right) \\
A_{\varphi, 1} \sin \left(2 \pi f t+\phi_{\varphi, 1}\right)+A_{\varphi, 2} \sin \left(4 \pi f t+\phi_{\varphi, 2}\right) \\
A_{\psi, 1} \sin \left(2 \pi f t+\phi_{\psi, 1}\right)+A_{\psi, 2} \sin \left(4 \pi f t+\phi_{\psi, 2}\right)
\end{array}\right]
$$

12^{+}-dimensional space of fields

- All constant fields
- All linear fields
- All quadratic fields?
- others

Extensions

glass haptic display

- controlling friction

$$
\mathbf{f}_{\text {fric }}=\mu N \frac{\mathbf{v}_{\text {rel }}}{\left\|\mathbf{v}_{\text {rel }}\right\|}
$$

- part interaction, assembly

Colgate, Peshkin, et al.

Extensions

- controlling friction

- part interaction, assembly

(world's worst peg-in-hole)

